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ABSTRACT 

 Agelaius phoeniceus (red-winged blackbird), Quiscalus quiscula (common 

grackle), and Sturnus vulgaris (European starling) are three of the most abundant bird 

species found in North America, and along with Euphagus carolinus (rusty blackbird) and 

Euphagus cyanocephalus (Brewer’s blackbird), make up a significant proportion of the 

avian population.   

 Population trends of these four blackbird species and European starlings (EUST) 

were analyzed from the Christmas Bird Count (CBC) data collected between 1988 and 

2008.    Population analyses were conducted using linear mixed-effect regressions from the 

Lmer package of Program R.  This approach was effective in modeling the population 

trends of widespread species with large populations.  However, it was not as effective in 

modeling species with smaller populations and distributions. 

 Only RWBL had significant change in population during the study period, showing 

a positive increase in mean count number of approximately 2.4% each year.  Habitat 

selection showed some parallels among species.    
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INTRODUCTION 

 Red-winged blackbirds (Agelaius phoeniceus, RWBL), common grackles 

(Quisculus quiscula, COGR) and European starlings (Sturnus vulgaris, EUST) are among 

the most common birds on the North American continent, making up a significant portion 

of the avian community.  During winter months, these species form mixed-species roosts 

ranging in size from a few dozen birds to several million individuals.  These species are 

well known for their ability to damage commercial crops, such as rice sprouting in early 

spring and ripening rice in late-summer in the southern US and ripening corn and 

sunflower in the northern US prior to their southern migration (Werner et al., 2009; Werner 

et al., 2011).  On the other hand, the European starlings is a species that is sometimes 

problematic at feedlots and grain storage facilities.  Rusty blackbirds (Euphagus carolinus, 

RUBL) and Brewer’s blackbirds (Euphagus cyanocephalus, BRBL) are two blackbird 

species that do not damage crops or feedlots, mostly due to their relatively low abundance,  

but are often present in mixed-species flocks during the wintering months. 

 Although still one of the most numerous birds on the North American continent, it 

is widely reported that RWBL populations have been in decline for a number of years 

(Yasukawa & Searcy, 1995).  Blackwell & Dolbeer (2001) correlated declines of RWBL 

populations to decreases in crop diversity, the early mowing of hay, and proportional 

decreases in suitable nesting habitat.  Falling blackbird populations in the Dakotas were 

similarly connected to the tilling of breeding habitat for agricultural purposes (Besser et al., 

1984).  Other study species, with the exception of the RUBL, have had relatively stable 

population levels for the last several decades according to both the Breeding Bird Survey 

(BBS) and the Christmas Bird Count (CBC).  RUBL populations, however, have been 
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declining steadily for several decades with no discernable cause.  Rarer than previously 

believed, RUBL was uplisted from a species of Least Concern to Vulnerable in the 2007 

International Union for the Conservation of Nature (IUCN) Red List (IUCN, 2007).  

 The occupancy of any species in an area is influenced by a large number of habitat 

variables.  These may include vegetation type, food and water availability, quality of 

available food, surrounding habitat, weather, climatic conditions, and competitors 

(Beletsky & Orians, 1996).  Areas with favorable conditions attract large numbers of birds 

in both the wintering and breeding seasons, as opposed to areas with poor conditions.  

Positive associations were found between wetland breeding birds and the total amount of 

contiguous wetland and grassland in the surrounding landscape (Naugle et al., 2001; 

Naugle et al., 1999).  The nesting suitability of wetlands was reported to increase with the 

amount of surrounding cropland (Creighton et al., 1997), which may be due to abundant 

food resources such as waste grains and insects found within crop fields.  The amount of 

cropland, rather than wetlands, in a landscape was also found to have a greater effect on the 

density of nesting RWBL (Clark & Weatherhead, 1986; Clark et al., 1986). 

 This thesis reports results intended to develop a better understanding of blackbirds 

and starlings at the population and landscape levels.  The primary objectives of this study 

were to 1) analyze trends in Christmas Bird Count data for RWBL, COGR, BRBL, RUBL, 

and EUST obtained from the CBC, 2) to identify landscape-level factors influencing 

blackbird and starling winter roost site selection, and 3) to evaluate the Christmas Bird 

Count as an indicator of chronological and climate related patterns of blackbird and starling 

roost selection.   
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LITERATURE REVIEW  

 Research in avian ecology studies is primarily conducted during the breeding 

season and early fall, after the breeding season has concluded but before migration begins 

in earnest, resulting in an inadequate understanding of avian ecology at other times of the 

year (Tankersley, 2003; Hagy et al., 2010).  Most studies conducted on blackbirds and 

starlings during this time focus primarily on avian-human interactions and the agricultural 

damage and human health problems blackbirds and starlings can cause; the birds are often 

a secondary focus of studies aimed at improving asset protection methods (Mott, 1984).  

Because of this disparity in understanding, the wintering ecology of blackbirds and 

starlings has largely been ignored, limiting knowledge of this portion of the avian life 

cycle. 

Red-Winged Blackbirds 

 The RWBL is one of the most abundant species of birds on the North American 

continent (Stewart & Kantrud, 1972; Dolbeer, 1978).  Population estimates vary depending 

on the time of year and the methodology used in the estimation process.  These estimates 

range from 100 million individuals to over 300 million individuals depending on what 

methods are used and who is using them.  In 1974, the population was estimated at 

approximately 190 million individuals (Weatherhead, 2005).  In 2003, estimates of the 

North American population were at a low of 100 million individuals during the pre-

breeding period and 200 million in the post-breeding period (Blackwell et al., 2003).  

These studies suggest a natural yearly reduction and rebound in population commensurate 

with that seen in other species of migratory birds (Blackwell et al., 2003).  Current 

estimates by the Audubon Society place the global population at approximately 210 million 
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individuals (Audubon Society, 2011).  Several studies, such as Blackwell & Dolbeer 

(2001) and Weatherhead (2005), have reported significant widespread declines of RWBL 

populations.  Blackwell & Dolbeer (2001) suggested those declines might be the result of 

changes in agricultural practices and habitat loss, whereas Weatherhead (2005) cited a loss 

of nesting habitat and climate change as possible reasons.  These studies, however, did not 

use current population estimates.  Weatherhead (2005) and Blackwell & Dolbeer (2001) 

used data obtained from 1975 to 1995 and 1966 to 1996, respectively.   

 During the nesting and rearing period, RWBL are commonly seen in wetlands from 

southern Texas north to the southern Yukon province and central Northwest Territories in 

Canada (Yasukawa & Searcy, 1995).  These birds migrate south in the fall, over-wintering 

in the southern United States, with the bulk of the population congregating in the 

southeastern United States (Figure 1, Yasukawa & Searcy, 1995); some stay in more 

northerly areas where food is available and conditions are favorable.  Dimorphic in their 

plumage, males are a solid glossy black and have bright red epaulets with a yellow lower 

border in the central regions (Figure 2).  Female coloration is a striped brown, making their 

coloration cryptic in cattail wetlands and upland grasslands.  Males are also larger than 

females, being 22-24 cm in length and weighing between 65 and 85 g; females are 

approximately 20% smaller at 17-18 cm in length and 40 to 55 g in weight (Beletsky & 

Orians, 1996).  Both morphology and behavior show flexibility over the range of the 

RWBL, with subtle variations in the various regional populations, which differ from 

the“normal” plumage and habits.  The most obvious of these variations is the “bicolored 

blackbird” of coastal California, which shows no yellow border on the red epaulets.  Other 

variations seen include the size of male territories, size of male harem (level of polygyny), 
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Figure 1. Distribution of the red-winged blackbird (Agelaius phoeniceus) in 
North and Central America.  Northern limits of breeding and non-breeding 
ranges are approximate.  Map courtesy of Birds of North America. 

 the role of the male in feeding nestlings, and extra-pair copulations in females (Beletsky, 

1996). 

 The RWBL is a polygynous species, with males attempting to attract multiple mates 

into their territories each year.  Pairs form quickly, females settling on territories without 
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obvious pairing behavior with the male, sometimes prospecting among several males’ 

territories before settling on one (Nero, 1956; Yasukawa, 1990).  The male performs 

        
Figure 2. Male and female red-winged blackbirds in breeding plumage. Photos by Daniel 
Cadieux 

high-intensity song displays in response to new females, and pairing is indicated by a 

female’s continued residence (Nero 1956) and answering of the male’s song (Beletsky, 

1985).  A female does not answer a male’s call initially, but will do so frequently once she 

becomes a regular resident (Yasukawa, 1990).  Migrating males usually arrive in late 

March or early April to establish breeding territories that they will vigorously defend for 

the next three to four months.  Male RWBL will mob much larger birds, such as crows, 

ravens, birds of prey, and herons, if they enter this territory.  These territories are often near 

open water, with nests hidden in emergent vegetation such as cattails (Typha spp.) or 

bulrushes (Scirpus spp.) (Kantrud & Stewart, 1984; Turner et al., 1998).  In regions with 

fewer wetlands, male territories can often be found in sedge meadows, alfalfa fields, fallow 

fields, and occasionally in sparsely wooded areas bordering waterways (Yasukawa & 
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Searcy, 1995).  Within a male’s territory, females build cup-shaped nests using vegetation 

as their primary substrate, which usually takes between four and six days, but can occur in 

less than two (Beer & Tibbitts, 1950).  Incubation lasts 10 -12 days, during which females 

spend most of their time on their nests.  Incubation is interrupted for turning eggs and 

foraging (Searcy & Yasukawa, 1995).  Young fledge about 12 days after hatching but can 

remain longer if the environment is uncharacteristically harsh (Beletsky, 1996). 

 RWBL, COGR, EUST, and brown-headed cowbirds (Molothrus ater) form roosts 

during every month of the year, with roost size varying considerably depending on the 

season (Heisterburg et al., 1984; Morrison & Caccamise, 1990).  The low point in roosting 

numbers is usually reached during the breeding season, when birds are dispersed over their 

summer range and breeding territories.  Conversely, the high point in roost numbers is 

usually seen during the early wintering season with more than 100 major roosts, each 

containing one million or more blackbirds, reported yearly in the southeastern United 

States (Meanley & Royall, 1977).   Blackbird populations are highly regulated by food 

(Orians, 1985); as such, roosts are often found in relatively close proximity to food sources 

(White et al., 1985) such as agricultural fields, feedlots, pastures, and grasslands.  Though 

RWBL have been known to travel up to 80 km from a roost site to a feeding site (Meanley, 

1965), the total distance flown during the day averages approximately 14 km (White et al., 

1985). 

 Diets of most blackbird species consist primarily of insects during the breeding 

season, when they are plentiful, and cultivated grain, weed seeds, and waste grains during 

the post-breeding and wintering seasons (Snelling, 1968).  The RWBL, being no exception, 

forages largely on aquatic insects, focusing primarily on odonates (Orians, 1980), but will 
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also forage on waste grain during the summer.  During the post-breeding season, RWBL 

primarily eat plant matter, taking advantage of the rice crop in southern states (Cummings 

et al., 2002) and corn and sunflower in northern states, resulting in severe damage 

(Klosterman et al., 2011).  Newly sprouting rice crops in the spring and ripening corn, 

sunflower and rice crops in the post-breeding season are an ideal source of food for 

blackbirds not only because of their seeds’ high-energy content, but also because of the 

proximity to communal roosting sites (Cummings et al., 2002; Bruggers et al., 1992; 

Klosterman et al., 2011).  RWBL and COGR are well known for depredating corn, 

sunflower, and rice crops due to their proximity and the sheer size of their roosts 

(Yasukawa & Searcy, 1995; Peer & Bollinger, 1997). 

Common Grackles 

 Though less common than RWBL, COGR are still one of the most populous birds 

in North America.  A common North American resident, the COGR ranks eleventh in 

terms of total number of individuals counted in Breeding Bird Survey (BBS) routes in 

1992-1993 (Peterjohn et al., 1994).  The Audubon Society currently estimates the COGR 

population to be approximately 73 million individuals.  This is much lower than the 190 

million individuals estimated approximately 40 years ago, a reduction of just over 60% 

(Bystrack & Robbins, 1977).  There is also some debate as to whether populations are 

currently declining or rising, with several studies indicating declines (Peer & Bollinger, 

1997; Bystrack & Robbins, 1977) while others indicate stable or slightly increasing 

populations (Nelms et al., 1994; Robbins et al., 1986). 

 COGR are known to exploit a much wider range of habitats than RWBL both for 

nesting and loafing purposes.  COGR occur in a wide variety of areas such as open or 
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partially open woodlands, alder, and cedar-dominated swamps (Peer & Bollinger, 1997).  

COGR also make use of urban and man-made areas such as lawns, golf courses, parks, city 

streets, agricultural fields, and power line rights-of-way.  They have a broad breeding 

range, with individuals reported as far north as Mackenzie County in northern Alberta, east 

to Nova Scotia, down the coast to the southern tip of Florida, including the Florida Keys 

(Figure 3).  This range extends west following the gulf coast west into far western Texas 

(Peer & Bollinger, 1997).  These birds winter over much of this range as well, occurring in 

a band from southern Minnesota, to southern central Texas, east to the gulf coast and 

ending along the Atlantic coast.  Generally far less numerous and very local in the northern 

parts of the wintering range, the population tends to be focused mainly in the southeastern 

states (Peer & Bollinger, 1997). 

 COGR are large blackbirds, both taller and longer than RWBL.  Both sexes have a 

glossy, iridescent black plumage, long, keel-shaped tails, pale yellow irises, and a large 

black bill (Figure 4).  The iridescent sheen covers the head, neck, and breast of the bird in a 

glossy purplish-blue or bluish-green.  Throughout most of their range, their glossy heads 

contrast with the bronze or brass coloration found on their back and wings; however, 

breeding birds east of the Appalachian Mountains and south of New England show a purple 

gloss on their backs and wings which distinguishes them from the western populations.  

Males are slightly longer and heavier than females, averaging approximately 34-35 cm and 

weighing around 120 g, as compared with females, which average 28 cm in length and 

weigh approximately 90 g.  Males also have slightly larger tails, which normally “keel”, or 

fold their tail feathers into a shallow “V” in flight.  Females usually show less iridescence 

than the male and do not usually show the keeling behavior seen in males. 
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Figure 3. Distribution of the common grackle (Quisculus quiscula) in 
North and Central America.  Map courtesy of Birds of North America. 
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Figure 4. Plumage of the common grackle. Photo by Bird control Products  

 The COGR is typically a monogamous species, with males arriving at the breeding 

grounds approximately one week prior to the females.  Flocks of migrants begin arriving at 

most breeding locations between mid-February and early March; migration in most places 

is typically finished by mid-April (Dolbeer, 1982).  Pairs begin to form as soon as females 

arrive at the breeding grounds.  Pair formation generally involves flights and mutual 

displays between a single female and multiple males.  Flights can be characterized as one 

of three types: Leader Flight, where a female is followed closely by a group of males at 

slow to moderate speed (Ficken, 1963); Chase, where the female flies quickly and 

evasively; and Together Flight, in which flight is slow to moderate and males may be ahead 

of, behind, below, or to the side of the female.  Mutual displays begin after flights have 

ended and may involve a myriad of visual and auditory displays by both sexes (Ficken, 

1963).  Grackles are gregarious, both in the wintering season and in the breeding season, 
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sometimes forming very loose “colonies” with up to 200 pairs (Peck & James, 1987).  The 

female typically builds the nest after “exploring” for nest sites, sometimes before she pairs 

with a male (Maxwell, 1970).  If already paired, the male will follow her as she inspects 

different locations (Maxwell, 1970).  Males have been observed with nest building 

materials, and building and repairing nests (Maxwell, 1970), though females do the 

majority of the construction.  The nest itself takes between one and six weeks to build, with 

females often abandoning sites under construction in favor of a new location (Maxwell, 

1970).  Clutches range in size from 1-7 with 4 eggs being typical; incubation times range 

between 11.5 days to 15 days, depending upon how many eggs are laid (Peer & Bollinger, 

2000).  Young remain in the nest for 12-15 days after hatching and usually remain near the 

nest for several days after departure (Howe, 1976).   

 Usually seen foraging in flocks with other blackbirds, the diet of COGR is similar 

to that of other blackbirds, generally consisting of insects, other invertebrates, and plant 

seeds during the breeding season and agricultural grain, weed seeds, and tree seeds during 

the post-breeding and wintering seasons.  During the breeding season, they have 

occasionally been observed taking other prey items such as crustaceans, mollusks, fish, 

frogs, salamanders, mice and other birds.  Resourceful and opportunistic, COGR often 

follow plows and lawn mowers to catch invertebrates and other prey items agitated by the 

disturbance.  Another adaptation that COGR have for food acquisition is a hard keel 

(Figure 5) that projects downward from the horny upper palate and extends beyond the 

tomia, or the sharp ventral edges of the upper maxilla (Beecher, 1951).  This keel is used to 

saw open acorns, which are often completely scored around their shorter diameter and 

cracked open by biting (Beecher, 1951). During migration and wintering, agricultural 
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Figure 5. Seed opening “keel” found in the mouths of many seed 
eating birds used to saw open the hard cover found on many seeds. 
Many seed eaters have a specialized set of structures to aid in 
shedding the seed coats of seeds, allowing them to get at the 
otherwise protected kernel. The seed fits into the groove in 
the palate (marked by the arrows at the ends) and rolled 
against the "blade" (marked by the arrow) of the lower jaw, 
splitting the seed coat. The tongue then separates and 
discards the seed coat. Photo Courtesy of The Centennial 
Museum. 

grains and seeds make up the bulk of the COGR diet, with corn seeming to be the most 

commonly consumed grain; but the dominant agricultural grain consumed varies regionally 

and seasonally, likely in response to availability (White et al., 1985). For example, the 

dominant food consumed in the fall in North Dakota was sunflower seeds (Homan et al., 

1994), and in Arkansas in the fall and winter the main crop grain consumed was rice 

(Meanley, 1971). 

European Starlings 

 In 1890 and 1891, between 60 and 100 EUST were released in New York’s Central 

Park by Eugene Schieffelin, then head of the American Acclimatization Society, a group 

founded in 1871 and dedicated to introducing European flora and fauna into North America 
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for both economic and cultural reasons.  The group’s charter explained its goal was to 

introduce “such foreign varieties of the animal and vegetable kingdom as may be useful or 

interesting.”  Schieffelin, a great admirer of Shakespeare, was the society’s driving force.  

Some accounts of his efforts claim that he had resolved, as an aesthetic goal, that the 

organization should seek to introduce every bird species mentioned in Shakespeare’s 

works.  Though undocumented, the group did have some success with EUST and several 

other species.  One of the most numerous birds in North America, Feare (1984) estimated 

the overall population size of the EUST in North America at more than 200 million 

individuals by extrapolating from British data. 

 The EUST is a widely distributed species occurring over nearly the whole of the 

North American continent (Figure 6).  The birds have a relatively uniform distribution over 

the eastern half of the continent, but populations are patchier in the west, particularly in 

heavily forested and mountainous habitats.  Along the northern margins of their range, 

starlings are found primarily around cities and towns where supplemental food is available, 

and where buildings provide protection from the elements (Feare 1984).  Having a 

relatively close association with humans and high behavioral plasticity, starlings can 

inhabit a wide variety of habitats as long as their essential needs are met (Feare, 1984; 

Cabe, 1993).  They usually forage in open habitats, on short, mowed, or grazed fields 

which are abundantly produced in many urban areas and by many types of agriculture 

(Feare, 1984; Cabe, 1993).  Starlings avoid large expanses of undisturbed non-grassland 

native habitats such as forested areas, arid chaparral, and deserts.  These areas offer 

starlings few food sources nesting areas and limited water (Feare, 1984).  Migration and 

population movement in starlings is regionally, and sometimes individually, variable.  In 
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some areas, many breeding pairs are sedentary (Kessel, 1953) while others may migrate 

short distances and others much farther.  Some juveniles migrate, while their nest mates 

may not; some individuals apparently migrate in some years and not in others (Kessel, 

1953). 

 Often mistaken for blackbirds, EUST are members of the starling family, Sturnidae, 

which includes mynas, starlings, and occasionally oxpeckers, depending on the taxonomist 

doing the classification.  Predominantly glossy black, in the breeding season they show a 

purplish-green iridescence, especially on the most of the head; body feathers have whitish 

terminal spots (Figure 7).  Following the annual molt, most of the head and body feathers 

have whitish terminal spots; these wear down to produce the glossy black appearance 

starlings have during spring.  Males and females have similar plumage and are easily 

distinguished from North American blackbirds by their long pointed yellow beaks in the 

spring, their distinctly shorter tails, and their long pointed wings; most blackbird species 

have fairly long tails and rounded wingtips.  Similarities between males and females are 

more than just plumage coloration, as both are approximately the same length and weight, 

between 19-22 cm long and weighing between 60-90 g. 

 EUST are generally monogamous, but polygyny is common in many populations 

(Feare, 1984; Pinxten et al., 1989) though the second mates of males generally receive little 

to no help in rearing young and as a result fledge significantly fewer young than primary 

nests.  Resident males begin investigating suitable nesting cavities in late winter; migratory 

males usually begin searching soon after arrival, usually in late February or early March.  

Females choose mates and may make choices based upon the males’ song, but they may 
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also choose a mate based upon the male’s territory and the nest site a male has chosen 

(Kessel, 1957).  Nests can be found virtually anywhere there are cavities (including cliffs 

 
Figure 6. Distribution of the European Starling (Sturnus vulgaris) in 
North and Central America.  Distribution is based on Godfrey (1986). 
The species may be expanding its range along the southern edge of its 
distribution.  Map courtesy of Birds of North America. 
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and burrows), and occasionally outside of cavities in dense vegetation in trees or on the 

ground (Weitzel, 1988).  Common locations include openings in buildings, nest boxes, 

cavities usurped from other birds such as woodpeckers, and natural cavities in trees.  Males 

 
Figure 7. European starling summer plumage.  Photo by Lloyd Spitalnik 

begin depositing nest materials soon after site selection, and systematic construction begins 

immediately after pair formation, usually between early February and late March (Kessel, 

1957).  Males typically accumulate materials slowly, generally before pair formation; 

females may remove a portion or all of the material accumulated by the male and 

supplement materials brought by the male with her own (Kessel, 1957).   

Egg laying is generally synchronized within a population, with most of the first 

eggs laid within 3 to 4 days of each other, especially for the first brood of the season. Dates 

range from 15 March in the southern reaches of their range to 15 June in the northern areas 

(Kessel, 1957).  Egg laying is often variable in the face of spring weather (Kessel, 1957).  
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Full-time incubation begins with the last, or penultimate, egg laid, commonly 4 to 6 days 

after the first egg.  Hatching usually occurs 11.5 to 12 days after incubation, with the 

chicks fledging 21 or 22 days after hatching.  At least one parent may continue to care for 

the fledglings for at least a day or two after leaving the nest.  Second broods are attempted 

in many areas, but not usually north of 48o north latitude and are more likely when the first 

clutch is early (Kessel, 1953).  If a second brood is attempted, activity begins immediately; 

the first eggs are usually laid within 6 to10 days after the first brood fledges, but may be 

laid in as little as 1 or 2 days (Kessel, 1953). 

 Starlings have a diverse diet that varies regionally, with the age of individuals and 

with season.  An immense variety of invertebrates are taken when available, frequently 

including Orthoptera, Coleoptera, Diptera, and Lepidoptera, in addition to snails, 

earthworms, millipedes, and arachnids (Tinbergen, 1981).  During the breeding season, 

invertebrates are the preferred food sources as they have a higher level of nutrition for 

developing offspring (Tinbergen, 1981).   In the fall and winter periods, considerable 

amounts of plant material are included in the EUST diet; fruits and berries, grains, and 

certain seeds are consumed when invertebrate material is not readily available.  Other more 

intermittent food items such as periodic influxes of arboreal insects (Tinbergen, 1981), 

garbage, nectar and livestock feed are also frequently exploited (Feare, 1993).  Adults 

spend much of their foraging time in open areas with short vegetation such as pastures, 

mown fields, and lawns (Feare, 1984) and may differentiate between habitat types based on 

the availability of prey items and types (Tinbergen, 1981).   
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Brewer’s Blackbirds 

 A historically common and conspicuous species, population estimates in 1974 and 

1975 placed the population at approximately 10.3 million individuals (Meanly & Royall, 

1977).  Before and since then, there have been several studies that have used BRBL as 

research subjects, owing largely to its ease of study, broad ecological plasticity, and its 

occupancy of environments that can be unpredictable over brief, as well as long, periods 

(Sauer et al., 1999).  Sauer et al. (1999) found relatively stable or non-significantly 

decreasing population trends over most of the range of the BRBL, and significant increases 

in population sizes in North Dakota and Minnesota between 1966 and 1998.  Trend 

estimates over a more recent period (1980-1998), however, have shown a statistically 

significant decline of approximately 2% per year in the breeding population, with only 

populations in North Dakota showing significant increases (Sauer et al., 1999).   

� A widespread species with high environmental flexibility and adaptability(Figure 8), BRBL 

occupy a range of habitats and a large distribution on the North American continent.  Their 

breeding range reaches from British Columbia and central Alberta, east to Michigan and Quebec, 

and south to northern Baja California, southern California, central Nevada and Arizona.  Their 

principal wintering range extends from southern British Columbia southeast to the western reaches 

of Montana, and stretches east to South Carolina and parts of Florida (Stevenson & Anderson, 

1994; Stepney, 1975).  BRBL occupy a wide range of habitats, but prefer open, often human 

modified habitats such as residential lawns, cemeteries, and golf courses.  Within nesting habitats, 

there appear to be three crucial features needed across the species’ breeding range: foraging areas, 

suitable nest sites, and guard perches (Horn, 1968).  In Ontario, birds were most commonly found 

along highway and railroad grades that had utility lines and also offered nearby short grass 

foraging sites (Stepney, 1971). 
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 A medium sized blackbird, BRBL are dimorphic in size and plumage coloration.  

Males are between 21 and 25 cm long and on average weigh approximately 67 g, while 

females are between 20 and 22 cm long and average approximately 57 g.  Adult males are  

 
Figure 8. Distribution of Brewer’s Blackbird (Euphagus cyanocephalus) 
in North and Central America.  The northern boundary of its winter range 
is fluid, with individuals occasionally wintering in low densities well 
north of the depicted range. Isolated breeding localities in northwestern 
Canada are indicative of continued northward range expansion.  Map 
courtesy of Birds of North America. 
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black with a blue to violet iridescence on their heads and necks under strong lights, and a 

very dark brown to matte black appearance in duller light (Stevenson & Anderson, 1994).  

The body normally shows a balance of iridescent colors that can range from blue to green, 

with most males showing a mix somewhere between the two.  The feathers of the wings 

and tail are edged in a metallic, olivaceous brown and are typically similar in color to the 

body (Figure 9).  Females are a grayish brown with a light velvet gloss on the head and 

neck with a faint metallic sheen similar to the male over the rest of their body.  The wings 

and tail of the female are darker and glossier than the body, and the sides of the head are  

        
Figure 9. Male and female Brewer’s blackbirds in summer plumage. Photos by Scott 
Streit and Dana Kenneth Johnson 

paler than the crown with a postocular streak and lores slightlydarker than the rest of the 

face (Stevenson & Anderson, 1994).    

 Usually monogamous, pair formation in BRBL begins as a gradual process in late 

winter or early spring flocks.  Resident birds spend more time in the vicinity of colonies, 

where they begin to associate in pairs, but will resort to flocking behavior if the colony is 

disturbed (Williams, 1952).  As the season advances, the time spent in paired 

configurations increases, with paired birds eventually becoming segregated from the rest of 

the flock.  Afterwards, pairs are almost always together, and the male increasingly defends 
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the female from the approaches of other males, using visual displays and physically 

chasing them off (Horn, 1970).  Mutual displays by the male and female become a frequent 

and conspicuous component of pair formation at this time, and may last several minutes.  

Unlike many species, the female is not dominated by the male, and these mutual displays 

are often mistaken as a confrontation between two males.  A highly social species, BRBL 

nest in fairly compact colonies numbering from a few pairs to over 100 pairs in some 

colonies (Horn, 1970).  Well-studied colonies in eastern Washington commonly number 

between 10 and 60 pairs (Horn, 1970), and in California, Williams (1952) tallied 14 to 23 

nests in the colony he monitored during the 6 years of his investigations.  Solitary pairs 

sometimes do nest outside of a colony, but this is relatively rare.  Due to their highly social 

nature during pair formation, nesting is highly synchronous in BRBL colonies.  The extent 

to which colonies synchronize is thought to be a factor of how compact the colony itself is 

(Horn, 1968).  Highly compact colonies promote a higher degree of social interchange 

between nests, which can easily lead to display contagion where singular or mutual 

displays at one nest leads other nests nearby to emulate that behavior (Horn, 1968).   

 The nests of BRBL are constructed without male assistance beginning directly after 

the pairing phase and take anywhere from a few days (Grummt, 1972) to up to ten days 

(Williams, 1952).  Nest sites are chosen by the female late in the pairing phase; she will lay 

claim to a site and show aggressive defense of the area.  Females show high flexibility 

when choosing nest sites which have been reported on the ground, over water in emergent 

vegetation, over dry ground, and occasionally in tree cavities (Furrer, 1975).  Females have 

been known to alter the type of nest site they will choose from one year to the next (e.g., 

placing nest in sagebrush once and locating it on the ground or elsewhere in the following 
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seasons) (Furrer, 1975).  This type of behavioral flexibility is viewed as adaptive in the 

fluctuating environments that BRBL typically inhabit, as opposed to a strong genetic 

fixation other species tend to show (Orians, 1985; Furrer, 1975).   

Eggs are usually laid one or two days after nest completion with subsequent eggs 

laid at 24-hr intervals (Grummt, 1972).  Typical clutch sizes are approximately five eggs 

(Furrer, 1975).  Egg laying is highly synchronous within colonies, as copulatory displays of 

one pair often stimulate other nearby pairs via display contagion (Horn, 1968, 1970).  

Incubation begins with the laying of the last egg (Grummt, 1972) and is performed by the 

female alone, though the male will infrequently bring food to the nest while the female is 

incubating (Williams, 1952).  Incubation generally lasts 12-13 days, though extremes of 

11-17 days are occasionally reported (Furrer, 1975).  Young hatch asynchronously, with 

the degree of synchrony decreasing as the season progresses (Hansen & Carter, 1963).  

Young typically leave the nest between 12 and 16 days of age, with fledging occurring over 

a period of several days (Hansen & Carter, 1963).  After fledging, the young join their 

parents in family groups and are fed by parents for up to an additional three weeks 

(Stepney, 1971).  One or two weeks after fledging, several family groups will often 

coalesce into a small flock that will remain in the general breeding vicinity as fledglings 

develop independence.  Second broods are fairly rare over most of the range of BRBL and 

usually only attempted if the first nest fails; however, in certain populations where weather 

permits, such as in coastal California and Oregon, second nests can be fairly common 

(Williams, 1952). 

 The diet of BRBL is similar to that of other blackbird species already mentioned; a 

high percentage of invertebrates are consumed when they are plentiful or available 
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(Knowlton & Telford, 1946), supplemented with grains and weed seeds, with a limited 

consumption of small fleshy fruits such as berries.  During migration and the wintering 

season, BRBL concentrate primarily on waste grains (wheat, barley, rice, oats, and corn), 

weed and grass seeds, and stockyard spillage (found in cattle, hog, and domestic fowl feed 

lots) and leavings (Stepney, 1971).  BRBL are extremely opportunistic during this period, 

readily reverting to an invertebrate diet should they become available.  When fields are 

plowed, they will follow machinery to glean exposed invertebrates and respond quickly to 

local population irruptions.   Based upon their aggressive responses to insect infestations, 

several crop depredation researchers have considered the species to be highly beneficial in 

controlling outbreaks of insect pests (Bryant, 1911; Munro, 1929; La Rivers, 1941; Cowan, 

1942; Knowlton & Telford, 1946).  Occasionally, they also take vertebrate prey such as 

leopard frogs, sub-adult voles (Beasley & Carothers, 1974), and nestling and juvenile birds 

(Anthony, 1923). 

Rusty Blackbirds 

 Arguably one of the least well-known of North America’s blackbirds, the RUBL is 

thought to be one of the continent’s most rapidly declining bird species.  It is estimated that 

the population has suffered an 85-99% reduction over the last 40 years, and no one knows 

precisely why.  With a global population of approximately two million individuals 

(Audubon Society, 2011), it is the rarest species in this study.  While most studies agree 

that there has been a severe decrease in the population of the RUBL, there is also evidence 

to the contrary (Ellison, 1990; Peck & James, 1987; Niven et al., 2004).  Even in the heart 

of their breeding range, population density has typically been low.  In the initial 15-year 

BBS compilation, the RUBL was not numerous enough to merit a discussion (Robbins et 
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al., 1986).  This is likely due to its relatively inaccessible breeding distribution, most of 

which is far north of BBS routes.  Because of the scarcity of data regarding RUBL 

populations, confident analyses using the BBS are difficult.  These difficulties are only 

compounded by the fact that analyses using winter data can be skewed by the flocking of 

blackbird species, where the numbers of less common species can be obscured by the 

multitudes of more abundant species.  Ellison (1990) found that the species did not decline 

significantly in Caledonia and Essex counties in Vermont between 1981 and 1990.  

Populations in the Maritime Provinces of Canada have also showed stability, with 17,000 ± 

2,600 pairs between the years of 1986 and 1990 (Erskine, 1992).   

� No North American blackbird breeds as far north as the RUBL, whose range 

extends north to the tree-line in wet forests of northern Alaska and Canada, specifically 

northern Yukon province and the Northwest Territories, southwest through Manitoba, 

Ontario, Quebec and Newfoundland (Figure 10).  Their range extends south from this line 

to central British Columbia slightly east of the coastal regions.  Their wintering range 

extends south from a northern border that begins in southern Massachusetts and extends 

southwest to southern West Virginia.  From the northern border, the winter range extends 

south through Kansas, Oklahoma, and eastern Texas to the Gulf of Mexico.  RUBL 

wintering habitat primarily consists of wooded vegetation along streams, river bottomlands, 

and flooded woodlands (Greenberg & Droege, 1999). They are also often found wintering 

in anthropogenic habitats such as livestock feedlots and manure fields. 

 During the breeding season, male RUBL have a uniform black plumage similar to 

that of BRBL, but with a greenish to blue green iridescence instead of purplish.  The 

female has a similar plumage and shares the male’s iridescence, though usually a slightly 
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lighter shade, sometimes as light as slate gray.  It is their winter plumage, however, that 

gives RUBL their name.  In their fresh basic (fall and winter) plumage, males are 

characterized by their rust-edged tertials and the rusty brown feathering on their crown, 

nape, and back with a lighter brown to buff coloration over their eyes and on their cheeks, 

throat, breast, and sides on otherwise black feathering (Figure 11).  In females, the tertials, 

crown, nape, and back are all edged with a rusty brown.  The cheeks, chin, throat, breast,  

 
Figure 10. Distribution of the rusty blackbird (Euphagus carolinus) in 
North and Central America.  This species winters locally and irregularly 
within the dotted lines and to the southern tip of Florida.  Map courtesy 
of Birds of North America. 
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and sides of females all have buff-brown edgings similar to, but lighter than, male 

plumage. A generally monogamous species, RUBL sometimes nest in very loose colonies 

which can give rise to occasional extra-pair matings (Ellison, 1990).  The pair bonding of 

RUBL is not fully understood, but is possibly maintained through vocal behavior as that of 

other blackbird species.  Males bring food to incubating females which is delivered to a 

nearby perch (Kennard, 1920).  The female joins the male there and assumes a begging 

posture with fluttering wings, takes the food, and flies off (Hoffman & Hoffman, 1982).   

   
Figure 11. Rusty blackbird in summer and winter plumage. Photos by Doug Lloyd and 
Mario Olteanu                                                                                                                             

Most RUBL populations do not colonize, but when birds do colonize, the breeding colonies 

are loose, with nests located at least 0.4 km apart (Kennard, 1920).  In Vermont, Ellison 

(1990) noted that “colonial groups” typically occur in areas where water tends to fluctuate, 

while isolated pairs, in contrast, occupied wetlands near ponds where water levels were 

more stable.  Nests themselves are presumably constructed by the female (Orians, 1985) 

over a period of approximately seven days, based on renesting intervals (Kennard, 1920).  

It is unknown what role males play in nest construction; females have been seen carrying 

nest materials while males are perched nearby (Hoffman & Hoffman, 1982); therefore, it is 

assumed the males have only a minor role.  Nests are typically close to a water source, 
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sometimes directly over water, and situated in dense vegetation (Kessel, 1989).  Nest 

height is variable; nests have been reported on the ground in Alaska and Ontario (Peck & 

James, 1987; Kessel, 1989) and as high as six meters in other locations.   

 Eggs are laid daily and are approximately 18.6 mm wide and 25.8 mm long 

(Kennard, 1920).  They have a pale blue to pale gray coloration and have markings that can 

range from light to dark brown and can vary from light to heavy incidence.  Clutch sizes 

can be variable but most often consist of four or five eggs with incubation beginning with 

the laying of the first egg, especially if the weather is cold (Kennard, 1920).  Incubation is 

thought to last approximately 14 days (Bendire, 1895), but this has not been confirmed.  

Young are brooded by the female only, though the male frequently stays in the vicinity, 

and both parents feed the young, which can fledge as early as 11 days after hatching 

(Kennard, 1920) followed by  their first flight several days afterward.  Ellison (1990) 

observed fledglings still with parents at least several weeks after fledging and leaving the 

nest. 

 Like other blackbirds, RUBL will feed opportunistically on insects, but generally 

lack the population numbers to be beneficial to agriculture like BRBL or a detriment to it 

like RWBL.  Throughout the year, aquatic beetles and their larvae, grasshoppers, spiders, 

snails, and crawfish make up a large part of RUBL diets (Meanly, 1995). During the 

breeding season, they tend to selectively focus on aquatic insects and other animal food, 

and have been occasionally seen foraging alongside gulls in municipal dumps.  During the 

winter months, RUBL are often seen in feedlots, agricultural fields, and pastures where 

they feed primarily on plant matter consisting mainly of crops and weed seeds (Martin et 

al., 1951).  In the fall, willow oak acorns are a favorite food in the Great Dismal Swamp, 
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VA, but they have also been known to eat loblolly pine, the seeds and fruits of the 

American holly, Hercules club, flowering dogwood, and blackgum (Meanley, 1995).  

Vertebrate prey items include salamanders and small fish, and very occasionally they will 

attack and eat other birds.  This is very rare, however, and reports are often accompanied 

with poor weather.  Attacks on other birds are almost never committed by individuals, 

usually several RUBL and occasionally COGR are involved.  In May of 1974, several were 

reported attacking white crowned sparrows (Zonotrichia leucophrys) and tree sparrows 

(Spizella arborea) after a cold snap, killing at least two white crowned sparrows and 

feeding on the carcasses (Campbell, 1974). 

Human-Blackbird Interaction 

 For as long as there has been agriculture in the United States, blackbird populations 

have been an influence, some species by being crop pests, and other species by mitigating 

damage by other pests.  In northern states, sunflower and corn are often the crops of 

concern when it comes to depredating blackbirds (Figure 12).  In some years 2-4% losses 

of the total crop of sunflower (Hothem et al., 1988; Kleingartner, 2003; Linz et al., 2009; 

Klosterman et al., 2011) and damages totaling $25 million for corn crops are reported.  In 

southern states, however, blackbirds more often depredate rice crops, with losses of $21.5 

million dollars reported in a single year (Avery et al., 2005).  RWBL and COGR are well 

known for selectively predating rice crops; the damage they cause has the potential to be 

substantial due to the size of the roosts they form (Yasukawa & Searcy, 1995; Peer & 

Bollinger, 1997).  The overall damage caused by blackbirds in 2002 to sunflower was 

approximately $11.3 million; however, not all farmers received the same amount of 

damage (Wilson 1985, Linz et al., 1996; Klosterman et al., 2011).  Damage by blackbirds 
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is not distributed uniformly, but is localized and proportional to the size of roosts and 

distance from roost sites.  In North Dakota, 46% of surveyed farmers received more than 

5% damage and 6% of participants reported 10-25% damage (Lamey et al., 1997).  In some 

areas of Louisiana, damage to newly planted rice can be quite severe; some growers 

reported total losses, which required expensive replanting (Wilson, 1985).  Escalated crop 

losses have initiated management techniques that aim to reduce resident and migratory 

blackbird populations.  These techniques include avicides (Linz & Bergman, 1996; Linz et 

al., 2002), cattail management (Linz et al., 1995; Linz et al., 1996), repellent seed 

treatments (Mason, 1993; Linz et al., 2006), bird-resistant sunflowers (Mah et al., 1991; 

Mah & Nuechterlein, 1991), and scare tactics (Linz et al., 1996; Linz et al., 2011).    

 Figure 12. A flock of red-winged blackbirds above a cornfield. Photo by Melissa Dowland 

 Wintering blackbirds and EUST can cause more problems than just crop damage.  

The presence of large numbers of birds can lead to economic, nuisance, and health 
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concerns for people not related to agriculture.  Roost sites can be almost anywhere and are 

often found near urban areas, especially with species that use developed areas such as 

starlings and grackles.  When winter roosts are established, there is often a rapid 

accumulation of droppings, sometimes reaching up to 7.5 cm deep in the course of a single 

season (Chick et al., 1980).  This accumulation can kill the deciduous and evergreen 

undergrowth in forest roost sites, and it creates an environment conducive to the growth 

and sporulation of Histoplasma capsulatum (Chick et al., 1980; Stickley & Weeks, 1985), 

the fungus that causes histoplasmosis.  H. capsulatum grows in soils that have come into 

contact with large amounts of bird and bat excreta; as such, chicken houses with 

accumulated manure are notorious sources of the fungus.   Birds and bats are not the cause 

of the fungus, but do provide a nutrient rich environment for its growth.  More often than 

not, individuals infected show no symptoms and suffer no ill effects.  When the fungus is 

present in the eyes of humans, it can lead to blindness.  In cases where individuals inhale 

H. capsulatum, they may develop non-specific respiratory symptoms, often cough or flu-

like in appearance which, in rare cases, can be fatal if left untreated.   

In natural situations, H. capsulatum is often found where gregarious birds and bats 

congregate, such as blackbird and starling roosts, nesting colonies of gulls, rock dove 

roosts, and oilbird nesting colonies.  The fungus can also be found in caves, hollow trees, 

and attics where bats roost.  Histoplasmosis is most often contracted when soils in affected 

areas are disturbed, and spores are inhaled into the lungs; however, it can also result from 

contact with contaminated items (Chick et al., 1980). There were several outbreaks in the 

1970’s that were related to the disturbance of blackbird roosts by bulldozing (Chick et al., 

1980); the mechanical disturbance allowed the fungal spores to become airborne, after 
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which inhalation became possible. The fungus H. capsulatum has been cultured from bird 

roosts in Kentucky, Tennessee, Illinois, Indiana, Ohio, Wisconsin, Missouri, South 

Carolina, Arkansas, and Mississippi (Chick et al., 1980).  Health hazards posed by 

blackbird and starling droppings are not merely human problems either; during the winter 

of 1978-1979, an outbreak of Transmissible Gastro Enteritis (TGE) occurred in southeast 

Nebraska, with over 10,000 pigs lost in one month in Gage County alone (Gough et al., 

1979).  Starlings were implicated because the TGE outbreak was concurrent with large 

flocks of starlings feeding at the same facilities.  Several more recent studies have shown 

that starlings are indeed capable of carrying diseases in their feces (Gaukler et al., 2008; 

Carlson et al., 2011), though the role of starlings in disease transfer requires further study. 

The problem caused by blackbird and starling droppings is not only a health hazard, 

but also an aesthetic and functional one as well.  Bird droppings are rich in uric acid which 

can be corrosive to stone, metal, and masonry.  On Air Force bases, hangers often provide 

excellent roosting habitat for a number of bird species.  Even when hanger doors are 

closed, birds are often able to find access through small holes, broken windows and 

ventilation ducts (Will, 1985).  Once inside, birds nest or roost in the overhead trusses 

which hold the roof in place. This allows them to avoid most dangers and also to produce 

the most damage (Will, 1985).  Damage occurs when their droppings land on aircraft and 

equipment parts, which then require extensive cleaning and repairs, taking valuable time 

away from actual aircraft maintenance.  Where droppings are numerous, components often 

have to be replaced, costing thousands of dollars in new parts and man hours (Will, 1985).  

Another expensive item is the replacement of aircraft paint, which is designed to withstand 

a wide range of temperatures to maintain a smooth surface for flight.  Bird droppings speed 
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up the corrosion and chipping and peeling of the paint, often requiring the whole aircraft to 

be repainted (Will, 1985).  To repaint a single F-15 fighter in 1985 cost over $1000 in paint 

and supplies, and almost 800 man hours are necessary before it can be flown again; larger 

aircraft are proportionately more costly (Will, 1985).  Similar situations affect cities, when 

large deposits of droppings clog machinery, drainage, and even air vents when roosts are 

inside of or on top of commercial or industrial structures (Figure 13). 

Starling and blackbird roosts located near airports pose an aircraft safety hazard  

Figure 13. Droppings and feathers found in an air duct of a public school.  Buildup can be a 
severe problem for building owners as droppings and feathers can contaminate vents of 
buildings, as well as food destined for human consumption.  Droppings can also lead to 
structural damage from the high uric acid content; bacteria, fungal agents and parasites in 
the droppings also pose a health risk.  Photo by Greg Ballard. 

because of the potential for birds to be ingested into jet engines, resulting in aircraft 

damage or loss and, at times, in human injuries (Barras et al., 2002).  In 1960, an Electra 

aircraft in Boston collided with a flock of starlings soon after takeoff, resulting in a crash 

landing and 62 fatalities.  Although only about 6% of bird-aircraft strikes are associated 
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with starlings or blackbirds, these species represent a substantial management challenge at 

airports.  These concerns often result in requests to alleviate these bird-related problems.  

Information regarding roosting bird behavior is, therefore, required before effective 

management decisions can be implemented. 

Population Models 

A model is a simplified representation of a system or a phenomenon, often 

mathematically expressed.  When models are used to represent populations of organisms, 

they can be used to evaluate how organisms or guilds respond to habitat and environmental 

changes.  They can also be used to predict the results of differing species-specific 

management techniques (Starfield, 1997).  This allows researchers to assess landscape 

level influences on populations, which can provide information that field experiments or 

surveys can not (Turner et al., 1995).  Structured population models determine how 

abundance and distribution of individuals will change over time (Gurney & Nibset, 1998).  

There are, however, many stochastic variables in population dynamics, which make it 

important to include probability into these models (Engen & Saether, 1998).  As with all 

models, population models are only valid if certain assumptions are made.  The main 

assumption of any population model is that the reasons for a change in the population of a 

certain species can be sufficiently described by a few variables (Easterling et al., 2000).  

This results in most models being a relative oversimplification of the true system 

(Schamberger & O’Neil, 1986; Engen & Saether, 1998).  This, however, does not mean 

that the population dynamics in question are not adequately described (Royama, 1992); 

analysis of simple linear regression models has shown that even a few variables can 

adequately describe population changes.  A model typically serves one purpose, and 
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attempts to use the model for tasks for which it was not intended may render the results 

invalid (Starfield, 1997). 

Population models have been developed for many species of birds (e.g., Rothery et 

al., 1984; Smith & Reynolds, 1992; Carroll et al., 1995; Flint et al., 1995; Miller, 2000; 

Wemmer et al., 2001; Forcey et al., 2007).  These models vary in their complexity and 

typically examine how population dynamics are affected by changes in life history 

characteristics (Dunning et al., 1995).  The red grouse (Lagopus scoticus) population 

model proposed by Rothery et al. (1984) is based on winter survival, chick production, and 

mortality.  More involved models, such as one proposed for the piping plover (Charadrius 

melodus), involve similar parameters, but also include factors such as breeding site 

selection, dispersal, and habitat capacity (Wemmer et al., 2001).  Smith & Reynolds (1992) 

examined how mallard survival was affected by hunting by comparing recovery and 

survival rates of mallards between years when hunting regulations were liberal to years 

where bag limits were more restrictive. 

Several density and habitat suitability models have been developed for RWBL and 

yellow-headed blackbirds (Xanthocephalus xanthocephalus, YHBL).  Fairbairn & 

Dinsmore (2001) developed models to estimate densities of RWBL and YHBL in Iowa 

wetlands. Densities of RWBL were most influenced by the wetland perimeter: area ratio, 

and the amount of wet meadow vegetation in an area. Yellow-headed blackbird densities 

were most influenced by the amount of emergent vegetation, the vegetation evenness, and 

the wetland perimeter: area ratio (Fairbairn & Dinsmore, 2001).  Özesmi & Mitsch (1997) 

designed a spatial habitat model to predict distributions of RWBL in coastal wetlands.  

Their model showed that increasing vegetation stability, water depth, and decreasing 
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distance to open water had a positive influence on RWBL distributions.  Schafer (1996) 

developed models for predicting nest success of RWBL and YHBL.  Her results found nest 

success for both species to be affected by distance to shore, water depth, and nest height. 

 In addition to population models that operate on a relatively small scale, many 

landscape-level models have been developed to assess avian response to a variety of 

environmental factors (Miller, 2000; Thompson, 1993; Link & Sauer, 2002; Temple & 

Cary, 1988).  Population modeling offers a means to study landscape-level population 

changes that would not be possible with field studies due to logistical constraints (Hunt, 

1998).  Miller (2000) examined mallard production across the Prairie Pothole Region in the 

northern Great Plains by using historical data on climate, wetland abundance, land use, and 

the estimated size of mallard populations.  This information was used to determine if 

relationships existed between these variables and mallard production.  Other avian 

landscape-level models examined bird populations in fragmented and forested landscapes.  

Thompson (1993) developed a model to predict bird population size in forested landscapes 

by using information on numbers of breeding adult females, floating females, fecundity, 

survival, and immigration.  Temple & Cary (1988) developed a landscape-level model to 

determine the effects of fragmentation on forest-interior bird species.  They included 

variables similar to those in Thompson (1993), but also included clutch size and territory 

occupancy. 
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STUDY AREA  

 My study area is over two million square kilometers; as such, variability in climate, 

weather, and land use types can be substantial over both time and space.  There are 333 

CBC (Christmas Bird Count) sites in 10 states in the south and southeastern United States: 

Alabama, Arkansas, Kansas, Kentucky, Louisiana, Mississippi, Missouri, Oklahoma, 

Tennessee, and Texas that make up my study area (Figure 14).  Overall, this area 

(2,018,766 km2) is well known for its large winter blackbird and starling roosts, and this 

region is where the most overlap in blackbird and starling wintering occurs (Orians, 1985; 

Cueto & de Casenave, 1996; Martin, 2002).  This area is subdivided into 12 Bird  

�

Figure 14. Distribution of study sites over the study area. 
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Conservation Regions (BCR),which are ecologically divergent regions in North America 

with similar bird communities, habitats, and resource management issues.  So far, 67 BCR 

have been assigned by the North American Bird Conservation Initiative (NABCI), with 35 

entirely or partially in the United States, three in Canada, and 29 in Mexico (www.nabci-

us.org).   For my study, portions of BCR 18, 19, 22, 24, 27, 28, and 36 were used, and the 

entirety of BCR 20, 21, 25, 26, and 37 were employed. 

 The study area has high quantities of valuable blackbird roosting and foraging 

habitat.  Corn and rice are both prominent crops throughout the region. Corn is in the 

northern areas and rice has been commercially grown in Missouri, Arkansas, Louisiana, 

and Texas since the mid 19th century.  Large feedlots are also fairly common in the area 

and serve as an alternative feeding site for many blackbirds and starlings.  There are large 

expanses of wetlands for roosting RWBL, BRBL, and RUBL, and at least 15 large urban 

centers and over 200 suburban areas for roosting COGR and EUST. 

 An area this large has a vast range of habitat types (Figure 15), including large 

expanses of cropland in the central, southern, and northwestern regions.  Large tracts of 

forest cover most of the eastern and west-central areas, and brushland is common in the 

southwest.  Wetlands are common in the eastern, central, and southern regions, and 

developed areas are a regular fixture dotting the landscape in all areas.  For the purposes of 

this study, land use was narrowed to eight categories, some of which are more common 

than others.   

Southern coastal areas tend to receive more precipitation than northern landlocked 

areas, and eastern areas typically receive more precipitation than the western parts of my 

study area.  These differences in precipitation are expressed by the types and quantities of 
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Figure 15. Map of the study area and dominant land types used for analysis. 

vegetation present in an area (Cueto & de Casenave, 1996).  Precipitation can also be 

variable across years, with some years experiencing drought conditions while others 

experience high precipitation levels, as can be seen in the example site, Birmingham, AL in 

Table 1.   

 Temperature is another factor that can influence vegetation types and quantities 

(Cueto & de Casenave, 1996).  Coastal areas generally have less variability in temperature, 

as large bodies of water have a buffering or stabilizing effect.  Coastal areas have cooler 

summers and warmer winters than landlocked areas at similar latitudes 

(http://earthguide.ucsd.edu/weather), as can be seen in Table 2.  These are yearly averages 

as well, not including the variation seen on a day to day or even a month to month basis.   
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Table 1. Summary of climatalogical variables for Birmingham, AL. 
Year MXMT MNMT MEMT TYP 

1988-1989 25 13.4 19.2 158.115 
1989-1990 24.9 13.7 19.3 162.56 
1990-1991 26.28 14.4 20.3 142.1638 
1991-1992 25.1 14.6 19.9 207.4418 
1992-1993 24.9 13.8 19.3 178.9684 
1993-1994 24.7 13.6 19.1 153.416 
1994-1995 25.2 14.2 19.7 139.4968 
1995-1996 25.6 14.1 19.8 187.5282 
1996-1997 24.7 13.8 19 169.5196 
1997-1998 24.5 13.9 19.2 177.9778 
1998-1999 25.7 14.9 20.3 219.7608 
1999-2000 26 14.1 20.1 129.286 
2000-2001 26 13.7 19.8 116.1796 
2001-2002 25.3 13.9 19.6 138.811 
2002-2003 24.9 14 19.5 184.0992 
2003-2004 25.3 14.1 19.7 180.1622 
2004-2005 25.5 14.6 20 193.4464 
2005-2006 25.6 14.1 19.8 187.5282 
2006-2007 26.2 13.9 20 125.349 
2007-2008 25.9 13.9 19.9 140.335 
2008-2009 25.1 13.6 19.3 175.514 
MXMT= maximum monthly temperature (Celsius) 
MNMT= minimum monthly temperature (Celsius) 
MEMT= mean monthly temperature (Celsius) 
TYP= total yearly precipitation (cm) 

The southern coastal areas in my study area are no exception and have much lower 

variability than northern areas; they have hot summers and cool winters.  Temperatures in 

the south are also generally higher on average during all seasons.  Northern areas tend to 

have far higher variability in seasonal temperature than coastal areas, experiencing hotter 

summers and colder winters, sometimes including significant snow accumulation, unlike 

southern areas where it rarely snows. 
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Table 2. Comparison of temperatures (Co) of San Angelo, TX, a landlocked site, and lake 
Charles, LA, a coastal site. 

Year San Angelo, TX (31.43, -
100.48) 

Lake Charles, LA (30.15, -
93.3) 

1988-1989 26 25.4 
1989-1990 25.9 25.1 
1990-1991 25.6 25.8 
1991-1992 25.1 24.9 
1992-1993 25.3 25.3 
1993-1994 25.4 25.1 
1994-1995 26.4 25.7 
1995-1996 25.9 25.9 
1996-1997 25.9 25.2 
1997-1998 24.2 24.8 
1998-1999 26.9 26.3 
1999-2000 25.3 26.6 
2000-2001 26.7 26.1 
2001-2002 25.5 25.4 
2002-2003 25.2 25.3 
2003-2004 25.7 25.5 
2004-2005 24.7 26 
2005-2006 25.7 26.4 
2006-2007 27.4 26.3 
2007-2008 24.7 25.5 
2008-2009 27 25.9 

Average Temp 26 25.4 
Temp Std. Dev. 0.81 0.52 
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METHODS AND MATERIALS 

 The Christmas Bird Count (CBC) has common elements that are seen in a large 

assortment of surveys.  For example, the Breeding Bird Survey (BBS) covers large portions 

of the United States (excluding Hawaii), Canada, and portions of Mexico (Link & Sauer, 

2002).  Project Feederwatch is a winter survey of birds, facilitated by the Cornell Lab of 

Ornithology, that visit birdfeeders and lasts from November till the beginning of April 

(Dhondt et al., 2005).  The Midwinter Waterfowl Survey is a yearly survey conducted 

where the exact sampling methods are not defined, and an aerial crew decides the best 

method of survey coverage from year to year (Eggeman & Johnson, 1989).  The CBC is a 

survey similar to these and in 2010 consisted of 2160 survey circles in Canada, the United 

States, and Mexico, with 60,753 volunteers participating (Audubon Society, 2010).  Any 

variety of methods may be used to collect data.  Most data are collected on foot, in cars, or 

by people watching birds coming to feeders (USGS, 2002); however, some counts have 

employed bicycles, boats, canoes, snowmobiles, and even airplanes to count birds (USGS, 

2002).  The results from the CBCs are submitted to the National Audubon Society, which 

has compiled the data since the inception of the survey.  The results are currently published 

in an issue of the National Audubon Society Field Notes. 

Population Data 

 I obtained survey data for blackbirds and starlings from the CBC archives from the 

1988-89 to 2008-09 seasons via the Audubon Society website, which also houses the data 

from every CBC that has ever been conducted.  Survey data in this study included the 

number of birds observed for a given species in a count circle, the number of birds seen per 

hour spent on the survey, the number of volunteer hours accrued while conducting the 
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survey, and the number of volunteers that conducted the survey (Link & Sauer, 1999).  

CBC circles themselves are relatively large areas, each one being 15 miles in diameter; 

each CBC circle is 176.7 mi2 (457.7 km2).  These data were then entered into an Excel 

spreadsheet and arranged with global positioning system (GPS) coordinates provided in 

each CBC report.  This was done to integrate survey data and location data for use in 

spatial modeling.  I selected CBC sites based upon the midpoint of the CBC circle; if the 

midpoint was inside of the study area, then that circle was included in data collection.  If a 

significant amount of that CBC site was in the survey area, but not its midpoint, then that 

CBC site was ignored.  CBC site location in the study area was determined via ArcInfo 9.3; 

potential CBC sites were entered into a shape-file and compared for geographic location.  

Potential CBC sites that were shown to be outside the study area were then excluded.  

Overall, CBC site data were obtained for 333 sites over 21 years.   

 Preliminary analyses of these data showed positive results (Figure 16 and 17), 

which were done by taking the log of the number of birds seen in a CBC circle and plotting 

it against the year of the study in a scatter-plot (Figure 16).  Figure 17 was constructed by 

taking the log of the number of birds seen per hour and plotting it against the study year.  

Figure 17 was plotted in an attempt to account for effort effects on population data, since 

increased effort can have a pronounced effect on the amount and quality of data collected 

(Link & Sauer, 1999, Link et al. 2006).  These simple dataplots gave me the idea that 

perhaps RWBL populations are not declining in all areas, as is widely characterized and 

reported by other studies.  Though these analyses were crude, they gave me a starting point 

from where I could form my basic hypotheses.
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Figure 16. Scatterplot of the Log of RWBL data vs. time.  A linear trend-line and equation is also provided to show direction. 
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Figure 17. Scatterplot of the Log of RWBL data per hour vs. time.  A linear trend line and equation are provided showing direction.
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Study Sites 

 The National Land Cover Database (NLCD) was obtained from the Land Cover 

Institute (LCI) for the study years 1992 and 2001, the years landcover maps were made 

available.  Both years were downloaded in a raster format, in a 21 class landcover 

classification scheme applied consistently over the United States and Puerto Rico (NLCD, 

2001).  For use in my GIS analyses, all raster files for 1992 or 2001 were initially merged 

into a single map file and “cookie cut” to an outline of the study area for relative ease of 

use.  This was done slightly differently for the two different years as they came in slightly 

different geographical formats.  The 1992 rasters were made up of singular states, while the 

2001 rasters were made up of regional areas and had no adherence to traditional political 

borders.  After the raster files were merged, similar land uses were consolidated into nine 

basic landcover types consisting of open water, developed, barren, forested upland, 

shrubland, non-natural woody, herbaceous upland, herbaceous planted/cultivated 

(cropland), and wetlands.  These landcover types were modified from Anderson et al. 

(1976) and are all likely to be found within the study region (Flather & Hoekstra, 1985; 

Flather & Sauer, 1996; USDI Geological Survey, 1992 and 2001).  CBC count circle 

shapefiles for each CBC site were made by creating a buffer area around the reported 

center-point of each site and saving them as individual shapefiles.  These shapefiles were 

then used to “cookie cut” the land use characteristics for that CBC site out from the 

surrounding area.  Finally, these data were entered into a spreadsheet as a percentage of 

total area within that survey circle and arranged with CBC survey and GPS data.  In order 

to account for the missing years of landscape data, multiple years of population data had to 

be used for a single year of landscape data.  This was done by splitting the years of the 
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survey and using the NLCD data obtained from 1992 for the first 10 years of the study, and 

the NLCD data obtained for 2001 for the last 11 years.  In order to avoid pseudoreplication  

issues due to using the same landcover data for multiple years of population data, models 

were also run with only those years that landcover data were made available. 

Climate Data 

 Climate and weather data were also collected for use in population modeling and 

habitat selection.  Data were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) website for annual climatalogical summaries.  Weather data 

including precipitation, average maximum monthly temperature, average minimum 

monthly temperature, and average monthly temperatures were obtained (Root, 1988; 

Morschel, 1999).  These averages were taken for November, December, and January-- the 

month before the CBC could be conducted, and the two months when the actual survey 

could take place.  Data were collected for these months as they were thought to be the most 

influential on presence or absence of birds during CBC surveys (Root, 1988; Newton, 

1998; Morschel, 1999; Forcey, 2006).  Climatalogical data were obtained in a similar 

fashion; averages for maximum monthly temperature, minimum monthly temperature, and 

mean monthly temperature were taken for the entire year and not just the months before 

and after the survey.  This was done to get a better idea of longer term weather trends over 

the whole of years, instead of focusing on just the months of the survey (Cotgreave, 1995).  

These data were then arranged into a spreadsheet and combined with the survey, landcover, 

and GPS data to form a database for use in modeling.   
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Linear Mixed Effect Models 

 The model type used for my purposes is a linear mixed-effect model, which, like 

many other types of statistical models, describes a relationship between a response variable 

and covariates that have been measured or observed along with that response (Fox, 2002).  

Linear mixed-effect models feature a combination of fixed-effects and random-effects; the 

combination of these effects in one model is where mixed effect models get their name 

(Bates, 2010).  Fixed-effects explain change in the response variable within levels or 

groups, while random-effects correspond to particular observational or experimental units 

such as geographical areas in a study.  Parameters associated with particular levels of a 

covariate are called the effects of the levels (Bates, 2010).  If the set of possible levels of 

the covariate are fixed and reproducible (e.g., a covariate for sex that has levels male and 

female), covariates are modeled using fixed-effects parameters, called fixed-effects.  If the 

levels that are observed represent a random sample from the set of all possible levels, 

random-effects are incorporated to describe those levels of the model (Fox, 2002).  My 

model is no different, treating the response variable as Gaussian (normally distributed) and 

as a function of environmental covariates (fixed-effects) and level (or blocking) effects 

(random-effects).  Generally, fixed-effects are independent variables that would normally 

be included in an analysis.  For birds, habitat and climatalogical variables are commonly 

used as they are in my model. In other studies, for instance sociolinguistic studies, age, 

gender, and phonological environment would be used.  Random-effects, on the other hand, 

are variables that are specific to a particular data sample.  In my model they describe 

changes between locations, geographical areas, and the years of the study.  Once again 
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using sociolinguistic studies as an example, the random effects might include the individual 

speaker, listener, and the words that were spoken. 

 This model was constructed and used in R, which is a free software environment for 

statistical computing and graphics.  For my purposes, the lmer function of the lme4 

package was used, as it is designed to fit linear mixed-effect models (Bates, 2010).  

Environmental covariates collected from the NOAA and NLCD databases are considered 

fixed-effects, and random-effects in the model were included to account for population 

variation between BCR, years, and the individual-effects of circles.  A random-effect to 

compensate for overdistribution (error) in the data was also included.  Survey data 

collected from CBC circles were offset for the number of hours invested in each count, as 

the effort put into a count can have a pronounced effect on the number of birds counted in a 

circle (Link & Sauer, 1999).  The more effort put into a survey, the greater the number of 

birds that are counted; however, double counting and other errors can and sometimes do 

occur (Link & Sauer, 1999).  In the models that were used, an offset is a term added to a 

linear predictor, such as in a generalized linear model, with a known coefficient of 1, rather 

than an estimated coefficient.  In mathematics, a coefficient is a multiplicative factor in a 

term of a numerical expression or series.  It is usually a number, but is not involved in any 

variables of the expression.  For instance in 

7x2 � 3xy + 1.5 + y 

the first three terms have coefficients of 7, -3, and 1.5 (in the third term the variables are 

hidden [raised to the 0 power], so the coefficient is the term itself; it is called the constant 

term or constant coefficient of this expression). The final term does not have any explicitly 
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written coefficient, but is considered to have a coefficient of 1, since multiplying by that 

factor would not change the term. 

 Years were considered to be a random effect because  there is random variation 

within that year (due to weather, population cycles, etc.) which the year random effect 

reflects.  Roughly, the mean counts in each year is the ‘random effect’ for that year (after 

accounting for all the other fixed and random effects).  These random effects are all 

assumed to come from the same distribution, in this case, a normal distribution with a mean 

set to zero and an estimated variance.  So when there are multiple random effects, by 

examining these respective variances, it is possible to assess the relative contribution of 

each grouping (years, BCR, and sites) to the variation in the counts.  By accounting for 

these groupings (random effects), the fixed effect estimates and standard deviation will be 

more accurately estimated.  By making the assumption that all the years come from and use 

the same distribution, and the manner in which they are mathematically estimated, I am 

imposing a mathematical correlation structure onto all the members of this group (years).  

This flexibility allows me to modify this correlation matrix to more accurately reflect the 

dependence of each group member on other group members.  Although I did not do this in 

this model, in future endeavors it would be possible to change this structure to say that one 

year's mean count is dependent on the previous year's count (an AR-1 structure).   

 In this model, random effects were not constrained using posterior distributions but 

were evaluated using Restricted (or Residual or Reduced) Maximum Likelihood (REML) 

approach, which is the default criterion used when employing linear mixed-effect models.  

Unlike maximum likelihood estimation, REML does not base estimates on a maximum 

likelihood fit of all the information, but instead uses a likelihood function calculated from a 
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transformed set of data, so nuisance parameters have no-effect.  For balanced data, REML 

reproduces the statistics familiar to those who use ANOVA, but the algorithm is not 

dependent on balance. It allows for spatial and/or temporal correlations, so it can be used 

for repeated measures or field-correlated data (O’Neil, 2010). Unlike ANOVA, REML 

allows for changing variances, and so can be used in experiments where some treatments 

(e.g., different spacing arrangements, crops growing over time, treatments that include a 

control) have a changing variance structure (O’Neil, 2010). This allows estimates obtained 

using REML to be less biased than estimates obtained using maximum likelihood. 

 There is a significant distinction that must be made between fixed-effects 

parameters and random-effects.  The difference between fixed and random is a property of 

the levels of the categorical covariate, not a property of the effects associated with them 

(Bates, 2010).  Fixed does not mean that these parameters do not vary over space and time, 

but rather there is no systematic or directional component to that variation; they focus 

mainly on differences within levels (Fox, 2002).   For example, if I see gradients in species 

response with latitude, that response would possibly be expressed by higher abundances in 

the southernmost BCR and lower abundances in the northernmost BCR.  Similarly, if there 

were gradients in abundance developing over time that were not explained by 

environmental covariates (fixed-effects, within levels), they would express themselves in 

the year random-effect (between levels).  In the absence of a mechanism or covariate in the 

model for accommodating directional change, the random-effects serve this purpose (Fox, 

2002).  Linear mixed-effect models are statistical models that incorporate both fixed-effect 

parameters and random-effects.  Because of the way that random-effects are defined here, a 

model that incorporates random-effects will always include at least one fixed-effect 
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parameter; therefore, any model that incorporates some variety of random-effects is 

technically a type of mixed-effect model (Fox, 2002).  
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RESULTS 

 Population trends were estimated for all species within the study, all of which have 

different life histories and wintering distributions.  Because of this, these species showed 

differing patterns of population change.  Species also varied greatly in the amount and 

quality of information gathered; several species had no observations over many years of 

surveys, while others had extremely high population estimates in several places as shown 

in Table 3.  Area weights and sample sizes vary greatly among strata (Table 3) ranging 

from 2% of total area to 11% of total area, as do the proportions of surveys in which 

species were encountered (Table 4). 

Table 3. Description of Bird Conservation Regions by the number of surveys conducted, 
site numbers, and area within the study for use as stratum in linear mixed effect modeling. 

Bird Conservation Region N S A PA 

Shortgrass Prairie (18) 251 16 7238.23 0.048 

Central Mixed-grass prairie (19) 419 27 12214.51 0.081 

Edwards Plateau (20) 78 7 3166.73 0.021 

Oaks and Prairies (21) 538 32 14476.46 0.096 

Eastern Tallgrass Prairie (22) 566 33 14928.85 0.099 

Central Hardwoods (24) 815 51 23071.86 0.153 

West Gulf Coastal Plain/Ouachitas (25) 588 37 16738.41 0.110 

Mississippi Alluvial Valley (26) 438 30 13571.68 0.090 

Southeastern Coastal Plain (27) 461 28 12666.9 0.084 

Appalachian Mountains (28) 288 20 9047.79 0.060 

Tamaulipan Brushlands (36) 205 13 5881.06 0.039 

Gulf Coastal Prairie (37) 648 39 17643.18 0.117 

N= number of surveys during study period 
S= number of sites in stratum 
A=area of sites in stratum (km2) 
PA= proportion of area of stratum in total survey area 
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Red-Winged Blackbirds 

 Of 5,295 surveys conducted over 21 years, there were 4,928 surveys produced by 

65,421 observers where at least one RWBL was observed.  Few surveys (7%) had no 

observations, while 54 surveys observed single RWBL, and 90.2% of surveys yielded five 

or more birds.  As Table 4 shows, most regions had high incidences of RWBL; only two 

BCR (Central Hardwoods (24) and Appalachian mountains (28)) had a proportion of 

survey sites where RWBL were reported under 0.9.  These two BCR had the second and 

third lowest instances of RWBL for the entire study area.  The highest counts reported in 

these two BCR were 195,414 and 50,225 individuals, respectively; the only BCR with  

Table 4. Proportions of counts where species were observed by BCR. 
Bird Conservation Region RWBL COGR EUST BRBL RUBL 

Shortgrass Prairie (18) 0.96 0.45 0.92 0.60 0.06 

Central Mixed-grass prairie (19) 0.97 0.65 0.99 0.63 0.20 

Edwards Plateau (20) 0.94 0.49 1.0 0.37 0.03 

Oaks and Prairies (21) 0.99 0.95 0.99 0.75 0.28 

Eastern Tallgrass Prairie (22) 0.98 0.85 0.99 0.29 0.56 

Central Hardwoods (24) 0.79 0.81 0.98 0.09 0.38 

West Gulf Coastal Plain/Ouachitas (25) 0.95 0.95 0.98 0.54 0.42 

Mississippi Alluvial Valley (26) 0.99 0.98 0.99 0.48 0.66 

Southeastern Coastal Plain (27) 0.98 0.96 0.98 0.39 0.58 

Appalachian Mountains (28) 0.66 0.61 0.95 0.03 0.44 

Tamaulipan Brushlands (36) 0.96 0.78 0.98 0.70 0.0 

Gulf Coastal Prairie (37) 0.99 0.87 0.98 0.51 0.19 



�

�
�

55

lower survey numbers was the Edwards Plateau (BCR 20) which has seven survey sites, 

from which the largest count reported 914 birds in one season.  All three of these BCR 

have high proportions of forested area, a landscape type that RWBL generally avoid in 

favor of areas with close proximity to both roosting sites and food items (Orians 1980).  

BCR with higher RWBL survey reports generally had lower proportions of forested habitat 

and development, and higher proportions of farmland, wetland, grassland, and shrubland.  

These observations were supported by my analysis, which shows that RWBL numbers 

increase as the proportion of farmland in a count circle increases (p < 0.001) and that 

RWBL numbers decrease as the proportion of forested area increases (p=0.0377) as seen in 

Table 5.  The fixed effects included in the RWBL model were used because they provide  

Table 5. Environmental fixed effects used for analysis of RWBL population trends and 
their influence on RWBL residence in habitats.  

Fixed Effect Estimate Std. Error Z - value p 

(Intercept) 2.1500 0.3970 5.410 6.41E-08 

Population Trend 0.0240 0.0077 3.130 0.0018 

Developed Area 0.0340 0.0659 0.514 0.6070 

Farmland 0.2780 0.0446 6.220 4.94E-10 

Forested Area -0.1060 0.0512 -2.078 0.0377 

Open Water 0.1680 0.0870 1.940 0.0530 

Total Precipitation 0.0425 0.0252 1.687 0.0920 

 the model with the lowest Akaike Information Criterion (AIC) possible.  Inclusion of other 

fixed effects in previous models produced higher AICs, as did the removal of fixed effects 

from the finalized RWBL model.  With higher numbers of model parameters, the effects of 

one fixed effect became difficult to discern from others, with few variables showing as 
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statistically significant and resulting in the inability to tell which landscape variables were 

significant predictors of RWBL occupation or absence.   

Population Trends 

 My data also show that observations of RWBL are increasing within the study area 

and that the rise is significantly positive (p=0.002).  The trend estimate is a log 

transformation of the change in mean count number, which is converted to a percentage 

increase in mean count number per year.  These results are more easily interpreted if 

converted to a percentage increase per year, so the estimates are adjusted to deal with the 

mean count instead of the natural log of the mean count.  The following formula allows for 

calculation of the percent increase per year in mean count number. 

    y = (ex-1)*100                                                                 

In this formula y is the average percent increase in mean count number per year and x is the 

estimate provided in the model output.  An example of this process using the RWBL 

population trend gives a 2.42% increase in mean count number per year for RWBL, after 

accounting for all fixed and random effects.  Calculation of the 95% confidence interval 

(CI) is done before using the above formula and gives mean count increases a range 

between 0.92% and 3.90%.  Because I have also offset RWBL observation numbers for the 

amount of effort put into each survey and the CI does not cross zero, this suggests that 

populations of RWBL within the survey area are on the rise. 

Habitat Selection 

 How landscape affects blackbird and starling occupancy in an area was another 

feature of interest in this study.  There have been many studies that have analyzed how 

birds use their environments.  Beletsky & Orians (1996) attributed bird occupancy to a 
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large number of variables including vegetation, food and water availability, weather 

patterns, competition for mates and food, predator, and parasites.  Similar studies done over 

the years generally tend to look at relatively smaller, more localized scales than this study, 

which operates on a multiple-region scale, covering a large portion of the southeastern 

United States and parts of the southern Midwest.   

 Similar to the population trend, the estimates provided in Table 5 for habitat 

variables are log transformations of the change in mean count number.  They are 

standardized by whole numbers near the standard deviation in the case of weather and 

climate variables, and by 0.1 in the case of landscape variables since they were converted 

to proportions.  The landscape variable with the largest influence on RWBL mean count 

number proved to be farmland, the estimate for which is provided in Table 5.  

Exponentiating this estimate produces an average increase of 32% in mean count number 

for every 10% increase in farmland in CBC circles (10%, 20%, 30%, etc.).  The 95% CI for 

mean count number increases related to farmland lies between 23.25% and 40.75%.  Since 

this interval does not cross zero, it is considered to be significant (p< 0.001).  

Exponentiating the other fixed effect estimates for habitat variables gives values of -10.1% 

(95% CI= -20.1%, -0.0600%) for forested areas, 3.45% (95% CI= -9.5%, 16.4%) for 

developed area, 18.31% (95% CI= -0.2%, 36.9%) for open water, and 4.3% (95% CI= -

0.6%, 9.3%) for precipitation.  Only forested area was considered significant, which 

indicated a 10.1% decrease in RWBL mean count number for every 10% increase in area 

(p= 0.038).  Developed area provided estimates that were not significant (p= 0.610), while 

open water (p= 0.053), and total yearly precipitation (p= 0.091) provided estimates that 

approached significance, but gave only weak evidence of true effects on mean count 
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numbers.  As I mentioned before, models were restricted to run for the years that habitat 

data were available to try to avoid pseudoreplication.  These results for these models were 

similar to the results for models run for all years (Table 6).  These analyses were run in a  

Table 6. Restricted analysis of environmental fixed effects used for analysis of  
RWBL residence in habitats.  

Fixed Effect Estimate Std. Error Z - value p 

Developed Area -0.0590 0.1052 -0.558 0.5700 

Farmland 0.2650 0.0812 3.262 0.0010 

Forested Area -0.3500 0.0891 -3.944 8.03E-05 

Open Water 0.0470 0.1213 0.387 0.7000 

Total Precipitation 0.2530 0.1072 2.362 0.0180 

slightly different way than the original models, but can be interpreted in the same fashion.  

Positive estimates in this analysis represent positive associations and negative estimates 

reflect land types that RWBL avoid.  The results are similar but with two noticeable 

differences.  First, the negative effect that forested area has on mean count number is 

significantly more pronounced.  Second, the positive association of RWBL with total 

precipitation is substantially higher and is statistically significant.  

Common Grackles 

 Of the 5,295 counts conducted over 21 years in my study area, 4,400 had at least 

one observation of a COGR.  Surveys that observed no COGR were a minority, making up 

16.9% of the total number of surveys; 172 surveys yielded single observations and 75% 

yielded five or more individuals.  Areas with low COGR counts typically had high levels of 

grassland, which is a landscape variable common in the shortgrass prairie, central mixed-

grass prairie, and Edwards plateau, all of which had lower incidences of COGR than 
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average (Table 4).  The Appalachian Mountains BCR also had a relatively low incidence of 

COGR and is characterized by low levels of grassland; this region also has low levels of 

farmland, a landscape variable that is positively associated with COGR in both literature 

reports and my research (Table 7). These observations were supported by my model 

Table 7. Environmental fixed effects used for analysis of COGR population trends and 
their influence on COGR residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

(Intercept) -0.1610 0.5050 -0.319 0.749 

Population Trend -0.0081 0.0079 -1.014 0.3110 

Developed Area 0.1870 0.0801 2.340 0.0193 

Farmland 0.1720 0.0604 2.840 0.0045 

Grassland -0.3710 0.0794 -4.670 3.04E-06 

Open Water -0.1940 0.1130 -1.720 0.0856 

Total Precipitation 0.0634 0.0320 1.980 0.0474 

analysis, which shows that COGR numbers increase as the proportion of farmland in a 

count circle increases (p = 0.0045) and that COGR numbers decrease as the proportion of 

grassland increases (p < 0.001). 

Population Trends 

 Population trends seen in this model for COGR show neither significant increases 

nor decreases in mean count number over the study period.  As seen in Table 7, the 

population trend estimate was -0.0808, which can be adjusted similarly to RWBL numbers 

to give a percentage increase per year, yielding a -0.81% (95% C.I. 0.76% to -2.4%) 

increase in mean count number over the study period.  Because this CI crosses zero, I 

assume that there is no significant change in mean count number. 
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Habitat Selection 

 Landscape variables for COGR were calculated in the same fashion that they were 

for RWBL.  The most influential landcover type by far was grassland with an estimate of   

-0.371 (Table 7 and Table 8).  Exponentiation of this estimate gives a 31% decrease in 

COGR mean count number for every 10% increase in the amount of grassland in a count 

circle.  Calculation of the 95% CI provides a range of 46.6% to 15.4% decrease in mean 

count number; since this range does not cross zero, it is considered to be significant (p< 

0.001).  Farmland also had significant effects on mean count numbers, with an estimate of 

0.172; mean count numbers increased an average of 18.8% for every 10% increase in 

farmland.  The 95% CI for farmland had a lower limit of 6.9% and an upper limit 30.6% 

and does not cross zero, making it significant (p= 0.005).  Other significant effects included 

developed area with an increase of 20.6% (95% CI= 4.9%, 36.3%) in mean count number 

for every 10% increase in developed area (p= 0.019) and total precipitation.  Total 

precipitation, however, was only weakly significant with an increase in mean count number 

of 6.6% (95% CI= 0.28%, 12.8%) for every 25.4 cm of rain that fell (p= 0.0474).  The last  

Table 8. Restricted analysis of environmental fixed effects used for analysis of  
RWBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

Developed Area 0.3845 0.1248 3.082 0.0021 

Farmland 0.3435 0.0963 3.567 0.0004 

Grassland -0.6154 0.1532 -4.017 5.89E-05 

Open Water -0.0764 0.1423 -0.537 0.5916 

Total Precipitation 0.3033 0.1363 2.226 0.0260 
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fixed effect included in the COGR model was open water, causing a -17.6% (95% CI=       

-39.7%, 4.5%) increase in mean count number, which approaches significance, but gives 

only weak evidence of effects on mean count number.  A restricted analysis for COGR was 

also run (Table 8) that showed several interesting differences with the original models.  

Developed area showed a significantly more pronounced effect, as did farmland and 

grassland.  The effect of open water decreased by approximately half but was still not 

statistically significant. 

European Starlings 

 The vast majority of the 5,295 counts reported at least one EUST during the study 

period, (5,195 to be exact), easily outpacing every other species in terms of distribution in 

this study.  Fewer than 2% of counts had zero observations, 12 counts had single 

observations, and over 97% of the counts had at least five EUST observations.  EUST are 

distributed fairly evenly over the study area (Table 4), with all areas having more than 90% 

incidence of EUST during surveys.  Areas with low EUST counts had large quantities of 

shrubland, a landscape type common in the shortgrass prairie, (BCR 18) which had the 

lowest incidence of EUST.  Large counts were associated with high levels of farmland and 

development, two of the most common landcover types.  These observations were 

supported by my analysis (Table 9) which shows that EUST are positively associated with 

farmland and development (p< 0.001) and negatively associated with wetlands (p= 0.015) 

and shrubland (p= 0.035).  

Population Trends 

 Population trends seen in this model for EUST show neither significant increases 

nor decreases in mean count number over the study period.  As seen in Table 9, the 
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population trend estimate was -0.00547, which when adjusted in a similar fashion as done 

for the RWBL and COGR numbers, provided a -0.55% increase in mean count number 

over the study period.  Calculating a 95% CI gives us an upper limit 0.4% and a lower limit 

of -1.5%.  Since this CI crosses zero the assumption can be made that there is not a 

significant change in mean count number. 

Table 9. Environmental fixed effects used for analysis of EUST population trends and their 
influence on EUST residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

(Intercept) 2.2800 0.1680 13.57 2.00E-16 

Population Trend -0.0055 0.0048 -1.139 0.2600 

Developed area 0.2100 0.0397 5.296 1.18E-07 

Farmland 0.1420 0.0269 5.293 1.20E-07 

Shrubland -0.0760 0.0364 -2.105 0.0350 

Total winter precip 0.0570 0.0206 2.775 0.0055 

Wetland -0.1100 0.0452 -2.422 0.0150 

Winter max temp -0.1220 0.0317 -3.870 0.0001 

Habitat Selection 

 The impact of landscape variables was calculated using the same techniques that 

were used for other species in this study.  The most influential landcover type was 

developed area, causing a 23.4% increase in mean count number for every 10% increase in 

area (Table 9).  Calculation of the 95% CI gives a range of 15.6% to 31.2%; since this 

range does not cross zero, it is significant (p< 0.001).  Farmland also had a significant 

effect on mean count number, averaging a 15.3% increase for every 10% increase in area.  

The 95% CI for farmland had a lower limit of 10.01% and an upper limit 20.5% and does 

not cross zero, making it significant (p< 0.001).  Other significant landscape effects 
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included shrubland with an increase of -7.4% (95% CI= -14.5%, -0.24%) and wetland with 

an increase of -10.37% (95% CI= -1.5%, -19.24%) for every 10% increase in area.  Neither 

of these 95% CI cross zero; both are considered significant (p< 0.05).  Climatalogical 

variables also had significant impacts with total winter precipitation averaging a 5.88% 

increase (95% CI= 1.84, 9.9%) for every 12.5 cm of rainfall (p= 0.0055), and average 

winter maximum temperature causing a -11.53% increase (95% CI= -17.7%, -5.3%) for 

every ten degree increase (p< 0.001).  The restricted analysis done for EUST (Table 10)  

also shows some significant differences from the original models.  The positive effects of 

farmland and developed area and the negative effects of winter maximum temperature are 

greater, while the effects of wetland, shrubland, and total winter precipitation are no longer 

statistically significant.  

Table 10. Restricted analysis of environmental fixed effects used for analysis of  
RWBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

Developed area 0.3955 0.0660 5.989 2.11E-09 

Farmland 0.2201 0.0447 4.928 8.31E-07 

Shrubland -0.1350 0.0769 -1.754 0.0790 

Total winter precip 0.0968 0.0704 1.376 0.1690 

Wetland 0.0614 0.0845 0.726 0.4680 

Winter max temp -0.6285 0.1354 -4.641 3.47E-06 

Brewer’s Blackbirds 

 Out of 5,295 surveys, 2,271 reported at least one observation of a BRBL, 57% of 

surveys reported no observations, and only 36% of surveys reported more than five BRBL.  

As Table 4 shows, BRBL incidence was highly variable over the study area, ranging from 

3% of surveys in the Appalachian Mountains (BCR 28) to 75% of surveys in Oaks and 
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Prairies (BCR 21).  Areas where BRBL were more common generally had high levels of 

shrubland, grassland, and/or farmland, and low amounts of forested area and development.  

These observations were mostly supported by my analysis, with birds being attracted to 

areas with high levels of farmland, shrubland, and grassland (Table 8) and were also 

positively associated with forest (p< 0.001). 

Population Trends 

 Population trends seen in this model for BRBL show neither significant increases 

nor decreases in mean count number over the study period.  As seen in Table 11, the 

population trend estimate was 0.01029 which is calculated with the equation used above to 

give us a 1.03% increase in mean count number over the study period.  Calculating a 95% 

CI gives us an upper limit 3.5% and a lower limit of -1.4%.  Since this CI crosses zero, I 

can assume that there is not a significant change in mean count number from year to year. 

Table 11. Environmental fixed effects used for analysis of BRBL population trends and 
their influence on BRBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

(Intercept) -5.3300 0.6630 -8.032 9.61E-16 

Population Trend 0.0103 0.0125 0.826 0.4090 

Developed area -0.0234 0.1340 -0.174 0.8620 

Farmland 0.7640 0.1000 7.590 3.20E-14 

Forested area 0.4690 0.1040 4.499 6.82E-06 

Grassland 0.9530 0.1260 7.557 4.11E-14 

Min monthly temp 0.8400 0.2320 3.615 0.0003 

Shrubland 0.6060 0.1290 4.700 2.60E-06 

Total precipitation -0.0653 0.0494 -1.322 0.1860 
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Habitat Selection 

 The most influential habitat type seen for BRBL was grassland, which gives a 

159.5% (95% CI= 137.7%, 184.2%) increase in mean count number per 10% increase in 

area (p< 0.001).  Farmland, forested area, and shrubland also had significant positive 

effects with 114.6% (CI= 94.9%, 134.4%), 59.8% (95% CI= 39.4%, 80.3%), and 83.3% 

(95% CI= 58.03%, 108.6%) increases in mean count number per 10% increase in area, 

respectively.  Developed area was the only landscape type to have a negative effect, though 

it was not significant (p= 0.8616).  Of the two climatic variables in the model, only 

minimum monthly temperature was significant, giving a 131.7% (95% CI= 86.1%, 

177.2%) increase in mean count number for every 10oF increase (p= 0.0003).  Total 

precipitation had a negative association, but was not significant (p= 0.186).  Restricted 

analyses for BRBL (Table 12) had similar results that restricted analyses for other species 

showed with some effects being similar and others showing differences.  Farmland,  

Table 12. Restricted analysis of environmental fixed effects used for analysis of  
RWBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

Developed area 0.0800 0.2019 0.397 0.6900 

Farmland 0.7600 0.1578 4.824 1.41E-06 

Forested area 0.2000 0.1649 1.218 0.2230 

Grassland 0.9600 0.1262 7.557 4.11E-14 

Min monthly temp 0.8500 0.2324 3.615 0.0003 

Shrubland 0.7500 0.2118 3.548 0.0004 

Total precipitation 0.3400 0.2314 1.458 0.1450 

shrubland, grassland, and minimum monthly temperature all had positive values similar to 

those found in the original analyses, while forested area lost some effect and is no longer 
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considered statistically significant.  Development and total precipitation both show positive 

effects in the restricted analysis; this is a change from the originals, but neither is 

statistically significant.   

Rusty Blackbirds 

 Of 5,295 surveys, 1,938 had at least one observation of a RUBL; 63% of surveys 

reported no observations, and only 26% of surveys reported five or more RUBL 

observations.  As Table 4 shows, variability in RUBL incidence is high, ranging from zero 

reported incidences in the Tamaulipan Brushlands (BCR 36) to 66% of surveys reporting at 

least one individual in the Mississippi Alluvial Valley (BCR 26).  Areas that had relatively 

high survey numbers typically had more farmland, forest, and development than areas with 

lower count numbers.  These observations were mostly supported by my analysis, which 

positively associated development and developed area with RUBL count numbers 

(p<0.05), but not forested area, which showed only weak effects that were not statistically 

significant, as seen in Table 13. 

Population Trends 

 Population trends for RUBL have been shown in other literature to be significantly 

negative, and CBC data suggest population decreases between 1966 and 1991 however, 

populations have been relatively stable since then.  My analysis agreed with the latter, 

showing a close to significant rise in mean count number over the study period.  Counts 

averaged a 2.7% (95% CI -0.004%, 5.4%) increase in mean count number. This interval 

crosses zero, but p is close to 0.05; while not significant, there is weak evidence of a small 

rise in mean count number in the study area. 
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Table 13. Environmental fixed effects used for analysis of RUBL population trends and 
their influence on RUBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

(Intercept) -6.9800 0.6060 -11.52 2.00E-16 

Population Trend 0.0264 0.0135 1.960 0.0500 

Developed area 0.2750 0.1120 2.470 0.0136 

Farmland 0.2860 0.0798 3.590 0.0003 

Forested area 0.0837 0.0935 0.895 0.3710 

Winter Min temp -0.5310 0.1360 -3.920 8.88E-05 

Shrubland -0.2310 0.1550 -1.490 0.1360 

Total winter precip -0.0048 0.0646 -0.074 0.9410 

Habitat Selection 

 According to the analysis, the most influential habitat type is farmland with a 

33.1% increase in mean count number per 10% increase in area.  Calculation of the 95% CI 

gives an interval of 16.2% on the lower end and 50.1% on the higher end; since this 

interval does not cross zero, it is considered significant (p<0.001).  Other landscape 

categories that had positive associations included development and forested area with 

31.7% (95% CI= 7.2%, 56.1%) and 8.7% (95% CI= -9.6%, 27.1%) increases in mean 

count number per 10% increase in area, respectively, though only development was 

significant (p= 0.014).  The only landscape type used in the model that had a negative 

association was shrubland, with a -25.9% (95% CI= -61.3%, 9.4%) increase in mean count 

number per 10% increase in area.  Weather variables used in the model included average 

minimum winter temperature and total winter precipitation.  While total winter 

precipitation was not found to be significant, average minimum winter temperature was 
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significant with a -41.2% (95% CI= -67.9%, -14.5%) increase in mean count number for 

every 5.6oC increase in temperature (p< 0.001).   

The restricted analysis of RUBL data seen in Table 14 shows results similar to 

those seen in the restricted analysis of the other species in the study.  Farmland and 

development both remained significantly positive, while winter minimum temperature 

remained significantly negative (p < 0.05).  Shrubland maintained its negative effects but 

was no longer statistically significant (p= 0.341), while forested area had almost no change.  

The change of the effects of total winter was rather surprising, going from a low negative 

effect that was not statistically significant to a high positive effect that is statistically 

significant (p =0.0048).   

Table 14. Restricted analysis of environmental fixed effects used for analysis of  
RWBL residence in habitats. 

Fixed Effect Estimate Std. Error Z - value p 

Developed area 0.4570 0.1910 2.387 0.0170 

Farmland 0.3470 0.1620 2.144 0.0320 

Forested area 0.1620 0.1440 1.123 0.2600 

Winter Min temp -0.4850 0.1350 -3.579 0.0004 

Shrubland -0.4110 0.4320 -0.952 0.3410 

Total winter precip 0.7300 0.2590 2.822 0.0048 
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DISCUSSION 

  There are a wide variety of methods for the analysis of population data taken from 

large bird surveys (Peterjohn & Sauer, 1994; Link & Sauer, 2002; Link et al., 2002; Niven 

et al., 2004; Dunn et al., 2005; Thogmartin et al., 2006; Link & Sauer, 2006).  Many of 

them do not use CBC data, which sometimes requires manipulation to make it a viable 

resource.  The hierarchical model I present for analysis of CBC data has several advantages 

over alternative approaches.  First, this type of model allows for hierarchical modeling on a 

much larger scale than surveys that have more rigid protocols, but are not conducted on 

large scales.  It permits the modeling of environmental factors that may influence 

population change and spatial variation in abundance on large scales.  This type of model 

allows for the accommodation of over-dispersion that is observed among outcomes that 

have nominally binomial or Poisson distributions (Williams, 1982; Breslow, 1984).  

Hierarchical modeling also allows for the controlling of nuisance covariates that may 

influence counts, such as effort, while providing a framework for estimation and the 

regional summary of surveys (Link & Sauer, 2006).   

 The model that was constructed for this project uses environmental features as fixed 

effects and random effects for combinations of circle, BCR, and year.  It is fundamentally a 

log-linear pattern of population change with fixed year effects adjusting for departures 

from the log-linear pattern.  Alternative models might be considered with variable amounts 

of inherent structure, all within the hierarchical framework that is suggested here (Link et 

al., 2002).  For example, it would be relatively easy to construct a model where site/circle 

effects are modeled as fixed effects without any underlying log-linear pattern or 

association.  This type of model would have the advantage of great flexibility in modeling 
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abrupt geographical changes by large numbers of birds, such as have been documented in 

blackbirds and starlings in the past (Dolbeer, 1978).  But this model would require more 

and better data than the model presented here.  Another alternative would be to treat site 

effects as a stationary auto-regressive process as Breslow & Clayton (1993) did for year 

effects, which would serve to smooth the site effects without specification of a particular 

pattern in geographical change.  These alternatives would fit well within the hierarchical 

modeling approach detailed here. 

 Several of the results for this study were rather surprising; others were more 

predictable but still interesting. The most notable surprise seen in RWBL data was the 

significant observed rise in mean count numbers over the study area (Figure 16, Figure 17, 

Table 5).  Several studies that have been mentioned (Blackwell & Dolbeer, 2001; 

Weatherhead, 2005) have reported significant decreases of RWBL numbers over the last 

few decades.  Other unexpected results included the negative association RWBL had with 

forested area and the level of positive association seen with farmland.  Going into this 

project, I, of course, had some predictions about how landscape could affect the occupancy 

of these birds.  One was the assumption that RWBL preferred roosting in and around 

wetlands.  While there was a positive association between RWBL and wetlands found 

during modeling, it was not significant in any of the models that were run.  During the 

breeding season, wetlands are extremely important, as they form the substrate for a 

significant number of nesting RWBL (Kantrud & Stewart, 1984); in winter, wetlands 

appear to be less important.   

 As I mentioned, farmland had a rather surprising effect; I had assumed that there 

would be some positive effect, as RWBL derive a significant amount of their winter diet 
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from grains (Snelling, 1968).   However, I did not realize that the effect would be as robust 

as it was, with a 23-41% increase in mean count number for every 10% increase in area.  

Farmland also had a significant positive impact on every other species included in these 

analyses, meaning that occupancy of blackbirds and starlings increased universally as the 

amount of farmland increased.  No other habitat or environmental variable had such a 

distinct effect on bird occupancy in an area.  Another interesting development that I saw 

was that weather had relatively little effect on RWBL occupancy in an area in the original 

models, no matter the combination of variables that were run, although some variables did 

have a significant effect on other blackbird species and European starlings.  Possible 

explanations for this include RWBL prefer areas with food as opposed to shelter from the 

elements, choosing to roost closer to farmland than areas that would provide cover, or 

perhaps farmlands already provide adequate protection that I could not observe during my 

modeling. 

 Three species in this analysis showed significant positive associations with 

development.  COGR, EUST, and RUBL all showed that developed area was not a 

hindrance to occupancy.  This was not particularly surprising in the case of COGR or 

EUST, as these species are often observed in anthropogenically altered habitats, often 

thriving in them (Feare, 1984; Peer & Bollinger, 1997).  But RUBL is not a species known 

to be associated with a great deal of development, nesting in the relatively impenetrable 

boreal forests of northern Canada.  RUBL winter primarily in woody vegetation, river 

bottomlands, and flooded woodlands (Greenburg & Droge, 1999), although they are 

sometimes found in rather light development such as feedlots and manure fields.  Another 

surprise I found was that BRBL were not significantly associated with development.  
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BRBL are known for the wide range of habitats they occupy and their high environmental 

plasticity, and are often found on residential lawns, cemeteries, and golf courses.  RWBL 

similarly showed no significant effects for developed area, though they are often found in 

close proximity to humans and near human-altered habitats (Turner et al., 1998). It is 

possible that the associations that both species have with development are random and that 

when they are seen within or by development, they are using a habitat or patch of habitat of 

a different variety that they prefer, which is merely in close proximity to development.  

 As they are, large scale surveys do not readily support estimations of total 

population size, but they can and have been used to estimate population change over annual 

cycles (Link et al., 2008).  The CBC is no different in this aspect, providing information on 

distribution and change in the populations of many species over long time periods (Niven 

et al., 2004; Dunn et al., 2005; Link & Sauer, 2006; Link & Sauer, 2007).  The timing of 

the CBC places it after the fall migration, making it difficult to directly tie survey data to 

major events influencing survival and reproduction (Link et al., 2008).  Consequently, it is 

not possible to estimate seasonal or year-specific rates of population change (Link et al., 

2008).   With the model that I present, I can estimate variation in yearly rates of population 

change over longer periods of time.  However, accommodating the large differences in 

quality of information among regions, and even between years at the same site, has 

sometimes made aggregation of results problematic (Link & Sauer, 2002).  Many CBC 

surveys have relatively few birds counted in a year, even in species that are common 

(RWBL, COGR, and EUST).  On the other hand, there are several sites where relatively 

improbable numbers of birds were counted in certain years (52,915,010 RWBL were 

reported by the CBC in Pine Prairie in 1989).  Despite this, linear mixed effect models 
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provide a powerful and flexible tool for the analysis of a broad variety of data such as 

longitudinal data, repeated measures, blocked or multilevel spatial data and geostatistics, 

and bioinformatics data (Stiratelli et al., 1984; Zeger et al., 1988; Gumedze & Dunne, 

2011). 

 The analysis of nuisance factors provides insight into the mechanics of surveys, 

showing that effort in counting for the CBC can have a large influence over our views of 

population change (Link et al., 2006).  In comparison, the BBS startup effects for new 

routes can cause counts to be 6.3% lower during their first year, and changes in observer 

quality introduces a positive observer effect of approximately 0.9% per year in estimates of 

change (Link et al., 2008).  Effort effects on CBC counts are well known (McCulloch, 

1990; Link & Sauer, 1999; Butcher et al., 2005), and several analyses show that standard 

effort adjustments, such as simple division by effort, are often not sufficient for the analysis 

of population data over large areas (Link & Sauer, 1999; Dunn et al., 2005; Link et al., 

2006).  Other factors may influence survey numbers and subsequent estimates that are 

based on of those surveys.  Observer bias is one such factor; in the social sciences, observer 

bias is a confounding variable that introduces error into measurement when observers over 

emphasize behavior they expect to find and fail to notice behavior they do not expect 

(Graham & Bell, 1989).  In their study, Graham & Bell (1989) found that the chances of 

detecting a group of horses was influenced more by the number in the group than the size 

of individual members.  This means that it is the size of the group and not its individual 

members that is the determining factor when it comes to detection. Because of this effect, 

in areas where large blackbird roosts are common, it would be reasonable to expect some 

amount of overestimation in local population numbers due to the expectation of large 
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numbers of birds (Balph & Balph, 1983).  In areas that do not have large local populations 

or large numbers of migrants, individuals and small groups of birds may go completely 

unnoticed (Balph & Balph, 1983).   

 With any large scale model, there has to be some type of spatial implement in place.  

Any geographic summary of CBC data must in some way accommodate some regional 

variation in populations (Link et al., 2006).  Some models use spatial correlation between 

count sites in combination with random and/or fixed effects to describe the distribution of 

those sites (Link & Sauer, 2002; Link et al., 2006; Thogmartin et al., 2004).  In this 

analysis, that is accomplished through the use of random effects: one for the spatial 

location of each CBC circle, one for each BCR, and one for temporal variability in annual 

counts.  This allows for a great amount of flexibility when modeling the effects and 

interactions of fixed and random effects on population data.    

 The original intent of this project was to run models in WinBUGS using Markov 

chain Monte Carlo (MCMC) techniques, in which I would use environmental factors 

obtained for the model as explanatory variables to describe changes in bird populations 

(Link et al., 2002).  This did not change when our focus switched to using Program R; the 

main difference between the original attempts and final products were that the original 

models were Bayesian in structure and written for WinBUGS, and the final models that 

were used were linear mixed effect regressions (lmer) written for R.  Both forms are linear 

mixed-effect models, and both had a mix of fixed and random effects used as explanatory 

variables.  Both are also hierarchical, though my model did not employ the use of prior 

distributions in order to constrain random effects.  When posterior distributions are used, 

one level of effects are described by prior distributions (Tenenbaum et al., 2006) and 
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another level, that of the variance components associated with those distributions, is 

described by hyper-priors (Jonsen et al., 2003); this is the hierarchy of Bayesian models.  

The variance priors of WinBUGS are amendable by the author and can be fairly obvious, 

though they are not used in the case of LMER.  In this study, random effects were not 

constrained but were evaluated using restricted maximum likelihood. 

 The only problem I experienced using WinBUGS is the time it would have taken to 

run through the models with different combinations of fixed-effects.  WinBUGS has a great 

capacity for iterative simulation, but it comes at a cost of time for the calculations to run, 

sometimes on the order of several days for a single model.  Since I did not feature a spatial 

correlation among CBC counts, I did not need to leverage WinBUGS when lmer works just 

as well, but faster.  If I had needed to accommodate spatial correlation, as models run in 

WinBUGS sometimes do, then it would not have been possible to use the lmer function.  

Lmer does not have the capacity for handling complex spatial correlation structures.  There 

are several new approaches that are becoming available in R, such as Laplace 

approximations, but they too come at a cost of time.   

 The limitation of data taken from the CBC, specifically those data for species of 

relatively low abundance or uncommon species such as BRBL and RUBL, can present 

problems for modeling attempts such as these (Link & Sauer, 2002).  Relatively few 

individuals of these species are encountered in circles throughout their range, and the CBC 

surveys cover a limited amount of area within a count circle.  This, coupled with the 

roosting habits of blackbirds and starlings which often form large multi-species roosts 

(Glahn & Otis, 1986), makes it fairly easy for smaller numbers of less populous species to 

be obscured by the assemblage of other more common species.  Because of these 
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limitations, large surveys are not particularly well suited for monitoring uncommon 

species; blanket surveys such as the CBC and BBS do not have the finesse to detect less 

numerous species at the same efficiency as they do species with larger populations (Link & 

Sauer, 2002).  Annual CBCs are often repeated by the same observers, but just as often 

they are not, which can make the effects of observers somewhat confounded.  Link & 

Sauer (2002) call for a model-based exercise to distinguish them with additional modeling 

of observer/route effects conducted into the hierarchical framework.  They used BBS data 

to analyze surveys for Cerulean Warblers; the BBS, having a more stringent protocol than 

the CBC, makes this possible since the BBS records observers, their locations, and the 

number of times they have done the survey previously.  The CBC also includes volunteer 

data, but has not done so for as long-- the names of compilers only relatively recently being 

added to survey data.  It is also not apparent what routes were taken by individuals or 

groups of observers in CBC circles, or where individual birds or larger flocks were 

encountered; data are not distributed by location, but pooled over the entirety of the CBC 

circle, which is a large area.  There is also evidence that the pool of observers is not 

temporally stationary and that new observers tend to count more birds and be less accurate 

with identification than the individuals that they replace (Sauer et al., 1994; Link & Sauer, 

1998; Link & Sauer, 2002).  These deficiencies could be addressed by modifying the 

survey design in order to detect survey numbers closer to the actual population of birds in 

the CBC circle. This would effectively turn the survey into a census, but would make the 

CBC superfluous and consume more resources than would be necessary. 

 This brings me to the intrinsic weakness of models that use large scale surveys for 

data.  Models like these are effective at modeling highly visible species with large 
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populations, because I can assume the data they are based on are normally distributed due 

to Central Limit Theorem (CLT) and the large number of counts used (Rice, 1995).  Counts 

can be modified by offsetting and accounting for any number of fixed or random variables, 

such as effort, number of observers, landscape, year effects, site, geographic location, etc., 

in an attempt to get as close as possible to actual population size.  But there are limitations 

to what is possible, and in the end all that can be done is model the data that are available.   

 Despite the limitations of the CBC, it still remains a valuable resource for 

researchers, conservationists, and wildlife managers in both North America and South 

America.  No other data set provides such a broad temporal and geographic coverage of 

bird population data.  Every year more than 50,000 volunteers at more than 2,000 sites 

donate their time and money to the purpose of the Christmas Bird Count.  For over 100 

years, volunteers, armed only with binoculars, a desire to make a difference, and a need to 

experience the beauty of nature, have been making enormous contributions to both science 

and conservation.  Without their help, projects like this one would not be possible, and the 

CBC would not be what it is today, the oldest and largest survey conducted on two 

continents.    

 There have been several influential papers in the last few decades (Besser et al., 

1984, Blackwell & Dolbeer, 2001; Weatherhead, 2005) that have shown declines in RWBL 

numbers.  These studies are still widely cited and used to support the argument that RWBL 

population numbers are declining.  Weatherhead (2005) used population data from 

wetlands in Eastern Ontario between the years of 1974 and 1995.  All studies he did were 

conducted using the same group of marshes, though not every marsh was used every year; 

multiple marshes were used each year and each marsh was used in multiple years 
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(Weatherhead, 2005).  During that time period, he detected a noticeable decline in RWBL 

populations in his study area. This finding mirrored results seen in the CBC, in which there 

was a significant negative trend seen even with only a simple offset for effort in the CBC 

(Figure 18).  This graph was taken directly from the CBC website and has not been visually 

manipulated.  As one can see, there is a distinct negative trend for the time period which 

starts at CBC 75 (1974-1975) and ends at CBC 96 (1995-1996).  The graph for Ontario 

would have been preferable for this purpose, but RWBL are somewhat infrequent in that 

area when the CBC is conducted.   

 Blackwell & Dolbeer (2001) also showed significant declines in RWBL population 

between the years of 1965 and 1996 in Ohio.  Blackwell & Dolbeer (2001) used BBS data 

in combination with landscape and climatic data, similar to this study, and used step-wise 

linear regressions to relate RWBL numbers to environmental variables.  In their study, a 

similar trend in CBC data over that time period is seen, CBC survey 65 (1964-1965) to 

CBC survey 97 (1996-1997) even without significant correction in population numbers for 

effort (Figure 19).  It would be preferable to use CBC data from the original study area, but 

RWBL are relatively uncommon in Ohio during that time and generally roost farther south 

during the winter months. I do not disagree or argue the fact that at the time the overall 

population of RWBL was declining, but I also understand that the data used for these 

analyses were several years to several decades old at the time of analysis.  When conditions 

are favorable to either population increases or decreases, trends can change over a 

relatively short time (Kaji et al., 2004) as in species that experience frequent population 

irruptions and crashes (Kaji et al., 2004).  The detection of trends in population data 
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Figure 18. CBC figures for red-winged blackbirds from 1974-75 to 1995-96. 

depends upon the timeframe in which one is looking at them; longer time-frames generally 

allow for a better idea of how a population is changing (Shea & Mangel, 2001), while 

shorter time periods can decrease the ability of a model to detect a trend (Shea & Mangel, 

2001).  That being said, both of the above examples have relatively long time frames, 21 

and 31 years, respectively.  The model created during this project has a 21-year time 

period, covers a greater area than both of these projects combined, and uses more current 

survey and environmental data.  Both are still useful in showing blackbird population 

trends, but I do not think that they should be used as the definitive voice in RWBL 

population studies outside of the time period for which the models were constructed.  Both 

studies used data that are more than 15 years old at this point, and are still cited as though 

RWBL trends could not have changed over that time period. 
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Figure 19. CBC figures for red-winged blackbirds from 1964-65 to 1995-96. 

 The necessity of models like these stems from the problems that blackbirds often 

cause for agriculture, which can cost millions to farmers and other interested parties every 

year.  The cost to crop insurance companies can be significant, as payouts to farmers have 

increased in recent years, though historically, wildlife damage is not usually one of the 

larger causes for insurance payouts.  Sunflower and corn are the crops of concern in 

northern states; 2-4% losses were reported in some years (Kleingartner, 2003; Linz et al., 

2009).   During the wintering period, blackbirds depredate rice crops.  The damage caused 

by blackbirds in 2002 was $11.3 million, though not all farmers received the same amount 

of damage (Wilson, 1985; Linz et al., 1996).  Damage observed during surveys is localized 

and proportional to the size of and distance to nearby roost sites, with some growers 

reporting total losses (Wilson, 1985).  Escalated crop losses have initiated management 

techniques with the purpose of reducing the damage caused by resident and migratory 

blackbird and starling populations.  These techniques include avicides (Linz & Bergman, 
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1996; Linz et al., 2002), cattail management (Linz et al., 1995; Linz et al., 1996; Linz & 

Homan, 2010), repellent seed treatments (Mason, 1993; Linz, 2006), bird-resistant 

sunflowers (Mah et al., 1991; Mah & Nuechterlein, 1991), and scare tactics (Linz et al., 

1996).   Other types of damage caused by birds have also been outlined earlier, including 

the cost to human health through histoplasmosis and other communicable diseases, while 

not usually reported, can be significant.  Livestock health, both mammalian and avian, can 

easily be influenced by blackbirds and starlings and the transmissible diseases they carry.  

The Transmissible Gastro Enteritis (TGE) outbreak of 1978-79 is only one example of how 

blackbirds and starlings can affect livestock.  The cost to military and municipal 

institutions affected by blackbirds and starlings often incurs a significant cost when they 

have to clean up the droppings of these species.  These models give agricultural, municipal, 

and military planners a better idea of what to expect, allowing them to better plan for and 

anticipate future problems. 

 Currently, our knowledge of the wintering ecology of blackbirds and starlings is 

fairly limited, as most projects that study these birds focus on breeding biology or damage 

prevention and mitigation.  Understanding the habitat and environmental requirements of 

these species is a fundamental part of wildlife management.  Abrupt changes in landscape 

and climate tend to affect species in predictable ways, if we know what and where to look.  

Studies like this can improve our understanding of what we are looking for; several rather 

interesting results were generated from this project alone, augmenting our knowledge and 

our ability to interpret population change in these and other species.  In the future, I would 

like to introduce a broader geographical range and more land types into my analysis, 

allowing for a better interpretation of the requirements that species have in their wintering 
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ecology.  I would also like to adjust the model so that population trends that were less 

apparent might be easier to detect, both spatially and in bird populations. 
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APPENDIX 1. CHRISTMAS BIRD COUNT SITES USED IN 

ANALYSES 

Appendix Table A1. Christmas Bird Count Sites used in Analysis 
Site Name State BCR Latitude Longitude 
Birmingham AL 28 33.45 -86.75 
Cullman AL 28 34.1 -86.53 
Dauphin Island AL 27 30.3333 -88.1333 
Eufala NWR AL 27 32 -85.0833 
Ft. Morgan AL 27 30.2333 -87.9 
Gulf Shores AL 27 30.3767 -87.6333 
Guntersville AL 28 34.3833 -86.2167 
Mobile-Tenshaw AL 27 30.75 -87.95 
Montgomery AL 27 32.35 -86.3833 
Perdido Bay AL 27 30.3333 -87.3667 
Tuscaloosa AL 27 33.239 -87.5755 
Waterloo AL 27 34.8333 -88 
Wheeler NWR AL 24 34.6 -86.8833 
Arkadelphia AR 25 34.1333 -93.05 
Bayou DeView AR 26 34.86 -91.17 
Big Lake AR 25 33.58 -91.6 
Buffalo NRE AR 24 36.0833 -92.5667 
Conway AR 25 35.0833 -92.45 
Crooked Creek AR 24 36.1715 -93.1425 
Fayetteville AR 24 36.1 -94.15 
Fort Smith AR 24 36.3667 -94.4167 
Holla Bend AR 25 35.1667 -93.1333 
Hot Springs Village AR 25 34.7167 -92.9667 
Jonesboro AR 26 35.9167 -90.7 
Lake Georgia AR 25 33.15 -92.0667 
Lake Village AR 26 33.4 -91.3167 
Little Rock AR 25 34.75 -92.2667 
Lonoke AR 26 34.7667 -91.8833 
Magnolia-Lake AR 25 33.2667 -93.2833 
Mena AR 25 34.5833 -94.2333 
Monuntain Home AR 24 36.3833 -92.45 
North Fork AR 24 35.6167 -93.0167 
Pine Bluff AR 26 34.25 -92 
Texarkana AR 25 33.4667 -93.9 
VanBuren AR 24 35.6167 -92.2667 
Village Creek AR 26 35.1667 -90.7167 
Wapanocca AR 26 35.35 -90.2333 
White River AR 26 34.3833 -91.1333 
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Appendix Table A1 (Continued) 
Arkansas city KS 19 37.0333 -97.0333 
Baldwin KS 22 38.7333 -95.2667 
Cedar Bluff KS 19 38.75 -99.7667 
Cimmaron NG KS 18 37.1167 -101.8667 
Dodge City KS 19 37.7667 -99.9667 
Emporia KS 22 38.45 -96.0833 
Halstead-Newton KS 19 38.0667 -97.4667 
Jetmore KS 19 38.03 -99.53 
Kirwin Resivoir KS 19 39.7 -99.1333 
Lawrence KS 22 39 -95.3 
Liberal-Seward KS 18 37.1333 -100.833 
Linn county KS 22 38.2833 -94.75 
Olathe KS 22 38.9167 -94.85 
Oskaloosa KS 22 39.2 -95.4 
Parsons KS 22 37.5 -95.25 
Quivira NWR KS 19 38.15 -98.4833 
Red Hill KS 19 37.13 -98.4199 
Reno County-Yoder KS 19 37.9 -97.8667 
Salina KS 19 38.8333 -97.6333 
Scott Lake KS 18 38.5833 -100.933 
SE Minedland KS 22 37.2333 -94.9667 
Topeka KS 22 39.0333 -95.6667 
Udall-Winfield KS 22 37.2667 -96.9833 
Wakonda Lake KS 19 39.4667 -98.3667 
Webster KS 19 39.4167 -99.4 
Wichita KS 19 37.6833 -97.3333 
Wilson Resivoir KS 19 38.9333 -98.5667 
Ashland KY 28 38.46478 -82.69786 
Bowling Green KY 24 36.9167 -86.4333 
Breaks Interstate park KY 28 37.25 -82.2167 
Calloway KY 24 36.6 -88.2 
Danville KY 24 37.6333 -84.7667 
Daviess County KY 24 37.35 -87.0199 
Evansville KY 24 37.9833 -87.5667 
Frankfort KY 24 38.2333 -84.85 
Hopkinsville KY 24 36.8667 -87.4667 
Kleber WMA KY 24 38.4667 -84.7833 
Land Between the Lakes KY 24 36.9333 -88.1167 
Lexington KY 24 37.9167 -84.4667 
Lincoln's Birthplace KY 24 37.573 -85.74 
London KY 28 37.1264 -84.0963 
Louisville KY 24 38.2667 -85.65 
Otter Creek park KY 24 37.9 -86.0667 
Red Bird KY 28 36.9333 -83.5333 
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Appendix Table A1 (Continued) 
Somerset KY 24 37.1 -84.6 
Wayne County KY 24 36.8972 -84.8213 
Baton Rouge LA 26 30.3667 -91.1167 
Bogue Chitto LA 27 30.4833 -89.8 
Bossier Cado LA 25 32.3 -93.4833 
Butte la Rose LA 26 30.2833 -91.6833 
Catahoula LA 26 31.5 -92.0333 
Cheneyville LA 26 31.1 -92.3667 
Clairborne LA 25 32.78 -92.95 
Creole LA 37 29.8 -93.1 
Crowley LA 37 30.1 -92.3776 
D'Arbonne LA 25 32.6667 -92.25 
Fort Polk LA 25 31.334 -93.439 
Grand Isle LA 37 29.2 -90.05 
Houma LA 26 29.6 -90.7167 
Johnson's Bayou LA 37 29.8 -93.7167 
Lassicine LA 37 30.05 -92.8167 
Lafayette LA 37 30.2 -92.1 
Lake Charles LA 37 30.15 -93.3 
Lake Ophelia LA 26 31 -91.9 
Natchez LA 26 31.5833 -91.4 
Natchitoches LA 25 31.8167 -93.05 
New Iberia LA 26 30 -91.55 
New Orleans LA 37 30.0333 -89.9167 
Northshore-Slidell LA 26 30.25 -89.7933 
Pine Prairie LA 37 30.8 -92.35 
Reserve-Bonnet LA 26 30.0833 -90.45 
Sabine LA 37 29.85 -93.3833 
Shreveport LA 25 32.5333 -93.8833 
St. Tammany LA 26 30.4 -90.0833 
Tensas River NWR LA 26 32.2833 -91.3667 
Thibodaux LA 26 29.8167 -90.75 
Tunica LA 26 30.75 -91.3833 
Venice LA 37 29.3333 -89.4333 
Big Oak Tree MO 26 36.6667 -89.2667 
Big Spring MO 24 36.95 -91 
Clarence Cannon MO 22 39.1667 -90.7808 
Columbia MO 24 38.8833 -92.3333 
Confluence MO 22 38.8224 -90.2434 
Dallas county MO 24 37.7167 -92.9833 
Diamond Grove MO 24 37.0667 -94.35 
Grand River MO 22 40.0333 -93.9667 
Hannibal MO 22 39.7 -91.35 
Horton MO 22 38.1167 -94.4833 
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Appendix Table A1 (Continued) 
Jackass Bend MO 22 39.2167 -94.25 
Jefferson City MO 24 38.5833 -92.1833 
Joplin MO 24 37.0333 -94.4667 
Kansas City MO 22 38.95 -94.4 
Keokuk MO 22 40.4667 -91.45 
Knob Knoster MO 22 38.7333 -93.65 
Laclede County MO 24 37.6333 -92.6167 
Liberal MO 24 37.28 -94.29 
Maramec Springs MO 24 37.9667 -91.5667 
Maryville MO 22 40.35 -94.9167 
Mingo MO 26 36.9833 -90.2 
Montrose MO 22 38.25 -93.8167 
NCCC MO 22 38.7333 -94.3333 
Orchard Farm MO 22 38.8793 -90.4462 
Patterson MO 24 37.1833 -90.55 
Poplar Bluff MO 24 36.7667 -90.4167 
Springfield MO 24 37.2167 -93.2333 
Squaw Creek MO 22 40.0833 -95.2667 
St. Joseph MO 22 39.7833 -94.85 
Sullivan MO 24 38.1667 -91.1 
Swan Lake MO 22 39.6667 -93.2167 
Taney MO 24 36.6167 -93.1667 
Ted Shanks MO 22 39.4667 -91.1833 
Trimble MO 22 39.4667 -94.5667 
Union County MO 24 37.4667 -89.4 
Weldon Spring MO 22 38.7 -90.75 
Arkabutla MS 27 34.7667 -90.1333 
Church Hill MS 27 31.75 -91.1833 
Corinth MS 27 34.9387 -88.5189 
Dahomey MS 26 33.4636 -90.5736 
Eagle lake MS 27 32.5458 -90.58 
Grenada MS 27 33.85 -89.7167 
Hattiesburg MS 27 31.35 -89.3333 
Jackson MS 27 32.45 -90 
Jackson County MS 27 30.33 -88.71 
Lauderdale County MS 27 32.4667 -88.75 
Moon lake MS 26 34.5 -90.4833 
Noxubee MS 27 33.2833 -88.8 
Pearl River MS 27 30.48 -89.69 
Sardis MS 27 34.45 -89.7 
South Hancock MS 37 30.2 -89.45 
Sumner MS 26 33.9667 -90.3667 
Tupelo MS 27 34.2167 -88.6667 
Vicksburg MS 26 32.3167 -90.9 
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Appendix Table A1 (Continued) 
Washington County MS 26 33.1167 -90.9833 
Arcadia OK 21 35.5667 -97.2167 
Arnett OK 19 36.05 -99.8 
Broken Bow OK 25 34.05 -94.7167 
Fort Gibson OK 22 35.85 -95.3167 
Hulah OK 21 36.9333 -96.0833 
Kenton OK 18 36.9 -102.9 
Lake Atoka OK 25 34.5497 -95.97 
Norman OK 21 35.2333 -97.35 
Oklahoma City OK 19 35.5333 -97.5833 
Rogers County OK 22 36.3667 -95.6333 
Salt Plains OK 19 36.6667 -98.1667 
Sequoyah OK 25 35.5 -94.9667 
Sooner lake OK 19 36.3833 -97.0833 
Spavinaw OK 24 36.4 -94.95 
Stephen County OK 21 34.5667 -97.7833 
Stillwater OK 19 36.1667 -97.1667 
Tallgrass OK 22 36.85 -96.4333 
Tishimingo OK 21 34.1833 -96.65 
Tulsa OK 22 36.3167 -95.9 
Washita OK 19 35.6 -99.25 
Wichita Mountains OK 19 34.7333 -98.6667 
Bristol TN 28 36.583 -82.1 
Buffalo River TN 24 35.3 -87.47 
Cades Cove TN 28 35.6 -83.83 
Cahtanooga TN 28 35.1 -85.23 
Clarksville TN 24 36.5 -87.38 
Clay County TN 24 36.5 -85.37 
Columbia TN 24 35.6 -87.17 
Cookeville TN 24 36.15 -85.47 
Cross Creek TN 24 36.467 -87.75 
Crossville TN 28 35.862 -85.02 
DeKalb TN 24 36.02 -85.83 
Dresden TN 27 36.283 -88.7 
Elizabethton TN 28 36.333 -82.13 
Fayette County TN 27 35.2 -89.42 
Franklin Coffee TN 24 35.302 -86.06 
Great Smokey Mountain TN 28 35.717 -83.48 
Hickory-Preist TN 24 36.2 -86.67 
Hiwassee TN 28 35.367 -84.9 
Jackson TN 27 35.617 -88.82 
Kingsport TN 28 36.5 -82.52 
Knoxville TN 28 35.917 -84.08 
Memphis TN 27 35.15 -89.93 
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Appendix Table A1 (Continued) 
Nashville TN 24 36.05 -86.93 
Nickajack Lake TN 28 35.067 -85.52 
Norris TN 28 36.217 -84.08 
Reelfoot Lake TN 26 36.417 -89.38 
Roan Mountain TN 28 36.106 -82.11 
Savannah TN 27 35.133 -88.15 
Shady Valley TN 28 36.5 -81.85 
Warren County TN 24 35.667 -85.77 
White County TN 24 35.908 -85.6 
Abilene TX 19 32.35 -99.75 
Alice TX 36 27.7167 -98.1333 
Amarillo TX 18 34.9833 -101.7 
Anzalduas TX 36 26.2233 -98.3943 
Aransas NWR TX 37 28.25 -96.8667 
Armand TX 37 29.55 -95.05 
Attwater TX 21 29.6833 -96.2833 
Austin TX 21 30.15 -97.7 
Balcones TX 20 30.6 -98.0167 
Balstrop TX 21 30.0833 -97.25 
Beech creek TX 25 30.7667 -94.2 
Bell County TX 21 30.9667 -97.45 
Big Spring TX 18 32.25 -101.4167 
Boerne TX 20 29.8667 -98.7833 
Bolivar TX 37 29.55 -94.4667 
Brazoria TX 37 29.15 -95.55 
Brazos Bend TX 37 29.3667 -95.6667 
Brownsville1 TX 37 25.9333 -97.4667 
Brownsville2 TX 37 25.9333 -97.45 
Buffalo Bayou TX 37 29.7667 -95.5667 
Buffalo Lake 1 TX 18 34.8667 -102.133 
Buffalo Lake 2 TX 18 34.8667 -102.067 
Burnet County TX 20 30.7667 -98.2667 
Caddo NG TX 25 33.75 -96.0667 
Calaveras TX 21 29.2833 -98.3167 
Canadian River TX 19 35.9217 -100.273 
Cedar Hill TX 21 32.6167 -97 
Chaparral WMA TX 36 28.3667 -99.3333 
Choke Canyon TX 36 28.2333 -98.3 
Coastal Trip TX 37 26.0333 -97.2333 
College Station TX 21 30.5833 -96.3167 
Cooper lake TX 21 33.3333 -96.6833 
Corpus Christi TX 36 27.8333 -97.5833 
CC Flower Bluffs TX 37 27.65 -97.3 
Crawford TX 21 31.55 -97.3333 
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Appendix Table A1 (Continued) 
Cyprus Creek TX 37 29.9333 -95.8167 
Dallas County TX 21 32.8167 -96.8167 
Del Rio TX 36 29.4333 -100.95 
Falcon Dam TX 36 26.5 -99.0833 
Fort Worth TX 21 32.7667 -97.4667 
Freeport TX 37 29.0167 -95.35 
Galveston TX 37 29.3333 -94.8333 
Georgetown TX 20 30.6999 -97.7395 
Gibbons Creek TX 21 30.5833 -96 
Granger TX 21 30.7063 -97.4019 
Guadalupe RD TX 37 28.35 -96.858 
Hagerman NWR TX 21 33.7833 -96.7333 
Harlingen TX 36 26.1833 -97.6667 
Houston TX 37 29.75 -94.95 
Huntsville TX 25 30.7167 -95.55 
Kerrville TX 20 30.07 -99.18 
Kingsville TX 37 27.4667 -97.85 
Le Sal Vieja TX 36 26.4833 -97.95 
Laguna Atacosta TX 37 26.25 -97.3833 
Lake Houston TX 25 29.94 -95.18 
Lake Livingston TX 25 30.7167 -95.0833 
Lake Meridith East TX 18 35.6833 -101.6167 
Lake Meridith West TX 18 35.5167 -101.7833 
Lake O' the Pines TX 25 32.8 -94.6 
Lake Ray Hubbard TX 21 32.9167 -96.5333 
Lake Tawakoni TX 21 32.7667 -95.9167 
Laredo TX 36 27.5 -99.4167 
Lewisville TX 21 33.0333 -96.9833 
Longview TX 25 32.4333 -94.7 
Lubbock County TX 18 33.5849 -101.793 
Matador WMA TX 19 34.05 -100.2 
Matagorda TX 37 28.6833 -95.9833 
McKinney TX 21 33.1667 -96.6167 
Midland TX 18 31.95 -102.0333 
Muleshoe NWR TX 18 33.95 -102.7667 
Nacogdoches TX 25 31.5167 -94.65 
New Braunfels TX 25 29.7 -98.1167 
Old River TX 37 29.8667 -94.7333 
Orange County TX 37 30.0741 -93.905 
Osage TX 25 29.7333 -96.7167 
Padre Island TX 37 27.3333 -97.3333 
Palestine TX 25 31.7333 -95.7667 
Palmetto TX 21 29.5833 -97.5833 
Palo Pinto TX 21 32.7667 -98.3 
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Appendix Table A1 (Continued) 
Paris TX 21 33.75 -95.5667 
Portaransas TX 37 27.85 -97.1 
Quanah TX 19 34.3333 -99.6833 
Quitaque TX 18 34.4333 -101.083 
Robert Lee TX 19 31.9167 -100.5 
Rockport TX 37 28.0667 -97.1167 
San Angelo TX 19 31.4333 -100.483 
San Antonio TX 21 29.3167 -98.6333 
San Bernard NWR TX 37 28.8667 -95.5667 
San Jacinto NWR TX 25 30.74 -95.24 
Santa Anna NWR TX 36 26.1667 -98.1833 
Sea Rim SP TX 37 29.7333 -93.9667 
Spring Creek TX 25 30.1167 -95.45 
Stanton TX 18 32.0833 -101.7 
Tenaha TX 25 31.95 -94.4167 
Texarkana TX TX 25 33.1 -94.25 
Trinidad TX 21 32.15 -96.1 
Trinity River TX 25 30.3333 -94.9167 
Turkey Creek TX 25 30.5167 -94.3167 
Tyler TX 25 32.2667 -95.2833 
Uvalde County TX 36 29.2167 -99.7833 
Victoria TX 37 28.8667 -97.0833 
Village Creek TX 21 32.7667 -97.1167 
Waco TX 21 31.5167 -97.05 
Welder wildlife refuge TX 37 28.1167 -97.3667 
Weslaco TX 36 26.0909 -97.5633 
West Kerr County TX 20 30.09 -99.46 
Westcave Prairie TX 20 30.22 -98.02 
White River TX 18 33.5 -101.1 
Wichita Falls TX 21 33.8833 -98.6333 
Wise County TX 21 33.25 -97.6667 
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APPENDIX 2. RANDOM EFFECTS FOR BIRD CONSERVATION 

REGIONS 

Appendix Table A2. Random Effects for Bird conservation Regions 

BCR RWBL COGR EUST BRBL RUBL 

18 0.404156 -1.25323 -0.20499 1.461656 0.322483 

19 0.697387 -0.71582 0.589428 2.161034 1.073275 

20 -0.76804 -1.53834 -0.24646 -0.45052 -0.33611 

21 0.758569 1.370799 -0.00786 3.239695 1.280641 

22 -0.3436 -0.89129 0.485351 -0.37458 2.297447 

24 -1.96838 -0.11229 0.758222 -1.7486 1.596196 

25 0.512547 1.826208 -0.70518 2.945812 2.39042 

26 1.40177 2.272818 0.410435 2.512289 3.730903 

27 0.634639 2.096247 -0.24192 2.576523 4.055652 

28 -2.54883 -1.86024 0.188578 -1.56737 1.881965 

36 0.400151 0.455898 -0.69317 1.079787 -1.57688 

37 1.393851 1.322945 -0.24499 2.975156 1.017441 
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APPENDIX 3. RANDOM EFFECTS FOR STUDY YEARS 

Appendix Table A3. Random Effects for Study Year 

Project Year RWBL COGR EUST BRBL RUBL 

1 -0.30902 -0.03772 -0.1355 -0.1022 0.131002 

2 0.013994 0.032674 -0.05011 0.199913 0.19168 

3 0.099508 0.037591 0.000386 0.07634 0.067999 

4 0.090749 0.034757 0.003679 -0.05992 -0.00698 

5 -0.07443 -0.03629 0.005763 -0.11181 0.044943 

6 0.097263 0.087949 0.006369 -0.02093 -0.14578 

7 0.105971 -0.02212 0.037963 -0.08065 -0.10871 

8 0.166171 0.017749 0.11591 -0.11621 0.049371 

9 -0.19349 -0.19251 0.00782 -0.13443 -0.08112 

10 -0.05335 -0.02895 -0.01839 -0.12365 -0.14044 

11 0.090063 0.004448 0.037261 0.095924 0.142725 

12 0.087354 0.059821 0.083698 0.096349 0.03651 

13 0.087812 -0.01847 -0.05798 0.255071 -0.01867 

14 -0.05885 -0.02134 0.0203 0.065223 -0.2172 

15 -0.04056 0.037482 0.124817 0.001808 0.078718 

16 0.036332 0.063877 0.015818 0.078322 0.136957 

17 -0.02038 0.005744 0.077583 -0.01055 -0.09572 

18 0.041373 0.035052 -0.12103 0.011605 0.154064 

19 0.015225 0.05505 -0.00989 0.02528 0.064558 



�

�
�

110

Appendix Table A3 (Continued) 

20 -0.12801 -0.06822 -0.04664 -0.03463 0.075474 

21 -0.04658 -0.03415 -0.09521 -0.00611 -0.06866 
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APPENDIX 4. RANDOM EFFECTS FOR CHRISTMAS BIRD COUNT  

SITES 

Appendix Table A4. Random Effects for Christmas Bird Count Sites 
Site Name RWBL COGR EUST BRBL RUBL 
Birmingham 3.997517 4.987289 0.370592 1.249959 2.438015 
Cullman 2.568988 3.498548 0.369447 0.98241 0.480092 
Dauphin Island -1.39148 -0.42732 0.187856 0.264169 -2.7456 
Eufala NWR 0.819677 0.547408 -1.14446 -0.75168 1.861569 
Ft. Morgan -1.9249 -1.98974 -0.98773 -1.03982 -2.51785 
Gulf Shores 1.242968 0.036359 0.161946 -1.59651 -2.88482 
Guntersville 2.925425 3.877866 1.150678 1.016401 3.190906 
Mobile-Tenshaw 0.809578 -1.94104 0.561435 -0.87108 -1.83072 
Montgomery 1.666662 1.160889 1.966893 1.329708 2.04207 
Perdido Bay -0.4728 0.966874 0.194336 0.404238 -3.32996 
Tuscaloosa 0.887866 0.574581 0.853114 1.332434 0.981804 
Waterloo 0.210013 0.416139 0.411251 -1.95605 0.997817 
Wheeler NWR 3.580401 3.481206 0.562307 5.333348 4.827537 
Arkadelphia 1.564551 0.854977 -0.14622 0.992507 1.795465 
Bayou DeView -0.30365 0.74786 -0.72714 -0.97172 1.212185 
Big Lake 0.675269 0.370628 2.139699 -1.5462 0.815916 
Buffalo NRE -1.91394 -2.44369 -2.27557 -1.35429 -0.66531 
Conway -1.91461 0.724967 1.130116 -1.36347 0.10916 
Crooked Creek -0.93316 -1.92224 -0.41424 -1.25299 -0.78521 
Fayetteville 1.647899 0.885859 0.816298 3.067962 2.260388 
Fort Smith 2.998314 2.868971 0.206748 0.57766 1.283185 
Holla Bend 2.132651 1.311754 0.909924 -0.22129 2.19515 
Hot Springs Village -3.62499 -3.44559 -1.68583 -2.24008 -1.92737 
Jonesboro 0.119821 0.749292 0.668197 -4.13883 -1.14921 
Lake Georgia -0.44437 0.668977 -0.12434 2.448295 1.143423 
Lake Village -0.58262 -0.11545 0.049787 0.716341 0.279503 
Little Rock 0.865469 1.393206 1.186416 -1.59099 0.826891 
Lonoke -0.0654 0.057099 0.267978 0.912702 -0.80438 
Magnolia-Lake 1.713036 1.237118 0.920777 2.344968 0.944278 
Mena -1.81365 -0.98332 0.23255 1.410839 -1.8613 
Monuntain Home 0.129733 0.190446 -0.07834 2.159382 -0.56229 
North Fork -2.16574 -2.70045 -3.82954 0.092895 -0.63333 
Pine Bluff -0.19198 0.073077 0.325684 0.966938 -1.30902 
Texarkana 1.231056 1.23644 0.486401 4.708185 1.68218 
VanBuren -1.40922 -0.22548 -1.40921 1.522132 -1.32289 
Village Creek -0.86249 -2.132 0.562331 -1.71473 -2.74962 
Wapanocca -1.42035 1.141011 0.364159 -3.66921 1.59726 
White River 1.157067 1.241794 0.319384 2.325357 0.314739 
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Appendix Table A4 (Continued) 
Arkansas city 2.354513 2.128025 2.060759 3.107648 3.718168 
Baldwin 0.60148 -1.43602 0.444521 -0.37933 0.149036 
Cedar Bluff 0.237491 -2.68714 1.211314 -2.4802 0.942596 
Cimmaron NG 0.132743 -0.41611 -0.13397 -3.27256 -0.2966 
Dodge City -2.73715 1.901004 -0.00223 -2.56266 -2.52505 
Emporia 0.939935 -0.17237 0.846927 1.479459 0.787467 
Halstead-Newton 0.091342 -2.8519 0.229395 -1.43098 0.397624 
Jetmore -1.04546 -0.42191 -0.37947 -3.25019 -0.93254 
Kirwin Resivoir -0.88862 -2.11876 -0.4945 -3.60087 -1.62846 
Lawrence 0.557707 -0.97173 0.483193 -1.1967 0.739903 
Liberal-Seward 2.940532 1.678879 4.302436 -1.70895 1.96414 
Linn county 1.71173 0.542658 0.096337 0.760652 2.176283 
Olathe -1.60963 -1.65078 0.428815 -0.95183 -1.73579 
Oskaloosa -0.01616 -1.83421 -0.08523 0.565355 0.655318 
Parsons 0.791427 -0.6357 -0.48267 2.054501 0.713793 
Quivira NWR 4.501881 2.330937 0.06711 -0.56618 0.841693 
Red Hill -0.40802 -0.15961 -0.3692 1.926468 -0.20812 
Reno County-Yoder 0.728594 -1.016 -0.07457 -2.2148 -0.58842 
Salina -1.12722 -0.95505 0.663421 -0.80361 0.651538 
Scott Lake -1.07672 -0.89991 0.682708 -2.75687 -1.95182 
SE Minedland 0.867389 0.873645 -0.05474 2.310313 1.548608 
Topeka -1.84731 -2.57184 0.078275 1.131461 -2.12661 
Udall-Winfield 3.056187 1.001342 1.5914 5.179212 4.287965 
Wakonda Lake 0.31301 -2.17227 0.737547 -2.83097 0.079893 
Webster 0.675146 -1.72645 0.140051 -1.15365 1.955539 
Wichita -0.32808 0.402895 0.662779 -0.3418 -2.16577 
Wilson Resivoir 0.399905 0.873597 0.353554 -0.30218 2.062536 
Ashland -1.1683 -1.17212 0.302029 -0.04608 -0.96091 
Bowling Green -0.32235 -0.07506 0.784057 -1.08396 0.32043 
Breaks Interstate park -1.78216 -1.34327 -2.5869 -0.66443 0.164638 
Calloway 0.926623 1.128775 0.346858 -0.36279 0.040471 
Danville -3.53206 -0.04137 0.683242 0.270678 -0.85413 
Daviess County -0.27517 3.284969 0.492306 -0.68806 -0.55999 
Evansville 1.533035 2.270802 0.660481 2.697347 1.679534 
Frankfort -4.56055 -4.33315 -0.00442 -1.34742 -1.87896 
Hopkinsville 0.569018 0.884481 0.682786 -1.58159 -2.17955 
Kleber WMA -2.5556 -3.60003 -0.13499 -1.05228 -2.41496 
Land Between the Lakes 1.202601 0.550514 -0.60512 1.264449 0.969834 
Lexington -3.57184 -3.38666 0.541981 0.104985 -2.06286 
Lincoln's Birthplace -2.64904 -0.69841 0.247015 -0.8529 0.267134 
London -1.8942 -1.56564 0.982446 -0.2196 -0.73269 
Louisville -1.3728 -2.33183 0.861182 -0.51982 0.191449 
Otter Creek park -1.59709 -2.78418 -0.1509 -1.02041 1.56068 
Red Bird -3.05503 -3.53152 -3.32884 1.938218 -1.70052 



�

�
�

113

Appendix Table A4 (Continued) 
Somerset -1.11661 2.463772 1.444277 -1.16475 -0.63134 
Wayne County -1.28638 1.113824 1.252059 -0.45192 1.81434 
Baton Rouge 1.209039 0.19825 0.097754 1.930192 1.008081 
Bogue Chitto -0.72211 -0.3688 -0.93972 0.319003 1.275201 
Bossier Cado 2.182266 1.257177 1.190763 3.506323 2.953759 
Butte la Rose 1.911507 1.117746 0.535105 2.749361 1.25965 
Catahoula -0.64975 -1.40412 -1.38634 1.614853 -0.29219 
Cheneyville 0.787579 -0.26302 -0.5766 2.829072 1.237172 
Clairborne -1.39836 -1.05156 -1.10924 -1.58639 -0.41541 
Creole 0.867331 0.349662 2.263088 5.276158 2.531804 
Crowley 3.897316 0.356537 0.268716 -0.17765 1.750661 
D'Arbonne -0.27428 -1.21775 -1.3039 0.362535 -0.4213 
Fort Polk -1.18717 -2.67917 -0.74566 -1.76383 -0.53292 
Grand Isle -2.46597 -1.20357 1.308748 -1.3713 -0.69228 
Houma 0.448646 0.610474 0.836386 -1.77103 -1.9932 
Johnson's Bayou 0.504617 -1.75874 0.836208 -1.03528 -1.10348 
Lassicine 3.70752 1.642995 0.760445 -4.63919 0.560886 
Lafayette 2.778541 1.23197 0.82396 -1.51093 0.819772 
Lake Charles -0.87241 1.1787 -0.91727 1.145204 -0.83756 
Lake Ophelia -0.08921 -1.21998 -1.05954 -2.43864 -1.851 
Natchez -0.08308 -0.82165 -0.5696 0.640936 -1.48173 
Natchitoches 0.812247 1.161134 0.046457 1.594793 0.841893 
New Iberia 2.759109 1.707608 0.650403 2.478485 -0.7217 
New Orleans -0.82089 1.486976 1.269339 -1.4166 0.670523 
Northshore-Slidell -0.56702 -0.99239 -0.66613 -0.57785 -1.38339 
Pine Prairie 5.168614 3.678057 3.676936 3.50135 2.599498 
Reserve-Bonnet -0.1522 0.601502 0.522685 -0.56445 1.452211 
Sabine -0.07278 0.903276 1.163725 -0.54509 1.777119 
Shreveport 1.503752 2.108675 0.400817 0.436292 2.3704 
St. Tammany 0.087973 -0.23524 -1.11369 1.570653 2.946904 
Tensas River NWR 1.057243 1.718166 0.065588 2.705613 2.369405 
Thibodaux 0.060352 -0.82555 0.323984 0.592804 -1.83588 
Tunica 0.206384 0.504934 -0.10481 -2.33627 2.092517 
Venice -1.04154 1.41068 0.619855 -0.57818 -0.58327 
Big Oak Tree -0.95143 -0.84828 0.832545 -1.76268 1.201884 
Big Spring -2.54522 -3.81294 -2.64197 -0.52134 -2.11758 
Clarence Cannon 0.702747 0.768019 0.574341 1.191093 1.860218 
Columbia 0.932813 0.467128 0.105283 0.015698 -1.01779 
Confluence -0.77156 -0.41934 0.015183 -0.08644 -0.98864 
Dallas county 0.918842 -2.38457 0.500112 -1.07388 0.19151 
Diamond Grove 0.330774 -0.3809 -0.24859 -0.60616 -0.85821 
Grand River -0.07971 -3.01489 -0.69627 -2.19902 -0.11 
Hannibal -3.30997 0.327803 0.429889 -0.89423 -1.8289 
Horton 1.631265 1.454712 -0.37171 -0.66156 2.846797 
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Appendix Table A4 (Continued) 
Jackass Bend -1.88615 -1.03848 0.487631 -1.28341 -0.62132 
Jefferson City 1.166143 -0.23088 -0.13325 -1.17427 -0.36601 
Joplin 1.203284 0.093266 0.484949 -1.22833 1.546752 
Kansas City -1.17849 -2.50162 0.011044 -0.07633 -2.81794 
Keokuk -2.95626 -1.46821 0.652505 -0.7498 -2.18898 
Knob Knoster -0.80983 0.964925 -0.11924 -2.64602 -3.56612 
Laclede County -1.80893 -1.18812 0.771775 -1.08178 -2.49905 
Liberal 1.907696 0.136835 -0.39671 2.179065 1.974056 
Maramec Springs -1.39165 -0.92986 -0.69906 -1.07207 -0.75338 
Maryville -2.05076 -2.90286 -0.97793 -1.62469 -0.90189 
Mingo -1.59779 -1.9746 -0.52544 -0.52922 0.869033 
Montrose 1.042945 1.753953 0.482048 -1.42297 -0.50325 
NCCC -0.49298 -0.23992 -0.13703 -2.75243 -0.02931 
Orchard Farm 0.544936 1.663241 0.61618 -1.79703 2.99813 
Patterson -2.69134 -3.3312 -1.85835 -0.359 -1.51385 
Poplar Bluff 0.976471 0.212638 0.721125 -1.14048 0.26788 
Springfield -1.14644 0.195418 0.600233 0.524393 -0.86876 
Squaw Creek 0.663455 1.547092 -0.74607 -1.55754 -1.19668 
St. Joseph -1.21462 -1.10307 0.229604 -2.2288 -2.25075 
Sullivan -0.38122 -1.35213 -1.22255 -0.54269 -0.13983 
Swan Lake -0.68867 -0.40616 -0.61215 0.142647 0.57551 
Taney 1.264962 0.39501 0.868728 -1.00087 0.308915 
Ted Shanks -0.41194 0.006943 -0.19681 -1.26256 -1.26687 
Trimble -0.2805 -1.09043 -0.05327 -1.08189 0.111669 
Union County 3.217542 2.800512 -0.30138 0.269976 3.415795 
Weldon Spring 0.374289 0.809879 -0.08593 -2.36254 -1.3163 
Arkabutla 0.707393 2.091259 1.115481 -2.07004 -0.08034 
Church Hill -0.5306 -1.03118 -1.99708 -0.91941 0.192928 
Corinth -4.26592 -0.62483 -0.23026 3.239312 -0.98446 
Dahomey -0.08506 0.230662 -0.83952 3.504522 1.254054 
Eagle lake 2.827993 0.324972 0.043346 -2.99636 1.595429 
Grenada 0.095839 1.875117 0.027835 1.471872 1.327091 
Hattiesburg -0.93186 -1.16525 -0.58725 0.716854 0.036602 
Jackson 1.889786 1.706557 -0.10868 1.256816 0.460813 
Jackson County -0.3818 -0.37392 -0.10309 2.181056 -0.97588 
Lauderdale County -0.55629 -0.69955 -1.22951 1.868067 0.512128 
Moon lake -1.23982 -0.1308 0.895893 -1.45346 1.981651 
Noxubee 0.164068 0.761848 -0.66745 2.266304 1.052385 
Pearl River -2.14911 -2.27641 -1.26134 2.65985 5.095245 
Sardis 0.246298 1.791658 -0.40547 -1.00191 1.156044 
South Hancock -1.08523 -0.26107 -0.20085 2.585283 3.290035 
Sumner 0.14668 1.12403 0.505186 0.855389 -0.56098 
Tupelo -1.58851 -1.63595 -0.8578 1.485307 -0.2779 
Vicksburg 0.311841 0.721448 -0.14654 -1.33862 1.101816 
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Appendix Table A4 (Continued) 
Washington County 0.01259 0.746888 0.092187 0.587238 0.371234 
Arcadia 0.624103 0.494597 0.979752 -2.80254 -0.57158 
Arnett 0.28448 -2.39104 -1.14157 1.121092 1.792347 
Broken Bow 0.207653 0.409974 0.128282 -1.30657 1.084999 
Fort Gibson 1.387202 1.873281 0.175098 3.904211 2.038612 
Hulah 0.974782 -3.28775 -0.88214 -0.45387 2.315355 
Kenton -0.63078 -1.47766 -1.05159 -5.37379 0.19304 
Lake Atoka 0.175493 -0.62399 -0.63967 1.555269 0.308779 
Norman 0.528222 -0.53365 0.699095 -3.21484 -1.10574 
Oklahoma City 0.673883 1.816789 0.964763 -0.4889 -2.33391 
Rogers County 1.680675 3.444496 1.058193 3.587431 3.067932 
Salt Plains 1.074541 0.020467 -0.51758 2.439877 -1.08665 
Sequoyah 1.692311 -0.35074 0.584149 -0.93292 2.38373 
Sooner lake 2.005041 3.21045 0.46671 2.782316 3.806947 
Spavinaw -0.66662 -1.71584 -0.86222 1.472123 -0.55837 
Stephen County -0.55829 -1.90283 -0.37288 2.022787 1.291083 
Stillwater -1.02668 1.34623 -0.00873 3.144231 -0.0943 
Tallgrass -0.50493 0.407709 -3.49354 2.013218 0.34202 
Tishimingo 0.079502 0.592902 -1.11222 -1.73871 1.969869 
Tulsa 2.93239 4.29385 1.77923 2.269919 3.577504 
Washita 0.77503 0.697427 -0.00339 3.433427 0.652777 
Wichita Mountains -3.03898 -2.73271 -2.56645 0.292531 -1.84355 
Bristol -2.20522 -1.36184 1.088924 0.26792 -1.22739 
Buffalo River 2.061931 0.853103 -0.02087 2.439373 0.488349 
Cades Cove -1.75208 -3.33154 -1.04009 -0.72232 -1.0637 
Cahtanooga 1.779927 2.65179 0.743769 -0.77876 2.868652 
Clarksville 0.419275 0.569596 0.342797 -1.33074 -0.86801 
Clay County 0.49038 0.380946 0.003564 -0.77084 -0.7207 
Columbia 0.91799 2.378381 1.187341 -1.44975 2.010031 
Cookeville -0.16323 2.54682 1.199505 0.44518 0.369977 
Cross Creek 3.232911 1.854877 -0.97997 -1.13364 2.0414 
Crossville -1.92817 -1.8824 0.713742 -0.65903 1.565032 
DeKalb 2.033045 1.806823 0.808787 -0.60668 -1.54265 
Dresden -0.08642 1.351214 1.115937 -2.26325 -1.31931 
Elizabethton -2.75847 -3.17309 0.810223 -1.09177 -2.05745 
Fayette County -0.71526 -0.65619 -0.69388 -3.3174 1.263986 
Franklin Coffee 0.913699 1.847585 0.668109 -0.54087 -0.80509 
Great Smokey Mountain -2.07913 -4.35792 -1.31465 0.334801 -2.18484 
Hickory-Preist 1.893965 0.855052 1.174831 -0.44373 2.763041 
Hiwassee 2.71803 1.683249 0.410456 -0.28073 1.775516 
Jackson 2.163974 2.815695 2.510729 0.526968 0.482148 
Kingsport -0.80519 1.667551 0.332912 -0.43463 0.004038 
Knoxville 0.233661 -0.19789 1.037208 -1.05006 -0.61345 
Memphis 1.585825 0.376713 -0.11189 0.20644 2.697419 
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Appendix Table A4 (Continued) 
Nashville 1.497763 1.492751 0.59997 0.262248 -0.33641 
Nickajack Lake 3.475834 4.246039 0.502938 0.184301 3.575544 
Norris -1.51693 -1.00098 0.465632 -1.18215 -0.20025 
Reelfoot Lake 1.110651 2.067832 1.802434 0.482618 1.747196 
Roan Mountain -1.91875 -1.94961 -0.29854 -0.76834 -1.41354 
Savannah 1.551177 0.447941 0.995213 1.558785 2.791009 
Shady Valley 0.53734 -1.34302 0.208023 -0.69414 0.210544 
Warren County -1.7536 1.318246 1.351805 0.349385 0.94162 
White County 0.269468 0.323158 0.995768 0.841258 1.475098 
Abilene -0.8726 2.113343 0.539536 -2.42545 -1.64309 
Alice -3.75158 -3.02726 -1.45863 -2.04959 -0.00411 
Amarillo 1.418876 -1.4789 0.086801 -2.01412 -1.02204 
Anzalduas 0.964197 2.447767 0.030748 -0.43925 -0.56109 
Aransas NWR -0.97326 -0.70088 -4.18816 0.049418 -0.38329 
Armand -2.80795 0.070067 0.469366 -0.72902 -0.97372 
Attwater 1.539463 1.416367 -0.8971 1.172685 -1.1286 
Austin 1.111418 0.766181 1.344942 2.323807 0.65936 
Balcones 0.304649 -2.32285 -1.14168 0.6311 -0.79843 
Balstrop -0.73808 0.585667 -1.33576 1.290012 -1.27408 
Beech creek -0.81799 0.028075 -1.61275 -0.8843 -1.66634 
Bell County -0.73386 1.096046 0.408511 1.438881 -0.7985 
Big Spring -1.7253 0.887108 -0.37579 3.131068 -0.32347 
Boerne -0.27725 -1.27756 -0.7377 -1.01279 1.798387 
Bolivar 0.533753 0.363267 0.721253 0.32627 -0.20142 
Brazoria 1.065931 1.99976 -0.45768 0.040749 -1.54629 
Brazos Bend 1.239018 1.03579 -0.34871 0.104842 -1.08841 
Brownsville1 -1.65772 -5.12222 -0.97795 -2.54862 -0.2454 
Brownsville2 -1.36345 -4.15402 -2.02326 -0.49228 -0.32076 
Buffalo Bayou -1.25097 -0.02508 0.060022 1.536945 2.036279 
Buffalo Lake 1 0.284172 -1.21706 0.33553 0.85765 -0.27428 
Buffalo Lake 2 0.771439 1.04233 0.079882 1.159757 -0.82041 
Burnet County 0.595033 -0.81669 -0.05899 3.027489 -0.82371 
Caddo NG 0.743096 2.188505 1.077016 0.264125 -0.84191 
Calaveras 1.25963 -0.13354 -0.54733 -0.28804 -0.52749 
Canadian River 1.105253 2.255627 0.102854 1.049331 1.940783 
Cedar Hill 0.962141 -0.71498 0.740323 -0.23807 -0.96459 
Chaparral WMA -2.61941 -4.01422 -0.91899 2.928706 -0.07244 
Choke Canyon 1.376932 -0.26832 -0.56038 1.016235 -0.083 
Coastal Trip -1.14615 -4.84519 -0.85455 0.399829 -0.06368 
College Station -1.59009 1.165855 0.640007 -0.89413 0.147323 
Cooper lake 0.695097 1.143339 0.041931 0.563953 1.349515 
Corpus Christi 0.70726 2.747832 -0.0211 1.651691 -0.51083 
CC Flower Bluffs 0.826929 2.876494 0.347435 -1.59156 0.184168 
Crawford -0.37366 0.233104 0.704353 1.083165 0.330591 
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Appendix Table A4 (Continued) 
Cyprus Creek -0.06086 0.240884 -0.10211 1.893734 1.30529 
Dallas County -0.1318 -0.27382 0.426234 1.693557 -0.00192 
Del Rio 0.228158 3.830983 0.657398 3.211947 -0.03269 
Falcon Dam 0.751949 3.789219 -1.24526 -3.38727 -0.02242 
Fort Worth -0.1713 0.193826 -0.33165 2.606669 -0.56902 
Freeport 0.299125 1.805557 -0.05769 3.447578 -1.03544 
Galveston -2.51152 0.470994 1.252397 -2.88135 0.272822 
Georgetown 1.012559 2.795818 0.519881 2.212489 -0.08052 
Gibbons Creek -2.27703 -0.90931 -2.36155 -2.92112 0.247757 
Granger 0.078356 1.848701 -1.23781 1.96516 -1.65479 
Guadalupe RD 1.407263 1.25162 -0.72563 2.553664 -0.39464 
Hagerman NWR -0.29196 -0.03558 0.361649 0.636328 -0.76812 
Harlingen 0.756615 3.998649 1.549782 -0.37063 -0.61294 
Houston -0.94541 1.568247 0.01391 0.384233 -0.53448 
Huntsville -2.33088 -2.11881 0.545693 0.170989 -2.87483 
Kerrville 0.219304 1.08949 0.676525 -1.96859 -0.39624 
Kingsville -0.22237 2.883571 0.24555 2.033041 -1.40374 
Le Sal Vieja 2.017925 2.188913 -1.25693 1.215482 -0.37001 
Laguna Atacosta -0.96321 2.185249 -1.95942 -3.1965 -0.49149 
Lake Houston 1.493828 0.564449 0.24165 -0.58537 -1.28035 
Lake Livingston -0.45333 -0.29741 0.127709 1.162596 1.076918 
Lake Meridith East -0.35691 0.665819 1.070771 0.020503 -0.0587 
Lake Meridith West 1.210541 0.009635 -0.22731 0.529951 -0.18357 
Lake O' the Pines 0.036324 0.607203 -1.02435 -3.0087 -3.12031 
Lake Ray Hubbard 0.160157 -0.02209 1.0321 1.30057 -0.17914 
Lake Tawakoni -0.38782 0.279991 -0.16738 1.060523 1.822493 
Laredo -0.52597 3.30854 -1.17806 -3.86183 -0.01598 
Lewisville -0.13503 0.332385 0.816637 -0.66739 -0.58855 
Longview 2.233289 2.223659 0.637433 -0.86273 2.308935 
Lubbock County 0.79702 4.828021 1.132181 1.372997 0.383964 
Matador WMA -2.19134 -2.19286 -0.79595 2.609181 -0.08975 
Matagorda 4.306458 3.313586 0.584843 5.976149 -0.21472 
McKinney 0.782497 1.354843 0.840599 0.011652 1.574019 
Midland 1.024398 1.758789 0.173102 4.89064 -0.43591 
Muleshoe NWR -3.97683 -3.24703 -4.55032 -0.20598 0.890724 
Nacogdoches 2.100888 0.777422 -0.26557 -2.61318 1.448336 
New Braunfels 0.198743 1.134108 1.10273 3.130366 -1.75962 
Old River 0.993726 0.9883 -0.28685 1.600217 0.694369 
Orange County -0.69527 0.900423 -0.28085 -2.03941 -1.12254 
Osage -1.76531 -0.5655 -1.56965 -1.63228 -0.58808 
Padre Island -1.04829 -2.67269 -1.95789 -1.20899 -0.07238 
Palestine 0.315285 0.412549 -0.9242 2.092377 0.302861 
Palmetto 0.455975 0.647312 -1.1363 0.892274 0.013414 
Palo Pinto -0.03885 -3.23484 -1.0769 -3.99274 -1.16122 
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Appendix Table A4 (Continued) 
Paris -4.18618 -0.86429 -1.52232 -0.36992 1.116789 
Portaransas -0.84643 -5.3259 0.000496 -1.88129 -0.8823 
Quanah 0.333703 -0.47786 0.519259 3.586083 -0.26513 
Quitaque -0.1926 -2.21053 -0.50427 -0.8618 -0.39506 
Robert Lee -1.28011 -3.66168 -0.29538 -2.44057 -0.1813 
Rockport -0.65519 -3.83593 0.647581 2.224244 -1.02065 
San Angelo 0.656423 5.083753 0.80553 5.010499 -0.9078 
San Antonio 0.876451 -1.5688 0.082919 1.181262 -1.36055 
San Bernard NWR 0.107203 1.854388 0.008614 2.75466 -0.65517 
San Jacinto NWR 0.599361 -1.01675 -0.79843 1.370241 -1.14478 
Santa Anna NWR 1.57646 -5.90679 -0.33 1.531103 -0.85487 
Sea Rim SP -0.36545 -0.36386 0.097059 -2.00587 0.330178 
Spring Creek -0.14327 -1.20566 0.021969 0.277852 -2.74624 
Stanton -0.47102 -0.69425 -1.10194 4.567561 -0.0552 
Tenaha 1.53561 1.018813 -1.05269 -1.21541 1.380837 
Texarkana TX -1.9975 0.252369 -0.39035 0.45094 0.688964 
Trinidad 1.71538 2.761867 0.420724 3.09827 1.202541 
Trinity River -2.12941 -0.7764 -1.11845 -0.0128 -1.20457 
Turkey Creek -4.13012 -2.9991 -2.85167 -2.03701 -0.44181 
Tyler 1.343493 0.922237 0.812175 2.044533 1.395122 
Uvalde County -1.07025 -1.80927 1.65842 1.721971 -0.04366 
Victoria -0.53943 1.750195 0.350614 1.89677 0.817087 
Village Creek 0.815127 -2.18215 -0.16362 -2.32936 1.863593 
Waco 0.482841 1.495834 1.055606 1.573783 -0.20386 
Welder wildlife refuge -0.76133 -4.96895 -3.64647 -4.9117 -1.54697 
Weslaco 0.314118 -6.40415 -0.3087 -1.36495 -0.26658 
West Kerr County -1.64395 -0.54894 -0.1767 -2.44517 -0.12968 
Westcave Prairie -1.60457 -1.89506 -0.28369 -1.19706 -0.3053 
White River 0.584104 -1.65339 -0.91831 2.105406 3.090869 
Wichita Falls -0.2434 0.779071 1.670562 -1.58613 -1.7982 
Wise County 0.09324 1.127437 0.840666 0.992926 1.554652 
�
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APPENDIX 5. NOTATION AND FORMULA FOR THE 

COMPUTATION OF   LINEAR MIXED-EFFECT MODELS 

  

 Notation: 

�  yij  the value of the response variable for the jth of ni observations in the ith 

of M groups or clusters. 

�  � 1, . . . , � p are the fixed-effect coefficients, which are identical for all 
groups. 

�  x1ij, . . . , xpij fixed-effect regressors for observation j in group i; the first 

regressor is usually for the constant, x1ij = 1. 

�  bi1, . . . , biq random-effect coefficients for group i, assumed to be 

multivariately normally distributed. 

�  z1ij, . . . , zqij  random-effect regressors. 

�  � 2
k are the variances and � kk’ the covariances among the random effects, 

assumed to be constant across groups. 

�  � ij is the error for observation j in group i which are assumed to be 

multivariately normally distributed. 

�  � 2� ijj  are the covariances between errors in group i. Generally, the � ijj  are 

parameterized in terms of a few basic parameters, and their specific form 
depends upon context. 

 
 
 
  (1) yij = � 1x1ij + · · · + � pxpij                                                   
           +bi1z1ij + · · · + biqzqij + � ij 
   bik ~ N(0, � 2

k), Cov(bk, bk’) = � kk’ 
   � ij ~ N(0, � 2� ijj ), Cov(� ij, � ij’ ) = � 2� ijj 



�

�
�

120

APPENDIX 6. PROGRAM R CODES FOR LINEAR MIXED-EFFECT  

MODELS BY SPECIES 

 

Red-winged blackbird (RWBL) 

(1) mRWBL=lmer(RWBL~fixedyr+farm +fore +devel +totpr +openwa 
+offset(log(hrs))+(1|noise)+(1|circle)+(1|BCR)+(1|year),  

(2) data=d, 

(3) family=poisson, 

(4) control=list(maxIter=100000),REML=T) 

 

(1) The code form of a generalized Linear Mixed-Effect Regression which is comprised of 
RWBL counts as a function of temporal trend (fixedyr) and environmental covariates 
(farm, fore, devel, openwa, and totpr).  These covariates are fixed effects.  There is also an 
offset for the number of hours (hrs) each circle is surveyed which is an adjustment for 
effort.  There are four random effects, one for the spatial location of each CBC (circle), one 
for each region (BCR), one for temporal variability in annual counts (year), and one for 
noise which is an accommodation for overdispersion.  Random effects consist of two 
expressions separated by a vertical bar | and are enclosed in parentheses. The effect on the 
right side of the bar | is evaluated as a factor, often described as a grouping factor.  The one 
on the left side of the bar | generates one random effect for each level of the grouping 
factor.  If a covariate were placed in the position of the one, the grouping factor would vary 
as a function of the covariate (e.g. distance | year would suggest the response varies as a 
function of distance within year); this type of structure allows for great flexibility in 
modeling the interactions of fixed and random effects. 

(2) This specifies the Lmer code to use the database compiled for the model. 

(3) This section describes the distribution of the response as a Poisson distribution.  
However, because there is a random effect for error, the model is effectively an over-
dispersed Poisson distribution. 

(4) This piece of code simulates the equation for 100,000 iterations with restricted 
maximum likelihood (REML) methods.  The consequence of REML=T is that anova 
procedures cannot be used to distinguish between models of differing fixed effects (though 
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information criteria such as AIC and BIC are still available).  Andrew Gelman refers to 
REML as pseudo-Bayesian since empirical Bayes methods make similar, but slightly 
different, uncertainty adjustments to the variance parameters as REML (i.e., the Morris 
expansion). 

 

Common Grackle (COGR) 

(1) mCOGR=lmer(COGR~fixedyr +farm +totpr +grass +openwa +devel 
+offset(log(hrs))+(1|noise)+(1|circle)+(1|BCR)+(1|year), 

(2) data=d, 

(3) family=poisson, 

(4) control=list(maxIter=100000),REML=T) 

 

(1) All species will have code similar to RWBL, the differences are in the fixed effects 
used, which is to be expected as all of these species have different life histories and use 
slightly different sets of resources in their environments. 

 

European Starling (EUST) 

(1) mEUST=lmer(EUST~fixedyr+farm+ wmaxmt+wet+ shrub+ttwp +devel 
+offset(log(hrs))+(1|noise)+(1|circle)+(1|BCR)+(1|year), 

(2) data=d, 

(3) family=poisson, 

(4) control=list(maxIter=100000),REML=T) 

 

Brewer’s Blackbird (BRBL) 

(1) mBRBL=lmer(BRBL~fixedyr+farm+fore+shrub+minmt+devel+totpr 
+grass+offset(log(hrs))+(1|noise)+(1|circle)+(1|BCR)+(1|year), 

(2) data=d, 

(3) family=poisson, 
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(4) control=list(maxIter=100000),REML=T) 

 

Rusty Blackbird (RUBL) 

(1) mRUBL=lmer(RUBL~fixedyr+farm+ ttwp+wmint +fore+devel +shrub +barr 
+offset(log(hrs))+(1|noise)+(1|circle)+(1|BCR)+(1|year), 

(2) data=d, 

(3)family=poisson, 

(4) control=list(maxIter=100000),REML=T) 


