A COLLABORATIVE AGENT-BOX SYSTEM

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Kunal KishoreSingh

In Partial Fulfillment
for the Degree of
MASTER OF SCIENCE

Major DepartmentProgram

Software Engineering

March2013

Fargo, North Dakota

North Dakota State University
Graduate School

Title

A CollaborativeAgentBox System

By

KUNAL KISHORESINGH

The Supervisory Committee certifies that tthisquisitioncomplies with
North Dakota State Universityos

for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Kendall E.Nygard

Chair

Dr. Saeed Salem

Dr. Nikita Barabanov

Approved:

04/05/2013 Dr. Brian M. Slator

Date Department Chair

ABSTRACT

In this paper | presentraulti-agent gstemthatai ms at demonstrating
collaborative behavior when a number of intelligent agents are clustered together within one
environment. This study draws inspiration from a research pubbeatitted as Agent
Collaboration and Social Networks, authored by R. Sean Bowman and Henry Hexmoor, which
aims at demonstrating agent collaboration by implementing a game of agents, boxes and holes.

Similar to the strategies discussed in paper and avittw design modification®f my
own | haveimplementeda simulationthatstarts withagentspoxes and holes placed in a random
order on a square grid. The goal of the agents is to capture a boxaaftey some negotiations
with other interested agentsarry and drophe identified box into a hol®]. The agents have to

achieve their goal in a minimum possible time by opting for the shortest available route.

ACKNOWLEDGEMENTS

| would like to thankmy advisorDr. Kendall E. Nygard for hisontinued support
through the duration of my papandfor his guidanceover the period of my graduate studies at
North Dakota State Universit\y sincere gratitude to the all the members of the supervisory
committee Dr. Saeed Salem and Dr. Nikita Baraba without whose participatiorand
assistancéhis study would not have been succesdfubnestlyappreciatetheir time and interest
in this study

Last but not least | would like to take this opportunity to express my heartfelt thanks to
my family for their blessings and my friends for their constant help and motivation to

successfullyundertake andomplete myresearch

TABLE OF CONTENTS

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

/////////////////////////////

""""""""""""""""

"""""""""""""""""

2. DEVELOPMENTPHASE® é ¢ ééeéecéeééeééeeéeéeéeéeéeté
2.1, SyStem REQUITEMENTSooiiiiiiiiii et enenees 2
2.1.1. Functional REQUIrEMENTS..........uuuiiiiiiiiiiiiiiieeeiieie e e e s eeemr e e e e e e aaeeeeas 2
2.1.2. Nonfunctional ReqUIrEMENTS:..........ccoiiiiiiiiiiiiiieeee e e e eeeaaanees 5
2.1.3. Interface REQUIrEMEITLS.........ccooiiiiieeiiii e e 5
2.1.4. Data REQUINEMENTS.......uuuiiiiiiiiiiiiiiie e eeemee ettt e e e e e e srmmme e e e e e e e aeeennnen 6
2.15. Requirement LiIMItatiONS:........ccuiiiiiiiiiiiii i 7
2.2, SYSTEIM DSttt e e e e e e e e e e amet et e e e e e e e e e e e e e nnne e 7
2.2.1. USE CasSe DIagramS......ccuuuuiuuuiiiiie i s e s eeeereiitiis s s s e e e e e e e aaesemaesaaaseaaaaaaaaaeeeeseennne 8
2.2.2. ACHVItY DIagramsS:........ccoiiiiiiiiiiiiii oot e e emr e e e e e e e e eaeeaeaan 11
2.2.3. Class Diagram........uuuueiiii i e e e e e e eeeeiiee e e et eeee e e e e e e e e e e e ————— 14
2.2.4. SeqUENCE DIAgIamM....ccciiiiiiiiiiiiie e e e e e e eas 15
225 Agent gcleil. . e s 16
2.2.6. Low-Level Design DetailS:.........ccuuviiiiiiiiiiiiiiee e 17

\Y

VA

.V

2

2.2.8. Additional Design CoNSIAeratiONS:........uuuuuuuuiiiaseeeeeeeeririiaaaae e e e e e e eeeeeaneneaeens 24
2.2.9. User INterfaCce DeSIGN.........uuiiiiie i e e eeee s eeeeiee e e e e et enme e e e e e e e e e e 24
2.3. System INpPlemMeNntation:.............uuuiiiiiii e e e e e e e eererrs e e e e e e e e e e e e eeraaane 25
VA5 (=] 0 I =TS 1 Vo OSSO 26
2.4.1. TeStiNg APPrOaCH:......ooviiii e 26
2.4.2, TSt MG ittt 27
2.4.3. TeSE CaASES. . ittt ere e e e e 27
LS S UES . ..o e e ne et e et e e an e e e e e e e e e e e e nnn e ean 34
SCREEN CAPTURES. ... ettt m e e e e et e e e e e ennmeeennes 35
CONCLUSION. L.ttt e e e et e e e e et e bb st e e e e e eeenand 40
REFERENGCESot e e et e e e e e naaan s 41

Vi

LIST OF TABLES

Table Page

1. Functonale qui r ement s of the application&3¥éeéeécécé:
2. Nonfunctionalreggi r e ment s of éettReE é&p@gléiécat ié@ s

3. Interface requiremmnt s of the applicationééécéeéecéécece
4. Datarequirementsf t he applicatiofaéééeééééeéé. . 7

5 Limitations oftheappi cat eé6 a6 éeéééeéeééé eééeeééeéré

6 Methods and method signatures of claag@Boarde € ¢€ é € € é é € € é € € .18

7. Methods and method signatures ofclags®Ut i | ity ééééé&éé& .18

8 Methods and method signatures of classi@antologye ¢ € € é ¢ € é é € é é .19

9 Methods and method signatures of class XMLMesgageé € € é € € € é € é . 19

10. Methods and method signatures of clagsd®tessageé ¢ € ¢ é é ¢ é é 20.

//////////////

11. Methods and method signatures of classRenté ¢ ée e e e e e é é é é é é .20

12. Method and method signatures of class Receigedhiges é ¢ € € é ¢ € é é é .21

////////

13. Methods and method signatures of class BoxHatekBehavioe é é é ¢ ¢ € € .21
14. Method and method signatures of class GetBoxBadbré € € é € € € é € é é . 22
15. Method andmethod signatures of class GetHoleBeioré ¢ ¢ ¢ e e € € € é é .22

,,,,,,,,,,,,,,

16. Methods and method signatures of class Navig&iéné ¢ ¢ é é e e e e € € é 23

,,,,,,,,,,,,,,,,,,,,

17. Black-boxtestcases a bl eé éééééeécééeecééeecééceeéeé . 27

vii

LIST OF FIGURES

Figure Page

1 Use case diagram showing agentactioe é € ¢ é e € é é € € é é é 8

2. Use casediagrammh owi ng an agentds navigati ea®éeéeééece
3. Use case diagram showing an agento6s Onoti fi
4. Use case diagram showing an agentodéds Omemory
5. Activity diagram showgngdéagéatéséméelémént
6. Activity diagram showing agentods mo%¥2e ment
7. Activity diagram showing an agento6sl3negoti
8. Class diagram showing different classes and theirl at i o eeéiépge é ¢ 14.

9. Event diagram showing exchange of mEssages

100 Di agram showi rcgy cd re éaegeeenétédese eléiéféec e e € él® é .

11. I nitial wuser interface prototypeééédhéeéeéécece
12. I mage displaying first stage after 8he app
13. I mage displaying a stage after user3starts
14. I mage displaying end of the gameéééd&reéeéeé
15. Imagedisplayjg Remot e Agent Management us8&8r inte

,,,,,,,,,,

16. Image displaying messages exchanged between agénts é é ¢ € .é.é é € é .39

viii

1. INTRODUCTION

A multi-agent gstemis comprisedf intelligent agents that collaborate with each other
in an environment. These agents are intelligemhputer programs thaise their knowledge to
perform allocated tasks. They act autonomously by controlling their actions to solve specific
problemd3, 6].

The aim of this papes to demonstrate collaboration among multiple agentstiab
push boxes into holes on a square griche paperi | ustr ates agent 0s
communication models therelpyoposingan efficientway that will assist agents to accomplish
their objective. The movement model outlines the path traversed by agemetsch a known
destination whereas the communication model describes what messages are exchanged, when the
message exchange should talecpland how frequently the messages must be sent and received.

Java AgentDevelopnent Framework(JADE) is used to implement thé&gentBox
application.The format for exchanging agent messages is specifiefigept Communication
Language ACL) languagethat is defined by standard organization, Foundation for Intelligent
Physical AgentsKIPA). All the operations performed by an agent during its life span and that
are fundamental to the development of this application are also identified in this paper.

In section 2of this paperall the development phases leading to construction of the
application are described. Sectiomd8ntifies issues found during the testing of the application.
Section 4contains screen shots of different stages of the applicatidrsection 5 concludes the

paper.

2. DEVELOPMENT PHASES
The design processuiding thedevelopment ofAgentBox collaboration applications
based on Waterfall Model. The implementation of the project is broken down intenfgar
phases namely:
Phase 1 SystemRequiremers.
Phase 2 System Design.
Phase 3 System Implementation.
Phase 4 System Testing.
2.1. SystemRequirements
The start of the application shouttbmonstrate random placement of agents and objects
(boxes and holes) on a square gilidle agents should aim to acquire a box in their line of sight
by negotiating with other agents interested in the same box. The agentsiike be able to
carry the identified boxowards a hole and finally drop the box into the hole. Once an agent
drops a box into a hole it should wander randomly on the grid and look for other unassigned
boxes.The end of the application should be markgdiling all the holes on the grid.
The following section will discuss all th&unctional, noAfunctional, interfaceand data
requirements needed to build thgentBox application The requirementsvill be detailed
enough to cover all the primary amdportant functionality of the application.

2.1.1. Functional Requirements

Therequirements to capture the intended behavior of the systeouthireedin Table 1
below [19]. The ®llowing headings will be used to indicate the commitment level of each
requiremat.

T Commit (C)i Indicates that thgiven requiremenwill be implemented.

i Target (T) i Indicates that the given requirememtill be aimed for but the
implementation will not be guaranteed.

Table 1:Functional requirements of the application.

REQ-ID | Description C T

FR#1 Objectsshallbe placed randomly on the grd the| C
start of the applicatian

FR#1.1 Boxesshall be placed randomly on the grad the| C
start of the applicatian

FR#1.2 Holes shallbe placed randomly on the grad the| C
start of the applicatian

FR#1.3 Agents shallbe placed randomlgn the gridupon| C
clickingt he &6 Sts@arh utAtgemt

FR#1.4 Placementof agentsshall rot overlap with objecty C
placemenbn grid.

FR#1.5 Placement of boxes shall noverlap with holeg C
placement on grid.

FR#2 All agents on the grid shall exchange informat C
on location of boxes with other agents.

FR#.1 All agents on the grid shall exchange informat C
on location of holes with other agents.

FR#2.2 All agents on the grid shall exchange informat C
on their current location with other agents.

FR#3 All agents on the grid shall exchange informat C
by sending notifications to other agents.

FR#3.1 Agent shall send a notification to all other age C
after identifying an object.

FR#3.2 Agent shall send a notification to all other age C
after picking a box.

FR#3.3 Agent shall send a notification to all other age C
after depositing a box int@ hole.

FR#3.4 Agent shall send a notification to all ethagents C
on their way towards an object

FR# All agents on the grid shall make use of their | C
of sight to exchange information.

FR#.1 All agents on the grid shall be able to ideni C
objects located up to 4 squares from their cur
location.

FR#4.2 All agents on the grid shall be able to idenf C
objects located in 4 directions from their curr
location.

FR#4.3 All agents on the grid shall not be able to idenn C
objects located on their diagonals

(continued)

Table 1: Functional requirements of the applicafmontinied)
REQ-ID | Description C
FR#5 Agent shall settle for an object at the shor
distance from its current location.

in an object to all other agents.

C
FR#5.1 Agent shall send a notification regarding its intey C
C

FR#5.2 Other agents interested in the same object ¢
only approach that object when they are at a sh
distance.

FR#5.3 Other agents interested in the same object § C
send a notification regarding their interest in t
object.

FR#5.4 Agent whose name comes first in alphanum(C
order shall approach the object of interest if twg
more agents are at equal distance from that obje

FR#6 Agents shall remember the location of obje
informed by other agents on the grid.

FR#7 Agents shall have knowledge on objects that h
been consumed by other agents on the grid.

FR#8 Agent shall pick a box once it has the knowledg

its box of interest.

FR#8.1 Agent shall not be able to pick another box unt
deposits the box, which it is carrying, into a hole

FR#9 Agent shall carry a box towards a hole once it
the knowledge of its hole of interest.

FR#10 Agent shall deposit a box into a hole.

FR#11 Agent shall look for other unassigned boxes on
deposits a box into hole.

FR#12 Agent shall wander randomly on the grid until
finds an unassigned box.

FR#12.1 | Agent shall be able to makdedt turn on the grid.

FR#12.2 | Agent shall be able to make a right turn on the g

FR#12.3 | Agent shall be able to move in a forward direct
on the grid.

FR#12.4 | Agent shall be able to move in a backw
direction on the grid.

FR#12.5 | Unloaded agents shall not be able to move thrg
squares containing holes.

FR#12.6 | Loaded agents shall not be able to move thrg
squares containing another box.

FR#12.7 | Loaded agents shall be able to cross paths
other agents on the grid.

O O O O O O00 O OO0 O O O O O

FR#12.8 | Unloaded agents shall be able to cross paths
other agents on the grid.

(continued)

Table 1: Functional requirements of the applicafmontinied)

REQ-ID | Description C T
FR#13 Remote Agent Management GUI shall be launc T
whentheuser clicks ORO6 bl
FR#13.1 | User shall be able to suspend an agent using T
Remote Agent Management GUI.

FR#13.2 | User shall be able to resume an agent using T
Remote Agent Management GUI.

FR#14 Sniffer GUI shall bdaunched when the user clic T
60S6 button on the intg¢

FR#14.1 | User shall be able to view all notifications sent T
an agent using the Sniffer GUI.

FR#14.2 | User shall be able to view all notifications recei\ T
by an agent using the Sniffer GUI.

2.1.2. Nonfunctional Requiremernts

Some of the characteristics amdportantquality attributes like reliability, portability
maintainabilityand usabilitythat must be taken into consideration while building the application
areoutlined in the tabléelow(Table 2)

Table 2:Non-functional requirements of the application.

REQ- ID Description C

NFR#1 The application shall not crash except in the ey C
of an operating system or hardware failure.

NFR#2 The applicationshall run on any environmel C
supporting JDK 1.5 and above.

NFR#3 The applicationshall run on any environment wii C
access to a JVM.

NFR#4 The applicationcode shall be modular to pernt C
future modifications

NFR# The applicationshall be maintained bpdequatg C
documentation ofode.

NFR#6 The applicationshall be provided with &ld| C

documentation Source code, Packaged filesgsT
cases and results.

NFR#/ The application usage shall not require a usg C
have any kind o§pecial training.

2.1.3. Interface Requirements

The requirementtghat should beaken into consideratioso asto design a user friendly

interface are captured in the table bel@able 3)

5

Table 3:Interface requirements of the application.

REQ- ID Description T

@

IR#1 Thenumber of rows in the grid shall be 15. C

IR#2 The number of columns in the grid shall be 15. C

IR#3 The number of agents on the grid shall be 10. C

IR#4 The agents shall be denoted using a lorry. C

IR#5 The agents shall be numbered for uniqy C
identification.

IR#6 A red circle marked wi C
hole.

IR#7 A solid black square shall depict a box. C

IR#8 A hole shall disappear from the grid once anag C
deposits a box in it.

IR#9 Buttonwith texto A g e shalldeédisplayed ontg C
right section of the interface.

IR#10 Button with text 6 B o xshadl be displayed ontg C
right section of the interface.

IR#11 Button with text 6 H o |slealt lde displayed on tg C
right section othe interface.

IR#12 Button with text 6 Rshall be shall be displayed ¢
top right section of the interface.

IR#13 Button with text 6 Ssball be shall be displayed ¢
top right section of the interface.

IR#14 A log section containingnformation ona g e r
notification to other agentshall bedisplayed af
bottom right sectiomwf the interface.

IR#14.1 Users shall be able to filter the latgpendingon
their choiceof agents.

IR#15 Buttonwith text6 R e f shallsbl displayed on th
bottom of the log section of the interface.

IR#15.1 | Users shall be able to update messages in the I¢
clicking the O6Refreshi

2.1.4. Data Requirements
Therequirements ut | i ni ng t he f or manotifieatiodmessage are n t

identified below(Table 4)

of

Table 4:Data requirements of the application.

DR#1 XML format shall be used to represent ag C
notificationmessages.

DR#2 XML document shall follow w3g C
recommendations.

DR#3 XML document containing message content s| C
be created.

DR#4 All message content shall be contained wif C
meaningful XML tags.

DR#4.1 Meaningful XML tags shall be setfescriptive. C

DR#5 Message content shallnc |l ude an C
location.

DR#6 Message content shall include an object type. C

DR#7 Message content shall C

DR#8 Message content shall C

2.1.5. Requirement Limitations

The following constrairts shall be considereduring design and implementation phases
of the applicatior{Table 5)

Table 5:Limitations of the application.
Hardware Limitations None.
Architecture Limitations None.
Language/ToolLimitations | Developmenwill be done in JAVA.
AgentBox Systemwill be implemented usin
JADE Agent development framework.
Agent Communication Languagell adhere to
FIPA Standard¢FIPA-ACL).
Development will be donasingEclipse IDE.
Security Limitations None.

2.2. System Design

The following sectiorwill discuss all the architectural, interfa@ed component level
design needed to build thegentBox application. It will provide a detailed view of primary
components of the application so as to cover up alfuhetional, norfunctional and interface

requirements outlined in the System Requiremeattion.UML (Unified Modeling Language)

notations wi ||l be used to meewletmpamensStaticovieaw i on o s
of the application will belepicted using alass diagram. Dynamic view will be specified e
case activity andsequence diagranf2].

2.2.1. Use Case Diagrams

Auser 0s swiith thersgsterh areillustrated usingecase diagrams. The figures
below describdnigh-level system functions and actors (ageint this case)nteraction with the
system.The use case diagram below identifies all the actions performed by an agent during its
life-cycle on the square grid. The agents are involved in a number of activdtesang from

performing their respective tasks to communicating information to other agents on the grid.

Wander randomly

Exchange

information

Identify Box

Carry Box towards
hole
Drop Box into hole

Figure 1:Use case diagrashowing agent actions.

8

The agentés movement on a grid is restrict

to reach theiobject of interest. All agent movements are pointed out in the diagram below.

Wander randomly

ee upto 4 squares
in 4 directions

Make right turn

Can cross each
others path

Cannot cross path
if Hole exists

Cannot cross path
if Box exists

Figure 2: Use case diagram showing an

All active agents on the grid need to constantly communicate with one another by

exchanging meaningful messages. The content of the messages should be informative enough to

guide an agent to their object of interest.

Notify own location

Notify Object type

Notify Object’s
location

Agent

Figure 3: Use case diagram showinggag e nt 0 s

not

di agram below highlights an agentods

Remember Object
type

Remember Box
location

Remember Hole
location

Remember consumed
Objects

Figure 4: Use case diagram

10

ficat

Theagents shall have a memory that will keep track of an objects locatic@oantd The

i on.

awar eness

showi

ng

an

2.2.2. Activity Diagrans:

The diagrams belowlepict stepwise activities, actions and flow of control of different
components of MultAgent applicationAgents on the grid carry out number activities from the
moment they are active and until they die. The activity diagram below identifies all the

movements, the order and the approach followed by agents to accomplish their objective.

Gandom placement of Boxes, Holes and Agents)

Agents can see upto 4 squares in 4 directions
[mot identified]

wander randomly

[not identified] Identifiy box | /\Inform other Agents h

ANAEY
T

Identify hole l Move towards box '
Pick up the box l

| Inform other Agents —{ Inform other Agents l
Move towards hole

Drop box into hole

l Inform other Agents {if Yes)

Gheck for more boxe

IR

Y

Figure 5: Activity diagram showing agen

11

The agents remain in constant touch with other agents by sending and receiving

notification messadg

es. Messages are

exchanged

Wander randomly

Object can be a Box or a Hole, B‘

Notification contains Agent's loation,

i

(Receive notification on Objects from other Agentsj

(Check for Objects in Line of Sigha

Agents Line of Sight is 4 squares

Approach Object

[> 1 Object]
~J

[
[>1 Object]

Calculate distance

in 4 directions.

Object type & Object location,

Continue moving towards Original Object of interesa—

[if equal
distance]

Choose randomly

v/

Gettle for Object at shortest distancej

=

A

—

(Move towards Object of interestj

kKeep looking for Objects)

Recelve notification (or)
check in Line of Sight

)

Consume Object

Notify other Agents

Check for more Objects

Figure 6: Activi

12

ty

di agram showi

ng

agent 6

A number of agets may qualify for an object. In such cases the concerned agents have to
negotiate with one another before approaching their object of int€hestliagram below

depicts the approach adopted when more than one agent compete for an object.

(Wander randomla
l Identify Object I
Gnterested Agents negotiata

[if Yes] [>1 Agent]
Agent names sorted alphanumericalla

' Approach Object [

(Inform other Agents)
Gheck for more Objectg

)%

o

Figure7Act i vity diagram showing an agent &

13

2.2.3. Class Diagram:

The diagram below shows different classes, attributes and methodsgeoft-Box
application. Relationships among classes are depicted using abetags about each Class that
comprise of dlimportant methods, ntieod signatures (parameters, data egtdrn types) are

provided incorrespondinglass tables (Table 6 to Table)1i6 section 2.2.6.

<<Java Class=> <<Java Classs» <<Java Clasg>>
(B MASUtility (® GameBoard (3 Navigation
multi.agent system multi.agent. system. gui multi.agent system agents.
o host: String o timer: Timer o location: Point
o port: int o atartX: int o farget: Point
nsr Runtime o startY’ int © mapper: CustomPathFinder
@ AGENT_NO: int @ separation: int o stepsize: int
SSSTARTING: boolean o X_BOX_COUNT: int o currentstep: int <<Java Class>>
o sep: String o Y_BOX_COUNT. int o path: Path @HoxHofeag!ez:SBeﬂawouf
o LOG_FILE: String o holes: ConcurrentiashMap<String, Integer(l> n
OENawgatlun(ﬁuxﬁ«ganwulnt; mult agent system.agents.
o mc: AgentContainer o boxes: ConcurrentHashMap<String,Integerl> & ntvoid
o names: String]] o agentData: Concurr ing Ag p 5 mm'éack(\ - & BuxHoleCheckBehaviour(BuxAgent)
o remember: ConcurrentHashMap<String, String> o Buttont: JButton @ getLoca ! Point @ notifylUnNotified():void
£ z tLocation():Poin
Sused: ConcurrentHashMap=String, String= o jButtoniioreBoxes: JButton . () . @ getvisibleUnhotifiedHolesBoxes(): Set<String[=
@ setLocation(Point): void
@ hasBeenNotified{Foint Siring) boolean m% = JButtonioretoles: JButton © navigaleTo(Point):void
& clearllotified(Strng) void 01 ° [ButtonRIiAAgent: JBution & setTarget{Point):void
DBMASUIiIiW(GamaBUﬂrd} i o jButtonShowSniffer: JBution © hasArrived(}:boolean
-masUti .
& createlainContainer() void %| o putonsrartagents: iButon & hasCompletedCurrent3tep() boolean
@ startOtherAgents(int):void 0 o jComboBoxFiterAgentNames: JComboBox © navigate(vold <<Java Class=>
© gethgents(:Set<BoxAgents ¢ lLabelt: JLabel @ generateRandomDestination():Point (9 GetHoleBehaviour
@ getAgentLocationCollection() Collection<nteger]]> o Panelt: JPanel & hasTarget(-boolean mut 3gent system agents
© Kilgent(String) void © [Panel2: JPanel & randomiiavigation():void a start: baclean
addAgent(BoxAgent) void B[RRI isLost()
@ addAgent(s o SerolFanst: SeralP isLost{J-boolean & GatHoleBenaviour(BoxAgent)
@ moveAgents():void [EER AT b A goingToAHole():boolean ction{):void
@ getagenthames():String[] o TextArealog: JTextArea o @ action():voi
) A unBlock(Point):void @ gethlearestHole() ObjectOfinterest
v [0r Feameboard) © uadataPath()void
@ pa?int[Graphics}:vmd @ refreshPath():void <<Java Classs>
«<<Java Class=» @ intComponents():void @ isGoingToABox():boolean (5 GetBoxBehaviour
(@ XMLMessage @ jButtonlorsBoxesActionPerformed(ActionEvent): void mufti.agent system.agents
muft agent system E jButtenStartAgentsActionPerformed(ActionEvent)veid
o ot String @ jButtenMereHolesActionPerformed(ActionEvent):void ()DGetBUXBahawuur(BuxAgent)
o hyphenated_coods: String aj th hanged(tenEvent):void OTETrint T
o baxCount: int E jButten1ActionPerformed(ActionEvent):void -agent |0..1 +agent DG B R U
o holeCount: int ® jButtenRMAAgentActionPerformed(ActionEvent):void
o steps: nt @ jButtenShowSnifferActionPerformed(ActionEvent):void <<lava Class»> s
o done: int @ drawGrid(Graphics):void eBoxAgem “an vass
mult zgent system sgarts (®GameOntology
o agentlocation: Siring .
0.4 mult.agent system
-guy 0. o tally: ConcurrentHashiap<String Integer>

o sgen: String o coord: nteger] 7 ONTOLOGY_NAME: String

o seenAt String 5
o ineSeen Siing o hasHadObjectStolen” bookean o instance: Ontology

pv— o receiveds: int ()sgetlnstanca(}:omu\ugy
gc)g:“_;neu n N — * o |ookingFor: String & GameOntology()

MLMessage(int Strng String) 7 o objectOfinterest: ObjectOfinterest T
© sefDonefint) void <<Java Class=> E Map '
iLiessage() © SendMessage 0.5 ‘{B“*“ge”t@ :
& XML Message(String) mutiagent. system OSW i
© getdbj()String @ receipients: String] gelllas(ASUity <<Java Interfaces=
@ setObj(string)void a performative: int o setGuGameBoard)void {3 XMLMessageVocah
@ getHyphenated_coods():String o language: Codec & sefup(jvoid muiti agent system

o takeDown():void
© setfyphenated_coods(String)void D EE RO . UHGH‘Event;(GmEvem_m S XHL_NESSABE_SERVICE: String
@ getSteps()int & Sendhlessage(Agent, Stringl int XWLNessage) ; mGu‘Evam(GmEvagrw : % XUL_MESSAGE_DBJECT_TYPE: String
@ setSteps(int)void @ action()void : - " F XML_MESSAGE_COORDINATES: String
@ posthlessage{String):void _— =

@ getStartingCoordinates():Integer]] _—
«<<Java Class=> . N SSAGE_COMPLETED: String
@ hasNavigater():boolean —_——— =
(©LogAgent <xJava Class=> 2 stopliovingOvoi F XNL_MESSAGE_AGENT_LOCATION: String
i agent system agents (9 ReceiveMessages :B (gfu n S XML_MESSAGE_SEEN: String
I A& pickBox():bo =
o log_file: String multi.sgent system agents : ' N “f XML_MESSAGE_SEEN_AT Siring
oqueue: LinkedBlockingQueue<Strings - L fole(vod SF XML_MESSAGE_TINE_SEEN: Sirin
&Rec ges(BoxAgent) & hasDestination():boolean %F;-g)
osgetGul(} GameBoard @ action():void @ hasTarget()boolean SOFX—ML MESSAGEICONES TORCREED ?trlng
()ssetGui(GamaBuard}:vuid @ notifylnterestinObject(XMLMessage, int):void XML_MESSAGE_BOXES_PICKED: String
.Saddr.\essage(slring} void @ allowNessaging():boolean
ocLugAgem(}
< setup(lvoid

Figure 8: Class diagram showing different classes and their relationships.

14

2.2.4. Sequence Diagram

Interactions between agents of the application showing sequence of messages exchanged
between them are depicted in the event diagram belbowe an agent acquires an object, a
notification message containing agie nothdjse cltodcsa tt

should be issued to all other agents.

Agent 8 Agent 2 Agent 6 Agent 1 Agent 3 Agent 10 Agent 4 Agent7 Agent9 Agent5
T T T T T T v ! Y :
! _!_ _!_ Informi{) '_L _!_ _!_ -L -L 'L 'L

informl() nforin) formi)
Inform
inform() foml)
intorm|
inform|} .
inform() inform()
inform{}
inform()
—informi}
inform()
inform()
inform(}
nform(}
inform()_
inform)
Infomj nform()
I
inform() inform{}
Informi)
inform{}
infarm{)
inform() inform()
inform()
inform)
inform}
Bt inform)
inform{}
inform() [&-inform() ol
inform{} inform(}
: inform(}
inform{} inform(),
inform{ }
inform()
inform(}
inform()
U
| | I ' ' ' ‘ ' ' '
| | | | | | | | | |
| | | | ! ' ‘ ' ' '
| | | l ! ' ' ' ' :

Figure 9: Event diagram showing exchange of messages between agents.

15

225. Agent &gclelLi f e

The diagram belovdisplays operations performed by an agent during its life span
from the moment amagent is active untiit is terminated(no more registered with the Agent

Management Systend].

Ggent InitializatioD

(Agent Behavior)
[Active]
Ggent Com municatioD
Qgent TerminatioD
Figure 10: Di agr amcydehowi ng an agent 6

2.2.5.1. Agent Operations

A brief descriptionof all the operations identified in the above figure is provided below.
Along with the description, names &fA D E At® beGederencedvhich arefundamental to
the development ahgentBox application,are also outlined

1) Agent Initialization:An agent an be created by extending flagle.core.agentlassand

implementing thesetUp() methodof the class.An agent identifier (AID), object of

jade.core.aidclass uniquely identifies all the agents on a platfd&h

16

2) Agent Behavior:The task of an agent is implemented by the Behavior class i.e. by

extendingjade.core.behaviours.behaviogtass A behavior djectis created and then
agent executes this task by calling #uelBehaviour(nethodof the Agent clasgl, 2].

3) Agent CommunicationThe format for exchanging agent messages is specified by ACL

language whicladheres td-IPA standardsThe format contains certain fields that must

be exchanged for agents to communicate with one andtherder to send messages to
anotheragent, an object of thekCLmessagelassneeds to be created, then the required
fields need to be filled out and finally theethod send(has to be calledMethod
receive()is called by an agent when it wants to pick received messages from the message
queuell, 2.

4) Agent Termination An active agent on a platform can be terminated by calling the

doDelete()methodof the jade.core.agentlass Once an agent is terminatedgethod
takeDown()of the same class is called to complete agent alpaoperation$2].

2.2.6. Low-Level Design Details:

This section contains detailed design information that includestréition of all the
important classes, methods andthod signature§arameters passediata andeturn types)f
the AgentBox Application.

2.2.6.1. GameBoardClass:

This Class handles all the events that are triggered as a result of user operation i.e. it
contains action listeners registered to different Ul components. Other methods that deal with
layout (drawing of lines and images), generation of coordinmeholes, boxes and agents are
also defined within this clasS'he &ble below provides details orspecific methods ofthe

GameBoard claggable 6)

17

Table 6:Methods and method signatures of class GameBoard.

Method Name Description Return Type Parameter

drawGrid() To create horizontal and | None g Graphics
vertical grid lines.

drawHoles() | To display holes on the | None g Graphics
grid.

drawBoxes() | To display boxes on the | None g Graphics
grid.

drawAgents() | To display agents on the | None g Graphics
grid.

initializeHoles| To generate random None none none

0 coordinates for placemen
of holes.

initializeBoxe | To generate random None none none

s() coordinates for placemen
of boxes.

generateNew | To generate random None none none

AgentCoordin
ate()

coordinates for placemen
of agents.

2.2.6.2. MASUtility Class:

This Class contains methods related to creation of Main and Agent Containers, creation
of all the System Agents as well as creation of RMA and Sniffer Ag&is.table below

provides details on specific methods of the MASUtility cigszble 7)

Table 7:Methods and method signatures of class MASUTility.
Method Name

Description Return Type Parameter Data Type

createMainC | To create a Main None none none
Ontainer() container using an
instance of JADE runtime
startOtherAge| To create System Agents None no int
nts() within the Agent
Container.
createRMAA | To create a new RMA None none none
gent() agent to monitor agents
via a GUI
startSniffer() | To create a new Sniffer | None none none
agent

18

2.2.6.3. GameOntoloqgy Class:

This Class contains schema that define language and vocabulary used by agents to
communicate with one anothdihis class implements XMLMessageVodaterface that creates
and defines vocabulary used for agent communicafitwe table below provides details on
specific methods of the GameOntology cl@ssble 8)
Table 8:Methods and method signatu@slass GameOntology
Method Name Description Return Type Parameter Data Type
To add a schema to the AgentActi

Ontology and associate it onSchema
with Class XMLMessage,

2.2.6.4. XMLMessage Class:

This Class contains methods for creating XML formatted messages and for parsing an
XML document.The object of this class is passed to the constructor of the SendMessage class.
The table below provides details on specific methods of the XMLMessagd Tcddms 9)

Table 9:Methods and metlabsignatures of class XMLMessag

Method Name Description Return Type Parameter Data Type
asString() To return a document String none none
containing XML
formatted messages.

XMLMessage| To parse the XML none xmlEncod | String
0 document to extract the edString

values from respective

tags.

2.2.6.5. SendMessage Class:

This Class describes behavior for an agent operation using method action(). It extends
Class OneShotBehavi@nd implements the action() method to create a new message of the
ACLMessage classThe table below prades details orspecific method®f the SedMessage

class(Table 10)

19

Table 10:Methods and methagignatures of class SendMessage
Method Name

action()

Description
To run an a
behavior. Receivers,
Language, Ontology and
content of the message a
added andhen sent.

Return Type Parameter Data Type

none none

none

2.2.6.6. BoxAgent Class:

up

a hole and sending notifications to other agente table below prades details on specific

This Class contains methods for agent initializations, agent terminations and agent clean

operations.

Ot her

methods of th&oxAgentclass(Table 11)

i mpl ement ed

met hods

Table 11:Methods and method signatures of class BoxAgent.
Method Name

setup()

Contains agent

Description

initializations and startup
code.

Return Type Parameter Data Type

none none

none

takedown()

Contains agents clean up
operations.

none none

none

notifyGoingF
orBox()

Called when an agent
settles for the nearest bo
and wants to send a
message to all the other
agents.

none Point

Steps

Point

int

notifyBoxPick
ed()

Called when amgent has
picked up a box and wan
to send a message to all
the other agents.

none Location

Point

notifyGoingF
orHole()

Called when an agent
settles for the nearest hol
and wants to send a
message to all the other
agents.

none Point

Steps

Point

int

notifyDroppe
dBox()

Called when an agent ha
dropped a box into a hole
and wants to send a
message to all the other

agents.

none Location

Point

20

ar

e

2.2.6.7. ReceiveMessages Class:

This Class describes behavior for an agent operation using method adtiem(gnds
Class CyclicBehavioland implements the action() method to create a new message of the
ACLMessage class The table below provides details on specific methods of the
ReceiveMessages cla@able 12)
Table 12:Method and method signatures of class ReceiveMessages
Method Name Description Return Type Parameter Data Type
action() Runs an ageilnone none none

after receiving and parsin
the XML message

content.
notifylnterestl | Called when an agent none X XMLMess
nObject() reads thenessage and age
shows interest iobject. length int

2.2.6.8. BoxHoleCheckBehavior Class:

This is an abstract class that exterClass OneShotBehavior of Agent cldsgontains
methods that send notification $gstem agents on objects that have not yet been idenfified.

table below provides details on specific methods oBitweHoleCheckBehavioclass(Table 13)

Table 13:Methods and method signatsiref class BoxHoleCheckBehavior.

Method Nam Description Return Type Parameter Data Type
notifyUnnotifi | Sends a notification none none none
ed() message, containing an

uni denti fie
location, to all the other
agents on the grid.
getVisisbleUn| This method stores none none none
NotifiedHoles | information on
Boxes() unidentified boxes and
holes location.

21

2.2.6.9. GetBoxBehavior Class:

This Class implements the action() method that deals with identification of the closest
box. The agent then sends a message, about its choice of a box, to all thgenke€rhis class
extendsBoxHoleCheckBehavioclass.The table below provides details specific method®f
the GetBoxBehavioclass(Table 14)

Table 14:Method and methodgnatures of class GetBoxBehavior
Method Name Description Return Type Paramete Data Type
action() This method calculates th none
coordinates of the neares
box.

2.2.6.10GdHoleBehavior Class:

This Class implements the action() method that deals with identification of the closest
hole. The agent then sends a message, atsoahoice of a hole, to all the other ageritkis
class extendBoxHoleCheckBehaviorclass. The table below provides details @pecific

methodsf the GetHol8ehaviorclass(Table 15)

Table 15:Method and method signatures of class GetHoleBehavior.

Method Name Description Return Type Parameter Data Type
action() This method calculates th none none none
coordinates of the neares
hole.

2.2.6.11 Navigation Class:

This Class deals with agentés movement on
if they know the | ocation or can randomly mo\
location.An object of this class ipassed to the constructor of tBexAgent class. Each agent
has a navigation object that tellsat is responsible for making sure the agent follows this. path

The table below provides details on specific methods of the Navigdéiss(Table 16)

22

Table 16:Methods and method signaturdsclass Navigation.

Method Name Description Return Type Parameter Data Type
navigateTo() | This method allows an | none p Point
agent to move towards al
identified point.

randomNavig | This method allows agen] none none none
ation() to wander randomly on

the grid.
setTarget() This method allows for | none p Point

navigation towards a
targeted object.
navigate() This method allows none none none
already loaded agents to
move towards their
destination if they are
aware of t hi¢
location and the path.
goingToAHol | This is a Boolean method Boolean none none
e() that returns true if an
agent is moving towards
targeted hole.
iIsGoingToAB | This is a Boolean method Boolean none none
ox() that returns true if an
agent is moving towards
targeted box.

2.2.7. Design Rationale:

Some of he importantdecisions made during the design process and reasons driving
those decisions are briefly described below.

2.2.7.1. Concurrent Hash Map

Concurrent Hash Map {ConcurrentHashMap<String, Integer[]>()}will be used to
initialize holes, boxes and agents on the grid. Since all active agents on the grid are threads and
will simultaneously access and modify maghe programshould bethread safe while allowing

for concurrent modifications.

23

2.2.7.2. A-Sar Algorithm:

This searchalgorithmwill be used for grid traversallhe A-star library has method that
takes input as two positions and plots the shortest path between them avoiding obstacles if any. It
is simple to implement and is known for its performance.
2.2.7.3. Ontology

The Ontolagy that contain agent schemas, will be defined as a Singleton obpeswill
allow only one Ontology object to be shared among different agents on the same Java Virtual
Machine.

2.2.8. Additional Design Considerations:

System Agent monitorinftemporarilysuspension of grid agents or resumption of grid
agents aftem certain period of time) using a Remote Agent Management &dldisplaying
agent notificationsia a Sniffer GUIwill be some of the maichallenges.

2.2.8.1. Performance Considerations:

1. The time diference between messages sent, received and processed by an agent will play

a crucial role as the negotiations between agents may see messages being exchanged to

the tune of 1000 in a few seconds.

2. The | aunch of JADEOGs &eé 8ndfer &UIMGy sleavgdewndéhet G U |

application considerably.

2.2.9. User Interface Design:

The figure belowrepresents the initial prototype of user interfatbe interface is
designed inawaytokeegp user 6s i nt er actBoresn shallibenrppreded a n d

usingsolid square imagesphl es s hal | be indicated with a |

24

ef

et

uni quely

of the interface shall display all the messages exchangeddreagents.

on

t

he

gr i

d.

Ther e wi

be buttons

" R
Al H Agents
B !
Boxes
A2 H AlD
Holes
H !
A3 H H Log
gl -
H Agent
Messages
H A5 Ad
H
B !
A0
" B "

2.3. System Implementation:

Figure 11: Initial user interface prototype.

In this phase the actuaburcecode will be written and system will be built from the

design prototypespecifiedin the previous sectionThe goal of this phase is to translate and

implement the design intprogram code in a manner that will help to reduce testing and

maintenance efforts later.

25

t

The source code will follow an efficient and maintainable coding stytewill adhere to
Sun Jawa coding recommendatiofig0]. Some of theconventionghat will be adoptedare laid
out below.
1. There will be consistent indentation through all the program statements so as to make the
code more readablé.spaces shall be used to indent.
2. ClassesMethods and Variables shall have meaningful names and will convey their intent
of use. Variable and Method names will be mixed case and will start with a lower case.
3. Classes related to one another will be bundled under one package.
4. Methods will perform oa specific task and reasonable number of lines of code will be
written.
5. Bl ock and Inline comments will be used to
Code reviews and inspections will be performed duringetitzedevelopment lifecycle
of AgentBox application Multiple passes through the code, keeping in mind the requirement
and design specifications, will be madéesereviewswill help in early detection of issues and
potential problem$7]. The defects will be analyzed and corredbefore moving onto thaext
phase
2.4, SystemTesting:
The following sectiorshall discuss the testing approabhatwill be adopted to validate
the quality ofAgentBox application.Validation will be done against outlined specification and
will ensure that application fulfillthe intended purpose.

2.4.1. Testing Approach:

The functionality of the application shall be examined using Bleck-box testing

strategy Adequatenumber ofTest Gasesshall becreatedo coverall theimplementedunctional

26

and nonfunctional requirements of the applicatiosufficient GUI testing (covering all user
clicks) shall be done to ensure applicatiomerface is in accordance with the laid out
specifications.

2.4.2. Testltems:

Acceptable number oBlack-box test casewill be identified to test the implemented

functionalities The features to be tested are as follows:

1. Agent 6s pl acement .
2.Agenbs not.i fication
3. Agen® sisibility.
4. Agenbs negotiati on
5. Agen® mavigation.
6. Interface testing
2.4.3. Test Cases:
The following tablelists all set of conditionsis well as adequataumber oftest cases

necessary to testl the implemented functionalities of the applicat{@able 17)

Table 17 Black-box test cases table.

Test ID | Purpose | PreCondition | Input ExpectedOutput | Pass

TC#1 | Ensure random | Applicationis |UserclicksifUpon cl i cki| X
placement of launched. 6Star|Agentsdé but
Agents on the 6Start A g e nt |should be placed
grid. button is button. randomly on the grid.

active.

TC#2 | Ensure placemen| Applicationis | UserclicksifUpon c¢cl i cki| X
of Agents do not | launched. 0Star|Agentso6 but
overlap with 6Start A g e nt |should be placed in
placement of button is button. differentcoordinates thar
boxes on the grid| active. the coordinates of the

boxes.
(continued)

27

Test ID |

Table 17 Black-box test cases table (continued).

Purpose |

Pre-Condition |

Input

Expected Output

TC#3 | Ensure placemen| Applicationis | UserclicksifUpon cl i cKki
of Agents do not | launched. 0Star|Agentsdé but
overlap with 6Start |Agent |shouldbe placedin
placement of button is button. different cordinates thar
holes on the grid.| active. the coordinates of the

holes.

TC#4 | Ensure that All Agents are | User clicks| User should be able to
notification active. 0 St ar |view thenotification
contains sending | Agentseesan|Agent (containing
agent 6s |objectinits button. in the O0Log

line of sight. the interface.

TC#5 | Ensure that All Agents are | User clicks| User should be able to
notification active. 0 St ar | view the notification
contains type of | Agentseesan|A g e n t | along with the object typ|
object identified | object in its buttan. in the O6Log
by an agent. line of sight. the interface.

TC#6 | Ensure that All Agents are | User clicks | User should be able to
notification active. 0 St ar | view the notification
contains Agentseesan| A g e nt | along with the object
information on object in its button. location information in
obj ect 6 s]|lineof sight. the O6Logb6 s

interface.

TC#7 | Ensure that All Agents are | User clicks | User should be able to
notification active. 0 St ar | view the notification
contains path Agent is aware| A g e n t | along with the path
taken by an ageni of its button. traversed by an agent to
to reach its destination. reach its destination in
destination. the O6Logd s

interface.

TC#8 | Ensure an agent i All Agents are | User clicks| User should be able to
able to send a active. 0 St ar |view the notification in
notification to all | Agentseesan| Agent |t he éettiongobthe
other agents after object in its button. interface.
identifying an line of sight.
object.

TC#9 | Ensure an agent i All Agents are | User clicks| User should be able to
able to send a active. 0 St ar | viewthe notification in
notification to all | Agentseesa |[Agent |the O6Logd s
other agents after box in its line | button. interface.
picking up a box. | of sight.

(continued)

28

| Pass

Table 17 Black-box test cases table (continued).

Test ID | Purpose | PreCondition | Input Expected Output | Pass

TC#10 | Ensure an agent ii All Agents are | User clicks| User should be ableto | X
able to send a active. 0 St ar |view the natification in
notification to all | Agentseesa |Agent |t he &6Logd6 s
other agentafter | hole in its line | button. interface.
dropping a box | of sight.
into a hole.

TC#11 | Ensure an agent i All Agents are | User clicks| User should be ableto | X
able tosend a active. 0 St ar | view the notificationn
notification to all | Agentseesan|Agent |t he &6Log6 s
other agents, object in its button. interface.
when it sees an | line of sight.
object, on its way
towards another
targeted object.

TC#12 | Ensure thatan | Agentis active) User clicks| User should be able X
agent can only se Agent 0 St ar | view a natification in the
an object up to 4 | identifies an Agent |6Logb6 secti
squares from its | object in its button. an agent sees an object
current location. | line of sight. within a distance of 4

squares from its current
location.

TC#13 | Ensure that an | Agent is active| User clicks | User should not be able| X
agent cannot see| Object is 0 St ar |toview any notification
an object beyond| located at a Agent|in the 6Log
4 squares from ity distance button.
current location. | greater than 4

squares.

TC#14 | Ensure thatan | Agent is active| User clicks | User should be ableto | X
agent can only se Agent 60 St ar |view a notification in the
an object in 4 identifies an Agent |6Logb6 secti
directions from its object in its button. an agent sees an object
currentlocation. | line of sight. any of the 4 directions

from its currentdcation.

TC#15 | Ensure that an | Agent is active| User clicks | User shouldhot be able | X
agent cannot see| Object is 60 St ar |toview any notification
an object except | located in a Agent|in the 6Log
for its line of square that button.
sight from its does not fall in
current location. |[agent 6s

sight.
(continued)

29

Table 17 Black-box test cases table (continued).

Test ID | Purpose | PreCondition | Input Expected Output | Pass

TC#16 | Ensure thatan | Agentis active,| User clicks| User should be ableto | X
agent approacheg Agent has 0 St ar |view natification in the
an object atthe | knowledgeof |[Agent ([6Logé6 sectdi
shortest distance | location of all | button. interest in an object at th
from its current | objects in its shortest distance.
location. line of sight.

TC#17 | Ensure that if two| Agent is actie. | User clicks | User should be ableto | X
or more agents | Morethanone| 6 St a r | view notification in the
qualify for an agents are Agent |6Logbd secti
object then agent| interested in an button. that will qualify in case
whose name object. of a tie. The agent which
comes first in comes first in
alphanumeric alphanumeric order
order shall shouldapproach the
approach that object.
object.

TC#18 | Ensure that an | Agent is active| User clicks | User should be ableto | X
unloaded agent ig Agent 0 St ar |view notification in the
able to pick up a | identifies a Agent |6Logb6 secti
box once it has | box. button. agent picks up the box in
knowledge of its | Agent informs which it was interested.
box of interest. | all other agents

about its
interest in a
box.

TC#19 | Ensure thatan | Agent is active| User clicks | User should not be able| X
already loaded | Agent has 60 St ar |toview a natification in
agent shall not be picked up a Agent|the O6Logd s
able to pick box. button. loaded agenpicking up a
another box until | Agent sees box.
it deposits the another box in
first box, which it | its line of sight.
is carrying, into a
hole.

TC#20 | Ensure thatan | Agent is active,| User clicks| User should be ableto | X
agent carriesa | Agent has 6 St ar |view anotification in the
box towards a picked up a Agent |6Logd secti
hole once it box. button. displays information on
identifies a hole. | Agent has the location of a hole.

identified a
hole.
(continued)

30

Test ID |

Table 17 Black-box test cases table (continued).

Purpose

' PreCondition |

Input

Expected Output

TC#21 | Ensure thatan | Agentis active,| User clicks | User should be able to
agent deposits a | Agent has 0 St ar |view a notification in the
box into a hole | picked up a Agent |6 L osgcion that
once it has box. button. displays information on
knowledge of the | Agent has agentdés pat
hole. identified a agent deposits a box intq

hole. a hole.

TC#22 | Ensure that an | Agent is active,| User clicks | User should be able to
agent wanders | Agentis 0 St ar |seethat unloaded agent;
randomly on the | unloaded. A g e nt | wander randomly on the
grid looking for button grid in search of other
other unassigned unassigned boxes.
boxes.

TC#23 | Ensure thatan | Agent is active| Userclicks | User should be able to
agent is able to 0 St ar |seethat an agent can
make a left turn A g e nt | make aleft turn on the
on the grid, button. grid.
depending upon
the knowledge of
objects.

TC#24 | Ensure thatan | Agent is active,| User clicks | User should be able to
agent is able to 0 St ar |seethatan agent can
make a right turn A g e nt | make aright turn on the
on the grid, button. grid.
depending upon
the knowledge of
objects.

TC#25 | Ensure that an | Agent is active| User clicks | User should be able to
agent is able to 60 St ar |seethatan agent can
move forward on Agent | moveinaforward
the grid, button. direction on the grid.
depending upon
the knowledge of
objects.

TC#26 | Ensure thatan | Agentis active) User clicks | Usershould be able to
agent is able to 0 St ar |seethatan agent can
move backward A g ent | moveina backward
on the grid, button. direction on the grid.
depending upon
the knowledge of
objects.

(continued)

31

| Pass

Test ID |

Table 17 Black-box test cases table (continued).

Purpose |

Pre-Condition |

Input

Expected Output

TC#27 | Ensure that Agents are User clicks | User should be able to
unloaded agents | active. 0 St ar |see that unloaded agent
cannot move An Unloaded | A g e nt |take another path if they
through squares | Agent button. encounter a hole in their
containing holes. | encounters a original path of

hole in its movement.
direction of
movement.

TC#28 | Ensure that Agents are User clicks | User should bable to
already loaded | active. 0 St ar |see thatloaded agents
agents cannot A loaded A g e nt | take another path if they
move through Agent button. encounter a box in their
squares encounters a original path of
containing box in its movement.
another box. direction of

movement.

TC#29 | Ensure that Agents are User clicks | User should be able to
Loaded Agents | active. 0 St ar |seethatloaded agents g
are abletocross | Aloadedagenf Agent labl e to cro
one anot]|encounters button. path while moving on the
path on the grid. | another Loadec grid.

Agent in its
direction of
movement.

TC#30 | Ensure that Agents are User clicks | User should be able to
unloaded agents | active. 0 St ar | seethat unloaded agentj
are able to cross | Unloaded A g e nt | are able to cross paths
paths with other | agents button. with all other agents on
agents on the encounter othe the grid.
grid. agents in their

direction of
movement.

TC#31 | Ensure that a 0 Rd6 b ut|Userclicks| A Remote Management
Remote Agent must be active| 6 R6 b | Agent GUI is launched.
Management GUI
is launched when
user cl i
button on the
interface.

(continued)

32

| Pass

Test ID |

Table 17 Black-box test cases tableontinued).

Purpose |

Pre-Condition |

Input

Expected Output

TC#32 | Ensure that a 0 SO but|Userclicks| A Sniffer GUI is
Sniffer GUI is be active. 0S06 b]|launched.
launched when
user cl i
button on the
interface.

TC#33 | Ensure thatuseri 6 Fi | t e r| User User should be able to
able to filter combobox selects for | see all the messages
messages of a | shows all his/her related toan agent
particular agent | agents. choice of | depending upon his/her
using th agents selection from the
fordé com from the combobox.

combobox.

TC#34 | Ensurethatause 6 Re f r e s| User clicks| User should be able to
is able to reset | button is 0 Re f r | see updated messages i
messages in the | active. button. the 6Log6 s
6Logd se hel/ she clic
the interface by button. 6
clicking the
ORefresh

TC#35 | Ensure that the | Application is | User starts| User should not
application does | launched. the game | encounter any errors unt
not crash due to by clicking | the game ends.
programming 60Star
errors. Agent s 6

button.

TC#36 | Ensure that the | Other systems| User starts| User should not
application runs | must have JDK| the game | encounter any errors unt
correctly when 1.5 or above | by clicking | the game ends.
transported to installed. 6Star
other systems. Agent

button.

33

| Pass

1)

2)

3)

3. ISSUES
The issuesound during testing oAgentBox application are identified below.
JADE uses gueuingmechanism to send and receive messages. The messages are not
sentimmediately or processed immediately upon reception as they are placed in a queue.
The time difference between message sent by an agent and message processed by a
receiving agent magause delay
The wtimely reception on negotiatingessages may cause @gent to change direction
a few times due to becoming both qualified and disqualified for an object of interest
within a short span of time.
If an agent was interested in an object but lost it out on the criter@aother agentt
thentreats that squaas empty and continues on a random motion, which may sometime

include a path through the sawigect

34

4, SCREEN CAPTURES
The section belw contains screen shots tfe AgentBox application. The images
display different stages fromaunch of theapplicationtill the end of the gameScreen shots of
JADEOGOs Remote Agent MaAgengG&hasemlsopGwuled. and Sni ff e
The launch of the application shall display boxes and holes placed randomly on the grid.
A solid black square depicts a boxdaa red circle marked withtna | phabet &6 HO® depi ¢

The agents will appear upon clicking the 6Sta

Contral Panel

. . . . More Boxes R

. Mare Holes

Log
Filter for: [l

Figure 12: Image displaying first stage after the application is launched.

35

The agents are depicted using a lorry and are uniquely numbered. Once an agent picks a
box, it remains loaded until it drops the box into a hole. The diskppearsrom the grid upon

obtaining a boxAgents wander randomly if they do not have knowledgebgects.

= —_—awasagnaaigig i i, i”h i viiti i iiiicii
o Multi Agent System EE

0 1 2 3 4 3 6 g 9 10 11 12 13 14

Control Panel
P @ ©
! L)
. . More Boxes E

b AgentFme7 More Holes
Agentd

B . E] Log

Start Agents

AgehEE Fiter for: [Al v
4
Agentl0: <to all agents>: il
E Picked box at [5,10]. E
=] o 3 AN N NN NN NN (N S N N R U N R ettt bt
b L Agent? AgentT7: <to all agents>:
E-E' object: hole;
7 Agents at:7-0;
Agentf h ———————————————————————
5 m: g Agentl0: <to all agents>:
object: box:
g ac:6-13
1a . . \ge-ntl Bgent8: <to all agents>:
h object: hole;
11 . at:9-0;
12 . Bgent3: <to all agents»:
Picked box at [2,6].
i@ ® = L — ;
Lroentl: <tn all ament=w:
! n
— - — —

Figure 13: Image displayingstageafter usesstarts the game

36

The messages exchanged between agents ar e
interface. A user can filter the | og dependin
Boxesd6 and OMore Hol esd become hi @pohdlickihgt ed wh
these buttons, boxes and holes are placed randomly on the grid and the game begifibeagain.

agents wander randomly and remain active until the close of the application.

ulti Agent System (2] @]

0 1 2 3 4 &] g 9 10 11 12 13 14

Control Panel

Start Agents

More Boxes

Agentdhdents Log

Filter for: [All -

Agent>: box path:[14,13], [13
\gentd | Agant3 ,131, [12,13], [11,13], [10,1
il | Pl 31, 19,131, [8,131, [7,131, [
7,121, 16,121, 16,111, [5,11]
, 15,101, [4,101, [4,91, [3,9

lemn | s | "

35 E 1. (3,81, [2,8], [2,7]
Agent? Agent5: <to all agents>:

d Dropped box at [2,7].
Agent10 - - -——
EIHI Agentd: <to all agents>:

1 Picked box at [14,13].
Agentl _ _ o
11 r Agent2: <to all agents>:

object: box;
17 at:14-13;

13 Agent8: box path:[9,14], [9,1
21 rg 191 & 121 f@ 121 ¢ T

:

Figure 14: Image displaying end of the game.

37

The instance ofs JADE run time environment is also known as a Container and it
contains all the agents. The first container that is active on a platform is the Main Container. All
other containers, nemain containers, must register with the Main Container. Along wtikro
active agents, the Main Container also holds three other agahtr¢hautomatically created by
JADE at the start of Main Container. These agentsrer®emote Management Agent (RMA),

the Agent Management System (AMS) and the Directory Faciliggent (DF) [2].

J rma®127.0.0.1:1099/JADE - JADE Remote Agent Management GUI O | E |t
File Actions Tools Remote Platforms Help
1 5
eadd PSR D TEH S0 Led Jooc
=3 AgentPlatiorms name addresses state owner
=00 "127.0.0.1:1099/JADE" NAME ADDRESSES [STATE (OWNER

EI 82 Main-Container
~ & ams@127.0.0.1:1099/ADE
~[E di@127.0.0.1:1099/JADE
o @ rma@127.0.0.1:-1099/JADE
El - System Agents

-2 Agent10@127.0.0.1:1099/JADE
-2 Agent1@127.0.0.1:1099/JADE
-2 Agent2@127.0.0.1:1099/JADE
-l Agent3@127.0.0.1:1099/ADE
-2 Agentd@127.0.0.1:1099/ADE
- = AgentS@127.0.0.1:1099/ADE
~ & Agente@127.0.0.1:1099/JADE
- [Agent7@127.0.0.1:1099/JADE
-2 Agent8@127.0.0.1:1099/JADE
-2 Agentd@127.0.0.1:1099/JADE
@ Logger agent@127.0.0.1:1099/JADE

Figure 15: Image displaying Remote Agent Management user interface.

38

Agent interactions showing sequence of messages exchanged are cagingesniffer
tool provided by the JADE frameworK.he screen image below displaggentnotification

messages recorded the Sniffer tool.

Figure 16: Image displaying messages exchanged between agents.

39

