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ABSTRACT 

One of the most crucial aspects in maintaining a smart grid Network is to monitor 

its stability, control and minimize the outages, blackouts etc. which can be achieved by 

Phasor Measurement Units (PMUs). Despite having a number of advantages, PMUs are 

expensive and cannot be placed at every node in a network for constant observation. 

Therefore, it is economically feasible to place these PMUs at optimal locations, depending 

on the demand of each node.  

Our current research attempts to resolve the issue of positioning PMUs in a 

dynamic network at optimal locations which is accomplished by using two different 

heuristic algorithms, K-Median and K-Center heuristic algorithms. A limited number of 

PMUs will be used such that all nodes are served efficiently. Further, we will compare the 

time taken for the optimization and heuristic procedures of both algorithms in a dynamic 

network. 
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1. INTRODUCTION 

This chapter mainly focuses on a detailed description of the research problem, 

smart grid, Phasor Measurement Units (PMUs) and different types of facility location 

problems. 

1.1. Problem Description 

Many decision problems are largely concerned with selecting; choosing the 

number; and placing the facilities, such as manufacturing plants, libraries, fire stations, 

hospitals, etc. One such example is placing PMUs in a smart grid network. In this paper, 

we will resolve the issue of optimally placing the PMUs in a smart grid network. 

1.2. Smart Grid Network 

A smart grid network delivers electrical energy from suppliers to consumers with 

the help of digital technology in a duplex communication to manage appliances. The three 

main features of smart grid are reliability, efficiency and flexibility [2]. 

1.2.1. Characteristics  

The main characteristics of a smart grid network are as follows [1]:  

 It has the ability to self-heal during the events of a power disturbance. 

 Consumers actively participate in demand response. 

 Smart grids need to be secured, and they have the ability for self-recovery during the 

time of physical and cyber-attacks. 

 Distributed generation and storage are well accommodated in the smart grid. 

 In order to operate efficiently, assets are optimized. Smart grid also enables new 

markets, services and products. 
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 A smart grid is really more than meter reading. It helps the utility in managing and 

monitoring power delivery to homes or businesses. It also helps to handle outages very 

efficiently and effectively. Furthermore, it offers good demand management. 

1.2.2. Components 

The main components of a smart grid network are as follows:  

 Consumers and generators of electrical energy 

 Phasor Measurement Units (PMUs) 

 Demand response 

 Smart meters 

 Advanced sensors 

 Workforce application 

Furthermore, visualization software, servers, and management used for running the 

grid are also significant components of a smart grid which requires a quick, duplex 

communication structure. 

1.3. Phasor Measurement Units (PMUs) 

PMUs on a smart grid network measure electrical waves with the help of a common 

time source for synchronization. PMUs are one of the crucial devices used for measuring 

electrical power waves, voltage phase angle and voltage magnitude in a smart grid 

network. They have a unique feature of measuring voltages in a synchronized fashion in a 

smart grid network, making the PMUs a critical measuring device [3]. 

Placing the PMUs in every node of the smart grid network helps observe the state 

of the network. However, it is a rare scenario to have PMUs on all nodes because having a 
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lot of PMUs in the network is very expensive. PMUs help measure the voltage on the other 

end of the edge using Ohm’s Law [4]. PMUs measure at a rate of 30 observations per 

second.  

1.3.1. Uses 

PMUs are primarily used for the purposes mentioned below:  

 PMUs provide the state estimation of the power system at exact and regular periodic 

intervals, even in a dynamic scenario, and also take immediate action if any issues 

occur in the network. 

 The primary use of PMUs on a smart grid network is for measuring voltage phase angle 

and voltage magnitude. 

 PMUs ensure that good-quality power is being sent to the consumers. 

 PMUs are also used to analyze the burden of the network system regarding severe 

circumstances, i.e., congestion management. 

 Even after a disturbance in the network, PMUs are used for processing the sequence of 

steps from the very beginning. 

 Depending on the synchronized phasor measurements, a progressive action of 

protection is taken [5].  

1.3.2. Applications 

The primary applications of PMUs in a smart grid are as follows: 

 PMUs are used in smart grid networks for monitoring and serving all network nodes. 

 In order to manage the power system, PMUs are applied in load-control techniques. 

 PMUs help avoid blackouts and outages as well as detect errors by increasing the 

network reliability. 



4 

 

 In wide area monitoring and control, PMUs play a major role in finding a station 

sensor’s errors, maintaining the preciseness of time synchronization, and basic error 

updates [6].  

1.4. Facility Location Problems 

Two factors that we need to consider for placing a facility in a network are as 

follows [7]: 

 Location 

 Layout 

Location is defined as the place where we locate a facility, whereas layout defines 

how we locate facilities inside a chosen location. Both location and layout decisions are 

equally important. Location decisions are strategic and qualitative in nature even though 

several other quantitative models are available for location. The decision about the location 

also depends on many qualitative factors, such as [7] 

 Raw materials: For example, if we are planning to build a new manufacturing plant or 

facility which is raw-material intensive, then it is customary to place these facilities 

near the locations where these raw materials are available. 

 Labor availability: The decision of having facilities also depends on the areas where 

labor is available in abundance and where labor charges are not very expensive to 

manage. 

 Node demand: For example, retail stores, banks, etc. are all located very close to the 

demand area. 
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 Transportation decision: Locating facilities also depend on the transportation factor to 

move a large amount of material to and from the location. 

 Policies: The government may give subsidies to locate particular industries in certain 

locations, depending on the availability and possible benefits for having a facility in 

that particular location. 

 Reach ability: This factor plays an important role for a few facilities, for example, a fire 

station. In such a case, travel distance and the amount of time to cover the distance play 

a major role because we try to minimize the time and distance between locations where 

facility is placed and those of the consumer/customer.  

The quantitative models that are available for location and layout decisions are as 

follows: 

 K-Median Problem: Although this model was originally created for location and layout 

decisions, it is very useful in several other applications, such as optimally locating 

PMUs in a smart grid network. This problem can be resolved by minimizing the total 

average transportation distance of a node to the facility. Hence, this problem is used in 

non-emergency scenarios [7]. This problem is also known as the minisum location-

allocation problem [8]. 

 K-Center Problem: In many cities, retail outlets need to deliver goods often, so we need 

to choose locations which are optimal for distribution centers which can reduce the cost 

of delivery to each outlet and minimize the number of distribution centers. This 

problem can be solved by minimizing the maximum distance between the distribution 

centers. Hence, this problem is mainly used in emergency scenarios. This problem is 

also known as the minimax location-allocation problem [8]. 
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 Requirements Problem: This model is characterized by pre-specified standards which 

are defined for facilities such that all requirements are met. Because these standards are 

inconsistent, these problems can be used in both emergency and non-emergency 

scenarios [9]. 

1.5. Objectives 

Due to cost limitations, we can only have PMUs on those nodes which have high 

demand and requirements for incomplete observability. Therefore, this research focuses on 

two main objectives:  

 To write a heuristic for the two problems: K-Center and K-Median. Depending on the 

node demand, a limited number of PMUs can be placed at incumbent locations in a 

network. Furthermore, the nodes which are rarely observed can be conspicuous. 

 To compare optimization and heuristic procedures based on time. 
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2. LITERATURE REVIEW 

A large number of approaches exist to help resolve facility–location problems, such 

as non-deterministic polynomial-time (NP) hard problems which include the uncapacitated 

facility location problem (UFLP) and the quadratic assignment problem. These problems 

are also used for locating multiple facilities in the network [10]. 

The uncapacitated facility location problem is an important NP-hard problem that 

includes many algorithms, such as the p-approximation algorithm, integer programming 

algorithm, approximation algorithm, and max-product linear programming (MPLP) [11].  

The other facility location problems are constant-factor LP rounding, primal-dual 

algorithms, and greedy local-search algorithms [12].   

For an uncapacitated facility location problem, let us consider a network G (N, E), 

where N gives a set of nodes, i.e., {1, 2, ..., n}, and E gives a number of edges. Let the 

length of each edge be dij, where i,j ϵ N; for each location i ϵ I, we have a facility such that 

cost is associated with it, and for each j ϵ J, we have demand locations for the facility such 

that I,J ⊆ N. Let the cost of each facility be ci, where ci ≥ 0, and let the cost of 

accommodating each demand location, j, to the facility location, i, be cij per unit demand 

and let demand be dj. In this case, we are assuming that costs are equal to or greater than 0; 

that they satisfy the symmetry condition, i.e., cij = cji; and also that they satisfy the triangle 

inequality, i.e., cij + cjk ≥ cik, where i, j, k ϵ N. According to UFLP, we need to assign 

demand nodes to facility nodes such that the total cost incurred is minimized; i.e. [12], 

 Minimize   ∑           ∑ ∑                    (1) 

 Subject to 

 ∑          = 1, ∀j ϵ J  (2) 
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     ≤    , ∀i ϵ I, j ϵ J  (3) 

     ϵ {0, 1}, ∀i ϵ I, j ϵ J  (4) 

   ϵ {0, 1}, ∀j ϵ J  (5) 

Constraints (2) and (3) make sure that every location, j ϵ J, is connected to some, or 

at least one, location in i ϵ I. Also, i ϵ I is always open when j ϵ J wants to get connected to 

it [12].   

We can obtain linear programming (LP) relaxation for this problem by making xij 

and yi zero or positive real numbers. Let Ŭj be the contribution of node j to connect to node 

i which has the facility to connect. The above constraints can be modified, and the LP 

program’s dual program is as follows [13]: 

 Maximize   ∑          (6) 

 Subject to 

    –     –     ≤ 0 ∀i ϵ I, j ϵ J  (7) 

 ∑           ≤ ci ∀i ϵ I (8) 

    ≥ 0 ∀ j ϵ J  (9) 

     ≥ 0 ∀i ϵ I, j ϵ J  (10) 

With the dual program’s inequality, we have 

 ∑     0,                ≤     (11) 

For equation (11), if the dual program’s inequality holds equality, the total cost, ci, 

for establishing a facility would be enough [13]. For a better understanding, a new formula 

approach is defined, i.e., a star with a facility and several demand nodes. The cost of that 

star is the sum of the cost to establish a facility and the cost of connecting the demand 
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nodes to the facility. Now, let us consider a huge set of stars in set S such that every 

demand node exists in at least one star. An integer program can be defined such that [14] 

 Minimize   ∑           (12) 

 Subject to  

 ∑          ≥ 1 ∀ j ϵ C  (13) 

    ϵ {0, 1} ∀ S ϵ S  (14) 

For the same problem, we can define an LP-relaxation as follows [14]: 

 Minimize   ∑           (15) 

 Subject to  

 ∑          ≥ 1 ∀ j ϵ C  (16) 

    ≥ 0 ∀ S ϵ S  (17) 

For the same problem, the dual program is defined as follows [14]: 

 Maximize   ∑         (18) 

 Subject to  

 ∑           ≤    ∀ S ϵ S  (19) 

    ≥ 0 ∀ j ϵ C  (20) 

In this case, xs makes sure star S is taken into consideration, and cs defines the cost 

of the star. αj defines the amount of city j included in the total actual expenses.  

Let T be the cost for finding a solution for the facility location problem such that 

[14]:  

 ∑         = T  (21) 

 For γ ≥ 1 and ∀S, we have 
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 ∑           ≤ γ     (22) 

Then, it has, at most, γ as its approximation ratio [14].   

The extension of the above algorithms gives us the definition of a greedy algorithm.  

For the same star S, where the cost is cs and where there are clients a1, a2, etc. until 

ak and facility p, the greedy algorithm is defined as follows [15]: 

 ∑   ,  
        

 
     (23) 

The above definition says, sum of the costs of the connection of the clients to the 

facility p added to the facility cost of p for k clients [15]. 

There are also several placement models that consider the reliability of PMUs. 

These placements models are defined in the two-stage optimization model where the first 

stage is integer linear programming which is used to get the optimal placement solution and 

compensates the reliability and observability constraints. In the later stage, we maximize 

the reliability of the entire system [16]. 

The initial stage of the two-stage optimization model also considers cost 

optimization by minimizing the number of PMUs. If R is the system-level reliability and r 

is the minimum reliability required for the bus system in order to reach the level of system 

reliability, then [16] 

 r = √ 
 

  (24) 

 Minimize   ∑   
 
     (25) 

 Subject to 

    ≥ log 1-r) / log q  ∀i  (26) 

    ≥ R  (27) 
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In the later stage of the two-stage optimization model, we try to maximize the 

reliability of the total system [16]: 

 Maximize   R  (28) 

 Subject to 

    ≥ b ∀i  (29) 

 ∑   
 
    ≤ c  (30) 

where c is the number of PMUs from the minimization problem. 
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3. K-MEDIAN AND K-CENTER PROBLEM 

This chapter provides a detailed description of the K-Median Optimization and 

Heuristic procedures and the K-Center Optimization and Heuristic procedures. This chapter 

also includes examples, flowcharts, algorithms, and pseudo code.  

3.1. K-Median Problem 

For an undirected network G (N, E) where N = number of nodes and E = number of 

edges, the k number of PMUs to be placed in network G (N, E) in optimal locations 

requires minimizing the total average distance [9]. Let the k points be a set,  

   = {  ,   ,   ,…,      ,   }, and the shortest distance for any one of nodes,    ϵ 

   and node   in G, can be represented as  (  ,  ) 

  (  ,  ) =           
 (  ,  )  (31) 

K-Medians on network G can be defined as follows [9]: 

   
*
 on G is a set of k-PMUs on G for every    ϵ    (32) 

  (  ) = ∑   
 
   d (  ,  ) | (33) 

  (  
*
) ≤  (  )  (34) 

That is, the PMUs are placed such that the total average distance for the K-Median 

problem is minimized. 

3.1.1. K-Median Optimization Problem 

This section describes the algorithm, flowchart, and example of the K-Median 

Optimization Problem. 
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3.1.1.1. Algorithm and Flowchart for the Multi-Median Optimization Problem  

The K-Median Optimization algorithm is an optimization problem where, for n 

nodes and k optimal locations, we calculate the total average distance of all possible nCk 

combinations.  

The steps of computation are as follows: 

1. The user is allowed to input the graph in the form of an .xml file and also chooses the 

number of optimal nodes to locate. 

2. The program generates nCk combinations of n nodes. 

3. For each combination, total average travel distances are calculated. 

4. Among those total average distances, the minimum value needs to be picked [9]. 

5. All combinations with the minimum value as the total travel distance are optimal 

combinations to locate the facilities. 

Figure 1 presents the pseudo code of the Multi-Median Optimization Problem, 

providing detailed computational steps for the algorithm. 

ψϮϰϵϴΞϧϲϡϰϨΞᶮφᶯΞϷϩϴϨΞᶮϮᶯΞϮϯϤϥϳ 

Input k  

Initialize m < -  1 

TotalDemand < -  ϓϵϭΞϯϦΞϤϥϭϡϮϤϳΞϯϦΞϡϬϬΞᶮϮᶯΞϮϯϤϥϳ 

φϥϮϥϲϡϴϥΞϮςϫΞϣϯϭϢϩϮϡϴϩϯϮϳΞϷϩϴϨΞᶮϮᶯΞϮϯϤϥϳ 

While m <= nCk  

ϔϯϴϡϬϓϵϭόΞμΞϓϵϭΞϯϦΞϴϨϥΞᶮϳϨϯϲϴϥϳϴΞϤϩϳϴϡϮϣϥϳᶯΞϢϥϴϷϥϥϮΞϥ϶ϥϲϹ node of mth combination with 

ϥ϶ϥϲϹΞϯϴϨϥϲΞϮϯϤϥΞϩϮΞᶮϮᶯέ 

TotalAverageDistanceOfM = TotalSumM / TotalDemand  

AverageDistanceArray[m - 1] = TotalAverageDistanceOfM  

Increment m by 1  

EndWhile 

OptimalSolution = Minimum of all the elements in the AverageDistanceArray  (all nCk 

combinations)  

OptimalCombination = All nCk combinations with OptimalSolution as their Total Average 

Distance  

Figure 1. Pseudo Code of the Multi-Median Optimization Problem.  
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Figure 2 presents the flowchart of the Multi-Median Optimization Problem with 

detailed steps of computation right from the point of user input to the point of obtaining the 

optimal solution. 

 

Figure 2. Flowchart of the Multi-Median Optimization Problem. 

3.1.1.2. Example for the Multi-Median Optimization Problem  

Let us consider the following network in Figure 3: 

 

Figure 3. Example Network for the Multi-Median Optimization Problem. 
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Step 1:  We need to construct the shortest distance matrix for this network.  

    

     
 0   1  
  0    
   0   
 1   0 1
    1 0

 

 

Step 2: We need to construct the node weight matrix with the help of the shortest 

matrix in Step 1, i.e., demand of the node multiplied by distance between the demand node 

and the facility node 

       

     
 0    10
 1 0     
   0  1 
    0  
     0

 

Step 3: For a single facility location, we need to calculate the total average distance 

of each node to every other node, i.e.,  

                        {
              

                      
 

  

                           

 0    10
  

1 
 1   

 1 0     
 1

1 
     

   0  1 
 0

1 
   1 

    0  
1 

1 
 1   

     0
  

1 
 1   
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Because 1.28 is the minimum total average distance of all other nodes, 1.28 is the 

optimal total average distance, and D is the optimal location. 

For the multiple facility location problem, say for the same network, we need to 

place 3 locations such that n = 5 and k = 3. We need to check total average distances of 5C3 

= 10 combinations, i.e., nCk combinations. Let us consider one of the ten combinations, i.e., 

A, B, D: 

       

     
 0    10
 1 0     
   0  1 
    0  
     0

 

In this case, the shortest distance for each node is the distance of the node to the 

nearest facility. The total average distance for case A, B, D is (0 + 0 + 6 + 0 + 5) / 14 = 

11/14 = 0.78. 

Similarly, find the total average distance for all 10 combinations, such as “A, B, C”; 

“B, C, D”; “A, B, E”; etc. Using this exhaustive process, we obtain the total average 

distance of all combinations from which the minimum value is our optimal average 

distance, and the respective combination is optimal locations for the facilities. 

Therefore, as the network becomes larger, it requires a lot of computational time to 

generate all combinations, such as a 100-node network with 50 facilities. In such a 

scenario, we end up calculating 100C50 combinations. To circumvent this problem, our 

current research explains the heuristic algorithm for the multi-median problem. 

3.1.2. K-Median Heuristic 

 This section describes the algorithm, flowchart, and example of the K-

Median Heuristic Procedure. 
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3.1.2.1. Algorithm and Flowchart for the Multi-Median Heuristic 

The Multi-Median Heuristic algorithm is a heuristic procedure where, for n nodes 

and k optimal locations, we calculate the total average distance of only a few combinations. 

The steps of computation are as follows: 

1. The user is allowed to input the graph in the form of an .xml file and also chooses the 

number of optimal nodes to locate. 

2. The one-median solution needs to be calculated. 

The current procedure is iterative, where 2 optimal locations are found from 1 

optimal location, 3 optimal locations from 2 optimal locations, 4 optimal locations from 

3 optimal locations, etc., until k optimal locations are found from k-1 optimal locations. 

3. Once the single optimal location is obtained, the location is moved to set S. Say, m = 1 

where ‘m’ defines number of current optimal locations.  

4. A new facility is added from the remaining nodes set S, resulting in a list. The total 

travel distance of each combination in the list needs to be computed. Let the minimum 

value for the total travel distance of all combinations be the current minimum distance 

and the combination that gives the minimum total travel distance be the current optimal 

combination.  

5. Now, every node of the current optimal combination needs to be replaced one by one 

with the other nodes that are not present in the current optimal combination and 

compute the total travel distance of those combinations. All the total travel distances 

need to be compared with the current minimum distance.  

6. If any combinations result in a total travel distance less than that of the current 

minimum distance, it is replaced with the new total travel distance, and the current 
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optimal combination is replaced with the new combination. Repeat steps 5 through 6; 

otherwise, the current combination is the optimal solution. m is incremented such that 

m = m +1. 

7. Once an incumbent combination is obtained, repeat steps 4 through 7 until m = k [9]. 

ψϮϰϵϴΞϧϲϡϰϨΞᶮφᶯΞϷϩϴϨΞᶮύᶯΞϮϯϤϥϳ 

Input k  

Generate 1 - Median solution and move it to set S  

Initialize m < -  1 

While m <= k  

πϤϤΞϡΞϮϥϷΞϦϡϣϩϬϩϴϹΞϴϯΞϴϨϥΞϳϥϴΞϓΞϦϲϯϭΞᶮύᶯΞϮϯϤϥϳΞϷϨϩϣϨΞϡϲϥΞϮϯϴΞϡϬϲϥϡϤϹΞϰϲϥϳϥϮϴΞϩϮΞϓΞϡϮϤΞϭϯ϶ϥΞ

the combinations to S` such that set S` = S x (N - S) 

Calculate the tota l average distance of each combination from set S` and get the minimum 

value (cmin) of total average distances and the sets with cmin as total average distance can 

be moved to set S`` such that the set S`` = S U {xm} where xm ϵ (N- S) 

Improve the solution s et by replacing elements of S`` systematically one by one with the 

nodes of (N - S``) 

If cmin >= set of average distances  

 cmin = new improved minimum average distance  

 S`` = Improved set with minimum average distance as cmin  

ςϡϬϬΞᶲψϭϰϲϯ϶ϥΞϴϨϥΞϳϯϬϵϴϩϯϮΞϳϥϴΞϢy replacing elements of S`` systematically one by one with the 

nodes of (N -ϓϠϠΨᶳ 

Else 

 If all nodes are not substituted  

ςϡϬϬΞᶲψϭϰϲϯ϶ϥΞϴϨϥΞϳϯϬϵϴϩϯϮΞϳϥϴΞϢϹΞϲϥϰϬϡϣϩϮϧΞϥϬϥϭϥϮϴϳΞϯϦΞϓϠϠΞϳϹϳϴϥϭϡϴϩϣϡϬϬϹΞϯϮϥΞϢϹΞϯϮϥΞϷϩϴϨΞϴϨϥΞ

nodes of (N -ϓϠϠΨᶳ 

 Else 

  m = m + 1  

  S = S`` 

  EndIf 

 EndIf 

End While 

Optimal solution combination is set S  

Figure 4. Pseudo Code of the Multi-Median Heuristic Procedure.  

Figure 4 presents the pseudo code of the Multi-Median Heuristic Procedure, 

providing the detailed computational steps of the algorithm. Figure 5 presents the flowchart 

for the Multi-Median Heuristic Procedure, providing the detailed steps of computation 

from the point of user input to the point of obtaining the final solution. 
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Figure 5. Flowchart of the Multi-Median Heuristic Procedure.  

3.1.2.2. Example for the Multi-Median Heuristic 

Suppose we are calculating for the two incumbent locations by taking the following 

network in Figure 6 into consideration: 
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Figure 6. Example Network for the Multi-Median Heuristic Procedure. 

For any value of k, the single optimal facility location is the first step of 

computation for the Multi-Median heuristic procedure.  

Step 1: We need to construct the shortest distance matrix for this network  

    

     
 0   1  
  0    
   0   
 1   0 1
    1 0

 

Step 2: We need to construct the node weight matrix with the help of the shortest 

matrix in Step 1 i.e. demand of the node * distance between the demand node and the 

facility node 

       

     
 0    10
 1 0     
   0  1 
    0  
     0

 

Step 3: For a single facility location, we need to calculate the total average distance 

of each node to every other node; i.e.,  
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                        {
              

                      
 

                           

 0    10
  

1 
 1   

 1 0     
 1

1 
     

   0  1 
 0

1 
   1 

    0  
1 

1 
 1   

     0
  

1 
 1   

 

Because 1.28 is the minimum total average distance of all other nodes, 1.28 is the 

optimal total average distance, and D is the optimal location. Move the current solution to 

set S. Therefore, S = {D}. 

Step 4: This step is a facility addition step where we generate complementary 

combinations for set S such that {D, A}, {D, B}, {D, C}, {D, E}, and their respective 

travel distances are 15, 14, 10, and 13. So far, we have the minimum travel distance value 

as 10 with the node combination {D, C}. Now, S = {C, D} is our incumbent solution but 

not our final solution. 

Step 5: This solution – improvement step is where we replace each node of set S 

and try to get a better solution by generating candidate combinations such as {C, A}, {C, 

B}, {C, E}, {A, D}, {B, D}, and {E, D}. We already calculated travel distances for the last 

three combinations, and we may avoid calculating those combinations again. The travel 

distances for candidate combinations {C, A}, {C, B}, and {C, E} are 14, 28, and 10. Now, 

we need to check if we have any travel distances less than or equal to 10. If yes, we need to 

repeat for the new incumbent solution until we get a value less than 10.  
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Step 6: If we get a travel distance less than 10, say “w,” then “w” is our new total travel 

distance, and the respective combination is our final set; otherwise, 10 is our final 

incumbent solution, and all the combinations where the maximum travel distances to the 

facilities are 2 are considered incumbent solutions for the heuristic. Many times, this 

solution happens to be our final, optimum solution. 

3.1.3. Visual Representation for the Multi-Median Problem 

 Let us consider the IEEE Standard 14-Bus System, a test system used for research 

and educational purposes, with 14 nodes and 19 edges [19]. Let us take an example of 

placing 7 PMUs at different locations.  

 

Figure 7. IEEE 14-Bus System for the Multi-Median Problem. 

 Figure 7 illustrates the view of the IEEE 14-Bus System. The left navigation of the 

page allows the user to select the number of optimal nodes to locate for PMUs. When the 

list is clicked, the nodes are highlighted, depending on the selected problem method. 
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Figure 8. Visual Example of the Multi-Median Optimization and Heuristic Results. 

 Figure 8 illustrates different nodes located at optimal positions for the optimization 

problem and incumbent locations for the heuristic procedure. In our example with seven 

optimal locations, green circle nodes represent only Multi-Median optimization; red circle 

nodes represent only the Multi-Median heuristic; and yellow triangles represent the 

common nodes. Hence, the optimal solution of the IEEE Standard 14-Bus System for 

locating seven nodes is 1, 2, 3, 4, 7, 11, and 13, and the incumbent solution for locating 

seven nodes using the Multi-Median heuristic is 1, 2, 3, 6, 7, 9, and 12. 

3.2. K-Center Problem 

For an undirected network G (N, E), where N = number of nodes and E = number 

of edges, ‘k’ PMUs need to be placed in the network in optimal locations such that 
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minimizing the maximum distance of every node to every other node [9]. Let the k points 

be a set   , where  

   = {  ,  ,  ,…,    ,  }, and the shortest distance of any one node,    ϵ   , and 

node   in G can be represented as  (  ,  ) 

  (  ,  ) =           
 (  ,  )  (35) 

 K-Centers on network G can be defined as follows [9]: 

   
*
 on G is a set of k PMUs on G; for every    ϵ    (36) 

  (  ) =          (  , ) | (37) 

  (  
*
) ≤  (  )  (38) 

That is, the PMUs are placed to minimize the maximum distance for the K-Center 

Problem. 

3.2.1. K-Center Optimization Problem 

This section describes the algorithm, flowchart, and example of the K-Center 

Optimization Problem. 

3.2.1.1. Algorithm and Flowchart for the Multi-Center Optimization Problem  

The Multi-Center Problem is an optimization problem where, for n nodes and k 

optimal locations, we calculate the maximum for the shortest distances of all possible nCk 

combinations.  

The steps of computation are as follows: 

1. The user is allowed to input the graph in the form of .xml file and chooses the number 

of optimal nodes to locate. 

2. The program generates nCk combinations of n nodes. 
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3. For each combination, the maximum for the shortest distance of facilities of the 

combination to the nodes is calculated. 

4. Among those maximum values, the minimum value needs to be picked. 

5. All combinations with the minimum value as their maximum of shortest distances to 

every other node are the optimal combinations to locate the facilities [9]. 

 

Figure 9. Flowchart of the Multi-Center Optimization Problem.  

Figure 9 presents the flowchart for the Multi-Center Optimization Problem, 

providing the detailed steps of computation from the point of user input to the point of 

obtaining the final solution. Figure 10 presents the pseudo code of the Multi-Center 

Optimization Problem, providing the detailed computational steps for the algorithm. 
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ψϮϰϵϴΞϧϲϡϰϨΞᶮφᶯΞϷϩϴϨΞᶮϮᶯΞϮϯϤϥϳ 

Input k  

Initialize m < -  1 

φϥϮϥϲϡϴϥΞϮςϫΞϣϯϭϢϩϮϡϴϩϯϮϳΞϷϩϴϨΞᶮϮᶯΞϮϯϤϥϳ 

While m <= nCk  

MaximumDistanceM = Maximum (Shortest di stance for every node in 'N' to reach the closest 

facility in 'm' combination) MaximumDistanceArray [m - 1] = MaximumDistanceM  

Increment m by 1  

EndWhile 

OptimalSolution = Minimum of all the elements in the MaximumDistanceArray (all nCk 

combinations)  

OptimalC ombination = All nCk combinations with OptimalSolution as their Maximum Distance  

Figure 10. Pseudo Code of the Multi-Center Optimization Problem.  

3.2.1.2. Example for the Multi-Center Optimization Problem 

Let us consider the following network in Figure 11: 

 

Figure 11. Example Network for the Multi-Center Optimization Problem. 

Step 1:  We need to construct the shortest distance matrix for this network.  

    

     
 0   1  
  0    
   0   
 1   0 1
    1 0
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Step 2: For a single facility location, we need to calculate the maximum travel 

distance of each node to the facility; i.e.,  

                              

 {                                                             ) 

                              

 0   1       0,  ,  , 1,     

  0          , 0,  ,  ,     

   0         ,  , 0,  ,     

 1   0 1      1,  ,  , 0, 1   

    1 0       ,  ,  , 1, 0   

 

Because 3 is the minimum of the maximum distances of each node to the facility, 3 

is the optimal travel distance, and C is the optimal location. 

For the multiple facility location problem, say for the same network, we need to 

place three locations such that n = 5 and k = 3; we need to check the total average distances 

of 5C3 = 10 combinations, i.e., nCk combinations. Let us consider one of the ten 

combinations, i.e., A, B, D: 

     
 0   1  
  0    
   0   
 1   0 1
    1 0

 

In this case, the shortest distance of each node is the distance of the node to the 

nearest facility. Therefore, the maximum total distances to the nearest facilities, A, B, and 

D, are Maximum (0, 0, 2, 0, 1) = 2. 

Similarly, find the maximum total travel distances of all 10 other combinations, 

such as “A, B, C”; “B, C, D”; “A, B, E”; etc. Using this exhaustive process, we obtain the 

maximum total travel distances of all combinations from which the minimum value is our 
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optimal total travel distance and where the respective combination is optimal locations for 

the facilities. 

Therefore, as the network becomes larger, it requires a lot of computational time to 

generate all combinations, such as a 100-node network with 50 facilities. In such a 

scenario, we end up calculating 100C50 combinations. To circumvent this problem, our 

current research explains the heuristic algorithm for the Multi-Center problem. 

3.2.2. K-Center Heuristic  

This section describes the algorithm, flowchart, and an example of the K-Center 

Heuristic Procedure. The K-Center Heuristic was developed following an approach that is 

inspired by the methodology used for the K-Median Heuristic. The procedure is a new 

advance that goes beyond the known heuristics for solving the K-Center problem. 

3.2.2.1. Algorithm and Flowchart for the Multi-Center Heuristic  

The Multi-Center Heuristic algorithm is a heuristic procedure where, for n nodes 

and k optimal locations, we calculate the maximum of the shortest distances for facilities in 

a combination, to the other nodes. Only a few combinations are calculated. 

The steps of computation are as follows: 

1. The user is allowed to input the graph in the form of an .xml file and chooses the 

number of optimal nodes to locate. 

2. A one-center solution needs to be calculated. 

The current procedure is an iterative procedure where 2 optimal locations are 

found from 1 optimal location, 3 optimal locations from 2 optimal locations, 4 optimal 

locations from 3 optimal locations, etc. until k optimal locations are found from k-1 

optimal locations. 
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3. Once the single optimal location is obtained, the location is moved to set S. Say, m = 1, 

where ‘m’ defines number of current optimal locations.  

4. A new facility is added from the remaining nodes to the set S, resulting in a list. The 

maximum shortest distance of all other nodes to reach to the PMU of each combination 

in the list needs to be computed. Let the minimum distance value among all the 

maximum combination distances be the current minimum distance, and let the 

combination that gives the minimum distance value among all the maximum 

combination distances are the current optimal combination.  

5. Now, every node of the current optimal combination needs to be replaced one by one 

with the other nodes that are not present in the current optimal combination, and we 

compute the maximum distance of each combination. All the maximum values need to 

be compared with the current minimum distance.  

6. If any combination results in getting a maximum distance value less than the current 

minimum distance, the current minimum distance is replaced with the new maximum 

distance value, and the current optimal combination is replaced with the new 

combination; repeat Steps 5 through 6; otherwise, the current combination is the 

optimal solution. Increment ‘m’ such that m = m +1. 

7. Once we have an optimal combination, repeat steps 4 through 7 until m = k [9]. 

Figure 12 presents the pseudo code of the Multi-Center Optimization Problem, 

providing the detailed computational steps of the algorithm. Figure 13 presents the 

flowchart for the Multi-Center Optimization Problem, providing the detailed steps of 

computation from the point of user input to the point of obtaining the final solution. 
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Input ϧϲϡϰϨΞᶮφᶯΞϷϩϴϨΞᶮύᶯΞϮϯϤϥϳ 

Input k  

Generate 1 - Center solution and move it to set S  

Initialize m < -  1 

While m <= k  

πϤϤΞϡΞϮϥϷΞϦϡϣϩϬϩϴϹΞϴϯΞϴϨϥΞϳϥϴΞϓΞϦϲϯϭΞᶮύᶯΞϮϯϤϥϳΞϷϨϩϣϨΞϡϲϥΞϮϯϴΞϡϬϲϥϡϤϹΞϰϲϥϳϥϮϴΞϩϮΞϓΞϡϮϤΞϭϯ϶ϥΞ

the combinations to S` such that set S` = S x (N - S) 

Calculate the maximum of the shortest distances of each combination from set S` and get the 

minimum value(cmin) of the maximum values and the sets with cmin as their maximum 

values can be moved to set S`` such that the set S`` = S U {xm} where xm ϵ (N- S) 

Improve the solution set by replacing elements of S`` systematically one by one with the 

nodes of (N - S``) 

If cmin >= set of maximum values  

 cmin = new improved minimum of maximum distances  

 S`` = Improved set with minimum of maximum distances as cm in 

ςϡϬϬΞᶲψϭϰϲϯ϶ϥΞϴϨϥΞϳϯϬϵϴϩϯϮΞϳϥϴΞϢϹΞϲϥϰϬϡϣϩϮϧΞϥϬϥϭϥϮϴϳΞϯϦΞϓϠϠΞϳϹϳϴϥϭϡϴϩϣϡϬϬϹΞϯϮϥΞϢϹΞϯϮϥΞϷϩϴϨΞϴϨϥΞ

nodes of (N -ϓϠϠΨᶳ 

Else 

 If all nodes are not substituted  

ςϡϬϬΞᶲψϭϰϲϯ϶ϥΞϴϨϥΞϳϯϬϵϴϩϯϮΞϳϥϴΞϢϹΞϲϥϰϬϡϣϩϮϧΞϥϬϥϭϥϮϴϳΞϯϦΞϓϠϠΞϳϹϳϴϥϭϡϴϩϣϡϬϬϹΞϯϮϥΞϢϹΞϯϮϥΞϷϩϴϨΞϴϨϥΞ

nodes of (N -ϓϠϠΨᶳ 

 Else 

  m = m + 1  

  S = S`` 

  EndIf 

 EndIf 

End While 

Optimal solution combination is set S  

Figure 12. Pseudo Code of the Multi-Center Heuristic Procedure.  
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Figure 13. Flowchart of the Multi-Center Heuristic Procedure.  
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3.2.2.2. Example for the Multi-Center Heuristic 

Suppose we are calculating for the two incumbent locations by taking the following 

network in Figure 14 into consideration: 

 

Figure 14. Example Network for the Multi-Center Heuristic Procedure. 

For any value of k, the single optimal facility location is the first step for computing 

the Multi-Center heuristic procedure.  

Step 1:  We need to construct the shortest distance matrix for this network 

    

     
 0   1  
  0    
   0   
 1   0 1
    1 0

 

Step 2: For a single facility location, we need to calculate the maximum travel 

distance of each node to the facility; i.e.,                                

 {                                                             ) 

                              

 0   1       0,  ,  , 1,     

  0          , 0,  ,  ,     

   0         ,  , 0,  ,     

 1   0 1      1,  ,  , 0, 1   

    1 0       ,  ,  , 1, 0   
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Because 3 is the minimum for the maximum distances of each node to the facility, 3 

is the optimal travel distance, and C is the optimal location. Move the current solution to 

set S. Therefore, S = {C}. 

Step 3: This facility-addition step is where we generate complementary 

combinations for set S such that {C, A}, {C, B}, {C, D}, {C, E}, and their respective 

maximum values of travel distances are Max (0, 2, 0, 1, 2), Max (3, 0, 0, 2, 3), Max (1, 2, 

0, 0, 1), and Max (2, 2, 0, 1, 0), i.e., 2, 3, 2, and 2. We have the minimum value for 

maximum travel distances so far as 2 with the node combination {C, A}, {C, D}, and {C, 

E}. Now, S = {C, A}, {C, D} or {C, E} is our incumbent solution but not our final 

solution. 

Step 4: This solution-improvement step is where we replace each node of set S (Let 

us consider set S = {C, D}.) and try to get a better solution by generating candidate 

combinations such as {C, A}, {C, B}, {C, E}, {A, D}, {B, D}, and {E, D}. We already 

calculated travel distances for the first three combinations, and we may avoid calculating 

those combinations again. Now, the maximum travel distances for candidate combinations 

{A, D}, {B, D}, and {E, D} are Max (0, 4, 2, 0, 1), Max (1, 0, 2, 0, 1), and Max (1, 4, 2, 0, 

0), i.e., 4, 2, and 4. Now, we need to check if we have any maximum travel distances less 

than or equal to 2. If yes, we need to repeat Step 5 for the new incumbent solution until we 

obtain a value less than 2.  

Step 5: If we obtain a travel distance less than 2, say “w,” then “w” is our new total 

travel distance, and the respective combination is our final set; otherwise, 2 is our final 

incumbent solution, and all the combinations where the maximum travel distances to the 
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facilities are 2 are considered incumbent solutions for the heuristic. Many times, this 

solution happens to be our final, optimum solution. 

 

3.2.3. Visual Representation for the Multi-Center Problem 

Let us consider the IEEE Standard 14-Bus System, a test system used for research 

and educational purposes, with 14 nodes and 19 edges [19]. Let us take an example of 

placing 7 PMUs at different locations.  

 

Figure 15. IEEE 14-Bus System for the Multi-Center Problem.  

Figure 15 illustrates the IEEE 14-Bus System. The left navigation of the page 

allows the user to select the number of optimal nodes to locate for PMUs. When the list is 

clicked, the nodes are highlighted depending on the selected problem method.  

Figure 16 illustrates different node locations at optimal positions for the 

optimization problem and incumbent locations for the heuristic procedure. In our example 
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with seven optimal locations, green circle nodes represent only Multi-Center Optimization; 

red circle nodes represent only the Multi-Center Heuristic; and yellow triangles represent 

the common nodes. Hence, the optimal solution of the IEEE Standard 14-Bus System for 

locating seven nodes is 1, 2, 3, 4, 7, 11, and 1,3 and the incumbent solution for locating 

seven nodes using the Multi-Median heuristic are 1, 2, 3, 4, 5, 6, and 7. 

 

Figure 16. Visual Example of the Multi-Center Optimization and Heuristic Results.  
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4. IMPLEMENTATION 

To implement the solution for the K-Median and K-Center problem, various tools 

are used in this research, including NetBeans, the JGraphT application programming 

interface (API), CombinatoricsLib API, and Random Network Generator.  

4.1. NetBeans 

NetBeans is an integrated development environment (IDE) that is primarily used for 

writing and organizing Java code and APIs in this research. It is an open-source project 

developed by the worldwide developer community. It is relatively simple and intuitive, and 

it provides support for working with third-party libraries in a project that has been 

developed. Based on these advantages, NetBeans is the primary choice for implementing 

the solution over other IDEs. Further, it also provides support for easy debugging which is 

handy when implementing solutions for complex problems [20, 21].  

4.2. JGraphT 

JGraphT is an open-source, Java-based graph library that provides data structure 

and algorithm support for mathematical graph-theory problems. It supports various graphs, 

such as directed graphs, undirected graphs, weighted graphs, unweighted graphs, simple 

graphs, multi graphs, pseudo graphs, and more [22]. In this research, JGraphT is primarily 

used for creating a Simple Weighted graph which is nothing but a data structure provided 

by JGraphT for manipulating graphs/networks. JGraphT also provides APIs for finding the 

shortest path between nodes in a graph using the famous Dijkstra’s Shortest Path algorithm 

[23]. JGraphT also provides support for visualizing the graphs using the counterpart library 

called JGraph.  
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4.2.1. Sample Implementation: Simple Weighted Graph in JGraphT 

The implementation in Figure 17 shows how to create a Simple Weighted graph 

using the JGraphT API as well as how to add vertices and edges after creating the graph. In 

this paper, the smart grid network is represented as a Simple Weighted Graph.   

// create a  simple weighted graph  

SimpleWeightedGraph<String, DefaultWeightedEdge> g = new SimpleWeightedGraph<String, 

DefaultWeightedEdge>(DefaultWeightedEdge.class);  

 

// add a vertex  ᶅϳϡϹΞϮϯϤϥΞμΞᶲπᶳ 

g.addVertex(node);  

 

// add a n edge  ᶅϳϡϹΞϥϤϧϥΞμΞϻϳϯϵϲϣϥΞμΞᶲπᶳΞ-νΞϴϡϲϧϥϴΞμΞᶲρᶳϽ 

DefaultWeightedEdge edge = g.addEdge(source, target);  

 

// add edge weight -  say weight = 1  

g.setEdgeWeight(edge, weight);  

Figure 17. A Sample Implementation of a Simple Weighted Graph. 

4.2.2. Sample Implementation: Shortest Path Using Dijkstra Algorithm in JGraphT 

The implementation in Figure 18 shows how to find the shortest distance using the 

JGraphT API between two different nodes; in this example, it is nodes “A” and “E.” The 

DijkstraShortestPath API employs the Dijkstra algorithm to find the shortest distance 

between any two vertices. 

ήήΞϦϩϮϤΞϴϨϥΞϳϨϯϲϴϥϳϴΞϤϩϳϴϡϮϣϥΞϢϥϴϷϥϥϮΞϴϨϥΞϳϯϵϲϣϥΞμΞᶲπᶳΞϡϮϤΞϴϡϲϧϥϴΞμΞᶲτᶳ 

DijkstraShortestPath<String, DefaultWeightedEdge> d = new DijkstraShortestPath<String, 

DefaultWeigh tedEdge>(g, source, target);  

Int shortest_distance = d.getPathLength();  

Figure 18. A Sample Implementation of a Dijkstra Algorithm. 

4.3. CombinatoricsLib 

CombinatoricsLib is a Java-based library which can be employed to generate 

different permutations or combinations for a given set of items. The library can be 
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employed to generate combinatorial objects, such as simple permutations, permutations 

with repetitions, simple combinations, combinations with repetitions, subsets, integer 

partitions, list partitions, and integer compositions [24].  

In this research, CombinatoricsLib is employed to generate the nCr combinations of 

items. For instance, if there are 10 nodes in a network and if we need to find 3 optimal 

nodes to locate and place the PMUs, then by using CombinatoricsLib, one can generate 

10C3 combinations where one of the combinations results in an optimal combination.  

4.3.1. Sample Implementation: Generating Combinations Using CombinatoricsLib 

The implementation in Figure 19 basically creates an initial vector with the given 

array (say {a, b, c}), and then using the initial vector and the given size (say 2), the API 

generates all possible combinations which are nothing but {{a, b}, {b, c}, {a, c}}. These 

generated combinations are used as needed in the research. 

// create the initial vector    

ICombinatoricsVector<String> vector = Factory.createVector(array);  

 

// create a simple combination generator to generate 3 - combinations of the initial vector    

Generator<String> gen = Factory.createSimpleCombinati onGenerator(vector, size);  

 

// print all possible combinations    

for (ICombinatoricsVector<String> combination : gen)  

{  

print (combination.getVector());  

}  

Figure 19. A Sample Implementation for Generating Combinations. 

4.4. Graphical User Interface 

An interface has been developed to make it easier for importing the network in the 

form of an .xml file and getting the output of optimal or incumbent nodes based on the 

user’s selection from among the options: Hakimi’s Theorem (Multi-Median Optimization), 
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Multi-Median Heuristic Procedure, Multi-Center Optimization Problem, and Multi-Center 

Heuristic Procedure.  

 

Figure 20. Graphical User Interface for Demonstration.  

In Figure 20, each section represents as follows: 

1. .xml file which contains a network can be imported. 

2. Represents the summary of the network by providing information about the number of 

nodes and edges for the network that was imported in step 1. 

3. The user is allowed to select the number of optimal/incumbent nodes to be located in 

the network. 

4. The user is allowed to select the method from the options: Multi-Median Optimization, 

Multi-Median Heuristic, Multi-Center Optimization, and Multi-Center Heuristic. 

Results: This section displays the final output required, i.e., optimal/incumbent 

locations, optimal distance, and the amount of time taken in milliseconds. 
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4.5. Random Network Generator 

Given the number of nodes and edges, the Random Network Generator generates a 

random network in the form of an .xml file. Based on the following rules, the API 

generates a random network: 

 We should ensure that every node is connected to at least one edge. (The source node 

and target node of an edge can be picked by selecting a random number between 1 and 

the number of nodes.) 

 The source node should not be the same as the target node. 

 For every edge, we should ensure that the edge does not already exist for that particular 

source node and target node. 

The steps of computation are as follows: 

1. User is allowed to input number of nodes and number of edges and index = 0 

2. A random number from 1 to number of nodes is chosen for source and target. 

3. If the edge is already created or source and target are same then we need to decrement 

index by 1. 

4. If not, create an edge with the source and target and increment index by 1. 

5. Repeat step 2 through step 4 until index is equal to number of edges. 

6. A graph is created with all the edges in the form of .xml 

Figure 21 presents the format of XML document which includes the list of node, 

list of edges and their respective lengths. Figure 22 illustrates the algorithm for generating 

a random network by taking user inputs for the number of nodes and edges. 
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<?xml version="1.0" encoding="UTF - 8"?>  

<graph>  

    <nodes>  

        <node>node1</node>  

        <node>node2</node>  

         ᶸ 

    </nodes>  

    <edges> 

        <edge>  

            <source>source1</source>  

            <target>target1</target>  

            <distance>1</distance>  

        </edge>  

        <edge>  

            <source>source2</source>  

            <target>target2</target>  

            <distance>1 </distance>  

        </edge>  

         ᶸ  

    </edges>  

</graph>  

Figure 21. XML Format Generated by Random Network Generator. 

Input number of nodes  

Input number of edges  

Initialize index < -  0 

While index < number of edges  

 Source = a random number from 1 to n umber of nodes is chosen  

 Target = a random number from 1 to number of nodes is chosen  

 If (edge already exists || Source = Target)  

  Decrement index  

  continue  

 Else 

  Create an edge with the Source and Target  

 End If  

 Increment index  

End While 

Create gra ph with all the edges in .xml format  

Figure 22. Pseudo Code for Random Network Generator. 
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5. EXPERIMENTS AND RESULTS 

This chapter mainly focuses on the computational results of experiments conducted 

on several networks, such as the IEEE Standard 14-Bus System, the 30-Bus System, and 

some random networks. 

5.1. IEEE Standard Bus Systems 

 IEEE Standard Bus Systems are test systems which are used for research and 

education purpose in a power-system management environment. These test systems are 

preferred for experimenting [19]. In our research, we used the following Standard IEEE 

Bus Systems: 

 IEEE Standard 14-Bus System: The Standard 14-Bus System contains five synchronous 

machines with IEEE type-I exciters, where three of them are synchronous 

compensators. These compensators are used for sustaining reactive power. The other 11 

nodes are loads. In our research, this bus system is used to find optimal locations for 

PMUs such that it helps with voltage calculation [19]. 

 

Figure 23. IEEE Standard 14 – Bus System [18]. 
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 Figure 23 illustrates the diagram for the Standard IEEE 14-Bus System. 

 IEEE Standard 30-Bus System: This bus system is similar to the IEEE Standard 14-Bus 

System where six of the nodes are synchronous generators and four of the nodes are 

transformers. In this case, we have 21 loads [19]. Figure 24 illustrates the diagram for 

the Standard IEEE 30-Bus System. 

 

Figure 24. IEEE Standard 30-Bus System [17]. 

The experiments conducted are as follows: 

 Time comparisons of Multi-Median Optimization Problem and Heuristic for the IEEE 

Standard 14-Bus System 

 Time comparisons of the Multi-Center Optimization Problem and the Multi-Center 

Heuristic for the IEEE Standard 14-Bus System 
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 Time comparisons of Multi-Median Optimization Problem and Heuristic for the IEEE 

Standard 30-Bus System 

 Time comparisons of the Multi-Center Optimization Problem and the Multi-Center 

Heuristic for the IEEE Standard 30-Bus System 

 Time comparisons of the Multi-Median Optimization and the Multi-Median Heuristic 

for 10 random networks generated with 35 nodes, 40 edges, and 10 optimal locations  

 Time comparisons of the Multi-Center Optimization and the Multi-Center Heuristic for 

10 random networks generated with 35 nodes, 40 edges, and 10 optimal locations  

5.2. Using the Standard 14-Bus System 

 Experiments have been conducted on these algorithms using the IEEE 

Standard 14-Bus System. 

5.2.1. Experiment 1 

 In this experiment, we compare the time taken to compute optimal locations for 1-8 

PMUs on a Standard 14-Bus System for the Multi-Median Optimization Problem and 

Multi-Median Heuristic methods. 

 Table 1 gives the time comparison values of the Multi-Median Optimization and 

Heuristic algorithms for the Standard IEEE 14-Bus System. The “Optimal Nodes to 

Locate/Type” column represents the number of facilities selected, and the “Multi-Median 

Optimization” and “Multi-Median Heuristic” columns are the amount of time taken by 

these algorithms (measured in milliseconds). Because the network is smaller in size, there 

is not much time difference. In this table, optimal node 5 has 0 as its time-taken value, 

which means the time, in decimals, is less than 0. Figure 25 is the bar-graph representation 

of Table 1. 
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Table 1. Runtime comparison between the Multi-Median Optimization and Heuristic  

(14 bus). 

Optimal Nodes to 

Locate/Type 

Runtime (in Milliseconds) 

Multi-Median Optimization Multi-Median Heuristic 

1 63 31 

2 31 15 

3 31 31 

4 15 16 

5 0 0 

6 31 15 

7 31 16 

8 31 31 

 

 

Figure 25. Bar Graph showing Runtime Comparison between the Multi-Median 

Optimization and Heuristic (14 Bus).  

5.2.2. Experiment 2 

 In this experiment, we compare the time taken to compute optimal locations for 1-8 

PMUs on a Standard 14-Bus System for the Multi-Center Optimization Problem and Multi-

Center Heuristic methods. 

 Table 2 gives the time comparison values for the Multi-Center Optimization and 

Heuristic algorithms of the Standard IEEE 14-Bus System. The “Optimal Nodes to 
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Locate/Type” column represents the number of facilities selected, and the “Multi-Center 

Optimization” and “Multi-Center Heuristic” columns are the amount of time taken by these 

algorithms (measured in milliseconds). Figure 26 is the bar-graph representation of Table 

2. 

Table 2. Runtime comparison between the Multi-Center Optimization and Heuristic  

(14 bus). 

Optimal Nodes to 

Locate/Type 

Runtime (in Milliseconds) 

Multi-Center Optimization Multi-Center Heuristic 

1 47 16 

2 47 31 

3 31 16 

4 16 15 

5 16 15 

6 31 16 

7 31 16 

8 31 31 

9 47 47 

 

 

Figure 26. Bar Graph showing Runtime Comparison between the Multi-Center 

Optimization and Heuristic (14 Bus).  
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5.3. Using the Standard 30-Bus System 

Experiments have been conducted on the algorithms using the Standard IEEE 30-

Bus System. 

5.3.1. Experiment 3 

 In this experiment, we compare the time taken to compute optimal locations for 1-8 

PMUs with the Standard 30-Bus System for the Multi-Median Optimization Problem and 

Multi-Median Heuristic methods.  

 Table 3 gives the time comparison values for the Multi-Median Optimization and 

Heuristic algorithms of the Standard IEEE 30-Bus System. The “Optimal Nodes to 

Locate/Type” column represents the number of facilities selected, and the “Multi-Median 

Optimization” and “Multi-Median Heuristic” columns are the amount of time taken by 

these algorithms (measured in milliseconds). Figure 27 is the bar-graph representation of 

Table 3. 

Table 3. Runtime comparison between the Multi-Median Optimization and Heuristic  

(30 bus). 

Optimal Nodes to 

Locate/Type 

Runtime (in Milliseconds) 

Multi-Median Optimization Multi-Median Heuristic 

1 203 32 

2 31 16 

3 93 47 

4 374 47 

5 2059 281 

6 10702 1263 

7 - 5834 
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Figure 27. Bar Graph showing Runtime Comparison between the Multi-Median 

Optimization and Heuristic (30 Bus).  

5.3.2. Experiment 4 

 In this experiment, we compare the time taken to compute optimal locations for 1-8 

PMUs on a Standard 14-Bus System for the the Multi-Center Optimization Problem and 

Multi-Center Heuristic methods. 

 Table 4 gives the time comparison values of the Multi-Center Optimization and 

Heuristic algorithms for the Standard IEEE 30-Bus System.  

Table 4. Runtime comparison between the Multi-Center Optimization and Heuristic  

(30 bus). 

Optimal Nodes to 

Locate/Type 

Runtime (in milliseconds) 

Multi-Center Optimization Multi-Center Heuristic 

1 515 78 

2 47 31 

3 94 31 

4 327 93 

5 2652 218 

6 10795 1108 

7 - 5226 
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The “Optimal Nodes to Locate/Type” column represents the number of facilities 

selected, and the “Multi-Center Optimization” and “Multi-Center Heuristic” columns are 

the amount of time taken by these algorithms (measured in milliseconds). Figure 28 is the 

bar-graph representation of Table 4. 

 

Figure 28. Bar Graph showing Runtime Comparison between Multi-Center Optimization 

and Heuristic (30 Bus).  

5.4. Using Random Networks 

Experiments have been conducted on these algorithms using random networks as 

follows. 

5.4.1. Experiment 5 

In this experiment, 10 random networks are generated with 35 nodes, 40 edges, and 

5 optimal locations. This experiment is conducted for comparing the time constraints of 

different networks with same number of nodes, edges, and optimal locations for the Multi-

Median Optimization and Heuristic Procedures.  
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The 10 random networks are generated using a Random Network Generator and 

ensuring that no node is left disconnected. The same set of networks is used to calculate 

average runtime, standard deviation, and variance. 

Table 5 gives the time comparison values of the Multi-Median Optimization and 

Heuristic algorithms for 10 random networks labeled from 1 through 10 for the 35 nodes 

and 40 edges. The “Network” column represents the selected network, and the “Multi-

Median Optimization” and “Multi-Median Heuristic” columns are the amount of time 

taken by these algorithms (measured in milliseconds).  

Table 5. Runtime information for 10 random networks with 35 nodes, 40 edges, and 10 

optimal locations for the Multi-Median Optimization and Heuristic. 

Network 
Runtime (in Milliseconds) 

Multi-Median Optimization Multi-Median Heuristic 

1 8003 764 

2 7457 624 

3 7691 811 

4 7520 796 

5 7144 640 

6 6770 436 

7 6786 764 

8 6897 655 

9 6585 656 

10 6601 562 

 

Figure 29 is the bar-graph representation of Table 5. Here, we observe a large 

difference in the Multi-Median Optimization and Heuristic algorithms. Also, the heuristic 

is better than the optimization problem in terms of the time taken. 
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Figure 29. Bar Graph showing Runtime Comparison between the Multi-Median 

Optimization and Heuristic (10 Runs).  

5.4.2. Experiment 6 

In this experiment, 10 random networks are generated with 35 nodes, 40 edges, and 

5 optimal locations. This experiment is conducted for test comparison and to test the 

average time taken by different networks with the same number of nodes, edges, and 

optimal locations for the Multi-Center Optimization and Heuristic Procedures. 

Table 6 gives the time comparison values for the Multi-Center Optimization and 

Heuristic algorithms for 10 random networks labeled from 1 through 10 with 35 nodes and 

40 edges. The “Network” column represents the selected network, and the “Multi-Center 

Optimization” and “Multi-Center Heuristic” columns are the amount of time taken by these 

algorithms (measured in milliseconds).  
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Table 6. Runtime information for 10 random networks with 35 nodes, 40 edges, and 10 

optimal locations for the Multi-Center Optimization and Heuristic. 

Network 
Runtime (in Milliseconds) 

Multi-Center Optimization Multi-Center Heuristic 

1 6412 624 

2 6302 577 

3 5974 624 

4 6942 593 

5 5865 483 

6 6053 484 

7 6350 499 

8 6773 484 

9 6148 546 

10 6132 515 

 

Figure 30 is the bar-graph representation of Table 6. Here, we observe a large 

difference in the Multi-Center Optimization and Heuristic algorithms. Also, the heuristic is 

better than the optimization problem in terms of the time taken. 

 

Figure 30. Bar Graph showing Runtime Comparison between the Multi-Center 

Optimization and Heuristic (10 Runs).  
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5.5. Observations 

Let us consider Experiment 5: 10 random networks with 35 nodes, 40 edges, and 5 

optimal locations. The average runtime, standard deviation, and variance are calculated for 

both the Multi-Median Optimization and Heuristic Procedures. 

Average runtime (Multi-Median Optimization) = 7,145.4 milliseconds 

Standard Deviation (Multi-Median Optimization) = 495.8488 milliseconds 

Variance
 
(Multi-Median Optimization) = 245,866 milliseconds

2 

Average runtime (Multi-Median Heuristic) = 670.8 millseconds 

Standard Deviation (Multi-Median Heuristic) = 117.0373 milliseconds 

Variance (Multi-Median Heuristic) = 13,697.73 milliseconds
2 

Let us consider Experiment 6: 10 random networks with 35 nodes, 40 edges, and 5 

optimal locations. The average runtime, standard deviation, and variance are calculated for 

both the Multi-Center Optimization and Heuristic Procedures. 

Average runtime (Multi-Center Optimization) = 6,295.1 milliseconds 

Standard Deviation (Multi-Center Optimization) = 342.9510655 milliseconds 

Variance (Multi-Center Optimization) = 117,615.4333 milliseconds
2
 

Average runtime (Multi-Center Heuristic) =   542.9 milliseconds 

Standard Deviation (Multi-Center Heuristic) = 57.80129 milliseconds 

Variance (Multi-Center Heuristic) = 3,340.989 milliseconds
2
 

As the network size increases in terms of the number of nodes and edges, the 

differences for optimization and heuristic procedures also increase. The larger the network, 

the better the heuristic procedure is over the optimization problem. 
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6. CONCLUSION, LIMITATIONS, AND FUTURE WORK 

6.1. Conclusion 

Phasor Measurement Units are used to monitor smart grid networks. Because PMUs 

are expensive and not economically feasible, we have limited the number of PMUs to 

locate. The current research aims to overcome these problems by proposing a heuristic 

method. This method can be applied to place the available PMUs on a smart grid network 

at incumbent locations. Various factors, such as minimizing the total average distance and 

minimizing the maximum distance of PMUs, are considered depending on the method. 

Based on these above factors we have utilized the K-Median algorithm for minimizing the 

total average transportation distance and the K-Center algorithm for minimizing the 

maximum distance of every node to the facilities.  

A code was developed for K-Median Optimization and Heuristic procedures, K-

Center Optimization and Heuristic procedures and for generating random network, given 

the number of nodes and edges. Further, testing has been conducted on IEEE Standard 14 

and 30 bus system network for both optimization and heuristic procedure. Also, testing has 

been conducted on 10 random networks generated with equal number of nodes and edges.  

The primary objective of this research is to develop a heuristic which can locate the 

PMUs on a smart grid Network in a shorter time and, therefore, calculate fewer 

combinations as compared to the optimization problem. The results were in tandem with 

our objectives laid down for this research. The computational time difference (in 

milliseconds) between the optimization problem and the heuristic procedure is presented by 

graphs in Chapter 4. Based on our research it was observed that as the network size 

increases, the heuristic method is more feasible than the optimization method.  
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6.2. Limitations 

Although these optimization algorithms give the optimal solution for k locations, as 

the network size increases, the number of calculations for nCk combination increases. One 

of the significant limitations for employing these algorithms is to compute nCk 

combinations of data; we need a very large memory to store the data. 

6.3. Future Work 

In some cases, the heuristic solutions may not be exactly similar to optimal 

solutions. In such scenarios, a case-improvement algorithm can be defined. This algorithm 

aims to obtain the same solution as the optimal one and is much quicker than the 

optimization problem. The memory problem can be overcome by improving the algorithms 

in such a way that computing a few combinations can be avoided to improve and accelerate 

performance. 

  



56 

 

BIBLIOGRAPHY 

[1] Energy.gov. (n.d.). Smart Grid. Retrieved October 15, 2012, from 

http://energy.gov/oe/technology-development/smart-grid  

[2] Smart grid. (n.d.). Wikipedia. Retrieved October 15, 2012, from 

http://en.wikipedia.org/wiki/Smart_grid  

[3] Phasor measurement unit. (n.d.). Wikipedia. Retrieved October 16, 2012, from 

http://en.wikipedia.org/wiki/Phasor_measurement_unit  

[4] Gyllstrom, D., Rosensweig, E., & Kurose, J. (n.d.). Max Observability PMU Placement 

with Cross-Validation. Max Observability PMU Placement with Cross-Validation. 

Retrieved October 16, 2012, from http://people.cs.umass.edu/~dpg/pubs/tech11.pdf  

[5] Singh, B., Sharma, N., Tiwari, A., Verma, K., & Singh, S. (2011). Applications of 

Phasor Measurement Units (PMUs) in electric power system networks incorporated 

with FACTS controllers. International Journal of Engineering, Science and 

Technology, 3(3), 64-82. Retrieved October 16, 2012 . 

[6] Narendra, K. (n.d.). Role of Phasor Measurement Unit (PMU) in Wide Area 

Monitoring and Control. Role of Phasor Measurement Unit (PMU) in Wide Area 

Monitoring and Control. Retrieved October 17, 2012, from 

http://www.erlphase.com/downloads/application_notes/Roles_of_PMUs_in_Wide_

Area_Monitoring_and_Control.pdf  

[7] G, S. (2012, June 25). Mod-08 Lec-32 Location problems -- p median problem, Fixed 

charge problem. YouTube. Retrieved October 23, 2012, from 

http://www.youtube.com/watch?v=82OUSjOM2bg  



57 

 

[8] Facility location. (n.d.). Wikipedia. Retrieved October 24, 2012, from 

http://en.wikipedia.org/wiki/Facility_location  

[9] Larson, R. C., & Odoni, A. R. (1981). Network Applications. In Urban Operations 

Research. Englewood Cliffs, NJ: Prentice-Hall. Retrieved November 15, 2012, from 

http://web.mit.edu/urban_or_book/www/book/  

[10] J, R. (2005, August 11). Methods for Solving the p-Median Problem: An Annotated 

Bibliography. Retrieved October 27, 2012, from 

http://ramanujan.math.trinity.edu/tumath/research/reports/report96.pdf  

[11] Lazic, N., Frey, B. J., & Aarabi, P. (2010). Solving the Uncapacitated Facility 

Location Problem Using Message Passing Algorithms [Abstract]. Journal of 

Machine Learning Research, 9, 429-436. Retrieved October 27, 2012, from 

http://jmlr.csail.mit.edu/proceedings/papers/v9/lazic10a/lazic10a.pdf  

[12] Shmoys, D. B., Tardos, É, & Aardal, K. (1998). Approximation algorithms for facility 

location problems (extended abstract). STOC '97 Proceedings of the Twenty-ninth 

Annual ACM Symposium on Theory of Computing, 265-274. doi: 

10.1145/258533.258600  

[13] Jain, K., Mahdian, M., Markakis, E., Saberi, A., & Vazirani, V. V. (2003). Greedy 

facility location algorithms analyzed using dual fitting with factor-revealing LP. 

Journal of the ACM, 50(6), 795-824. doi: 10.1145/950620.950621  

[14] Jain, K., Mahdian, M., & Saberi, A. (n.d.). A new greedy approach for facility location 

problems. STOC '02 Proceedings of the Thirty-fourth Annual ACM Symposium on 

Theory of Computing, 731-740. doi: 10.1145/509907.510012  



58 

 

[15] Hajiaghayi, M. T., Mahdian, M., & Mirrokni, V. S. (2003). The facility location 

problem with general cost functions. Networks, 42(1), 42-47. doi: 10.1002/net.10080  

[16] Khiabani, V., Yadav, O., & Kavesseri, R. (2011). Reliability-based placement of 

Phasor Measurement Units in power systems. Manuscript submitted for publication, 

North Dakota State University, Fargo.  

[17] Younes, M., & Khodja, F. (n.d.). A Hybrid Harmony Search Algorithm Approach for 

Optimal Power Flow.  

[18] Gitizadeh, M., & Kalantar, M. (2009). A novel approach for optimum allocation of 

FACTS devices using multi-objective function. Energy Conversion and 

Management, 50(3), 682-690. doi: 10.1016/j.enconman.2008.10.009  

[19] Test Systems. (n.d.). Test System. Retrieved December 26, 2012, from 

http://itee.uq.edu.au/pss-l/test system.htm  

[20] NetBeans IDE Features. (n.d.). NetBeans IDE. Retrieved January 20, 2013, from 

http://netbeans.org/features/index.html 

[21] NetBeans. (n.d.). Wikipedia. Retrieved January 20, 2013, from 

http://en.wikipedia.org/wiki/NetBeans 

[22] JGraphT. (n.d.). Welcome to JGraphT. Retrieved January 20, 2013, from 

http://jgrapht.org/ 

[23] JGraphT: A free Java graph library. (n.d.). JGraphT: A Free Java Graph Library. 

Retrieved February 22, 2013, from http://www.jgrapht.org/javadoc 

[24] Combinatoricslib 2.0 Features. (n.d.). Combinatoricslib - Very Simple Java Library to 

Generate Permutations, Combinations and Other Combinatorial Sequences. 

Retrieved January 22, 2013, from http://code.google.com/p/combinatoricslib/ 


