
DEMONSTRATING BID RIGGING WITH A SHOPPING AGENT APPLICATION

USING JADE

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Dinesh Arun Sivanandam

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

November 2011

Fargo, North Dakota

iii

ABSTRACT

Sivanandam, Dinesh Arun, M.S., Department of Computer Science, College of Science and

Mathematics, North Dakota State University, November 2011. Demonstrating Bid Rigging

with a Shopping Agent Application Using Jade. Major Professor: Dr. Kendall Nygard.

This paper presents the implementation of a shopping-cart agent that demonstrated

collusion in online bidding. Collusion is an agreement between two or more persons,

sometimes illegal and therefore secretive, to limit open competition by deceiving,

misleading, or defrauding others of their legal rights; or to obtain an objective forbidden by

law, typically by defrauding or gaining an unfair advantage [15]. It is an agreement among

firms to divide the market, set prices, or limit production. The paper has the shopping agent

and its bid-rigging methods implemented using the Java Agent Development Framework

(JADE), which helps develop agent-based applications. JADE uses agent communication

language as part of its framework to provide message transportation between agents.

Collusion in online bidding is caused by bid rigging between the vendors. Some basic types

of bid-rigging implementation are described in this paper. Each bid rigging shown is

different from the other, but all exhibit collusion and profit making by illegal, backdoor

communication before a product price and availability are quoted to a potential buyer.

Collusion removes any chance of competitive price benefits that a potential buyer might

enjoy. The bidding method and its algorithm are explained in detail with the help of

diagrams and flow charts. Each agent’s communication with the others is also briefly

explained. The bid-rigging algorithm for the three flavors of rigging is explained in detail.

Graphs and tables are drawn from the output for each bid-rigging method. Bidding run are

run for a product in multiple iterations to depict the winning strategy that vendors use as

the result of backdoor vendor-to-vendor communications.

iv

To demonstrate the bid-rigging types, a working model of a shopping agent is

developed using JADE. The program has the option to select one of the bid-rigging types at

a time, say bid rotation, bid suppression, or complementary bidding, and its outputs is

saved for analysis.

v

ACKNOWLEDGMENTS

I would like to thank my adviser, Dr. Kendall Nygard, for his support, guidance,

and expertise. My sincere thanks to Dr. Jun Kong, Dr. Simone Ludwig, and Dr. Harlene

Hatterman-Valenti for serving on the committee.

Finally, I would like to thank my parents; my sister; my wife; my host family, the

Vollas of Moorhead; Satheesh Chakravarthi; and other friends for their continuous

encouragement and support.

vi

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGMENTS ... v

LIST OF TABLES ... x

LIST OF FIGURES .. xi

CHAPTER 1. INTRODUCTION .. 1

Java Agent Development Framework (JADE) .. 1

Containers and Platforms ... 1

Directory Facilitator .. 3

Agent Management Services .. 4

Agent Platform .. 5

Agent Naming ... 5

Name Resolution... 6

Transportation Address ... 6

Literature Review ... 6

CHAPTER 2. PROBLEM STATEMENT... 10

Paper Topic .. 10

Problem Statement ... 10

Solution .. 11

Create a Shopping Agent Application Using JADE ... 11

vii

Demonstrate Three Kinds of Bid-Rigging Methods .. 11

Explanation .. 11

Tasks Involved ... 12

Designing a User Agent.. 12

Designing Different Vendor Agents ... 12

Designing a Seller Agent .. 13

CHAPTER 3. DESIGN AND ARCHITECTURE .. 14

Bidding Algorithm ... 14

Bid-Rigging Algorithm .. 15

User Agent ... 15

Seller Agent .. 17

Vendor Agent ... 18

No Rigging ... 18

Types of Bid Rigging by Vendor Agents ... 19

Bid Rotation.. 20

Bid Suppression .. 21

Complementary Bidding .. 22

CHAPTER 4. IMPLEMENTATION .. 25

Agent Class .. 25

Creating an Agent Class ... 25

viii

Agent Identifiers... 25

Agent Initialization... 26

Agent Takedown .. 27

Behavior Class ... 27

Behavior Execution .. 27

Advantages of JADE Behavior .. 27

Types of Behaviors .. 28

One-Shot Behavior ... 28

Cyclic Behavior .. 28

Other Behaviors .. 28

Agent Communication Language (ACL) ... 28

ACL Message Class ... 29

Sending Messages .. 29

Receiving Messages ... 30

Building the Database .. 31

Contract Superior Agent Table .. 32

Inventory Tracker Webpage ... 33

Selecting the Bid-Rigging Method... 34

Tools Used in this Project .. 35

CHAPTER 5. EXPERIMENTS, RESULTS, AND ANALYSIS .. 37

ix

Experiments.. 37

Agent Initialization Outputs and Sample Test Results .. 37

Bid Rotation Vendor Agent Initialization and Table Outputs 37

Vendor Agents Posting Prices and Availability for Bid Rotation 38

Complementary Bidding Vendor Agent Initialization and Table Outputs 39

Vendor Agents Posting Prices and Availability for Complementary Bidding 40

Bid Suppression Vendor Agent Initialization and Table Outputs 41

Vendor Agents Posting Prices and Availability for Bid Suppression 42

Comparison Study .. 43

Comparing Results with Aggregate Data Tables and Graphs 43

Graph Drawn from the Tables with Aggregate Values Data of No Rigging 44

Comparing No Rigging and Bid Rotation Graphs .. 44

Comparing No Rigging and Bid Suppression Graphs .. 45

Comparing No Rigging and Complementary Bidding Graphs 46

Method of Settlement ... 48

CHAPTER 6. CONCLUSION AND FUTURE WORK ... 50

Conclusion ... 50

Future Work ... 52

REFERENCES .. 54

x

LIST OF TABLES

Table Page

1. Agent Types and Their Functionalities. ... 17

2. Output of Bid Rotation: Iteration 1 (Vendor A is Dominant.)... 38

3. Output of Bid Rotation: Iteration 2 (Vendor B is Dominant.). .. 38

4. Output of Bid Rotation: Iteration 3 (Vendor C is Dominant.). .. 39

5. Output of Bid Rotation: Iteration 4 (Vendor D is Dominant.)... 39

6. Output of Complementary Bidding: Iteration 1 (Vendor A is Dominant.). 40

7. Output of Complementary Bidding: Iteration 2 (Vendor B is Dominant.). 40

8. Output of Complementary Bidding: Iteration 3 (Vendor C is Dominant.). 41

9. Output of Complementary Bidding: Iteration 4 (Vendor D is Dominant.). 41

10. Output of Bid Suppression: Iteration 1 (Vendor A is Dominant.). 42

11. Output of Bid Suppression: Iteration 2 (Vendor B is Dominant.). 42

12. Output of Bid Suppression: Iteration 3 (Vendor C is Dominant.). 43

13. Output of Bid Suppression: Iteration 4 (Vendor D is Dominant.). 43

14. No Bid Rigging Aggregate Data Table.. 44

15. Bid Rotation Aggregate Data Table... 45

16. Bid Suppression Aggregate Data Table. .. 46

17. Complementary Bidding Aggregate Data Table. .. 47

xi

LIST OF FIGURES

Figure Page

1. Agent Platform Interactions. .. 2

2. Agent Life Cycle Model. ... 5

3. Bidding Algorithm Diagram. ... 14

4. Flowchart of Bid-Rigging Algorithm. ... 16

5. User Agent’s Diagram. .. 17

6. Seller Agent’s Diagram. .. 18

7. Vendor Agent’s Diagram. .. 19

8. No Rigging Diagram. ... 20

9. Bid Rotation Diagram. ... 21

10. Bid Suppression Diagram. ... 23

11. Complementary Bidding Diagram. .. 24

12. Sending ACL Message. ... 30

13. Receiving ACL Message. .. 31

14. Sample Vendor (A) Inventory Table. .. 33

15. Contract Database Table. ... 34

16. Inventory Tracker Webpage. ... 35

17. Vendor A’s Repository on Inventory Tracker Webpage. .. 36

18. Bid Configuration Properties. .. 36

xii

19. No Bid Rigging Graph with Multiple Products, Winning Vendors and Profits. 44

20. Bid Rotation vs. No Rigging Graph with Vendor and Profit. 45

21. Bid Suppression vs. No Rigging Graph with Vendor and Profit. 46

22. Complementary Bidding vs. No-Rigging Graph with Vendor and Profit. 47

1

CHAPTER 1. INTRODUCTION

Java Agent Development Framework (JADE)

Java Agent Development Framework, referred to as JADE, is computer software

that connects software components and/or applications to multiple processes running on

one or more machines, making them interact. JADE is an agent development system that

has three main components that facilitate agent development: Agent Platform, Agent

Management Services, and Directory Facilitator. JADE (Eclipse) is the Java-based JADE

development where agents are created and contained [8].

JADE has a runtime environment, library, and graphic tools. A runtime

environment is the base where all the JADE agents reside, execute, and interact with one or

more agents. A library is a built-in archive of programs that the agents can use for a direct

or some advanced functionality without having to create them every time they are needed.

A set of graphic tools are available for the runtime environment to monitor, start, stop, and

manipulate the agent activity in NetBeans IDE.

Containers and Platforms

A container is where a group of agents live. A container might have several active

and passive agents running. Agents inside a container can communicate between

themselves.

Two or more active containers would make a platform (Figure 1). Every platform

has a main container. The main container in the platform should be active, and all the other

containers in the platform would register to the main container as they start. With the

exception of the main container, all other containers in a platform are considered non-main.

2

The main container has two special agents that are automatically started when it

starts. Having the two special agents is a feature that makes it different from other

containers because it supports the agents and maintains its functionality. The Agent

Management System manages the naming service for all the agents in a platform so that

each container in the platform does not have a duplicate name. The Directory Facilitator, or

DF, provides the “yellow pages” service through which the agent and the services it

provides is listed, so other agents can find agents if needed. We look at Directory

Facilitator in more detail in the forth coming section.

DF

AGENT

AGENT

MANAGEMENT

SYSTEM

Message

Transport

System

AGENT PLATFORM

AGENT

Message

Transport

System

AGENT

AGENT

Message

Transport

System

AGENT

DF

AGENT PLATFORM AGENT PLATFORM

Figure 1. Agent Platform Interactions.

The Agent Management Reference Model gives a formal model in which intelligent

physical agents can coexist and operate. It helps in the management of agent creation, agent

registration, agent location, agent communication, agent execution, and agent termination.

An agent is a module that is designed to execute certain functionality when its

intended computation process occurs in the application. An agent communicates with the

rest of the application through agent Communication Language (ACL). Every agent has an

owner with a specific identity. This identity is established using an agent identifier called

3

AID that gives it a unique name inside the agent platform (AP). In the AP, an agent is a

player along with other agents where it is performs a single service or a combination of

services. These agent services are published in the service description, thereby all agents

unite to make an integrated facility model for cumulative services provided by the AP.

Each agent makes referrals to the service provider for the description of agents and what

they offer, so depending on their requirements, they can communicate with other agents

using ACL and can use what other agents have to offer.

Directory Facilitator

Directory Facilitator (DF) is a component that provides yellow-page services to

other agents. DF is an optional component, but when it is present, all the agents will

register their services to the DF. The DF is where other agents will query for services

offered by other agents. There can be multiple DFs operating within as AP and such

process is known as a federation.

The DF will always try to maintain a recent and updated list of agents and services.

As a result, a DF will have the most current information in an unbiased way for all its

authorized agents. While forming a federation, the various DFs register with each other.

Each agent should find the appropriate DF and request registration. An agent can also

refuse to advertise its service through a DF. The deregistration function can be used by an

agent at any moment to break all ties with the DF, and an agent can modify its service

description at any time for any reason.

DF supports the following functions for the yellow-page service it offers:

1. Register: Advertise the agent service through the DF with a description.

2. Deregister: An agent breaks ties and removes the agent description.

4

3. Modify: The agent can modify its description at any time and for any reason.

4. Search: Searches are allowed for a registered agent and its service description.

Agent Management Services

Agent Management Services (AMS) is the second component of an AP. Each AP

should always have an AMS. There can be only one AMS per agent platform, and it

controls and supervises the communication, access, and message transportation to agents of

the AP. AMS has a directory of all agent IDs in the AP. AMS is responsible for issuing the

agent identifier (AID) to each agent that register with it.

AMS manages the agent platform (AP), agent creation, agent deletion, and agent

life cycle; including agent migration from one AP to another if agent mobility is allowed.

An AP can have multiple machines in a single platform, hence allowing AMS managing

authority to spam across multiple machines. An AMS can be queried to get the description

of an AP.

 AMS maintains an index that has all the agents currently living in the AP. This

index has the entries of all the agent AIDs.

AMS supports these additional functions to manage the agents residing in a

platform as a part of the agent life cycle (Figure 2).

1. Create agent: Creation of a new agent.

2. Invoke agent: Invocation of a new agent.

3. Suspend agent: Freeze the agent from its activities.

4. Resume agent execution: Wake up agent for execution.

5. Execute agent: Trigger an agent to perform its advertized services.

6. Terminate agent: Kill an agent that is at end of its life cycle.

5

Figure 2. Agent Life Cycle Model.

Agent Platform

Agent platform (AP) is the physical infrastructure that acts like a container, where

all the agents, machine hardware, machine operating system, and software that support the

agents reside. An AP can have its agents talk to other agents on different agent platforms

using message transportation services.

Agent Naming

The Foundation for Intelligent Physical Agents, also called FIPA, set standards for

agent naming. Agent naming helps identify the agent using an agent identifier. An agent

identifier is a combination of parameter and value pairs. An agent identifier can also have

parameters, such as nicknames, roles, etc., to make the agent naming and AP more precise.

The naming parameter is the global unique identifier. It combines the agent and its

home AP address using the “@” character.

6

The addresses parameter lists the transport addresses where a message can be

delivered and could be in the URL format. The resolver parameter is where name

resolution services are located.

The parameter values of an agent ID can be edited or modified by an agent to

update more naming resolution servers and/or transportation addresses. Mandatory

parameters can only be changed by the owner of the agent.

Name Resolution

Name resolution is a service is provided by AMS. Name resolution involves the

search function resolving the parameters in the AID, thereby resolving the transport

address of the agent.

Transportation Address

The transportation address is a physical address where an agent is reachable and cab

be reached by specifications through the transport message protocol. An agent can have

more than one way of communicating. It is also possible for the agent to have multiple

transport address values assigned as parameters in an AID.

Literature Review

The Foundation for Intelligent Physical Agents [1] (FIPA) is the international

organization that develops and specifies the design and architectural standards of the agent-

based framework. The organization gives specifications to standardize the agent-based

application so they can have interoperability and portability across multiple APs.

Organization helps avoid multiple localized or platform-dependent applications that cannot

communicate with other APs of the same scope but different standards. The goals of FIPA

are to deliver specifications for “Agent Management and platform services, Agent

7

Communication Model and Language and set of Common Interaction Protocols” [2]. The

JADE platform offers support for distributed architecture and agents can choose among

many message transportation protocols to communicate with agents on the same or

different APs. Agent platform makes inter-machine communications possible and

application agents portable. Agents are autonomous and control their own thread of

execution. Agents can also execute several conversations simultaneously, creating the need

for concurrency among them.

An antitrust primer for agents and procurement officials talks [4] about the

commitment of the Antitrust Division, FEMA, and other federal law enforcement agencies

to ensure clean operation of online or e-based business operations. Federal law

enforcement agencies monitor online and e-based business operations to detect and deter

anticompetitive conduct in bidding. They design methods to find and charge businesses

organizations that engage in bid rigging, fixing prices, and anticompetitive activities. The

paper discusses basic types of bid rigging and how the winner is determined in each bid-

rigging type. Each bid-rigging model has a way to benefit all the players in some way and

when one of the methods is used, it helps all players make profit but deters the bidder from

gaining any competitive advantage. The payback method is the most common type chosen.

No matter what bid-rigging type is adapted, there are suspicion indicators that point out

wrongdoing and price fixing. The paper [4] also discusses what conditions favor collusion

and what procurement officials can do about stopping it.

“A Mobile Agent Platform for Supporting Ad-hoc Network Environment” [6] is a

research paper that is focused on adopting the AP architecture for implementing broadband

mobile communication. Because independent agent-based applications are autonomous,

8

portable, and can use a variety of communication protocols, they are well suited for mobile

implementation. Mobile ad-hoc networks (MANETSs) can use independent physical agents

as mobile devices, and they need few physical resources; agents are designed to run on a

single thread, thus reducing resource consumption.

“An Ambient Intelligence Application Integrating Agent and Service-Oriented

Technologies” [7] presents the agent-based approach in developing a service-oriented

architecture for mobility-impaired people. In order to create this function, the paper

proposes integrating FIPA-based agent platforms into a service-oriented framework.

“Online Bidding” for the construction council [9] discusses the online bidding process used

for contract biddings, the advantages and benefits of using unbiased and genuine bidding

methods, and the problems of bid rigging and other compromising factors that could cause

loss to the business. The cost of training, monitoring and exercising the online bidding

safely, as well as methods for improving the processes and procedures of online bidding

are discussed.

“Practical Secrecy-Preserving, Verifiably Correct and Trustworthy Auctions” [10]

presents the option of using sealed bid auctions where the full details of a bid are not

provided to parties to attain a correct and trustworthy auction. The system creates a simple

and effective means of controlling collusion by not letting the parties know who all the

players and what the complete details are.

“On Cheating in Sealed-Bid Auctions” [11] explores two form of cheating in sealed

bid auctions. One scenario is the when a seller illegally accesses the bid price and inserts a

fake bid to increase the payment for a winning bidder. Another scenario is when the seller

illegally accesses the bid price of a second bidder and uses it for personal winning bid. This

9

paper discusses the strategies of how bidders are conscious about the possibilities of

cheating.

“Coalition Formation in Proportionally Fair Divisible Auctions” [12] discusses a

fairly interesting topic of the same owner creating and operating many agents. This

situation creates multiple ways collusion could happen because all the agents have an

owner. Even though they resemble competing agents, any wins create a mutually beneficial

result.

“Online Auctions Efficiency: A Survey of eBay Auctions” [13] studies eBay’s

online auctioning properties. Auctioning is characterized using common features in this

paper: private, where a bidder remains anonymous, vs. public, where bidders’ identity is

open; open, where all bid amounts are exposed, vs. closed, where bid amounts are

concealed; first price vs. second price, where the bidder pays the second highest fair; fixed

time vs. auto-extend end time; and hidden reserve price vs. no reserve price.

“Five Sealed-Bid Auction Models” [14] presents four models and how they deal

with bid privacy. The article defines some basic properties and optional properties. The

basic properties are correctness, confidentiality, and fairness. The optional properties are

anonymity, privacy, public verifiability, robustness, price flexibility, and rule flexibility.

10

CHAPTER 2. PROBLEM STATEMENT

Paper Topic

The goal of the paper is to develop a prototype system using multiple agents with

characteristics of pervasive computing (ambient systems, ubiquitous computing). The agent

should communicate in a loosely coupled fashion using an agent communication language

(ACL). ACL is part of the Java Agent Development Framework (JADE) provided for

communication between agents [5].

With my adviser’s guidance, I have included a demonstration of what can happen if

vendors who set prices are not completely independent but, rather, engage in some type of

collusion. This situation would then involve inter-agent message passing among the

vendors and involving in collusion and bid rigging to make profit by illegal means. See the

following web site [4] for some of the ideas implemented in the shopping agent program in

this paper.

Problem Statement

E-Commerce is growing rapidly with the aid of the internet, offering a wide variety

of products for online shopping. The problem is that customers who want to shop for a

specific product cannot visit each and every vendor’s website to find the best possible price

customers can get. Potential buyers would like a one-stop shop where the buyer can enter

product information and get a list of vendors offering the best price. This paper addresses

the issue by developing a Shopping Agent application where the buyer can enter product

information and get a recommendation for the best price, including necessary vendor

information.

11

Solution

Create a Shopping Agent Application Using JADE

A shopping agent is created with a buyer agent, seller agent, and vendor agents as

in Table 1.

Demonstrate Three Kinds of Bid-Rigging Methods

1. Bid rotation: Everyone in the collusion team gets turns selling his/her product.

2. Bid suppression: One or more vendors withdraw their product from the bidding or

shopping list.

3. Complementary bidding: One or more vendors post very high prices that make the

intended vendor product look cheaper while the product is still priced higher than what

the product worth.

Explanation

The shopping agent will be able to compare prices from various vendor agents

where the currently searched product (item) is available. The shopping agent will then

provide recommendations to the buyer after comparing the prices. The vendor agents

interact with the database to check whether the searched item is present in the database; if

yes, the vendor agent returns the best price possible. After retrieving the prices from

different vendor agents, the seller agent recommends the best price to the user after

comparing the prices offered.

To support the collusion, there are additional inter-agent messages passing among

the vendors. The vendors, in turn, manipulate the price to facilitate bid rigging and send

altered prices back to the seller agent based on the collusion strategy.

12

Tasks Involved

Designing a User Agent

The following steps are taken to design a user agent:

1. Design a user interface (using Java swings/web-based interface) to provide a search box

and to display the recommended results.

2. Design the user agent using agent communication language (ACL): JADE delegates the

request (searched product) and the response (best price after comparing) to and from

the seller agent.

Designing Different Vendor Agents

The following steps design the vendor agents:

1. Design a database table for multiple vendor agents by using MySQL for storing the

vendor product information along with the offered price.

2. Retrieve the product information from multiple vendor agents that have characteristics

of pervasive computing by writing a SQL query.

Vendor agents receive the query from seller agent and they proceed in bid rigging.

Vendor agents pass inter-agent messages that help them to fix prices and to eliminate

competitive and fair consumer benefits for buyers.

The vendor agents would use a round-robin mechanism to take turns in bid rotation.

They may do a combination of bid suppression and complementary bidding in a random

fashion. Each agent sends inter-agent messages and sets a price that would benefit or aid

one of the vendors. Vendor agents might occasionally opt not to participate in the selling.

Process the retrieved SQL query result, and return the altered/tampered price to the seller

agent.

13

Designing a Seller Agent

The following steps are taken to design a seller agent:

1. Communicate using JADE with multiple vendor agents in a loosely coupled fashion.

2. Process the result from multiple vendor agents, compare prices, and return the best

price to the user agent.

14

CHAPTER 3. DESIGN AND ARCHITECTURE

Bidding Algorithm

The bidding algorithm is outlined here and in Figure 3:

1. User agent gets a product from the user.

2. The received product is sent to the seller agent for pricing.

3. The seller agent broadcasts the product information to all the vendor agents.

4. Upon receiving the product information, the seller agent and vendor agents process the

request. All the vendor agents submit their prices to the seller agent.

5. The seller agent, after receiving the price, sends the prices to the user agents.

Figure 3. Bidding Algorithm Diagram.

15

Bid-Rigging Algorithm

The bid-rigging algorithm is outlined here and in Figure 4:

1. User agent gets a product from the user.

2. The received product is sent to the seller agent for pricing.

3. The seller agent broadcasts the product information to the vendor agents.

4. After receiving product information, the seller agent and vendor agents process the

request.

5. The vendor agent finds the type of bid rigging to implement from the three choices: bid

suppression, bid rotation, and complementary bidding.

6. For the particular bidding type, the dominant vendor agent from the specific bid rigging

is read from the database.

7. The dominant vendor agent secretly communicates with other agents using inert

communication messages and sends his/her price to the product user agent.

8. Other vendor agents manipulate their prices to favor the dominant vendor agent’s price

by utilizing the appropriate bid-rigging strategy.

9. All the vendor agents submit their manipulated prices to the seller agent.

10. The seller agent, after receiving the pricing information from vendor agents, sends the

prices to the user agent.

User Agent

Functions of a User Agent are shown in Figure 5 and as follows:

1. User agent gets product from the user.

2. The user agent waits and listens for the user to request product information and pricing.

16

3. The user agent’s mechanism of waiting and listening is done through a JADE agent

cyclic behavior.

4. Once the product information from the user is received, the user agent creates a

message with the product information.

5. And sends the product information to the seller agents.

Figure 4. Flowchart of Bid-Rigging Algorithm.

17

Table 1. Agent Types and Their Functionalities.

Agent Type Functionality

User Agent

Gets product request from user, and requests prices and availability

from the seller agent.

Seller Agent

Processes requests from the user agent and enquires about pricing and

availability from vendor agents.

Vendor

Agents

Gets a product request from a seller agent, checks inventory, and

replies to the seller agent with availability and pricing.

Number of

Vendors

Vendor A, Vendor B, Vendor C, and Vendor D are the four vendors.

They each perform the same function.

Figure 5. User Agent’s Diagram.

Seller Agent

Functions of Seller Agent are shown in Figure 6 and as follows:

1. Seller agent waits and listens for a product from the user agent.

2. The seller agent exhibits a JADE agent cyclic behavior until the agent is stopped.

3. The seller agent creates a broadcast message, sends it to all the vendor agents, and

then waits for a response.

4. After receiving the price, the seller agent sends the price to the standalone output user

console.

18

Figure 6. Seller Agent’s Diagram.

Vendor Agent

Functions of Vendor Agent are shown in Figure 7 and as follows:

1. The vendor agent gets the product information from the seller agent.

2. The vendor agent checks what collusion type is being requested in bid config-en

properties.

3. Based on the collusion type, the vendor agent chooses which module of bid rigging to

be demonstrated: bid-rotation, bid suppression, or complementary bidding.

4. Once received, prices are sent back to seller agent.

No Rigging

No rigging is shown in figure 8 and explained below:

1. A no rigging bid run is when there is no collusion between the vendors.

2. The user sends the product he wants to the user agent.

3. The received product is sent to the seller agent for pricing.

19

Figure 7. Vendor Agent’s Diagram.

4. The seller agent broadcasts the product information to all the vendor agents.

5. Upon receiving the product information, the seller agent and vendor agents process the

request. All the vendor agents submit their prices to the seller agent independently.

6. The seller agent, after receiving the pricing information, sends the prices to the user

agents.

7. The user has the advantage of finding the cheapest price when the vendors compete

against each other to sell the product.

Types of Bid Rigging by Vendor Agents

This paper discusses about the three bid-rigging methods bid rotation, bid

suppression and complementary bidding. The three bid-rigging algorithms and their

operation steps are briefly explained in the following sub sections and their respective

figures. Each rigging method is different from one other in the way collusion and rigging is

implemented.

20

Figure 8. No Rigging Diagram.

Bid Rotation

Bid rotation is shown in figure 9 and explained below:

1. The vendor agent checks bid config-en properties and finds the bid-rigging method

currently demonstrated.

2. If bid rotation is selected, the vendor agents executes that collusion module and checks

for the superior agent from the database table.

3. Once chosen, the superior vendor agent dominates the bid and secretly sends its posted

price to all the other inferior agents.

4. All other inferior agents correspondingly post a relatively higher price than the price

posted by the superior vendor agent.

21

Figure 9. Bid Rotation Diagram.

5. In bid rotation, the next inferior agent dominates when the next bidding occurs. The

database is reset with the next agent as the superior agent for the next bidding.

Bid Suppression

Bid suppression is shown in figure 10 and explained below:

1. The vendor agent checks bid config-en properties and finds the bid-rigging method

currently demonstrated.

2. If bid suppression is selected, the vendor agent executes that collusion module and

checks for the superior agent from the database.

22

3. The superior vendor agent dominates the bid and secretly sends its profitable price to

all the other inferior agents.

4. Some inferior agents then randomly choose to withdraw from posting a price and

pretend the product is out of stock.

5. This randomized inferior agent withdrawal choice is generated at each bid run to keep

the rigging undetectable by pattern analysis.

6. The superior agent suppresses some of its competition and makes agents bow out of

bidding with “product out of stock” messages.

7. Superior agent then remains the only vendor to offer the product in demand at a

profitable price.

8. In bid suppression, the next inferior agent dominates when the next bidding occurs.

9. The database is reset with the next agent as the superior agent for the next bid so other

vendors can have winning bid run.

10. Bid suppression uses withdrawal and profitable price posting from the superior agent

which makes it one of the toughest rigging methods to be identified by pattern analysis

of bidding data.

Complementary Bidding

Complementary bidding is shown in figure 11 and explained below:

1. The vendor agent checks bid config-en properties and finds the bid-rigging method

currently demonstrated.

2. If complementary bidding is selected, vendor agents execute that bidding module and

check for the superior agent from the database.

23

Figure 10. Bid Suppression Diagram.

3. The superior vendor agent dominates the bid and one agent becomes the superior agent

as the database describes.

4. The superior vendor agent secretly sends its posted price to all the other inferior agents

who are waiting to receive it.

5. These inferior agents correspondingly post a higher price than the price posted by the

superior vendor agent.

6. These inferior agents randomly withdraw from posting a bid.

7. This helps the superior agent to post a winning bid.

8. Once the bid run is over, the database is reset with a random vendor agent as the

superior agent for the next bidding run.

24

Figure 11. Complementary Bidding Diagram.

25

CHAPTER 4. IMPLEMENTATION

A shopping agent application has been created, demonstrating what can happen

with prices if vendors are not completely independent but, rather, engage in some type of

collusion. All the agent classes are created using the JADE programming language. Each

agent is built with appropriate behaviors and executes them when engaged.

Every agent gets an agent identifier, gets initialized when required, and is taken

down after its intended purpose is completed. NetBeans is the integrated development

environment (IDE) used for developing JADE. It comes with built-in templates that help

create the classes and code easily. It also helps in compiling and running the code.

NetBeans has a GUI which aids in showing when a main container is started and other

agents when they are started.

Agent Class

Creating an Agent Class

A JADE class is created by extending the jade.core.Agent class and invoking the

setup method. Example is shown in the sample seller agent code below, where the class

Seller Agent extends Agent.

// creating a JADE agent

public class UserAgent extends Agent {

 @Override

 protected void setup() {

 // implementation

 }

}

Agent Identifiers

Agent identifiers are instances of the jade.core.AID class. The agent identifier has a

structure of <agent name>@<platform-name>, so the agent will have a unique global ID.

26

The AID is created using the configuration template on the NetBeans IDE as shown in the

following code.

// agent identifier

AID agentID = new AID("VendorAgentB", AID.ISLOCALNAME);

Agent Initialization

 Agent initialization was done using NetBeans IDE, where the run template takes

the agent names of the AID and compiles them.

// initializing the JADE ***

Apr 21, 2011 1:29:34 PM jade.core.Runtime beginContainer

INFO: ----------------------------------

 This is JADE 3.6 - revision 6032 of 2008/05/05 14:07:10

 downloaded in Open Source, under LGPL restrictions,

 at http://jade.tilab.com/

--

Apr 21, 2011 1:29:35 PM jade.core.BaseService init

INFO: Service jade.core.management.AgentManagement

initialized

Apr 21, 2011 1:29:35 PM jade.core.BaseService init

INFO: Service jade.core.messaging.Messaging initialized

Apr 21, 2011 1:29:35 PM jade.core.BaseService init

INFO: Service jade.core.mobility.AgentMobility initialized

Apr 21, 2011 1:29:35 PM jade.core.BaseService init

INFO: Service jade.core.event.Notification initialized

Apr 21, 2011 1:29:35 PM jade.core.messaging.MessagingService

clearCachedSlice

INFO: Clearing cache

Apr 21, 2011 1:29:36 PM jade.mtp.http.HTTPServer <init>

INFO: HTTP-MTP Using XML parser

com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl$JAXPSAX

Parser

Apr 21, 2011 1:29:36 PM jade.core.messaging.MessagingService

boot

INFO: MTP addresses:

http://134.129.225.203:7778/acc

Apr 21, 2011 1:29:36 PM jade.core.AgentContainerImpl

joinPlatform

INFO: --------------------------------------

Agent container Main-Container@hex is ready.

--

27

When the main class is run, a disclaimer that the JADE runtime has started is

printed. All kernel services are started when the platform starts. Finally, a message saying

“Main-Container is ready” appears.

Agent Takedown

When the agent has to be terminated, a method named doDelete () is called. This

method does the opposite of what a setup () method would do. This doDelete () initiates the

takedown () method that terminates agents and does the cleanup operation.

Behavior Class

The behavior class has the actual task an agent performs. A behavior represents the

task that an agent would execute when the conditions occur. A behavior can be created to

function at the start of an agent, or it can be placed inside another behavior. Behavior is

implemented as a class that extends jade.core.behaviors.Behaviour, and the addBehavior ()

method is used to add a new behavior. There are many types of behavior a class can choose

from for its intended purpose.

Behavior Execution

Scheduling of an agent’s behavior is not pre-determined, but more in tune for

performing its action () method and returning a value. So depending on the agents function

the agent behavior is determined.

Advantages of JADE Behavior

1. JADE behavior performs well with limited resources. It uses one Java thread per user,

so machines with small resources benefit.

2. It provides better performance than Java threads switching because the behavior switch

is much faster.

28

3. No two behaviors get into a deadlock trying to access the same resources because all

behaviors run on a single thread.

Types of Behaviors

One-Shot Behavior

The one-shot behavior action method is executed only once and completes after that

specific execution. I will not go into detail about this behavior because it was not used it for

this project.

Cyclic Behavior

Cyclic behavior is used in this shopping agent project. A cyclic behavior never

stops and goes on executing the action () method every time it is called. The cyclic class is

called by extending the CyclicBehavior class. When invoked, it repetitively executes the

operation. All the vendors exhibit the cyclic behavior in this paper constantly waiting for

the seller agent to send them a product request.

Other Behaviors

Generic Behavior, Sequential Behavior, Parallel Behavior, and FSM Behavior are

JADE behaviors we did not use but they can be used in the future work if need arises for

more behaviors.

Agent Communication Language (ACL)

The Foundation for Intelligent Physical Agents is an IEEE Computer Society that

seeks to oversee the fit with other technologies through standardizations [3]. FIPA provides

the standard specifications for ACL. The specification includes the high-level

communication protocols, requesting for an action, and the response to the specific action.

The FIPA agent communication language is based on speech act theory [2].

29

ACL Message Class

JADE agents communicate with each other through a specialized message passing

API referred to as ACL Message and follow the agent communication language (ACL)

paradigm. Using the setContentObject () method and the getContentObject () methods, one

can send serialized Java objects over the content of an ACL Message. The code snippet

below shows the various ways an ACL Message can be created; an agent can propose a

message using the PROPOSE message type, and the receiving agent can either accept or

reject the proposal of the message using the ACCEPT_PROPOSAL or

REJECT_PROPOSAL message types, respectively.

ACLMessage proposeMessage = new

ACLMessage(ACLMessage.PROPOSE);

ACLMessage acceptProposalMessage = new

ACLMessage(ACLMessage. ACCEPT_PROPOSAL);

ACLMessage acceptProposalMessage = new

ACLMessage(ACLMessage.REJECT_PROPOSAL);

ACLMessage informMessage = new ACLMessage(ACLMessage.INFORM);

ACLMessage agreeMessage = new ACLMessage(ACLMessage.AGREE);

ACLMessage cancelMessage = new ACLMessage(ACLMessage.CANCEL);

Sending Messages

To pass a message between agents, one agent needs to create an instance of an ACL

Message and then add the intended recipients using the addReceiver () method. Finally, the

agent sends the message using the send () method, See Figure 12 and listed in code below.

// create an instance of ACLMessage.

ACLMessage msg = new ACLMessage(ACLMessage.INFORM);

// message to be sent.

msg.setContent("IPOD Touch 16 GB");

// whom to send.

msg.addReceiver(new AID("SellerAgent", AID.ISLOCALNAME));

// send the message.

send(msg);

30

Figure 12. Sending ACL Message.

Receiving Messages

To receive a message, an agent needs to watch for an intended message. To listen

constantly, I created an agent with cyclic behavior which listens for a message at all times.

After receiving a message, the agent extracts the address information and the content.

Based upon the address information, the agent takes the necessary action.

The recipient agent implements a cyclic behavior which waits for a message to be

received, and waiting is implemented by calling the block () method. The message itself is

received by calling the receive () method which returns an instance of the ACL Message

(Figure 13). Once the message is received, the action () method can process the message

and communicate to various other agents (if needed).

Listed below is the sample code for receiving ACL message.

31

addBehaviour(new CyclicBehaviour(this) {

 public void action() {

 //get messages from RECEIVER, if it sends any.

 ACLMessage msg = receive();

 if (msg != null) {

 System.out.println("\n - " +

myAgent.getLocalName() + " received: " + msg.getContent());

 }

 block(); // wait for a message to receive.

 }

});

Figure 13. Receiving ACL Message.

Building the Database

A database was created with list of products for each vendor. Each vendor has

products in common and products unique to itself. The database for each vendor has the

repository details of product name, product description, availability, unit price, and product

32

ID. When a buyer agent sends a request for product to vendors, they check their databases

for product price and availability.

Making the database more realistic was important, so we can run the experiments

and collect data that would resemble a real-life bidding transaction. The realistic database

was created by browsing the Amazon website for a list of products. Amazon is a one-stop

shop where a user can look for a product and see the different prices posted by a group of

sellers. The prices are posted on the same page, so the buyer can select the best seller and

the lowest price for a deal. For each product, the product price, description, and availability

were copied from a seller and assigned to a vendor’s database. The same steps were

repeated until a list of products, prices, and other details was gathered to make four vendor

databases.

MySQL was used to create an online database for the project on NDSU’s obiwan

server. The vendors were programmed to check their online inventory and to post product

price and availability. The screenshot Figure 14 shows how product, price and availability

were entered.

Contract Superior Agent Table

MySQL was also used to create the contract tables as shown in the Figure 15. Each

contract table told the appropriate bid-rigging scheme who was the superior vendor agent

was for that particular bid run. The vendor agents were programmed to check their

corresponding contract table for the superior agent on each bid run. Vendor agents also

update the table with the new superior agent at the completion of each biding run. The

updated contract table is used for identifying the superior agent on the next bid-rigging run.

33

Figure 14. Sample Vendor (A) Inventory Table.

The algorithm for updating the contract table is different based on each bid-rigging scheme

and its method of execution.

Inventory Tracker Webpage

A webpage was created using Perl script that displayed the database repository. The

webpage was hosted at obiwan.cs.ndsu.nodak.edu. A dropdown box gave the option to

click and view any one of the vendors in the database (Figure 16 and 17). The webpage

displayed the vendor’s database with the product name, description, unit price, and

availability when each vendor agent is selected.

34

Figure 15. Contract Database Table.

Selecting the Bid-Rigging Method

The bid-rigging methods demonstrated in this paper can be easily configured using

a properties file. When the user wants to run a specific bid-rigging method, for example

“bid suppression,” the specific method is enabled and the other methods are disabled as

shown in the Figure 18.

This allows the user to choose between the different bid-rigging methods he could

use for each bid run. We would discuss the tool used to create the shopping cart program in

the next section.

35

Tools Used in this Project

The tools used in this project are NetBeans version 6.8; JDK version 1.6; JADE

API; JADE Tools API for coding and running the shopping cart agent program.

Dreamweaver 8.0 was used for developing PHP, HTML, and CSS code for the webpage.

MySQL database was hosted at obiwan.cs.ndsu.noda.edu as a webpage. MySQL

Query Browser for creating and viewing the database. Operation system in which all these

programs were installed and used was Windows XP.

Figure 16. Inventory Tracker Webpage.

36

Figure 17. Vendor A’s Repository on Inventory Tracker Webpage.

Figure 18. Bid Configuration Properties.

37

CHAPTER 5. EXPERIMENTS, RESULTS, AND ANALYSIS

Experiments

The results of the no-rigging experiment are used as the control output. The control

output is used to compare the other bid-rigging experiments’ sales and profits. Experiments

were run for one product at a time, under no rigging, to acquire the control outputs. These

outputs include the profit and winner of the bidding run. Experiments were run for multiple

products under no rigging; then mean profit was calculated for each vendor.

Experiments were run for one product at a time under each bid-rigging method. The

output included the profit and the winner of the bidding run. Once experiments were run

for multiple products under each bid-rigging method, the mean profit was calculated for

each vendor.

Agent Initialization Outputs and Sample Test Results

Bid Rotation Vendor Agent Initialization and Table Outputs

Sample output that demonstrates vendor agent initialization for collusion-type bid

rotation.

Vendor-B started listening to client-request(s)...

Vendor-D started listening to client-request(s)...

Vendor-C started listening to client-request(s)...

Vendor-A started listening to client-request(s)...

Vendor-A received: Verbatim Mouse

DEMONSTRATING...BID ROTATION

Vendor-C received: Verbatim Mouse

DEMONSTRATING...BID ROTATION

Vendor-B received: Verbatim Mouse

DEMONSTRATING...BID ROTATION

Vendor-D received: Verbatim Mouse

DEMONSTRATING...BID ROTATION

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

38

[MESSAGE]: database connection successfully established!

[MESSAGE]: updated contract for 'bidrotation' with a value of

'4'

Contract successfully updated!

Vendor Agents Posting Prices and Availability for Bid Rotation

Sample output that demonstrates vendor agents posting price and availability for

collusion-type bid rotation.

[MESSAGE]: database connection successfully established!

PRODUCT RECEIVED FROM USERAGENT: Verbatim Mouse

PRICE RECEIVED FROM Vendor C IS: 21.75

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor B IS: 24.58

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor A IS: 25.01

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor D IS: 25.23

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

Following tables 2, 3, 4 and 5 show four iterations of bidding that demonstrate

collusion-type bid rotation.

Table 2. Output of Bid Rotation: Iteration 1 (Vendor A is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 129.6

129.6
Vendor B IPOD Touch 16 GB 118 146.45

Vendor C IPOD Touch 16 GB 115 142.56

Vendor D IPOD Touch 16 GB 118 145.15

Table 3. Output of Bid Rotation: Iteration 2 (Vendor B is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 158.12

137.5
Vendor B IPOD Touch 16 GB 118 137.5

Vendor C IPOD Touch 16 GB 115 151.25

Vendor D IPOD Touch 16 GB 118 154

39

Table 4. Output of Bid Rotation: Iteration 3 (Vendor C is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 148.12

128.8
Vendor B IPOD Touch 16 GB 118 145.54

Vendor C IPOD Touch 16 GB 115 128.8

Vendor D IPOD Touch 16 GB 118 144.26

Table 5. Output of Bid Rotation: Iteration 4 (Vendor D is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 150.63

130.98
Vendor B IPOD Touch 16 GB 118 148.01

Vendor C IPOD Touch 16 GB 115 144.08

Vendor D IPOD Touch 16 GB 118 130.98

Complementary Bidding Vendor Agent Initialization and Table Outputs

Sample output that demonstrates vendor agent initialization for collusion-type

complementary bidding.

Vendor-D started listening to client-request(s)...

Vendor-A started listening to client-request(s)...

Vendor-C started listening to client-request(s)...

Vendor-B started listening to client-request(s)...

Vendor-D received: Verbatim Mouse

DEMONSTRATING...COMPLEMENTARY BIDDING

Vendor-C received: Verbatim Mouse

DEMONSTRATING...COMPLEMENTARY BIDDING

Vendor-A received: Verbatim Mouse

DEMONSTRATING...COMPLEMENTARY BIDDING

Vendor-B received: Verbatim Mouse

DEMONSTRATING...COMPLEMENTARY BIDDING

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: updated contract for 'complementarybidding' with a

value of '3'

Contract successfully updated for 'Complementary Bidding'!

40

Vendor Agents Posting Prices and Availability for Complementary Bidding

Sample output that demonstrates vendor agents posting price and availability for

collusion-type complementary bidding.

[MESSAGE]: database connection successfully established!

PRODUCT RECEIVED FROM USERAGENT: Verbatim Mouse

PRICE RECEIVED FROM Vendor B IS: 19.74

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor A IS: 22.7

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor D IS: 22.9

[MESSAGE]: database connection successfully established!

PRICE RECEIVED FROM Vendor C IS: 22.5

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

Following tables 6, 7, 8 and 9 show four iterations of bidding that demonstrate

collusion-type complementary bidding.

Table 6. Output of Complementary Bidding: Iteration 1 (Vendor A is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A Verbatim Mouse 21.95 23.71

23.71
Vendor B Verbatim Mouse 14.95 26.79

Vendor C Verbatim Mouse 19.95 26.08

Vendor D Verbatim Mouse 14.95 26.56

Table 7. Output of Complementary Bidding: Iteration 2 (Vendor B is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A Verbatim Mouse 21.95 22.7

19.74
Vendor B Verbatim Mouse 14.95 19.74

Vendor C Verbatim Mouse 19.95 21.71

Vendor D Verbatim Mouse 14.95 22.11

41

Table 8. Output of Complementary Bidding: Iteration 3 (Vendor C is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A Verbatim Mouse 21.95 25.69

22.34
Vendor B Verbatim Mouse 14.95 25.24

Vendor C Verbatim Mouse 19.95 22.34

Vendor D Verbatim Mouse 14.95 25.02

Table 9. Output of Complementary Bidding: Iteration 4 (Vendor D is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A Verbatim Mouse 21.95 19.08

16.59
Vendor B Verbatim Mouse 14.95 18.75

Vendor C Verbatim Mouse 19.95 18.25

Vendor D Verbatim Mouse 14.95 16.59

Bid Suppression Vendor Agent Initialization and Table Outputs

Sample output that demonstrates vendor agent initialization for collusion-type bid

suppression.

Vendor-D started listening to client-request(s)...

Vendor-C started listening to client-request(s)...

Vendor-A started listening to client-request(s)...

Vendor-B started listening to client-request(s)...

Vendor-C received: Verbatim Mouse

DEMONSTRATING...BID SUPPRESSION

Vendor-A received: Verbatim Mouse

DEMONSTRATING...BID SUPPRESSION

Vendor-B received: Verbatim Mouse

DEMONSTRATING...BID SUPPRESSION

Vendor-D received: Verbatim Mouse

DEMONSTRATING...BID SUPPRESSION

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

VendorAgentB AGENT ID: 3

VendorAgentC AGENT ID: 3

VendorAgentA AGENT ID: 3

unavailable from VendorAgentB

unavailable from VendorAgentA

42

[MESSAGE]: database connection successfully established!

available from VendorAgentC

[MESSAGE]: database connection successfully established!

VendorAgentD AGENT ID: 3

unavailable from VendorAgentD

Vendor Agents Posting Prices and Availability for Bid Suppression

Sample output that demonstrates vendor agents posting price and availability for

collusion-type bid suppression.

[MESSAGE]: database connection successfully established!

PRODUCT RECEIVED FROM USERAGENT: Verbatim Mouse

Product Unavailable from Vendor B

Product Unavailable from Vendor A

PRICE RECEIVED FROM Vendor C IS: 21.75

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

[MESSAGE]: database connection successfully established!

Product Unavailable from Vendor D

Following tables 10, 11, 12, 13 show four iterations of bidding that demonstrate

collusion-type bid suppression.

Table 10. Output of Bid Suppression: Iteration 1 (Vendor A is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 129.6

129.6
Vendor B IPOD Touch 16 GB 118 146.45

Vendor C IPOD Touch 16 GB 115 142.56

Vendor D IPOD Touch 16 GB 118 145.15

Table 11. Output of Bid Suppression: Iteration 2 (Vendor B is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 158.12

137.5
Vendor B IPOD Touch 16 GB 118 137.5

Vendor C IPOD Touch 16 GB 115 151.25

Vendor D IPOD Touch 16 GB 118 154

43

Table 12. Output of Bid Suppression: Iteration 3 (Vendor C is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 148.12

128.8
Vendor B IPOD Touch 16 GB 118 145.54

Vendor C IPOD Touch 16 GB 115 128.8

Vendor D IPOD Touch 16 GB 118 144.26

Table 13. Output of Bid Suppression: Iteration 4 (Vendor D is Dominant.).

Vendor Product Actual Price Posted Price Least Price

Vendor A IPOD Touch 16 GB 120 150.63

130.98
Vendor B IPOD Touch 16 GB 118 150.63

Vendor C IPOD Touch 16 GB 115 144.08

Vendor D IPOD Touch 16 GB 118 130.98

Comparison Study

A comparative study is aimed at evaluating the performance of the experimental

design. The study does the evaluation of each bidding method one at a time against the no-

rigging bidding scenario. The graphs are drawn with the final price paid by the buyers and

the profit made by each vendor under each bidding strategy and the no-rigging bidding.

The graphs are used to find pattern and analyze each rigging methods pros and cons with

pictorial representation. Finally, the method of settlement that is required among the

vendors under each bid rigging methodology is discussed in the following section later in

this chapter.

Comparing Results with Aggregate Data Tables and Graphs

Tables with aggregate values have been drawn for control, bid rotation, bid

suppression, and complementary bidding. Each table has data for the mean profit per

vendor from multiple product-bidding runs.

44

Table 14. No Bid Rigging Aggregate Data Table.

No Rigging Profits

Iteration 1 2 3 4

Vendors Vendor A Vendor B Vendor C Vendor D

Verbatim Mouse $ 0.00 $ 0.00 $ 0.00 $ 2.03

IPOD Touch 8 GB $ 5.60 $ 0.00 $ 0.00 $ 0.00

MCAFEE Antivirus 2010 $ 0.00 $ 0.00 $ 8.82 $ 0.00

Panasonic HDTV $ 18.80 $ 0.00 $ 0.00 $ 0.00

Sum $ 24.40 $ 0.00 $ 8.82 $ 2.03

Figure 19. No Bid Rigging Graph with Multiple Products, Winning Vendors and Profits.

Graph Drawn from the Tables with Aggregate Values Data of No Rigging

Here in table 14, we see that, for each bid run for a product, the vendor who posted

the smallest price won. Graphs as shown in Figure 15 show that the profit margins are

highly varied and that no single vendor has the total advantage for selling his/her product.

The profit margins are also cheaper, hence proving to be advantageous to the user who

wants to buy products.

Comparing No Rigging and Bid Rotation Graphs

Graphs are drawn to compare the aggregate data tables between no-rigging and bid-

rotation. Here in table 15, we could see that each vendor is making an equal number of

D

A

C

A

$0.00
$2.00
$4.00
$6.00
$8.00

$10.00
$12.00
$14.00
$16.00
$18.00
$20.00

Verbatim Mouse IPOD Touch 8GB McAfee Antivirus Panasonic HDTV

No Rigging

45

sales and that the profit margin is also similar. Each vendor gets a chance to sell their

product and to make profit as shown in figure 20. Compared to the profit margins of each

vendor with no rigging, bid rotation brings in more profit for all vendors evenly.

Table 15. Bid Rotation Aggregate Data Table.

Bid Rotation Profits

Iteration 1 2 3 4

Vendors Vendor A Vendor B Vendor C Vendor D

Verbatim Mouse $ 1.52 $ 2.79 $ 1.80 $ 2.03

IPOD Touch 8 GB $ 5.60 $ 4.01 $ 6.39 $ 8.76

MCAFEE Antivirus 2010 $ 7.92 $ 9.90 $ 8.82 $ 11.88

Panasonic HDTV $ 37.60 $ 58.56 $ 42.30 $ 56.40

Sum $ 52.64 $ 75.26 $ 59.31 $ 79.07

Figure 20. Bid Rotation vs. No Rigging Graph with Vendor and Profit.

Comparing No Rigging and Bid Suppression Graphs

Graphs are drawn to compare the aggregate data tables between no-rigging and bid-

suppression. Compared to the profit margins of each vendor with no rigging (Table 16), bid

suppression brings in more profit for all vendors by denying the availability of a product;

$24.40

$0.00

$8.82

$2.03

 $52.64

 $75.26

 $59.31

 $79.07

$0.00
$5.00

$10.00
$15.00
$20.00
$25.00
$30.00
$35.00
$40.00
$45.00
$50.00
$55.00
$60.00
$65.00
$70.00
$75.00
$80.00
$85.00

Vendor A Vendor B Vendor C Vendor D

No Rigging

Bid Rotation

46

the vendors force the user to buy it from the dominant vendor at a much higher price. Thus

boosting the profit margin greatly compared to the no-rigging profit margins which can be

seen in graph (Figure 21).

Table 16. Bid Suppression Aggregate Data Table.

Bid Suppression Profits

Iteration 1 2 3 4

Vendors Vendor A Vendor B Vendor C Vendor D

Verbatim Mouse $ 1.52 $ 0 $ 1.8 $ 4.06

IPOD Touch 8 GB $ 11.2 $ 4.01 $ 6.39 $ 0

MCAFEE Antivirus 2010 $ 7.92 $ 9.9 $ 8.82 $ 11.88

Panasonic HDTV $ 37.6 $ 0 $ 42.3 $ 112.8

Sum $ 58.24 $ 13.91 $ 59.31 $ 128.74

Figure 21. Bid Suppression vs. No Rigging Graph with Vendor and Profit.

Comparing No Rigging and Complementary Bidding Graphs

Graphs are drawn to compare the aggregate data tables between no-rigging and

complementary-bidding. Compared to the profit margins of each vendor with no rigging,

$24.40

$0.00
$8.82

$2.03

 $58.24

 $13.91

 $59.31

 $128.74

$0.00

$10.00

$20.00

$30.00

$40.00

$50.00

$60.00

$70.00

$80.00

$90.00

$100.00

$110.00

$120.00

$130.00

$140.00

Vendor A Vendor B Vendor C Vendor D

No Rigging

Bid Suppression

47

complementary bidding, too, brings in a high profit for all vendors when their turn to sell

comes (Table 17). By pricing the product very high, the vendors force the user to buy it

from the dominant vendor, making his/her price look cheaper. In reality, the price is still

higher than a no-rigging bid; hence the user is paying more money than the value of the

product (Figure 22).

Table 17. Complementary Bidding Aggregate Data Table.

Complementary Bidding Profits

Iteration 1 2 3 4

Vendors Vendor A Vendor B Vendor C Vendor D

Verbatim Mouse $ 1.76 $ 4.79 $ 2.39 $ 2.03

IPOD Touch 8 GB $ 11.2 $ 4.01 $ 0 $ 8.76

MCAFEE Antivirus 2010 $ 15.84 $ 9.9 $ 0 $ 11.88

Panasonic HDTV $ 37.6 $ 58.56 $ 42.3 $ 56.4

Sum $ 66.40 $ 77.26 $ 44.69 $ 79.07

Figure 22. Complementary Bidding vs. No-Rigging Graph with Vendor and Profit.

$24.40

$0.00

$8.82

$2.03

 $66.40

 $77.26

 $44.69

 $79.07

$0.00
$5.00

$10.00
$15.00
$20.00
$25.00
$30.00
$35.00
$40.00
$45.00
$50.00
$55.00
$60.00
$65.00
$70.00
$75.00
$80.00
$85.00

Vendor A Vendor B Vendor C Vendor D

No Rigging

48

Method of Settlement

Methods of settlements might vary based on the type of bidding or any method the

parties involved used in the collusion. Some of common ways of settling are stated below

for each bid-rigging method.

1. Bid rotation.

 Rotating the winning bid evenly so that each vendor has an equal number of

turns to win.

 Rotating the bid in a way that each vendor gets an equal amount of profit or

the chance to sell each product once to make the same margin of profit.

 Dividing products in such a way that the cumulative profit would be equal at

the end of all bidding runs.

2. Complementary bidding.

 Methodical ways of increasing or decreasing the price so that one of vendors

can profit when selling a product over a given period of time.

 There can also be direct payoff in the form of goods, money, or other means

of dividing profit in a legal tender.

3. Bid suppression.

 One is allowed to win while the other becomes the loser; losing bid is done

with a promise that the other will be allowed to win a different bid.

 The vendors who withdraw from posting a competing price are promised a

chance to win a later bid or a different product to make a profit.

49

 The wining vendor could settle by dividing his/her profit and sending it to

the other vendor by different means of payment, such as products, licenses,

or money.

 The winning vendor can also trade products to the losing vendors for a loss,

letting them gain profit by an internal trade.

Thus, there are numerous ways the profit could be divided within the collusion

group. It takes a lot of intelligence to crack the way such an inside trade can happen.

Government agencies are trained extensively to monitor and analyze such patterns to stop

bid riggings. But still they are in the process of learning and formulating schemes since

online shopping is fairly a new concept with few years in existence compared to other

means of commerce that we have used for ages.

50

CHAPTER 6. CONCLUSION AND FUTURE WORK

Conclusion

As the demand for online shopping for business, computing, and communication

surges, the need to make it safe also increases. An independent agent-based system requires

low resources for its operation and it is portable. It can run on multiple machines with

different hardware and operating systems. It is a flexible system that performs multiple

functions autonomously.

The program was developed to exhibit some different bid rigging in the online

shopping-cart scenario where a buyer bids for a product to get best price quotes from a

group of vendors. Non-rigged bidding would be where vendors compete; the vendor

posting the lowest price would win the bid. However, with bid rigging, inter-vendor

communication updates other vendors with price-eliminating completion, and based on the

collusion they choose, vendors withdraw from competition, post a higher price, or take

turns winning the bid. This paper is only concerned with an online-based rigging scenario

while there are other non-electronic methods that could accomplish the same outcome.

Vendors can always settle their profit sharing in other ways. The losing company

can negotiate the reward or payback in different ways. The intentional loser can win a

different contact at a different site while the previous winner fails or withdraws

intentionally. The winning vendor can decide to lose on certain products, thereby creating a

divide between the product hierarchy for who sells and profits from what products. There

can also be a direct payoff outside the online services with cash, goods, or other forms of

payment which are not electronically traceable by output or sales profit analysis. No matter

51

what methods and means are used, bid rigging is illegal and leaves evidence that could

bring wrongdoers punishment under federal law.

Collusion-based bid rigging only works when the settlements are followed properly.

The profits need to be divided in some fashion that all parties in the scheme benefit. If

some parties decide to cheat, then there is a chance that the vendors that failed to profit

might alert authorities about the rigging. Not dividing profits evenly is one of most

common ways rigging schemes are exposed.

On observation of patterns on the bid-rigging schemes and their graphs help

identify some of the pros and cons for each bid-rigging scheme. With fewer runs, the bid

rotation brought better profits and an even number of turns for all involved parties to sell

and make a profit. The profit was instantly realized, so none of the parties involved in

collusion had to settle profits latter. Bid rotation forms a clear and better scheme on short

bid-rigging runs as everyone has a better guarantee to win without others having to be

involved in settlement. The cons of the scheme were on multiple runs where the patterns

clearly show that the vendors are involved in collusion. This method will make collusion

obvious if used over a longer period of time.

Bid suppression was one of the toughest rigging schemes with which to spot a

pattern to identify collusion. It has a very random pattern, even on a long period of bid

runs. Because the inventory for each vendor is something only he/she knows, if he/she

decides to withdraw from participating from a bid, it is not easily identified. A vendor can

decide not to participate in bidding with a non-collusion scenario, too, and the results

would not look any different from one who does it based on collusion. The disadvantage of

this scheme is that all colluding parties should divide the profit in a proper way, or this

52

scheme can lead to failure or even tip authorities about the wining vendor’s involvement in

illegal schemes.

Future Work

This paper focused on implementing basic types of bid rigging in a shopping-agent

program, and it did not get into cross analysis, the patterns exhibited by different types of

bid rigging. As the need for better and safer online shopping increases, such studies could

help develop tools and strategies that keep fair-market competition open, thus helping the

buyer benefit from competition among vendors. When vendors rig prices before they post

information for potential buyers, they have to follow a bidding method to establish this

collusion and its resulting profit making. Any such method would leave evidence; such

evidence can be analyzed and documented to bring about justice. JADE and the agent

framework can be utilized for mobile technology, where independent, autonomous agents

can provide services using a single thread for executing multiple functions, thus using the

limited resources of mobile devices.

One of main requirements for the bid-rigging scheme to work in a collusion

scenario is if all the parties decide to participate. Only when all parties decide to

manipulate the price can the rigging really work. If a single vendor decides not to

participate in collusion and they decide to set price honestly, the chances are they would

have the lowest price in the entire bidding arena, hence winning all the bids without any

illegal support from others.

One way of challenging the entire bidding scheme illustrated in this paper is to

introduce a fifth vendor who does not participate in collusion. The fifth agent would post

his/her real price and the item availability on each bid run. The expectation is that he/she

53

will end up posting a lower price than the others who are colluding because he/she is not

increasing the price or manipulating data to help someone. Thus, this introduction of a fifth

agent would have a big chance of toppling the entire bid-rigging scheme.

54

REFERENCES

[1] FIPA.Org. (2004, March 18). Foundation for Intelligent Physical Agents (FIPA). FIPA

Agent Management Specification. Retrieved February 23, 2010, from

http://www.fipa.org/specs/fipa00023/SC00023K.pdf

[2] Bellifemine, F. (2001, April 7). Java Agent Development Framework (JADE). JADE

TILAB. Retrieved October 10, 2010, from

http://jade.tilab.com/papers/JADEEtaps2001.pdf

[3] Caire, G. (2009, June 30). JADE Tutorial - JADE Programming for Beginners. JADE

TILAB. Retrieved December 29, 2009, from

http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf

[4] Preventing and Detecting Bid Rigging, Price Fixing, and Market Allocation in Post-

Disaster Rebuilding Projects. (n.d.). Justice GOV. Retrieved April 14, 2009, from

http://www.justice.gov/atr/public/guidelines/disaster_primer.htm

[5] Taveter, K. (n.d.). Java Agent Development Framework (JADE). University of

Melbourne, Computer Science Department. Retrieved March 17, 2010, from

http://ww2.cs.mu.oz.au/682/Week6b.pdf

[6] Park, J., Youn, H., & Lee, E. (n.d.). A Mobile Agent Platform for Supporting Ad-hoc

Network Environment. International Journal of Grid and Distributed Computing,

9-16.

[7] Spanoudakis, N., & Moraitis, P. (n.d.). An Ambient Intelligence Application Integrating

Agent and Service-Oriented Technologies. JADE TILAB. Retrieved July 23, 2010,

from http://jade.tilab.com/papers/AI07-Spanoudakis-Moraitis.pdf

55

[8] Caire, G. (2004). JADE : The New Kernel and Last Developments. JADE TILAB.

Retrieved August 26, 2010, from http://jade.tilab.com/papers/Jade-the-services-

architecture.pdf

[9] SEC Group. (n.d.). Online Bidding. Construct IT Org. Retrieved October 28, 2010,

from http://www.construct-

it.org.uk/pages/sources/CIC_online_bidding_briefing_note.pdf

[10] Parkes, D., Rabin, M., Shieber, S., & Thorpe, C. (2008). Practical Secrecy-Preserving,

Verifiably Correct and Trustworthy Auctions. Electronic Commerce Research and

Applications, 7(3), 294-312. doi: 10.1016/j.elerap.2008.04.006

[11] Porter, R., & Shoham, Y. (2005). On Cheating in Sealed-Bid Auctions [Abstract].

Decision Support Systems, 39(1), 41-54.

[12] Maheswaran, R., & Basar, T. (2003). Coalition Formation in Proportionally Fair

Divisible Auctions. AAMAS '03 Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems, 25-32. doi:

10.1145/860575.860580

[13] Wenyan, H., & Bolivar, A. (2008). Online Auctions Efficiency: A Survey of eBay

Auctions. WWW '08 Proceedings of the 17th International Conference on World

Wide Web, 925-934. doi: 10.1145/1367497.1367621

[14] Peng, K., Boyd, C., Dawson, E., & Viswanathan, K. (2003). Five Sealed-Bid Auction

Models. ACSW Frontiers '03 Proceedings of the Australasian Information Security

Workshop Conference on ACSW Frontiers, 21, 77-86.

[15] "Collusion." Wikipedia, the Free Encyclopedia. Web. 28 Nov. 2011.

<http://en.wikipedia.org/wiki/Collusion>.

