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ABSTRACT 

We are going through a phase of data evolution where a major portion of the data from our 

daily lives is now been stored on social media platforms. In recent years, social media has become 

ubiquitous and important for social networking and content sharing. Sentiment analysis and 

opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, 

attitudes, and emotions from written language.  

In the financial sector, sentiments are also of paramount importance, and this dissertation 

mainly focuses on the effect of sentiments from investors [3] on the behavior of stocks. The 

dissertation work leverages social data from Twitter and seeks the sentiment of certain investors. 

Once the sentiment of the tweets is calculated using an advanced sentiment analyzer, it is used as 

an additional attribute to the other fundamental properties of the stock. This dissertation 

demonstrates how incorporating the sentiments improves forecasting accuracy of predicting stock 

valuation. In addition, various experimental analysis on regression based statistical models are 

considered which show statistical measures to consider for effectively predicting the closing price 

of the stock. The Efficient Market Hypothesis (EMH) states that stock market prices are largely 

driven by additional information and follow a random walk pattern [7, 8, 37, 39, 41]. Though this 

hypothesis is widely accepted by the research community as a central paradigm governing the 

markets in general, several people have attempted to extract patterns in the way stock markets 

behave and respond to external stimuli. We test a hypothesis based on the premise of behavioral 

economics, that the emotions and moods of individuals basically the sentiments affect their 

decision-making process, thus, leading to a direct correlation between “public sentiment” and 

“market sentiment” [42, 43, 44, 45]. We first select key investors from Twitter [27, 28] whose 

sentiments matter and do sentiment analysis on the tweets pertaining to stock related information. 
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Once we retrieve the sentiment for every stock, we combine this information with the other 

fundamental information about stocks and build different regression-based prediction models to 

predict their closing price. 
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CHAPTER 1. INTRODUCTION 

Sentiment is a view of or attitude toward a situation or event. It is an opinion, feeling on a 

subject and depicts the emotion involved. Sentiment analysis systems are being applied in almost 

every business and social domain because opinions are central to almost all human activities and 

are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we 

make, are largely conditioned on how others see and evaluate the world. For this reason, when we 

need to decide, we often seek out the opinions of others. This is true for individuals and for 

organizations. 

Sentiments are a key element now to understand the relevant information and is an 

upcoming trend in the field of processing information. Sentiment Analysis is performed on tweets, 

posts, and news articles to understand trends and to make decisions based on them. Launched in 

the year 2006, Twitter has become one of the most commonly used social networking sites. But 

with so much data collected in Twitter [85] or other Social Media platforms, it is virtually 

impossible to keep track of just the information in which we are interested. For mining these data 

efficiently for decision making or decision support, it requires fast processing of those data with 

an acceptable degree of accuracy [1, 2].  

Predicting the stock market is not a simple task. Mainly because of the close to random-

walk behavior of a stock time series [19]. Different techniques are being used in the trading 

community for prediction tasks. There are also several attributes which are considered to improve 

the prediction of stock price. In recent years, the concept of sentiment analysis [9,10] has emerged 

as one of them. In this dissertation, we investigate and empirically evaluate how sentiment analysis 

from social media content of key investors can be used as an additional parameter [29, 30] to the 

fundamental properties of the stock like open price, close price, high price, low price, volume of 



 

2 
 

stocks traded for predicting real-world outcomes such as the close price of a stock on the following 

day. We also show how Azure sentiment analyzer outperforms other commercial sentiment 

analysis tools and how we calculate the daily average sentiment of 3000 chosen investors pulling 

the tweet data from Twitter. We use the daily calculated “AvgSentiment” score as an additional 

property of every stock and do statistical studies to show the effect of this score on the close price 

of the stock. We perform evaluations of the time periods for which sentiments affect the close 

price of the stock and use our analysis to build various regression-based prediction models. We 

show that with an acceptable degree of accuracy and significant coefficient of determination, we 

can predict the close price of the stock on the following day using the historical stock information.  

The brief outline of this dissertation is as follows. A literature review of the related work 

and details of the published papers which comprise this dissertation is described in Chapter 2. An 

overview of Twitter as a social platform and the effect of investor sentiments and building the 

Azure Sentiment Analyzer and comparing with the other NLP tools is discussed in Chapter 3. 

Building different regression-based prediction models using sentiment score as an attribute is 

discussed in Chapter 4, and we finally summarize and conclude this dissertation in Chapter 5 by 

presenting some of the assumptions we have considered and wrapping up the contributions of our 

work. 
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CHAPTER 2. LITERATURE REVIEW 

Sentiment describes a group of people’s opinions, emotions or views. Investor sentiment 

is an approach to measure market sentiment. Dreman et al. [49] in their research mention about 

how investor sentiment surveys have long displayed interesting investor attitudes over the years. 

For example, despite large April 2000 market losses, investor expectations of future returns did 

not significantly fall. Thorp [50] mentions that extremely bullish levels of sentiment often come 

after strong market run-ups when investors are fully invested in the market. While Malkiel and 

Fama’s (1970) Efficient Market Hypothesis (EMH) indicates that securities prices fully reflect all 

publicly available information, in 2003 Shiller et al. [51] finds that, “The efficient markets model, 

for the aggregate stock market, has still never been supported by any study effectively linking 

stock market fluctuations with subsequent fundamentals.” In 2001, Hall [52] adds that many high-

tech companies with negative earnings maintained high stock prices for long periods of time. In 

2003, Malkiel [53, 54] and other economists challenged the EMH, to explain diverging market 

sentiment, including how psychological and behavioral elements impact stock prices. Some 

advocates even recommended using investor sentiment as a contrarian indicator for the overall 

market in certain specific situations. 

2.1. Investor Sentiment Measurements and Effect on the Stock Market 

Barberies et al. [55] in their research study show investor sentiment associated unreliably 

with stock prices. They showed how interestingly, investor sentiment under-reacted to more 

factual information such as earnings announcements, share repurchases, dividend initiations, and 

overreacted to a prolonged record of extreme (good or bad) performances. However, in 2006 Baker 

and Wurgler [7, 8] conclude that “…waves of sentiment have clearly discernible, important, and 

regular effects on individual firms and on the stock market as a whole.” In 2004, Thorp [50] also 
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comments on the lagging feature of sentiment as well as the potential irrational emotions that drive 

prices. He notes that “week to week changes in member sentiment do not reveal meaningful 

relationships between sentiment and market performance,” but he does discover that excessive 

investor sentiment in either a bullish or bearish direction would signal a significant opposing 

response over the following 52 weeks. Several studies find some measures of investment sentiment 

predicting stock returns. In 2006, Lemmon and Portniaguina [56] find that investor sentiment 

forecasts the returns of small stocks. In 2015, Zheng [57] documents a negative predictive relation 

between sentiment and metal futures’ returns. In 2015, Kaplanski et al. [58] affirm that more 

positive sentiment associates with higher return expectations and higher intentions to buy stocks. 

In 2014, Ling et al. [59] find a positive association between investor sentiment and subsequent 

private market returns. In 2015, Babu and Kumar [60] document that negative sentiment has a 

greater bearing on the NSE index return than positive sentiments.  

In 2012, Mittal and Goel [14] used sentiment analysis and machine learning principles to 

find the correlation between “public sentiment” and” market sentiment” to predict public mood 

and use the predicted mood and previous days’ DJIA values to predict the stock market 

movements. In 2010, Bollen, Mao and Zeng [11] investigated whether measurements of collective 

mood states derived from large-scale Twitter feeds are correlated to the value of the Dow Jones 

Industrial Average (DJIA) over time. They have analyzed the text content of daily Twitter feeds 

by two mood tracking tools, namely OpinionFinder that measures positive vs. negative mood and 

Google-Profile of Mood States (GPOMS) that measures mood in terms of 6 dimensions (Calm, 

Alert, Sure, Vital, Kind, and Happy). In 2015, Chatterjee and Perrizo [61] described how selecting 

tweets from 3000 key investors from Twitter can be a good indicator of stocks which are most 

frequently been discussed. They also make careful considerations that an investor can be biased 
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on a particular stock and how this biasness can affect the volatility of the stock in the market. The 

above research literature finds a substantial body of research of significant associations between 

investor sentiment and market return related measures.  

2.2. Investor Biasness 

In 2004, Shefrin [62, 63] denotes three behavioral finance themes: heuristic-driven bias, 

frame dependence, and inefficient markets. Heuristics call problem solving techniques “rules of 

thumb and not strict logic.” These often simple and efficient mental process rules tend to help 

people with decision making; a limited focus could lead to errors from cognitive bias. Framing is 

the process to see the world with all of our mental and emotional filters from our past experiences. 

Inefficient markets denote the price or rate of return that appears to contradict the EMH. 

Overconfidence becomes important when analyzing market inefficiencies. Psychology studies 

generally agree that human beings tend to overestimate their abilities. Regarding financial 

decisions, in 1999, Barber and Odean [64] present that investors’ overconfidence creates bias in 

their abilities and in regretting poor decisions. The Psychological - Overconfidence Theory 

indicates that investors tend to overweight private information while ignoring public information. 

In 2006, Chung and Lee [65] examined the impact of public and private information shock on 

trading volume and equal-weighted stock prices, finding that value weighted stock prices strongly 

overreact to private information shock and under react to public 4 information shock. Also, private 

information has an earlier impact than public information on stock prices and equal-weighted stock 

prices under-react to a public information shock for a longer period. Thus, overconfident investors 

trade more aggressively in subsequent periods when making market gains. Their findings are 

consistent with the expectation of the overconfidence hypothesis. In 2016, Chatterjee [66] evaluate 

the sentiment of the key investors they have identified to study their effect on certain ticker 
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symbols. Their work references the top down approach from 2006 by Baker and Wurgler [7, 8] 

which focuses on the measurement of reduced form, aggregate sentiment and traces its effects to 

market returns and individual stocks. The approach is based on two broad undisputable 

assumptions of behavioral finance—sentiment and the limits to arbitrage—to explain which stocks 

are likely to be most affected by sentiment, rather than simply pointing out that the level of stock 

prices in the aggregate depends on sentiment. In particular, stocks of low capitalization, younger, 

unprofitable, high volatility, non-dividend paying, growth companies, or stocks of firms in 

financial distress, are likely to be disproportionately sensitive to broad waves of investor sentiment. 

Stocks that are difficult to arbitrage or to value are most affected by sentiment. Chatterjee and 

Perrizo [66] also show when sentiment is low, the average future returns of speculative stocks 

exceed those of bond-like stocks. When sentiment is high, the average future returns of speculative 

stocks are on average lower than the returns of bond-like stocks. In their analysis, they focus on 

investors being biased on ticker symbols and would remove any bias in their tweets based on their 

tweet counts.  The more is the heterogeneity of the population of investors [4] tweeting on ticker 

symbol Ts, signifies Ts is been discussed by a wider population range.  

2.3. Sentiment Analysis and Approaches 

The recent data explosion has spawned an incredible increase in innovation. Sentiment 

analysis is a newer field that has only recently traversed from the academic realm to corporate 

use. Much of the current published research on the subject was developed by research facilities 

strongly associated with companies such as IBM, Microsoft, Google. “The sentiment detection of 

texts has witnessed a booming interest in recent years” (in 2009, Tang et al. [67]) with “the 

emergence of new social media such as tweets, blogs, message boards, news, and web content” 

dramatically changing the ecosystems of corporations (in 2010, Cai et al. [68]). The academic 
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contributors to the subject have combined many specific areas of linguistics, computer science, 

artificial intelligence, and psychology. More specifically as mentioned by Tang et al. [67] in 2009, 

it is “a discipline at the crossroads of NLP [natural language processing] and IR [information 

retrieval], and as such it shares a number of characteristics with other tasks such as information 

extraction and text-mining". Machine learning techniques, basic statistical analysis, and linguistic 

semantic representation are also well represented in the designs of the field.  As with many new 

fields, sentiment analysis is a combination of a few novel concepts reapplied to a wide range of 

specific aspects of other older fields. In 2010, Cai et al. [68] describes this importance, "The 

widespread availability of consumer generated media (CGM) such as blogs, message boards, and 

news articles post great opportunities as well as risks to today’s enterprises." As of 2009 companies 

have already been applying this realization. The complexity issue is still relevant even when 

narrowing the search space to a single source of information. The challenge that exists after the 

search space is established is to locate the relevant data. After the relevant data is established it 

can then be assessed for sentiment. These two stages are commonly referred to as subjectivity 

classification and sentiment classification. "Subjectivity classification is a task to investigate 

whether a paragraph presents the opinion of its author or reports facts. Subjectivity classification 

can prevent the polarity [i.e. sentiment] classifier from considering irrelevant or even potentially 

misleading text" as suggested by Tang et al. [67]. Sentiment classification has some variation 

among designers of each approach but ultimately serves the same abstract purpose. In 2010, Cai 

et al. [68] suggests "Sentiment analysis traditionally emphasizes on classification of web 

comments into positive, neutral, and negative categories”. There are several variations of this 

tradition. A more common trend in recent research is to get more specific in defining the sentiment 

spectrum. In 2009, Tang et al. [67] mentions "Sentiment classification includes two kinds of 



 

8 
 

classification forms, i.e., binary sentiment classification and multi-class sentiment classification". 

This multi-class sentiment approach will likely be the standard of the future. Human emotion spans 

a much more complicated spectrum than the simple black and white notions of positive and 

negative. Human beings have the strange capability to love and to hate something at the same time. 

The user could portray negative and positive sentiments on the same product. This is easy for 

humans to decipher but much more complicated for a machine.  

A few different approaches have been developed to create more accurate results. 

General polarity-based sentiment classification is a great step forward from the previous 

contextual only approaches. Cai et al. [68] mentions that “such analysis is useful, but it lacks 

insights on the drivers behind the sentiments.” In 2010, Qiu [69] developed an idea titled 

“Dissatisfaction-oriented Advertising Sentiment Analysis” or DASA that combines traditional 

sentiment analysis with basic keyword matching. In this approach, the software detects the 

negative sentiment of certain products. In 2004, Kim and Hovy [70] mentions in their research that 

choosing an accurate sentiment analyzer tool is challenging while processing unstructured texts 

such as tweets. Bollen, Mao and Zeng [11] in their research extensively mentioned about 

understanding and analyzing unstructured text is becoming an increasingly popular field and 

includes a wide spectrum of problems such as sentiment analysis, key phrase extraction, topic 

modeling/extraction, aspect extraction and more. They discuss a simple approach to do lexicon-

based analysis on words or phrases that impart negative or positive sentiment to a sentence the 

words “bad”, “not good” would belong to the lexicon of negative words, while “good”, “great” 

would belong to the lexicon of positive words. But this meant such lexicons must be manually 

curated, and even then, they were not always accurate. The phrases such as “not bad” which 

imparts a positive sentiment is hard to detect with simple lexicon-based analysis. 
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Massa et al. [71] presented a model that uses a mix of unsupervised and supervised 

techniques to learn word vectors capturing semantic term-document information as well as rich 

sentiment content. This model capture both semantic and sentiment similarities among words. 

Authors evaluate this model with document level and sentence level categorization task in the 

domain of online movie reviews.  

Pang and Lee [29] in 2004 proposed a novel machine learning method that applies text 

categorization techniques to adjust to just the subjective portion of the document, which is in 

following process: (1) label the sentences in the document as either subjective or objective, 

discarding the latter; and then (2) Apply a standard machine learning classifier to the resulting 

extract.  

In 2016, Chatterjee and Perrizo [66] focused on running sentiment analysis on the pulled 

tweets of selected investors to identify which of the stock ticker symbols have positive, neutral 

and negative sentiment score. They used a more robust approach using machine learning to train 

models that detect sentiment. For training the system a large dataset of text records that was already 

labeled with sentiment for each record was first obtained. The first step was to tokenize the input 

text into individual words, then apply stemming. Next, they constructed features from these words; 

these features are used to train a classifier. Upon completion of the training process, the classifier 

could then be used to predict the sentiment of any new piece of text. The crux of their research 

involved gathering the sentiment score accurately using a properly trained sentiment analysis tool. 

They have extensively trained and used the Microsoft Azure’s sentiment analyzer tool on the stock 

related tweet data and have shown in their research how the performance of this tool outperforms 

the other commercial tools like the Stanford NLP sentiment analysis engine. 
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2.4. Stock Market Predictions  

Stock price trend prediction is an active research area, as more accurate predictions are 

directly related to more returns in stocks. Therefore, in recent years, significant efforts have been 

put into developing models that can predict for future trend of a specific stock or overall market. 

Most of the existing techniques make use of the technical indicators. Some of the researchers 

showed that there is a strong relationship between news article about a company and its stock 

prices fluctuations. In the first formal theoretical study of prediction markets in 1992, Forsythe et 

al. [72] explored why individuals would spend time trading in such a market. Specifically, they 

listed five motivations for traders to participate in a political stock market experiment, which were 

(1) entertainment, (2) expected differences in information (confidence in their knowledge about 

the political event relative to other traders), (3) expected differences in information-processing 

ability (confidence in their ability to interpret news relative to other traders), (4) expected 

differences in their talents as traders, and (5) risk-seeking behavior. Forsythe et al. [72] expected 

these differences to attract a diverse group of experimental subjects and were able to confirm this 

belief when analyzing actual political stock market participants’ demographic characteristics, 

political and ideological preferences, investments, and earnings. In the context of prediction 

markets, another issue of considerable practical importance (originally identified by Manski in 

2004 [73]) is under which conditions prediction market prices reflect the true aggregate beliefs of 

the individual traders. To explore this issue, in 2006 Wolfers and Zitzewitz [74] proposed two 

simple models based on a log utility function, which lead to an equilibrium price in the market that 

is equal to the mean belief of traders. In 2004, Wolfers and Zitzewitz [82] also provided 

encouraging testimony of the ability of prediction markets to forecast uncertain future events. They 

found that “[...] simple market designs can elicit expected means or probabilities, more complex 
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markets can elicit variances, and contingent markets can be used to elicit the market’s expectations 

of covariances and correlations [...]”. In 2003, Berg et al. [75] used the Iowa Electronic Market’s 

prediction of the outcomes of the 1988, 1992, 1996 and 2000 U.S. presidential elections to provide 

the first study of the long-run predictive power of forecasting markets, finding that their markets 

gave accurate forecasts at both short and long horizons (single day vs. weeks and months). In 

another study on the predictive power of prediction markets, in 2004, Tetlock [76] used data from 

tradesports.com, an online market which at that time allowed wagers on both sports events and 

financial market data. He showed that financial prediction markets can be surprisingly efficient 

with relatively low numbers of market participants. In contrast to the studies discussed so far, in 

1996, Ortner [77] reported results from prediction markets run on election outcomes in Austria, 

where markets showed clear signs of manipulation and did not reliably provide forecasts of higher 

quality than polling organizations. Rather, the market’s results in his experiment had been 

deliberately and successfully manipulated by a minority of traders to deviate from the market’s 

earlier consensus opinion, at the same time influencing the prices of related markets. In 2003, Chen 

et al. [78] also deviated from the bulk of the prediction market literature, albeit in an entirely 

different way. While most studies reported on markets employing standard double auctions, in 

their experiment they performed a nonlinear aggregation of individuals’ predictions based on said 

individuals’ skills and risk attitudes, as determined in previous prediction rounds in the same 

market. The results from such a “weighted” prediction outperformed both the simple market and 

the best of the individuals. Overall, the diverse topics of studies on prediction markets and their 

heterogeneous findings underline the novelty of the field. While not specifically focusing on 

prediction markets, this study nonetheless offers new evidence on markets’ ability to process 

information and harmonize expectations. 
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Following is discussion on previous research on sentiment analysis of text data and 

different classification techniques. In 2012, Nagar and Hahsler [79] in their research presented an 

automated text mining-based approach to aggregate news stories from various sources and create 

a News Corpus. The Corpus is filtered down to relevant sentences and analyzed using Natural 

Language Processing (NLP) techniques. A sentiment metric, called NewsSentiment, utilizing the 

count of positive and negative polarity words is proposed as a measure of the sentiment of the 

overall news corpus. They have used various open source packages and tools to develop the news 

collection and aggregation engine as well as the sentiment evaluation engine. They also state that 

the time variation of NewsSentiment shows a very strong correlation with the actual stock price 

movement. In 2011, Yu et al. [80] present a text mining-based framework to determine the 

sentiment of news articles and illustrate its impact on energy demand. News sentiment is quantified 

and then presented as a time series and compared with fluctuations in energy demand and prices. 

In 2011, J. Bean [83] uses keyword tagging on Twitter feeds about airlines satisfaction to score 

them for polarity and sentiment. This can provide a quick idea of the sentiment prevailing about 

airlines and their customer satisfaction ratings. In 2015, Shynkevich et al. [81] in their research 

studies show, how the results of financial forecasting can be improved when news articles with 

different levels of relevance to the target stock are used simultaneously. They used multiple kernels 

learning technique for partitioning the information which is extracted from different five categories 

of news articles based on sectors, sub-sectors, industries etc. News articles are divided into the five 

categories of relevance to a targeted stock, its sub industry, industry, group industry and sector 

while separate kernels are employed to analyze each one. The experimental results show that the 

simultaneous usage of five news categories improves the prediction performance in comparison 

with methods based on a lower number of news categories.  
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In 2016, Chatterjee and Perrizo [66] in their research show that the sentiment trend of key 

investors does bears relation with the actual stock movement in the market. With the Microsoft 

Azure Sentiment Analyzer running on the pulled tweets we can have the sentiment score generated 

on the pulled tweets for every investor on particular ticker symbol and can observe the trend of the 

particular ticker over a period of time. A single sentiment score is assigned to the complete tweet. 

The Azure sentiment analyzer for every tweet generates a score between 0-1 where sentiment score 

> 0.7 denotes high positive sentiment while < 0.4 denotes low negative sentiment. The sentiment 

score range between 0.4-0.7 denotes the neutral range. In their research, they choose various time 

spans on which the sentiment score has been generated from the extracted tweets and observe how 

the sentiment line varies. The sentiment analyzer generates a sentiment score trend line over a time 

span and based on this line strategic investment decisions can be made. 
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CHAPTER 3. TWITTER, INVESTOR SENTIMENTS AND SENTIMENT ANALYSIS  

Microblogging today has become an extremely popular communication tool among 

Internet users. Millions of messages are appearing daily in popular web-sites that provide services 

for microblogging such as Twitter, Tumblr, Facebook. Authors of those messages write about their 

life, share opinions on variety of topics and discuss current issues. Because of a free format of 

messages and an easy accessibility of microblogging platforms, Internet users tend to shift from 

traditional communication tools (such as traditional blogs or mailing lists) to microblogging 

services. As more and more users post about products and services they use, or express their 

political and religious views, microblogging web-sites become valuable sources of opinions and 

sentiments of people. 

Twitter is one of the most important social media platforms in today’s world providing the 

unique ability for a user to connect with almost anyone else in the world. The platform supports 

34 languages and has close to 317 million active users. Every second, on average, around 6,000 

tweets are tweeted on Twitter, which corresponds to over 350,000 tweets sent per minute, 500 

million tweets per day and around 200 billion tweets per year [31].  Investors are day by day using 

the Twitter platform to cite their opinions on particular ticker symbols and share their market 

focused posts and updates. With so much information in the platform it is difficult to find the 

information a particular user just needs to reference to make an investment decision [11]. In the 

realm of stocks, it is important to understand which ticker symbols to follow on which investment 

decisions can be made. So, it is important to follow investors and find what the common ticker 

symbols and trends they are discussing on. Sentiment is generally defined as a thought view or 

attitude and enables large scale understanding and clarity regarding the feelings of a group of 

people (in this context investors) on a given subject (in this context stocks) [11, 12, 13, 14]. Once 
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the sentiments and trends of their discussion are analyzed then a user can make a constructive 

business decision [24, 26]. The first section of this chapter highlights the aspects a programmer 

needs to take into consideration while programming around Twitter platform and the second 

section highlights Twitter as a corpus for investor sentiments how it affects the cross-section of 

stock returns. 

3.1. Limitations of the Twitter Platform 

This section explains in detail that how tweets can be programmatically retrieved. Twitter 

has a REST API that allows users to search for tweets, users, timelines, or even post new messages. 

We use Tweetinvi which is a C# based .net API which is been used to access the Twitter API. A 

Twitter developer account needs to be set up first with the necessary credentials to query the API 

using Tweetinvi. The project is layered to keep the twitter interactions, file management, 

application logic and algorithms separate. The following code snippet first sets the twitter 

credentials for querying against the API and then from a list of users from a user list pulls the 

tweets and includes the logic to recalculate the timespan between the tweets to optimize the API 

pull requests from Twitter. 
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Fig. 1. Code snippet to pull tweets for a collection of usernames 

Based on the sector we would be interested in following; we first create a list of usernames 

(tweet ID’s) from that particular sector whose tweets we would like to analyze. The table below 

shows the combination of UserId, UserName, LastTweetId and IsEnabled attributes which we 

track. The IsEnabled attribute denotes whether the user still has an active twitter account or not. 
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Table 1. UserID, UserName, LastTweetID, IsEnabled attributes 

UserID UserName LastTweetID IsEnabled 

1 alexforrest 853160224328486913 1 

2 fionawalsh 853681056503009280 1 

5 katedevlin 849538565168140288 1 

6 kathrynhopkins 851868730946662400 1 

7 kenkaufman 848643257349406721 1 

8 10000words 825104404420317185 1 

9 140elect 600454114473017345 1 

 

For our analysis, we identified and utilized a list of 3000 financial and news symbol that 

we took from twitter lists and search results. We also estimated when it was the best time to update 

the users tweet based on their tweeting frequency. The following snippet of code shows how we 

are getting the ID of the latest saved tweet, the users average posting frequency and adding the 

timestamp to the pulled tweets. 
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Fig. 2. Code snippet to calculate average posting frequency and latest saved tweets 

The freshly downloaded tweets are serialized to JSON by JSON.net and then written to an 

.xml-based file one per twitter username. The program is designed to download the maximum 

historical tweets possible per user and then rechecking the accounts for new tweets. Twitter limits 

the API requests to 300 requests per 15 minutes and allows access to maximum of 3200 historical 

tweets. Considering the financial sector, we would not be missing much information as the 

historical tweets will not have much significance as compared to the present state of the markets. 
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Additionally, each request to the platform can download a maximum of 200 tweets at a time. To 

maximize the productive use of the requests, calculating the average time span from the user’s 

latest tweets and setting the time the program to recheck for new tweets is necessary. At any given 

instance, we scan for the latest tweets which are made by all the users and have a timestamp 

associated with those pulled tweets. For every 5 minutes from the latest pulled timestamp, we then 

check if there are any new updates which are made by the users, and we then download the tweets 

which are made in those 5 minutes.  The code snippet shows every time when the API is ready for 

a receiving a new request, the statistics of the current download with API status and adding a 

timestamp to the list. 

 

 

Fig. 3. Code snippet to check API status and setting the timestamp 
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While downloading the new tweets, we check for the already downloaded tweets of the 

user and if there are historical tweets then we will capture the updates only. Each tweet has its own 

format and contains a lot of information (ID, Text, Time, Retweets, Favorites, User, and 

Followers).  

3.2. Investor Sentiments and Tweet Counts 

In our research, we are using information from 3000 very well-known twitter users ranging 

from individual stock investors, financial advisors to news channels between January 2015 and 

December 2017. The selection process of choosing these 3000 investors has been guided through 

multiple decision criteria some of them being – the top CNN list of analysts from the last 5 years, 

Wall Street Journals accredited financial analysts, very well-known investors such as Warren 

Buffet and Jim Cramer who have a proven history of consistently beaten the market with their 

predictions and stock advisors like Motley Fool who have a proven recognition. The selection 

process of individual financial advisors has been governed by the amount of wealth management 

which households have entrusted them with. Online news articles from Barrons, helped pick some 

of the most notable financial advisors like Colleen O’Callaghan managing $2.8 billion from 100 

households, Thomas Moran managing $3.1 billion from 1250 clients, Michael Klein managing 

$8.7 billion for 335 clients as examples of users who have a proven credibility. The process of the 

selection of these investors is a manual effort but certain advanced decision criterions could also 

be placed. 

Investors can safely be assumed to be sentiment driven. The top down approach [7, 8] 

focuses on the measurement of reduced form, aggregate sentiment and traces its effects to market 

returns and individual stocks. The approach is based on two broad undisputable assumptions of 

behavioral finance— sentiment and the limits to arbitrage—to explain which stocks are likely to 
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be most affected by sentiment, rather than simply pointing out that the level of stock prices in the 

aggregate depends on sentiment. Stocks of low capitalization, younger, unprofitable, high 

volatility, non-dividend paying, growth companies, or stocks of firms in financial distress, are 

likely to be disproportionately sensitive to broad waves of investor sentiment [8, 10].  

We are pulling the tweets from these investors in real time and parsing the tweets for the 

ticker symbol. Each ticker symbol precedes the “$” symbol and follows a “$<Ticker>” pattern 

within the tweet text. The ticker symbol with the highest frequency of occurrence is the most 

discussed stock amongst these investors [40]. This insight can be helpful especially when a user 

needs to know which stocks to invest in primarily and does not have much knowledge on the 

markets. Table 2 shows the ticker symbols which are frequently discussed amongst the investors 

with their respective tweet counts. 

Table 2. Top 10 Ticker symbols and tweet counts between 2015/01/05 and 2017/12/05. 

 

 

 

 

 

 

 

Also, in our analysis, we focus on investors being sentiment driven on particular ticker 

symbols based on their tweet counts. The more is the heterogeneity of the population of investors 

tweeting on s, signifies s is being discussed by a wider population range. If a stock is discussed by 

Ticker Symbol Tweet Counts 

$SPY 15190 

$AAPL 9232 

$SPX 8866 

$VIX 5724 

$AMZN 5542 

$FB 5190 

$QQQ 5018 

$TSLA 4329 

$GLD 3165 

$NFLX 3155 
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a wider group of users, then the volume of the stocks traded for a given day is seen to significantly 

increase. Studies from previous research [84] show the number of trades (stock volume) was 

correlated with the number of tweets which were discussed by a broader sample of investors. In 

this research, we have tried to diversify the selection process for choosing the stocks and have tried 

to choose stocks of companies from various sectors as shown in table 3. 

Table 3. Companies with ticker symbols selected across different sectors.  

Sectors Company Symbol 

Basic Materials 

Industries:  Chemicals, Energy, 
Metals & Mining 

Exxon Mobile Corp XOM 

Schlumberger Ltd SLB 

Consumer Goods Apple Corp. AAPL 

Coca-Cola Co KO 

Financial Wells Fargo WFC 

Citigroup C 

Health Care Gilead Sciences GILD 

Pfizer Inc PFE 

Sectors Company Symbol 

Industrial Goods 3M Co. MMM 

Caterpillar Inc CAT 

Services Amazon Inc. AMZN 

Netflix NFLX 

Facebook FB 

McDonalds Corp. MCD 

Technology Microsoft Corp. MSFT 

Alphabet Inc. GOOG 

Alibaba Group BABA 

Utilities Duke Energy DUK 

Exelon Corp. EXC 
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From this list of stocks across the different sectors shown in table 3, we try to find the 

stocks which are mostly been discussed by the 3000 investors we are tracking, and the results are 

shown in table 4. In this research we will focus on these identified top 10 company and ticker 

symbols. 

Table 4. Top 10 Company Ticker symbols with respective tweet counts. 

 

 

 

 

 

 

 

3.3. Sentiment Analysis          

The main objective of this research is to run the sentiment analysis on the set of tweets of 

selected investors so that we can identify which of the ticker symbols have positive, neutral or 

negative sentiment scores. Choosing an accurate sentiment analyzer tool can be challenging while 

processing unstructured texts such as tweets. Understanding and analyzing unstructured text is an 

increasingly popular field and includes a wide spectrum of problems such as sentiment analysis 

[5, 6], key phrase extraction, topic modeling/extraction, aspect extraction and more. Sentiment 

Analysis involves several key challenges. One simple approach is to do lexicon-based analysis on 

Ticker Symbol Tweet Counts 

$AAPL 9232 

$AMZN 5542 

$FB 5190 

$NFLX 3155 

$GOOG 1930 

$BABA 1616 

$MSFT 1383 

$GILD 1273 

$C 848 

$MCD 806 
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words or phrases that impart negative or positive sentiment to a sentence the words “bad”, “not 

good” would belong to the lexicon of negative words, while “good”, “great” would belong to the 

lexicon of positive words. But this means such lexicons must be manually curated, and even then, 

they are not always accurate [36]. The phrases such as “not bad” which imparts a positive 

sentiment is hard to detect with simple lexicon-based analysis. 

3.3.1. Azure Sentiment Analyzer 

A more robust approach is to use machine learning to train models that detect sentiment. 

For training the system a large dataset of text records that was already labeled with sentiment for 

each record was first obtained. The first step is to tokenize the input text into individual words, 

then apply stemming. Next, we constructed features from these words; these features are used to 

train a classifier. Upon completion of the training process, the classifier can be used to predict the 

sentiment of any new piece of text. It is important to construct meaningful features for the classifier 

[50, 51], and our list of features includes several from state-of-the-art research: 

• N-grams denote all occurrences of n consecutive words in the input text. The 

precise value of n may vary across scenarios, but it’s common to pick n=2 or n=3. With n=2, for 

the text “the quick brown fox”, the following n-grams would be generated – [ “the quick”, “quick 

brown”, “brown fox”] 

• Part-of-speech tagging is the process of assigning a part-of-speech to each word 

in the input text. We also compute features based on the presence of emoticons, punctuation and 

letter case (upper or lower) 

• Word embedding’s are a recent development in natural language processing, 

where words or phrases that are syntactically similar are mapped closer together, e.g. in such a 

mapping, the term cat would be mapped closer to the term dog, than to the term car, since both 
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dogs and cats are animals. Neural networks are a popular choice for constructing such a mapping. 

For sentiment analysis, we employ neural networks that encode the associated sentiment 

information as well. The layers of the neural network are then used as features for the classifier. 

So, the crux of the research involves gathering the sentiment score accurately using a properly 

trained sentiment analysis tool. In this research, we have used Microsoft Azure Sentiment Analyzer 

to run the sentiment analysis on the pulled tweets.  

3.3.2. Comparing Azure Sentiment Analyzer with other NLP Tools 

We evaluated the performance of the classifier [36] against two external services  

the Stanford NLP Sentiment Analysis engine (using its pre-trained sentiment model), and a popular 

commercial tool. Here are the comparative benchmarks - On datasets comprising tweets, Azure 

ML Text Analytics was 10-20% better at identifying tweets with positive vs negative sentiment. 

The data sets we used were from the Sentiment140 and CrowdScale datasets. The Sentiment140 

dataset comprises approximately 1.6 million automatically annotated tweets. The tweets were 

collected by using the Twitter Search API and keyword search. During automatic annotation, any 

tweet with positive emoticons, like :), were assumed to bear positive sentiment, and tweets with 

negative emoticons, like :(, were supposed to bear negative polarity. Tweets containing both 

positive and negative emoticons were removed. Additional information about this data and the 

automatic annotation process can be found in the technical report written by Go et al. [87]. Each 

instance in the data set has 6 fields: 

• sentiment_label - the polarity of the tweet (0 = negative, 2 = neutral, 4 = positive) 

• tweet_id - the id of the tweet 

• time_stamp - the date of the tweet (Sat May 16 23:58:44 UTC 2009) 

• target - the query. If there is no query, then this value is NO_QUERY 
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• user_id - the user who posted the tweet 

• tweet_text - the text of the tweet 

However, for the experiment on Sentiment140 dataset we have used only two fields that 

are required for training - the sentiment label and the tweet text. 

Table 5. Azure ML Text Analytics result on Sentiment140 dataset. 

True Positive False Negative Accuracy Precision AUC 

129808 30192 0.79 0.77  

.86 

 

False Positive True Negative Recall F1 Score 

37074 122926 .81 .79 

 

CrowdScale dataset is another sentiment analysis judgement dataset. The tweets in the 

dataset are from the weather domain. Each tweet was evaluated by at least 5 raters. The possible 

answers are: “Negative”, “Neutral”; the author is just sharing information, “Positive”, “Tweet not 

related to weather condition” and “I can’t tell”. The tweets from the test set of the CrowdScale 

dataset were evaluated from Azure ML, Stanford and a commercial available tool and the 

responses from the experiment is in the table 6. 

Table 6. Responses from the different Sentiment Analysis Tools on CrowdScale dataset. 

Tool Identified Positive 
Response 

Identified Negative 
Response 

Identified Neutral 
Response 

Azure ML 2,825 3,052 3,937 

Stanford 2,492 2,691 3,472 

Commercial Tool 2,363 2,552 3,292 
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We analyzed sentiment on a dataset of TripAdvisor reviews as well. Three equally 

experienced annotators provided sentence-level annotations of a subset of 500 randomly selected 

reviews from the publicly available TripAdvisor dataset [86]. The full TripAdvisor dataset consists 

of 235,793 hotel reviews crawled over a period of a month. In addition to the review text, each 

review comes with a hotel identifier, an overall rating and optional aspect-specific ratings for the 

following seven aspects: Rooms, Cleanliness, Value, Service, Location, Checkin, and Business. 

All review-level ratings are on a discrete ordinal scale from 1 to 5 (with -1 indicating that an aspect-

specific rating was not provided by the reviewer). The annotation distinguishes between Positive, 

Negative and Neutral/Mixed opinions. The Neutral/Mixed label is assigned to opinions that are 

about an aspect without expressing a polarized opinion, and to opinions of contrasting polarities, 

such as “The room was average size” (neutral) and “Pricey but worth it!” (mixed). The annotations 

also distinguish between explicit and implicit opinion expressions, that is, between expressions 

that refer directly to an aspect and expressions that refer indirectly to an aspect by referring to 

some other property/entity that is related to the aspect. For example, “Fine rooms” is an explicitly 

expressed positive opinion concerning the Rooms aspect, while “We had great views over the East 

River” is an implicitly expressed positive opinion concerning the Location aspect, and “All doors 

seem to have to slam to close” is an implicit negative opinion concerning the Rooms aspect. The 

final dataset consists of 369 unique reviews partitioned into a training set (258 reviews, 70% of 

the total) and a test set (111 reviews, 30% of the total). The data was split by selecting reviews for 

each subset in an interleaved fashion, so that each subset constitutes a minimally biased sample 

both with respect to the full dataset and with respect to annotator experience. On the annotated 

training dataset of 111 reviews, 71 were positive and 40 were negative and here is a comparison 

of the results from the sentiment tools as well as the F1 score for the positive and negative reviews. 
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Table 7. Responses from the different sentiment tools on TripAdvisor dataset 

Tool Identified Positive 
Reviews 

Identified Negative Reviews 

Azure ML 56 25 

Stanford 46 21 

Commercial Tool 44 18 

 

The Azure Machine Learning Text Analytics [36] outperforms other offerings on short as 

well as long forms of text for the sentiment analysis task. In this research we will run Azure 

Sentiment Analyzer and compute the sentiment score on every pulled tweet from the 3000 

investors. For any given day, we parse the tweets which contain references to the top 10 company 

ticker symbols from table 4 and compute the daily average sentiment score of the stock for that 

day. The daily average sentiment score (AvgSentiment) is computed for every day on every stock 

by taking the mean of the sentiment scores from the number of pulled tweets for a certain day. If 

different stock symbols are mentioned in the same tweet, the same sentiment score from Microsoft 

Azure Sentiment Analyzer would be used for each ticker symbol. The Azure sentiment analyzer 

for every tweet generates a score between 0-1 where sentiment score > 0.7 denotes high positive 

sentiment while < 0.4 denotes low negative sentiment. The sentiment score range between 0.4-0.7 

denotes the neutral range. If for a period, there are no sentiments which get generated (if there are 

no investors tweeting) for a particular stock we preserve the Sentiment score which is preserved 

from the last day the sentiments were computed. The snapshot of the pulled data for one of the 

companies “Apple Inc.” from the consumer goods sector is shown in the table 8. 
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Table 8. Apple Inc. stock data with sentiment score between 2015-02-02 till 2015-02-12. 

Ticker Trade Date Open 

Price 

Close 

Price 

High 

Price 

Low 

Price 

Avg 

Sentiment 

Trade Volume 

AAPL 2015-02-02 118.05 118.63 119.17 116.08 0.75 62739100 

AAPL 2015-02-03 118.50 118.65 119.09 117.61 0.54 51915700 

AAPL 2015-02-04 118.50 119.56 120.51 118.31 .61 70149700 

AAPL 2015-02-05 120.02 119.94 120.23 119.25 .63 42246200 

AAPL 2015-02-06 120.02 118.93 120.25 118.45 .79 43706600 

AAPL 2015-02-09 118.55 119.72 119.84 118.43 .68 38889800 

AAPL 2015-02-10 120.17 122.02 122.15 120.16 .58 62008500 

AAPL 2015-02-11 122.77 124.88 124.92 122.5 .61 73561800 

AAPL 2015-02-12 126.06 126.46 127.48 125.57 .58 74474500 

 

In the next chapter, we will discuss how we will use the sentiment score to predict the close 

price of the stock using different regression models. 
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CHAPTER 4. BUILDING PREDICTION MODELS USING SENTIMENT SCORE          

4.1. Introduction 

Stock market prediction has been an active area of research for a long time. The Efficient 

Market Hypothesis (EMH) states that stock market prices are largely driven by new information 

and follow a random walk pattern [37, 39, 41]. Though this hypothesis is widely accepted by the 

research community as a central paradigm governing the markets in general, several people have 

attempted to extract patterns in the way stock markets behave and respond to external stimuli. In 

this dissertation, we test a hypothesis based on the premise of behavioral economics, that the 

emotions and moods of individuals affect their decision-making process, thus, leading to a direct 

correlation between “public sentiment” and “market sentiment” [42, 43, 44, 45]. We also conduct 

various experiments on different time periods using regression-based prediction models [15,16, 

19, 20] and calculate the coefficient of determination of predicting the close price of the stock.  

4.2. Literature Review 

The work in this dissertation is based on the strategy from Bollen et al. [10,11,12,13] and 

Mittal et al. [14]. They also attempted to predict the behavior of the stock market by measuring 

the mood of people on Twitter. The authors considered the tweet data of all twitter users in 2008 

and used the OpinionFinder and Google Profile of Mood States (GPOMS) algorithm to classify 

public sentiment into 6 categories, namely, Calm, Alert, Sure, Vital, Kind and Happy. They cross 

validated the resulting mood time series by comparing its ability to detect the public’s response to 

the presidential elections and Thanksgiving Day in 2008. They also used causality analysis to 

investigate the hypothesis that public mood states, as measured by the OpinionFinder and GPOMS 

mood time series, are predictive of changes in DJIA close values. The authors used Self Organizing 

Fuzzy Neural Networks to predict DJIA values using previous values. Their results show a 
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remarkable accuracy of nearly 87% in predicting the up and down changes in the close values of 

Dow Jones Industrial Index (DJIA).  

In this dissertation, we are considering 3000 investors whom we track and rather than 

classifying the sentiments into categories we generate a sentiment score between 0 and 1 for every 

pulled tweet. Once the daily sentiment scores are computed we combine this information with the 

fundamentals of the stock (Open Price, Close Price, Volume, High Price, Low Price) and use 

conventional ARIMA based time series models and regression-based prediction models [47, 48, 

49] to calculate the coefficient of determination. But before we delve into building different 

prediction models, we first use Granger Causality Analysis [32, 33, 34] to understand the lag period 

of sentiments to have a considerable effect on the close price of the stock. 

4.3. Granger Causality 

Granger Causality analysis [32, 35, 38] finds how much predictive information one signal 

has about another over a given lag period. The p-value measures the statistical significance of our 

result i.e. how likely we could obtain the causality value by random chance; therefore, lower the 

p-value, higher the predictive ability. The sentiment score for a given day is measured for a span 

of 24 hours while the close price of the stock is determined based on the time the market is open 

(NYSE: 9:30-16:00 EST). So, the sentiment score can be carried forward to affect the open price 

of the stock for the next day. We performed the Granger Causality test for studying the effect of 

sentiment score on the close Price of the stock, for studying the effect of close price on the 

sentiment score of the stock, the effect of open price on the sentiment Score of the stock and for 

studying the effect of sentiment score on the open price of the stock for lag periods of 1, 2, 3, 7 

and 10 days.  
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Table 9. p-values obtained using Granger causality analysis with different lag periods.  

Lags 
(days) 

Symbol ClosePrice ~ 
AvgSentiment 

AvgSentiment ~ 
ClosePrice 

OpenPrice ~ 
AvgSentiment 

AvgSentiment ~ 
OpenPrice 

1  

 

AAPL 

.66 .005* .25 .004* 

2 .62 .002* .52 .002* 

3 .77 .017* .62 .017* 

7 .93 .11 .88 .08* 

10 .96 .21 .96 .16 

1  

 

MSFT 

.82 .55 .94 .51 

2 .29 .83 .82 .69 

3 .14 .81 .65 .86 

7 .25 .87 .53 .76 

10 .30 .75 .70 .71 

1  

 

GOOG 

.45 .02* .93 .03* 

2 .71 .06* .37 .07* 

3 .37 .09* .21 .09* 

7 .75 .23 .18 .16 

10 .71 .23 .20 .26 

 

The results shown in the table 10 suggests sentiment score of the stock for a given day is 

seen to have effect from the Close Price of the stock and the Open Price of the stock for the 

following day in most cases have an effect from the sentiment score of the previous day. 

4.4. Coefficient of Determination 

The coefficient of determination (R2) is a measure that allows us to determine how certain 

one can be in making predictions from a certain model/graph. It is the ratio of the explained 

variation to the total variation. It is also a measure how well the regression line 
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represents the data.  If the regression line passes exactly through every point on the 

scatter plot, it would be able to explain the variation. The further the line is 

away from the points, the less it can explain. R2 is a statistical factor that will give some information 

about the goodness of fit of a model. In regression, the R2 coefficient of determination is a 

statistical measure of how well the regression line approximates the real data points. An R2 of 1 

indicates that the regression line perfectly fits the data. R2 is often interpreted as the proportion of 

response variation "explained" by the regressors in the model. An interior value such as R2 = 0.7 

may be interpreted as follows - Seventy percent of the variance in the response variable can be 

explained by the explanatory variables. The remaining thirty percent can be attributed to 

unknown, lurking variables or inherent variability. 

In case of a single regressor as in this dissertation, fitted by least squares, R2 is the square 

of the Pearson product-moment correlation coefficient relating the regressor and the response 

variable. More generally, R2 is the square of the correlation between the constructed predictor and 

the response variable. With more than one regressor, the R2 can be referred to as the coefficient of 

multiple determination. 

4.5. Regression Models 

Regression algorithms are algorithms that fit the values of a real function for a single 

instance of data. Regression algorithms can incorporate input from multiple features [21, 22, 23], 

by determining the contribution of each feature of the data to the regression function. Once the 

regression algorithm has trained a function based on already labeled data, the function can be used 

to predict the label of a new (unlabeled) instance. In this section, we discuss about several 

experiments using Bayesian Linear Regression for predicting the close price of the stock. We first 

preprocess the daily stock data with the sentiment scores as shown in table 8 and convert it into a 
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matrix-based format. This means that the stock price on the nth day will be affected mostly by the 

close price of the stock and the sentiment score for the previous n-1 days. From the Granger 

causality analysis, we have seen that for the sentiments to have an effect on the close price of the 

stock we should back at no longer than 7 days. We consider all the stocks from table 4 for our 

analysis and we perform three different experiments – i) Choosing 5-day trading day period. ii) 

Choosing 7-day period including Saturday and Sunday when the markets are closed but we have 

sentiment data from the tweets and iii) Choosing 7-day period where Saturday and Sunday are 

excluded from the analysis since the markets are closed. We calculate the coefficient of 

determination (R2) for each of these experiments and evaluate the optimum time to select. 

4.5.1. Training the Model 

Training a classification or regression model is a kind of supervised machine learning. We  

 provide a dataset that contains historical stock and sentiment data from which the model can learn 

patterns. The data should contain both the outcome we are trying to predict, and related factors 

(variables). The machine learning model uses the data to extract statistical patterns and build a 

model. The data set is split into 80-20 where the initial 80% of the dataset is first used to train the 

model and once trained it is tested on the remaining 20%. We will now discuss the different 

regression models we are focusing on in this dissertation using Azure Machine Learning Studio 

[54]. In this dissertation, we will be applying various regression model modules from the Azure 

Machine Learning Studio on the matrix converted pre-processed data sets and compare the 

statistical metrics - Mean Absolute Error, Root Mean Squared Error, Relative Absolute Error, 

Relative Squared Error and the Coefficient of Determination. 
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4.5.2. Bayesian Linear Regression 

The Bayesian Linear Regression is a regression model based on Bayesian statistics.  

Bayesian approach uses linear regression supplemented by additional information in the form of a 

prior probability distribution. Prior information about the parameters is combined with a likelihood 

function to generate estimates for the parameters. In this dissertation, we use the Bayesian Linear 

Regression module [17, 18] to create a regression model based on Bayesian statistics. A classical 

treatment of regression [25] problem seeks a point estimate of the unknown parameter vector w. 

By contrast, in a Bayesian approach we characterize the uncertainty in w through a probability 

distribution p(w). Observations of data points modify this distribution by Bayes theorem, with the 

effect of the data being mediated through the likelihood function. Specifically, we define a prior 

distribution p(w) which expresses our uncertainty in w taking account of all information aside from 

the data itself, and which, without loss of generality, can be written in the form p(w|α) ∝ exp {- 

αΩ(w)} where, α can again be regarded as a hyperparameter.  

Once we have configured the model, we train the model using a tagged dataset and 

the Train Model module in the Azure Machine Learning Studio. The trained model is then used to 

make predictions. 

4.5.2.1. Experiments to Select the Optimal Days  

In this dissertation, we conduct several experiments to see which time period within a week 

should be considered and we run Bayesian Linear Regression based prediction models to predict 

the closing price of those stocks. From Granger Causality, we understand that news and twitter 

messages have considerable effect on the stock price and the effect can only be for a week. In the 

experiments we focus on the top 10 most discussed stocks amongst our chosen investors as shown 

earlier from table 4. 
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4.5.2.1.1. Experiment 1 – 5 Day Period 

For this experiment, we have built a Bayesian Linear Regression model for 5 days period. 

The dataset only considers 5 working days data within a week for a given ticker name. The dataset 

has data for every stock from 01/01/2015 – 12/04/2017. The data set has been split into 80-20 

training and test data respectively with the weekend sentiment score data points removed. Table 

10 shows the performance matrix on the test dataset. 

Table 10. Performance matrix on dataset for 5-day period.  

Model 

Mean 

Absolute 

Error 

Root Mean 

Squared Error 

Relative 

Absolute Error 

Relative Squared 

Error 

Coefficient of 

Determination 

AAPL 1.35 1.79 0.29 0.08 0.92 

AMZN 5.03 8.65 0.11 0.02 0.97 

FB 0.85 1.15 0.20 0.04 0.95 

NFLX 1.35 2.42 0.08 0.02 0.98 

GOOG 6.13 10.47 0.28 0.01 0.90 

BABA 1.10 1.60 0.24 0.06 0.93 

MSFT 0.47 0.75 0.22 0.10 0.89 

GILD 1.25 1.70 0.12 0.05 0.94 

C 0.52 0.68 0.22 0.05 0.94 

MCD 0.75 1.01 0.42 0.18 0.81 

 

We can see the Coefficient of Determination for this model range from 0.81-0.98 for between 

our chosen ticker symbol and seven ticker symbols above 0.94 Coefficient of Determination. 
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4.5.2.1.2. Experiment 2 –7 Day Period (Excluding Weekends)  

In this experiment, we have built Bayesian Linear Regression model excluding weekend 

data but for 7 days instead of 5 days in experiment 1. The dataset has data for every stock from 

01/01/2015 – 12/04/2017 and does not include weekend sentiment scores. The data set has been 

split into 80-20 training and test data respectively. Table 11 shows the performance matrix on this 

test dataset. 

Table 11. Performance matrix on dataset for 7-day period (excluding Saturday and Sunday). 

Model Mean Absolute Error 

Root Mean 

Squared Error 

Relative 

Absolute Error 

Relative 

Squared Error 

Coefficient of 

Determination 

AAPL 1.36 1.80 0.29 0.08 0.91 

AMZN 5.04 8.72 0.11 0.02 0.97 

FB 0.85 1.15 0.21 0.04 0.95 

NFLX 1.40 2.45 0.08 0.02 0.98 

GOOG 6.13 10.49 0.28 0.10 0.89 

BABA 1.09 1.59 0.24 0.06 0.93 

MSFT 0.47 0.75 0.22 0.10 0.89 

GILD 1.26 1.72 0.19 0.05 0.94 

C 0.53 0.70 0.22 0.05 0.94 

MCD 0.77 1.01 0.43 0.18 0.81 

 

We can see the Coefficient of Determination for this model range from 0.81-0.98 for 

between our chosen ticker symbol and five ticker symbols above 0.94 Coefficient of 

Determination. 
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4.5.2.1.3. Experiment 3 –  7 Day Period (Including Weekends) 

In this experiment, we have built Bayesian Linear Regression model for 7 days period 

including weekend data. Since we don’t have close price of the stocks for weekend we are taking 

Friday’s closing stock fundamental values as static values for Saturday and Sunday along with the 

daily average sentiment score for the stocks on Saturdays and Sundays. The dataset for this training 

experiment includes closed price with daily average sentiment score value of a given ticker name. 

The dataset has data for every stock from 01/01/2015 – 12/04/2017. The data set has been split 

into 80-20 training and test data respectively with the weekend sentiment score data points 

included. Table 12 shows the performance matrix on this test dataset. 

Table 12. Performance matrix on dataset for 7-day period (including weekends). 

Model 

Mean Absolute 

Error 

Root Mean 

Squared Error 

Relative Absolute 

Error 

Relative 

Squared 

Error 

Coefficient of 

Determination 

AAPL 1.01 1.51 0.22 0.05 0.94 

AMZN 3.8 7.26 0.08 0.01 0.98 

AAPL 1.01 1.51 0.22 0.05 0.94 

AMZN 3.8 7.26 0.08 0.01 0.98 

FB 0.66 0.98 0.16 0.03 0.96 

NFLX 1.05 2.06 0.06 0.01 0.98 

GOOG 4.76 8.84 0.21 0.06 0.93 

BABA 0.82 1.34 0.18 0.04 0.95 

MSFT 0.35 0.64 0.16 0.07 0.92 

GILD 0.93 1.44 0.14 0.040 0.95 

C 0.38 0.57 0.16 0.03 0.96 

MCD 0.57 0.85 0.32 0.13 0.86 
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We try and validate how much of an effect weekends tweets have on the performance of 

our model. Our observation is, we can see improved performance of each ticker symbol when we 

include the weekend sentiment data for predicting price for a given day. We see the Coefficient of 

Determination for this model range from 0.92-0.98 for our chosen ticker symbols and nine ticker 

symbols above 0.92 Coefficient of Determination. 

4.5.2.1.4. Conclusions from the Experiments 

We are considering Coefficient of Determination as one of the key measure to evaluate and 

compare performance of each experiment. The resulting performance matrix of all experiments 

show that coefficient of Determination is optimal when we consider 7 days data set with weekend 

sentiment scores. For most of the tickers, our experiment shows descent improvement of 

coefficient of determination for the model that includes Saturday and Sunday’s data. Table 13 

shows the comparison of coefficient of determination between the different experiments. 

Table 13. Coefficient of Determination between the experiments.  

 

 

 

 

 

 

Model 

Coefficient of 
Determination: 5-day 

period Excluding 
Weekend 

Coefficient of Determination: 
7-day period (excluding 
Saturday and Sunday) 

Coefficient of Determination: 
7-day period (including 
Saturday and Sunday) 

AAPL 0.920673 0.919536 0.941159 

AMZN 0.975499 0.975115 0.983221 

FB 0.956013 0.9557 0.968316 

NFLX 0.981877 0.981399 0.987234 

GOOG 0.900253 0.899913 0.932627 

BABA 0.932595 0.933515 0.951213 

MSFT 0.894668 0.893938 0.92706 

GILD 0.944528 0.943601 0.959782 

C 0.94668 0.944525 0.963232 

MCD 0.815396 0.811403 0.865635 
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It is evident that the model with 7 day period including Saturday and Sunday sentiment 

score is the most optimum model to use for prediction.  

4.6. Predicting Stock Close Price 

In this section, we will predict the close price of the stocks using the Bayesian Linear 

Regression model from the training experiment, trained till 12/04/2017 with the values of the 

sentiment scores and the close price of the stocks as input. We have created the training models 

for all 10 tickers with 7 days including (Saturday & Sunday) data and predict next two weeks of 

close price for the stocks and compare the results of our predictive experiment to the actual close 

price of the stock in Table 14.  

Table 14. Predicted stock close price of tickers compared to their actual stock close price.  

Date MSFT NFLX AAPL 

Predicted Actual Predicted Actual Predicted Actual 

12/5/2017 81.18 81.59 184.32 184.21 169.43 169.64 

12/6/2017 81.43 82.78 183.88 185.3 169.62 169.01 

12/7/2017 82.52 82.49 184.84 185.2 168.76 169.32 

12/8/2017 82.57 84.16 185.02 188.54 169.17 169.37 

12/9/2017 84.13 84.16 188.44 188.54 169.27 169.37 

12/10/2017 83.98 84.16 188.57 188.54 169.3 169.37 

12/11/2017 84.05 85.23 188.69 186.22 169.3 172.67 

12/12/2017 85.04 85.58 185.83 185.73 172.61 171.7 

12/13/2017 85.37 85.35 185.4 187.86 171.43 172.27 

12/14/2017 85.27 84.69 187.24 189.56 172.29 172.22 

12/15/2017 84.61 86.85 189.46 190.12 172.03 173.97 

12/16/2017 86.54 86.85 190.08 190.12 173.72 173.97 

12/17/2017 86.68 86.85 189.99 190.12 173.87 173.97 

12/18/2017 86.81 86.38 189.69 190.42 173.96 176.42 

12/19/2017 86.31 85.83 189.86 187.02 176.36 174.54 

12/20/2017 85.61 85.52 186.47 188.82 174.3 174.35 
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Table 14. Predicted stock close price of tickers compared to their actual stock close price 

(continued).  

Date GOOG MCD FB 

Predicted Actual Predicted Actual Predicted Actual 

12/5/2017 999.73 1005.15 170.29 172.99 171.58 172.83 

12/6/2017 1006.16 1018.38 172.85 173.48 172.81 176.06 

12/7/2017 1018.43 1030.93 173.23 172.91 175.66 180.14 

12/8/2017 1031.27 1037.05 172.95 173.15 179.83 179 

12/9/2017 1038.28 1037.05 172.88 173.15 179.33 179 

12/10/2017 1037.04 1037.05 172.78 173.15 179.04 179 

12/11/2017 1035.7 1041.1 172.82 173.25 178.46 179.04 

12/12/2017 1039.54 1040.48 173.22 172.23 178.56 176.96 

12/13/2017 1038.75 1040.61 171.92 173.55 176.83 178.3 

12/14/2017 1039.55 1049.15 173.58 173.14 178.06 178.39 

12/15/2017 1048.79 1064.19 172.84 174.06 178.16 180.18 

12/16/2017 1063.62 1064.19 173.99 174.06 180.05 180.18 

12/17/2017 1063.88 1064.19 173.76 174.06 180.17 180.18 

12/18/2017 1064.58 1077.14 173.78 174.2 179.96 180.82 

12/19/2017 1076.31 1070.68 174.07 173.39 180.63 179.51 

12/20/2017 1069.35 1064.95 173.14 172.17 179.41 177.89 

Date 
AMZN BABA C 

Predicted Actual Predicted Actual Predicted Actual 

12/5/2017 1133.99 1141.57 169.32 168.96 77.02 76.54 

12/6/2017 1140.02 1152.35 168.67 172.63 76.35 75.44 

12/7/2017 1149.25 1159.79 172.29 174.47 75.36 74.98 

12/8/2017 1159.53 1162 174.04 177.62 74.85 75.71 

12/9/2017 1162.13 1162 177.49 177.62 75.65 75.71 

12/10/2017 1160.82 1162 177.39 177.62 75.55 75.71 

12/11/2017 1159.29 1168.92 177.06 179.29 75.68 75.85 

12/12/2017 1166.17 1165.08 179.1 174.64 75.78 76.15 

12/13/2017 1162.9 1164.13 174.26 176.47 76.08 75.14 

12/14/2017 1163.65 1174.26 176 171.75 74.98 73.92 
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Table 14. Predicted stock close price of tickers compared to their actual stock close price. 

(continued) 

Date 
AMZN BABA C 

Predicted Actual Predicted Actual Predicted Actual 

12/15/2017 1171.43 1179.14 171.44 173.55 73.82 74.77 

12/16/2017 1177.69 1179.14 173.25 173.55 74.73 74.77 

12/17/2017 1178.99 1179.14 173.45 173.55 74.64 74.77 

12/18/2017 1178 1190.58 172.94 173.37 74.72 75.67 

12/19/2017 1187.73 1187.38 173.31 171.28 75.63 74.7 

12/20/2017 1184.82 1177.62 170.93 172.64 74.59 74.66 

Date 
GILD 

Predicted Actual 

12/5/2017 72.99 73.29 

12/6/2017 73.22 73.29 

12/7/2017 73.22 72.72 

12/8/2017 72.73 74.22 

12/9/2017 74.46 74.22 

12/10/2017 74.33 74.22 

12/11/2017 74.33 75.88 

12/12/2017 75.99 76.09 

12/13/2017 76.07 76.58 

12/14/2017 76.76 74.34 

12/15/2017 74.35 75.57 

12/16/2017 75.52 75.57 

12/17/2017 75.48 75.57 

12/18/2017 75.6 75.13 

12/19/2017 75.35 74.35 

12/20/2017 74.38 74.01 
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4.7. Evaluating the Model 

The root-mean-square error (RMSE) is a frequently used measure of the differences 

between values (sample and population values) predicted by a model or an estimator and the values 

observed. We evaluate the efficiency of our model predictions looking at RMSE values. RMSE is 

a measure of accuracy, to compare forecasting errors of different models for a data and not between 

datasets, as it is scale-dependent. RMSE is the square root of the average of squared errors. The 

effect of each error on RMSE is proportional to the size of the squared error; thus, larger errors 

have a disproportionately large effect on RMSE. Consequently, RMSE is sensitive to outliers. We 

evaluate the accuracy of the models built for every ticker and compare it with the RMSE values of 

their predictions for 5 days and 15 days. Table 15 has the RMSE comparison matrix. 

Table 15. RMSE comparison with predictions between 5 days and 15 days. 

RMSE Values of 
Ticker Model 

RMSE Values for Period 
12/05/2017 to 12/10/2017 

RMSE Values for Period 
12/05/2017 to 12/20/2017 

AAPL 1.51 AAPL 1.29 AAPL 0.36 

AMZN 7.26 AMZN 7.10 AMZN 7.39 

FB 0.98 FB 1.70 FB 2.34 

NFLX 2.06 NFLX 1.70 NFLX 1.55 

GOOG 8.84 GOOG 7.67 GOOG 7.85 

BABA 1.34 BABA 2.41 BABA 2.36 

MSFT 0.64 MSFT 0.87 MSFT 0.87 

GILD 1.44 GILD 0.93 GILD 0.66 

C 0.57 C 0.65 C 0.57 

MCD 0.85 MCD 0.9752 MCD 1.15 
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We observe that RMSE values for both 5 days and 15 days period are in line with the test 

dataset run on the ticker model, which explain the model are neither overfit or underfit. The RMSE 

values are higher for AMZN and GOOG and the reason is both these tickers rally with big variation 

over the period increasing the error rate. 
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CHAPTER 5. SUMMARY AND CONCLUSION  

 
In this dissertation, we have shown the importance of social media such as Twitter to 

illustrate the effect of real time news and events on the finance market. In the first portion of this 

dissertation, we have included a programming method to procure the tweets from investors in real 

time and store the data in a centralized cloud-based data store. We also discuss in detail the 

limitations of the Twitter platform and how a developer can code around those limitations. In this 

research, we have focused on 3000 investors who have been manually handpicked. All the tweets 

from these investors are pulled in real time and are is stored daily in the centralized data store since 

2015/01/01. In this research we focus on the top 10 tickers across various sectors which are mostly 

been discussed amongst our chosen inventors and we focus our experimental analysis on these 10 

tickers. 

The second portion of this dissertation focuses on the importance of sentiments in social 

media and the various parameters to consider while building a sentiment analysis tool. The 

dissertation focuses on building Microsoft’s Azure Sentiment Analyzer and its comparisons with 

other commercially available sentiment analyzers such as Stanford’s NLP. We do various 

statistical tests and show that the Azure Sentiment Analyzer outperforms the other sentiment 

analyzers on different datasets.  

The third portion of this dissertation focuses on studying the effect of the sentiment scores 

on predicting the close price of the stock. Once we confirm from experimental analysis, that’s 

sentiments influence the closing price of the stocks we train the Bayesian Linear Regression model 

for every ticker with the historical stock and sentiment data. In this research we also conclude that 

the sentiments to influence the closing price of the stock we should consider last 7 days from the 
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Granger causality analysis. We consider three distinct experiments to choose the time-period 

which has the best predictive results and conclude from our research that last 7 days including 

weekends with sentiments considered during the weekends yield the best predictive response. We 

use the trained Bayesian Linear Regression model for each of these tickers to predict the close 

price of the stocks for the next 2 weeks and observe that the RMSE values of the predicted values 

compared to the actual values are less for stable stocks compared to Amazon.com. (AMZN) and 

Google (GOOG). Selecting the right set of investors and processing the sentiment of those 

investors through a proper sentiment analysis tools and choosing the right regression model it is 

possible to predict the closing price of stocks within negligible margin of error.  
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