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ABSTRACT 

Signal transduction is a process of transmitting signals for controlling biological 

responses. The protein-protein interaction (PPI) data, containing signal transduction proteins, can 

be considered as a bi-directional, weighted network with the proteins as nodes, the interactions 

between them as edges, and the confidence score of the interaction as weights on edges. If the 

edges of this network are given a capacity of one, and if the starting and ending proteins are the 

supply and demand nodes, then this problem can be modeled as a capacitated transshipment 

model with pathways as the solutions. Our application concerns finding the signaling pathways 

for yeast’s mitogen-activated protein-kinase (MAPK) pheromone response and filamentation 

growth using the model created in the SAS OPTMODEL. The results demonstrate that the 

proposed model is easier to understand and interpret, and is applicable to the PPI network to 

discover signaling pathways efficiently and accurately.   
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CHAPTER 1. INTRODUCTION 

As defined by the National Institute of Health, "Bioinformatics is research, development, 

or application of computational tools and approaches for expanding the use of biological, 

medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, 

or visualize such data” (Huerta, Haseltine, Liu, Downing, & Seto, 2000). The research work 

presented in this paper is in the field of bioinformatics. 

With continuous, accelerated evolution in the field of biological science, the amount of 

such data is increasing at an exponential rate, significantly amplifying the need for sophisticated 

mathematical, statistical, and computational algorithms for storage, arrangement, retrieval, and 

mining of information to solve and analyze combinatorial problems. This paper focuses on the 

application of such a complex algorithm to solve a biological problem. 

This chapter clearly states the problem which involves application of a mathematical 

algorithm for analyzing a biological problem. This chapter also provides information about the 

organization of the paper.  

1.1. Problem Statement 

Signal transduction is a significant process that controls different cell functions. It can be 

classified as a bi-directed, weighted network of protein interactions which can be used to predict 

signaling pathways (Vinayagam et al., 2011). These predicted pathways can be used as the 

starting point for the experiments that scientists need to conduct to find the actual signaling 

pathways. Discovering the signaling pathways plays an important role in understanding the 

interactions between the proteins and conducting further research in the field of drug/medicine 

discovery. The knowledge of mechanisms involved in signaling pathways can be used to find the 
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basis and causes of diseases which can be used to exploit these mechanisms to develop new 

therapeutic approaches (Wolkenhauer & Cho, 2003).  

The procedure of finding the signaling pathways is like searching for optimal 

sub-networks based on a cost function. The problem can be regarded as an optimization 

network-flow problem. 

The transshipment model is a minimum cost-flow network problem which includes the 

capacitated and un-capacitated transportation problems as well as the personnel assignment 

problem (Bradley, Brown, & Graves, 1977). It is used for a large number of diverse applications. 

It can be solved as linear programming problems with a constraint for each node and a variable 

for each arc (Bradley, Brown, & Graves, 1977). 

The goal of the capacitated transshipment model presented in this paper is to determine 

how signals should be passed through the protein interaction arcs of a given network to minimize 

costs. We consider the protein-protein interaction network of baker’s yeast as a bi-directed graph 

with N nodes (proteins) and E edges (interactions) (Yeang, Ideker, & Jaakkola, 2004). Each arc 

is an ordered pair of nodes (tail, head). Each arc has a “signal passing” cost per unit flow, and an 

upper bound on flow (also known as capacity) can be added based on the data obtained (Bradley, 

Brown, & Graves, 1977). Each node has either supply or demand where signal units enter or 

leave, or are transshipped. The problem is to minimize total costs with flows, to fulfill the 

associated lower bounds and capacities, and to conserve flow at each node using the capacitated 

transshipment model for predicting possible signaling pathways (Bradley, Brown, & Graves, 

1977). 

The main goal of this paper is applying a mathematical model, the capacitated 

transshipment model, to utilize the protein-protein interaction data of baker’s yeast 
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(Saccharomeyes cerevisiae) for predicting signaling pathways. The two main objectives to 

achieve this goal are described as follows:  

1) Develop a capacitated transshipment model and classify the signaling pathways’ 

prediction problem as a capacitated transshipment problem. 

2) Carry out experiments in which the available biological data are used by the capacitated 

transshipment model to predict signaling pathways. 

Through this paper, we attempt to prove that the capacitated transshipment model can be 

utilized effectively to predict signaling pathways. With continuous advancements in technology 

and high-throughput biological experiments, we intend to implement and improve the 

capacitated transshipment model presented as well as the cost function of the protein-protein 

interaction network. 

 

1.2. Organization of the Paper 

 This paper is organized according to the format that is recommended by the NDSU 

Department of Computer Science. This paper concentrates on applying an optimization model, 

the capacitated transshipment model, to a biological problem of predicting signaling pathways.   

The algorithm used, problem addressed, and tools used in this paper are sophisticated and 

complex, and they require a strong background. Chapter 2 focuses on providing the Background 

for the reader’s understanding. 

The idea presented in this paper is based on the previous work and accomplishments of 

other researchers. Chapter 3 addresses the Literature Review which contributes to and contrasts 

the research conducted. 

 Chapter 4 explains the presented Approach in detail. It demonstrates the methods and 

process used to accomplish the objectives. 
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Chapter 5 explains and evaluates the results of the research. The findings are compared to 

the approaches presented in Chapter 3 using a different statistical approach for the same 

problem. Chapter 5 also provides the significance of the obtained results and how to improve the 

results through future research.  

Chapter 6 concludes the research. The chapter explains what has been achieved, 

suggesting future work and extensions.  
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CHAPTER 2. BACKGROUND 

This chapter provides detailed information about Signaling Pathways, the Capacitated 

Transshipment Model, and the tools used. This chapter briefly describes a Depth-First Search for 

the unfamiliar reader’s understanding.  

 

2.1. Signaling Pathways 

 An organism’s body is made up of billions of cells. A cell responds to different chemicals 

present in its environment. There are different types of proteins present in an organism’s body. 

Certain proteins, such as hormones (signal initiator), act as chemical signals which provide 

instruction to the cell about how to react to changes in the conditions around the cell (Berg, 

Tymoczko, & Stryer, 2002). 

 Signal transduction can be defined as a process in which a signal from the cell’s 

environment is received by a cellular component due to interaction with the signaling initiator 

and then converted, or transduced, into a different form of chemical signal which evokes a 

certain response (Albert et al., 2007). A signal transduction cascade behaves like a circuit which 

senses, processes, amplifies, and generates a response to stimulus (Chen & Yuan, 2006). Signal 

transduction is essential in many biological processes, such as metabolism, cell proliferation, and 

cell differentiation (Chen & Thorner, 2007). The biological processes involving signal 

transduction follow certain paths. Finding the signaling pathways is important to establish an 

understanding of these processes. This information can be used for drug discovery or 

understanding a disease like cancer (Berg, Tymoczko, & Stryer, 2002). 

The biochemical processes that occur in a living cell for its proper functioning are 

extremely complex. Identifying every reaction and component involved with a simple process 

can take several years of experimental research (Feiglin, Moult, Lee, Ofran, & Unger, 2012).  
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With recent developments and advancements in biotechnological techniques, different 

types of data have been accumulated. This huge amount of data contains information about 

various biological processes such as signal transduction. Therefore, the demand for 

computational methods to mine the details of these processes has increased.  

 Signal transduction involves many protein interactions, so protein-protein interaction data 

are a great source of information for pathways (Gitter, Klein-Seetharaman, Gupta, & Bar-Joseph, 

2011). Therefore, the protein-protein interaction data can be analyzed to understand the 

mechanisms of the signaling processes.  

 In this paper, two processes, pheromone response and filamentation growth, of the 

mitogen-activated protein kinase (MAPK) signaling network and processes in yeast are studied 

(Zhao, Wang, Chen, & Aihara, 2008a). The MAPK signaling network is commonly found in 

eukaryotic cells such as baker’s yeast which is known as Saccharomeyes cerevisiae (Chen & 

Thorner, 2007). The MAPK signaling network involves five different cascades: pheromone 

response, cell-wall integrity, high osmolarity, filamentation growth, and spore-wall assembly 

(Liu & Zhao, 2004). The MAPK signaling pathways in yeast regulate each other. They also 

interact with other signaling networks to coordinate gene expression (Chen & Thorner, 2007). 

 

2.1.1. Pheromone Response 

Yeast cells can be either haploid or diploid. Like humans, yeast also has opposite genders 

(or mating types), and haploid cells from each of these mating types merge together to form a 

diploid (Gustin, Albertyn, Alexander, & Davenport, 1998). The release of small proteins (known 

as pheromones) for mating acts as a signal to prepare cells for mating by producing a cascade of 

protein interactions (Chen & Thorner, 2007). Responses generated by the stimulus provided by 

the pheromones are as follows: polarized growth in the direction of a mating partner; cell-cycle 
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arrest in the G1 phase; and enhancement of the expression of proteins required for cell adhesion, 

cell fusion, and nuclear fusion (Gustin, Albertyn, Alexander, & Davenport, 1998). 

2.1.2. Filamentation Growth  

Diploid yeast cells form pseudohyphae under certain conditions of the culture (Chen & 

Thorner, 2007). The pseudohyphae are filaments made up of connected and extended cells. This 

response is generated if the cell is starving for nitrogen along with some other environmental 

factors which act as the stimulus (Chen & Yuan, 2006). This process affects cell elongation, 

growth, and selection of the budding site (Gustin, Albertyn, Alexander, & Davenport, 1998). 

Figure 1 shows the baker’s yeast MAPK signaling pathways for pheromone response and 

filamentation growth. Figure 1 has been obtained through KEGG’s (Zhang & Wiemann, 2009) 

database. 

2.2. Depth-First Search  

 The depth-first search algorithm is used to search a graph or network starting from a root, 

or starting, node and going down the tree to find the destination, or ending, node. An 

evolutionary tree can be considered as a graph with a starting node on top and the child nodes as 

leaves or branches (Korf, 1985). The depth-first search algorithm starts with the first child from 

the left, then down to the children on left until there is no child on left, and then, it moves to the 

second child of the root node on the right. The algorithm moves down from left to right until it 

finds the ending node or child. In this paper, the depth to which the algorithm searches to get to 

the ending node is constrained between three and nine (Korf, 1985).  
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Figure 1. KEGG's Yeast MAPK Signaling Pathways. 

 

 

2.3. Capacitated Transshipment Problem 

 A network that consists of the nodes and directed edges that connect them can be used to 

define network-flow optimization models. Network-flow optimization models are linear 

programming problems with a specialized structure (Pavlopoulos et al., 2011).  

 Network-flow optimization models have been applied to different types of data related to 

computer science; business; industry; and, recently, biology. There are several network-flow 
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optimization models available to solve large-scale optimization problems in a matter of seconds. 

The capacitated transshipment problem is a special type of network-flow optimization problem 

which is considered as a linear programming problem. 

2.3.1. Definition of the Capacitated Transshipment Problem 

  The transportation problem aims to determine an optimal way to satisfy the demand of n 

nodes using the supplies of m nodes. It allows only shipments that go directly from supply nodes 

to demand nodes. In many situations, shipments are allowed between supply nodes or between 

demand nodes. This type of problem is known as a transshipment problem (Bradley, Brown, & 

Graves, 1977). This paper considers the capacitated transshipment problem as a linear 

programming problem solved with a primal, simplex computational algorithm.  

The capacitated transshipment problem can be defined as a directed network with node 

set N and arc set A; i ε N, (i,j) ε A (Bradley, Brown, & Graves, 1977). The problem is to find the 

set of flows that minimize the total cost subject to constraint sets that requires flow balance at 

each node and a capacity restriction on each arc: 

 

Minimize z = ijxc
Aj)(i,

ij
  

Subject to 

i

Ajij

jiij

Ajii

bxx  
 ),(:),(:

  and   

ijij ux 0    , 

 

where cij = cost or unit of commodity flow on arc (i,j), uij = capacity (upper bound) for 

commodity flow on arc (i,j), bi = supply of the commodity at node i (interpret negative bi as a 
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demand of -bi units), xij = commodity flow on arc (i,j),  and z = objective function with an 

assumption that the total supply and demand are equal. 

A primal simplex algorithm can be used to solve the capacitated transshipment problem 

by handling capacity constraints with upper-bounding techniques (Khurana, Verma, & Arora, 

2012). Each arc with xij has an outflow at node i and an inflow at node j. Therefore, xij appears 

exactly in two equations. This matrix is called a node-arc incidence matrix (A). A basis is a 

collection of m-l arcs where arcs are incident to every one of the m nodes at least once and where 

the arcs do not form any cycles (a spanning tree). A basis can be used as a starting point, and the 

primal simplex algorithm can be applied to obtain the optimal solution for the capacitated 

transshipment problem (Bradley, Brown, & Graves, 1977). 

2.3.2. Simplex Algorithm to Solve the Capacitated Transshipment Problem 

 The capacitated transshipment problem can be considered as a minimum cost-flow 

problem, so it is a special case of a linear programming problem with some different properties 

that greatly improve the algorithm’s performance. The simplex algorithm is one way to solve the 

capacitated transshipment problem (Bradley, Brown, & Graves, 1977). An example simplex 

algorithm is demonstrated below, followed by a step-by-step summary of the algorithm.  

2.3.2.1. Example Problem 

 In the following example, the procedure to find the initial basis solution is not explained. 

It starts with a given initial-basis spanning tree. The example network is shown in Figure 2 

(Nygard, 2009). In the figure, cij represents the cost or unit of commodity flow on arc (i,j); uij 

represents the capacity (upper bound) for commodity flow on arc (i,j); and positive bi represents 

the supply of the commodity at node i while negative bi represents the supply of the commodity 

at node i. 
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 It is assumed that the initial, feasible basis tree is selected. Figure 3 (Nygard, 2009) 

shows the selected initial basis tree in which the number of arcs is one less than the number of 

the nodes present in the original network with flow that satisfies the condition of conservation of 

flow and is bounded by an upper and lower bound. The commodity flow on arc (i,j) is 

represented by xij in the Figure 3. 

 Node potentials are dual variables used to quantify the cost of sending flow (cij) from a 

node to the root. For this example, node 4 is arbitrarily chosen as the root. For this example, the 

potentials, πi, are shown in Figure 4 (Nygard, 2009). 

 The reduced costs for the non-basic arcs are calculated as follows: rij = cij – πi + πj. For 

non-basic arc (2, 3), r23 is -1, and for arc (3, 4), r34 is -1. Both non-basic arcs are attractive to 

enter. Non-basic arc (2, 3) is chosen randomly to enter. It forms a cycle. Figure 5 (Nygard, 2009) 

shows the cycle formed and the direction of the cycle. A unique cycle is always created when a 

non-basic arc is introduced in a basis tree. 

 

 

Figure 2. Simplex Algorithm Example Network. 
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Figure 3. Initial Basis Tree in the Example. 

 

 

Figure 4. Initial Basis Node Potentials in the Example. 
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Figure 5. Simplex Algorithm Cycle Formed in the Example. 

  

To find the leaving arc for the above cycle and to maintain the flow on the network, the 

simplex ratio test is performed in the following way:  

θ = min {capacity of (i, j), flow: basic arc of the cycle with the opposite orientation of (i, j), min 

[capacity – flow: basic arc of the cycle with the orientation of (i, j)]} 

θ = min {capacity of (2, 3), flow: basic arc of the cycle with the opposite orientation of (1, 3), 

min [capacity – flow: basic arc of the cycle with the orientation of (1, 2)]}  

θ = min {1, 1, 2}  

 The minimum is 1 for the ratio test. Let us say that x13 is leaving the basis and that x23 is 

entering the basis. The new basis tree is shown in Figure 6 (Nygard, 2009).  

These above steps are repeated by computing new dual variables and reduced costs. The 

steps are demonstrated in Figure 7. 

 Figure 7(A) (Nygard, 2009) shows the new basis with the calculation of the node 

potentials. Figure 7(B) shows that the reduced cost for arc (3, 4) is -2 and for arc (1, 3) is 1. Arc 
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(3, 4) is chosen to enter the basis. Figure 7(C) shows the new cycle. In the simplex ratio test, arc 

(2, 3) leaves the basis with the flow shown in Figure 7(D). Figure 7(E) shows the new basis after 

the flow adjustments. When reduced costs for the non-basic arcs are calculated in Figure 7(F), 

arc (1, 3) is chosen to enter the basis because arc (2, 3) is non-basic and has a flow equal to the 

capacity of the arc. Figure 8(A) (Nygard, 2009) shows the cycle that formed. According to the 

simplex ratio test, arc (1, 3) leaves the basis and goes to its upper-bound without changing the 

basis as shown in Figure 8(B), where non-basic arcs with flows are illustrated as dotted lines. In 

this case, the non-basic arcs have flows equal to the upper-bound of the arcs. 

 

 

 

Figure 6. New Basis for the Example. 

 

 

 The current solution obtained, shown in Figure 8(B), is optimal when verified using the 

flow balance and simplex ratio test. The optimal solution equals 88 with arc (1, 2), arc (2, 4), and 

arc (3, 4) in the basis, and arcs (1, 3) and (2, 3) are not in the basis. 

 



 15  
 

 

 

 

Figure 7. Steps Followed to Achieve Optimal Solution in the Example. 
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Figure 7 (continued). Steps Followed to Achieve Optimal Solution in the Example. 

  

 

Figure 8. Final Steps of Simplex Algorithm's Solution for the Example. 
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Figure 8 (continued). Final Steps of Simplex Algorithm's Solution for the Example. 

 

 The capacitated transshipment problem creates a framework of a general linear 

programming problem and specializes to the cost-flow simplex network problem. A primal 

simplex algorithm is used to solve the mathematical problem of finding the minimum total cost-

flow objective function in a directed, weighted network bounded by upper-bound and 

lower-bound on the arcs.  

2.3.2.2. Simplex Algorithm Steps 

The following steps show the summary of the simplex algorithm applied in the above 

example. These steps explain how capacitated transshipment problem network can be solved. 

2.3.2.2.1. Step 1: Initialization 

 For initialization of the primal simplex algorithm, a feasible solution is chosen, from the 

possible feasible solutions to the problem, as a basis tree. The arcs present in this basis tree are 

known as basic variables/arcs, and other arcs of the network are known as non-basic 

variables/arcs. 
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2.3.2.2.2. Step 2: Pricing 

 Dual variables, known as node potentials, are calculated for all the nodes. For all 

non-basic arcs, reduced costs are calculated to find the entering arc using the formula rij = cij  - πi 

+ πj. If rij is greater than or equal to zero for all lower-bounded arcs and if rij is less than or equal 

to zero for all the upper-bounded arcs, then the solution is considered optimal. Otherwise, the arc 

with the lowest reduced cost that is not at its upper-bound is considered as an entering arc.  

2.3.2.2.3. Step 3: Find the Leaving Arc 

 For the cycle formed because of a non-basic arc’s entry, the cycle direction is used to find 

the arc that is considered the leaving arc. The minimum value for function θ is calculated to 

change the flows of the new basis and to find the blocking, or leaving, arc.  

2.3.2.2.4. Step 4: Update 

 The basis tree is changed, and the flows on the arcs are adjusted and updated. Then, the 

algorithm returns to Step 2 to check for optimality. This process continues until optimality is 

reached. 

This process, followed with the simplex algorithm, gives an optimal solution for the 

capacitated transshipment problem. SAS has this model implemented in a procedure known as 

NETFLOW. On the other hand, OPTMODEL in SAS is used to create models for optimization. 

In this paper, both of these SAS models are used; they are explained in the next section.  

2.4. SAS OPTMODEL and NETFLOW 

 SAS is business-analysis and business-intelligence software. It is used for 

information-technology management, human-resource management, financial management, 

customer-relationship management, and more (SAS Institute, Inc., 2008).  
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2.4.1. OPTMODEL 

 The OPTMODEL procedure in SAS constitutes a modeling language combined with 

alternative solvers for several types of mathematical programming problems. The programming 

language in the OPTMODEL procedure supports formulating optimization models using 

symbolic algebra (SAS Institute, Inc., 2008). The OPTMODEL procedure has higher efficiency 

because it has structured input and output and because the model’s data reside in the memory and 

can be manipulated in a graph form very easily (SAS Institute, Inc., 2008). In this paper, the 

OPTMODEL procedure is used to develop a model for the simplex algorithm and to solve the 

capacitated transshipment problem using the linear programming solver.   

2.4.2. NETFLOW 

 The NETFLOW procedure in SAS consists of an algorithm that exploits a specialized 

version of the simplex method to solve network problems (SAS Institute, Inc., 2008). This 

algorithm is used to find flow on each arc in a network such that the total cost of the flow is 

minimized and that the conservation of flow is satisfied (SAS Institute, Inc., 2008). Conservation 

of flow means that the supply at the node plus inflow through the arcs directed towards the node 

are equal to the demand at the node plus outflow through the arcs directed away from the node 

(Nygard, 2009). In this paper, the NETFLOW procedure is used to confirm the solution obtained 

through the optimization model built with the OPTMODEL procedure.  

2.4.3. Example 

 Figure 9 shows the format for data input in SAS. Figure 9 represents the data of the 

example for the capacitated transshipment problem presented in this chapter. Data node0 

represents the node-specific data required by the model. The first column represents the node 

name/number while the second column represents the supply or demand on that node. Data arc0 
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represents the arc-specific data. The first column represents the tail of the arc/end of the arc 

without the arrow head. On the other hand, the second column represents the head of the arc/end 

of the arc with the arrow head. The third column represents the cost per unit flow through that 

arc. The fourth column represents the upper-bound of the flow through that arc. 

 

 

Figure 9. Example Data Input in SAS. 

 Figure 10 shows the results of the OPTMODEL procedure for the example data. The 

OPTMODEL solution gives a solution summary showing the optimal value of the objective 

function obtained. The objective value obtained going through one iteration of the dual simplex 

algorithm is 88. The flow on arcs is printed to compare the results obtained through the 

OPTMODEL procedure to the results shown in this chapter. The first column of the flow table 

represents the tail of the arcs; the second column of the flow table represents the head of the arcs; 

and the third column represents the flow on the arcs. 
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Figure 10. Solution Obtained Through OPTMODEL Procedure in SAS for the Example Data. 
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CHAPTER 3. LITERATURE REVIEW 

 Protein-protein interaction data contain information about signaling pathways and can be 

exploited to understand the mechanisms of signal transduction. Many algorithms have been 

developed and used to find signaling pathways. Some methods are described in this chapter.   

3.1. Color Coding 

 The color-coding technique is used for finding simple paths or cycles of a certain length 

in a given network. It has been extended to solve biological problems (Scott, Ideker, Karp, & 

Sharan, 2006).  

 A protein-protein interaction network graph, G, with N nodes and E edges in which each 

node is a protein and each edge is the interaction between the proteins is considered to be a 

weighted interaction network such that each edge has a score that the interaction between the 

proteins exists. A weight can be assigned to the simple path of a given length in this network 

graph, G, which is equal to the product of scores assigned to the edges in that path (Hu, Yan, 

Huang, Han, & Zhou, 2005). The main objective of the color-coding method is to find the 

highest scoring paths. To adjust the color-coding technique to find signaling pathways, the 

weight on the edges is considered a negative logarithm of the original weight, so it can be used to 

calculate the sum of weights for the path. The new objective of this network is minimum weight 

paths (Scott, Ideker, Karp, & Sharan, 2006).  

 The main idea behind the color-coding technique is to assign each node a random color 

and to search for paths which have distinct colors rather than searching for distinct nodes (Scott, 

Ideker, Karp, & Sharan, 2006). This process reduces the complexity of the standard dynamic 

programming algorithm used to find simple paths. The color-coding algorithm needs to repeat 

these random trials. It is adjusted for application to a protein-protein interaction network by 
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restricting the proteins that can occur in a path and by restricting the order in which proteins 

occur on a path (Scott, Ideker, Karp, & Sharan, 2006).  

3.2. NetSearch 

 NetSearch is an algorithm which is used to model signaling networks through protein-

protein interaction data. The protein-protein interaction data are considered an un-weighted 

interaction network (Steffen, Petti, Aach, D'haeseleer, & Church, 2002). The NetSearch 

algorithm searches for paths of length that are eight or less and that begin at membrane proteins 

and end in transcription factors. These paths are usually found in millions, so they need to be 

scored; for this process, NetSearch uses a k-means algorithm to cluster genes based on their 

expression profiles under the sumprob scoring metric (Steffen, Petti, Aach, D'haeseleer, & 

Church, 2002).  

The main idea behind NetSearch is to find a sub-network for a particular biological 

process (Steffen, Petti, Aach, D'haeseleer, & Church, 2002). Therefore, the sub-network is used 

to minimize the scope of the signaling pathways that needs to be established.  

3.3. PathFinder 

 PathFinder is an algorithm designed for mining protein-protein interaction networks to 

extract signaling pathways (Bebek & Yang, 2007). The PathFinder algorithm collects functional 

annotations for known proteins to elucidate characteristics of known signaling pathways (Bebek 

& Yang, 2007). These characteristics are used to find unknown signaling pathways. 

Association-rule mining is a process utilized to obtain the attributes which are used to determine 

patterns on these pathways (Bebek & Yang, 2007). The main idea behind this algorithm is to find 

unknown signaling pathways and to ensure that the proteins have a strong association/interaction 

with each other on these pathways (Bebek & Yang, 2007).  
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3.4. Integer Linear Programming 

 Integer linear programming has been used for solving many problems in a wide variety of 

fields. We discuss one of the integer linear-programming models designed to predict signaling 

pathways which is closest to the capacitated transshipment model presented in this paper.  

 A protein-protein interaction network graph, G, with N nodes and E edges in which each 

node is a protein and each edge is the interaction between the proteins is considered to be an 

undirected, weighted network where the weight represents the confidence score of the interaction 

between the proteins or the correlation coefficient obtained through gene-expression data 

(Allena, Fetrowb, Daniel, Thomas, & John, 2006). In this weighted network, using a starting and 

ending node, a linear pathway, with a weight equal to the sum of weights for the edges in the 

path, can be discovered (Baitaluk, Qian, Godbole, Raval, Ray, & Gupta, 2006). To discover this 

pathway, a sub-network, described as a signal transduction network, is deduced to limit the 

number of irrelevant interactions and proteins searched because many of them are not involved 

with the  particular biological process in question; a depth-first search algorithm which prunes 

for lengths greater than nine is used (Zhao, Wang, Chen, & Aihara, 2008b).  

Figure 11 (Zhao, Wang, Chen, & Aihara, 2008b) shows the algebraic representation of 

the integer linear-programming model. The integer linear-programming model utilized to 

discover the linear signaling pathways using this graph, G, is described in the following 

paragraph.  

The objective function to be minimized is a negative summation of the product of the 

weight on the edge, wij, and the binary variable, yij, that denotes that the edge is the part of the 

pathway or not a part of the pathway which is added to the product of a penalty, λ, and 

summation of the binary variable, yij (Zhao, Wang, Chen, & Aihara, 2008b). The given objective 
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function is subjected to a number of constraints to define this issue for finding the signaling 

pathways as a type of integer linear programming problem.  

 

 

 

Figure 11. Algebraic Representation of the Integer Linear Programming Model. 

 

 

The model presented in Figure 11 is constrained. The constraints are as follows: 

1) If protein i is a starting or ending protein, then the summation of binary variable yij is 

greater than or equal to 1, where |V| denotes the total number of proteins involved in the 
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considered network. This constraint ensures that there is at least one edge connected to 

the ending and starting protein in the pathway (Zhao, Wang, Chen, & Aihara, 2008b). 

2) If protein i is a starting or ending protein, then the summation of binary variable yij is 

greater than or equal to twice the value of binary variable xi for protein i to denote 

whether protein i is in the pathway. This constraint ensures that binary variable xi has at 

least two edges linked to it once it has been selected to be part of the pathway (Zhao, 

Wang, Chen, & Aihara, 2008b). 

3) If and only if proteins i and j are selected to be part of the pathways, then the edge 

between them is considered to be part of the pathway (Zhao, Wang, Chen, & Aihara, 

2008b). 

This model helps to find the signaling pathway or pathways using protein-protein 

interaction data. This concept has been used as a basis to describe the protein-protein interaction 

network as a capacitated transshipment problem, a method which is explained in the next 

chapter. 
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CHAPTER 4. APPROACH 

The objective of this paper is to apply the capacitated transshipment model to protein-

protein interaction data of baker’s yeast to predict signaling pathways. This approach is 

presented in two main steps. The first step is to classify signaling pathways’ discovery in protein-

protein interaction data as a capacitated transshipment problem; the second step is to use the SAS 

OPTMODEL to develop a capacitated transshipment model to solve the problem at hand.  

4.1. Definition of the Problem 

The protein-protein interaction network of baker’s yeast is considered as a bi-directed 

graph with N nodes (proteins) and E edges (interactions). Each edge is an ordered pair of nodes 

(tail, head). These edges can be assigned a cost per unit flow, a lower bound on flow, and an 

upper-bound on flow (also known as capacity) (Kestler, Wawra, Kracher, & Kuhl, 2008). This 

network can be considered a special case of the capacitated transshipment problem. The starting 

and ending proteins involved in signal transduction are marked as supply and demand nodes 

while the other nodes have the supply/demand equal to zero where signal units enter or leave, or 

are transshipped. The problem is to minimize total cost with flows, where flows are in between 

the associated lower bounds and capacities, and to balance inflow and outflow at each node. 

4.1.1. Steps Followed to Organize the Data as a Capacitated Transshipment Problem 

 First, the protein-protein interaction data for baker’s yeast are obtained from the Database 

of Interaction Proteins (DIP) (Xenarios, Salwinski, Duan, Higney, Kim, & Eisenber, 2002). 

These protein-protein interaction data include 5,103 proteins and 24,247 interactions (Xenarios, 

Salwinski, Duan, Higney, Kim, & Eisenber, 2002). This idea of considering a undirected arc as a 

bi-directed arc implies that the main network formed using protein-protein interaction data 
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consists of 5,103 nodes and 48,494 arcs because the 24,247 interactions are considered bi-

directional (two arcs in different directions for each interaction). 

 Then, for both the pheromone response pathway and the filamentation growth pathway, 

the starting and ending proteins are used to conduct a depth-first search to find pathways from 

the starting proteins to the ending proteins. Pathways with a length greater than nine and less 

than three are pruned to obtain a smaller network of proteins to reduce the scope of the problem.  

 Figure 12 shows a sub-network for the pheromone response in baker’s yeast, and Figure 

13 shows a sub-network for filamentation growth in baker’s yeast after applying the customized 

depth-first search algorithm.  

 

Figure 12. Pheromone Response Sub-Network. 

 

 

The starting proteins are given a supply of 1, and the ending nodes are assigned a demand 

of -1. The starting proteins in the sub-networks are marked in red, and the ending proteins are 
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marked in blue. The sub-network obtained for these biological processes shows undirected 

edges; each of these edges can be represented as two directional edges from protein i to j and 

from protein j to i. Therefore, this sub-network is considered as a bi-directional network of 

protein-protein interactions. 

 

 

 

Figure 13. Filamentation Growth Sub-Network. 

 

 

 The sub-networks obtained are then used as input in the STRING (Szklarczyk et al., 

2011) database to obtain the score of the edges involved in these sub-networks. The output data 

obtained from the STRING database are then downloaded in a tab-delimited text format and read 

using Microsoft Excel 2010. The edges are doubled by changing the head and tail components to 

make the graph bi-directional. 

 The cost of the edges is considered to be a function of the edges’ score obtained from the 

STRING (Szklarczyk et al., 2011) database. The cost of the edges is defined as 1000* (1 - (score 



 30  
 

of the edges)) and is calculated in Microsoft Excel 2010. Figure 14 shows a screen with the data 

compiled in Microsoft Excel and used as input in SAS (refer to Section 4.2). The capacity of the 

edges is considered as 1 and the lower bound as 0 such that the flow on the edge is a binary 

variable which shows whether an edge is in the pathway or not. It is possible to have multiple 

alternative, optimal solutions, so adjustments should be made to the capacitated transshipment 

problem to obtain one or the other alternative optimal solution at a time.  

In this paper, the data for both pheromone response and filamentation growth show that 

there are two alternative optimal solutions. These solutions are shown in Chapter 5. 

4.2. Definition of the Model 

 Figure 14 shows the input data for the yeast’s MAPK pheromone response signaling 

pathway. Figure 14(A) shows the node-specific data, and Figure 14(B) shows the arc-specific 

data. As in Figure 12, in Figure 14(A), the first column represents a protein involved in yeast’s 

MAPK pheromone response while the second column represents the assigned supply or demand 

to that protein. As in Figure 12, in Figure 14(B), the first column represents the tail protein, and 

the second column represents the head protein of the interaction between two proteins, x and y, 

such that there are two arcs xy and yx. The third column represents the cost per unit flow 

through that interaction such that, for both arcs xy and yx, the cost is the same. The fourth 

column represents the upper-bound of the flow through these arcs. 
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Figure 14. Input Data for Yeast’s MAPK Pheromone Response Signaling Pathway. 
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Figure 15 shows the input data for the yeast’s MAPK filamentation growth signaling 

pathway. Figure 15(A) shows the node-specific data, and Figure 15(B) shows the arc-specific 

data. As in Figure 14(A), in Figure 15(A), the first column represents a protein involved in 

yeast’s MAPK filamentation growth while the second column represents the assigned supply or 

demand to that protein. As in Figure 14(B), in Figure 15(B), the first column represents the tail 

protein, and the second column represents the head protein of the interaction between two 

proteins, x and y, such that there are two arcs, xy and yx. The third column represents the 

cost per unit flow through that interaction such that, for both arcs xy and yx, the cost is the 

same. The fourth column represents the upper-bound of the flow through these arcs. 

 

 

 

Figure 15. Input Data for Yeast’s MAPK Filamentation Growth Signaling Pathway. 
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Figure 15 (continued). Input Data for Yeast’s MAPK Filamentation Growth Signaling Pathway. 

 

 

The capacitated transshipment model created using OPTMODEL in SAS is described in 

Figure 16. Figure 16 represents the algebraic representation of the capacitated transshipment 

model. An algebraic model is a set of algebraic equations which explicitly or implicitly describes 

the solution to a problem. The algebraic equations in this model are represented according to the 

syntax provided by SAS OPTMODEL. In the algebraic equation, “con balance {i in NODES}: 

sum {<(i),j> in ARCS} Flow[i,j] - sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i]”, con 

represents constraint; balance {i in NODES} represents the variable balance at each node where i 

is the index of nodes; sum {<(i),j> in ARCS} Flow[i,j] represents the summation of flow on arcs 
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(i, j) where i and j are indexes of tail and head of the arcs; sum {<j,(i)> in ARCS} Flow[j,i] 

represents the summation of flow on arcs (j, i) where j and i are indexes of tail and head of the 

arcs; and supdem [i] represents the supply or demand on node i. 

   

 

 

Figure 16. Definition of the Capacitated Transshipment Model. 
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With the SAS OPTMODEL procedure, a model can be defined with one or more 

declarations of variables, objective functions, constraints, and declarations in mathematical form 

to solve the linear programming statements. The following paragraph shows the model created to 

solve the capacitated transshipment model as an optimization or mathematical problem. 

The model reads the data input for the node and arcs, considering that the arcs in the 

arc-specific (arc0/arc1) data consist of only the nodes represented in the node-specific data 

(node0/node1). The model represented above ensures that the arcs are formed of only nodes 

present in the node-specific data. The variable flows (Flow <i,j>) on the arcs are assumed to 

have a lower bound of 0 and an upper-bound equal to the capacity (_capac_[i,j]) of the arc from 

the arc-specific data. The objective function minimizes the summation of the product of cost per 

unit flow on the arcs and the actual flow through the arcs. In Figure 16, the objective function is 

represented by “obj”. The model is based on the capacitated transshipment model in Chapter 2, 

and the algebraic model represented here also follows the constraint of conserving flow balance; 

that is, the inflow and outflow to and from a node are equal to the supply or demand at the node. 

One of the basic solvers in SAS OPTMODEL is used to obtain the results which are presented in 

Chapter 5. 
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CHAPTER 5. RESULTS AND EVALUATION 

The proposed method was tested using two experiments to detect signaling pathways in 

the sub-network of yeast’s MAPK pheromone response and filamentation growth. Figures 17 

and 18 show the solutions of the OPTMODEL procedure for yeast’s MAPK pheromone response 

and filamentation growth, respectively. The OPTMODEL solution presented in Figures 17 and 

18 shows the solution summary with the optimal values of the objective function obtained. The 

objective value of yeast’s MAPK pheromone response obtained by going through 14 iterations of 

the dual simplex algorithm is 192 while the objective value of yeast’s MAPK filamentation 

growth obtained by going through 16 iterations of the dual simplex algorithm is 19. The flow on 

arcs is printed to compare the results obtained through the OPTMODEL procedure to the results 

shown. The first column of the flow table represents the tail of the arcs; the second column of the 

flow table represents the head of the arcs; and the third column represents the flow on the arcs. 

The flow 0 represents the arc that is not included in the pathway obtained. On the other hand, 

flow 1 represents that the arc is included in the resultant signaling pathways.  

Figures 19 and 20 show the solutions of the NETFLOW procedure for yeast’s MAPK 

pheromone response and filamentation growth. The NETFLOW solution presented in Figures 19 

and 20 show the solution summary with the optimal values of the objective function obtained. 

The objective value of yeast’s MAPK pheromone response obtained by going through 

summation of the product of cost and flow for the arcs is 192 while the objective value of yeast’s 

MAPK filamentation growth obtained by going through summation of the product of cost and 

flow for the arcs is 19. The flow on arcs is printed to compare the results obtained through the 

OPTMODEL procedure to the results shown. The first column of the flow table represents the 

tail of the arcs; the second column of the flow table represents the head of the arcs; the third 
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column represents the cost of per unit flow on the arcs; the fourth column represents the capacity 

of flow on the arcs; the fifth column represents the flow on the arcs; and the last column 

represents the product of the third column for arc cost and the fifth column for arc flow. The 

flow 0 represents the arc that is not included in the pathway obtained. On the other hand, flow 1 

represents that the arc is included in the resultant signaling pathways. 

 

 

 

Figure 17. An OPTMODEL Solution for Yeast’s MAPK Pheromone Response Pathway. 

 

Figures 21 and 22 show the results of three different models applied to the protein-protein 

interaction data for baker’s yeast to find the MAPK signaling pathways for pheromone response 

and filamentation growth, respectively. These results are graphical representations of the 

pathways obtained in Figures 17-20. 
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Figure 18. An OPTMODEL Solution for Yeast’s MAPK Filamentation Growth Pathway. 

 

 

 

Figure 19. A NETFLOW Solution for Yeast’s MAPK Pheromone Response Pathway. 
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Figure 20. A NETFLOW Solution for Yeast’s MAPK Filamentation Growth Pathway. 

 

 

  The first two pathways shown in Figure 21 represent two alternative solutions 

obtained using the capacitated transshipment model for the baker’s yeast MAPK pheromone 

response. If these two pathways are combined, it can provide a signal transduction network for 

the pheromone response. One of these solutions is identical to the solution obtained through the 

color coding presented in Chapter 3. The signal transduction network formed by combining the 

two alternative solutions is part of the signal transduction network obtained with the integer 

linear-programming model presented in Chapter 3.  

 The first two pathways shown in Figure 22 represent two alternative solutions obtained 

using the capacitated transshipment model for the baker’s yeast MAPK filamentation growth. If 

these two pathways are combined, it can provide a signal transduction network for filamentation 

growth. One of these solutions is identical to the solution obtained through the color coding 



 40  
 

presented in Chapter 3. The signal transduction network formed by combining the two 

alternative solutions is part of the signal transduction network obtained with the integer linear-

programming model presented in Chapter 3. 

 

 

 

Figure 21. Pheromone Response Pathways. 

 

 

 The results obtained from the capacitated transshipment model created in OPTMODEL 

give identical findings if the same problem is solved using the existing network cost-flow model, 
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NETFLOW, in SAS which confirmed the accuracy of the model as shown in Figures 17-20. 

When the results of the capacitated transshipment model are compared to the results of the 

color-coding and integer linear programming methods presented in Chapter 3, it is found that the 

results given by the method proposed in this paper are close to the results of the color-coding 

method. 

 

 

 

Figure 22. Filamentation Growth Pathways. 
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When the presented capacitated transshipment model is compared to other methods in 

terms of memory and time consumption, the presented method is more efficient. The following 

paragraph shows the comparison for the time and data of the presented method with the other 

methods explained in Chapter 3.  

The color-coding method assigns random color to the nodes and then finds pathways by 

finding distinct colors. Finding distinct colors requires a number of random trials are conducted 

to find an accurate pathway because colors are assigned randomly to the nodes. On the other 

hand, the capacitated transshipment model has a more efficient algorithm because it can provide 

an accurate solution as color coding in one run.  

NetSearch first employs a search algorithm to find pathways and then uses k-means 

clustering and a scoring method to find the pathway with the highest geometric probability, so it 

needs a lot of time to go through this process. On the other hand, the presented model employs a 

customized depth-first search and integer linear programming. Therefore, NetSearch involves 

more steps to follow as compared to the presented mode. 

PathFinder requires much more data and more time to analyze those data while the 

presented method only uses protein-protein interaction data. Therefore, the presented method 

takes less storage space and time to analyze the smaller amount of data.  

 Integer linear programming first uses a depth-first search, and then, the integer linear-

programming model is applied, a time-efficient process. On the other hand, the presented model 

also uses a depth-first search but with more pruning, and then, capacitated transshipment model 

with binary integer linear programming. Therefore, the presented model is faster because the 

depth-first search prunes more branches and uses less time in orders of magnitude as compared 
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to the integer linear-programming model because it bounds the flow on the arcs of the network 

shown in Chapter 3.  

When the capacitated transshipment model is applied to find the pheromone response 

pathway on the given sub-network, Ste3 is considered the starting protein, and Ste12 is 

considered the ending protein. The linear pathways we found are as follows: Ste3 to Akr1 to Ste4 

to Cdc24 to Bem1 to Ste11 to Ste5 to Kss1 to Ste12 and Ste3 to Akr1 to Ste4 to Cdc24 to Bem1 

to Ste11 to Ste5 to Ste7 to Kss1 to Ste12. The latter pathway is identical to that of the 

color-coding method. The combination of both possible pathways can be considered as part of 

the sub-network obtained with the integer linear-programming model. This comparison shows 

that the capacitated transshipment model is more specific. Therefore, the presented model 

produces fewer interaction pathways which are biologically reasonable because the signals are 

conducted through less energy-consuming pathways.   

When the presented model is applied to find the filamentation growth pathway on the 

given sub-network, Ras2 is considered the starting protein, and Ste12 is considered the ending 

protein. The linear pathways we found are as follows: Ras2 to Cdc25 to Hsp82 to Ste11 to Ste5 

to Kss1 to Ste12 and Ras2 to Cdc25 to Hsp82 to Ste11 to Ste5 to Ste7 to Kss1 to Ste12. The 

latter pathway, in this case, too, is identical to that of the color-coding method. The combination 

of both possible pathways in this case is comparable to the sub-network obtained with the integer 

linear-programming model. This comparison shows that the capacitated transshipment model is 

very close to the integer linear-programming model. 

 Tables 1 and 2 show the comparison of the algorithms described in Chapter 3 for 

predicting the two signaling pathways used in the experiment. The tables compare precision, 

defined as the percentage of relevant proteins in the current method’s pathway proteins, and 
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recall, defined as the percentage of the current method’s pathway proteins in the actual pathway 

proteins. The tables show that the presented method has about 83% precision and 75% recall for 

the pheromone response while there is about 29% precision and 74% recall for the filamentation 

growth.  

  

 

Table 1. Comparison of methods for detecting the pheromone response signaling pathway. 

Method Precision (%) Recall (%) 

CTP 83 75 

ILP ( λ = 0.50) 47 80 

Color coding 83 75 

Pathfinder 88 75 

NetSearch 74 70 
 

 

Table 2. Comparison of methods for detecting the filamentation growth signaling pathway. 

Method Precision (%) Recall (%) 

CTP 28 74 

ILP ( λ = 0.50) 29 73 

Color coding 28 74 

Pathfinder 28 82 

NetSearch 33 64 
 

 

 

When compared to the simple pathways obtained from KEGG’s database shown in 

Figure 1, the proposed method for the capacitated transshipment model has recall and precision 

that are closer to the recall and precision of the color-coding method. The resultant pathway is 

missing some proteins involved in the actual process, but the resultant pathway is dependent on 
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the sub-network obtained through a depth-first search. Therefore, there is a need for a more 

efficient and accurate way of finding a sub-network or a need for widening the scope of the 

capacitated transshipment model by taking complete protein interaction data as input and by 

adding extra constraints, such as the length of the pathway. Another way to improve the 

presented method is to use a different attribute of the protein-protein interaction, that is, the 

energy consumed or released during the protein-protein interaction process. As known, most of 

the reactions occurring in nature and in an organism’s body are based on energy, so considering 

energy consumption as the cost function would be an appropriate step towards improvement. 

When using energy consumption as a cost function, there is a need for high-throughput 

experiments to calculate energy consumption when two proteins interact with each other.  

 The main objective of creating these models to predict signaling pathways is to provide 

scientists a direction in which experimental research can be conducted to confirm the existing 

processes and to find new, unknown processes. The discovery of new information can be used to 

understand the functioning of an organism. On the other hand, utilizing these models to predict 

known signaling pathways can help scientists conduct research on the new proteins found 

through these predictions to establish their significance and to confirm their interactions.  

 If the scoring method of the sub-network and the depth-first search method to find the 

sub-network are enhanced, the precision and recall for the presented method can be improved to 

a great extent.  Hence, the scope and accuracy of the proposed model can be greatly increased.  
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CHAPTER 6. CONCLUSION 

In this paper, a novel model based on the capacitated transshipment problem is 

formulated to detect signaling networks in a protein-protein interaction network. As compared to 

the other methods, excluding the integer linear-programming method, the method presented in 

this paper is not a heuristic method, but a simpler method, because it detects signaling data 

directly from protein-protein interaction data.  

 We were able to formulate the protein-protein interaction data as a capacitated 

transshipment model and to configure a solver using the SAS OPTMODEL to obtain 

computation results. This approach was evaluated by comparing it with other approaches and 

another network flow optimization model built-in SAS, known as NETFLOW. 

 The results obtained with the proposed method for yeast MAPK signaling pathways 

demonstrate that protein-protein interaction data can be considered as a capacitated 

transshipment model and, to a great extent, can help uncover the signaling pathways. These 

results of known signaling pathways help scientists to design research for finding/confirming the 

involvement of new proteins and/or interactions in these pathways. If this approach is applied to 

other networks, new signaling pathways can be discovered, helping to understand the proper 

functioning of an organism.  

The presented model performed comparably well to other methods shown in this paper 

for detecting the signaling pathways, so it can be concluded that the new model is a good 

addition to existing methods. If this model is exploited in a more advanced manner, it can be 

made more efficient by improving the scoring/cost method, by improving the model, and by 

improving the process of finding the sub-network.  
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