

A COLLABORATIVE AGENT-BOX SYSTEM

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Kunal Kishore Singh

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department/Program:

Software Engineering

March 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

A Collaborative Agent-Box System

 By

KUNAL KISHORE SINGH

 The Supervisory Committee certifies that this disquisition complies with

North Dakota State Universityôs regulations and meets the accepted standards

for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Kendall E. Nygard

 Chair

Dr. Saeed Salem

Dr. Nikita Barabanov

 Approved:

 04/05/2013 Dr. Brian M. Slator

 Date Department Chair

iii

ABSTRACT

In this paper I present a multi-agent system that aims at demonstrating software agentôs

collaborative behavior when a number of intelligent agents are clustered together within one

environment. This study draws inspiration from a research publication titled as Agent

Collaboration and Social Networks, authored by R. Sean Bowman and Henry Hexmoor, which

aims at demonstrating agent collaboration by implementing a game of agents, boxes and holes.

Similar to the strategies discussed in paper and with a few design modifications of my

own I have implemented a simulation that starts with agents, boxes and holes placed in a random

order on a square grid. The goal of the agents is to capture a box after having some negotiations

with other interested agents, carry and drop the identified box into a hole [9]. The agents have to

achieve their goal in a minimum possible time by opting for the shortest available route.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Kendall E. Nygard for his continued support

through the duration of my paper and for his guidance over the period of my graduate studies at

North Dakota State University. My sincere gratitude to the all the members of the supervisory

committee; Dr. Saeed Salem and Dr. Nikita Barabanov without whose participation and

assistance this study would not have been successful. I honestly appreciate their time and interest

in this study.

Last but not least I would like to take this opportunity to express my heartfelt thanks to

my family for their blessings and my friends for their constant help and motivation to

successfully undertake and complete my research.

v

TABLE OF CONTENTS

ABSTRACTéééééééééééééééééééééééééééééééé...iii

ACKNOWLEDGEMENTSéééééééééééééééééééééééééééiv

LIST OF TABLESéééééééééééééééééééééééééééééé.vii

LIST OF FIGURESééééééééééééééééééééééééééééé..viii

1. INTRODUCTIONééééééééééééééééééééééééééééé1

2. DEVELOPMENT PHASESééééééééééééééééééééééééé.2

2.1. System Requirements: .. 2

2.1.1. Functional Requirements:. .. 2

2.1.2. Non-functional Requirements:. ... 5

2.1.3. Interface Requirements: .. 5

2.1.4. Data Requirements:. ... 6

2.1.5. Requirement Limitations:.. 7

2.2. System Design: ... 7

2.2.1. Use Case Diagrams: ... 8

2.2.2. Activity Diagrams: .. 11

2.2.3. Class Diagram: ... 14

2.2.4. Sequence Diagram: ... 15

2.2.5. Agentôs Life-Cycle: ... 16

2.2.6. Low-Level Design Details: ... 17

vi

2.2.7. Design Rationale: ... 23

2.2.8. Additional Design Considerations:... 24

2.2.9. User Interface Design: .. 24

2.3. System Implementation: ... 25

2.4. System Testing: .. 26

2.4.1. Testing Approach: ... 26

2.4.2. Test Items: ... 27

2.4.3. Test Cases:. ... 27

3. ISSUES .. 34

4. SCREEN CAPTURES .. 35

5. CONCLUSION ... 40

6. REFERENCES .. 41

vii

LIST OF TABLES

Table Page

1. Functional requirements of the applicationéééééééééééé..éééééé3

2. Non-functional requirements of the applicationéééééééééééé..éééé5

3. Interface requirements of the applicationééééééééééééééééééé6

4. Data requirements of the applicationéééééééééééééééééééé...7

5. Limitations of the applicationééééééééééééé..éééééééééé7

6. Methods and method signatures of class GameBoard ééééééééééééé..18

7. Methods and method signatures of class MASUtility ééééééééééééé..18

8. Methods and method signatures of class GameOntology éééééééééééé.19

9. Methods and method signatures of class XMLMessage éééééééééééé...19

10. Methods and method signatures of class SendMessage ééééééééé...............20

11. Methods and method signatures of class BoxAgent éééééééééééééé.20

12. Methods and method signatures of class ReceiveMessages ééééééééééé.21

13. Methods and method signatures of class BoxHoleCheckBehavior éééééééé..21

14. Methods and method signatures of class GetBoxBehavior ééééééééééé..22

15. Methods and method signatures of class GetHoleBehavior ééééééééééé.22

16. Methods and method signatures of class Navigation éééééééééééééé23

17. Black-box test cases tableéééééééééééééééééééééééé..27

viii

LIST OF FIGURES

Figure Page

1. Use case diagram showing agent actionsééééééééééééééé.................8

2. Use case diagram showing an agentôs navigationéééééééééééééééé9

3. Use case diagram showing an agentôs notificationééééééééééééééé10

4. Use case diagram showing an agentôs memoryéééééééééééééééé.10

5. Activity diagram showing agentôs movement on the gridéééééééééééé.11

6. Activity diagram showing agentôs movement and communicationéééééééé...12

7. Activity diagram showing an agentôs negotiationééééééééééééééé.13

8. Class diagram showing different classes and their relationshipsééééééééé...14

9. Event diagram showing exchange of messages between agentsééééééééé...15

10. Diagram showing an agentôs life-cycleééééééééééééééééééé..16

11. Initial user interface prototypeéééééééééééééééééééééé...25

12. Image displaying first stage after the application is launchedéééééééééé...35

13. Image displaying a stage after user starts the gameéééééééééééééé...36

14. Image displaying end of the gameééééééééééééééééééééé.37

15. Image displaying Remote Agent Management user interfaceéééééééééé...38

16. Image displaying messages exchanged between agents ééééééé..ééééé.39

1

1. INTRODUCTION

A multi-agent system is comprised of intelligent agents that collaborate with each other

in an environment. These agents are intelligent computer programs that use their knowledge to

perform allocated tasks. They act autonomously by controlling their actions to solve specific

problems [3, 6].

The aim of this paper is to demonstrate collaboration among multiple agents that try to

push boxes into holes on a square grid. The paper illustrates agentôs movement and

communication models thereby proposing an efficient way that will assist agents to accomplish

their objective. The movement model outlines the path traversed by agents to reach a known

destination whereas the communication model describes what messages are exchanged, when the

message exchange should take place and how frequently the messages must be sent and received.

Java Agent Development Framework (JADE) is used to implement the Agent-Box

application. The format for exchanging agent messages is specified by Agent Communication

Language (ACL) language that is defined by a standard organization, Foundation for Intelligent

Physical Agents (FIPA). All the operations performed by an agent during its life span and that

are fundamental to the development of this application are also identified in this paper.

In section 2 of this paper all the development phases leading to construction of the

application are described. Section 3 identifies issues found during the testing of the application.

Section 4 contains screen shots of different stages of the application and section 5 concludes the

paper.

2

2. DEVELOPMENT PHASES

The design process guiding the development of Agent-Box collaboration application is

based on Waterfall Model. The implementation of the project is broken down into four major

phases namely:

Phase 1: System Requirements.

Phase 2: System Design.

Phase 3: System Implementation.

Phase 4: System Testing.

2.1. System Requirements:

The start of the application should demonstrate random placement of agents and objects

(boxes and holes) on a square grid. The agents should aim to acquire a box in their line of sight

by negotiating with other agents interested in the same box. The agents then must be able to

carry the identified box towards a hole and finally drop the box into the hole. Once an agent

drops a box into a hole it should wander randomly on the grid and look for other unassigned

boxes. The end of the application should be marked by filling all the holes on the grid.

The following section will discuss all the functional, non-functional, interface and data

requirements needed to build the Agent-Box application. The requirements will be detailed

enough to cover all the primary and important functionality of the application.

2.1.1. Functional Requirements:

The requirements to capture the intended behavior of the system are outlined in Table 1

below [19]. The following headings will be used to indicate the commitment level of each

requirement.

¶ Commit (C) ï Indicates that the given requirement will be implemented.

3

¶ Target (T) ï Indicates that the given requirement will be aimed for but the

implementation will not be guaranteed.

Table 1: Functional requirements of the application.

 REQ - ID Description C T

FR#1

Objects shall be placed randomly on the grid at the

start of the application.

C

FR#1.1 Boxes shall be placed randomly on the grid at the

start of the application.

C

FR#1.2 Holes shall be placed randomly on the grid at the

start of the application.

C

FR#1.3 Agents shall be placed randomly on the grid upon

clicking the óStart Agentsô button.

C

FR#1.4 Placement of agents shall not overlap with objects

placement on grid.

C

FR#1.5 Placement of boxes shall not overlap with holes

placement on grid.

C

FR#2 All agents on the grid shall exchange information

on location of boxes with other agents.

C

FR#2.1 All agents on the grid shall exchange information

on location of holes with other agents.

C

FR#2.2 All agents on the grid shall exchange information

on their current location with other agents.

C

FR#3 All agents on the grid shall exchange information

by sending notifications to other agents.

C

FR#3.1 Agent shall send a notification to all other agents

after identifying an object.

C

FR#3.2 Agent shall send a notification to all other agents

after picking a box.

C

FR#3.3 Agent shall send a notification to all other agents

after depositing a box into a hole.

C

FR#3.4 Agent shall send a notification to all other agents

on their way towards an object.

C

FR#4 All agents on the grid shall make use of their line

of sight to exchange information.

C

FR#4.1 All agents on the grid shall be able to identify

objects located up to 4 squares from their current

location.

C

FR#4.2 All agents on the grid shall be able to identify

objects located in 4 directions from their current

location.

C

FR#4.3 All agents on the grid shall not be able to identify

objects located on their diagonals.

C

(continued)

4

Table 1: Functional requirements of the application (continued).

REQ - ID Description C T

FR#5 Agent shall settle for an object at the shortest

distance from its current location.

C

FR#5.1 Agent shall send a notification regarding its interest

in an object to all other agents.

C

FR#5.2 Other agents interested in the same object shall

only approach that object when they are at a shorter

distance.

C

FR#5.3 Other agents interested in the same object shall

send a notification regarding their interest in that

object.

C

FR#5.4 Agent whose name comes first in alphanumeric

order shall approach the object of interest if two or

more agents are at equal distance from that object.

C

FR#6 Agents shall remember the location of objects

informed by other agents on the grid.

C

FR#7 Agents shall have knowledge on objects that have

been consumed by other agents on the grid.

C

FR#8 Agent shall pick a box once it has the knowledge of

its box of interest.

C

FR#8.1 Agent shall not be able to pick another box until it

deposits the box, which it is carrying, into a hole.

C

FR#9 Agent shall carry a box towards a hole once it has

the knowledge of its hole of interest.

C

FR#10 Agent shall deposit a box into a hole. C

FR#11 Agent shall look for other unassigned boxes once it

deposits a box into hole.

C

FR#12 Agent shall wander randomly on the grid until it

finds an unassigned box.

C

FR#12.1 Agent shall be able to make a left turn on the grid. C

FR#12.2 Agent shall be able to make a right turn on the grid. C

FR#12.3 Agent shall be able to move in a forward direction

on the grid.

C

FR#12.4 Agent shall be able to move in a backward

direction on the grid.

C

FR#12.5 Unloaded agents shall not be able to move through

squares containing holes.

C

FR#12.6 Loaded agents shall not be able to move through

squares containing another box.

C

FR#12.7 Loaded agents shall be able to cross paths with

other agents on the grid.

C

FR#12.8 Unloaded agents shall be able to cross paths with

other agents on the grid.

C

(continued)

5

Table 1: Functional requirements of the application (continued).

REQ - ID Description C T

FR#13 Remote Agent Management GUI shall be launched

when the user clicks óRô button on the interface.

 T

FR#13.1 User shall be able to suspend an agent using the

Remote Agent Management GUI.

 T

FR#13.2 User shall be able to resume an agent using the

Remote Agent Management GUI.

 T

FR#14 Sniffer GUI shall be launched when the user clicks

óSô button on the interface.

 T

FR#14.1 User shall be able to view all notifications sent by

an agent using the Sniffer GUI.

 T

FR#14.2 User shall be able to view all notifications received

by an agent using the Sniffer GUI.

 T

2.1.2. Non-functional Requirements:

Some of the characteristics and important quality attributes like reliability, portability,

maintainability and usability that must be taken into consideration while building the application

are outlined in the table below (Table 2).

Table 2: Non-functional requirements of the application.

REQ - ID Description C T

NFR#1 The application shall not crash except in the event

of an operating system or hardware failure.

C

NFR#2 The application shall run on any environment

supporting JDK 1.5 and above.

C

NFR#3 The application shall run on any environment with

access to a JVM.

C

NFR#4 The application code shall be modular to permit

future modifications.

C

NFR#5 The application shall be maintained by adequate

documentation of code.

C

NFR#6 The application shall be provided with Build

documentation, Source code, Packaged files, Test

cases and results.

C

NFR#7 The application usage shall not require a user to

have any kind of special training.

C

2.1.3. Interface Requirements:

The requirements that should be taken into consideration so as to design a user friendly

interface are captured in the table below (Table 3).

6

Table 3: Interface requirements of the application.

REQ - ID Description C T

IR#1 The number of rows in the grid shall be 15. C

IR#2 The number of columns in the grid shall be 15. C

IR#3 The number of agents on the grid shall be 10. C

IR#4 The agents shall be denoted using a lorry. C

IR#5 The agents shall be numbered for unique

identification.

C

IR#6 A red circle marked with alphabet óHô shall depict a

hole.

C

IR#7 A solid black square shall depict a box. C

IR#8 A hole shall disappear from the grid once an agent

deposits a box in it.

C

IR#9 Button with text óAgentsô shall be displayed on top

right section of the interface.

C

IR#10 Button with text óBoxesô shall be displayed on top

right section of the interface.

C

IR#11 Button with text óHolesô shall be displayed on top

right section of the interface.

C

IR#12 Button with text óRô shall be shall be displayed on

top right section of the interface.

 T

IR#13 Button with text óSô shall be shall be displayed on

top right section of the interface.

 T

IR#14 A log section containing information on agentôs

notification to other agents shall be displayed at

bottom right section of the interface.

 T

IR#14.1 Users shall be able to filter the log depending on

their choice of agents.

 T

IR#15 Button with text óRefreshô shall be displayed on the

bottom of the log section of the interface.

 T

IR#15.1 Users shall be able to update messages in the log by

clicking the óRefreshô button.

 T

2.1.4. Data Requirements:

The requirements outlining the format and content of an agentôs notification message are

identified below (Table 4).

7

Table 4: Data requirements of the application.

REQ - ID Description C T

DR#1 XML format shall be used to represent agent

notification messages.

C

DR#2 XML document shall follow W3C

recommendations.

C

DR#3 XML document containing message content shall

be created.

C

DR#4 All message content shall be contained within

meaningful XML tags.

C

DR#4.1 Meaningful XML tags shall be self-descriptive. C

DR#5 Message content shall include an agentôs current

location.

C

DR#6 Message content shall include an object type. C

DR#7 Message content shall include an objectôs location. C

DR#8 Message content shall include an objectôs count. C

2.1.5. Requirement Limitations:

The following constraints shall be considered during design and implementation phases

of the application (Table 5).

Table 5: Limitations of the application.

Limitations Description

Hardware Limitations None.

Architecture Limitations None.

Language/Tool Limitations Development will be done in JAVA.

Agent-Box System will be implemented using

JADE Agent development framework.

Agent Communication Language will adhere to

FIPA Standards (FIPA-ACL).

Development will be done using Eclipse IDE.

Security Limitations None.

2.2. System Design:

The following section will discuss all the architectural, interface, and component level

design needed to build the Agent-Box application. It will provide a detailed view of primary

components of the application so as to cover up all the functional, non-functional and interface

requirements outlined in the System Requirements section. UML (Unified Modeling Language)

8

notations will be used to model applicationôs architecture and high-level components. Static view

of the application will be depicted using a class diagram. Dynamic view will be specified by use

case, activity and sequence diagrams [22].

2.2.1. Use Case Diagrams:

A userôs interactions with the system are illustrated using use case diagrams. The figures

below describe high-level system functions and actors (agents in this case) interaction with the

system. The use case diagram below identifies all the actions performed by an agent during its

life-cycle on the square grid. The agents are involved in a number of activities that range from

performing their respective tasks to communicating information to other agents on the grid.

Figure 1: Use case diagram showing agent actions.

9

The agentôs movement on a grid is restricted and they can only make certain maneuvers

to reach their object of interest. All agent movements are pointed out in the diagram below.

Figure 2: Use case diagram showing an agentôs navigation.

10

All active agents on the grid need to constantly communicate with one another by

exchanging meaningful messages. The content of the messages should be informative enough to

guide an agent to their object of interest.

Figure 3: Use case diagram showing an agentôs notification.

The agents shall have a memory that will keep track of an objects location and count. The

diagram below highlights an agentôs awareness.

Figure 4: Use case diagram showing an agentôs memory.

11

2.2.2. Activity Diagrams:

The diagrams below depict stepwise activities, actions and flow of control of different

components of Multi-Agent application. Agents on the grid carry out number activities from the

moment they are active and until they die. The activity diagram below identifies all the

movements, the order and the approach followed by agents to accomplish their objective.

Figure 5: Activity diagram showing agentôs movement on the grid.

12

The agents remain in constant touch with other agents by sending and receiving

notification messages. Messages are exchanged at all times during an agentôs activity.

Figure 6: Activity diagram showing agentôs movement and communication.

13

A number of agents may qualify for an object. In such cases the concerned agents have to

negotiate with one another before approaching their object of interest. The diagram below

depicts the approach adopted when more than one agent compete for an object.

Figure 7: Activity diagram showing an agentôs negotiation.

14

2.2.3. Class Diagram:

The diagram below shows different classes, attributes and methods of Agent-Box

application. Relationships among classes are depicted using arrows. Details about each Class that

comprise of all important methods, method signatures (parameters, data and return types) are

provided in corresponding class tables (Table 6 to Table 16) in section 2.2.6.

Figure 8: Class diagram showing different classes and their relationships.

15

2.2.4. Sequence Diagram:

Interactions between agents of the application showing sequence of messages exchanged

between them are depicted in the event diagram below. Once an agent acquires an object, a

notification message containing an objectôs type, an objectôs location and the agentôs location

should be issued to all other agents.

Figure 9: Event diagram showing exchange of messages between agents.

16

2.2.5. Agentôs Life-Cycle:

The diagram below displays operations performed by an agent during its life span i.e.

from the moment an agent is active until it is terminated (no more registered with the Agent

Management System) [2].

Figure 10: Diagram showing an agentôs life-cycle.

2.2.5.1. Agent Operations:

 A brief description of all the operations identified in the above figure is provided below.

Along with the description, names of JADE APIôs to be referenced, which are fundamental to

the development of Agent-Box application, are also outlined.

1) Agent Initialization: An agent can be created by extending the jade.core.agent class and

implementing the setUp() method of the class. An agent identifier (AID), object of

jade.core.aid class, uniquely identifies all the agents on a platform [2].

17

2) Agent Behavior: The task of an agent is implemented by the Behavior class i.e. by

extending jade.core.behaviours.behaviour class. A behavior object is created and then

agent executes this task by calling the addBehaviour() method of the Agent class [1, 2].

3) Agent Communication: The format for exchanging agent messages is specified by ACL

language which adheres to FIPA standards. The format contains certain fields that must

be exchanged for agents to communicate with one another. In order to send messages to

another agent, an object of the ACLmessage class needs to be created, then the required

fields need to be filled out and finally the method send() has to be called. Method

receive() is called by an agent when it wants to pick received messages from the message

queue [1, 2].

4) Agent Termination: An active agent on a platform can be terminated by calling the

doDelete() method of the jade.core.agent class. Once an agent is terminated, method

takeDown() of the same class is called to complete agent clean-up operations [2].

2.2.6. Low-Level Design Details:

This section contains detailed design information that includes illustration of all the

important classes, methods and method signatures (parameters passed, data and return types) of

the Agent-Box Application.

2.2.6.1. GameBoard Class:

This Class handles all the events that are triggered as a result of user operation i.e. it

contains action listeners registered to different UI components. Other methods that deal with

layout (drawing of lines and images), generation of coordinates for holes, boxes and agents are

also defined within this class. The table below provides details on specific methods of the

GameBoard class (Table 6).

18

Table 6: Methods and method signatures of class GameBoard.

Method Name Description Return Type Parameter Data Type

drawGrid() To create horizontal and

vertical grid lines.

None g Graphics

drawHoles()

To display holes on the

grid.

None g Graphics

drawBoxes() To display boxes on the

grid.

None g Graphics

drawAgents() To display agents on the

grid.

None g Graphics

initializeHoles

()

To generate random

coordinates for placement

of holes.

None none none

initializeBoxe

s()

To generate random

coordinates for placement

of boxes.

None none none

generateNew

AgentCoordin

ate()

To generate random

coordinates for placement

of agents.

None none none

2.2.6.2. MASUtility Class:

This Class contains methods related to creation of Main and Agent Containers, creation

of all the System Agents as well as creation of RMA and Sniffer Agents. The table below

provides details on specific methods of the MASUtility class (Table 7).

Table 7: Methods and method signatures of class MASUtility.

Method Name Description Return Type Parameter Data Type

createMainC

Ontainer()

To create a Main

container using an

instance of JADE runtime.

None none none

startOtherAge

nts()

To create System Agents

within the Agent

Container.

None no int

createRMAA

gent()

To create a new RMA

agent to monitor agents

via a GUI

None none none

startSniffer() To create a new Sniffer

agent.

None none none

19

2.2.6.3. GameOntology Class:

This Class contains schema that define language and vocabulary used by agents to

communicate with one another. This class implements XMLMessageVocab interface that creates

and defines vocabulary used for agent communication. The table below provides details on

specific methods of the GameOntology class (Table 8).

Table 8: Methods and method signatures of class GameOntology.

Method Name Description Return Type Parameter Data Type

add() To add a schema to the

Ontology and associate it

with Class XMLMessage.

none as AgentActi

onSchema

2.2.6.4. XMLMessage Class:

This Class contains methods for creating XML formatted messages and for parsing an

XML document. The object of this class is passed to the constructor of the SendMessage class.

The table below provides details on specific methods of the XMLMessage class (Table 9).

Table 9: Methods and method signatures of class XMLMessage.

Method Name Description Return Type Parameter Data Type

aString() To return a document

containing XML

formatted messages.

String none none

XMLMessage

()

To parse the XML

document to extract the

values from respective

tags.

none xmlEncod

edString

String

2.2.6.5. SendMessage Class:

This Class describes behavior for an agent operation using method action(). It extends

Class OneShotBehavior and implements the action() method to create a new message of the

ACLMessage class. The table below provides details on specific methods of the SendMessage

class (Table 10).

20

Table 10: Methods and method signatures of class SendMessage.

Method Name Description Return Type Parameter Data Type

action() To run an agentôs

behavior. Receivers,

Language, Ontology and

content of the message are

added and then sent.

none none none

2.2.6.6. BoxAgent Class:

This Class contains methods for agent initializations, agent terminations and agent clean-

up operations. Other implemented methods are related to agentôs picking up a box, dropping into

a hole and sending notifications to other agents. The table below provides details on specific

methods of the BoxAgent class (Table 11).

Table 11: Methods and method signatures of class BoxAgent.

Method Name Description Return Type Parameter Data Type

setup() Contains agent

initializations and startup

code.

none none none

takedown() Contains agents clean up

operations.

none none none

notifyGoingF

orBox()

Called when an agent

settles for the nearest box

and wants to send a

message to all the other

agents.

none Point

Steps

Point

int

notifyBoxPick

ed()

Called when an agent has

picked up a box and wants

to send a message to all

the other agents.

none Location Point

notifyGoingF

orHole()

Called when an agent

settles for the nearest hole

and wants to send a

message to all the other

agents.

none Point

Steps

Point

int

notifyDroppe

dBox()

Called when an agent has

dropped a box into a hole

and wants to send a

message to all the other

agents.

none Location Point

21

2.2.6.7. ReceiveMessages Class:

This Class describes behavior for an agent operation using method action(). It extends

Class CyclicBehavior and implements the action() method to create a new message of the

ACLMessage class. The table below provides details on specific methods of the

ReceiveMessages class (Table 12).

Table 12: Methods and method signatures of class ReceiveMessages.

Method Name Description Return Type Parameter Data Type

action() Runs an agentôs behavior

after receiving and parsing

the XML message

content.

none none none

notifyInterestI

nObject()

Called when an agent

reads the message and

shows interest in object.

none x

length

XMLMess

age

int

2.2.6.8. BoxHoleCheckBehavior Class:

This is an abstract class that extends Class OneShotBehavior of Agent class. It contains

methods that send notification to system agents on objects that have not yet been identified. The

table below provides details on specific methods of the BoxHoleCheckBehavior class (Table 13).

Table 13: Methods and method signatures of class BoxHoleCheckBehavior.

Method Name Description Return Type Parameter Data Type

notifyUnnotifi

ed()

Sends a notification

message, containing an

unidentified objectôs

location, to all the other

agents on the grid.

none none none

getVisisbleUn

NotifiedHoles

Boxes()

This method stores

information on

unidentified boxes and

holes location.

none none none

22

2.2.6.9. GetBoxBehavior Class:

This Class implements the action() method that deals with identification of the closest

box. The agent then sends a message, about its choice of a box, to all the other agents. This class

extends BoxHoleCheckBehavior class. The table below provides details on specific methods of

the GetBoxBehavior class (Table 14).

Table 14: Method and method signatures of class GetBoxBehavior.

Method Name Description Return Type Parameter Data Type

action()

This method calculates the

coordinates of the nearest

box.

none none none

2.2.6.10. GetHoleBehavior Class:

This Class implements the action() method that deals with identification of the closest

hole. The agent then sends a message, about its choice of a hole, to all the other agents. This

class extends BoxHoleCheckBehavior class. The table below provides details on specific

methods of the GetHoleBehavior class (Table 15).

Table 15: Method and method signatures of class GetHoleBehavior.

Method Name Description Return Type Parameter Data Type

action()

This method calculates the

coordinates of the nearest

hole.

none none none

2.2.6.11. Navigation Class:

 This Class deals with agentôs movement on the grid. The agentôs can navigate to a point

if they know the location or can randomly move on the grid if they are unaware of an objectôs

location. An object of this class is passed to the constructor of the BoxAgent class. Each agent

has a navigation object that tells that is responsible for making sure the agent follows this path.

The table below provides details on specific methods of the Navigation class (Table 16).

23

Table 16: Methods and method signatures of class Navigation.

Method Name Description Return Type Parameter Data Type

navigateTo()

This method allows an

agent to move towards an

identified point.

none p Point

randomNavig

ation()

This method allows agents

to wander randomly on

the grid.

none none none

setTarget()

This method allows for

navigation towards a

targeted object.

none p Point

navigate()

This method allows

already loaded agents to

move towards their

destination if they are

aware of the objectôs

location and the path.

none none none

goingToAHol

e()

This is a Boolean method

that returns true if an

agent is moving towards a

targeted hole.

Boolean none none

isGoingToAB

ox()

This is a Boolean method

that returns true if an

agent is moving towards a

targeted box.

Boolean none none

2.2.7. Design Rationale:

Some of the important decisions made during the design process and reasons driving

those decisions are briefly described below.

2.2.7.1. Concurrent Hash Map:

Concurrent Hash Map {ConcurrentHashMap<String, Integer[]>()}will be used to

initialize holes, boxes and agents on the grid. Since all active agents on the grid are threads and

will simultaneously access and modify maps; the program should be thread safe while allowing

for concurrent modifications.

24

2.2.7.2. A-Star Algorithm:

This search algorithm will be used for grid traversal. The A-star library has method that

takes input as two positions and plots the shortest path between them avoiding obstacles if any. It

is simple to implement and is known for its performance.

2.2.7.3. Ontology:

The Ontology that contain agent schemas, will be defined as a Singleton object. This will

allow only one Ontology object to be shared among different agents on the same Java Virtual

Machine.

2.2.8. Additional Design Considerations:

System Agent monitoring (temporarily suspension of grid agents or resumption of grid

agents after a certain period of time) using a Remote Agent Management GUI and displaying

agent notifications via a Sniffer GUI will be some of the main challenges.

2.2.8.1. Performance Considerations:

1. The time difference between messages sent, received and processed by an agent will play

a crucial role as the negotiations between agents may see messages being exchanged to

the tune of 1000 in a few seconds.

2. The launch of JADEôs Remote Management GUI and Sniffer GUI may slow down the

application considerably.

2.2.9. User Interface Design:

The figure below represents the initial prototype of user interface. The interface is

designed in a way to keep a userôs interaction simple and efficient. Boxes shall be represented

using solid square images, holes shall be indicated with a letter óHô and agents shall be identified

25

uniquely on the grid. There will be buttons to add more boxes, holes or agents. The óLogô section

of the interface shall display all the messages exchanged between agents.

Figure 11: Initial user interface prototype.

2.3. System Implementation:

In this phase the actual source code will be written and system will be built from the

design prototype specified in the previous section. The goal of this phase is to translate and

implement the design into program code in a manner that will help to reduce testing and

maintenance efforts later.

26

The source code will follow an efficient and maintainable coding style and will adhere to

Sun Java coding recommendations [20]. Some of the conventions that will be adopted are laid

out below.

1. There will be consistent indentation through all the program statements so as to make the

code more readable. 4 spaces shall be used to indent.

2. Classes, Methods and Variables shall have meaningful names and will convey their intent

of use. Variable and Method names will be mixed case and will start with a lower case.

3. Classes related to one another will be bundled under one package.

4. Methods will perform one specific task and reasonable number of lines of code will be

written.

5. Block and Inline comments will be used to describe a methodôs purpose.

Code reviews and inspections will be performed during the entire development life-cycle

of Agent-Box application. Multiple passes through the code, keeping in mind the requirement

and design specifications, will be made. These reviews will help in early detection of issues and

potential problems [7]. The defects will be analyzed and corrected before moving onto the next

phase.

2.4. System Testing:

The following section shall discuss the testing approach that will be adopted to validate

the quality of Agent-Box application. Validation will be done against outlined specification and

will ensure that application fulfills the intended purpose.

2.4.1. Testing Approach:

The functionality of the application shall be examined using the Black-box testing

strategy. Adequate number of Test Cases shall be created to cover all the implemented functional

27

and non-functional requirements of the application. Sufficient GUI testing (covering all user

clicks) shall be done to ensure application interface is in accordance with the laid out

specifications.

2.4.2. Test Items:

Acceptable number of Black-box test cases will be identified to test the implemented

functionalities. The features to be tested are as follows:

1. Agentôs placement.

2. Agentôs notification.

3. Agentôs visibility.

4. Agentôs negotiation.

5. Agentôs navigation.

6. Interface testing.

2.4.3. Test Cases:

The following table lists all set of conditions as well as adequate number of test cases

necessary to test all the implemented functionalities of the application (Table 17).

Table 17: Black-box test cases table.

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#1 Ensure random

placement of

Agents on the

grid.

Application is

launched.

óStart Agentsô

button is

active.

User clicks

óStart

Agentsô

button.

Upon clicking the óStart

Agentsô button, Agents

should be placed

randomly on the grid.

X

TC#2

Ensure placement

of Agents do not

overlap with

placement of

boxes on the grid.

Application is

launched.

óStart Agentsô

button is

active.

User clicks

óStart

Agentsô

button.

Upon clicking the óStart

Agentsô button, Agents

should be placed in

different coordinates than

the coordinates of the

boxes.

X

(continued)

28

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#3 Ensure placement

of Agents do not

overlap with

placement of

holes on the grid.

Application is

launched.

óStart Agentsô

button is

active.

User clicks

óStart

Agentsô

button.

Upon clicking the óStart

Agentsô button, Agents

should be placed in

different coordinates than

the coordinates of the

holes.

X

TC#4 Ensure that

notification

contains sending

agentôs name.

All Agents are

active.

Agent sees an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification

containing agentôs name

in the óLogô section of

the interface.

X

TC#5 Ensure that

notification

contains type of

object identified

by an agent.

All Agents are

active.

Agent sees an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification

along with the object type

in the óLogô section of

the interface.

X

TC#6 Ensure that

notification

contains

information on

objectôs location.

All Agents are

active.

Agent sees an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification

along with the object

location information in

the óLogô section of the

interface.

X

TC#7 Ensure that

notification

contains path

taken by an agent

to reach its

destination.

Al l Agents are

active.

Agent is aware

of its

destination.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification

along with the path

traversed by an agent to

reach its destination in

the óLogô section of the

interface.

X

TC#8 Ensure an agent is

able to send a

notification to all

other agents after

identifying an

object.

All Agents are

active.

Agent sees an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification in

the óLogô section of the

interface.

X

TC#9

Ensure an agent is

able to send a

notification to all

other agents after

picking up a box.

All Agents are

active.

Agent sees a

box in its line

of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification in

the óLogô section of the

interface.

X

(continued)

29

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#10 Ensure an agent is

able to send a

notification to all

other agents after

dropping a box

into a hole.

All Agents are

active.

Agent sees a

hole in its line

of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification in

the óLogô section of the

interface.

X

TC#11 Ensure an agent is

able to send a

notification to all

other agents,

when it sees an

object, on its way

towards another

targeted object.

All Agents are

active.

Agent sees an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view the notification in

the óLogô section of the

interface.

X

TC#12 Ensure that an

agent can only see

an object up to 4

squares from its

current location.

Agent is active.

Agent

identifies an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view a notification in the

óLogô section as soon as

an agent sees an object

within a distance of 4

squares from its current

location.

X

TC#13 Ensure that an

agent cannot see

an object beyond

4 squares from its

current location.

Agent is active.

Object is

located at a

distance

greater than 4

squares.

User clicks

óStart

Agentsô

button.

User should not be able

to view any notification

in the óLogô section.

X

TC#14 Ensure that an

agent can only see

an object in 4

directions from its

current location.

Agent is active.

Agent

identifies an

object in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view a notification in the

óLogô section as soon as

an agent sees an object in

any of the 4 directions

from its current location.

X

TC#15 Ensure that an

agent cannot see

an object except

for its line of

sight from its

current location.

Agent is active.

Object is

located in a

square that

does not fall in

agentôs line of

sight.

User clicks

óStart

Agentsô

button.

User should not be able

to view any notification

in the óLogô section.

X

(continued)

30

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#16 Ensure that an

agent approaches

an object at the

shortest distance

from its current

location.

Agent is active.

Agent has

knowledge of

location of all

objects in its

line of sight.

User clicks

óStart

Agentsô

button.

User should be able to

view notification in the

óLogô section on agentôs

interest in an object at the

shortest distance.

X

TC#17 Ensure that if two

or more agents

qualify for an

object then agent

whose name

comes first in

alphanumeric

order shall

approach that

object.

Agent is active.

More than one

agents are

interested in an

object.

User clicks

óStart

Agentsô

button.

User should be able to

view notification in the

óLogô section on an agent

that will qualify in case

of a tie. The agent which

comes first in

alphanumeric order

should approach the

object.

X

TC#18 Ensure that an

unloaded agent is

able to pick up a

box once it has

knowledge of its

box of interest.

Agent is active.

Agent

identifies a

box.

Agent informs

all other agents

about its

interest in a

box.

User clicks

óStart

Agentsô

button.

User should be able to

view notification in the

óLogô section after an

agent picks up the box in

which it was interested.

X

TC#19 Ensure that an

already loaded

agent shall not be

able to pick

another box until

it deposits the

first box, which it

is carrying, into a

hole.

Agent is active.

Agent has

picked up a

box.

Agent sees

another box in

its line of sight.

User clicks

óStart

Agentsô

button.

User should not be able

to view a notification in

the óLogô section about a

loaded agent picking up a

box.

X

TC#20 Ensure that an

agent carries a

box towards a

hole once it

identifies a hole.

Agent is active.

Agent has

picked up a

box.

Agent has

identified a

hole.

User clicks

óStart

Agentsô

button.

User should be able to

view a notification in the

óLogô section that

displays information on

the location of a hole.

X

(continued)

31

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#21 Ensure that an

agent deposits a

box into a hole

once it has

knowledge of the

hole.

Agent is active.

Agent has

picked up a

box.

Agent has

identified a

hole.

User clicks

óStart

Agentsô

button.

User should be able to

view a notification in the

óLogô section that

displays information on

agentôs path once an

agent deposits a box into

a hole.

X

TC#22 Ensure that an

agent wanders

randomly on the

grid looking for

other unassigned

boxes.

Agent is active.

Agent is

unloaded.

User clicks

óStart

Agentsô

button.

User should be able to

see that unloaded agents

wander randomly on the

grid in search of other

unassigned boxes.

X

TC#23 Ensure that an

agent is able to

make a left turn

on the grid,

depending upon

the knowledge of

objects.

Agent is active.

User clicks

óStart

Agentsô

button.

User should be able to

see that an agent can

make a left turn on the

grid.

X

TC#24 Ensure that an

agent is able to

make a right turn

on the grid,

depending upon

the knowledge of

objects.

Agent is active. User clicks

óStart

Agentsô

button.

User should be able to

see that an agent can

make a right turn on the

grid.

X

TC#25 Ensure that an

agent is able to

move forward on

the grid,

depending upon

the knowledge of

objects.

Agent is active. User clicks

óStart

Agentsô

button.

User should be able to

see that an agent can

move in a forward

direction on the grid.

X

TC#26 Ensure that an

agent is able to

move backward

on the grid,

depending upon

the knowledge of

objects.

Agent is active. User clicks

óStart

Agentsô

button.

User should be able to

see that an agent can

move in a backward

direction on the grid.

X

(continued)

32

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#27 Ensure that

unloaded agents

cannot move

through squares

containing holes.

Agents are

active.

An Unloaded

Agent

encounters a

hole in its

direction of

movement.

User clicks

óStart

Agentsô

button.

User should be able to

see that unloaded agents

take another path if they

encounter a hole in their

original path of

movement.

X

TC#28 Ensure that

already loaded

agents cannot

move through

squares

containing

another box.

Agents are

active.

A loaded

Agent

encounters a

box in its

direction of

movement.

User clicks

óStart

Agentsô

button.

User should be able to

see that loaded agents

take another path if they

encounter a box in their

original path of

movement.

X

TC#29 Ensure that

Loaded Agents

are able to cross

one anotherôs

path on the grid.

Agents are

active.

A loaded agent

encounters

another Loaded

Agent in its

direction of

movement.

User clicks

óStart

Agentsô

button.

User should be able to

see that loaded agents are

able to cross each otherôs

path while moving on the

grid.

X

TC#30 Ensure that

unloaded agents

are able to cross

paths with other

agents on the

grid.

Agents are

active.

Unloaded

agents

encounter other

agents in their

direction of

movement.

User clicks

óStart

Agentsô

button.

User should be able to

see that unloaded agents

are able to cross paths

with all other agents on

the grid.

X

TC#31 Ensure that a

Remote Agent

Management GUI

is launched when

user clicks óRô

button on the

interface.

óRô button

must be active.

User clicks

óRô button.

A Remote Management

Agent GUI is launched.

X

(continued)

33

Table 17: Black-box test cases table (continued).

Test ID Purpose Pre-Condition Input Expected Output Pass

TC#32 Ensure that a

Sniffer GUI is

launched when

user clicks óSô

button on the

interface.

óSô button must

be active.

User clicks

óSô button.

A Sniffer GUI is

launched.

X

TC#33 Ensure that user is

able to filter

messages of a

particular agent

using the óFilter

forô combobox.

óFilter forô

combobox

shows all

agents.

User

selects for

his/her

choice of

agents

from the

combobox.

User should be able to

see all the messages

related to an agent

depending upon his/her

selection from the

combobox.

X

TC#34 Ensure that a user

is able to reset

messages in the

óLogô section of

the interface by

clicking the

óRefreshô button.

óRefreshô

button is

active.

User clicks

óRefreshô

button.

User should be able to

see updated messages in

the óLogô section when

he/she clicks the óRefresh

button.ô

X

TC#35 Ensure that the

application does

not crash due to

programming

errors.

Application is

launched.

User starts

the game

by clicking

óStart

Agentsô

button.

User should not

encounter any errors until

the game ends.

X

TC#36 Ensure that the

application runs

correctly when

transported to

other systems.

Other systems

must have JDK

1.5 or above

installed.

User starts

the game

by clicking

óStart

Agentsô

button.

User should not

encounter any errors until

the game ends.

X

34

3. ISSUES

The issues found during testing of Agent-Box application are identified below.

1) JADE uses a queuing mechanism to send and receive messages. The messages are not

sent immediately or processed immediately upon reception as they are placed in a queue.

The time difference between message sent by an agent and message processed by a

receiving agent may cause delay.

2) The untimely reception on negotiating messages may cause one agent to change direction

a few times due to becoming both qualified and disqualified for an object of interest

within a short span of time.

3) If an agent was interested in an object but lost it out on the criteria to another agent, it

then treats that square as empty and continues on a random motion, which may sometime

include a path through the same object.

35

4. SCREEN CAPTURES

The section below contains screen shots of the Agent-Box application. The images

display different stages from launch of the application till the end of the game. Screen shots of

JADEôs Remote Agent Management GUI and Sniffer Agent GUI are also provided.

The launch of the application shall display boxes and holes placed randomly on the grid.

A solid black square depicts a box and a red circle marked with an alphabet óHô depicts a hole.

The agents will appear upon clicking the óStart Agentsô button.

Figure 12: Image displaying first stage after the application is launched.

36

The agents are depicted using a lorry and are uniquely numbered. Once an agent picks a

box, it remains loaded until it drops the box into a hole. The hole disappears from the grid upon

obtaining a box. Agents wander randomly if they do not have knowledge of objects.

Figure 13: Image displaying a stage after user starts the game.

37

The messages exchanged between agents are displayed in the óLogô section of the

interface. A user can filter the log depending upon his or her choice of agents. The buttons óMore

Boxesô and óMore Holesô become highlighted when all the objects are consumed. Upon clicking

these buttons, boxes and holes are placed randomly on the grid and the game begins again. The

agents wander randomly and remain active until the close of the application.

Figure 14: Image displaying end of the game.

38

The instance of a JADE run time environment is also known as a Container and it

contains all the agents. The first container that is active on a platform is the Main Container. All

other containers, non-main containers, must register with the Main Container. Along with other

active agents, the Main Container also holds three other agents that are automatically created by

JADE at the start of Main Container. These agents are the Remote Management Agent (RMA),

the Agent Management System (AMS) and the Directory Facilitator agent (DF) [2].

Figure 15: Image displaying Remote Agent Management user interface.

39

Agent interactions showing sequence of messages exchanged are captured using Sniffer

tool provided by the JADE framework. The screen image below displays agent notification

messages recorded by the Sniffer tool.

Figure 16: Image displaying messages exchanged between agents.

