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ABSTRACT 

Annual forages represent a good feed resource to extend the grazing season into fall and 

winter, providing a good quality forage for the livestock, allowing more efficient use of 

rangeland, and improving soil properties.  Many species in the Brassicaceae family are used as 

forages for grazing. Forage brassicas have high forage yield, high nutritive value, low cost of 

establishment and harvest (direct grazing), and provide many ecosystems services. Forage 

brassicas can be grown as full season forage crops or as cover crops planted after a grain crop. 

The objectives of this study were: 1) to identify brassicas species and cultivars with high biomass 

production and forage quality when grown as full-season and as cover crops; 2) to determine 

their optimum sowing date, plant density and the response to different N and S fertilization rates.  

Replicated experiments were conducted at four sites Fargo, Prosper, Carrington and Walcott, ND 

in 2012-2014.  Results indicate swede (Brassica napus L. var. napobrassica) and kale 

[B.oleraceae L. convar. acephala (DC)] were the highest forage yielding brassicas when 

established in full-season and turnip [Brassica rapa L. var. rapa (L.) Thell).], cv. ‘Appin’ was 

the highest yielding sown in August. In full-season brassicas, delaying sowing date reduced total 

forage yield but did not influence forage quality.  In brassicas sown after August, total  forage 

yield decreased significantly only in radish in the second sowing date. Plant density did not have 

an effect on forage yield averaged across environments and species in full-season forage 

brassicas. This was different in brassicas sown after August, where the highest forage yield was 

obtained with the highest plant density (≥200 plants m-2).  Kale and swede leaf and root/stem 

yield increased up to 200 kg N ha-1 in a linear response.  Sulfur and the interaction between N 

and S  did not have an effect in forage yield and quality.  Both full-season and cover crops forage 

brassicas have great potential as supplemental high quality forage for grazing in North Dakota.  
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CHAPTER 1. INTRODUCTION 

Grassland and rangeland are widespread important ecosystems on the earth’s surface 

(White et al., 2000), compromising about 40% of the terrestrial area (FAO, 2005).  In the Great 

Plains of North America, these ecosystems support many livestock operations and several 

ecosystem services (Allred et al., 2014).  Unfortunately, the area of these natural ecosystems has 

declined due to their conversion to cropland, with a net loss of 9.3 million ha only between 1982 

and 1997 (Samson et al., 2004).  North Dakota reported 5.1 million ha grassland in 2012 

(USDA-NRCS, 2015), about 1.8 million cows and calves (Bos taurus L.) and 65,000 

sheep/lambs (Ovis aries L.), plus other minor animal species (USDA-NASS, 2012). 

In North Dakota, forages are the third most important crop with 1.05 million ha in total 

and 165,457 ha of alfalfa (Medicago sativa L.) in 2015 (FSA, 2015).  Although, annual forages 

are not extensively grown in the state, annual cereals such as oat (Avena sativa L.), barley 

(Hordeum vulgare L.), and oat/pea (Pisum sativum L.) mixtures are grown as emergency forage, 

after winter-killed alfalfa or just to increase forage availability early in the season.  Annual 

forages represent a good feed resource to extend the grazing season into fall and winter, 

providing a good quality forage for the livestock (Neville et al., 2010), allowing more efficient 

use of rangeland, and at the same time improving soil properties (Sedivec et al., 2013).  

Forage brassicas are annual forages species cultivated for livestock production (Najda, 

1991; Smith and Collins, 2003), grown in New Zealand, Australia, North America (Jung et al., 

1986; Jacobs et al., 2001; Nichol et al., 2003; Wilson et al., 2006, Neilsen et al., 2008; Keogh et 

al., 2011), Europe (Neilsen et al., 2008), and northern Asia (Bilgili et al., 2003).  In the USA, 

forage brassicas were introduced between the 19th and 20th centuries but then almost abandoned 

in the 1950’s mainly due to lack of pest control methods and high production costs (Jung et al., 

1984; Rao and Horn, 1986; Smith and Collins, 2003; McCartney et al., 2009). 
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Forage brassicas are characterized by high forage yield, with high nutritive value, low 

establishment and harvest cost (direct grazing), while providing many ecosystems services (Rao 

and Horn, 1986; Wiedenhoef and Barton, 1994; Ayres and Clements, 2002; Fulkerson, 2008; 

Neilsen et al, 2008; de Ruiter et al., 2009; Lemus, 2009; Rowe and Neilsen, 2010; Ward and 

Jacobs, 2013).  Brassicas grow well with low temperature (0-5ºC) and they are tolerant to frost (-

10ºC), extending the grazing season in the fall (McCartney et al., 2009; Ward and Jacobs, 2013).  

The extension of the grazing season reduces feeding costs, increasing the profitability of the 

operation (Penrose et al., 1996). 

Brassicas have gained great importance as cover crops in cropping systems in the last 

decades, due to their many environmental and agronomic benefits (Weil and Kremen, 2007).  

Additionally, a cover crop can protect the soil during fallow periods, enhancing physical, 

chemical, and biological soil properties, affecting positively the next cash crop performance 

(Sainju et al., 2002; Fageria et al., 2005; Dagel et al., 2014). 

Species in the Brassicaceae family (henceforth Brassicas) have been used as cover crops 

due to their fast growth in the fall and high biomass production (Chen et al., 2007; Geiske et al., 

2016).  Brassicas long, thick, and deep taproots can break the compacted soil layers, reducing 

subsoil compaction (Williams and Weil, 2004; Chen et al., 2007; Weil and Kremen 2007; Chen 

and Weil, 2011), increasing water infiltration (Dabney et al., 2001; Williams and Weil, 2004; 

Chen et al., 2007, Chen et al., 2014), and reducing soil erosion (Weil and Kremen, 2007; Stavi et 

al., 2012; Gruver et al., 2016).  These species also can increase soil fertility remobilizing residual 

NO3-N, P, and other nutrients from deep in the soil (2 m or more) to upper soil layers, becoming 

available for the next crop (Marschner et al., 2007; Chen et al., 2007; Dean and Weil, 2009; Liu 

et al., 2015; Gieske et al., 2016).  Their deep root system allows them to extract water to 2-m 
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depth with high water use efficiency (WUE), even higher than 30 kg DM ha-1 mm-1 (de Ruiter et 

al., 2009).  Additionally, brassica cover crops have gained high interest to be used as 

biopesticides to control soilborne pests (Haramoto and Gallandt, 2005a; Chen et al., 2007; 

Ackroyd and Ngouajio, 2011; Bjorkman et al., 2015).  

Determining the best management practices of brassicas used as forage and cover crops is 

necessary to obtain their benefits in cropping systems.  These include species and cultivar 

selection, sowing rate, plant density, and nutrient requirements.  Sowing rate is important for 

plant growth because this may influence plant architecture, height, leaf to stem ratio, and forage 

production (Stefanski et al., 2010).  Each forage brassica species has different nutrient 

requirements, depending on soil fertility and the expected yield response (Wilson et al., 2006; de 

Ruiter et al., 2009).  Brassicas, as forages or cover crops, production research in North Dakota is 

limited.  Although a few new trials on forages brassicas grazing have been conducted with good 

results (Neville et al., 2007; 2010). 

The general objective of this research was to determine the agronomic potential of several 

forage brassica species both as forage resource and as cover crops. The specific objectives of this 

study are: 1) to identify brassicas species and cultivars with high biomass production and high 

forage quality when grown as full-season and as cover crops in North Dakota; 2) to determine 

their optimum sowing date and optimum plant density to maximize their yield and quality, and 3) 

to determine their response to different N and S fertilization rates.  
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CHAPTER 2. LITERATURE REVIEW 

2.1. Forages brassicas 

Forage is defined as “edible parts of plants, other than separated grain, that provide feed 

for animals, or can be harvested for feeding” (Barnes and Nelson, 2003).  Even though grasses 

(Poaceae) and legumes (Fabaceae) are the most important forage resources, some forbs have 

been gaining importance.  Forage brassicas are the most important forbs used as forages in 

animal production.   

2.1.1. Botanical classification and species 

The Brassicaceae (former Cruciferae) family includes many different genera.  The genus 

Brassica is the most economically important within this family, which include different species 

with multiples uses (Branca and Cartea, 2011).  Six centuries ago, some species of brassicas 

were used for livestock feed (Najda, 1991; Smith and Collins, 2003).  Species such as turnip 

[Brassica rapa L. var. rapa (L.) Thell).], swede or rutabaga (B. napus L. var. napobrassica), 

forage rape (B.napus L.), kale [B. oleracea L. convar acephala (DC)] (Ayres and Clements 

2002; McCartney et al., 2009; Gowers, 2010; Westwood and Mulcock, 2012), and some hybrids 

like B. rapa L. x B. pekinensis L. (Wiedenhoef and Barton, 1994) or B. rapa L. x B. oleracea L. 

(Frischke, 2011) have been widely used as a forage crops. Also, canola or rapeseed (B. napus L.) 

which is an oilseed, has foliage can be used as forage for grazing (MAFRI, 2004; Schroeder, 

2008).  In the last decades, some of these species, such as turnip, rape, and some hybrids, have 

become important cover crops. 

Forage radish (Raphanus sativus L.) is widely used as cover crops in the USA but also 

has been reported as an excellent forage in Canada due to their high biomass yield and quick 

regrowth  allowing several grazing events (McCartney et al., 2009).  Ethiopian cabbage or 
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Ethiopian mustard (B. carinata L.), has the potential to be used both as cover crop, companion 

crop or forage (Hunter and Roth, 2010). 

2.1.2. History and distribution of forage brassicas 

 Forage brassicas have been produced and used in different areas of the world, especially 

in Australia, New Zealand, and North America (Jung et al., 1986; Jacobs et al., 2001; Nichol et 

al., 2003; Wilson et al., 2006, Neilsen et al., 2008; Keogh et al., 2011).  Also, historically these 

species have been utilized in Europe for more than six centuries, especially to feed sheep (Najda, 

1991).  In the USA, brassica forage crops were introduced by European immigrants (Jung et al., 

1983) and have been studied as forage crops in humid zones of the USA and Canada (Jung et al., 

1984).  These species were commonly used in the last part of the 19th century and the beginning 

of the 20th century (Jung et al., 1984; Smith and Collins, 2003).  The use of forage brassicas 

began to decline since 1950’s due to high cost to produce them (Jung et al., 1984; Smith and 

Collins, 2003), high labor requirement, and diseases, and insect problems (Rao and Horn, 1986).  

However, in the last decades, these forage crops had a comeback, as full-season forage crops for 

grazing and also as cover crops.  The recent developments in forage production technology and 

plant breeding have stimulated renewed interest on brassicas as potential forage crops for 

livestock (Rao and Horn, 1986).  In New Zealand, forage brassicas are the most important annual 

forage used for milk and beef production (Salmon and Dumbleton, 2006; de Ruiter et al, 2009).  

Also, some forage brassicas have wider geographical distribution than others.  Forage turnip is 

widely grown in northern Europe, and is also distributed over much of northern Asia, northern 

North America, and southern Oceania (Bilgili et al., 2003).  Turnip has been an important annual 

forage for livestock production in Europe, New Zealand, North America, and Australia (Neilsen 

et al., 2008).  Swedes are the third most important vegetable crop in Scotland (Gowers, 2010), 
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and the second most grown forage brassica after turnips in New Zealand (Chakwizira et al., 

2011). 

2.1.3. Characteristics of brassicas as forage 

Brassicas have several desirable characteristics that make them useful as forages.  Most 

researchers working with forage brassicas agree that the most important characteristics are: i) 

abundant forage at the time when most warm- and cool-season grasses are not productive 

(winter), ii) higher forage yield and quality (energy, protein, digestibility, and minerals), iii) low 

establishment and harvest cost when using direct grazing, and iv) added environmental benefits 

when in crop rotations (Rao and Horn, 1986; Ayres and Clements, 2002; Fulkerson, 2008; 

Neilsen et al., 2008; de Ruiter et al., 2009; Lemus, 2009; Rowe and Neilsen, 2010, Undersander, 

2013). 

2.1.3.1. Phenology 

The most representative forage brassicas have biennial growth cycle (turnip, rape, kale, 

swede and hybrids), but in livestock systems they are grown as annuals (Hall and Jung, 2008, 

Lemus, 2009).  They grow vegetatively in the first season (storing yield in roots or stems) and 

produce seed in the second season (de Ruiter et al., 2009).  However, in areas with harsh winters 

many forage brassicas grow as annuals because they get winter-killed (Stewart, 2002).  

Knowing growth staging is useful in crop protection, in plant breeding and other disciplines 

where a proper definition of crop growth stages is essential (Theunissen and Sins, 1984).  

Developmental growth staging for brassicas was developed by Harper and Berkenkamp (1975) 

and Theunissen and Sins (1984).  The first three stages are similar for all brassicas species.  

Stage zero (0) is a pre-emergence or seed stage.  Stage 1 (1), seedling stage, starts with the 

germination of the seed, the elongation of the hypocotyl, and ends with the unfolding of the two 
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cotyledons.  Stage 2 (2), rosette stage, starts with both cotyledons fully extended and ends with 

the first two true leaves fully expanded.  At stage 3 (3), harvest or grazing stage, the internodes 

elongate, the plant increases in height, and growth rate is the fastest.  The axillary buds become 

visible and the growth slows down gradually at the end of stage 3 (Harper and Berkenkamp, 

1975; Theunissen and Sins, 1984). 

In some species, the above ground biomass is mostly leaves and stems (kale, canola, 

forage rape, and some hybrids), others have part of the above ground biomass as enlarged 

hypocotyls (turnip and swede) or roots (radish) (Lemus and White, 2014).  Both will be referred 

as ‘roots’ henceforth. 

2.1.3.2. Physiology 

 Growing degree days (GDD) to maturity has a major effect on forage brassicas biomass 

yield potential (de Ruiter et al., 2009).  A base temperature of 0°C has been used by some 

authors to calculate the GDD for brassicas (Darby et al., 2013; Björman et al., 2015).  Other 

plants belonging to this family such as white or yellow mustard (Sinapis alba L. and brown or 

oriental mustard Brassica juncea (L.) Czern.), can accumulate biomass as long as the 

temperature is above freezing (Björkman et al., 2015).  However, de Ruiter et al. (2009) 

mentioned that thermal time above 4°C determines the rate of leaf appearance. 

Brassicas are cold-hardy (Jost, 1998), and can tolerate freezing temperatures in the winter 

(Jung et al., 1983; Jung et al., 1986; Smith and Collins, 2003; Keogh et al., 2011).  The ability to 

grow at temperatures near 0ºC gives them an advantage over most grasses and legumes during 

the winter (Smith and Collins, 2003).  Brassicas, in general, can tolerate temperatures down to -

5°C (Najda, 1991).  Different species of brassicas have different winter hardiness which varies 

with cultivars and organs of the plant (Villalobos and Brummer, 2013).  Turnip leaf can 
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generally survive temperatures between -6 and -10°C. Turnip root can tolerate temperatures of -

13°C (Bartholomew and Underwood, 1992; Penrose et al., 1996; McCartney et al., 2009).  

Turnip can survive temperature of -9.4°C (Lemus and White, 2014), and they require several 

days below freezing to be killed (Rook, 1998; Jost, 1998).  Kale is the most cold tolerant forage 

brassica surviving -12°C (Jost, 1998; Lemus, 2009; Lemus and White, 2014).  However, Penrose 

et al. (1996) determined that kale cv. Premier survived an entire winter, with a minimum 

temperature of -22°C air temperature.  Turnip, swede, and hybrid cultivars evaluated in the same 

location and season survived temperatures of -11°C at the end of November, but they froze at -

22°C (Penrose et al., 1996).  Jung et al. (1986) observed that swede root cv. Calder remained 

alive in the 1981-1982 winter, whereas all other root crops were dead by mid-winter.  That 

winter, the minimum air and soil (5-cm depth) temperature were -28°C and -17°C, respectively.  

Conversely, forage brassicas also are tolerant to heat.  High dry matter production with 

temperatures of about 32°C have been reported (Smith and Collins, 2003).  This temperature was 

used by Darby et al. (2013) to determine the maximum temperature for GDD calculations. 

Forage brassicas accumulate about 1.1 Mg dry matter (DM) ha-1 per each 100 GDD, base 

temperature 0◦C and maximum temperature 32◦C, without soil water constraints nor fertility (de 

Ruiter et al., 2009). 

Brassicas species used as cover crops are fast-growing, cool-season annuals with some 

frost tolerance as well (Chen et al., 2007).  Forage radish is sensitive to frost and winter-kills 

with prolonged exposure to temperatures below -4°C (Weil et al., 2009).  In the Mid-Atlantic, 

forage radish leaves are first damaged by frost in late November or early December but shoots 

can resume growth.  The growing point is often protected by surrounding foliage, until it is 

finally killed by temperatures below -4°C in January or February (Lawley et al., 2012). 
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2.1.4. Forage brassica biomass production 

Most forage brassicas reach their maximum biomass yield between 80 to 150 days after 

planting (DAP) (Tiryakioglu and Turk, 2012).  Turnip is a short-season, fast-growing annual 

crop, which requires 80 to 100 DAP to achieve maximum dry matter production (Jung et al., 

1983; Smith and Collins, 2003; Albayrak et al., 2004; Lemus, 2009; Jacobs and Ward, 2011; 

Lemus and White, 2014).  Swede has a longer vegetative period than turnip and grows slower 

requiring 120 to 180 DAP to achieve maximum biomass production (Jung et al., 1983; 

Wiedenhoef and Barton 1994; Lemus, 2009; Lemus and White, 2014, Benedict et al., 2013).  

Narrow-stem kale is more productive than the other brassicas and require as much as 120 to 180 

DAP to accumulate maximum biomass (Wiedenhoef and Barton, 1994; Jung et al., 1986; Jung et 

al., 1983).  However, depending on the type of kale the growth period can be much shorter. 

Stemless kale cultivars require only 90 DAP for maximum yield, allowing a second harvest (Hall 

and Jung, 2008; Lemus, 2009; Lemus and White, 2014).  Forage rape and hybrids need about 

120 DAP to accumulate maximum biomass, although some maximize biomass at 82 DAP.  Most 

cultivars are ready for grazing at 60 DAP, but need 30 additional days of regrowth for a second 

grazing (Wiedenhoef and Barton, 1994; Jung et al., 1983; Lemus 2009; Lemus and White, 2014; 

Judson et al., 2013).  Kale hybrid cv. ‘Winfred’ can also be used for winter grazing and is ready 

for grazing about 75 DAP in the fall (Frischke, 2011).  

The biomass production of forage brassicas differs depending on the species, cultivar, 

management, and environmental conditions.  Maximum biomass yield is achieved at 

physiological maturity (PM), when the basal leaves begin to senesce and the tops change in color 

(Ayres and Clements, 2002).  
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Forage brassicas biomass yield fluctuates between 4 and 12 Mg dry matter (DM) ha-1 in 5 

to 6 months after planting, depending on species (Keogh et al., 2011).  Swede and kale, generally 

have higher forage yield than other forage brassicas, because of their longer vegetative period.  

Forage yield fluctuates between 15 and 20 Mg DM ha-1 under optimal environmental and 

management conditions (Wilson et al., 2006; Brown et al. 2007; Fletcher et al. 2007, Fletcher et 

al, 2010; Gowers et al., 2006; de Ruiter et al., 2009).  Under irrigation and high N fertilization 

rates, kale was reported to achieve 25 Mg DM ha-1 of high quality forage (Chakwizira et al., 

2015b).  

Forage yield increased from 4 to 11 Mg DM ha-1 in swede and from 2.5 to14 Mg DM ha-1 

in kale, harvesting at 60, 90, 120, and 150 DAP (Jung et al., 1986).  Likewise, in Canada, swede 

forage yield increased from 7.4 to 9.4 Mg DM ha-1 when the harvest was delayed from 16 

September to 6 December (Kunelius et al., 1989).  In a survey of 49 commercial kale cultivars in 

New Zealand, the DM yield averaged 10.9 Mg DM ha-1 and varied from 5.3 to 17.0 Mg DM ha-1.  

Kale type had a significant effect on total forage yield with the intermediate-stem type averaging 

9.9 Mg DM ha-1 and giant types 13.6 Mg DM ha-1.  Cultivar, fertility, sowing date and in-crop 

moisture were all factors that contributed to forage yield variation (Judson et al., 2010).  

Turnip can easily produce about 5 Mg DM ha-1, however, in fertile soil and with even rainfall 

distribution and temperatures below 25°C, they can yield 8 Mg DM ha-1 or more.  Turnip 

biomass yield between 5.9 and 8.1 Mg DM ha-1 were reported in Ohio (Penrose et al., 1996), 

while similar yields were reported by Jung et al. (1986) 60 to 90 DAP, respectively.  Other 

researchers have reported biomass yield average between 4 and 8 Mg DM ha-1 (Rao and Horn, 

1986; Jung et al., 1983; Kalmbacher et al., 1982).  The lowest biomass yield reported is 1.2 Mg 

DM ha-1 (Griffin et al., 1984).  In North Dakota, a trial conducted at Carrington in 2003, with 
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four turnip cultivars had an average forage yield of 6.1 Mg DM ha-1 (NDSU, 2003).  Although, 

much lower biomass turnip yields were reported by Neville et al. (2007), in Streeter, ND.  

Forage rape usually has less biomass than kale, but under adequate conditions (management and 

environment), yield can be 10 Mg DM ha-1 or more.  Biomass yield fluctuates with harvest date, 

ranging between 4 and 7 Mg DM ha-1 harvested at 60 to150 DAP, but depending on the country 

and harvest dates biomass yield can vary between 7.6 to 10.2 Mg DM ha-1 (Garcia et al., 2008; 

Fletcher and Chakwizira 2012b; Judson et al., 2013).  In a trial conducted at Carrington, ND, in 

2003, the average forage yield of three cultivars of rape was 3.5 Mg DM ha-1 (NDSU, 2003).  

Hybrid forage brassicas had high yield fluctuation depending of the species.  Penrose et al. 

(1996), reported a yield of 6.1 Mg DM ha-1 with the hybrid Tyfon, while Griffin et al. (1984) 

reported 6.7 Mg DM ha-1 with the same hybrid.  Conversely, ‘Winfred’ biomass yield was 13.8 

Mg DM ha-1 with above-normal rainfall, but with below-normal rainfall yield was only 3.5 Mg 

DM ha-1 (Ward and Jacobs, 2013).  Winter canola also has been used as a double crop for winter 

grazing and seed (Dove et al., 2012).  

2.1.5. Forage brassicas management 

2.1.5.1. Field selection and soil preparation 

Brassicas can be grown in different kind of soils.  Soil depth of 1 m or more is ideal for 

root development and water uptake (de Ruiter et al., 2009).  Brassicas perform better on well 

drained soils, without waterlogging problems (Jung et al., 1983; de Ruiter et al., 2009; Keogh et 

al., 2011).  Additionally, forages brassicas should be integrated in a crop sequence or rotation, to 

manage soil fertility, and weed and pest control (de Ruiter et al, 2009).  The soil preparation 

must provide a firm seed bed in conventional tillage system (de Ruiter et al., 2009).  No till or 

direct drilling has been used but the results have varied (Ayres and Clements, 2002).  If no till is 
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chosen, higher amount of N should be applied to compensate the lower N mineralization (de 

Ruiter et al., 2009).  

2.1.5.2. Sowing date and sowing depth  

Emergence and establishment of forage brassicas depends on soil water content and 

temperature at the time of sowing.  Available water content in the soil and warmer temperatures 

in a fall sowing resulted in early emergence and establishment, whereas spring emergence and 

seedling growth was delayed due to lower than optimum temperatures (Rao and Horn, 1996; 

Jung et al., 1983; Keogh et al, 2011).  Brassica species germinate over a wide range of 

temperatures, but the optimum range is from 10 to 35°C (Smith and Collins, 2003).  At these 

temperatures, the emergence may occur between 4 to 5 days.  Under favorable conditions forage 

rape germinates rapidly (2-4 days) in late summer and early autumn (Fulkerson, 2008).  Jung et 

al. (1986), using conservation tillage, determined that seed germination was 26% at 15°C and 

80% at 21°C six DAP.  With soil temperature less than 12°C, seedling emergence occurred 10 

DAP.  

The optimum sowing date depends on final crop use, brassica species, management, and 

environment.  For summer grazing, most of the species must be planted early in spring 

(March/April), to use soil water and catch enough spring rainfall (Ayres and Clements, 2002). 

Early sowing dates increase total GDD improving potential forage yield.   

Studies have indicated that weed competition is a major problem in brassicas 

establishment (Griffin et al., 1984).  For that reason, sowing when soil temperature is optimum 

will allow faster germination and emergence.  Studies conducted in the 1970's, determined that 

delaying the sowing date reduced forage yield of kale (Fulkerson and Tosell, 1972).  End of May 

sowing resulted in higher DM yield of kale and swede than sowing on 16 June or 14 July (Dibb 
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and Brown, 1964).  In the Atlantic region of Canada, forage rape, radish, and hybrid turnip 

forage yield did not differ when established in May, June, or July.  However, kale yield declined 

when sown after June (Kunelius et al., 1987).  Additionally, sowing and harvest dates affected 

length and diameter of turnip roots.  The largest roots were obtained sowing in 20 June compared 

with 5 July and 20 July (Tiryakioglu and Turk, 2012).  Also, Sprague et al. (2014) working with 

winter canola for grazing, determined that early sowing dates generated more biomass yield than 

those sown later.  Forage brassicas quickly decline in forage yield as fall sowing is delayed from 

1 August to 31 August, in Ireland.  In this study, biomass yield decreased in 74.5% in forage 

rape, and in 55.5% in turnip (Keogh et al., 2011).  

Brassica seeds are very small, thus to obtain maximum germination and good stand 

establishment, the sowing depth must be shallow (Ayres and Clements, 2002).  ‘Barkant’ turnip 

sown at a depth of 10 mm emerged faster in 7 DAP, than at greater depths.  However, 15 DAP 

emergence rates were similar between 10- and 25-mm depths.  Lowest total emergence was 

observed at 0- (surface) and 50-mm depths (Salmon and Dumbleton, 2006).  Recommended 

sowing depth ranges between 6.3 and 12.7 mm in soils with fine texture and between 12.7 and 19 

mm in coarse-textured soils (Smith and Collins, 2003; Lemus and White, 2014; Ayres and 

Clements, 2002; de Ruiter et al., 2009).  

2.1.5.3. Sowing rate and plant density  

Sowing rate is important for plant growth because it may influence plant architecture, 

height, and leaf to stem ratio (Stefanski et al., 2010).  Also, differences in plant architecture may 

produce overgrazing of the growing point decreasing energy reserves and affecting plant 

regrowth.  Sowing rates between 2 and 5 kg ha-1 changed the consumption preference by the 

animals and the utilization of the crop, without changing the forage quality of rape.  Forage 
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utilization decreased when the density increased (Stefanski et al., 2010).  Cho et al. (1998) 

determined that the stem diameter decreased from 2.1 to 1.8 cm, and the leaf/stem ratio 

decreased from 31.2 to 22.9%, when forage rape sowing rate was increased from 3 to 15 kg ha-1.  

Recommended sowing rates vary between 3.4 and 5.0 kg ha-1 for forage rape and kale and 

between 0.8 and 4.5 kg ha-1 for turnip and swede depending on the country and cultivar (Smith 

and Collins, 2003; Lemus, 2009; Lemus and White, 2014; Smart et al. 2004; Ayres and Clements 

2002; de Ruiter et al., 2009).  However, Cho et al. (1998), determined that the optimum sowing 

rate for forage rape ‘Sparta’ was 11 kg ha-1 which yielded 22.0 Mg DM ha-1. 

In forage rape, plant density was 45% lower with 2 kg ha-1 than 5 kg ha-1 (Stefanski et al., 

2010).  With low sowing rates, as the area available for plant growth increases, plant diameter 

also increases.  High plant density limits nutrient uptake and photosynthetic activity, reducing 

translocation of nutrients to roots and leaves (Albayrak et al., 2004).  Additionally, high sowing 

rates in turnip and swede will likely result in smaller roots which pose the risk of chocking cattle 

(Smith and Collins, 2003).  Also, lower sowing rates may reduce waste during grazing as the 

apical growing point remains near the soil surface (Stefanski et al., 2010).  Thus, cattle can graze 

to a lower residual level without removing the apical growing point and setting back regrowth.  

This will likely result in greater forage utilization, because plants are well spaced, minimizing 

waste by trampling.  Conversely, higher sowing rates produce thinner stems and proportionally 

more leaf material, with higher protein content (Stefanski et al., 2010).  Albayrak et al. (2004) 

determined that turnip root yield and weight increased when row spacing was increased.  At 40-

cm row spacing root and leaf yield was greater than at 20-, 30-, and 50-cm row spacing.  The 

average turnip forage yield was 2.8, 4.5, 5.3, and 4.7 Mg DM ha-1 at 20-, 30-, 40-, and 50-cm 
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row spacing, respectively.  Root diameter and length was greater at 50-cm row spacing.  Leaf 

yield was greater at 40-cm row spacing.  

2.1.5.4. Fertilization response  

Each forage brassica species has different nutrient requirements, depending on soil 

fertility, intended use, and the expected yield response (Wilson et al., 2006; de Ruiter et al., 

2009).  The amount of fertilizer to maximize forage yield depends on the difference between 

crop nutrient demand and nutrient supply from the soil (de Ruiter et al., 2009).  Management of 

soil and fertilization are key to profitable and sustainable crop production (Chakwizira et al., 

2011; Fletcher and Chakwizira, 2012a).  Nutrient supply needs to be closely matched to crop 

demand.  Sub-optimal nutrient supply will result in lower yield, while excess nutrient application 

can lead to leaching and run-off of nutrients and potentially create nitrate toxicity to animals 

(Chakwizira et al., 2011).  Grazing of forage kale can cause ground water pollution through 

nitrate leaching.  To minimize N loading, N fertilization must match crop requirements 

(Chakwizira et al., 2015b). 

The most important nutrients for forage brassicas are N, P, S, K, Mo, and B.  Soil testing 

for nutrients such as Mg, Cu, and Co (Aymes and Clemets, 2002; de Ruiter et al., 2009) and Ca, 

Zn, Fe, and Mn might be necessary in certain locations (Guillard and Allinson, 1989).    

According to Smith and Collins (2003), brassica production is highly dependent on 

available soil N.  Nitrogen is required in large amounts in plant tissue, as a component of plant 

proteins, amino acids, nucleotides, nucleic acids, and chlorophyll (Grant and Bailey, 1993).  

Nitrogen application influences mainly crude protein (CP) content in forages, but also affects 

metabolizable energy (ME), neutral detergent fiber (NDF), and starch content of turnip roots 
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(Jacobs and Ward, 2011).  Nitrogen is needed in higher quantity in forage brassicas than grasses, 

because of their higher CP content (Smith and Collins, 2003).  

Leafy brassica species require large amounts of N, hence, N fertilizers are the most 

important production input (Keogh et al., 2011).  Nitrogen is applied to increase forage yield, but 

the response depends on soil N and yield potential (Fletcher et al., 2012a; Chakwizira et al., 

2011; Keogh et al., 2011; Fletcher and Chakwizira, 2012b).  The N requirement in most brassica 

crops in New Zealand ranges from 250 to 500 kg N ha-1.  They respond strongly to N 

fertilization if the soil has less than 150 kg available N ha-1 (available N tested at 15 cm of soil 

depth, according with Keeney and Bremmer (1966) procedure) (de Ruiter et al., 2009).  

Forage kale Naccumulation was 22 kg N Mg-1 DM with 12 Mg DM ha-1 of biomass (Judson et 

al., 2010) and only 20 kg N Mg-1 DM when total biomass production was 18 Mg DM ha-1 

(Wilson et al., 2006).  The total N accumulation differed with N application (Fletcher and 

Chakwizira, 2012b).  In a rain-fed condition and no N application, kale took up 13.5 kg N Mg-1 

DM, but when fertilized with 300 kg N ha-1 the  N accumulation increased to 32.7 kg N Mg-1 

DM (Chakwizira et al., 2015b). Jacobs et al. (2006) reported that application of N fertilizer from 

150 to 300 kg N ha-1 increased forage rape yield from 9.8 to 13.6 Mg DM ha-1.  Chakwizira et al. 

(2011), determined a yield increase from 7.0 Mg DM ha-1 with 0 kg N ha-1 to 9.7 and 10.5 Mg 

DM ha-1 with 120 to 300 kg N ha-1, respectively.  These recommended N rates are similar to the 

140 kg N ha-1 recommended for forage swede in Otago, New Zealand (Stevens and Carruthers, 

2008).  

Application of N fertilizer can lead to an accumulation of nitrate (NO3-N) in forage 

brassicas, particularly when N application rates exceed the requirement (Fletcher and 

Chakwizira, 2012b).  This may result in potentially toxic NO3-N (antinutritional compounds) 
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content in grazeable plant tissues, leading to animal health issues and/or environmental pollution 

(Chakwizira et al., 2015b).  Forage kale and rape, generally have higher NO3-N concentration 

than turnip and swede.  This is because roots, the major yield component of turnip and swede, 

have lower NO3-N content than stems, which make up the bulk of yield in kale and rape 

(Fletcher and Chakwizira, 2012b).  Additionally, Chakwizira et al. (2015a) reported that NO3-N 

contents were higher in kale stems and petioles (which included the midrib of the leaf) than in 

leaves.  Nitrate concentration was highest at the bottom of the kale stem and decreased towards 

the top.  Also, NO3-N content on the whole-plant (kale and rape) increased with N supply, and 

long periods of low rainfall in the summer (Chakwizira et al., 2015a).  Rape and kale had nearly 

double of NO3-N content compared with turnip and swedes (5.5 mg g-1 DM and 2.9 mg g-1 DM, 

respectively).  Chakwizira et al. (2015a) determined that the NO3-N content increased from 0.1 

mg g-1 to 2.3 mg g-1 from 0 to 500 kg N ha-1 in kale and 1.0 to 3.4 mg g-1 from 0 to 200 kg N ha-1 

in forage rape.  Fletcher and Chakwizira (2012b) recommended early application of N fertilizer 

to minimize NO3-N accumulation in forage brassicas. 

Aymes and Clements (2002) recommended to apply only 20 kg N ha-1 at sowing, 

broadcasting the remaining rate 2 or 4 weeks after crop emergence.  Nitrogen split-applications 

can have some advantages (Widdowson et al., 1960), such as early biomass production for 

grazing (Sprague et al., 2014).  However, Pelletier et al. (1976) determined that forage brassicas 

had higher CP with full application of N at sowing than with split-application.  In New Zealand, 

the recommendation is to split N fertilizer into two applications, 6 and 12 weeks after sowing 

(WAS) in forage kale and 4 and 8 WAS in forage rape.  This limits NO3-N accumulation in the 

soil and the risk of leaching losses during the season.  Late N applications almost doubled NO3-

N content in the plant tissue compared with early applications (Fletcher and Chakwizira, 2012b).  
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Where there is adequate soil water content, N application can improve forage yield and CP 

content in most summer forages (Jacobs and Ward, 2011).  However, studies on N fertilization in 

turnip and other forage brassica species have indicated that under dryland conditions, forage 

yield response is variable (Jacobs and Ward, 2011). 

Sulfur is the fourth major nutrient in crop production, ranked immediately behind N, P, 

and K in importance to crop productivity (Jamal et al., 2010; Piri et al., 2012).  Although S is one 

of the essential nutrients for plant growth, this element has received little attention for many 

years because fertilizers and atmospheric SO2 and H2S inputs supplied the soil with adequate 

amounts of S for many years (Jamal et al., 2010; Aghajanzadeh et al., 2015).  Industrial burning 

of high-S content coal released high amount of S-compounds to the atmosphere, however new 

regulations to reduce greenhouse gases emissions (GHG) and acidifying compounds reduced the 

S input to soils from the atmosphere (Aghajanzadeh et al., 2015). 

Some crops require as much S as P, especially brassicas species (Grant and Bailey, 1993; 

Manaf and Ul-Hassan, 2006; Chen et al., 2007; Piri et al., 2012).  However, S fertilization has 

erratic results.  Forage brassicas respond strongly to N fertilizer but seldom to S (Wilson et al., 

2006; Fletcher et al., 2010).  Nitrogen and S requirements of crops are closely related because 

both nutrients are required for S-containing aminoacids (cysteine and methionine), protein 

synthesis, and various other cellular components, including thiol and secondary S-containing 

compounds, which have a significant role on protection of plants against stress and pests (Grant 

and Bailey, 1993; Piri et al., 2012; Anjum et al., 2011).  Sulfur is contained in the biologically 

active compounds biotin, glutathione, thiamine, and coenzyme A, playing an important role in 

energy transfer and protein structure.  This nutrient is involved in the synthesis of chlorophyll 
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and is also required in plants of the Brassicaceae family for the synthesis of volatile oils, 

accumulating as glucosinolates (Grant and Bailey, 1993). 

In general, N/S ratios from 4:1 to 8:1 are ideal for brassicas.  A 7:1 N/S ratio in the soil is 

required for optimum growth of rape (Janzen and Bettany, 1984; Chen et al., 2007).  However, 

Janzen and Bettany (1984) indicated that ratios below 7:1 reduced seed yield.  Fazili et al. (2008) 

reported that S deficiency limits the N use efficiency, therefore, S addition becomes necessary to 

achieve maximum N use efficiency from applied fertilizer.  An example of S and N interaction 

was reported by Fazili et al. (2008), in this study rapeseed and brown mustard  (B. juncea L.)  

had S accumulation of 27 to 31% of the added S with no N fertilization and 37 to 38% when 60 

kg N ha-1 was applied.  Wilson et al. (2006) reported that kale’s S extraction was 100 kg S ha-1 

while application of 45 kg S ha-1 recorded significantly higher forage yield than 30 kg S ha-1 in 

forage rape (Piri et al., 2012). 

 The desirable method and timing of S fertilization depends on whether the fertilizer 

contains SO4-S which is available to the plant or elemental S which must be oxidized before it 

becomes available to the plant.  Sulfate-containing fertilizers are water soluble and leach easily 

(Grant and Bailey, 1993).  Fertilizers containing SO4-S should be preferred to those with 

elemental S which is released slower and causes soil acidification (Ayres and Clements, 2002).  

In soils with sufficient soil water for crop planting, spring broadcast or broadcast-incorporated 

application of SO4-S is recommended.  In soils with lower than average soil water content, side 

banding or presowing banding may be superior, because bands will be less subject to drying than 

the soil surface.  In coarse-textured soils, leaching losses of SO4
2- may occur during heavy rains 

(Grant and Bailey, 1993). 
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Phosphorus is an essential element that plays a key role in plant growth and metabolism 

and it is the major limiting nutrient for plant growth after N (Afshar et al., 2012).  Phosphorus 

availability is associated with root development and hence crop establishment.  The plant 

responds to P fertilization by either diverting resources to root production or increasing root 

proliferation in the high P regions with subsequent yield increase.  A larger root volume will 

result in improved nutrient and water uptake (Chakwizira et al., 2011).  

Forage brassica biomass yield responds strongly to P fertilization particularly where soil 

P is less than 15 mg kg-1 soil (White et al., 1999).  For example, a 12 Mg DM ha-1 of kale 

biomass contained 34 kg P ha-1 (Judson et al., 2010) and 18 Mg ha-1 of kale contained 50 kg P 

ha-1 (Wilson et al., 2006).  General recommendations for maximum forage yield of brassicas 

fluctuate between 25 to 50 kg P2O5 ha-1 rates (Wilson et al., 2006; Chakwizira et al., 2010; 

Chakwizira et al., 2011).  Lemus (2009) recommended that kale should be fertilized with 100 to 

112 kg P2O5 ha-1, forage rape with 50 to 78 P2O5 ha-1, and swede/turnip with 95 to123 P2O5 ha-1.  

Banded P fertilizer (as opposed to broadcast) and applied at planting time may increase 

availability of P early in the season allowing the plants to establish a more effective root system 

early in the season and thereby increasing water use efficiency (Ayres and Clements, 2002; 

Lemus, 2009; Chakwizira et al., 2011).  

Potassium is an activator of a number of enzymes, most notably those involved in 

photosynthesis and respiration.  Potassium serves an important function in regulating the osmotic 

potential of cells and it is a principal factor in opening and closure of stomatal guard cells, and 

phototropisms (Hopkins and Huner, 2008).  

Although not common, K deficiency can be corrected by adding a potash fertilizer (Ayres 

and Clements, 2002).  Potassium requirement is high in all brassica forages (Smith and Collins, 
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2003).  Fulkerson et al. (2008) reported that 8 Mg DM ha-1 of brassica biomass can uptake 144 

kg K ha-1, and the recommended fertilization should be 150 kg K2O ha-1.  Lemus (2009) 

recommended kale should be fertilized with 100 to 112 kg K2O ha-1, forage rape with 50 to 78 

K2O ha-1, and swede/turnip with 95 to 123 K2O ha-1.  

The requirements of micronutrients in forage brassicas are not substantially different 

from those of other forage species (Smith and Collins, 2003).  Molybdenum deficiency is 

common in acidic soils (pH < 5.5).  It can be applied as Mo superphosphate or could be applied 

with seed treatment (Fulkerson et al. 2008).  Additionally, liming to increase soil pH may also 

overcome Mo deficiency (Ayres and Clements, 2002; Fulkerson et al., 2008).  Boron deficiency 

is relatively rare, but has been detected in recently limed soils or high pH alkaline soils.  The 

deficiency can be overcome applying boron fertilizer in rates of 2 kg ha-1 (Ayres and Clements, 

2002).        

2.1.5.5. Other managements 

 Water availability is the main environmental source of forage yield variation in brassica 

forages (de Ruiter et al., 2009).  Irrigation increases turnip biomass yield substantially, and water 

deficits during the growing season reduce forage yield (Rowe and Neilsen, 2010).  Swede needs 

38 mm H2O wk-1 during the season to maximize root yield (Benedict et al., 2013).  Kale and rape 

have more vigorous root systems than swede and turnip, and therefore they can utilize stored 

water more efficiently (de Ruiter et al., 2009).  Eckard et al. (2001) reported that irrigation 

increased yields in turnip from 7.9 to 13.5 Mg DM ha-1 while similarly, Neilsen et al. (2000) 

reported increases from 6.1 to 12.6 Mg DM ha-1.  Other researchers also have reported that 

biomass yield nearly doubles with irrigation (Rowe and Neilsen, 2010). 
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 Weeds, pests, and diseases can be problematic in brassicas but their presence vary with 

year and location (de Ruiter et al., 2009).  Application of glyphosate (N-(phosphonemethyl) 

glycine) right before planting is a good option to control weeds (de Ruiter et al., 2009).  

Brassicas can quickly become dense enough to prevent germination of weed seeds (Ayres and 

Clements, 2002).  However, seedlings are not good competitors with many annual weeds during 

the first few weeks, especially in spring and mid-summer establishments (Smith and Collins, 

2003; de Ruiter et al., 2009).  Pre-emergence herbicides can be used to minimize weed 

competition in early planting dates.  Some post-emergence herbicides are available to control 

many broadleaf and grass weeds (de Ruiter et al., 2009).  Once established, brassica seedlings 

are more competitive (Ayres and Clements, 2002).  Weed seeds emergence and competition is 

minimal in late planting dates (Smith and Collins, 2003).  

Crop failure is often caused by insects or diseases on emerging or newly established 

seedlings.  Seedlings of kale, turnip, and forage rape are especially susceptible to cabbage flea 

beetle (Phyllotreta cruciferae Goeze), and striped flea beetle (Phyllotreta striolata Fab.) (Smith 

and Collins, 2003; Benedict et al., 2012).  Flea beetles feed exclusively on brassicas cotyledons 

and first true leaf, causing extensive damage (Benedict et al., 2012).  In addition, cabbage moth 

(Mamestra brassica L.), cabbage butterfly (Pieris rapae L.), armyworm (Spodoptera sp.), and 

cabbage root maggot (Delia radicum L.) are commonly found in forage brassicas foliage (Smith 

and Collins, 2003).  Some species of aphids (Aphis brassicae L. and Lipaphis erysimi 

Kaltenbach) also can cause problems (Benedict et al., 2012).  

Diseases can be caused by fungal, bacterial, or viral pathogens (Ayres and Clements, 

2002).  The most important diseases include bacterial soft rot (Erwinia carotovora L.R. Jones), 

which affects the roots of mature turnip and swede, leaf spot associated with both Xanthomonas 
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campestris (Pammel) Dowson, Alternaria sp., and Cercospora sp., and powdery mildew 

(Erysiphe cruciferarum Opiz ex Junell) (Smith and Collins, 2003).  In addition, club root 

(Plasmodiophora brassicae Woronin) is a serious soil-borne disease of most brassicas 

worldwide (Benedict et al., 2013).  Crop rotation avoiding repeat brassicas in the same field for 4 

or 5 years reduces the risk of soil-borne diseases (Benedict et al., 2012 and 2013).   

2.2. Cover Crops 

Cover crops have been defined as “close-growing crop that provides soil protection, 

seedling protection, and soil improvement between periods of normal cash crops production, or 

between trees or vines in orchards and vineyards” (SSSA, 2008).  Cover crops provide many 

environmental and agronomic benefits (Weil and Kremen, 2007), such as soil coverage during 

fallow periods, before crop establishment in spring or after crops are harvested in the fall.  

Additionally, cover crops can improve the performance and production of following crops due to 

enhancement of soil physical, chemical, and biological properties (Fageria et al., 2005).  

According to Carter (2002), the main objective to use cover crops is to enhance soil properties 

and the productivity of the subsequent crops.  

2.2.1. Benefits of cover crops 

Cover crops improve N economy (Fageria et al., 2005), increase soil organic matter 

content and carbon sequestration (Sainju et al., 2002; Dabney et al.,2001; Fageria et al., 2005), 

enhance soil fertility, reduce nutrient losses (Meisinger et al., 1991; Sainju et al., 2002; Vos and 

Van Der Putten, 2004; Fageria et al., 2005; Cupina et al., 2011; Dagel et al., 2014), improve soil 

structure, alleviate subsoil compaction (Williams and Weil, 2004; Fageria et al., 2005), reduce 

soil erosion, increase soil biological activity, conserve soil water (Fageria et al., 2005), suppress 

weeds, decrease disease and insect problems (Fisk et al., 2001; Fageria et al., 2005), and improve 
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yield of subsequent crops (Sainju et al., 2002; Fageria et al., 2005; Dagel et al., 2014).  

Furthermore, cover crops improve water quality, increase mycorrhizal fungal activity, and affect 

soil temperature (Dabney et al., 2001). 

Annual forages can serve as cover crops and have the potential to grow quickly under less 

than ideal conditions (Fageria et al., 2005).  Legumes are widely used for their contribution of N 

to the soil through biological N2 fixation (Sarrantonio, 2007).  Additionally, species from the 

Poaceae and Brassicaceae family, are commonly used as winter annual cover crops (Cupina et 

al., 2011).  In fact, several forage brassica species are used as cover crops in the Midwest.  

Brown or oriental mustard, black mustard (Brassica nigra L.), white or yellow mustard, turnip, 

forage rape, rapeseed, canola, and forage or oilseed radish are examples of the most common 

brassica cover crops (Gieske et al., 2016).  

2.2.2. Challenges to grow cover crops 

Under some circumstances, cover crops can reduce the cash crop yield by using up water 

stored in the soil profile, immobilizing N, and or producing excessive residues, hampering crop 

stand establishment or harvest (Dabney et al., 2001).  However, the most obvious direct costs 

associated with cover crops include those for cover crop seed, labor, fuel, fertilizer, and herbicide 

or tillage to terminate the cover crop (Snapp et al., 2005).  

All plants in the Brassicaceae family are non-host to arbuscular mycorrhizal fungi (AMF) 

and many of the species release anti-fungal isothiocyanates (ITC) affecting AMF colonization of 

the next crop in the rotation.  However, White and Weil (2010) determined that radish did not 

affect AMF colonization of corn (Zea mays L.) following radish. 

Cover crops can slow down the warming of the soil surface (Snapp et al., 2005; Stavi et 

al., 2012).  In this way organic mulches reduce daily maximum soil temperatures (Vos and 
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Sumarni, 1997).  These cool temperatures slow down the emergence and development of the 

subsequent crops in the spring (Hoyt, 1999; Dabney et al., 2001).  

2.2.3. Soil health 

Soil health, or quality, can be broadly defined as “the capacity of a living soil to function, 

within natural or managed ecosystem boundaries, to sustain plant and animal productivity, 

maintain or enhance water and air quality, and promote plant and animal health” (Doran, 2002).  

Cover crops improve soil health by increasing organic matter, improving soil structure, and 

facilitating more diverse and biologically active microbial communities (Blackshaw et al., 2005; 

Thomsen and Hansen, 2014).  These soil properties will be impacted by cover crops according 

with the type of cover crop, type of soil, tillage and cropping system, management history, and 

climate (Blanco-Canqui et al., 2011). 

Soil organic matter (SOM) has been defined as “the organic fraction of the soil exclusive 

of undecayed plant and animal residues” (SSSA, 2008).  Organic matter includes thousands of 

different compounds that work in different ways to build a healthy soil (Sarrantonio, 2007).  

Additionally, SOM can be divided in three primary parts; a) small recent plant residues and small 

living soil organisms, b) decomposing (active) organic matter (OM) or detritus, and c) stable OM 

or humus (USDA-NRCS, 2012; Fenton et al., 2008).  Soil organic matter composition is 

influenced by a variety of factors, where the type of vegetation and factors controlling microbial 

decomposition (climate) are two of the most important (Vancampenhout et al., 2009).  

Soil organic matter influences the availability of N, P, S, and trace metals, water 

movement, soil structure, cation exchange capacity, soil color and temperature, and adsorption of 

chemicals (Nelson and Sommers, 1996).  The active SOM or detritus contributes to soil fertility 

because the breakdown of these fractions results in the release of different nutrients.  The humus 
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or stable OM contributes to soil structure, soil tilth, and cation exchange capacity (Fenton et al., 

2008).  Soil organic carbon (SOC) is the major element, comprising 48 to 58% of the SOM 

(Nelson and Sommers, 1996).  However, several studies have determined that the proportion of 

SOC in SOM is highly variable for a range of soils, even between horizons in the same soil 

(Nelson and Sommers, 1996).  This SOC is found in several different compounds such as, lipids, 

aromatic compounds, polysaccharides, lignin, phenols, and N-compounds (Schumacher, 2002; 

Vancampenhout et al., 2009). 

Cover crops can increase SOM into agricultural systems (Reeves, 1997), and also 

increase SOC concentration (Dabney, 1998; Weil and Kremen, 2007).  Therefore, cover crops 

are efficient in C sequestration (Stavi et al., 2012).  Cereal cover crops produce the largest 

amount of biomass and should be considered when the goal is to rapidly build soil organic matter 

(Cupina et al., 2011).  Also, deep-rooted winter cover crops can add soil-building C, which is 

critical to soil quality and function, and can reduce nitrate losses by leaching in agroecosystems 

by scavenging N (Thorup-Kristensen et al., 2003; Fageria et al., 2005).  Cover crops with a large 

and deep-rooted biomass may stimulate long-term soil C sequestration because root derived C 

has a lower turnover rate than shoot-derived carbon (Mutegi et al., 2013). 

Generally, brassica cover crops do not increase SOM.  Although they are high biomass 

producers, the low C:N accelerates its decomposition resulting in unchanged total SOM.  In 

favorable conditions, radish biomass yield can exceed 7.8 Mg DM ha-1 (above and below 

ground) two months after sowing in the fall (Gruver et al., 2016).  Planting radish into the small 

grains stubble can mitigate soil C depletion (Mutegi et al., 2011). 

Studies assessing the relationships between soil physical properties and SOC in different 

crop rotations have reported variable results.  An increase in SOC with diverse crop rotations is 
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not always correlated with soil physical properties (Benjamin et al., 2008).  However, other 

authors have reported that cover crops reduce soil penetration resistance, increase cumulative 

infiltration (Folorunso et al., 1992), and improve physical and hydraulic properties, increasing 

the SOC concentration significantly in the 0 to 7.5 cm depth (Blanco-Canqui et al., 2011).  

Typically, these changes are the result of roots forming new channels, improving soil structure 

(Makela et al., 2011). 

Radish, Austrian winter pea, and a mix of these species generated highest, intermediate, 

and lowest soil bulk density impacts, respectively (1.67, 1.52, and 1.50 Mg m-3), which was not 

related with the amount of SOC incorporated to the soil (15.9, 17.6, and 19.4 g kg-1, 

respectively).  The impact of cover crops on bulk density and concentration of SOC was greater 

at the 0- to 5-cm than the 5- to 10-cm depth (Stavi et al., 2012). 

Cover crops, especially legumes, also improve soil tilth by increasing beneficial fungi and 

other micro and macro organisms (Sarrantonio, 2007).  A glycoprotein, glomalin, produced by 

fungi, is central to the formation and stability of soil aggregates (Wright et al., 1999).  

Aggregates have several functions in the soil.  Physical protection of soil organic matter, 

microbial community structure, oxygen diffusion, regulation of water flow, nutrient adsorption 

and desorption, and reduction of run-off and erosion.  All of these processes affect SOM 

dynamics and nutrient cycling (Six et al., 2004).  Highest water stable aggregate (WSA) and 

mean weight diameter of aggregates (MWD) were observed in soils after Austrian pea, compared 

with pea-radish mixture, and radish alone (Stavi et al., 2012).  

Mycorrhizal fungi and Rhizobium bacteria create soil macro-pores and cycle nutrients 

that build soil structure and tilth (NRCS, 2013).  Soil biology is the driving force behind 

decomposition processes that break down complex organic molecules and convert them to plant 
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available forms (Friedel et al., 2001).  The roots of cover crops help to sustain healthy organisms 

to restore soil structure (NRCS, 2013).  When these cover crops are incorporated into the soil, 

they add SOM, improve soil structure, and increase soil biological activity (Carrera et al., 2007).  

Buyer et al. (2010) reported that adding rye (Secale cereale L.) and hairy vetch (Vicia villosa L.) 

into crop rotations increased soil microbial biomass (SMB).  In addition, Stavi et al. (2012) 

determined that the earthworm (Lumbricus terrestris L.) population density increased with cover 

crops.  An increase in earthworm population is associated with increased water infiltration and 

soil aggregate stability (Willoughby and Kladivko, 2002; Blanco-Canqui et al., 2011). 

Excess of machinery traffic in field operations, accompanied with unpredictable rainfall, 

may result in soil compaction, especially in regions with heavy rainfall events (Williams and 

Weil, 2004; Chen et al., 2014).  In compacted soils, root growth is restricted limiting access to 

water and nutrients stored in the subsoil (Williams and Weil, 2004; Chen and Weil, 2011).  One 

of the solutions is deep tillage, but it is expensive, high energy cost, and the beneficial effect is 

short-lived (Horn et al., 2000).  

Crop rotations that include tap-rooted species of cover crops may help alleviate the 

deleterious effects of soil compaction on plant growth by modifying soil physical properties 

(Chen et al., 2014).  Brassicas long and thick taproot can penetrate compacted layers, breaking 

soil compacted layers more efficiently than the thinner and superficial roots of fibrous-rooted 

monocots (Chen and Weil, 2010).  Once forage brassicas are winter-killed their roots decompose 

rapidly leaving channels that facilitates the root growth of a subsequent crop, enhancing 

infiltration and reducing compaction (Williams and Weil, 2004; Weil and Kremer, 2007).  This 

is also known as ‘biodrilling’ (Cresswell and Kirkegaard, 1995).  Images taken with a mini-

rhizotron revealed that soybean (Glycine max (L.) Merr.) roots penetrated compacted layers by 
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following the channels made by a cover crop the previous fall, increasing soybean grain yield 

(Williams and Weil, 2004).  Multiple continuous small root channels (∼1-mm in diameter) 

provide better infiltration than the discontinuous porosity generated by mechanical tillage (Weil 

and Kremer, 2007).  Radish also reduces surface drainage (Gruver et al., 2016), almost 

eliminating run-off in the fall.  Only a rainfall intensity of more than 260 mm h-1 can generate 

run-off (Weil and Kremer, 2007).  However, winter-killed radish can easily release P to be lost in 

spring run-off (Liu et al. 2013, Liu et al. 2014). 

The ability to break the compacted soil layers depends on the species.  Radish roots have 

greater ability than cereal rye and rapeseed (Chen and Weil, 2010).  Forage radish and rapeseed 

had double the root density than rye at 15-to 50-cm in depth in a compacted soil (Chen and Weil, 

2010).  In another experiment, soil cores taken from 55-cm in depth had 10 times more corn 

roots in the subsoil where radish was grown compared with no cover crop (Weil and Kremen, 

2007).  Also, in the soil surface above a compacted layers, corn root density was greater when 

rye was grown.  Additionally, a mixture of radish and rye can help conserve soil water that can 

be used during summer water stress (Weil and Kremen, 2007).  

The increased porosity created by cover crops roots enhances soil aggregate formation 

and stabilization which results in increased soil water-holding capacity (Prichard, 1998; Dabney 

et al., 2001), allowing crop roots to easily reach water in the subsoil (Dabney et al., 2001; 

Williams and Weil, 2004; Chen et al., 2007).  Also, water conservation in the soil is increased by 

the residue left by cover crops, due to reduced evaporation.  Excess of residue can hold water in 

wet years delaying planting especially in tilled soils (Clark et al., 2007).  The use of water by 

cover crops may not cause a water shortage for the next crop where rainfall is adequate, as in 

humid regions, but may reduce yields where rainfall is low, as in semiarid regions (Unger and 
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Vigil, 1998).  Water use by the cover crop may significantly decrease the amount of water stored 

in the root zone (Prichard, 1998).  Additionally, faster water use by corn roots and more rapid 

recharge of soil water after rainfall in the subsoil was observed when corn was grown after 

forage radish compared with rye or no cover crop (Weil and Kremer, 2007).  The rye cover crop, 

however, provided more residue mulch than the radish conserving more water in the soil above 

the plow pan (Weil and Kremer, 2007; Chen and Weil, 2010).  

2.2.4. Soil erosion 

Soils are most threatened by erosion when they are not covered with living plants or their 

plant residues.  Annual crops such as corn or soybean provide coverage only four months of the 

year.  In addition, crops used for silage do not leave enough protection between harvest and the 

next crop (Kaspar and Singer, 2011).   

The use of cover crops has been recommended mainly to prevent soil erosion caused by 

winter and spring rains and wind (Dabney et al., 2001; Weil and Kremer, 2007).  The efficiency 

of the cover crops to prevent erosion is related to how much they reduce the forces of soil 

detachment and transport (Kaspar and Singer, 2011).  Cover crops control erosion directly by 

reducing the interrill erosion, through increasing the amount and duration of soil coverage by 

live plants or their residues.  In this way, cover crops intercept raindrops, dissipating their impact 

energy, reducing the interril erosion (Kaspar and Singer, 2011).  Additionally, cover crops or 

surface residues increase hydraulic resistance, which can slow the water flow velocity (Brown 

and Norton, 1994). 

Cover crops reduce the erosive force of runoff water, reducing the overland flow of water 

through infiltration (Dabney, 1998; Stavi et al., 2012).  This occurs because cover crops prevent 

surface sealing, increase storage capacity, and improve soil structure (Dabney, 1998).  Also, 



 

 

31 
 

cover crops increase SOC near the soil surface, building larger and more stable aggregates that 

are less susceptible to detachment (Dabney, 1998).  

Austrian winter pea was slightly better in controlling soil erosion than radish or a binary 

mix (Stavi et al., 2012).  However, the mix between these two species should be opted if the 

purpose is increasing N in the soil.  Additionally, Gruver et al. (2016) mention that radish grows 

rapidly when planted in late summer or early fall, providing full canopy closure in about three 

weeks.  Its canopy intercepts rain drops minimizing surface impact and detachment of soil 

particles.  

2.2.5. Increasing soil fertility 

In modern agricultural systems, it is necessary to develop nutrient management practices 

that optimize profit, preserve soil fertility, and protect natural resources (Dobermann and 

Cassman, 2002).  The inclusion of cover crops can enhance soil fertility by scavenging leachable 

nutrients and/or adding N into the soil profile by legumes (Dabney et al., 2001; Sarrantonio, 

2007).  

2.2.5.1. Nitrogen fixation  

One of the most important economic aspect provided by legume cover crops is their 

ability, under adequate conditions, to replace part of the requirement of N of non-legumes crops, 

by N2 fixed biologically (Ebelhar et al., 1984; Weil and Kremer, 2007).  Legume cover crop’s N 

is a cheaper source of N than that from inorganic fertilizers, especially when price of N fertilizers 

are high.  Legumes can reduce N fertilizer applications and production costs (Samarappuli et al., 

2014).   

Legume cover crops can fix different amount of N, depending on the species, crop 

management, and environment during the growth season.  Typically, legumes grow slowly after 
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emergence and usually produce less biomass yield than non-legume cover crops, but they can 

accumulate between 67 to 225 kg N ha-1 (Newman et al., 2007).  Forage pea accumulated 3.3 Mg 

DM ha-1 in the fall, providing 116 kg N ha-1 for the next spring/summer crop in North Dakota 

(Samarappuli et al., 2014).  Similarly, field pea grown alone or in mix with wheat, fixed 141 and 

54 kg N ha-1, respectively (Cupina et al., 2011).  

Legume cover crops incorporated as green manure provided more than 110 kg N ha-1, 

resulting in crop yields similar to those obtained by applying recommended rates of inorganic 

fertilizer (Tonitto et al., 2006).  Sarrantonio and Scott (1988) determined that 157 kg N ha-1 were 

released to soil in about 10 days, when hairy vetch was incorporated into the soil.  

2.2.5.2. Nitrogen scavenging  

Nitrogen losses from crop fields caused groundwater contamination and eutrophication of 

surface water bodies (Isse et al., 1999; Dean and Weil, 2009) while gaseous N2O losses 

contributed to GHG emissions and acid rain (Robertson and Vitousek, 2009).  Available N in the 

soil can be lost to the environment through multiple pathways, including leaching, 

denitrification, and ammonia volatilization (Robertson and Vitousek, 2009).  Leaching occurs 

when the NO3-N in the soil solution is moved in the soil profile by mass flow beyond the root 

zone (Dean and Weil, 2009).  Cover crops can be used to reduce NO3-N losses by catching the 

residual N, improving nutrient efficiency, and increase N availability to the next crop (Thorup-

Kristensen et al., 2003; Brennan and Boyd, 2012a-b; Gieske et al., 2016).  Nutrient efficiency is 

enhanced when the nutrients in the cover crops are cycled back and are absorbed by subsequent 

cash crops (Robertson and Vitousek, 2009).  

Scavenging NO3-N from the soil will depend on how fast the cover crop root system 

grows (Meisinger et al., 1991; Sainju and Singh, 1997).  Grass or brassicas reduce N leaching in 
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about 70% on average and annual legumes about 20% (Liu et al., 2015).  Brassicas are more 

effective than rye in reducing NO3-N losses by leaching (Dean and Weil, 2009).  Residual NO3-

N remaining in the top 1.0-m of the soil profile was 11.9 and 32.2 kg ha−1 for forage radish and 

rye, respectively.  Also, NO3-N remaining at the 1.0- to 2.5-m depth was 6.2 and 27.2 kg ha−1 for 

forage radish and rye, respectively, clearly indicating the effectiveness of forage radish to 

capture NO3-N from deep soil layers (Kristensen and Thorup-Kristensen, 2004).  Forage radish 

and rapeseed can scavenge more NO3-N than rye because their root systems can explore a larger 

volume of soil (Chen et al., 2007; Weil and Kremen, 2007).  Also, brassicas continue to grow 

until late in the fall, taking up the NO3-N before it can be leached (Weil and Kremen, 2007).  

However, in cool weather conditions and when the planting is delayed in the fall, the NO3-N 

uptake decreases (Vos and van der Putten, 1997).  On the contrary, if the brassica cover crops are 

planted too early (July), NO3-N uptake in the fall may be lower since the crop will start 

reproductive growth stage (Eichler et al., 2004). 

In sandy soils, winter turnip established early in July or August has been shown to 

decrease NO3-N leaching by over 90% (Macdonald et al., 2005), whereas a crop established later 

in August reduced NO3-N leaching only in 19.7%, depending on environmental conditions, 

preceding crop, and planting time (Vos and van der Putten, 2004).  Radish and cereal rye have 

demonstrated the capacity to take up 60 and 80% of the equivalent rate of fall-applied N, 

respectively (Lacey and Armstrong, 2015). 

The accumulation of N in the cover crop tissue, and the ability to release it to the next 

crop depends on several factors, such as cover crop species, rainfall, temperature, length of 

growing season, and soil texture and fertility (Stute and Posner 1993; Decker et al., 1994).  An 

effective nutrient scavenger releases the nutrient at the time the next crop requires it (Gieske et 
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al., 2016).  Cover crops deplete N from the soil solution, then when the cover crops die and the 

tissue is decomposed, the N is cycled back to the soil (Gieske et al., 2016).  If mineralization of 

N from the cover crop residues is slow, N may not be available for the subsequent crop.  On the 

contrary, if mineralization occurs too quickly, N can be lost before the subsequent crop start to 

accumulate N (Agehara and Warncke, 2005; Li et al., 2006; Gieske et al., 2016). 

Soil temperature and water content determine N cycling.  Microorganisms decompose 

organic matter faster at 80% of field capacity and 25°C than at lower temperatures (Guntiñas et 

al., 2012).  Dissolved mineral, organic, and total N was significantly higher at 30°C than at 10°C 

and 20°C, after 7 weeks of soil sample incubation (Deressa, 2015).  Conversely, incubation 

temperatures of 0°C, 15°C, and 30°C, did not change N mineralization rate the first four days of 

incubation (Koch et al., 2007).  Nitrogen mineralization, denitrification, and ammonia 

volatilization can occur even at temperatures close to 0°C (Magid et al., 2004; Engel et al., 

2011). 

The C:N ratio of the cover crops also affects N mineralization from the residue (Thorup-

Kristensen, 1994; Trinsoutrot et al., 2000).  Pea residues in vegetative stage have a C:N less than 

20, which speeds up decomposition rates (Copas, 2010).  Legume residues with a C:N less than 

20 can release N from mineralization within 10 to 20 days, whereas in more mature residue (C:N 

= 25-50), the release of N can take several months (Bruun et al., 2006).  Soil microbial activity 

can peak the first week after incorporation of green pea residue (Lupwayi et al., 2004).  Due to 

lower C:N ratios, brassicas can decompose and release the N from tissues into the soil more 

rapidly than grasses (Dean and Weil, 2009).   

Radish, rapeseed, and white mustard have been reported to increase N accumulation and 

biomass production of the subsequent crop (Thorup-Kristensen, 1994; Vyn et al., 1999; Weinert 
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et al., 2002).  Both corn (V6 stage) and pre-nodulated soybean seedlings produced more dry 

matter and had higher tissue N when following forage radish compared with rye or no-cover crop 

(Weil and Kremen, 2007).  However, in other studies, the cover crop provided no benefit to the 

subsequent crop, even though radish N accumulation was high (Isse et al., 1999).  The N demand 

of the next crop must be synchronized with the N mineralization of the cover crop, in order to 

reduce N fertilizer rate without compromising the cash crop yield (O’Reilly et al., 2012).  Some 

authors suggest that brassicas can have a better performance compared with rye, but only in early 

fall planting dates (Vos and Van Der Putten, 1997; Thorup- Kristensen, 2001).  Also, several 

studies have determined that radish accumulates more N than rye, hybrid turnip and brown 

mustard (Strock et al., 2004; Dean and Weil, 2009; O’Reilly et al., 2012; Lacey and Armstrong, 

2015).  

2.2.5.3. Scavenging of P and other nutrients  

In developed countries, P run-off from agricultural land to water sources is one of the 

primary causes of eutrophication (White and Weil, 2011).  For that reason, mitigation of P and N 

losses from agricultural land to waters is a major challenge for modern agriculture (Liu et al., 

2014, 2015).  Cover crops can help to mitigate P losses by enhancing in nutrient cycling in the 

agroecosystem (White and Weil, 2011). 

Members of the Brassicaceae family can solubilize recalcitrant forms of soil P by 

changing the pH of the rhizosphere (Marschner et al., 2007) and exuding organic acids (Shahbaz 

et al., 2006).  Hence, when brassicas are grown as a cash crop or as a cover crop, soil P is 

accumulated in plant tissue, once plants die and decompose, P is available to the next crop 

(White and Weil, 2011).  Winter turnip mobilizes fixed soil P through secretion of organic 

anions altering the soil pH in the rhizosphere (Makela et al., 2011).  However, forage radish is 
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unique in terms of P cycling because of its high tissue P concentration, rapid growth in the fall, 

and rapid decomposition in winter and spring (White and Weil, 2011).  For that reason, forage 

radish can be used to remediate excessively high P soil, to increase concentration of P at the soil 

surface, and to improve fertility of low P soil (White and Weil, 2011).  In a three-year 

experiment, forage radish increased P concentration in the upper 45 cm of soil, probably by 

translocation of P from deep in the soil (Weil and Kremen, 2007).  In radish roots, P content is 

about 5 g kg-1.  Nearby the forage radish root holes, the P concentration is much higher than 

surrounding soil, which could be a result of biological, physical, and chemical interactions 

among plants, soil, and the environment (White and Weil, 2011).  Forage radish P uptake in the 

fall ranged from 5.9 to 25 kg P ha-1 and in rye in the spring P uptake ranged from 3.0 to 26 kg P 

ha-1 (White and Weil, 2011).  Forage radish slightly increased soil test P compared with three 

other brassicas cover crops and a sorghum [Sorghum bicolor (L.) Moench]-sudangrass [S. 

bicolor var. sudanense] at the 0- to 15-cm depth range (Wang et al., 2008).  Also, the P soil test 

increased in the 0- to 45-cm depth range following three years of forage radish compared with 

treatments of rape, cereal rye, and no cover crop (Grove et al., 2007).  

Even though the P scavenged by brassica cover crops is positive for nutrient cycling, 

increasing P concentration in the top of the soil profile may increase surface P losses by run-off.  

Liu et al. (2014) observed that nearly all the P in above ground biomass and roots of eight cover 

crop species was released after a few freezing/thawing cycles (FTC).  Perennial ryegrass (Lolium 

perenne L.), red clover (Trifolium pratense L.), and oilseed radish were the most susceptible to 

lose P quickly, compared with other cover crops (Liu et al., 2014).  Even when cover crops are 

grown to reduce nutrient losses, exposed to FTCs, dead cover crop tissues can become a source 

of soluble P forms, increasing the potential of P loadings to water (Riddle and Bergström, 2013; 
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Liu et al., 2014).  Heavy soil textures have a greater potential to lose P released from catch crop 

residues.  A lower infiltration rate facilitates run-off of P.  In sandy soils, macropores will carry P 

deeper in the soil profile decreasing run-off (Riddle and Bergström, 2013). 

Cereal rye can increase exchangeable K concentrations in the first 5-cm of soil profile, 

probably by absorbing K from the soil and depositing the K-containing shoot and root residues 

on the soil surface (Eckert, 1991).  Radish is an excellent K accumulator, with 40 g kg-1 of K in 

the root dry matter (White and Weil, 2011). 

2.2.6. Pest management  

Brassica cover crops produce toxic compounds that affect weeds, fungi, nematodes, and 

some insects when incorporated into the soil (Haramoto and Gallandt, 2005a).  Brassicas must be 

mowed and incorporated to maximize their natural pest control activity, because toxic 

compounds are released only when the plant cells are broken (Clark et al., 2007).  

Glucosinolates, a S-containing compound, is hydrolyzed when comes into contact with the 

enzyme myrosinase.  One of the resulting compounds is isothiocyanate (ITC) which has the 

potential to control weeds, disease, insects, and nematodes (Brown and Morra, 1997; Rosa et al., 

1997; Sarwar et al., 1998; Kirkegaard and Sarwar, 1998; Gardiner, 1999; Haramoto and 

Gallandt, 2004; Weil and Kremer, 2007; Malik et al., 2008; Kirkegaard et al., 2008; Ackroyd and 

Ngouajio, 2011; Makela et al, 2011; Björkman et al., 2015).  Additionally, other compounds 

from glucosinolate hydrolysis, organic cyanides and oxazolidinethione, may also be allelopathic 

(Brown and Morra, 1996). 

2.2.6.1. Weed control  

Cover crops can fill fallow periods between cash crops that might otherwise be 

vulnerable to erosion or weed establishment (Björkman et al., 2015).  Brassica cover crops can 
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rapidly cover the soil surface during the fall season, reducing weed growth (Chen et al., 2007).  

Several mechanisms of weed suppression have been reported.  Weed seeds germination may be 

inhibited through shade-induced reduction in the ratio of red to far-red light, while subsequent 

growth and reproduction may be suppressed through competition for light, water, or nutrients 

(Holt, 1995).  Additionally, brassica cover crop residues on the soil can inhibit the germination 

of small seeds during the spring (Chen et al., 2007).  Brassica species can effectively suppress 

troublesome weeds, because glucosinolate breakdown products may inhibit weed seed 

germination by reacting with seed enzymes (Weil and Kremer, 2007).  Rape, rye, and radish 

reduced strongly weed growth (Weil and Kremer, 2007).  

Rapid and competitive fall growth, rather than allelopathy, is the primary mechanism of 

weed suppression by radish (Lawley et al., 2011; Lawley et al., 2012).  Bioassays using radish- 

amended soil or aqueous extracts of radish tissues did not reveal any allelopathic activity to seed 

germination or seedling establishment (Lawley et al., 2012).  Gruver et al. (2016) reported that 

radish can eliminate nearly all weed growth both during and for some time after radish has been 

winter-killed, but does not extend much into the summer.  To obtain near-complete weed 

suppression, radishes should be planted early, six or more weeks before frost, at a relatively high 

population (more than 54 plants m-2).  Also, a vigorous biomass production is essential to obtain 

the maximum weed control provided by white mustard (Björkman et al., 2015).  Ideally, a quick 

establishment of short-season cover crops will suppress weeds and prevent weed seeds 

germination (Björkman and Shail, 2013).  

Some of the weeds suppressed by brassica cover crops are pigweed (Amaranthus 

retroflexus L.), shepherds purse (Capsella bursa-pastoris (L.) Medic), green foxtail (Setaria 

viridis (L.) Beauv.), kochia (Kochia scoparia (L.) Schrad.), hairy nightshade (Solanum 



 

 

39 
 

physalifolium Rusby), puncturevine (Tribulus terrestris L.), longspine sandbur (Cenchrus 

longispinus (Hack.) Fern.), and barnyardgrass (Echinochloa crus-galli (L.) Beauv.).  However, 

pigweed was not inhibited by white mustard (Haramoto and Gallandt, 2005b).  In other study, 

weed density of sixteen species decreased between 23 to 34% after brassicas were incorporated 

into the soil and the weeds emergence was two days later compared with fallow system 

(Haramoto and Gallandt, 2004).  Radish grown as fall cover crop planted early in August 

reduced weed biomass in 65 to 95% (Gruver et al., 2016).  The weed suppression provided by 

cover crops must be complemented with herbicide management to maintain a longer and 

complete control (Malik et al., 2008).  Weed suppression with cover crops may be an important 

alternative weed management strategy, especially for organic farming.  Brassica cover crops 

have the potential to be a valuable tool in vegetable cropping systems (Weil and Kremen, 2007).  

2.2.6.2. Disease control  

Brassica cover crops such as oilseed radish, brown mustard, and white mustard have been 

shown to decrease plant pathogen populations in the soil.  Fungi sensitivity to the ITCs varies. 

Gaeumannomyces is the most sensitive genus to ITCs, Rhizoctonia and Fusarium have 

intermediate sensitivity, and Bipolaris and Pythium are the least sensitive (Sarwar et al., 1998).  

Allyl isothiocyanate, in particular, reduced the growth of the brown rot fungus [Monilinis laxa 

(Aderh. & Ruhland) Honey)] (Mari et al., 2008).  Winter rape as a cover crop before potato 

(Solanum tuberosum L.), reduced the incidence of Rhizoctonia and Verticillium (Collins et al., 

2006).  Canola and rapeseed green manure decreased consistently rhizoctonia canker 

(Rhizoctonia solani J.G. Kühn), and common scab (Streptomyces scabies) incidence in potato 

(Larkin et al., 2010). 
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2.2.6.3. Insects and nematodes control  

Cover crops can reduce insect damage by changing soil chemical and physical properties, 

releasing exudates and other compounds (Bugg, 1991), by changing above and belowground 

environmental factors, such as moisture levels and air movement, or by affecting the overall 

health of the crop (Sarrantonio and Gallandt, 2003).  Cover crops attract beneficial organisms 

that feed on or parasitize insect-pests.  Killed rye mulch was effective in attracting parasitoids 

and armyworm (Pseudaletia unipuncta) in a subsequent no-tillage corn crop (Laub and Luna, 

1992), and suppressing colorado potato beetle (Leptinotarsa decemlineata Say) in no-tillage 

tomato production (Hunt, 1998).  In addition, one investigation showed that allyl and benzyl 

isothiocynate forms reduced the growth of first-instar Lepidoptera larvae and final-instar larvae 

(Wadleigh and Yu, 1988). 

Some positive effects on nematodes control have been reported as well.  Rapeseed, 

arugula (Eruca vesicaria subsp. sativa (Miller) Thell.), and mustard (Sinapis spp. or Brassica 

spp.) reduced nematode population in 80% in potato (Chen et al., 2007).  In Wyoming, oilseed 

radish and white mustard reduced sugarbeet cyst nematode (Heterodera schachtii Schm.) 

population by 19 to 75%, with a high correlation with the cover crop biomass (Chen et al., 2007).  

In eastern Texas, researchers evaluated the effect of incorporating a wide variety of brassicas, 58 

days before planting sweet potato (Ipomoea batatas L.).  The radish cultivar Graza reduced 

populations of root knot nematode (Meloidogyne spp.) more than all other cover crops and also 

resulted in fewer ring nematodes (Criconemella spp.) at harvest than in the plots with no cover.  

Also, ring nematode reproduction rate was lower in ‘Graza’ plots than all other treatments 

(Steddom et al., 2008).  
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2.2.7. Agronomic management   

2.2.7.1. Selection of cover crop species  

The main benefits of cover crops can be gained by careful selection of appropriate plant 

species (Guldan and Martin, 2003).  Fast-growing, drought-tolerant cover crops that require 

minimal management are preferred.  Cover crops with fast germination and good seedling vigor 

are usually chosen because of their ability to compete with weeds (Cupina et al., 2011).  Also, 

temperature and rainfall are the primary climatic variables affecting cover crop selection and 

potential utility.  Warmer and wetter climate increase the potential benefits of cover crops 

(Dabney et al., 2001).  Additionally, the decision about where and when to establish the cover 

crops will be related with soil characteristics, the crops sequence or rotation, window between 

sowing and harvest of cash crop, climate (frost free period, rainfall), availability of machinery, 

and others (Sarrantonio, 2007).  

2.2.7.2. Sowing date  

In order to maximize benefits of the cover crops, they need to be planted early, right after 

the cash crop harvest or interseeded into the standing cash crop.  Adequate planting date will 

generate good root establishment and top growth before the cover crops go dormant, reducing 

winter kill, and increasing biomass production compared with later sowing dates (Balkcom et al., 

2007).  These cover crops can be under-sown in the previous main crop in spring, or planted 

after the main crop is harvested in fall.  Under-sown cover crops are often perennial species that 

need a long growing period to become well established, while the after-sown crops are annuals 

that grow relatively fast (Liu et al., 2014). 

One of the most important factors that affect the sowing date is the location.  Sowing date 

is more critical in forage radish than in rye and rapeseed, in the mid-Atlantic, allowing the crop 
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to take up significant amounts of soil N before it is frost-killed.  Radish is frost tolerant but 

several continuous nights with -5°C can kill it (Weil et al., 2009).  It grows best when planted 

from late July to early September but significant amounts of N can be captured by it when 

planted as late as 1 October (Weil et al., 2009).  In the southern Great Lakes Region, optimum 

sowing date for mustard is recommended from 13 to 23 August for optimal growth and no later 

than early September for adequate stands (Björkman et al., 2015).  Delaying the sowing date 

reduces dry matter yield accumulation during the fall and early winter (Villalobos and Brummer, 

2013).  

2.2.7.3. Sowing rate and sowing depth  

Brassica cover crops (radish, mustards, and rapeseed) sowing rate fluctuates between 5.6 

and 14.6 kg ha-1.  If broadcasted, the sowing rate must be increased in about 25 to 50% (Balkcom 

et al., 2007).  Sowing rates must be corrected to pure live seed (PLS) if seed germination is 

below 80% (NRCS, 2011).  In addition, the sowing depth should be between 6 and 19 mm for 

brassicas (Balkcom et al., 2007).  Radish sowing rate fluctuates between 6.7 and 11.2 kg ha-1 if 

drilled or between 9 and 12.5 kg ha-1 if broadcasted.  A high population stand of radishes (more 

than 54 plants m-2) is desirable for a good weed suppression (Gruver et al., 2016). 

2.2.7.4. Sowing method  

Cover crops may be established using a variety of methods, including broadcasting, 

intersowing, drilling, frost/dormant sowing, manure slurry sowing, and aerial sowing (NRCS, 

2011).  Drilling the seeds ensures a better seedling establishment, but also is possible to 

broadcast the cover crop seeds into soybean or corn canopies that are beginning to senesce (Chen 

and Weil, 2011).  By broadcasting cover crops on standing cash crops, several additional weeks 

of growth and increased N accumulation can be gained compared with cover crops planted after 
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the cash crop harvest (Thomsen and Hansen, 2014).  Broadcasting seed is faster than drilling, 

and if is done early into the standing crop may result in better stands than sowing done after the 

cash crop harvest (Frye et al., 1988).  Also, broadcasting brassica cover crops seeds into winter 

wheat in July, in Denmark, generally resulted in a high biomass production in the fall, equal or 

higher than postharvest sowing (Thomsen and Hansen, 2014).  However, NRCS (2011) states 

that seedbed preparation is essential to provide good seed-soil contact, because most cover crops 

will not perform well if broadcasted on a compacted or crusted surface.  Cover crops established 

with a grain drill are much more effective and economical than those established by 

broadcasting.  

2.2.7.5. Termination of cover crops  

Cover crops are planted to get the benefits to soil health, but rarely are left to set seed 

before the next cash crop is planted, although in some cases the cover crop is grazed in the late 

fall (Legleiter et al., 2012).  Some cover crops may be harvested to feed livestock directly as 

green chop or made into silage (Kratochvil et al., 2006).  Because cover crops are produced 

between two cash crops, they should be terminated before the establishment of the next cash 

crop.  If not terminated properly, cover crops have the potential to compete with the crop, 

reducing yield, and can slow down soil drying and warming in the spring (Legleiter et al., 2012).  

The timing of cover crop termination affects soil temperature, soil moisture, nutrient cycling, 

tillage and planting operations, and the effects of allelopathic compounds on the subsequent cash 

crop (Balkcom et al., 2007). 

If cover crops are killed early in the spring, there is time to replenish soil water, warm the 

soil early, decrease phytotoxic effects of residues, give more time for residues decomposition, 

enhance cash crop planting operation, and increases N mineralization from lower C:N ratio cover 
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crops (Balkcom et al., 2007).  Decomposition over the fall, winter, and spring results in little 

residue remaining at the beginning of the next cropping season (Lawley et al., 2011).  

Conversely, killing the cover crop later, leaves residue available for soil and water conservation, 

better weed control, and more N2 fixation from legumes (Balkcom et al., 2007).  The five more 

common methods of terminating cover crops are: winterkill, tilling, mowing, roller-crimper, and 

applying herbicides (Legleiter et al., 2012).  

2.2.7.6. Cover crop biomass production  

Cover crops biomass production is the result of species, location, season/climate, and 

management (Balkcom et al., 2007).  Mustard biomass fluctuates between 3.4 and 10 Mg DM 

ha-1, radish between 4.5 and 7.8 Mg DM ha-1, and rapeseed between 2.2 to 5.6 Mg DM ha-1 

(Balkcom et al., 2007).  Brassica cover crops planted by mid-September, can produce 3.0 to 5.0 

Mg DM ha-1 of total biomass and take up 50 to 100 kg N ha-1 (Isse et al., 1999; Dean and Weil, 

2009; Wang et al., 2010).  Brassica cover crop biomass yields fluctuated between 4.8 and 6.2 Mg 

DM ha-1 and radish between 1.2 to 3.5 Mg DM ha-1 by the end of the fall in Minnesota (Geiske et 

al., 2016).  Furthermore, radish produced 9.0 Mg DM ha-1 of aboveground biomass, and 4.1 Mg 

DM ha-1 below ground biomass (Ngouajio and Mutch, 2004).  Biomass yield and soil coverage 

by cover crops in North Dakota, using brassicas, legumes, and cereals were superior with forage 

turnip cv. Pasja, and forage radish cv. Daikon.  Among all cover crops Pasja obtained the 

greatest yield with 10.8 Mg DM ha-1 in 115 growth days, which was statistically different with 

the others 12 genotypes.  Radish cv. Daikon was the second highest yield with 8.6 Mg DM ha-1 

in the same growth period when compared with hybrid cv. Pasja (Samarappuli et al., 2014).  

Rapeseed can accumulate 6.7 Mg DM ha-1 aboveground biomass, with a N accumulation of 90 

kg N ha-1 (Chen et al., 2007).  Biomass of mustard planted in Michigan during spring ranged 
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from < 0.5 to 4 Mg DM ha-1, but planted in fall, the biomass ranged from 3.0 to 5.5 Mg ha-1 

(Björkman et al., 2015).  

2.3. Brassicas forage quality 

Forage brassicas are more succulent and higher in nutritive value than almost any other 

type of forage (Smith and Collins, 2003), and provide forage when the majority of warm- and 

cool-season grasses and legumes are unproductive (Rao and Horn, 1986; Penrose et al., 1996; 

Altinok and Karakaya, 2003; Salmon and Dumbleton, 2006).  Additionally, forage brassicas are 

fast growing, and offer great potential and flexibility for increasing stocking rate in late summer 

and fall, especially under drought conditions (Fustec et al., 2010).  The nutritional content of 

brassica crops is variable and depends on environment but also of the degree of maturity of the 

plant at harvest time (Francisco et al., 2011).  For some, but not all brassica species, nutritive 

value may be modified by cultivar selection, sowing rate, and time from sowing to harvest 

(Westwood and Mulcock, 2012). 

Brassica forage crops are used as a primary source of energy for dairy and livestock 

production in northern Europe, where corn does not grow (Jung et al., 1984).  Also, these species 

may serve as high energy forage crops at times when other forages availability may be limited 

(Griffin et al., 1984).  Forage brassicas sown in spring are good alternative when there is summer 

drought, and also they can be grazed from August to December in the eastern United States 

(Jung et al., 1986).  Besides of providing feed in quantity and quality, forage brassicas improved 

animal health and provided a break crop during a pasture renewal program (Salmon and 

Dumbleton, 2006).  
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2.3.1. Crude protein 

Forage brassicas are highly productive, digestible forbs that contain relatively high levels 

of CP and digestible carbohydrates (Arnold and Lehmkuhler, 2014).  Crude protein of the whole 

brassica plants have been reported to fluctuate between 130 to 280 g kg-1 (Smith and Collins, 

2003; Teuber et al., 2009; Villalobos and Brummer, 2013).  The hybrid Winfred had and CP 

content between 113 and 168 g kg-1, lower than other brassicas (Ward and Jacobs, 2013).  

 Crude protein values are different depending on plant organ.  Several authors have 

reported that CP content is about 25 to 60% greater in the above ground part than in the roots 

(Rao and Horn, 1986; Jung et al., 1986; Smith and Collins, 2003; Nichol et al., 2003; Villalobos 

and Brummer, 2013; Lemus and White, 2014). Kale and forage rape, accumulate about 43% 

more CP in the leaves than in the stems (Rugoho et al., 2014; Kaur et al., 2011).  

Crude protein is influenced by species, cultivars, agronomic management and the 

environment.  Crude protein content in shoots and roots depends on the cultivars used (Rao and 

Horn, 1986).  Also, N fertilization and weather conditions influence CP content (Tiryakioglu and 

Turk, 2012).  Increasing N fertilization and delaying sowing date in kale increased the leaf:stem 

ratio, and consequently the CP content.  Low rates of N applied between sowing and harvest 

resulted in low CP in kale and rape whole plants (Westwood and Mulcock, 2012).  Sowing rate 

also increased leaf:stem ratio (Albayrak et al., 2004).  Higher CP was obtained at 20- and 30-cm 

o row spacing, than at 50-cm row spacing in turnip roots.   

2.3.2. Fiber and digestibility 

Forage brassicas have greater water content than most forages, about 900 g kg-1 of water 

(McCartney et al., 2009).  This high water content can result in poor storage characteristics of the 

material when used for winter grazing or for stored feed.  Additionally, brassica forages are 
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relatively low in fiber and are readily digested, providing good energy to ruminants (Francisco et 

al., 2011).  Neutral detergent fiber content fluctuated between 200 to 350 g kg-1 with a 

digestibility of 800 to 940 g kg-1 (Westwood and Mulcock, 2012; Villalobos and Brummer, 

2013).  For that reason, supplementary sources of fiber are highly recommended to ensure proper 

functioning of the rumen when only brassicas are grazed.  

All the forage brassicas, in general, have high digestibility.  The in vitro dry matter 

digestibility (IVDMD) of these species remains high most of its growth period allowing 

flexibility in their utilization (Jung et al., 1986; Rao and Horn, 1986).  The IVDMD is usually 

between 750 to 950 g kg-1 (Smith and Collins, 2003).  Kale usually has lower IVDMD due to 

their longer and fibrous stems (Jung et al., 1986; Kunelius et al., 1989).  

Digestibility varies in different plant organs.  The NDF in stems of forage rape Goliath 

was 323 g kg-1, which was 60% and 26% higher than in leaves and petioles (130 and 239 g kg-1, 

respectively) (Kaur et al, 2011).  Teuber et al. (2009) reported values ranging from 730 to 910 g 

kg-1 and 930 to 970 g kg-1 of IVDMD in turnip and swede leaf and root, respectively.  

Digestibility is affected by the type of species, weather conditions, and management.  Neutral 

detergent fiber was higher in plants from the earliest sowing date compared with the later dates, 

regardless of species and year (Wiedenhoef and Barton, 1994).  Also, Pelletier et al. (1976), 

working with kale determined that the IVDMD was slightly affected by N fertilization rate and 

sowing date.   

2.3.3. Energy and soluble carbohydrates 

Another important component for animal production is the energy content of forages, 

which is expressed as metabolizable energy (ME).  Forage brassica crops are usually a highly 

ME forage, with more than 2.9 Mcal kg-1 (Frischke, 2011).  Forage brassicas can produce ME 
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from 2.7 Mcal kg-1 to 3.5 Mcal kg-1 (Keogh et al., 2011; Ward and Jacobs, 2013; Garcia et al., 

2008; Judson et al., 2013). 

Energy content can be variable according with the species and the part of the plant.  

Apparently, swedes have greatest concentration of ME, averaging 3.3 Mcal kg-1 compared with 

kale with only 2.7 Mcal kg-1 (Westwood and Mulcock, 2012).  Teuber et al. (2009) determined 

that the ME was higher in swede roots with 3.2 Mcal kg-1, and lower in turnip, swede, and hybrid 

Winfred leaves with 2.2 Mcal kg-1.  Also, ME of kale declined from the upper to lower canopy 

(Rugoho et al., 2010).  

The main reason for the high ME in brassicas is the high amount of water soluble 

carbohydrates (WSC) in the tissue, and lower structural carbohydrates (cellulose and 

hemicellulose).  The content of WSC in a whole brassica plant is variable, ranging from 192 g 

kg-1 for first cut leafy turnip to 498 g kg-1 for swede (Westwood and Mulcock, 2012).  In 

addition, Kaur et al. (2011) reported WSC content 680 g kg-1 and 220 g kg-1 in stem and 

leaf/petiole, in rape, respectively. 

2.3.4. Minerals 

Minerals in forages are essential nutrients for growth, but also supply animal 

requirements.  Minerals content of Mg, Na, Fe, Mn, and Zn are reported to be greater in brassicas 

than those of cool-season grasses (Griffin et al., 1984).  Conversely, Cu, Mn, and Zn content in 

brassicas are insufficient to supply the animal requirement (Smith and Collins, 2003).  Also, 

Kunelius et al. (1989) and Lemus and White (2014) indicated that mineral composition of kale 

was adequate with the exception of Cu, Mn, and Zn, which would not satisfy the dietary 

requirements of ruminants.  Iodine, Fe, and Cu supplements help to prevent anemia and goiter in 

cows (Lemus and White, 2014).  Also, Ca, K, Mn, Fe, and B content in turnip leaf are adequate 
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while other elements such as Fe, Cu, Mn, Zn, and B are in trace quantities (Francisco et al., 

2011). 

Levels of Ca, Mg, and P were influenced by species and planting date for rape, turnip and 

turnip hybrid (Wiedenhoef, and Barton, 1994).  Forage brassicas grown in the summer have 

similar or superior content of Ca, Mg, K, Cu, Fe, Mn, and Zn than grown in the fall, although in 

the fall, N and P content was greater (Guillard and Allinson, 1989).  

2.3.5. Animal performance 

Forage brassicas can be adapted to different animal production systems (Smith and 

Collins, 2003), offering great potential and flexibility for increasing stocking rate in late summer 

and fall, especially under drought conditions (Fustec et al., 2010).  

The most common use of forage brassicas in the United States has been grazing of 

fattening lambs and lactating ewes.  Lambs can gain between 0.114 to 0.250 kg head (hd)-1 day-1, 

which is better than weight gain rates with other feed sources.  Reid et al. (1994) conducted 

grazing trials with fattening lambs and breeding ewes for four years in late fall, and determined 

that daily weight gain of lambs varied strongly among the years.  The average weight gain 

fluctuated from 0.019 to 0.330 kg hd-1 day-1, but these weight gains were generally greater than 

with other forage resources such as tall fescue (Festuca arundinaceae L.), or orchardgrass 

(Dactylis glomerata L.) -red clover mixture.  Lambs gained 0.129 kg hd-1 day-1with brassicas 

which was slightly lower than the weight gain from ensiled grasses (Vipond et al., 1998).  Also, 

fattening lambs had average growth rates of 0.230 kg hd-1 day-1 grazing on hybrid Winfred, over 

a 52 day period (Frischke, 2011).  This hybrid cultivar must be grazed moderately, because 

lambs leave very low DM residue reducing the subsequent regrowth (Judson, 2010).  Sheep 

gained between 0.110 and 0.241 kg hd-1 day-1 (Sprague et al. 2014), which is similar to a gain 



 

 

50 
 

weight of 0.183 kg hd-1 day-1 reported by Dove et al. (2012).  Forage brassicas are widely used to 

improve milk production in dairy cows.  Clark et al. (1996) determined that supplementing 

pasture with 3.6 and 5 kg DM cow-1 day-1 of forage brassicas at two different research stations in 

New Zealand, milk solids increased between 26% and 18% respectively, compared with pasture 

only. 

Crude protein and IVDMD of brassicas were above the requirements of dry pregnant 

breeding cows and also met the requirements of steers gaining 1.0 kg hd-1 day-1 both in fall and 

spring (Rao and Horn, 1986).  In North Dakota, after 42 days of grazing (October 16 to 

November 27) pregnant cow’s body weight increased 0.898 kg hd-1 day-1 across four different 

feed resources, but when fed turnips weight increased in 1.030 kg hd-1 day-1 (Neville et al., 

2007).  In the Chilean Patagonia, steers fed turnips ad libitum gained 1.215 kg hd-1 day-1 during 

71 days of grazing (18 May to 28 July) (Hepp et al., 2008). 

Additionally, the amount of methane released to the atmosphere was 22 to 30% less in 

lambs fed with fresh winter forage rape, compared with those fed perennial ryegrass.  

Apparently, the higher amount of readily fermentable carbohydrates, and smaller amount of 

structural carbohydrates in forage rape than in ryegrass, reduced methane release.  This suggests 

that forage rape is a potential methane mitigation tool in pastoral-based sheep production 

systems (Sun et al., 2015). 

2.3.6. Anti-nutritional compounds and animal health problems 

Although infrequent, brassica crops can cause animal health disorders if grazing is not 

managed properly.  The most common disorders can occur during the first two weeks of grazing 

while adjusting to the forage.  The primary potential disorders are polioencephalomalcia (PEM), 

hemolytic anemia (mainly with kale), NO3-N poisoning, and pulmonary emphysema.  Other 
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possible clinical disorders include bloat and rumen acidosis, and metabolic problems such as 

hypomagnesemia and hypothyroidism with goiter (Arnold and Lehmkuhler, 2014). 

Nitrate is an antinutritional compound present in forage brassicas, caused mainly by 

excessive application of N fertilizers (Fletcher et al., 2010).  Once these plants are consumed by 

ruminants, nitrate is transformed into nitrite in the rumen, transported to the blood stream and 

combined with hemoglobin, avoiding the transport of oxygen (Cash et al., 2006; Arnold and 

Lehmkuhler, 2014).  Additionally, the excess of nitrate intake is excreted causing potential 

ground and surface water pollution (Kaur et al., 2010).   

Concentrations of less than 0.35 mg NO3-N g-1 DM are safe for all conditions and 

livestock classes; 0.35 to 1.13 mg NO3-N g-1 DM are safe for non-pregnant animals, 

concentrations from 1.13 to 2.26 limit feed to 25 to 50% for some livestock, and greater than 

2.26 mg NO3-N g-1 DM are not recommended for feeding (Cash et al., 2006).  Also, Fletcher et 

al. (2010) determine that concentrations greater than 2.0 mg NO3-N g-1 DM reduce the 

performance of grazing animals.  However, Nichol (2007) mention that 4.5 mg NO3-N g-1 DM 

led to poor performance of grazing animals and, in extreme cases, death.  Some reports suggest 

that the critical levels depend on individual animal factors, with important considerations being: 

animal condition (pregnant vs. non-pregnant), age, and animal type (Cash et al., 2006; 

Chakwizira et al, 2015a). 

Forage rape is one of the brassica crops that can cause poisoning by NO3-N, because the 

high accumulation of these compounds in its tissue (Kaur et al., 2010).  This species has high 

NO3-N content when is immature, for that reason forage rape needs to be grazed from about 7 

weeks to about 13 to 15 weeks after sowing (Garcia et al., 2008).  Brassicas grazed with less than 

60 days of growth, have the potential to produce NO3-N poisoning (Guillard et al., 1995).  Kale 
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also can accumulate high NO3-N, for that reason the grazing in winter must be managed 

carefully (Fletcher et al., 2010).    

The amino acid compound S-methyl-L-cysteine sulfoxide (SMCO) is an anti-nutritional 

compound accumulated in plants, and is unique to the Brassicaceae family (Arnold and 

Lehmkuhler, 2014).  This compound can be accumulated in the plants by excessive applications 

of S fertilizers (Fletcher et al., 2010).  Unlike with NO3-N, SMCO increases with plant maturity 

and can be problematic during regrowth and after flowering.  The SMCO is converted to 

dimethyl disulfide in the rumen, absorbed into the bloodstream, oxidizing hemoglobin (Arnold 

and Lehmkuhler, 2014).  Kale, rape, and turnips can produce this toxicity, but most research 

indicates that kale is one of the most dangerous.  This is extremely important in New Zealand, 

where kale is widely used as a supplement to pasture during winter.  Consumption of SMCO 

may limit DM intake, the animal performance, causing hemolytic anemia (Rugoho et al., 2014).  

The content of SMCO increases in kale leaves from 1.4 to 6.2 g SMCO kg-1 DM between the 

first (16 September) and the last (6 December) harvest dates (Kunelius et al., 1989).  However, 

this increment is lower than the content considered deleterious to animal health.  Concentrations 

that exceed 15 g SMCO kg-1 DM can reduce the animal performance and threat animal’s health 

(Fletcher et al, 2010). 

Finally, glucosinolates present in brassicas are precursors of irritants that can cause colic 

and diarrhea.  Large roots may lodge in the esophagus and lead to choking.  Certain brassicas 

(specifically rape) can cause sunburn on light-skinned animals, especially when immature plants 

are grazed.  Other potential problems include oxalate poisoning and off-flavoring of meat and 

milk (Arnold and Lehmkuhler, 2014). 

 



 

 

53 
 

2.4. Literature cited 

Ackroyd, V., and M. Ngouajio. 2011. Brassicaceae cover crops affect seed germination and 
seedling establishment in cucurbit crops. HortTechnol. 21:525-532. 

Afshar, R., M. Chaichi, H. Moghadam, and S. Ehteshami. 2012. Irrigation, phosphorus fertilizer 
and phosphorus solubilizing microorganism effects on yield and forage quality of turnip 
(Brassica rapa L.) in an Arid Region of Iran. Agric. Res. 1(4): 370-378. 

Agehara, S., and D. Warncke. 2005. Soil moisture and temperature effects on nitrogen release 
from organic nitrogen sources. Soil Sci. Soc. Am. J. 69:1844-1855. 

Aghajanzadeh, T., S. Kopriva, M. Hawkesford, A. Koprivova, and L. De Kok. 2015. 
Atmospheric H2S and SO2 as sulfur source for Brassica juncea and Brassica rapa: impact 
on the glucosinolate composition. Front. Plant Sci. 6(924):1-9. 

Albayrak, S., N. Camas, and C. Sevimay. 2004. The influence of row spacing on root and leaf 
yields and yields components of forage turnip (Brassica rapa L.). Turk. J. Field Crops. 
9:72-77. 

Allred, B., J. Scasta, T. Hovick, S. Fuhlendorf, and R. Hamilton. 2014. Spatial heterogeneity 
stabilizes livestock productivity in a changing climate. Agric. Econ. Environ. 193:37-41. 

Altinok, S., and A. Karakaya. 2003. Effects of growth season on forage yields of different 
brassica cultivars under Ankara conditions. Turk J. Agric. For. 27:85-90. 

Anjum, N., S. Gill, S. Umar, I. Ahmad, A. Duarte, and E. Pereira. 2011. Improving growth and 
productivity of oleiferous brassicas under changing environment: Significance of nitrogen 
and sulfur nutrition, and underlying mechanisms. Sci. World J. 12:1-12. 

Arnold, M. and J. Lehmkuhler. 2014. Forage-related cattle disorders, brassicas: Be aware of the 
animal health risks. Development Cooperative Ext. Serv., Univ. of Kentucky, Lexington, 
KY. Available at http://www2.ca.uky.edu/agc/pubs/ID/ID223/ID223.pdf. (Verified 22 
June 2016). 3 p.  

Ayres, L., and B. Clements. 2002. Forage Brassicas: quality crops for livestock production. 
Agfact P2.1.13, 1st ed. New South Wales, Australia. 13 p. 

Balkcom, K., H. Schomberg, W. Reeves, and A. Clark. 2007. Managing cover crops in 
conservation tillage systems. p. 44-72 In A. Clark (ed.). Managing cover crops profitably. 
3rd ed. Sustainable Agric. Res. and Education, College Park, MD. 

Barnes, R., and C. Nelson. 2003. Forage and grasslands in a changing world. p. 3-23. In Barnes, 
R.F., C.J. Nelson, M. Collins, and K.J. Moore (ed.). Forages: An introduction to 
grassland agriculture (6th ed.). Iowa State Press, Ames, IA. 

Bartholomew, H., and J. Underwood. 1992. Brassicas for forage. Agronomy factsheet (AGF-
020), Ohio State University Extension. Available at http://mbfc.s3.amazonaws.com/wp-
content/uploads/2012/07/1-18-Brassicas-Ohio-State-University-Extension.pdf (Accessed 
27 July 2016). 

Benedict, C., C. Miles, and S. Johnson. 2012. Vegetable fodder & forage crops for livestock 
production: turnips and hybrid turnips. Washington State Univ. Ext. Fact Sheet, FS033E. 



 

 

54 
 

Available at http://cru.cahe.wsu.edu/CEPublications/FS033E/FS033E.pdf. (Accessed 23 
June 2016). 

Benedict, C., C. Miles, and S. Johnson. 2013. Vegetable fodder & forage crops for livestock 
production: rutabagas. Washington State Univ. Ext. Fact Sheet, FS054E. 5 p. Available at 
http://cru.cahe.wsu.edu/CEPublications/FS054E/FS054E.pdf. (Accessed 23 June 2016).  

Benjamin, J., M. Mikha, and M. Vigil. 2008. Organic carbon effects on soil physical and 
hydraulic properties in a semiarid climate. Soil Sci. Soc. Am. J. 72:1357-1362.  

Bilgili, U., M. Sincik, A. Uzun, and E. Acikgoz. 2003. The influence of row spacing and sowing 
rate on seed yield and yield components of forage turnip (Brassica rapa L.). J. Agron. 
Crop Sci. 189:250-254. 

Björkman, T., and J. Shail. 2013. Using a buckwheat cover crop for maximum weed suppression 
after early vegetables. HortTechnol. 23:575-580. 

Björkman, T., C. Lowry, J. Shail, D. Brainard, D. Anderson, and J. Masiunas. 2015. Mustard 
cover crops for biomass production and weed suppression in the Great Lakes Region. 
Agron. J.. 107(4):1235-1249. 

Blackshaw, R., J. Moyer, and H. Huang. 2005. Beneficial effects of cover crops on soil health 
and crop management. In S.G. Pandalai, (ed.) Recent Research Developments in Soil 
Science. Kerala, India Research Signpost. 15-35. 

Blanco-Canqui, H., M. Mikha, D. Presley, and M. Claassen. 2011. Addition of cover crops 
enhances no-till potential for improving soil physical properties. Soil Sci. Soc. Am. J. 
75:1471-1482. 

Branca, F., and E. Cartea. 2011. Brassica. p. 17-36. In C. Kole (ed.). Wild crop relatives: 
Genomic and breeding resources, Oilseeds. Spring-Verlag, Berlin-Heidelberg, Germany. 

Brennan, E., and N. Boyd. 2012a. Winter cover crop sowing rate and variety affects during eight 
years of organic vegetables: I. Cover crop biomass production. Agron. J. 104:684-698. 

Brennan, E., and N. Boyd. 2012b. Winter cover crop sowing rate and variety effects during eight 
years of organic vegetables: II. Cover crop nitrogen accumulation. Agron. J. 104:799-
806. 

Brown, H., S. Maley, and D. Wilson. 2007. Investigations of alternative kale management: 
production, regrowth and quality from different sowing and defoliation dates. Proc. of the 
New Zealand Grassland Assoc.. 69:29-33 

Brown, L., and L. Norton. 1994. Surface residue effects on soil erosion from ridges of different 
soils and formation, Trans. ASAE. 37(5):1515-1524. 

Brown, P., and M. Morra. 1996. Hydrolysis products of glucosinolates in Brassica napus tissues 
as inhibitors of seed germination. Plant Soil. 181:307-316. 

Brown, P., and M. Morra. 1997. Control of soil-borne plant pests using glucosinolate containing 
plants. Adv. Agron. 61:167-231. 

Bruun, S., J. Luxhøi, J. Magid, A. de Neergaard, and L. Jensen. 2006. A nitrogen mineralization 
model based on relationships for gross mineralization and immobilization. Soil Biol. 
Biochem. 38:2712-2721. 



 

 

55 
 

Bugg, R., 1991. Cover crops and control of arthropod pests of agriculture. p. 157- 163 In W.L. 
Hargrove (Ed.), Cover Crops for Clean Water. Proc. of an Int. Conf. West Tennessee 
Experiment Station, Jackson, TN, 9-11 April 1991. Soil and Water Conserv. Soc. 
Ankeny, IA. 

Buyer, J., J. Teasdale, D. Roberts, I. Zasada, and J. Maul. 2010. Factors affecting soil microbial 
community structure in tomato cropping systems. Soil Biol. Biochem., 42: 831-841. 

Carrera, L., J. Buyer, B. Vinyard, A. Abdul-Baki, L. Sikora Jr., and J. Teasdale. 2007. Effects of 
cover crops, compost, and manure amendments on soil microbial community structure in 
tomato production systems. Appl. Soil Ecol. 37:247-255. 

Carter, M., 2002. Soil quality for sustainable land management: Organic matter and aggregation 
interactions that maintain soil functions. Agron. J. 94:38-47. 

Cash, D., R. Funston, M. King, and D. Wichman. 2006. Nitrate toxicity of Montana forages. 
Montana State University, available at 
http://animalrange.montana.edu/documents/extension/nittoxmt.pdf. (Accessed 22 June 
2016). 4 p. 

Chakwizira, E., A. Fletcher, E. Meenken, P. Johnstone, S. Maley, N. Arnold, S. Armstrong, M. 
George, R. Sim, R. Minchin, J. Morton, and A. Stafford. 2011. Dry matter response of 
swede crops to nitrogen and phosphorus application in Southland and central North 
Island regions of New Zealand. Agronomy NZ J. 41:23-37. 

Chakwizira, E., D. Moot, W. Scott, A. Fletcher, and S. Maley. 2010. Establishment and dry 
matter production of kale supplied with banded or broadcast phosphorus (P) fertiliser. p. 
311-316. In Proc. of the 4th Australasian Dairy Science Symp., 31 August-2 September 
2010, Lincoln University, Christchurch, New Zealand. Available at 
http://www.sciquest.org.nz/elibrary/edition/5362. (Accessed 8 June 2016). 

Chakwizira, E., J. de Ruiter, and S. Maley. 2015b. Nitrogen uptake and nitrogen use efficiency 
of forage kale crops grown under varying amounts of water and nitrogen fertiliser rates in 
shallow soils. Proc. of the 17th ASA Conference, 20-24 September 2015, Hobart, 
Australia. Available at www.agronomy2015.com.au. 

Chakwizira, E., P. Johnstone, A. Fletcher, E. Meenken J. de Ruiter, and H. Brown. 2015a. 
Effects of nitrogen rate on nitrate-nitrogen accumulation in forage kale and rape crops. 
Grass Forage Sci.. 70:268-282. 

Chen, G., A. Clark A. Kremen Y. Lawley, A. Price, L. Stocking, and R. Weil. 2007. Brassicas 
and mustards. p. 81-90. In A. Clark, ed. Managing cover crops profitably. 3rd ed. 
Sustainable Agric. Res. and Education, College Park, MD.  

Chen, G., and R. Weil. 2010. Penetration of cover crop roots through compacted soils. Plant Soil. 
331:31-43. 

Chen, G., and R. Weil. 2011. Root growth and yield of maize as affected by soil compaction and 
cover crops. Soil Till. Res. 117:17-27. 

Chen, G., R. Weil, and R. Hill. 2014. Effects of compaction and cover crops on soil least limiting 
water range and air permeability. Soil Till. Res. 136:61-69. 



 

 

56 
 

Cho, N., W. Jin, Y. Kang, B. Kang, and Y. Park. 1998. Effect of sowing rate on growth, yield 
and chemical composition of forage rape cultivars. Korean J. Crop Sci. 43(1):54-58. 

Clark, A., G. Chen, A. Kremen, Y. Lawley, A. Price, L. Stocking, and R. Weil. 2007. Benefits of 
cover crops. p. 9-11. In A. Clark, ed. Managing cover crops profitably. 3rd ed. Sustainable 
Agric. Res. and Education, College Park, MD. 

Clark, D., S. Howse, R. Johnson, A. Pearson, J. Penno, and N. Thomson. 1996. Turnips for 
summer milk production. Proc. of the New Zealand Grassland Assoc. 57:145-150. 

Collins, H., A. Alva, R. Boydston, R. Cochran, and B. Hamm. 2006. Soil microbial, fungal, and 
nematode responses to soil fumigation and cover crops under potato production. Biol. 
Fert. Soils. 42:247-257. 

Copas, M. 2010. Evaluation of cover cropping strategies designed for implementation into the 
intensively managed vegetable crop system of central Wisconsin. PhD Thesis. University 
of Wisconsin-Madison. 

Cresswell, H., and J. Kirkegaard. 1995. Subsoil amelioration by plant roots: The process and the 
evidence. Aust. J. Soil Res. 33:221-239. 

Cupina, B., M. Manojlovic, Dj. Krstic, R. Cabilovski, A. Mikic, A. Ignjatovic-Cupina, and P. 
Eric. 2011. Effect of winter cover crops on the dynamics of soil mineral nitrogen and 
yield and quality of sudan grass [Sorghum bicolor (L.) Moench]. Australian J. Crop Sci. 
5(7):839-845. 

Dabney, S. 1998. Cover crop impacts on watershed hydrology. J. Soil Water Conserv. 53:207-
213. 

Dabney, S., J. Delgado, and D. Reeves. 2001. Using winter cover crops to improve soil and 
water quality. Commun. Soil Sci. Plant Anal. 32:1221-1250. 

Dagel, K., S. Osborne, and T. Schumacher. 2014. Improving soybean performance in the 
northern Great Plains through the use of cover crops. Comm. Soil Sci. Plant Analysis, 
45:1369-1384. 

Darby, H., H. Harwood, E. Cummings, R. Madden, and S. Monahan. 2013. 2012 Forage 
Brassica Variety Trial. Univ. of Vermont Ext. 8 p. 

De Ruiter, J., D. Wilson, S. Maley, A. Fletcher, T. Fraser, W. Scott, S. Berryman, A. Dumbleton, 
and W. Nichol. 2009: Management practices for forage brassicas. Forage Brassica 
Development Group. Christchurch, New Zealand. 62 p. 

Dean, J., and R. Weil. 2009. Brassica cover crops for nitrogen retention in the mid-Atlantic 
coastal plain. J. Environ. Qual. 38:520-528. 

Decker, A., A. Clark, J. Meisinger, F. Mulford, and M. Mclntosh. 1994. Legume Cover Crop 
Contributions to No-Tillage Corn Production. Agron. J. 86:126-136.  

Deressa, A. 2015. Effects of soil moisture and temperature on carbon and nitrogen mineralization 
in grassland soils fertilized with improved cattle slurry manure with and without manure 
additive. J. Environ. Human. 2(1):1-9. 

Dibb, C., and A. Brown. 1964. Effect of dates of sowing on two types of kale and one of 
stockfeed swedes at various harvesting dates. Expl. Husb. 11:75-82.  



 

 

57 
 

Dobermann, A. and K. Cassman. 2002. Plant nutrient management for enhanced productivity in 
intensive grain production systems of the United States and Asia. Plant Soil. 247:153-
175. 

Doran, J. 2002. Soil health and global sustainability: translating science into practice. Agric. 
Ecosyst. Environ. 88:119-127. 

Dove, H., W. Kelman, J. Kirkegaard, and S. Sprague. 2012. Impact of magnesium-sodium 
supplementation on live weight gains of young sheep grazing dual-purpose cereal or 
canola crops. Anim. Prod. Sci. 52:1027-1035. 

Ebelhar, S., W. Frye, and R. Blevins. 1984. Nitrogen from legume cover crops for no-tillage 
corn. Agron. J. 76:51-55. 

Eckard, R., A. Salardini, M. Hannah, and D. Franks. 2001. The yield, quality and irrigation 
response of summer forage crops suitable for a dairy pasture renovation program in 
north-western Tasmania. Aust. J. Exp. Agric. 41:37-44. 

Eckert, D. 1991.Chemical attributes of soils subjected to no-till cropping with rye cover crops. 
Soil Sci. Soc. Am. J. 55:405-409. 

Eichler, B., B. Zachow, S. Bartsch, D. Köppen, and E. Schnug. 2004. Influence of catch 
cropping on nitrate contents in soil and soil solution. Landbauforschung Völkenrode I. 
54:7-12. 

Engel, R., C. Jones, and R. Wallander. 2011. Ammonia volatilization from urea and mitigation 
by NBPT following surface application to cold soils. Soil Sci. Soc. Am. J. 75:2348-2357. 

Fageria, N., V. Baligar, and B. Bailey. 2005. Role of cover crops in improving soil and row crop 
productivity. Commun. Soil Sci. Plant Anal. 36:2733-2757. 

FAO. 2005. Grasslands of the World. J.M. Suttie, S.G. Reynolds and C. Batello (ed.). Publishing 
Management Service, Information Division, FAO. Rome, Italy. 514 p. 

Fazili, I., A. Jamal, S. Ahmad, M. Masoodi, J. Khan, and M. Abdin. 2008. Interactive effect of 
sulphur and nitrogen on nitrogen accumulation and harvest in oilseed crops differing in 
nitrogen assimilation potential. J Plant Nutri. 31:1203-1220. 

Fenton, M., C. Albers, and Q. Ketterings. 2008. Soil Organic Matter. Cornell University 
Agronomy Fact Sheet Series: Available at http://albany.cce.cornell.edu/resources/soil-
organic-matter-fact-sheet. (Accessed 10 January 2017). 2 p. 

Fisk, J., O. Hesterman, A. Shrestha, J. Kellsa, R. Harwooda, J. Squired, and C. Sheaffer. 2001. 
Weed Suppression by Annual Legume Cover Crops in No-Tillage Corn. Agron. J. 93(2): 
319-325. 

Fletcher, A., and E. Chakwizira. 2012a. Developing a critical nitrogen dilution curve for forage 
brassicas. Grass Forage Sci. 67:13-23. 

Fletcher, A., and E. Chakwizira. 2012b. Nitrate accumulation in forage brassicas. New Zeal. J. 
Agr. Res.. 55 (4):413-419. 

Fletcher, A., D. Wilson, S. Maley, J. Mccallum, and M. Shaw. 2010. The effect of sulphur and 
nitrogen fertiliser on levels of antinutritional compounds in kale. Proc. New Zealand 
Grassland Assoc. 72:79-84. 



 

 

58 
 

Fletcher, A., H. Brown, D. Wilson, and S. Maley. 2007. Forage production and nitrogen uptake 
of kale. p. 335–342. In Chapman D.F., Clark D.A., Macmillan K.L. and Nation D.P. (eds) 
Proc. of the 3rd Australasian Dairy Science Symp. National Dairy Alliance: Melbourne, 
Australia. 

Folorunso, O., D. Rolston, T. Prichard, and D. Louie. 1992. Cover crops lower soil surface 
strength, may improve soil permeability. California Agriculture, volume 46, number 6. 
Available at http://ucce.ucdavis.edu/files/repositoryfiles/ca4606p26-69649.pdf. 
(Accessed 25 April 2017). 2p. 

Francisco, M., P. Velasco, M. Lema, and M. Cartea. 2011. Genotypic and environmental effects 
on agronomic and nutritional value of Brassica rapa. Agron. J. 103 (3):735-742. 

Friedel, J., D. Gabel, and K. Stahr. 2001. Nitrogen pools and turnover in arable soils under 
different durations of organic farming. II: source- and-sink function of the soil microbial 
biomass or competition with growing plants? J. Plant Nutr. Soil Sci., 164:421-429. 

Frischke, A. 2011. Lamb production from spring-summer grazing of forage brassica. BCG 2011 
Season Research Results. Available at 
file:///C:/Users/x/Downloads/lamb_production_from_spring_summer_grazing_of_winfre
d_forage_brassica%20(2).pdf. (Accessed 4 January 2017). 3p. 

Frye, W. W., J.J. Varco, R.L. Blevins, M.S. Smith, and S.J. Corak. 1988. Role of annual legume 
cover crops in efficient use of water and nitrogen. p. 129-154. In: W.L. Hargrove (ed.) 
Cropping Strategies for Efficient Use of Water and Nitrogen. Spec. Pub. No. 51. ASA, 
Madison, WI. 

FSA. 2015. 2015 Acreage North Dakota Acreage Summary Report. Available at 
https://www.fsa.usda.gov/Assets/USDA-FSA-Public/usdafiles/State-Offices/North-
Dakota/pdfs/2015acreagereportingsummary.pdf. (Accessed 30 May 2017). 

Fulkerson, B. 2008. Growing forage rape (Brassica napus) in autumn. Future Dairy Tech. Note. 
Univ. of Sydney, Australia. Available at http://futuredairy.com.au/wp-
content/uploads/2016/02/TechNoteBrassica2008.pdf. (Accessed 28 January 2017). 6p. 

Fulkerson, R., and W. Tossell. 1972. An evaluation of marrow stem kale. Can. J. Plant. Sci. 
52:787-793. 

Fustec, J., F. Cortés-Mora, G. Piva, V. Oury, S. Pineau, and S. Renaud. 2010. Legumes increase 
forage Brassica yield in low-input systems. p. 338-340. In Proc. of the 23rd General 
Meeting of the European Grassland Federation. Kiel, Germany. 29 August-2 September, 
2010. 

Garcia, S., W. Fulkerson, and S. Brookes. 2008. Dry matter production, nutritive value and 
efficiency of nutrient utilization of a complementary forage rotation compared to a grass 
pasture system. Grass Forage Sci. 63:284-300. 

Gardiner, J. 1999. Allelochemicals released in soil following incorporation of rapeseed (Brassica 

napus) green manures. J. Agric. Food Chem. 47:3837-3842. 

Gieske, M., V. Ackroyd, D. Baas, D. Mutch, D. Wyse, and B. Durgan. 2016. Brassica cover crop 
effects on nitrogen availability and oat and corn yield. Agron. J. 108:151-161. 



 

 

59 
 

Gowers, S. 2010. Swede and turnip. In. J.E. Bradshaw (ed.), Root and tuber crops, Handbook of 
Plant Breeding 7. doi: 10.1007/978-0-387-92765-7_8. 

Gowers, S., R. Butler, and S. Armstrong. 2006. Yield comparisons of old and new cultivars of 
swedes (Brassica napus ssp. napobrassica) in Southland, New Zealand. New. Zeal. J. 
Crop Hort. 34:109-114. 

Grant, C., and L. Bailey. 1993. Fertility management in canola production. Can. J. Plant Sci. 
73:651-670. 

Griffin, J., G. Jung, and N. Hartwig. 1984. Forage yield and quality of Brassica sp. established 
using preemergence herbicides. Agron. J. 76:114-116. 

Grove, J., R. Ward, and R. Weil. 2007. Nutrient stratification in no-till soils. Leading Edge 
6:374-381. 

Gruver, J., R. Weil, C. White, and Y. Lawley. 2016. Radishes-A new cover crop for organic 
farming systems. eXtension. Cooperative Ext. Serv. Available at 
http://articles.extension.org/pages/64400/radishes-a-new-cover-crop-for-organic-farming-
systems. (Accessed 22 Jan 2017). 

Guillard, K., and D. Allinson. 1989. Seasonal variation in chemical composition of forage 
brassicas. I. Mineral concentrations and uptake. Agron. J. 81:876-881. 

Guillard, K., S. Pietrzyk, K. Cassida, M. Hagemann, R. Hough, B. Barton, and D. Allinson. 
1995. Seasonal nitrogen and carbohydrate partitioning in forage brassicas. Agron. J. 
87:562-569. 

Guldan S, and C. Martin. 2003. Hairy vetch biomass yield as affected by fall planting date in the 
irrigated steppe of the southern Rocky Mountains. J. Sustainable Agric. 22:17-23. 

Guntiñas, M., M. Leirós, C. Trasar-Cepeda, and F. Gil-Sotres. 2012. Effects of moisture and 
temperature on net soil nitrogen mineralization: A laboratory study. Eur. J. Soil Biol. 
48:73-80. 

Hall, M., and J. Jung. 2008. Use of brassica crops to extend the grazing season. Agronomy Facts 
33. College of Agricul. Sciences and Agricul. Research and Cooperative Ext., 
Pennsylvania State Univ. Available at 
http://extension.psu.edu/plants/crops/forages/species/use-of-brassica-crops-to-extend-the-
grazing-season/extension_publication_file. (Accessed 23 January 2017). 4 p. 

Haramoto, E., and E. Gallandt. 2004. Brassica cover cropping for weed management: A review. 
Renewable Ag. Food Sys. 19:187-198. 

Haramoto, E., and E. Gallandt. 2005a. Brassica cover cropping: I. Effects on weed and crop 
establishment. Weed Sci. 53:695-701. 

Haramoto, E., and E. Gallandt. 2005b. Brassica cover cropping: II. Effects on growth and 
interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus 

retroflexus). Weed Sci. 53:702-708. 

Harper, F. and B. Berkenkamp. 1975. Revised growth-stage key for Brassica campestris and B. 

napus. Can. J. Plant Sci. 55:657-658. 



 

 

60 
 

Hepp, C., O. Teuber, F. Vidal, P. Almonacid, and M. Monsalve. 2008. Turnip (Brassica rapa) 
winter grazing of finishing steers in a cold climate in Patagonia (Chile). Document 
presented at XXXIII Congreso Anual de la Sociedad Chilena de Producción Animal. 
Valdivia (Chile). 

Holt, J. 1995. Plant responses to light: a potential tool for weed management. Weed Sci. 43:474-
482. 

 

Hopkins, W., and N. Huner. 2008. Introduction to Plant Physiology, 4th ed. John Willey and 
Sons, Inc. New York. 503 p.  

 

Horn, R., J. van den Akker, and J. Arvidsson. 2000. Subsoil compaction: distribution, processes 
and consequences. J. Plant Nutr. Soil Sci. 165(6):746-747. 

Hoyt, G. 1999. Tillage and cover residue effects on vegetable yields. Hort Technol. 9:351-358. 

Hunt, D. 1998. Reduced tillage practices for managing the Colorado potato beetle in processing 
tomato production. HortSci. 33:279-282. 

Hunter, J., and G. Roth. 2010. Camelina production and potential in Pennsylvania, agronomy 
facts 72. College of Agricultural Sciences, Crops, and Soil Sciences, Pennsylvania State 
Univ. Available at http://extension.psu.edu/plants/crops/grains/small/production/camelina-
production-and-potential-in-pennsylvania. (Verified 5 April 2017). 4 p.  

Isse, A., A. MacKenzie, K. Stewart, D. Cloutier, and D. Smith. 1999. Cover crops and nutrient 
retention for subsequent sweet corn production. Agron. J. 91:934-939.  

Jacobs, J. and G. Ward. 2011. Effect of nitrogen application on dry matter yields, nutritive 
characteristics and mineral content of summer-active forage crops in southern Australia. 
Anim. Prod. Sci.. 51:77-86. 

Jacobs, J., Ward, G., McDowell, A., and Kearney, G. 2001. A survey on the effect of 
establishment techniques, crop management, moisture availability and soil type on turnip 
dry matter yields and nutritive characteristics in Western Victoria. Australian J. Exp. 
Agricul. 41:743-751. 

Jamal, A., Y. Moon, and M. Abdin. 2010. Sulphur -a general overview and interaction with 
nitrogen. Australian J. Crop Sci. 4(7):523-529. 

Janzen, H., and J. Bettany. 1984. Sulfur nutrition of rapeseed. Influence of fertilizer nitrogen and 
sulfur rates. Soil Sci. Soc. Am. J. 48:100-107. 

Jost, J. 1998. Brassicas. Kansas Rural Sustainable Agriculture Management Guides (MG4C.1). 
Available at http://old.kansasruralcenter.org/publications/brassicas.pdf. (Accessed 24 
March 2017). 5p. 

Judson, H., 2010. Maximizing productivity from Brassica crops. In. Proc. of the 25th annual 
conference of the Grassland Society of New South Wales, Dubbo, NSW. pp. 96-100. 

Judson, H., D. Dalley, G. Edwards, D. Stevens, and S. Gibbs. 2010. Improving winter feeding 
outcomes in South Island dairy herds. Proc. of the 4th Australasian Dairy Science 
Symposium 2010. 137-143. 

Judson, H., D. Ferguson, M. Cutts, and A. Moorhead. 2013. Live weight gain of lambs grazing 
three forage rapes which differ in total dry matter yield. Proc. of the New Zealand 
Grassland Assoc. 75:257-260. 



 

 

61 
 

Jung G., R. Kocher, and A. Glica. 1984. Minimum-tillage forage turnip and rape production on 
hill land as influenced by sod suppression and fertilizer. Agron. J. 76:404-408. 

Jung, G., R. Byers, M. Panciera, and J. Shaffer. 1986. Forage dry matter accumulation and 
quality of turnip, swede, rape, Chinese hybrids and kale in the eastern USA. Agron. J. 
78:245-253. 

Jung, G., W. McClellan, R. Byers, R. Kocher, L. Hoffman, and H. Donley. 1983. Conservation 
tillage for forage brassicas. J. Soil Water Conservation. 38(3):227-230. 

Kalmbacher, R., P. Everett, F. Martin, and G. Jungs. 1982. The management of brassica for 
winter forage in the sub-tropics. Grass Forage Sci. 37(3):219-225. 

Kaspar, T., and J. Singer. 2011. The use of cover crops to manage soil. p. 321-337. In (Hatfield 
and Sauer eds.): Soil Management: Building a stable base for agriculture. American Soc. 
of Agronomy and Soil Science Soc. of America. Madison, WI. 

Kaur, R., S. Garcia, W. Fulkerson, and I. Barchia. 2010. Utilization of forage rape (Brassica 

napus) and Persian clover (Trifolium resupinatum) diets by sheep: effects on whole tract 
digestibility and rumen parameters. Anim. Prod. Sci. 50:59-67. 

Kaur, R., S. Garcia, W. Fulkerson, and I. Barchia. 2011. Degradation kinetics of leaves, petioles 
and stems of forage rape (Brassica napus) as affected by maturity. Animal Feed Sci. 
Technol. 168:165-178. 

Keeny, D., and J. Bremner. 1966. Determination and isotope-ratio analysis of different forms of 
Ν in soils: 4. Exchangeable NH4, NO3, and NO2 by direct distillation methods. Soil Sci. 
Soc. Amer. Proc. 30:583-587. 

Keogh, B., T. McGrath, and J. Grant. 2011. The effect of sowing date and nitrogen on the dry-
matter yield and nitrogen content of forage rape (Brassica napus L.) and stubble turnips 
(Brassic rapa L.) in Ireland. Grass and Forage Sci. 67:2-12. 

Kirkegaard, J., and M. Sarwar. 1998. Biofumigation potential of brassicas I. Variation in 
glucosinolate profiles of diverse field-grown brassicas. Plant Soil. 201:71-89. 

Kirkegaard, J., S. Sprague, H. Dove, W. Kelman, S. Marcroft, A. Lieschke, G. Howe, and J. 
Graham. 2008. Dual-purpose canola a new opportunity in mixed farming system. 
Australian J. Agric. Res. 59:291-302. 

Koch, O., D. Tscherko, and E. Kandeler. 2007. Temperature sensitivity of microbial respiration, 
nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. 
Global Biogeochem.  21:1-11. 

Kratochvil, R., F. Coale, B. Momen, M. Harrison, J. Pearce, and S. Schlosnagle. 2006. Cropping 
systems for phytoremediation of phosphorus enriched soils. Int. J. Phytoremediation 
8:117-130. 

Kristensen, H., and K. Thorup-Kristensen. 2004. Root growth and nitrate uptake of three 
different catch crops in deep soil layers. Soil Sci. Soc. Am. J. 68:529-537. 

Kunelius, H., J. Sanderson, and P. Narasimhalu. 1987. Effect of sowing date on yield and quality 
of green forage crops. Can. J. Plant Sci. 67:1045-1050.  



 

 

62 
 

Kunelius, H., L. Halliday, J. Sanderson, and U. Gupta. 1989. Effect of harvest dates on yield and 
composition of forage kale. Can. J. Plant Sci. 69:143-149.  

Lacey, C., and S. Armstrong. 2015. The efficacy of winter cover crops to stabilize soil inorganic 
nitrogen after fall-applied anhydrous ammonia. J. Environ. Qual. 44:442-448.  

Larkin, R., T. Griffin, and C. Honeycutt. 2006. Rotation and cover crop effects on soilborne 
potato diseases, tuber yield, and soil microbial communities. Plant Disease. 94 (12):1491-
1502. 

Laub, C., and J. Luna. 1992. Winter cover crop suppression practices and natural enemies of 
armyworm (Lepidoptera: Noctuidae) in no-till corn. Environ. Entomol. 21:41-49. 

Lawley, Y., J. Teasdale, and R. Weil. 2012. The mechanism for weed suppression by a forage 
radish cover crop. Agron. J. 104:205-214. 

Lawley, Y., R. Weil, and J. Teasdale 2011. Forage radish cover crop suppresses winter annual 
weeds in fall and before corn planting. Agron. J. 103:137-144. 

Legleiter, T., B. Johnson, T. Jordan, and K. Gibson. 2012. Terminating Cover Crops: Successful 
Cover Crop Termination with Herbicides. Purdue Extension. Available at 
https://www.extension.purdue.edu/extmedia/ws/ws-50-w.pdf. (Accessed 24 February 
2017). 6 p. 

Lemus, R. and J. White. 2014. Forage Brassicas for winter grazing systems. Cooperative 
Extension Center, Mississippi State University. Available at 
http://msucares.com/pubs/publications/p2845.pdf. (Accessed 31 June 2016).  

Lemus. R. 2009. Forage Brassicas for Winter Grazing Systems. Available at 
http://msucares.com/crops/forages/newsletters/09/9.pdf. (Accessed 28 January 2017). 6p. 

Li, C., N. Farahbakhshazad, D. Jaynes, D. Dinnes, W. Salas, and D. McLaughlin. 2006. 
Modeling nitrate leaching with a biogeochemical model modified based on observations 
in a row-crop field in Iowa. Ecol. Modell. 196:116-130. 

Liu, J., R. Khalaf, B. Ulén, and G. Bergkvist. 2013. Potential phosphorus release from catch crop 
shoots and roots after freezing-thawing. Plant Soil 371:543-557. 

Liu, J., B. Ulén, G. Bergkvist, and H. Aronsson. 2014. Freezing–thawing effects on phosphorus 
leaching from catch crops. Nutr. Cycling Agroecosyst. 99:17-30. 

Liu, J., G. Bergkvist, and B. Ulén. 2015. Biomass production and phosphorus retention by catch 
crops on clayey soils in southern and central Sweden. Field Crops Res. 171:130-137. 

Lupwayi, N., G. Clayton, J. O’Donovan, K. Harker, T. Turkington, and W. Rice. 2004. Soil 
microbiological properties during decomposition of crop residues under conventional and 
zero tillage. Can. J. Soil Sci. 84:411-419. 

MacDonald, A. J., Poulton, P. How, M. Goulding, K., and D. Powlson. 2005. The use of cover 
crops in cereal based cropping systems to control nitrate leaching in SE England. Plant 
Soil. 273:355-373. 

MAFRI. 2004. Canola as a cforage crop. Available at 
https://www.gov.mb.ca/agriculture/livestock/production/beef/canola-as-a-forage-
crop.html. (Accesed 22 November 2016). 



 

 

63 
 

Magid, J., J. Luxhøi, and O. Lyshede. 2004. Decomposition of plant residues at low temperatures 
separates turnover of nitrogen and energy rich tissue components in time. Plant Soil. 
258:351-365. 

Makela P., A. Tuulos, M. Turakainen, A. Santanen, and F. Stoddard. 2011. Revitalizing the 
winter turnip rape crop in the northern latitudes. Acta Agriculturae Scandinavica Section 
B-Soil and Plant Science. 61:195-201. 

Malik, M., J. Norsworthy, A. Culpepper, M. Riley, and W. Bridges. 2008. Use of wild radish 
(Raphanus raphanistrum) and rye cover crops for weed suppression in sweet corn. Weed 
Sci. 56:588-595. 

Manaf, A., and F. Ul-Hassan. 2006. Effects of sulphur on fatty acid accumulation in brassica 
cultivars. Int. J. Agr. Biol. 8(5):588-592.  

Mari, M., O. Leoni, R. Bernardi, F. Neri, and S. Palmieri. 2008. Control of brown rot on 
stonefruit by synthetic and glucosinolate-derived isothiocyanates. Postharvest Biol. Tec. 
47:61-67. 

Marschner P., Z. Solaiman, and Z. Ryngel. 2007. Brassica genotypes digger in growth, 
phosphorus uptake and rhizosphere properties under P-limiting conditions. Soil Biol. 
Biochem. 39:87-98.  

McCartney, D., J. Frazer, and A. Ohama. 2009. Potential of warm-season annual forages and 
Brassica crops for grazing: A Canadian review. Can. J. Anim. Sci. 89:431-440. 

Meisinger, J., W. Hargrove, R. Mikkelson, J. Williams, and V. Benson. 1991. Effects of cover 
crops on groundwater quality. p. 57-63. In W.L. Hargrove (ed.) Cover crops for clean 
water. Soil and Water Conservation Soc., Ankeny, IA. 

Mutegi, J., B. Petersen, L. Munkholm, and E. Hansen. 2011. Belowground carbon input and 
translocation potential of fodder radish cover-crop. Plant Soil. 344:159-175.  

Mutegi, J., M. Petersen, and L. Munkholm. 2013. Carbon turnover and sequestration potential of 
fodder radish cover crop. Soil Use and Management. 29:191-198. 

Najda, H. 1991. Forage brassicas. Alberta agriculture, food and rural development. Agri-Facts 
Agdex 128/20-1. Available at 
http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/agdex135. (Verified 7 April 
2017). 2 p. 

NDSU. 2003. Carrington Research Extension Center 2003 Variety trial data. Available at 
http://www.ag.ndsu.edu/varietytrials/carrington-
rec/2003Trial%20Results/2003bf03res.pdf/view. (Verified 8 April 2017). 

Neilsen J., B. Rowe, and P. Lane. 2000. Water use efficiency of four irrigated brassica forage 
crops. In Proc. of the Irrigation Association of Australia Conference. (ed.) G. Connellan. 
p. 136-139. 

Neilsen, J., B. Rowe, and P. Lane. 2008. Vegetative growth and development of irrigated forage 
turnip (Brassica rapa var. rapa). Grass Forage Sci. 63:438-446.  



 

 

64 
 

Nelson, D., and L. Sommers. 1996. Total Carbon, Organic Carbon, and Organic Matter. In: D. 
Sparks (ed). Methods of Soil Analysis. Part 3-chemical methods. SSSA and ASA, 
Madison, WI. p. 961-1010.   

Neville, B., A. Fraase, D. Whitted, P. Nyren, G. Lardy, and K. Sedivec. 2010. Grazing Annual 
Forages: Impacts on Animal Performance, Forage Production, Soil Health, and 
Economics. In Grass and Beef Research Review, Central Grasslands Research Extension 
Center, North Dakota State University. 8 p. 

Neville, B., D. Whitted, P. Nyren, G. Lardy, and K. Sedivec. 2007. Evaluation of annual forages 
as alternatives to native range as fall-winter forage in south-central North Dakota. Beef 
Cattle and Range Research Report. p. 6-9. 

Newman, Y., D. Wright, C. Mackowiak, J. Scholberg, C. Cherr, and C. Chambliss. 2007. Cover 
Crops. Univ. of Florida Ext, Available at http://edis.ifas.ufl.edu/aa217. (Accessed 14 
February 2017). 4 p. 

Ngouajio, M., and D. Mutch. 2004. Oilseed radish: a new cover crop for Michigan. Michigan 
State Univ. Ext. Bull. E2907. Available at 
http://www.covercrops.msu.edu/pdf_files/extension_bulletin_E2907.pdf. (Accessed 15 
January 2017). 

Nichol, W. 2007. Nutritional disorders of ruminants caused by consumption of pasture and 
fodder crops. In: Rattray PV, Brookes IM, Nicol AM eds. Pasture and supplements for 
grazing animals. 14th ed. Hamilton, New Zealand, Society of Animal Production. p. 133-
149. 

Nichol, W., A. Westwood, A. Dumbleton, and J. Amyes. 2003. Brassica wintering for dairy 
cows: overcoming the challenges. Proc. of the South Island Dairy Event (SIDE), 
Canterbury, New Zealand. p 154-172. 

NRCS. 2011. Cover Crop: Planting Specification Guide. Available at 
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1081555.pdf. (Accessed 
15 Feb 2017). 8 p. 

NRCS. 2013. Cover Crops to Improve Soil in Prevented Planting Fields. Available at: 
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1142714.pdf. (Accessed 
20 Jan 2017). 3p. 

O'Reilly, K., J. Lauzon, R. Vyn, and L. Van Eerd. 2012. Nitrogen cycling, profit margins and 
sweet corn yield under fall cover crop systems. Can. J. Soil Sci. 92:353-365. 

Pelletier, G., E. Donefer, and J. Darisse. 1976. Effects of dates and levels of N fertilization on 
yields, chemical an in vitro digestibility of forage kale. Can. J. Plant Sci. 56:63-70. 

Penrose, C., H. Bartholomew, R. Sulc, S. Schumacher, and R. Duff. 1996. Performance of 
brassica cultivars from New Zealand and United States seed sources in Southeast Ohio, 
USA. Proc. of the New Zealand Grassland Assoc. 57:111-113.  

Piri, I., A. Rahimi, A. Tavassoli, F. Rastegaripour, and M. Babaeian. 2012. Effect of sulphur 
fertilizer on sulphur uptake and forage yield of Brassica juncea in condition of different 
regimes of irrigation. Afr. J. Agric. Res. 7(6):958-963. 



 

 

65 
 

Prichard, T. 1998. Water use and infiltration. p. 86-90. In (ed.) C. Ingels, et al.) Cover Cropping 
in Vineyards: A Grower’s Handbook. University of California, Agricultural and Natural 
Resources Communication Services. Oakland, CA.  

Rao, S., and F. Horn. 1986. Planting season and harvest date effects on dry matter production 
and nutritional value of brassica spp. in the Southern Great Plains. Agron. J. 78:327-333. 

Reeves, D. 1997. The role of soil organic matter in maintaining soil quality in continuous 
cropping systems. Soil Till. Res. 43:131-167. 

Reid, R., J. Pouli, G. Jung, J. Cox-Ganser, and A. McCoy. 1994. Evaluation of brassicas in 
grazing for sheep: I. Quality of forage and animal performance. J. Anim. Sci. 72:1823-
1831. 

Riddle, M., and L. Bergström. 2013. Phosphorus leaching from two soils with catch crops 
exposed to freeze-thaw cycles. Agron. J. 105:803-811. 

Robertson, G., and P. Vitousek. 2009. Nitrogen in agriculture: Balancing the cost of an essential 
resource. Annu. Rev. Environ. Resour. 34:97-125.  

Rook, J. 1998. Cool Season Forages-Are We Missing an Opportunity to Reduce Costs? MSU 
Ext. & Ag. Exp. Station, East Lansing, MI.  

Rosa, E., R. Heaney, and G. Fenwick. 1997. Glucosinolates in crop plants. Hort. Rev. 19:99-215. 

Rowe, B and J. Neilsen. 2010. Effects of irrigating forage turnips, Brassica rapa var. rapa, 
during different periods of vegetative growth. 1. Turnip yields, yield components and 
growth rates. Crop Pasture Sci. 61:885-891. 

Rugoho, I., S. Gibbs, and G. Edwards. 2014. Dry matter intake and body condition score gain of 
dairy cows offered kale and grass. New Zeal. J. Agr. Res. 57(2):110-121. 

Rugoho, I., S. Gibbs, R. Bryant, and G. Edwards. 2010. Intake and feeding behavior of dairy 
cows grazing kale and grass at low and high allowances during winter. p. 317-320. In: 
G.R. Edwards and R.H.Bryant (eds). Meeting the challenges for pasture-based dayring. 
Proc. of the 4th Australasian Dairy Sciences Symposium, Lincoln University, New 
Zealand.  

Sainju, U., and B. Singh. 1997. Winter cover crops for sustainable agriculture systems: Influence 
on soil properties, water quality, and crop yields. Hortic. Sci. 2:21-28. 

Sainju, U., B. Singh, and S. Yaffa. 2002. Soil organic matter and tomato yield following tillage, 
cover cropping, and nitrogen fertilization. Agron. J. 94:594-602. 

Salmon, R.W., and A.J. Dumbleton. 2006. The effect of seed treatment and depth of sowing on 
forage brassica crop establishment in no-tillage situations. Proc. of the New Zealand 
Grassland Assoc. 68:211-214.  

Samarappuli, D., B. Johnson, H. Kandel, M. Berti. 2014. Biomass yield and nitrogen content of 
annual energy/forage crops preceded by cover crops. Field Crops Res. 167:31-39. 

Samson, F., F. Knopf, and W. Ostlie. 2004. Great Plains Ecosystems: Past, Present, and Future. 
USGS Staff -- Published Research. Paper 45. Available at: 
http://digitalcommons.unl.edu/usgsstaffpub/45. (Accessed 2 Mar 2017). 



 

 

66 
 

Sarrantonio, M. 2007. Building Soil Fertility and Tilth with Cover Crops. p. 16-24. In: A. Clark, 
ed., Managing cover crops profitably. 3rd ed. Sustainable Agric. Res. and Education, 
College Park, MD.  

Sarrantonio, M., and E. Gallandt. 2003. The role of cover crops in North American cropping 
systems. J. Crop Prod. 8:53-74. 

Sarrantonio, M., and T. Scott, 1988. Tillage effects on availability of nitrogen to corn following a 
winter green manure crop. Soil Sci. Soc. Am. J. 52:1661-1668. 

Sarwar, M., J. Kirkegaard, P. Wong, and J. Desmarchelier. 1998. Biofumigation potential of 
brassicas III. In vitro toxicity of isothiocyanates to soil-borne fungal pathogens. Plant 
Soil. 201:103-112. 

Schroeder, J. 2008. Canola possible forage crop for livestock. Available at 
https://www.ag.ndsu.edu/news/newsreleases/2008/aug-21-2008/canola-possible-forge-
crop-for-livestock/view. (Accessed 5 April 2016). 

Schumacher, B. 2002. Methods for the Determination of total organic carbon (TOC) in soils and 
sediments. Ecological Risk Assessment Support Center. Office of Research and 
Development-USEPA. 25 p. 

Sedivec, K., A. Fraase, B. Neville, D. Whitted, P. Nyren, and G. Lardy. 2013. Utilizing Annual 
Forages in a Single and Dual Cropping System for Late-Fall and Early Winter 
Grazing:  Impacts on Forage Production, Cow Performance, Soil Health, and 
Economics.  NS Beef Conference Symposium.  Brookings, SD, Jan. 17-18, 2013 

Shahbaz, A., Y. Oki, T. Adachi, Y. Murata, and M. Khan. 2006. Phosphorus starvation induced 
root-mediated pH changes in solubilization and acquisition of sparingly soluble P sources 
and organic acids exudation by Brassica cultivars. Soil Sci. Plant Nutr., 52:623-633. 

Six, J., S. Ogle, F. Breidt, R. Conant, A. Mosier, and K. Paustian. 2004. The potential to mitigate 
global warming with no-tillage management is only realized when practiced in the long 
term. Glob. Change Biol. 10:155-160. 

Smart, A., P. Jeranyama, and V. Owens. 2004. The use of turnip for extending the grazing 
season. Cooperative Extension Service, SDSU. Available at 
http://pubstorage.sdstate.edu/agbio_publications/articles/exex2043.pdf. (Accessed 15 
January 2017). 2 p. 

Smith, D., and M. Collins. 2003. Forbs. p. 215-230. In Barnes, R.F., C.J. Nelson, M. Collins, and 
K.J. Moore (ed). Forages: An introduction to grassland agriculture (6th ed.). Iowa State 
Press, Ames, IA. 

Snapp, S., S. Swinton, R. Labarta, D. Mutch, J. Black, R. Leep, J. Nyiraneza, and K. O’Neil. 
2005. Evaluating cover crops for benefits, costs and performance within cropping system 
niches. Agron J. 97:322-332. 

Sprague, S., J. Kirkegaard, J. Graham, H. Dove, and W. Kelman. 2014. Crop and livestock 
production for dual-purpose winter canola (Brassica napus) in the high-rainfall zone of 
south-eastern Australia. Field Crops Res. 156:30-39. 

SSSA. 2008. Glossary of soil science term: Soil Science Soc. SSSA, Madison, Wisconsin. 88 p. 



 

 

67 
 

Stavi, I., R. Lal, S. Jones, and R. Reeder. 2012. Implications of Cover Crops for Soil Quality and 
Geodiversity in a Humid-Temperate Region in the Midwestern USA. Land Degrad. 
Develop. 23:322-330. 

Steddom, K., K. Ong, and J. Starr. 2008. Efficacy of various brassica varieties for the 
suppression of root knot, ring, and stunt nematodes. Phytopathology 98: S150. Available 
online at http://dx.doi.org/10.1094/PHYTO.2008.98.6.S9. (Accessed 20 June 2016). 

Stefanski, E., S. Garcia, S. Farina, D. Tan, and D. Tanner. 2010. Effects of sowing rate and 
grazing management of forage rape (Brassica napus) on grazing behavior and utilization 
by dairy cattle. Anim. Prod. Sci. 50:560-567. 

Stevens, D., and A. Carruthers. 2008. Can nitrogen fertilizer applied before sowing increase 
brassica yields in a dry environment? Proc. of the New Zealand Grassland Assoc.70:31-
36. 

Stewart, A. 2002. A review of brassica species, cross pollination and its implications for pure 
seed production in New Zealand. Agronomy NZ J. 32:63-82. 

Strock, J., P. Porter, and M. Russelle. 2004. Cover cropping to reduce nitrate loss through 
subsurface drainage in the Northern US Corn Belt. J. Environ. Qual. 33:1010-1016.  

Stute, J., and J. Posner. 1993. Legume cover corp options for grain rotations in 
Wisconsin. Agron. J. 85:1128-1132. 

Sun, X., G. Henderson, F. Cox, G. Molano, S. Harrison, D. Luo, P. Janssen, and D. Pacheco. 
2015. Lambs fed fresh winter forage rape (Brassica napus L.) emit less methane than 
those fed perennial ryegrass (Lolium perenne L.), and possible mechanisms behind the 
difference. Available at 
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0119697. (Accessed 15 
January 2017). 

Teuber, O., P. Almonacid, M. Monsalve, and E. Monsalve. 2009. Production and nutritional 
quality of five brassicas forages species (Brassica spp.) in the Intermediate Zone of 
Aysen, Patagonia (Chile). Document presented at XXXIV Congreso Anual de la 
Sociedad Chilena de Producción Animal. Pucón (Chile). 

Theunissen, J. and A. Sins. 1984. Growth stages of brassica crops for crop protection purposes. 
Sci. Hort. 24:1-11.  

Thomsen, I., and E. Hansen. 2014. Cover crop growth and impact on N leaching as affected by 
pre-and postharvest sowing and time of incorporation. Soil Use Manage. 30(1):48-57. 

Thorup-Kristensen, K., 1994. The effect of nitrogen catch crop species on the nitrogen nutrition 
of succeeding crops. Nutr. Cycling Agroecosyst. 37:227-234. 

Thorup-Kristensen, K., 2001.  Are differences in root growth of nitrogen catch crops important 
for their ability to reduce soil nitrate-N content, and how can this be measured? Plant 
Soil. 230:185-195. 

Thorup-Kristensen, K., J. Magid, and L. Jensen. 2003. Catch crop and green manures as 
biological tools in nitrogen management in temperate zones. Adv. Agron. 79:227-302.  



 

 

68 
 

Tiryakioglu, H., and M. Turk. 2012. Effects of different sowing and harvesting times on yield 
and quality of forage turnip (Brassica rapa L.) grown as a second crop. Turk. J. Field 
Crops. 17(2):166-170.  

Tonitto, C., M. David, and L. Drinkwater. 2006. Replacing bare fallows with cover crops in 
fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. 
Agric. Ecosyst. Environ. 112:58-72. 

Trinsoutrot, I., S. Recous, B. Bentz, M. Lineres, D. Cheneby, and B. Nicolardot. 2000. 
Biochemical quality of crop residues and carbon and nitrogen mineralization kinetics 
under nonlimiting nitrogen conditions. Soil Sci. Soc. Am. J. 64:918-926. 

Undersander, D. 2013. Alternate forage crops. Planting dates, yield and quality potential. 
University of Wisconsin-Agronomy Department. Available at 
http://www.uwex.edu/ces/forage/pubs/altcrp.pdf. (Accessed 25 March 2017). 2p. 

Unger, P., and M. Vigil. 1998. Cover Crop Effects on Soil Water Relationships. J. Soil Water 
Conserv. 53(3):200-207.  

USDA-NASS, National Agriculture Statistics Service. 2012. State Summary Highlights 2012. 
Census of Agriculture. Available at: 
http://agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_2_US_Stat
e_Level/st99_2_001_001.pdf. Accessed 3 Mar 2017.  

USDA-NRCS, 2012. Soil Organic Matter. Available at 
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053264.pdf. 
(Accessed 8 January 2017). 7 p. 

USDA-NRCS, National Resources Conservation Service, North Dakota. 2015. National 
Resources Inventory. 2012 NRI Summary Report. Available at: 
http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcseprd396218.pdf. (Accessed 
2 Mar 2017). 210 p.  

Vancampenhout, K., K. Wouters, B. De Vos, P. Buurman, R. Swennen, and J. Deckers. 2009. 
Differences in Chemical Composition of Soil Organic Matter in Natural Ecosystems from 
Different Climatic Regions. Soil Biol. Biochem. 41:568-579.  

Villalobos, L. and J. Brummer. 2013. Evaluation of Brassicas for Fall Forage. In: Proc. Western 
States Alfalfa and Forage Symposium, Reno, NV, 11-13 December, 2013. UC 
Cooperative Ext., Plant Sciences Dep., Univ. of California, Davis, CA. Available at 
http://alfalfa.ucdavis.edu/+symposium/proceedings/2013/13WAS-
23_Villalobos_Brassicas.pdf. (Accessed 6 January 2017). 9 p. 

Vipond, J., A. Duncan, D. Turner, L. Goddyn, and W. Horgan. 1998. Effects of feeding ensiled 
kale (Brassica oleracea) on the performance of finishing lambs. Grass Forage Sci. 
53:346-352. 

Vos, J., and N. Sumarni. 1997. Integrated crop management of hot pepper (Capsicum spp.) under 
tropical lowland conditions: effects of mulch on crop performance and production. J. 
Hort. Sci. 72:415-424. 



 

 

69 
 

Vos, J., and P. van der Putten. 1997. Field observations on nitrogen catch crops. I Potential and 
actual growth and nitrogen accumulation in relation to sowing date and crop species. 
Plant Soil. 195:299-309.  

Vos, J., and P. van der Putten. 2004. Nutrient cycling in a cropping system with potato, spring 
wheat, sugarbeet, oats, and nitrogen catch crops. II. Effect of catch crops on nitrate 
leaching in autumn and winter. Nutr. Cycl. Agroecosys. 70:23-31. 

Vyn, T., K. Janovicek, M. Miller, and E. Beauchamp. 1999. Soil nitrate accumulation and corn 
response to preceding small-grain fertilization and cover crops. Agron. J. 91:17-24. 

Wadleigh, R., and S. Yu. 1988. Detoxification of isothiocyanate allelochemicals by glutathione 
transferase in three lepidopterous species. J. Chem. Ecol. 14:1279-1288. 

Wang, G., M. Ngouajio, and D. Warncke. 2008. Nutrient cycling, weed suppression, and onion 
yield following brassica and sorghum sudangrass cover crops. Hort. Technol. 18:68-74. 

Wang, G., M. Ngouajio, and K. Charles. 2010. Brassica biofumigants improve onion (Allium 

cepa L.) and celery (Apium graveolens) production systems. J. Sustain. Agric. 34(1):2-14 

Ward, G and J. Jacobs. 2013. Effects of defoliation intensity at the first grazing of forage rape 
(Brassica napus L.) by dairy cattle on subsequent regrowth potential, total DM 
consumed, nutritive characteristics and nutrient selection. Anim. Prod. Sci. 53:226-233. 

Weil, R., and A. Kremen. 2007. Thinking across and beyond disciplines to make cover crops 
pay. J. Sci. Food Agric. 87:551-557. 

Weil, R., C. White, and Y. Lawley. 2009. Forage radish: New multi-purpose cover crop for the 
mid-Atlantic. Fact sheet 824. Maryland Cooperative Ext., Univ. of Maryland, College 
Park, MD. Available at http://www.hgic.umd.edu/content/documents/FS824Forage 
Radish_NewMultipurposecovercrop.pdf. (Accessed 28 June 2016). 

Weinert, T., W. Pan, M. Moneymaker, G. Santo, and R. Stevens. 2002. Nitrogen recycling by 
non-leguminous winter cover crops to reduce leaching in potato rotations. Agron. J. 
94:365-372. 

Westwood, C., and H. Mulcock. 2012. Nutritional evaluation of five species of forage brassica. 
Proc. of the New Zealand Grassland Association. 74:31-38. 

White, J., C. Matthew, and P. Kemp. 1999. Supplementary feeding systems. p. 175-198. In: New 
Zealand pasture and crop science. Eds White, J. and Hogson, J. Oxford University Press, 
Auckland (New Zealand). 

White, C., and R. Weil. 2010. Forage radish and cereal rye cover crop effects on mycorrhizal 
fungus colonization of maize root. Plant Soil. 328:507-521.  

White, C., and R. Weil. 2011. Forage radish cover crops increase soil test P surrounding holes 
created by the radish taproots. Soil Sci. Soc. Am. J. 75:121-130.  

Widdowson, F., V. Penny, and G. Cooke. 1960. Value of calcium nitrate and urea for main crop 
potato and kale. J. Agric. Sci. 55:1-10. 

Wiedenhoef, M., and B. Barton. 1994. Management and environment effects on Brassica forage 
quality. Agron J. 86:227-232. 



 

 

70 
 

Williams, S., and R. Weil. 2004. Crop cover root channels may alleviate soil compaction effects 
on soybean crop. Soil Sci. Soc. Am. J. 68:1403-1409. 

Willoughby, G., and E. Kladivko. 2002. Water infiltration rates following reintroduction of 
Lumbricus terrestris into no-till fields. J. Soil Water Conserv. 57:82-88. 

Wilson, D., J. Reid, R. Zyskowski, S. Maley, A. Pearson, S. Armstrong, W. Catto, and A. 
Stafford. 2006. Forecasting fertilizer requirements of forage brassica crops. Proc. of the 
New Zealand Grassland Assoc. 68:205-210. 

Wright, S., J. Starr, and I. Paltineanu. 1999. Changes in aggregate stability and concentration of 
glomalin during tillage management transition. Soil Sci. Soc. Am. J. 63:1825-1829. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

71 
 

CHAPTER 3. AGRONOMIC STUDIES OF FULL-SEASON FORAGE BRASSICAS 

3.1. Abstract 

Forage brassicas have been included in livestock systems due to the high biomass yield 

production during a strategic time of the season, high quality feed for livestock requirements, 

their strategic use in crop rotations, and their relatively low cost of management and production. 

The objective of this study included: 1) to determine the most adapted and highest forage 

yielding full-season forage brassicas in North Dakota and 2) to determine the effect of sowing 

date, plant density, and N and S fertilization on forage yield and quality. Experiments were 

established at four locations Fargo, Prosper, Carrington, and Walcott, ND in 2012-2014. 

Experiment 1 included the evaluation of six forage brassica species and several cultivars of each 

species for a total of 20 species/cultivar.  Experiment 2 included four species and three different 

sowing dates.  Experiment 3 included three species and five plant densities.  Experiment 4 

included two crops, five N rates, and two S rates.  In all experiments, leaf, root/stem, and total 

yield, and forage quality were recorded. Results indicated kale [Brassica oleraceae L. convar. 

acephala (DC)] and swede (B. napus L. var. napobrassica) were the highest forage yielding 

forage brassicas.  Delaying sowing date reduced total forage yield in all species but did not 

influence forage quality.  Plant density did not have an effect on forage yield or N accumulation 

averaged across environments and species.  However, a significant interaction was observed in 

swede.  The lowest plant density (33 plants m-2) had higher root/stem yield while the highest 

plant density (200 plants m-2) across all species had lower in vitro dry matter digestibility.  Kale 

and swede leaf, root/stem, and dead matter yield increased up to 200 kg N ha-1 in a linear 

response indicating that these species could actually have a response to greater N rates.  Sulfur 

and the interaction between N and S did not have an effect in forage yield and quality.  
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3.2. Introduction 

 The most common forages in grasslands and rangelands are grasses (Poaceae family) and 

legumes (Fabaceae family), but some other forbs or herbaceous broadleaf plants can also be 

used as forages (Barnes and Nelson, 2003).  The Brassicaceae family has more than 3,000 

species, but only some of them such as turnip [Brassica rapa L. var. rapa (L.) Thell], kale, 

swede, forage rape (B. napus L.) and brassica hybrids (B. rapa L. x B. pekinensis L.) have been 

grown for forage or pasture (Mitchell and Nelson, 2003; Smith and Collins, 2003).  Forage 

brassicas have been cultivated for several centuries (Nadja, 1991; Smith and Collins, 2003).  The 

past few decades forage brassicas have gained more importance in livestock-producing areas in 

New Zealand, Australia, North America (Jung et al., 1986; Jacobs et al., 2001; Nichol et al., 

2003; Wilson et al., 2006, Neilsen et al., 2008; Keogh et al., 2011), Europe (Neilsen et al., 2008), 

and northern Asia (Bilgili et al., 2003).  

Forage brassicas have been included in livestock systems due to the high biomass yield 

production during strategic times of the season, high quality feed for livestock requirements, 

strategic use in crop rotations, and relatively low cost of management and production (Rao and 

Horn, 1986; Ayres and Clements, 2002; Fulkerson, 2008; Neilsen et al, 2008; de Ruiter et al., 

2009; Lemus, 2009; Rowe and Neilsen, 2010).  They can resist lower temperature than most 

grasses and legumes (Jung et al., 1983; Jung et al., 1986; Smith and Collins, 2003, Keogh et al., 

2011), and higher temperatures at the same time (Smith and Collins, 2003). 

The maximum biomass yield production of forage brassicas is correlated with 

species/cultivar, management and environmental conditions (Ayres and Clements, 2002).  In 

humid climates such as in New Zealand, kales are the most productive (Wilson et al., 2006; 

Brown et al. 2007; Fletcher et al., 2007, Fletcher et al., 2010a), followed by swedes (Gowers et 
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al., 2006; de Ruiter et al., 2009).  In North America, lower biomass yield for kale and swede has 

been reported (Jung et al., 1986; Kunelius et al., 1989).  Forage rape is third after kales and 

swedes in biomass production (Jung et al., 1986; NDSU, 2003; Fletcher and Chakwizira, 2012; 

Judson et al., 2013), and turnips are normally less productive than latter (Kalmbacher et al, 1982; 

Jung et al., 1983; Jung et al., 1986; Rao and Horn, 1986; Penrose et al., 1996, NDSU, 2003).  

Hybrids are more variable in yield, producing more biomass when are hybrids from kale (Ward 

and Jacobs, 2013), than when are hybrids from turnip or forage rape (Griffin et al., 1984; Penrose 

et al., 1996). 

Forage brassicas have higher nutritive value than almost any other forage (Smith and 

Collins, 2003).  Crude protein content is very high, usually between 130 to 280 g kg-1 (Smith and 

Collins 2003; Teuber et al., 2009; Westwood and Mulcock, 2012; Villalobos and Brummer, 

2013; Ward and Jacobs, 2013), with higher concentration in leaves than stems or roots (Rao and 

Horn, 1986; Smith and Collins 2003; Nichol et al., 2003; Kaur et al., 2011; Villalobos and 

Brummer, 2013).  They are very low in fiber (Villalobos and Brummer, 2013), and are easily 

digested (Jung et al., 1986; Kunelius et al., 1989; Smith and Collins, 2003; Teuber et al., 2009; 

Francisco et al., 2011; Lemus and White, 2014).  Leaves are more digestible than stems and roots 

(Rao and Horn, 1986; Rugoho et al., 2014).  Metabolizable energy is high as well (Garcia et al., 

2008; Frischke, 2011; Keogh et al., 2011, Westwood and Mulcock, 2012; Ward and Jacobs, 

2013), with marked differences between leaves, stems, and roots (Teuber et al., 2009; Thompson 

and Stevens, 2012; Judson et al., 2013; Rugoho et al., 2014). 

The sowing rate and crop density affect the crop performance and plant architecture 

(Stefanski et al., 2010).  Soil temperature >10°C increases germination and emergence rate 

(Fulkerson, 2008).  Shallow sowing depth (10 and 20 mm) improve emergence as well (Ayres 
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and Clements, 2002; Smith and Collins, 2003; Salmon and Dumbleton, 2006; de Ruiter et al., 

2009; Lemus and White, 2014).   

The sowing date for forage brassicas grazed in summer should be in early spring (Aymes 

and Clemets, 2002).  Species like kale or swede require longer growing season to achieve the 

maximum biomass yield (Jung et al., 1983; Wiedenhoef and Barton, 1994; Lemus, 2009; 

Benedict et al., 2013; Lemus and White, 2014).  Delaying planting date from May to June or July 

greatly reduces forage yield (Dibb and Brown, 1964; Fulkerson and Tosell, 1972; Kunelius et al., 

1987).  Rape, radish, turnips, and hybrids need less days to complete their growing cycle (Jung et 

al., 1983; Wiedenhoef and Barton, 1994; Smith and Collins, 2003; Albayrak et al., 2004; Lemus, 

2009; Frischke, 2011; Jacobs and Ward, 2011; Judson et al., 2013; Lemus and White, 2014), and 

are less or not affected by some delay in the planting (Kunelius et al., 1987).  

High plant density reduces root sizes in turnip and swede (Smith and Collins, 2003; 

Albayrak et al., 2004), and stem diameter of forage rape (Cho et al., 1998).  High density 

increases losses by trampling, and affects plant regrowth (Stefanski et al., 2010).  Forage 

brassicas have different nutrient requirements, according with the soil fertility and the expected 

yield response (Wilson et al., 2006; de Ruiter et al., 2009).  The most important nutrients are N, 

P, S, K, Mo, and B (Aymes and Clemets, 2002; de Ruiter et al., 2009).  Nitrogen is the most 

important and required in larger quantities to high protein content in the tissues (Smith and 

Collins, 2003).  The excess of N can concentrate anti-nutritional compounds (NO3-N) in the 

plants, and produce water and air pollution (Chakwizira et al., 2015).  Sulfur and N both are 

needed for protein synthesis (Grant and Bailey, 1993; Piri et al., 2012).  A ratio of 7:1 N/S in the 

soil is optimum for brassica growth (Janzen and Bettany, 1984; Chen et al., 2007). 
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The specific objectives of this research were: 1) To identify brassicas species and 

cultivars with high biomass production and forage quality in North Dakota; 2) to determine the 

optimum sowing date of forage brassicas; 3) to determine the optimum sowing rate/plant density 

of different forage brassicas, and 4) to determine the forage brassicas response to different N and 

S fertilization rates.  

3.3. Materials and methods 

3.3.1. Experimental sites 

 Field experiments were conducted from 2012 to 2014 at three North Dakota State 

University (NDSU) research sites and one grassland preserve site.  Sites were at Prosper 

(46°58´N, -97°3´W, elevation 284 m), Carrington (47°30´N, -99°8´W, elevation 475 m), Fargo 

(46°52´N, -96°47´W, elevation 274 m) and the Albert Ekre Grassland Preserve in Walcott 

(46°33´N, -97°07´W, elevation 296 m) ND, respectively.  The soil type at Prosper is a Kindred-

Bearden silty clay loam (Kindred: fine-silty, mixed, superactive, frigid Typic Endoaquoll; 

Bearden: fine-silty, mixed, superactive, frigid Aeric Calciaquoll; Perella: fine-silty, mixed, 

superactive, frigid Typic Endoaquoll).  The soil type at Carrington is Heimdahl loam (coarse-

loamy, mixed, superactive, frigid Calcic, Hapludolls).  The soil type at Fargo is; Fargo silty clay 

soil (fine, smectitic, frigid Typic Epiaquert).  The soil type at Albert Ekre Grassland Preserve is 

Mantador-Delamere-Wyndmere fine sandy-loam (Mantador: coarse-loamy, mixed, superactive, 

frigid Aquic Pachic Hapludoll; Delamere: coarse-loamy, mixed, superactive, frigid Typic 

Endoaquoll; Wyndmere: coarse-loamy, mixed, superactive, frigid Aeric Calciaquoll) (Web Soil 

Survey, 2013). 
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3.3.2. Experimental design and management 

The experiments were: 1) species/cultivar experiments; 2) sowing date experiments; 3) 

sowing rate/density experiments, and 4) fertility experiments.  The species/cultivar experiments 

were conducted at Fargo in 2012 and 2014, and Carrington in 2012 and 2013, evaluating six 

different species and several cultivars of each (Table 3.1).  Some variations in the total 

species/cultivars occurred depending with the year of evaluation.  The experiments were 

designed as a randomized complete block design (RCBD), with three replicates.  

The sowing date studies were conducted at Fargo and Prosper in 2012 and 2014.  The 

experimental design was a RCBD with three replicates, and a split-plot arrangement.  The 

sowing date (three dates in 2012 and two dates in 2014) (Table 3.2) were the main plots.  The 

sub-plots were the four forage brassica, turnip cv. Purple Top, kale cv. Maris Kestrel, swede cv. 

Major Plus, and winter canola cv. Riley. 

The sowing rate/plant density studies were conducted at Fargo and Prosper in 2012 and 

2014.  The experimental design was a RCBD with three replicates, and a split-plot arrangement.  

Five plant densities were assigned to the main plot.  The plant densities were targeted at 33, 44, 

66, 133, and >200 plants m-2.  However, the final plant density determined at harvest time was 

different than the targeted density.  The forage brassica kale cv. Maris Kestrel, swede cv. Major 

Plus, and forage rape cv. Dwarf Essex were assigned to the sub-plot.   

The fertility studies were conducted at Prosper in 2012 and 2014, and Walcott in 2014. 

The experimental design was a RCBD with three replicates, and a split-plot arrangement.  The 

forage crops kale cv. Maris Kestrel, swede cv. Major Plus were assigned to the main plot.  The 

sub-plots were a factorial arrangement of five N rates (0, 50, 100, 150, and 200 kg N ha-1) and 

two rates of S (0 and 40 kg S ha-1). 
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Table 3.1. Species/cultivars, 1000 seeds weight and sowing rate of forage brassicas planted at 

Carrington, Fargo, Prosper, and Walcott, ND, in 2012, 2013, and 2014. 

  1000 seeds 
weight 

Sowing rate† 

Species/Cultivar Company 2012 2013 2014 

  g kg ha-1 

Kale      

   Siberian Agassiz Seeds 4.3 4.5 4.5 4.5 

   Maris Kestrel Ampac 3.9 4.7 4.9 7.3 

   Dwarf Blue Bates Agassiz Seeds 3.1 4.8 4.9 4.7 

   Sovereign PGG 4.1  5.1 5.0 

Swede      

   Major Plus Ampac 2.7 1.7 1.8 1.7 

   American Purple Top Deer Creek Seed 3.1 1.7 1.8 1.8 

   Dominion PGG 2.8 - 1.9 1.9 

Turnip      

   Purple Top Millborn Seeds 2.4 - 2.4 2.3 

   Rack Ampac 2.8 - 2.3 2.3 

   Pointer Ampac 2.6 - 2.3 2.4 

Hybrid‡      

  Winfred Millborn Seeds 4.7 5.6 5.8 6.2 

   Pacer Ampac 3.0 5.7 5.6 5.6 

Forage rape      

   Rangi Ampac 4.1 5.6 5.8 5.6 

   Barsica Barenbrug 4.1 5.6 5.7 5.7 

   Dwarf Essex Millborn Seeds 4.7 5.7 5.9 5.7 

   Bonar Agassiz Seeds 4.7 5.7 5.6 5.7 

Winter canola      

   Riley Kansas State Univ. 3.7 7.4 9.3 7.6 

   Griffin Kansas State Univ. 3.9 6.2 6.1 6.2 

   Athena Millborn Seeds 4.9 5.6 5.7 5.7 

   Summer Millborn Seeds 3.3 7.5 8.8 8.2 
† The sowing rates were corrected for % seed germination. Germination tests were conducted per 
every species/cultivars, every season. 
‡ Hybrid Winfred (Brassica rapa L. x B. oleracea L.), hybrid Pacer (B. rapa L. x B. napus L.) 
 
 

Traditional tillage was utilized to prepare the soil, based on one or two passes of a chisel 

plow in the fall to incorporate crop residues.  In spring, one or two passes of a harrow and one 

pass of a roller were used to prepare the seedbed.  All the forage brassica plots were seeded with 
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a plot-cone planter (Wintersteiger, Plotseed XL, Salt Lake City, UT), using a sowing rate 

according to the recommendation for each species.  Before planting, sowing rates were corrected 

by seed germination (Table 3.1).  The germination tests were conducted each year, using the 

seeds bought or received from the seed or commercial companies.  The same seed batches were 

used during the all years of experimentation.  The percentage of germination determined in each 

species/cultivar, in each year, were used to correct the sowing rate in the corresponding year.  

The differences in the percentage of germination per each species/cultivar, each year, explain the 

different sowing rates used (Table 3.1).  The sowing depth was approximately 8 to 15 mm. 

The plots in the plant density study were seeded with the normal sowing rate for each 

species and then thinned to 20-, 15-, 10-, and 5-cm apart in the row.  One plot in each replicate 

was left without thinning to obtain the higher density (> 200 plants m-2).  Each plot was 1.2 m 

wide and 6.1 m long (7.4 m2), with 8 rows spaced 15-cm apart.  Sowing and harvest dates of all 

experiments are indicated in Table 3.2.  

During the first month after planting, grass weeds were controlled by applying Select 

Max™ (clethodim: (E)-2-[1-[[(3-chloro-2-propenyl)oxy]imino]propy]5-[2-(ethylthio)propyl]-3-

hydroxy-2-cyclohexen-1-one) using 1.17 l ai ha-1.  Broadleaf weeds were controlled by hand-

weeding one or two times during the season, depending on the weed pressure and regrowth.  All 

the weed controls were conducted at rossete stage (between stage 2 and stage 3 (Harper and 

Berkenkamp (1975) and Theunissen and Sins (1984)) of brassica species and cultivars.  The 

main insect problem in all studies was the crucifer flea beetle (Phyllotreta cruciferae Goeze), 

from emergence to adult plants.  Asana XL (esfenvalerate: (S)-cyano(3-phenoxyphenyl)methyl 

(S)-4-chloro-alpha-(1-methylethyl)) was sprayed at the beginning of season 2012.  Due to the 

inefficacy of this insecticide, thereafter flea beatle control was with Sniper (bifenthrin: (2 
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methyl[1,1'-biphenyl]-3-yl) methyl 3-(2-chloro-3,3,3-trifluoro- 1-propenyl)-2,2-dimethyl-

cyclopropanecarboxylate) with 0.037 kg ai ha-1.  Flea beetle control required two applications 

per season in 2013 and 2014, and three applications in 2012.  Helix Xtra (difenoconazole: 1-[2-

[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole) 

was used as a seed treatment to prevent flea beetle damage during emergence using 1.5 L 100 kg 

seed-1, however, apparent benefits in the control were not observed.     

Table 3.2. Sowing and harvest dates and number of days from sowing to harvest for all forage 
brassica experiments at Fargo, Prosper, Carrington, and Walcott, ND, in 2012, 2013, and 2014. 

 2012 2014 

Loc./Trial Sowing Harvest No. days Sowing Harvest No. days 

Fargo       

   S/CE† 25 Apr 16 Oct 174 28 May 16 Oct 141 

   SR/DE‡ 25 Apr 11 Oct 169 29 May 24 Oct 148 

   FE§       

   SDE¶       

      Date 1 25 Apr 12 Oct 170 - - - 

      Date 2 9 May 12 Oct 156 27 May 24 Oct 150 

      Date 3 30 May 12 Oct 135 27 Jun. 24 Oct 119 

Prosper       

   SR/DE 2 May 25 Oct 176 23 May 22 Oct 152 

   FE 2 May 25 Oct 176 23 May 15 Oct 145 

   SDE       

      Date 1 2 May 25 Oct 176 - - - 

      Date 2 15 May 25 Oct 163   4 Jun 10 Oct 128 

      Date 3 30 May 25 Oct 148 24 Jun 10 Oct 108 

Walcott       

   FE    16 May 22 Aug 98 

Carrington     2013 

   S/CE 26 Apr 20 Oct 146 16 May 26 Oct 163 

S/CE†: Species/cultivars experiment; SR/DE‡: Sowing rate/density experiment; FE§: Fertility 
experiment, and SDE¶: Sowing date experiment. 
 

The fertilization for all experiments was based on soil test results and aimed to a total 

availability (soil + fertilizer) of 100, 80, 100, and 20 kg ha-1 of N, P2O5,-K2O, and-S, 

respectively.  The fertility experiment had five N rates (0, 50, 100, 150, and 200 kg N ha-1) and 
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two S rates (0 and 40 kg S ha-1).  Fertilizers for each plot were weighed, placed in plastic bags 

and mixed the day before of the fertilization.  The fertilization was surface applied two to three 

weeks after planting, in growth stage 2/3 for brassicas or the rosette stage.  The fertilizers used 

were: urea (CH4N2O), mono-ammonium phosphate-MAP (NH4H2PO4), potassium chloride-

potash (KCl: NaCl), and gypsum (CaSO4 x 2(H2O). 

Harvest for almost all experiments was conducted once in October, before the killing 

frost for forage brassicas.  The species and cultivar experiment in Fargo and Carrington in 2012 

was the only one harvested two times in the same season (July and October). 

3.3.3. Evaluations 

Soil samples were taken from 0- to 15-cm and 15- to 60-cm depths soon after planting.  

Soil samples from 0- to 15-cm were tested for pH, organic matter, SO4, P, and K using standard 

methodology by the NDSU Soil Testing Laboratory (Franzen, 2013).  The NO3-N analysis was 

performed from the soil samples taken at 0- to 15-cm and 15- to 60-cm depth, using the method 

of transnitration of salicylic acid (Cataldo et al., 1975).    

Before harvest, average plant height was measured by taking three heights in each plot, 

from the soil surface to the longest vegetative part of the plant (held vertically).  Harvest was 

conducted by hand using a 1 m2 square, to determine both above and below ground biomass.  A 

sample from the total forage biomass (leaf and/or root/stem) per each plot was taken to analyze 

forage quality.  The whole plant biomass harvested was divided into leaves and stems (kale, 

forage rape, winter canola, Ethiopian cabbage, and hybrids) and into leaves and roots (turnip, 

swede, and some hybrids).  Enlarged roots were removed from the soil pull them up or using a 

shovel, to harvest the maximum of enlarged root tissue.  Additionally, senescent and dry material 

on soil surface and under the canopy was measured and characterized as dead matter. Total 
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forage biomass yield (leaf + root/stems) plus dead matter represented total biomass yield.  Once 

separated, leaves of each sample were placed in burlap bags and then tagged.  Roots were 

washed and then chopped in a food processor (Sunbeam, Model Le Chef, Chicago, IL), leaving 

pieces of 5-mm thick or less.  Stems were cut longitudinally with a knife in four or more parts 

according with the thickness of the stem.  Stem and root pieces were placed in burlap bags or 

mesh plastic bags and then tagged.  All the samples bags were weighed to determine the wet 

weight and dried at around 43.3°C.  Samples remained in the driers several days until the weight 

loss was stabilized.  Samples were weighed to obtain the dry weight.  Dried samples were ground 

in a mill (Wiley Mill standard Model Nº3, Philadelphia, PA) to 1-mm mesh and then sent for 

forage quality analysis.  

Chemical analysis for 50 leaf, stem, and root samples were conducted at Animal Sciences 

Nutrition Laboratory at North Dakota State University.  The results were used to build 

calibration equations to determine nutritional values for near infrared reflectance spectroscopy 

(NIRS) analysis.  The components determined were crude protein (CP) (Kjeldahl method) 

(Speirs and Mitchell, 2013), acid detergent fiber (ADF), neutral detergent fiber (NDF), acid 

detergent lignin (ADL), 48-h neutral detergent fiber digestibility (NDFD), ash, and in vitro dry 

matter digestibility (IVDMD).  Total digestible nutrients (TDN) were then calculated from the 

above parameters according to Undersander (2004).  Then, all samples were analyzed in a near 

infrared reflectance spectroscopy (Foss-Sweden Model 6500, Minneapolis, MN), for the same 

forage quality components indicated  previously, in Dr. Undersander’s laboratory, University of 

Wisconsin, Madison, following the methods described by Abrams et al. (1987).  

The N accumulation (N total) in each species/treatment plot was determined from the CP 

content, obtained from NIRS results.  Nitrogen content was calculated with the equation: N = 
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CP/6.25.  Nitrogen accumulation was calculated arithmetically multiplying the above and below 

ground forage biomass yield in kg ha-1 by the N content.  Total N accumulation (kg N ha-1) of 

forage produced was calculated using the N concentration (g kg-1) in the tissue (leaf or 

root/stem), times the total biomass yield produced per ha.  

3.3.4. Statistical analysis 

The statistical analysis was conducted using standard procedures for a RCBD or a RCBD 

with factorial or split-plot arrangement depending on the experiment.  Each location/year 

combination was defined as an environment and was considered a random effect in the statistical 

analysis.  The different treatments such as species/cultivars, sowing rates, densities, and 

fertilization rates were considered fixed effects.  Analysis of variance and mean comparisons 

were conducted using the procedure Mixed of SAS (SAS, 2014).  Error mean squares were 

compared for homogeneity among environments according to the folded F-test and if 

homogeneous, then a combined ANOVA was performed across environments.  Treatment means 

separation was determined by F-protected LSD comparisons at the P≤0.05 probability level. 

Regression analysis was conducted in the fertility study to determine the response to N.  Leaf 

root/stem, and dead matter yield values were converted to a relative scale from 1-100%, to 

account for the yield variation in different locations and years.  Linear and quadratic regression 

models were constructed with both, relative and absolute values, and tested with the 

corresponding error.  The regression models were all at P ≤ 0.05 level of significance. 

3.4. Results and discussion 

3.4.1. Rainfall, temperature and soil test 

 The historical 25-year rainfall yearly average is 384, 467, 445, and 578 mm for 

Carrington, Fargo, Prosper, and Walcott, respectively (Fig. 3.1) (NDAWN, 2016).  The rainfall 
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was below the 25-years historical average, in almost all months during the growing season 

(April-October), in 2012 and 2014 in Carrington, Fargo, Prosper, and Walcott.  In 2013, rainfall 

was above the 25-years rainfall average in Fargo and Prosper, but not in Carrington.  The most 

critical rainfall deficiency was in Fargo and Prosper in 2012, with only 244 and 242 mm of 

rainfall during the growing season, compared with 467 and 445 mm of 25-years rainfall average. 

In general, the rainfall between sowing and emergence time was adequate, with the lowest 

amount of rainfall (43.4 and 46.2 mm) in May, in Fargo and Prosper in 2012.  Several authors 

indicate that adequate soil water content and warm soil temperature (>25ºC) result in early 

emergence and establishment (Jung et al., 1983, Rao and Horn, 1996; Keogh et al., 2011).  The 

most limiting water supply in the experiments was during vegetative growing stage.  In 

Carrington, in September 2012 and August 2013, and Fargo in September 2012, rainfall was 5.6, 

12.1, and 1.3 mm, respectively; the driest months observed during these experiments.  The most 

severe driest months could have limited growth of crops in some of the experiments at different 

locations.  Previous research has reported a major impact on growth and dry matter accumulation 

of forage brassicas when exposed to water deficit (Fletcher et al., 2010b). 

 The minimum and maximum temperature recorded during 2012, 2013, and 2014 were 

relatively similar to the 25-year average (Fig. 3.1).  The highest minimum and maximum 

temperatures were observed in July and August, and the lowest minimum and maximum between 

December and February.  The hottest summers were observed in 2012 in Carrington, Fargo, and 

Prosper, with about 3°C above average.  The 2013 and 2014 summers were similar to the 25-yr 

average temperature in all experimental sites except in Walcott.  These temperatures are 

adequate for plant growth of Brassica spp. (de Ruiter et al., 2009).  

 



 

 

84 
 

R
ai

n
fa

ll
 (

m
m

) 

 

A
ir

 t
em

p
er

at
u

re
 (

ºC
) 

 
 

 
 

 
 

 

 

Fig. 3.1. Monthly average minimum and maximum air temperatures and monthly total rainfall in 
2012, 2013, and 2014 compared with the 25-yr (1990-2014) average in Carrington (A), Fargo 
(B), Prosper (C), and Walcott (D).   
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 The average temperature of bare soil was between 12.7 and 21°C one week after sowing 

in the four research sites (data not presented).  This temperature range is considered optimal for 

fast germination and emergence (Smith and Collins, 2003), allowing plants to emerge in 10 days 

or less after sowing, similarly to what was reported by Jung et al. (1986). 

 Soil tests results are presented in Table 3.3.  The fertilization for all experiments was 

based on soil test results and aimed to a total availability (soil + fertilizer) of at least 100, 80, 

100, and 20 kg ha-1 of N, P2O5, K2O, and S, respectively, avoiding any nutrient limitation to the 

crops.  Nitrogen, P, K, S, are the most important macronutrients in forage brassicas (Ayres and 

Clements, 2002; de Ruiter et al., 2009).  The soil NO3-N was variable between years and among 

experimental sites and was between 31 and 202 kg ha-1 at the standard samplings depth of 0-60 

cm (Franzen, 2013).  Available N in the soil was supplemented by fertilizer application because 

brassica’s productivity and forage quality are highly dependent on available N (Smith and 

Collins, 2003; Jacobs and Ward, 2011).  Available SO4-S were medium to low, with values 

between 8 and 13 kg ha-1.  Phosphorus was low only in Carrington (8 mg kg-1).  At all other 

locations available P was higher than the 16 mg kg-1 threshold for most crops (Franzen, 2013).  

In general, soil K was in adequate level and soils testing below 250 mg kg-1 were supplied with 

fertilizer.  The pH was between 6.9 and 7.9 and organic matter was almost twice as high in 

Fargo, than at Carrington, Prosper, and Walcott.   

3.4.2. Forage brassica species and cultivars performance 

 The analysis of variance combined across two environments, Carrington and Fargo, in 

2012, for leaf yield and total N is presented in Table 3.4.  The species (species and cultivars, 

henceforth ‘species’) main effect was not significant for the leaf biomass yield and total N in the 

first harvest.  In the second harvest, leaf biomass yield and total N were different among species.   
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Table 3.3. Soil test at the experimental sites in Fargo, Prosper, Carrington, and Walcott, ND, for 
different forage brassica experiments, in 2012, 2013, and 2014. 

Location/ 
trial 

N- NO3 
(0-15 cm) 

N-NO3 
(15-60 cm) 

N-NO3 
(0-60 cm) 

S-SO4
‡ P K OM pH 

 --------------------------kg ha-1--------------------- -----mg kg-1----- g kg-1  

 2012 
Carrington         
     S/CE 73 98 171 - 8 120 30 7.3 
Fargo         
     S/CE† 63 98 161 - 17 430 59 7.9 
     PDE 24 27 51 - 15 380 66 7.7 
     SDE 25 44 69 - 18 375 79 7.6 
Prosper         
     PDE 25 37 62 - 25 320 47 7.2 
     SDE 55 44 99 - 33 405 47 6.9 
     FE 17 27 44 - 29 305 39 7.2 
 2013 
Carrington         
     S/CE 44 47 91 4 7 125 27 7.1 
 2014 

Fargo         
     S/CE 34 121 155 13 15 315 67 7.3 
     PDE 25 104 129 12 10 390 60 7.8 
     SDE 19 83 102 10 4 295 67 7.5 
Prosper         
     PDE 53 111 164 9 22 360 35 7.5 
     SDE 49 104 153 7 27 340 35 7.5 
     FE 57 145 202 10 24 285 38 7.3 
Walcott         
     FE 6 25 31 8 51 397 29 7.4 
† S/C= Species/cultivars experiment; PD= Plant density experiment; SD= Sowing date 
experiment; F = Fertility experiment. 
‡  S-SO4, pH, organic matter (OM), P-Olsen, K from 0-15 cm depth. 
 
 
When both harvests were combined, leaf biomass yield and total N were different among 

species.  Root/stem biomass yield, root/stem total N, and the biomass of dead matter  

accumulated below the canopy were different among species (Table 3.5).   leaf and root/stem 

biomass yield, the total N of forage yield, and the total biomass yield (leaf, root/stem, and dead 

matter) were not significantly different among species.  Environment by species interaction was 
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significant for the total leaf yield and the total  leaf and root biomass s summed up, but since 

environments were considered random, discussion of results will be based on the significance of 

main effects only. 

 In the second harvest, leaf biomass yield fluctuated between 1.8 Mg ha-1 in winter canola 

cv. Griffin and 6.4 Mg ha-1 in kale cv. Maris Kestrel (Table 3.6).  The leaf yield in ‘Maris 

Kestrel’ was 58% of the total forage yield (leaf + stem) and 67% of the total biomass yield (leaf+ 

stem + dead matter), which were higher than the proportion of leaves reported by Stephen (1976) 

and Fletcher et al. (2007).  The leaf proportion reaches 75%, 90 days after sowing, decreasing to 

25% at 270 days after sowing (Stephen, 1976).  All kale cultivars had significantly higher yield 

than swede, hybrids, forage rape, and winter canola cultivars.  The higher biomass yield of kale 

cultivars compared with the other four species was most likely due to the longer time available to 

accumulate biomass since it kept growing well into late fall (November) which has been 

observed before (Wiedenhoef and Barton, 1994; Jung et al., 1983, and Jung et al., 1986).  

Cultivars within a same species did not have different biomass yield with the exception of kale 

cv. Maris Kestrel which had significant higher yield than the cv. Siberian. This was probably 

because ‘Siberian’ is a leafy and stemless cultivar used mainly for human consumption not 

forage.  Kales and swedes were harvested only once while all other species were harvested twice.  

This could explain the lower yield of the other forage brassicas evaluated compared with kale.  

Two harvests in the season likely reduces total yield, since new regrowth after the first harvest 

does not intercept solar radiation at its full potential until it reaches optimum leaf area index 

(LAI) (Brown et al., 2007).  Likewise, total N was also significantly higher in kale cultivars.  

Kale total N fluctuated between 143 and 160 kg N ha-1 while the other species fluctuated 

between 61 and 110 kg N ha-1.  Similar results were reported by Teuber et al. (2009) indicating 
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kale total N was greater than other brassica species and increased when harvested later in the 

season.   

Total leaf yield averaged 5.7, 3.1, 8.4, 7.7, and 6.9 Mg ha-1 for kale, swede, hybrid, forage 

rape, and winter canola cultivars, respectively (Table 3.6).  The hybrid cv. Pacer total biomass 

yield was 8.8 Mg ha-1 and was greater than all swede and kale cultivars, except ‘Maris Kestrel’.  

Although yield values among different studies are not comparable, in general, total leaf biomass 

yield was within the yield range observed in New Zealand (Gowers et al., 2006).  All cultivars of 

hybrids, forage rape, and winter canola were not significantly different among them. 

The total N averaged 152, 100, 215, 262, and 194 kg N ha-1 for kale, swede, hybrid, 

forage rape, and winter canola cultivars, respectively.  Only swede cultivars had significantly 

lower total N than all cultivars of hybrids, forage rape, and winter canola.  

All species evaluated had higher leaf yield than root/stem except swede cultivars (Tables 

3.6 and 3.7).  Swede accumulated between 60 to 67% of the total forage biomass in their roots, 

which was consistent with the results reported by Gowers et al. (2006). Similarly, the leaf/root 

ratio of swede cv. Dominion was 1:1 and 1:3 in four and six months after sowing, respectively 

(Hepp et al., 2012).  The root and stem biomass yield for all species/cultivars evaluated 

fluctuated between 0.4 and 5.8 Mg ha-1.  Conversely, cultivars that produce thick stems and not 

enlarged roots (kale, hybrid, forage rape, and winter canola) accumulated lower biomass yield 

with the exception of kale cv. Maris Kestrel.  The root/stem total N fluctuated between 8 and 134 

kg ha-1.  Swedes had significantly higher total N than all other species and cultivars.  Similarly, 

Teuber et al. (2009) reported the highest total N in swede roots in comparison with turnip, kale, 

and hybrids.   
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Table 3.4. Analysis of variance and mean squares for forage brassica leaf biomass yield (first and second harvest), total biomass yield, 
and total N in two environments, Carrington and Fargo, ND, in 2012. 

Source of 
variation 

df‡ Leaf yield 
harvest 1 

Total N 
harvest 1 

df Leaf yield 
harvest 2 

Total N  
harvest 2 

Total leaf 
yield 

Total         
leaf N   

Env†    1   120161**§    51.4*    1   244167*    249.0**   603988***    468.0** 
Rep(Env)    4       3028*      3.9**    4         955        4.5*       4433*      12.6*** 
Sp    9       2031      0.8  14     11560***        6.2***     17889*      10.1** 
Env x Sp    9       1683      1.2  14         832        0.6       4974**        2.3 
Error  36       1094      0.8  56       1208        1.3       1723        1.8 
CV, %            21    22.3            34      37.9           20      23.4 
† Env=Environment, Rep=Replicate, Sp= forage brassica species and cultivars. 
‡ More than one column of df is due to different number of species/cultivars evaluated between harvest 1 and 2.  
§ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. Mean squares values were divided by 1000 for better 
fit on the table. 
 
 
Table 3.5. Analysis of variance and mean squares for forage brassica root/stem, leaf and root yield, total N, dead matter yield, and 
total biomass yield in the last harvest in two environments, Carrington and Fargo, ND, in 2012. 

Source of 
variation 

df Root/stem 
 yield  

Total N 
root/stem 

df Leaf and 
root/stem 

yield 

Total N leaf   
+ root/stem 

Dead matter 
yield 

Total 
 yield¶ 

Env†    1       157      1.2    1  575423***    512.0**    29668***   343771** 
Rep(Env)    4     1166*‡§      1.0*    4      8696*      20.2***        417       6812 
Sp  14   18786***    10.0***  14    10384        4.5      5026***     12562 
Env x Sp  13       702      0.3  14      5374*        1.9        359       6334 
Error  54       395      0.3  56      2407        2.4      1039       4303 
CV, %          32    41.0           18      22.2          35           18 
† Env=Environment, Rep=Replicate, Sp= forage brassica species and cultivars. 
‡ More than one column of df is due to different number of species/cultivars evaluated for root production  
§ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. Mean squares values were divided by 1000 for better 
fit on the table. 
¶ Total yield includes leaf, roots/stem, and dead matter below the canopy.
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Table 3.6. Mean biomass leaf yield and total N of forage brassica of two harvests averaged across two environments, Carrington and 
Fargo, ND, in 2012. 

 Harvest 1 Harvest 2 H1 + H2 

Species/cultivar Leaf yield Total N Leaf yield Total N Leaf yield Total N  

 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 
Kale       
   Siberian              -             -             5.0           143            5.0           143 
   Maris Kestrel              -             -             6.4           153            6.4           153 
   D. Blue Vates†              -             -             5.8           160            5.8           160 
Swede       
   Major Plus              -             -             3.6           110            3.6           110 
   Am. Purple Top              -             -             2.6             90            2.6             90 
Hybrids       
   Winfred            4.6           128             3.3             97            7.9           225 
   Pacer            6.1           133             2.7             72            8.8           204 
Forage Rape       
   Rangi            5.0           138             2.6             74            7.6           212 
   Barsica            5.4           136             2.9             83            8.3           219 
   Dwarf Essex            4.9           125             1.9             62            6.8           187 
   Bonar            5.2           134             2.8             85            7.9           219 
W. Canola       
   Riley            4.7           120             2.6             89            7.3           209 
   Griffin            5.5           137             1.8             61            7.3           198 
   Athena            4.2           101             2.6             77            6.8           179 
   Summer            4.3           116             2.0             73            6.3           189 
       LSD (0.05) ‡            NS            NS             1.1             30            2.8             59 
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola. 
‡ LSD= Least significant difference used as mean separation method, with a significance of 0.05. 
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Table 3.7. Mean root and root +leaf yield, total N, biomass yield of dead matter, and total biomass yield averaged across two 
environments, Carrington and Fargo, ND, in 2012. 

 Root/stem Leaf + root/stem Dead matter Total¶ 

Species/cultivar Biomass yield Total N Biomass yield Total N  Biomass yield Biomass yield 

 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 Mg ha-1 
Kale       
   Siberian            0.7             21             5.7            163            4.2             9.9 
   Maris Kestrel            4.8             97           11.1            250            3.2           14.3 
   D. Blue Vates†            1.6             26             7.4            185            3.3           10.7 
Swede       
   Major Plus            5.8           134             9.3            244            4.8           14.2 
   Am. Purple Top            5.3           131             7.9            221            4.3           12.2 
Hybrids       
   Winfred            1.7             35             9.6            260            2.5           12.1 
   Pacer            0.4               8             8.9            213            2.3           11.2 
Forage Rape       
   Rangi            1.4             29             9.0            240            2.2           11.2 
   Barsica            1.5             30             9.8            249            1.8           11.6 
   Dwarf Essex            0.9             22             7.8            209            2.3           10.1 
   Bonar            1.2             25             9.1            245            2.6           11.6 
W. Canola       
   Riley            1.0             26             8.1            235            2.5           10.6 
   Griffin            0.7             16             7.9            214            2.3           10.2 
   Athena            0.7             18             7.5            196            1.9             9.4 
   Summer            1.0             25             7.3            214            2.8           10.1 
      LSD ‡  (0.05)             1.0             22             NS            NS            0.7            NS 
      LSD1§ (0.05)            1.2             27     
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola. 
‡ LSD= Least significant difference used as mean separation test, with a probability of 0.05. 
§ LSD1 is to compare “Pacer” with other cultivars. The LSD is different because this cultivar was not in all experiments combined. 
¶ Total yield includes leaves, roots and dead matter below the canopy. 
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Leaf and root/stem yield, total N, and total biomass yield including leaf, root/stem, and 

dead matter were not different among cultivars and species.  However, several other authors have 

found differences in forage yield between species and cultivars likely due to climatic and soil 

differences (Jung et al., 1986; Penrose et al., 1996; Gowers et al., 2006; Keogh et al., 2011).  

Dead matter fluctuated between 1.8 and 4.8 Mg ha-1.  The largest leaf loss occurred in both 

swede cultivars and in kale cv. Siberian, both species were harvested only once accumulating 

biomass during the whole growing season.  The low light quality under the canopy likely 

induced leaves to senesce with negative net photosynthesis, a response common to most plant 

species.  On the contrary, forage rape, hybrid, and winter canola were harvested at 75 to 84 days 

after sowing, thus leaf loss was much less, since light quality under the canopy did not decrease 

until near to the second harvest. 

The analysis of variance for leaf quality components of species harvested twice (hybrids, 

forage rape, and winter canola), across two environments, Carrington and Fargo in 2012, are 

presented in Table 3.8.  The species main effect was significant for ash, CP, ADL, and TDN, but 

harvest time main effect was not significant for any components.  The interaction species by 

harvest was only significant for CP and ADL.   

The mean ash content fluctuated between 138 and 208 g kg-1, with the highest content in 

hybrid cv. Pacer (Table 3.9).  The CP content was almost always lower in the first harvest 

compared with the second harvest, except for hybrid cv. Winfred.  This result differs from Rao 

and Horn (1986) and Teuber et al. (2009) who determined that almost all species/cultivars 

evaluated declined in CP content in later harvest dates.  The decline of CP content could be 

attributed to increased dry matter accumulation rate causing a dilution effect (Rao and Horn, 

1986).  The highest differences were between hybrid cv. Pacer in the first harvest and winter 
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canola cv. Summer in the second harvest, with 133 and 223 g kg-1 of CP, respectively.  The CP 

values observed in the present study are slightly lower than concentrations reported by Teuber et 

al. (2009) in similar forage brassicas.  The ADL content was almost always higher in the first 

harvest compared with the second, in addition the higher content was determined in the hybrid 

cv. Pacer, in both harvest time (Table 3.10).  The highest difference was determined between 

hybrid cv. Pacer and winter canola cv. Summer, with 44 and 25 g kg-1, respectively.  The TDN 

fluctuated between 701 and 780 g kg-1, for hybrid cv. Pacer and forage rape cv. Barsica, 

respectively, the only two cultivars that were significantly different (Table 3.11).  This high TDN 

is typical of forage brassicas which have very high digestibility compared with other common 

forages such as alfalfa or corn silage. 

 The analysis of variance for leaf quality components of species harvested just once (kales 

and swedes), across two environments, Carrington and Fargo in 2012, are presented in Table 

3.12.  All the parameters evaluated were not significant except CP. The swede cv. American 

Purple Top had 214 g kg-1 of CP, which was significantly different compared to all other four 

cultivars evaluated (data not presented).  Similar values of CP were reported by Teuber et al. 

(2009). 

The analysis of variance across two environments, Carrington and Fargo in 2012, 

indicated the species main effect was significant for all forage root/stem quality components 

(Table 3.13).  The species by environment interaction was only significant for ADL and 

IVDMD.  Ash content fluctuated between 74 and 114 g kg-1 and CP between 102 and 173g kg-1, 

with the highest content in kale cv. Siberian and the lowest in kale cv. Dwarf Blue Vates in both 

parameters (Table 3.14).  
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Table 3.8. Analysis of variance and mean squares of leaf quality components in two harvests combined across two environments, 
Carrington and Fargo, ND, in 2012. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   1  31105     608      385  11801         0.01    2279      211  25131 
Rep(Env)   4      305   2998***      479      339**     147***      333**      216*      424 
Sp   9    5305**‡   2065**      505      330     105**      103      214    6552** 
Env x Sp   9      672     345      391      142       19        74      107      730 
Env x Rep x Sp 36      152     301      212        72       16        84        71      184 
Harv   1  32341 24711    3131  18951     869      195          8  23063 
Env x Harv   1  14301***   9792***  30433***  18750***   1353***  17545***  20898***  31092*** 
Sp x Harv   9      201   1129**      285      127       69**      110        80      280 
Env x Sp x Harv   9      166     161      222      115         9      171*      221**      250 
Error 40      222     249      143        59       17        79        69      261 
CV, %         10         9          5          5       12          1          1          2 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars, Harv=Harvest. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.9. Mean forage quality of leaves (Ash, CP, and NDF) in two harvests combined across two environments, Carrington and 
Fargo, ND, in 2012. 

 Ash CP¶ NDF 

Species/cultivar H 1 H 2 Mean H 1 H 2 Mean H 1 H 2 Mean 

 --------------------------------------------------------------g kg-1------------------------------------------------------------ 
Hybrids          
   Winfred      164      137     150     178      174     176     248      224     236 
   Pacer      227      190     208     133      159     146     246      233     239 
Forage rape          
   Rangi      162      138     150     175      181     178     233      228     230 
   Barsica      149      130     140     167      181     174     217      216     216 
   Dwarf Essex      157      122     140     162      200     181     231      226     229 
   Bonar      163      133     148     166      190     178     230      235     232 
W. Canola†          
   Riley      165      132     148     162      209     186     228      224     226 
   Griffin      162      115     138     158      210     184     246      222     234 
   Athena      155      121     138     155      188     171     240      223     231 
   Summer      162      121     141     172      223     197     232      218     225 
                   Mean      167      134      163      191      235      225  
LSD‡(0.05), Sp        24           NS   
LSD (0.05), H       NS           NS   
LSD (0.05), SpxH       NS           NS   
       SpxH1          44      
       SpxH2          21      
       SpxH3          46      
† W. Canola = Winter canola, Sp = Species/cultivars, and H = Harvest. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. Sp to compare among Sp means 
averaged across harvests; H to compare among harvest means averaged across Sps; SxH1 to compare species means within a different 
Hs; SpxH2 to compare Sp means within the same harvest, and SpxH3 to compare different Hs means between different species means. 
¶ Forage quality components: Crude protein (CP) and neutral detergent fiber (NDF). 
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Table 3.10. Mean forage quality of leaves (ADF, ADL, and IVDMD) in two harvests combined across two environments, Carrington 
and Fargo, ND, in 2012. 

 ADF¶ ADL IVDMD 

Species/cultivar H 1 H 2 Mean H1 H 2 Mean H 1 H 2 Mean 

 --------------------------------------------------------------g kg-1------------------------------------------------------------ 
Hybrids          
   Winfred      176      143     160       32       35      33     885      897     891 
   Pacer      161      137     149       44       39      42     883      890     886 
Forage rape          
   Rangi      169      150     160       34       35      34     886      885     886 
   Barsica      167      140     154       36       34      35     888      889     888 
   Dwarf Essex      173      143     158       38       29      34     883      886     884 
   Bonar      166      156     161       35       33      34     895      886     891 
W. Canola†          
   Riley      161      135     148       38       28      33     886      887     886 
   Griffin      164      136     150       40       29      34     884      882     883 
   Athena      170      141     156       40       31      36     886      894     890 
   Summer      159      135     147       34       25      30     880      886     883 
                   Mean      167      141        37       32      885      888  
LSD‡(0.05), Sp       NS           NS   
LSD (0.05), H       NS            NS   
LSD (0.05), SpxH       NS           NS   
       SpxH1          16      
       SpxH2            5      
       SpxH3          16      
† W. Canola = Winter canola, Sp = Species/cultivar, and H = Harvests. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. Sp to compare among Sp means 
averaged across harvests; H to compare among harvest means averaged across Sps; SpxH1 to compare species means within a 
different Hs; SpxH2 to compare Sp means within the same harvest, and SpxH3 to compare different Hs means between different 
species means. 
¶ Forage quality components: Acid detergent fiber (ADF), acid detergent lignin (ADL), and in vitro dry matter digestibility (IVDMD). 
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Table 3.11. Mean forage quality of leaves (NDFD and TDN) in two harvests combined across two environments, Carrington and 
Fargo, ND, in 2012. 

                               NDFD¶                                TDN 

Species/cultivar      H 1      H 2   Mean       H1      H 2    Mean 

 -----------------------------------------------------g kg-1------------------------------------------------------------- 
Hybrids       
   Winfred      925      930     927      756      779      767 
   Pacer      913      917     915      682      720      701 
Forage rape       
   Rangi      923      919     921      759      776      767 
   Barsica      932      927     929      774      787      780 
   Dwarf Essex      922      924     923      762      792      777 
   Bonar      933      923     928      760      779      769 
W. Canola†       
   Riley      924      924     924      755      781      768 
   Griffin      920      922     921      755      798      776 
   Athena      924      929     926      763      794      779 
   Summer      922      928     925      757      794      775 
                   Mean      924      924       752      780  
  LSD‡(0.05), Sp       NS          25   
  LSD (0.05), H       NS         NS   
  LSD (0.05), SpxH       NS         NS   
       SpxH1       
       SpxH2       
       SpxH3       
† W. Canola = Winter canola, Sp = Species, and H = Harvest. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. Sp to compare among Sp means 
averaged across harvests; H to compare among harvest means averaged across Sps; SpxH1 to compare species means within a 
different Hs; SpxH2 to compare Sp means within the same harvest, and SpxH3 to compare different Hs means between different 
species means. 
¶ Forage quality components: Neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.12. Analysis of variance and mean squares of forage quality components of leaves in two harvests combined across two 
environments, Carrington and Fargo, ND, in 2012. 

Source of 
variation 

Df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   1        65     2921    10944*    13739*      617     5122     5942*     1701 
Rep(Env)   4      295     2611‡**        270          37      157**       317       187       393 
Sp   4      729     3787*      1851      1636        97     2645     1984     1798 
Env x Sp   4      269       440        394        878*        21       617*       356*       414 
Error 16      422       426        217        184        24       146         95       437 
CV, %         14         12            6            9        13           1           1           3 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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The CP contents determined for kale, swede and hybrid in this study were similar than CP 

contents reported by Teuber et al. (2009).  Neutral detergent fiber content fluctuated between 416 

g kg-1 in swede cv. Major Plus and 604 g kg-1 in forage rape cv. Barsica. This latter cultivar had 

higher NDF content than all kale, swede, and winter canola cultivars, forage rape cv. Dwarf 

Essex, and the hybrid cv. Pacer.  Acid detergent fiber fluctuated between 323 and 462 g kg-1 and 

ADL between 59 and 92g kg-1.  The IVDMD of root/stem fluctuated between 537 and 713 g kg-1 

with the highest value  in kale cv.Siberian and the lowest in forage rape cv. Barsica.  ‘Siberian’ 

had higher IVDMD than the other two kale cultivars,  the hybrid Winfred and all the forage rape 

cultivars with the exception of ‘Dwarf Essex’.  The NDFD fluctuated between 564 and 748 g kg-

1 with the highest values in swede cultivars.  ‘Major Plus’ was different with almost all species 

that produce primarily stems biomass, with the exception of kale cultivar ‘Siberian’.  Total 

digestible nutrients fluctuated between 570 and 717 g kg-1, with the highest values in swede. 

The analysis of variance combined across two environments, Carrington in 2013 and 

Fargo in 2014, for leaf, root/stem, and total forage biomass yield,  leaf and root/stem total N, 

dead matter yield, and total biomass yield are presented in Table 3.15.  The species/cultivar main 

effect was significant for all the parameters evaluated.  The interaction between species and 

environment was significant for total N in roots and dead dry matter yield. 

Leaf biomass yield fluctuated between 1.7 and 5.4 Mg ha-1.  Kale cv. Maris Kestrel had 

the highest yield and was different than all the others species and cultivars, with the exception of 

kale cv. Dwarf Blue Vates (Table 3.16).  The total leaf N ranged from 71 and 169 kg N ha-1, it 

was higher in ‘Dwarf Blue Vates’ and lowest in turnip cv. Purple Top.  Total N will depend on 

soil availability and leaf yield.  Any factor that reduces leaf yield will affect the total N.  
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Table 3.13. Analysis of variance and mean squares of forage quality components of root/stem in the last harvest combined across two 
environments, Carrington and Fargo, ND, in 2012. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   1   6572*‡  19141*    9858     3950       90     2242     2313      810 
Rep(Env)   4     178      574    4857*     2907*     190*     4493     4201*    3399* 
Sp 14     657***    1888***  20206***   11235**     625**   17051**   18137**    9957*** 
Env x Sp 13       80      250    3141     1848     140*     3438     3476*    1383 
Error 54     126      372    1673     1001       72     1936     1616      951 
CV, %        12        13          8           8       12           7           6          5 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.14. Mean forage quality of root/stem in the last harvest combined across two environments, Carrington and Fargo, ND, in 
2012. 

Species/cultivar Ash   CP¶ NDF ADF  ADL  IVDMD NDFD TDN 

 ------------------------------------------------------g kg-1------------------------------------------------------ 
Kale         
   Siberian       114        173       428       328         59        713       726       683 
   Maris Kestrel         86        128       513       395         77        614       648       651 
   D. Blue Vates†         74        102       522       395         74        632       642       656 
Swede         
   Major Plus         94        143       416       323         62        699       748       717 
   Am. Purple Top       102        156       421       329         64        691       740       704 
Hybrids         
   Winfred         87        128       571       437         87        571       593       597 
   Pacer         94        141       436       332         60        703       720       701 
Forage Rape         
   Rangi         91        134       558       427         83        587       607       604 
   Barsica         84        125       604       462         92        537       564       570 
   Dwarf Essex         99        149       489       374         70        656       674       655 
   Bonar         93        138       540       413         80        603       625       619 
W. Canola         
   Riley       109        164       449       343         63        689       702       672 
   Griffin         99        148       466       355         64        684       698       674 
   Athena       105        155       466       356         66        678       691       666 
   Summer       102        153       490       375         71        654       669       649 
       LSD‡(0.05)         11          20         70         52         14          73         74         46 
       LSD1§(0.05)         13          24         86         66         18          89         90         56 
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§LSD1 is to compare “Pacer” with other cultivars. The LSD is different because this cultivar was not in all experiments combined. 
¶ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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 The root/stem biomass yield fluctuated between 0.5 and 4.2 Mg ha-1, with the highest 

yield in kale cv. Maris Kestrel and the lowest in the hybrid cv. Pacer.  The species that produce 

large roots (swede and turnip) have higher root/leaf biomass yield, which is consistent with the 

results reported in swede in New Zealand (Gowers et al., 2006).  Conversely, species with small 

roots but thick and large stems (kales, hybrids, forage rape, and winter canola) had a higher 

leaf/root ratio, hence higher total N.  ‘Maris Kestrel’ had the highest root/stem yield than all 

other species and cultivars with the exception of ‘Sovereign’ and all swede cultivars.  The total N 

of root/stem fluctuated between 20 and 132 kg N ha-1.  As in root/stem yield the kale cv. Maris 

Kestrel had the highest total N although not significantly different than ‘Sovereign’, ‘Major 

Plus’, and ‘American Purple Top, all of them with more than 100 kg N ha-1.  The total forage 

biomass yield (leaf + root/stem) fluctuated between 2.2 and 9.6 Mg ha-1, with ‘Maris Kestrel’ 

with the highest yield.  Swede cv. Major Plus was the species with the highest yield, with 6.6 Mg 

ha-1.  Kale cv. Maris Kestrel had the highest leaf and stem total N, and total biomass yield (leaf + 

root/stem + dead matter), with 292 kg N ha-1 and 12.4 Mg ha-1, respectively.  Dead matter 

fluctuated between 2.5 and 5.0 Mg ha-1, with the highest value in forage rape ‘Bonar’. 

The analysis of variance across two environments, Carrington 2013 and Fargo 2014, for 

the forage quality of leaves is presented in Table 3.17.  The species/cultivar main effect was 

significant for all the parameters evaluated and the interaction between species and environment 

was significant for all parameters except for ash content and TDN. 

  In general, ash content was higher in species with enlarged roots than those with high 

proportion of stems (Table 3.18).  Crude protein content fluctuated between 176 and 265 g kg-1. 

Other species with higher CP were winter canola and swede, with averages of 250 and 254 g kg-

1, respectively.  Several authors have reported that CP content is about 25 to 60% greater in the 
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biomass above the soil surface than in the roots (Rao and Horn, 1986; Jung et al., 1986; Smith 

and Collins, 2003; Nichol et al., 2003; Villalobos and Brummer, 2013; Lemus and White, 2014).  

Neutral detergent fiber and ADF were the highest in two of the swede cultivars and the lowest 

values were found in forage rape cv. Barsica.  The IVDMD and NDFD of all species was much 

higher than common forage species such as alfalfa (Medicago sativa L.) (600-750 g kg-1) an 

indication of the high digestibility and energy content of forage brassicas.  Kale cv. Sovereign 

had the highest IVDMD and NDFD with 914 and 943 g kg-1, respectively, but it was not different 

from some of the other cultivars of kale, hybrids, and forage rape.  Total digestible nutrient was 

the highest in kale and forage rape and fluctuated between 714 and 800 g kg-1, respectively. 

Highly digestible forage requires supplementation with forages high in fiber, wheat straw, corn 

stover or similar materials to avoid diarrhea in cows. 

The analysis of variance combined across two environments, Carrington in 2013 and 

Fargo in 2014, for forage quality of root/stem are presented in Table 3.19.  The main effect of the 

species/cultivar was significant only for ash content, while all parameters were significant for the 

environment by species interaction.  Ash content fluctuated between 72 and 115 g kg-1 (Table 

3.20).  The species with the lowest average ash content were swede and turnip with 78 and 86 g 

kg-1, respectively.  The highest ash content was determined species with small or no enlarged 

roots such as forage rape and winter canola.  
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Table 3.15. Analysis of variance and mean squares for forage brassica leaf and root biomass yield, total N, dead matter yield, and total 
biomass yield combined across two environments, Carrington and Fargo, ND, in 2013 and 2014, respectively. 

Source of 
variation 

df* Leaf  
yield  

Total 
leaf N  

df Root/ 
stem 
yield 

Root/ 
stem total 

N   

df Leaf and 
root/stem 

yield 

Total N 
leaf + 

root/stem  

Dead 
matter 
yield 

Total  
yield 

Env†    1 115750**‡ 320.0**    1  1960 89.0***    1  90268* 744.0*** 208610***    24422 
Rep(Env)    4     2857***     6.0***    4    741    1.3    4    5939**   12.6***       139      5225* 
Sp  19     7197***     4.7***  19  6565***   6.7*  19  19089***   13.9***     3280**   13797*** 
Env x Sp  19       486     0.4  18    720   2.9***  19    1159     2.9       958***      2390 
Error  76       470     0.6  74    484   0.6  76    1292     1.7       314      1731 
CV, %          24   23.3       32 39.6         22   24.9         15          15 
† Env=Environment, Rep=Replicate, S= Species and cultivars. 
‡ *, **, *** significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Mean squares values were divided by 1000 for better fit on the table. 
¶ Total yield includes leaves, roots, and dead matter below the canopy. 
* More than one column of df is due to different number of species/cultivars evaluated between leaf and root/stem yield. 
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Table 3.16. Mean biomass yield and total N of leaf, root/stem, and total biomass yield, dead matter, and total yield of different 
species/cultivars averaged across two environments, Carrington and Fargo, ND, in 2013 and 2014, respectively. 

 Leaf Root/stem Leaf + root/stem Dead matter Total¶ 

Species/cultivar Yield Total N  Yield Total N Yield Total N  Yield 

Kale Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 
   Siberian 3.0      117       0.8       21       3.8      138         4.5        8.3 
   Maris Kestrel 5.4      160       4.2     132       9.6      292         2.8      12.4 
   D. Blue Vates† 5.3      169       1.5       38       6.7      207         2.5        9.2 
   Sovereign 4.3      136       3.2     104       7.5      240         2.7      10.2 
Swede         
   Major plus 2.7      108       3.9     101       6.6      209         3.3      10.0 
   Am. Purple Top 2.0        86       3.6     110       5.6      196         3.1        8.7 
   Dominion 2.0        82       3.1       81       5.1      163         3.1        8.2 
Turnip         
   Purple Top 1.7        71       2.4       80       4.1      151         3.1        7.3 
   Rack 2.0        84       1.8       70       3.9      154         2.9        6.8 
   Pointer 2.1        80       2.1       70       4.2      149         3.1        7.3 
Hybrids         
   Winfred 3.0      112       2.6       69       5.7      181         4.3      10.0 
   Pacer 2.0        75       0.5       20       2.2        85         4.3        6.4 
Forage rape         
   Rangi 2.6        96       2.4       55       5.1      150         4.3        9.4 
   Barsica 4.2      147       2.7       73       6.9      220         4.1      11.0 
   Dwarf Essex 2.6      105       1.4       37       4.0      143         4.3        8.3 
   Bonar 2.8      114       1.4       35       4.2      149         5.0        9.2 
W. canola         
   Riley 2.3        97       1.2       32       3.5      128         4.4        8.0 
   Griffin 2.4        98       0.9       26       3.3      124         4.2        7.4 
   Athena 2.5      104       1.1       29       3.7      132         4.3        7.9 
   Summer 1.9        85       1.4       41       3.4      125         3.7        7.0 

        LSD‡ (0.05) 0.8        25       1.0       65       1.3        65         1.2        1.9 

        LSD1§ (0.05)         1.3       80     
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola.‡ LSD= Least significant difference 

used as mean separation method, with a probability of 0.05.§LSD1 is to compare ’Pacer’ with other cultivars. The LSD is different because this 
cultivar was not in all experiments combined.¶ Total yield includes leaves, roots, and dead matter below the canopy.                         
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Table 3.17. Analysis of variance and mean squares of forage quality of leaves in Carrington and Fargo ND, in 2013 and 2014, 
respectively. 

Source of 
variation 

 
df 

 
Ash 

 
CP§ 

 
NDF 

 
ADF 

 
ADL 

 
 IVDMD 

 
 NDFD 

 
  TDN 

Env†   1     496 153368***  14941  19840*  4514.0***   2823   1761     316 
Rep(Env)   4   1175**‡       693*    4450***    1455***      36.7*     363*     509***   1988*** 
Sp 19   2290***     3412*      844**      732**    131.3*   1758***   1247***   3512*** 
Env x Sp 19     270     1154***      230*      189*      53.7***     334**     191*     287 
Error 76     284       251      133      103      14.2     124       96     283 
CV, %          11           7          5          6      13.2         1         1         2 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.18. Mean forage quality of forage brassica leaves combined across two environments, Carrington and Fargo ND, in 2013 and 
2014, respectively. 

Species/cultivar Ash CP§      NDF      ADF      ADL   IVDMD    NDFD     TDN 

 --------------------------------------------------------------g kg-1------------------------------------------------------------- 
Kale         
   Siberian       143        238       220       157       29.3       870       904       769 
   Maris Kestrel       132        176       203       167       38.3       911       942       790 

   D. Blue Vates†       124        196       194       159       37.0       905       942       800 

   Sovereign       129        192       214       168       35.0       914       943       792 
Swede         
   Major Plus       150        242       227       160       26.7       876       913       758 
   Am. Purple Top       155        256       237       183       25.0       850       890       751 
   Dominion       152        252       229       168       25.7       865       908       758 
Turnip         
   Purple Top       190        229       236       164       25.7       868       903       714 
   Rack       160        237       225       158       27.2       882       917       747 
   Pointer       184        221       229       155       30.2       886       918       725 
Hybrids         
   Winfred       133        211       219       153       30.8       904       935       783 
   Pacer       184        221       227       147       29.0       892       925       723 
Forage rape         
   Rangi       131        211       218       151       33.0       898       928       782 
   Barsica       133        211       193       142       31.8       906       938       787 
   Dwarf Essex       131        237       213       145       26.7       893       927       784 
   Bonar       138        241       215       148       24.8       896       933       777 
W. canola         
   Riley       137        249       222       146       25.0       882       919       773 
   Griffin       138        251       216       140       23.5       885       920       774 
   Athena       133        251       211       148       24.0       877       917       780 
   Summer       137        265       217       143       21.0       874       914       773 

           LSD‡ (0.05)         20          41         18         17         9.0         22         17         21 
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), in vitro 

dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN).
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Table 3.19. Analysis of variance and mean squares of quality variables of forage brassica root/stem combined across two 
environments, Carrington and Fargo ND, in 2013 and 2014, respectively. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   1 34529***‡ 148898*** 430070*** 276169*** 16488*** 434010*** 281719*** 305941*** 
Rep(Env)   4       90       201     3733*     2210*     107     3164     2613       956 
Sp 19   1078*     2559   11174     6455     436   10503     9942     3648 
Env x Sp 19     399***     1356***     9336***     5333***     360***     8557***     8102***     1682*** 
Error 76       52       176     1430       868       62     1490     1287       425 
CV, %            8         10         10         11       16           5           5           3 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.20. Mean forage quality of forage brassica root/stem combined across two environments, Carrington and Fargo 2013-2014. 

Species/cultivar Ash CP¶ NDF ADF ADL IVDMD NDFD TDN 

Kale ------------------------------------------------------------------g kg-1---------------------------------------------------------------- 
   Siberian       112        162        296       227       34.2       831       834       756 
   Maris Kestrel         96        132        372       285       51.0       752       757       725 

   D. Blue Vates†         90        119        376       286       49.7       757       756       733 

   Sovereign         83        109        443       339       64.2       684       685       689 
Swede         
   Major Plus         74        104        302       233       37.2       808       820       780 
   Am. Purple top         72        100        320       248       39.8       793       806       772 
   Dominion         87        125        309       240       40.3       795       806       764 
Turnip         
   Purple Top         88        137        348       272       48.2       756       781       747 
   Rack         85        131        415       323       61.5       690       715       702 
   Pointer         86        133        391       305       57.2       712       738       721 
Hybrids         
   Winfred         98        136        383       292       50.7       753       755       722 
   Pacer         81        127        439       337       60.9       689       707       698 
Forage rape         
   Rangi       100        139        363       278       47.8       767       768       731 
   Barsica         89        118        440       336       62.7       692       695       690 
   Dwarf Essex       104        147        377       289       49.8       756       758       720 
   Bonar       117        169        338       260       44.2       788       793       730 
W. Canola         
   Riley       109        159        322       246       38.8       808       814       748 
   Griffin       112        164        356       273       46.3       771       780       725 
   Athena       115        168        350       269       45.0       780       785       724 
   Summer         98        137        371       284       48.3       760       765       731 

        LSD‡ (0.05)         24         NS         NS       NS         NS        NS        NS        NS 

        LSD1§ (0.05)         30         NS         NS       NS         NS        NS        NS        NS 
† D. Blue Vates = Dwarf Blue Vates, Am. Purple Top = American Purple Top, W. canola = Winter canola. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§LSD1 is to compare ‘Pacer’ with other cultivars. The LSD is different because this cultivar was not in all experiments combined. 
¶Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN)
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3.4.3. Sowing date experiment 

 The analysis of variance combined across four environments, Fargo and Prosper in 2012 

and 2014, for leaf, root/stem, leaf + root/stem, dead matter, and total biomass yield, and total N 

of the biomass yield are presented in Table 3.21.  The species and sowing date (SD) interaction 

was significant for all parameters evaluated except dead matter, leaf total N, and total forage N.  

The species main effect was significant for all the parameters evaluated, and sowing date main 

effect was significant for all parameters except leaf yield, leaf total N, and total forage N.  

The mean leaf biomass yield was higher in kale, compared with swede, winter canola, 

and turnip (Table 3.22).  In general, the leaf yield decreased as sowing date was delayed.  

Similarly, Harper and Compton (1980),  reported that ‘Maris Kestrel’ was the most sensitive 

crop to a delayed sowing date causing yield to decline.  ‘Maris Kestrel’ had always the highest 

leaf yield across all sowing dates, but differences among crops decreased as the sowing date was 

delayed.  

Mean root/stem yield was always higher in the first sowing date in all species decreasing 

as sowing date was delayed.  The highest root/stem yield was observed in swede cv. Major Plus, 

followed by kale, turnip, and winter canola.  The highest yield was obtained by swede cv. Major 

Plus with 7.9, 5.0, and 3.4 Mg ha-1, in SD1, SD2, and SD3, respectively, being significantly 

different with all other species/cultivars in each sowing date.  A higher root and stem yield than 

leaf yield suggests that some brassica species can translocate assimilates from the leaves to roots 

and stems in the cool, fall conditions and thus continue accumulating dry matter (Harper and 

Compton, 1980).  Mean biomass yield of turnip and kale were different than winter canola in 

almost all sowing dates, except SD3.  
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The total forage biomass yield has a similar trend than root/stem biomass yield (Table 

3.22).  The highest yields were obtained in swede cv. Major Plus in the first sowing date and as 

observed for leaf and root yield differences between species decreased as the sowing date was 

delayed.  Yield was higher in earlier sowing dates likely because of greater accumulated thermal 

time in the season (Brown et al., 2007).  The leaf total N and total biomass yield (leaf + 

root/stem) was different only species for the species main effect (Table 3.23).  Kale had highest 

total N leaf across sowing dates (96 kg N ha-1).  The leaf + root/stem total N was highest in 

swede cv. Major Plus with 178 kg N ha-1.  The root/stem total N was higher in swede in the first 

sowing date.  The total N decreased as sowing dates were delayed.  Swede cv. Major Plus had a 

total N of 130 kg N ha-1, the highest root/stem total N of all species and cultivars in the first date.  

Similarly, as in total root and leaf yield, total N differences among species also decreased as 

sowing dates were delayed.  The dead matter (dead plants or part of them found under canopy) 

yield biomass was different for species and sowing date main effects (Table 3.24).  The SD2 and 

SD3 had the lowest dead matter with 3.2 and 2.3 Mg ha-1.  Kale had the lowest dead matter yield 

with only 2.7 Mg ha-1.  The total biomass yield (leaf + root/stem + dead matter) was higher in 

swede and kale, and higher in SD1 compared with SD2 and SD3.  The swede cv. Major Plus had 

the highest total biomass yield with 17.5 Mg ha-1 in SD1, which was different with all species 

except kale. The total N in leaves and total forage biomass yield (leaf+ root/stem) was different 

only for the species main effect (Table 3.21).  Kale had highest total leaf N across sowing dates 

(96 kg N ha-1).  The leaf+ root/stem total N was highest in swede cv. Major Plus with 178 kg N 

ha-1.  The root/stem total N was higher in swede in the first sowing date.  The total N decreased 

as sowing dates were delayed.  Swede cv. Major Plus had a total N of 130 kg N ha-1, the highest 

root/stem total N of all species and cultivars in the first sowing date.  Similarly, as in total 
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root/stem and leaf yield, total N differences among species also decreased as sowing dates were 

delayed.  The dead matter (dead plants or part of them found under canopy) yield biomass was 

different for species and sowing date main effects (Table 3.24).  The SD2 and SD3 had the 

lowest dead matter with 3.2 and 2.3 Mg ha-1.  Kale had the lowest dead matter yield with only 

2.7 Mg ha-1.  The total biomass yield (leaf+ root/stem + dead matter) was higher in swede and 

kale, and higher in SD1 compared with SD2 and SD3.  The swede cv. Major Plus had the highest 

total biomass yield with 17.5 Mg ha-1 in SD1, which was different with all species except kale.  

This highest yield was different between all species in SD2 and SD3.  

The leaf N accumulations and  Nin total biomass yield (leaf + root/stem) was different 

only species for the species main effect (Table 3.23).  Kale had highest total N of leaf across 

sowing dates (96 kg N ha-1).  The root/stem total N was higher in swede in the first sowing date.  

The total forage N decreased as sowing dates were delayed.  Swede cv. Major Plus had a total N 

of 130 kg N ha-1, the highest root/stem total N of all species and cultivars in the first sowing date.  

Similarly, as in total root/stem and leaf yield, total N differences among species also decreased 

as sowing dates were delayed.  The dead matter (dead plants or part of them found under canopy) 

yield biomass was different for species and sowing date main effects (Table 3.24).  The SD2 and 

SD3 had the lowest dead matter with 3.2 and 2.3 Mg ha-1.  Kale had the lowest dead matter yield 

with only 2.7 Mg ha-1.  The total biomass yield (leaf + root/stem + dead matter) was higher in 

swede and kale, and higher in SD1 compared with SD2 and SD3.  The swede cv. Major Plus had 

the highest total biomass yield with 17.5 Mg ha-1 in SD1, which was different with all species 

except kale.  This highest yield was different between all species in SD2 and SD3.  The analysis 

of variance combined across four environments, Fargo and Prosper in 2012 and 2014, for forage 

leaf quality components are presented in Table 3.25.  The SD main effect and the species x SD 
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interaction were not significant for all components evaluated.  The species main effect was 

significant for all components except ADF, ADL, and NDFD. 

The leaf ash content was higher in turnip and lowest in kale (Table 3.26).  The CP content 

was higher in winter canola leaves.  In most species, CP content increased as sowing date was 

delayed similarly to that reported by Kunelius et al. (1987), Nichol et al. (2003), Teuber et al. 

(2009) and Tiryakioglu and Turk (2012) (Table 3.26).  In most species, NDF decreased when 

sowing date was delayed.  A similar response was reported by Tiryakioglu and Turk (2012).  The 

IVDMD and TDN behave similarly and did not change with later sowing dates (Table 3.27 and 

3.28), which is according with the results reported by Jung et al. (1986) and Kunelius et al. 

(1987).   

The analysis of variance for forage root/stem quality components, combined across four 

environments, Fargo and Prosper in 2012 and 2014, are presented in Table 3.29.  The SD main 

effect and the species x SD interaction were not significant for all components evaluated.  The 

species main effect was significant only for ash and CP components.  Winter canola had higher 

ash content, significantly different with kale and swede but similar with turnip (Table 3.30). 

Turnip ash content was also significantly higher than swede ash content.  The CP trend was 

similar than the ash content.  Also, all species evaluated increased in CP content when the SDs 

were delayed, which was consistent with the results reported by Nichol et al. (2003), Turk et al. 

(2009), and Tiryakioglu and Turk (2012).  The rest of root/stem quality paramerts were no 

significantly different (Table 3.31 and 3.32).     
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Table 3.21. Analysis of variance and mean squares for forage brassica leaf, root/stem, leaf + root/stem, dead matter, and total biomass 
yield, and total N of forage biomass yield for forage brassica sowing date (SD) in four environments, Fargo and Prosper ND, 2012 and 
2014. 

Source of 
variation 

df Leaf yield Root/ 
stem  
yield 

Leaf and 
root/stem 

yield 

Dead 
matter 
yield 

Total 
biomass 

yield 

Leaf total 
N   

Root/ 
stem  

total N 

Total N  

Env†   3 58741**‡§  56234**   171808**   18763   206542**     38.26*       8.9*    78.2** 
Rep(Env)   8    1407    1602       4049       735       3408       1.20       0.5      2.5 
SD   2    1240  35529*     49722*   64112*   225999**       0.03       8.6*      7.6 
Env x SD   4      968    3364       4875     6187*       9983       1.18       0.6      2.8 
Env x SD x Rep 12      657    2141*       2417     1591***       6118*       1.41       0.6      1.6 
Sp   3  30788*  71340***    111441**     9324*     80391*       9.25*     16.5***    23.8* 
Env x Sp   9    5403**    2271*     10169**     2184*     15848**       2.20       1.1*      4.0 
SD x Sp   6    2122*    5927***     11462**       759     16037**       0.77       1.5**      3.1 
Env x SD x Sp 12      726      605       1836       743       3049       0.96       0.3      2.1 
Error 60      767    1020       2540       420       3181       0.77       0.4      1.8 
CV, %         28        35           26         20           19     35.40     38.9    32.4 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Mean squares values were divided by 1000 for better fit on the table. 
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Table 3.22. Mean biomass yield of forage brassica leaf, root/stem and leaf + root/stem in four species and three sowing dates (SD) 
averaged across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Leaf yield Root/stem yield Leaf + root/stem yield 

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean SD1 SD2 SD3 Mean 

 -----------------------------------------------------------Mg ha-1------------------------------------------------------------ 
  Turnip    2.1    1.8    2.2    2.0    4.2    3.4   2.8   3.5    6.3   5.2   5.0   5.5 
  Kale    5.5    4.5    3.8    4.6    4.3    3.1   1.9   3.1    9.8   7.6   5.7   7.7 
  Swede    4.0    3.1    3.4    3.5    7.9    5.0   3.4   5.4  11.9   8.1   6.7   8.9 
  W. canola†    2.4    3.3    2.9    2.9    1.4    1.5   1.0   1.3    3.8   4.8   4.0   4.2 
          Mean    3.5    3.2    3.1     4.4    3.2   2.3     8.0   6.4   5.3  
 LSD‡ (0.05), SD             
 LSD (0.05), Sp             
 LSD (0.05), SDxS 
   SDxSp1 
   SDxSp2 
   SDxSp3 

    
   1.7¶ 
   1.0 
   1.6 

 
          1.5 
          0.8 
          1.5 

     
   1.3 
   1.3 
   1.5 

 
          1.0 
          1.0 
          1.3 

     
   2.5 
   1.9 
   2.5 

 
         2.1 
         1.4 
         2.2 

 

† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp1 to compare species means within a same SDs; SDxSp2 to compare SD means within the same species, 
and SDxSp3 to compare different SDs means between different species means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
¶ LSD under column SD1 are to compare SD1 means with SD2 or SD3. LSD under column SD2/SD3 are to compare SD2 or SD3, due 
to different number of observations in SD1 vs SD2/SD3 to determine LSDs.
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Table 3.23. Mean forage brassica leaf, root/stem, and leaf + root/stem yield and total N in four species and three sowing dates (SD) 
averaged across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Total leaf N Total root/stem N  Leaf+ root/stem N  

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean SD1 SD2 SD3 Mean 

 ----------------------------------------------------------kg ha-1------------------------------------------------------------ 
             
  Turnip    51    52    61    55     87   69   57   71   136   121   118   125 
  Kale  102    99    85    96     69   50   39   53   172   149   125   149 
  Swede    98    83    99    93   130   67   56   84   230   151   155   178 
  W. canola†    67    89    83    80     25   28   22   25     93   117   105   105 
          Mean    80    81    82      78   53   43    158   134   125  
LSD‡ (0.05), SD   NS       NS       NS    
 LSD (0.05), Sp    29       NS        39    
 LSD (0.05), SDxS 
   SDxSp1 
   SDxSp2 
   SDxSp3 

  NS 
 

 
           

     
    29¶ 
    23 
    28 

 
           23 
           17 
           24 

    NS   

† W. canola = Winter canola. 
‡ LSD at 0.05 of significance: SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp1 to compare species means within a same SDs; SDxSp2 to compare SD means within the same species, 
and SDxSp3 to compare different SDs means between different species means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
¶ LSD under column SD1 are  to compare SD1 means with SD2 or SD3. LSD under column SD2/SD3 are to compare SD2 or SD3, 
due to different number of observations in SD1 vs SD2/SD3 to determine LSDs. 
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Table 3.24. Mean biomass yield of forage brassica dead matter and total biomass yield in four species and three sowing dates (SD) 
averaged across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Dead matter Total biomass yield 

Species† SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean 

 -----------------------------------------------------------Mg ha-1-------------------------------------------------------- 
          
  Turnip     5.1    3.4    2.6    3.7    11.5     8.7    7.6    9.3 
  Kale     4.5    2.4    1.3    2.7    14.5     9.9    7.0  10.5 
  Swede     5.4    3.0    2.4    3.6    17.5   11.1    9.1  12.6 
  W. canola     5.4    4.1    2.7    4.1      9.3     8.9    6.7    8.3 
          Mean     5.1    3.2    2.3     13.2     9.7    7.6  
LSD‡ (0.05), SD     1.8            NS    
LSD (0.05), Sp     0.9         NS    
LSD (0.05), SDxS 
   SDxSp1 
   SDxSp2 
   SDxSp3 

    NS 
 

 
           

     
     3.2¶ 
     2.5 
     3.3 

 
            2.6 
            1.9 
            2.9 

 

† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp1 to compare species means within a same SDs; SDxSp2 to compare SD means within the same species, 
and SDxSp3 to compare different SDs means between different species means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
LSD under column SD1 are to compare SD1 means with SD2 or SD3. LSD under column SD2/SD3 are to compare SD2 or SD3, due 
to different number of observations in SD1 vs SD2/SD3 to determine LSDs. 
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Table 3.25. Analysis of variance and mean squares of forage quality components of leaves of forage brassica sowing date (SD) in 
Fargo and Prosper ND, 2012 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   3  17129**‡  23066*  31521**  1608   278  11728**  13427**  27806** 
Rep(Env)   8      450    1006      837***    576**     94        65        22      708 
SD   2      332    2399    1174    876   220        12        81      151 
Env x SD   4      455      760      595    388     74      195      132      404 
Env x SD x Rep 12      404    1480***      104    116     77**      167**      102      458 
Sp   3  18119***  17285*  10294*  2481   566    6619*    3892  31353*** 
Env x Sp   9    1232*    2864*    2447**  1638***   172*    1442***    1302***    1989** 
SD x Sp   6      144      642      496    219     46      118      152      217 
Env x SD x Sp 12      355      779*      346    146     62**        67        53      420 
Error 60      291      350      441    254     24        65        61      399 
CV, %         11        12          9      10     12          1          1          3 
† Env=Environment, Rep=Replicate, Sp= species and cultivars.  
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.26. Mean forage quality (Ash, CP and NDF) of forage brassica leaves with four species and three sowing dates (SD) 
combined across all environments, Fargo and Prosper ND, in 2012 and 2014. 

 Ash CP NDF 

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean   SD1 SD2 SD3 Mean 

 ---------------------------------------------------------g kg-1------------------------------------------------------------ 

  Turnip   189   181   182   184   151   168   174   164   279   276   259   271 

  Kale   120   130   132   127   112   134   138   128   235   221   227   228 

  Swede   142   144   148   144   158   172   191   173   251   233   227   237 

  W. canola†   129   127   139   132   194   183   187   188   247   239   245   244 

          Mean   145   146   150      153   164   173    253   242   239  

LSD‡ (0.05), SD    NS       NS       NS    

LSD (0.05), Sp     22        33        30    

LSD (0.05), SDxSp    NS       NS       NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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Table 3.27. Mean forage quality (ADF, ADL, and IVDMD) of forage brassica leaves with four speciess and three sowing dates (SD) 
combined across all environments in Fargo and Prosper ND, in 2012 and 2014. 

 ADF ADL IVDMD 

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean   SD1 SD2 SD3 Mean 

 ---------------------------------------------------------g kg-1-------------------------------------------------------------- 

  Turnip   169   173   160   167   46   40   38   42   870   863   870   868 

  Kale   178   166   169   171   52   46   44   47   904   905   904   904 

  Swede   167   154   149   156   44   38   34   39   878   887   883   883 

  W. canola†   154   152   149   152   35   38   37   37   884   887   884   885 

          Mean   167   161   157    44     40   38    884   886   885  

LSD‡ (0.05), SD    NS     NS       NS    

LSD (0.05), Sp    NS     NS        23    

LSD (0.05), SDxSp    NS     NS       NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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Table 3.28. Mean forage quality (NDFD and TDN) of forage brassica leaves with four species and three sowing dates (SD) combined 
across all environments in Fargo and Prosper ND, in 2012 and 2014. 

 NDFD TDN 

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean 

 ---------------------------------------------g kg-1-------------------------------------------- 
         
  Turnip    904    898    908    903    706    713    717   712 
  Kale    928    933    932    931    795    789    785   789 
  Swede    912    921    919    918    764    766    764   765 
  W. canola†    921    922    919    921    779    781    769   776 
          Mean    916    918    920     761    762    759  
LSD‡ (0.05), SD     NS        NS    
LSD (0.05), Sp     NS         27    
LSD (0.05), SDxSp     NS        NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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Table 3.29. Analysis of variance and mean squares of forage quality components of brassica root/stem for forage brassica sowing date 
(SD) combined across four environments, Fargo and Prosper ND, 2012 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   3  3082*‡ 15507* 464144*** 278971*** 17404*** 452007*** 310908*** 120896*** 
Rep(Env)   8      33       71       456       269       19       439       449       249 
SD   2  1145   3051     3552     1987       90     3172     2524         30 
Env x SD   4    241     641       958       580       41     1283     1001       317 
Env x SD x Rep 12    126     413       707       407       33       775       813       243 
Sp   3  3420** 11101**     9013     4777     263     6890     9002     3858 
Env x Sp   9    445*   1467*   12256***     6865***     383***     8020***     8049***     3402*** 
SD x Sp   6    106     363       856       544       56     1117     1074       483 
Env x SD x Sp 12    120     417       595       364       27       662       533       325 
Error 60      86     241       777       458       35       818       791       330 
CV, %       11       12           8           8       12           4           4           3 
† Env=Environment, Rep=Replicate, Sp= Species  and cultivars  
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.30. Mean forage quality (Ash, CP, and NDF) of forage brassica root/stem with four species and three sowing dates (SD) in 
Fargo and Prosper ND, in 2012 and 2014, and combined across all environments. 

 Ash CP NDF 

Species  SD1§  SD2  SD3 Mean  SD1  SD2 SD3 Mean   SD1   SD2  SD3 Mean 

 ---------------------------------------------------------g kg-1-------------------------------------------------------------- 

Species              

  Turnip     90     90     92     91    131    132    134  132    331   323   310   322 

  Kale     72     83     93     82      92    110    128  110    358   368   344   357 

  Swede     70     72     80     74      94      95    109    99    333   306   316   318 

  W. canola†     96     98   107   100    137    139    155  144    332   320   299   317 

          Mean     82     86     93     114    119    131     339   329   317  

LSD‡ (0.05), SD    NS        NS        NS    

LSD (0.05), Sp     13         24        NS    

LSD (0.05), SDxSp    NS        NS        NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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Table 3.31. Mean forage quality (ADF, ADL, and IVDMD) of forage brassica root/stem with four speciess and three sowing dates 
(SD) in Fargo and Prosper ND, in 2012 and 2014, and combined across all environments. 

 ADF ADL IVDMD 
Species  SD1§  SD2  SD3 Mean SD1 SD2 SD3 Mean   SD1  SD2  SD3 Mean 

 ---------------------------------------------------------g kg-1-------------------------------------------------------------- 

  Turnip    258    251    241    250   45.1   43.3    41.1  43.2    779   788   801  789 

  Kale    273    281    263    272   47.2   49.8    45.4  47.5    768   758   781  769 

  Swede    256    235    244    245   43.7   38.3    42.3  41.5    785   811   796  797 

  W. canola†    254    245    229    243   43.6   41.3    36.8  40.5    790   801   825  806 

          Mean    260    253    244    44.9   43.2    41.4     780   790   801  

LSD‡ (0.05), SD    NS       NS        NS    

LSD (0.05), Sp    NS       NS        NS    

LSD (0.05), SDxSp    NS       NS        NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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Table 3.32. Mean forage quality (NDFD and TDN) of forage brassica root/stem with four species and three sowing dates (SD) in 
Fargo and Prosper ND, in 2012 and 2014, and combined across all environments. 

 NDFD TDN 

Species SD1§ SD2 SD3 Mean SD1 SD2 SD3 Mean 

 ------------------------------------------------------------g kg-1----------------------------------------------------------- 
  Turnip    799    804    815    806    743    746    752   747 
  Kale    770    760    783    771    756    738    743   746 
  Swede    799    824    809    810    765    778    766   770 
  W. canola†    793    803    825    807    738    746    750   745 
          Mean    790    798    808     751    752    753  
LSD‡ (0.05), SD    NS        NS    
LSD (0.05), Sp    NS        NS    
LSD (0.05), SDxSp    NS        NS    
† W. canola = Winter canola. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1 = May 1; SD2 = May 15; SD3 = May 30. 
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3.4.4. Forage brassica and plant density effect 

 The analysis of variance combined across four environments, Fargo and Prosper in 2012 

and 2014, for leaf, root/stem, leaf + root/stem, dead matter, total biomass yield, and total N of the 

biomass yield are presented in Table 3.33.  The plant density (PD) main effect was not 

significant for all parameters evaluated.  The species x PD interaction was significant for 

root/stem biomass yield and root/stem total N.  The species main effect was significant for all the 

parameters evaluated except leaf yield, total biomass and leaf total N.  In leaf biomass yield, leaf 

total N and total biomass yield, no significant differences in main effects nor interaction were 

found. 

 Leaf biomass yield and total N did not show differences between PDs, species and the 

interaction PD x species (Table 3.34).  Root/stem biomass yield had differences between species 

across PDs (Table 3.35).  The highest root/stem biomass yield was in swede cv. Major Plus with 

5.6 Mg ha-1 in PD1 and 5.4 Mg ha-1 in PD3, which was different from kale and forge rape within 

the same PD.  Swedes highest yields were observes in PD1 and PD3.  Kale and forage rape did 

not have differences in yield when different PDs were compared.  These results agree with 

Stefanski et al. (2010) which did not found differences in forage rape yield across different PDs.  

However, this did not agree with Sharaan and Abdel-Gawad (1986), who found differences in 

forage rape yield, when higher PDs were evaluated.  According to Stefanski et al. (2010), forage 

rape has the ability to adjust to increasing competition for resources while maintaining yield 

when grown at low PDs.  The null effect of PD on biomass yield could be explained by the 

scarce differences in the final PD observed in the field at harvest time, which was different that 

the targeted PDs at the beginning of the season (Table 3.38).  These scarce differences could be 

explained by self-thinning during the later stages of development after emergence, particularly in 
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high PDs (Almond et al., 1986; Bilgili et al., 2003).  Also, the losses of seedlings and plants 

could be caused by intra-competition for soil moisture at the heavier sowing rates (Gramshaw 

and Crofts, 1969).   

The total N of root/stem was higher in swede, followed by kale and forage rape across all 

PDs (Table 3.35).  Also, differences among plant densities were observed only in swedes. 

Finally, all the swede PD were different from forage rape root/stem, but only swede biomass 

yield in PD1 was different with all kale PD root/stem yields. 

The total forage biomass (leaf+ root/stem) yield was higher in swede, which was different 

from forage rape (Table 3.36).  This result agrees with Stefanski et al. (2010) who did not find 

differences between different PDs, working with forage rape.  However, they used sowing rates 

between 2 and 5 kg ha-1 to find differences in plant densities, but this sowing rate range could be 

too narrow to find differences.  Conversely, Sharaan and Abdel-Gaward (1986) used sowing 

rates up to 21.5 kg of forage rape finding differences among densities.  In kale, the total yield 

increase was small over a wide range of densities above 15 plants m-2 (Harper and Compton, 

1980).  Also, Cho et al. (1998) found higher forage rape biomass yield with sowing rates greater 

than 9 kg ha-1.  Forage rape densities from 14 to 214 plants m-2 had different biomass yields 

(Gramshaw and Crofts, 1969).  The leaf+ root/stem total N had the same trend than the leaf + 

root/stem yield, with the highest total N in swede, which was different from forage rape but not 

with kale.  Dead matter was higher for forage rape, probably because these species are mature 

earlier than swede and kale, thus the leaves senesce and die (Table 3.37).  Plant density did not 

affect dead matter and total biomass production.    



 

1
2
8
 

Table 3.33. Analysis of variance and mean squares for forage brassica leaf, root/stem, leaf + root/stem, dead matter, and total biomass 
yield, and total leaf, root/stem  total N and total forage biomass yield for forage brassica plant density (PD) in Fargo and Prosper ND, 
2012 and 2014. 

Source of 
variation 

df Leaf    
yield§ 

Root/stem 
yield 

Leaf and 
root/stem 

yield 

Dead 
matter 
yield 

Total 
biomass 

yield 

Leaf  
N   

Root/ 
stem N  

Total  
N ¶ 

Env†   3 103602**‡ 110692* 188321* 96678** 394349*    73.0***   15.0  126.0*** 
Rep(Env)   8       429       965     1342   4072**     8589      0.5     0.5      1.0 
PD   4       665     1300     2502   1046     5761      1.0     0.5      1.6 
Env x PD 12     1556       936     3177   1525     6515      2.0*     0.2      2.8 
Env x PD x Rep 32       759       870     2444   1124     4362      0.7     0.3      1.5 
Sp   2   45085 144163* 253048* 88370*** 117416      2.7   33.1*    52.5* 
Env x Sp   6     9187***   13451***   35734***   2540   45794***      3.5***     4.1***      6.*** 
PD x Sp   8       654     2922**     3877   1916     8194      0.4     0.7*      1.1 
Env x PD x Sp 24       465       749     1676   2279**     4025      0.3     0.2      0.7 
Error 80       606       934     2349     961     4511      0.5     0.3      1.2 
CV, %          28         30         26       21         20    34.0   33.6    29.4 
† Env=Environment, Rep=Replicate, Sp= species and cultivars.  
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Mean squares values were divided by 1000 for better fit on the table. 
¶ Total forage N = Total N of leaf + root/stem biomass. 
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Table 3.34. Mean leaf biomass yield and total leaf N of forage brassica with three species and five plant densities (PD) averaged 
across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Leaf yield Total leaf N 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 -------------------------Mg ha-1---------------------- --------------------------kg ha-1----------------------- 
  Kale   3.5   3.7   3.7   3.8   3.7   3.7    69   75   70   71   78   72 
  Swede   2.7   2.6   2.7   2.3   3.1   2.7    69   69   74   64   86   72 
  F. rape†   2.3   1.9   1.9   1.7   2.1   2.0    73   54   59   51   66   61 
          Mean   2.8   2.7   2.8   2.6   3.0     70   66   68   62   77  
LSD‡ (0.05), PD   NS        NS      
LSD (0.05), Sp   NS        NS      
LSD (0.05), PDxSp   NS        NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
 

 

 

 

 

 

 



 

1
3
0
 

Table 3.35. Mean root/stem biomass yield and total root/stem N of forage brassica with three speciess and five plant densities (PD) 
averaged across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Root/stem yield Total root/stem N 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 -------------------------Mg ha-1---------------------- --------------------------kg ha-1----------------------- 
  Kale   3.0   3.2   3.2   3.4   3.0   3.2    54   57   50   55   47   53 
  Swede   5.6   4.4   5.4   4.0   4.4   4.8    87   70   83   60   67   73 
  F. rape†   1.4   1.4   1.8   1.9   2.0   1.7    25   23   28   27   30   27 
          Mean   3.3   3.0   3.5   3.1   3.1     56   50   54   47   48  
LSD‡ (0.05), PD   NS        NS      
LSD (0.05), Sp   NS        NS      
LSD (0.05), PDxSp                 
    PDxSp1   1.5         27      
    PDxSp2   0.8         13      
    PDxSp3   1.5         27      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. PDxSp1 to compare species means within a same 
PDs; PDxSp2 to compare PD means within the same species, and Sp to compare different PDs means between different species means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.36. Mean leaf plus root/stem biomass yield and total forage N of forage brassica with three species and five plant densities 
(PD) averaged across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Leaf+ root/stem yield Leaf + root/stem N 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 -------------------------Mg ha-1---------------------- --------------------------kg ha-1----------------------- 
  Kale   6.4   6.9   6.9   7.2   6.8   6.8    123   132   120   126   125   125 
  Swede   8.3   7.0   8.2   6.3   7.5   7.5    156   138   156   124   153   145 
  F. rape†   3.7   3.2   3.7   3.5   4.0   3.6      98     76     87     78     96     87 
          Mean   6.1   5.7   6.2   5.7   6.1     126   115   121   110   125  
LSD‡ (0.05), PD   NS          NS      
LSD (0.05), Sp   2.7           35      
LSD (0.05), PDxSp   NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.37. Mean dead matter and total biomass yield of forage brassica with three species and five plant densities (PD) averaged 
across four environments, Fargo and Prosper ND, in 2012 and 2014. 

 Dead matter Total biomass yield 

 PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 -------------------------Mg ha-1---------------------- -------------------------Mg ha-1----------------------- 
Species              
  Kale   3.5   3.8   3.5   3.6   3.0   3.5     9.9  10.7  10.4  10.8    9.7  10.3 
  Swede   4.7   4.8   5.3   4.5   4.6   4.8   13.1  11.8  13.4  10.8  12.1  12.3 
  F. rape†   6.2   5.1   6.2   5.8   6.3   5.9     9.9    8.3    9.8    9.4  10.3    9.5 
          Mean   4.8   4.6   5.0   4.7   4.6    11.0  10.3  11.2  10.3  10.7  
LSD‡ (0.05), PD   NS          NS      
LSD (0.05), Sp   0.7          NS      
LSD (0.05), PDxSp   NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
 
 
 
Table 3.38. Final plant density of forage brassicas at harvest time at Fargo and Prosper, ND, in 2012, and 2014. 

Species/cultivar   PD1†   PD2   PD3   PD4   PD5 

 ------------------------------------------------------plants m-2----------------------------------------------- 
  Forage rape    25    30    41    50    68 
  Kale    24    26    34    46    59 
  Swede    21    25    30    34    48 
† Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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The analysis of variance for forage quality components in forage brassica leaves, 

combined across four environments for Fargo and Prosper in 2012 and 2014, are presented in 

Table 3.39.  The PD main effect was significant only for IVDMD and NDFD.  The species main 

effect was significant for all forage quality parameters, but the interaction was not significant for 

any components evaluated. 

 The ash content and CP were not affected by PDs and a few differences were observed 

among species (Table 3.40).  However, Cho et al. (1998) did find differences among PDs on ash 

content and CP in forage rape leaves while increased linearly with increasing sowing rates.  The 

ADF and ADL content were lower in swede and forage rape (Table 3.41 and 3.42).  The fiber 

content was not affected by PDs, however, Cho et al. (1998) reported that fiber content in leaves 

decreased as sowing rates increased from 3 to 15 kg ha-1.  The IVDMD content was significantly 

higher in PD2, compared with PD5 which could be explained by the increased stem/leaf ratio 

due to competition.  Neutral detergent fiber digestibility was higher for kale and lower for PD5 

compared with the other four PD´s (Table 3.43). 
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Table 3.39. Analysis of variance and mean squares of forage quality components of leaves in three species and five plant densities 
(PD) combined across four environments in Fargo and Prosper ND, in 2012 and 2014. 

Source of 
variation 

df    Ash     CP§   NDF  ADF  ADL IVDMD  NDFD   TDN 

Env†   3 32115***‡ 52628** 51151*** 9242** 1188* 13632** 18851*** 42384*** 
Rep(Env)   8     433     371     231   124     24     208     300*     515 
PD   4     625     353     417   113     13     538**     321*     906 
Env x PD 12     324     285     321     83     22       78       60     396 
Env x PD x Rep 32     256     557**     223   152*     33**     112*     100     329 
Sp   2 11603** 70077***   7872* 4269* 2497** 11204*   5886** 21275** 
Env x Sp   6     965*   2179***   1303**   626***   191***   1259***     465**   1124 
PD x Sp   8     255     232     117     51     13       85       68     271 
Env x PD x Sp 24     349     386     349*   111     23     114*     120*     476 
Error 80     279     280     207     89     17       68       63     339 
CV, %        12       10         6       6     10         1         1         2 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.40. Mean forage quality (Ash and CP) of forage brassica leaves in three species and five plant densities (PD) combined across 
four environments in Fargo and Prosper ND, in 2012 and 2014. 

 Ash CP 
Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   136   130   134   126   134   132    126   131   124   125   131   127 
  Swede   158   147   163   145   158   154    171   166   170   177   173   171 
  F. rape†   124   128   127   127   135   128    190   187   196   197   204   195 
          Mean   139   135   141   133   142     162   161   163   166   169  
LSD‡ (0.05), PD    NS          NS      
LSD (0.05), Sp     14           21      
LSD (0.05), PDxSp    NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.41. Mean forage quality (NDF and ADF) of forage brassica leaves with three species and five plant densities (PD) combined 
across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 NDF ADF 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   235   231   232   226   232   231    177   175   176   176   179   176 
  Swede   251   253   259   246   257   253    161   161   161   161   162   161 
  F. rape†   246   250   245   243   253   247    160   164   163   158   169   163 
          Mean   244   245   246   238   247     166   167   167   165   170  
LSD‡ (0.05), PD    NS          NS      
LSD (0.05), Sp     16           11      
LSD (0.05), PDxSp    NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.42. Mean forage quality (ADL and IVDMD) of forage brassica leaves with three species and five plant densities (PD) 
combined across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 ADL IVDMD 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   48.1   46.8   48.2   48.7   47.6   47.9    903   906   902   904   897   902 
  Swede   40.5   41.2   39.8   38.8   39.9   40.1    879   883   879   880   877   880 
  F. rape†   36.1   36.8   35.1   33.8   33.7   35.1    882   882   879   880   867   878 
          Mean   41.6   41.6   41.0   40.4   40.4     888   890   886   888   880  
LSD‡ (0.05), PD     NS             5      
LSD (0.05), Sp     6.2           16      
LSD (0.05), PDxSp     NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.43. Mean forage quality (NDFD and TDN) of forage brassica leaves with three speciess and five plant densities (PD) 
combined across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 NDFD TDN 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   930   933   930   933   928   931   779  786  782  791   782   784 
  Swede   911   915   913   913   910   912   746  757  741  760   744   749 
  F. rape†   918   919   916   920   907   916   785  780  780  783   771   780 
          Mean   920   922   920   922   915    770  774  768  778   766  
LSD‡ (0.05), PD       4         NS      
LSD (0.05), Sp     10          15      
LSD (0.05), PDxSp    NS         NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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The analysis of variance for forage quality components in forage brassica root/stem, 

combined across four environments for Fargo and Prosper in 2012 and 2014, are presented in 

Table 3.44.  The interaction of species x PD was not significant.  The PD main effect was 

significant for all components except ash, CP, and TDN and the species main effect was 

significant for all components except CP. 

The ash content in forage root/stem was higher in forage rape, which was significantly 

higher than swede but similar to kale (Table 3.45).  Other studies have found differences in ash 

content of root of forage rape as sowing rates varies (Cho et al., 1998).  The NDF, ADF, and 

ADL were higher in forage rape (Table 3.46 and 3.47).  Additionally, PD5 was significantly 

higher than PD1 and PD2 for NDF, ADF and ADL which makes sense, because higher densities 

would cause plants to etiolate, producing longer stems likely with more cellulose, hemicellulose 

and lignin.  It is known plants under competition deposit more cellulose, hemicellulose and 

lignin in the cell wall to stand competition  (Liu et al., 2016).  The IVDMD and NDFD were 

higher in swede, respectively, which were different than kale and forage rape (Table 3.47 and 

3.48).  The IVDMD and NDFD in PD1 were significantly higher than PD3, PD4, and PD5.  

Sowing rate may influence the plant architecture, including plant height, height of the apical 

growing points and leaf to stem ratio modifying the cell wall components and digestibility of the 

forage (Fulkerson, 2008).  
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Table 3.44. Analysis of variance and mean squares of forage quality components of brassica root/stem in three species and five plant 
densities (PD) in Fargo and Prosper ND, 2012 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   3  2509*‡  20682* 912684*** 547774*** 32517*** 864435*** 593059*** 325081*** 
Rep(Env)   8    126      409     3131     1756     102     2482     2580     1073 
PD   4    711    1514   14526*     8100*     468*   12483*   10869*     3118 
Env x PD 12    324      778     3063     1788     121     3350     2826     1207 
Env x PD x Rep 32      78      229     1451       825       54     1331     1205       494 
Sp   2  2687*    7246 282539** 158279**   9441** 220427** 249989** 129123*** 
Env x Sp   6    416    2687***   16952**     9470**     757**   14766*   15406**     2235 
PD x Sp   8    232      406     8629     5114     303     7868     6448     3791 
Env x PD x Sp 24    174***      429**     4194***     2426***     165***     4137***     3573***     1773*** 
Error 80      55      169     1391       810       60     1470     1385       539 
CV, %         9        12         10         10       15           5           5           3 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.45. Mean forage quality (Ash and CP) of forage brassica root/stem in three species and five plant densities (PD) combined 
across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 Ash CP 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   84   86   76   77   77   80    114   115     99   102   101   106 
  Swede   74   73   73   73   73   73      99   100     99     99     98     99 
  F. rape†   97   94   84   77   79   86    136   130   118   110   111   121 
          Mean   85   84   78   76   76     116   115   105   103   103  
LSD‡ (0.05), PD  NS          NS      
LSD (0.05), Sp     9          NS      
LSD (0.05), PDxSp  NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.46. Mean forage quality (NDF and ADF) of forage brassica root/stem in three species and five plant densities (PD) combined 
across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 NDF ADF 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   386   386   382   383   392   386    295   295   291   292   299   294 
  Swede   304   288   317   315   323   309    234   223   244   242   248   238 
  F. rape†   375   418   465   494   481   446    286   319   355   377   367   341 
          Mean   355   364   388   397   399     272   279   297   303   305  
LSD‡ (0.05), PD     28           22      
LSD (0.05), Sp     58           44      
LSD (0.05), PDxSp    NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.47. Mean forage quality (ADL and IVDMD) of forage brassica root/stem in three species and five plant densities (PD) 
combined across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 ADL IVDMD 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   52.3   53.3   51.6   51.3   52.9   52.3    741   738   745   745   737   741 
  Swede   37.5   36.3   40.3   40.6   42.1   39.4    816   820   800   801   794   806 
  F. rape†   51.2   59.3   67.6   73.5   70.6   64.4    753   713   669   638   653   685 
          Mean   47.0   49.6   53.2   55.1   55.2     770   757   738   728   728  
LSD‡ (0.05), PD     5.6           30      
LSD (0.05), Sp   12.3           54      
LSD (0.05), PDxSp     NS          NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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Table 3.48. Mean forage quality (NDFD and TDN) of forage brassica root/stem in three species and five plant densities (PD) 
combined across four environments in Fargo and Prosper ND, in 2012 and 2014. 

 NDFD TDN 

Species PD1§ PD2 PD3 PD4 PD5 Mean PD1 PD2 PD3 PD4 PD5 Mean 

 --------------------------------------------------------g kg-1------------------------------------------------------- 
  Kale   747   742   749   749   741   745   725  723  736  735   729   730 
  Swede   827   832   811   814   806   818   773  780  768  770   767   772 
  F. rape†   752   712   673   647   660   689   719  699  666  651   660   679 
          Mean   775   762   744   737   736    739  734  723  719   719  
LSD‡ (0.05), PD     27         NS      
LSD (0.05), Sp     56          21      
LSD (0.05), PDxSp    NS         NS      
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
§ Targeted PD1 = 33 plants m-2; PD2 = 44 plants m-2; PD3 = 66 plants m-2; PD4 = 133 plants m-2; PD5 = 200 plants m-2. 
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3.4.5. Forage brassica N and S effect 

 The analysis of variance combined across three environments for Prosper in 2012 and 

2014 and Walcott 2014, for relative values (RV) of leaf, root/stem, total forage biomass yield 

(leaf + root/stem), dead matter yield, total biomass yield, and total N are presented in Table 3.49.  

The triple interaction of speciesby N by S is a false interaction due to magnitude differences 

among species.  The double interactions N by S and S by species were not significant for any 

parameter, and N by species was significant only for dead matter due to the effect of the 

magnitude.  The S main effect was not significant.  Species main effect was significant for all 

parameters except leaf yield, total leaf N and total root/stem N. The N main effect was 

significant for all parameters evaluated.  

The same ANOVA is presented in Table 3.50, but with the absolute values.  Although in 

general, significances were similar but there were a few differences compared with the relative 

values.  The N main effect for absolute values was significant for all parameters evaluated.  The 

species main effect was only significant for root/stem yield, leaf + root/stem yield, total biomass 

yield and total leaf + root/stem N.  The S main effect was not significant for any parameter 

evaluated.  Forage brassicas often respond strongly to N but seldom to S (Wilson et al., 2006; 

Fletcher et al., 2010a).  Table 3.51 and 3.52 are ANOVA for leaf and root/stem forage quality. 

All the parameters evaluated were not significant for the main effects species, N, and S. 
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Table 3.49. Analysis of variance and mean squares of relative values for brassica leaf, root/stem, leaf + root/stem, dead matter and 
total biomass yield, and total N for leaf, root/stem and total forage yield for N and S rates in Prosper 2012 and 2014 and Walcott, ND, 
in 2014. 

Source of variation df Leaf   
yield§ 

Root/ 
stem yield 

Leaf and 
root/stem 

yield 

Dead 
matter  

Total 
biomass 

yield 

Total     
leaf N 

Total root/ 
stem N  

Total  
forage N ¶ 

Env†     2     245     5468      6367      1885      6670       2319      3070      4489 
Rep(Env)     6     606       233        361        667*        330         214        454        359 
Sp     1     396   53389*    33866**    13005*    29466**       8282    29773    25968* 
Env x Sp     2   7450*‡     1194        204        150        216         709      2175      1363 
Env x Spx Rep     6     707***       139        226        117        133         612**        189        407* 
N     4   3903***     1348*      2670**      2049**      2428**       4543**      2292**      3437*** 
Env x N     8     263       228        318        218        217         325        179        118 
S     1   1786       480      1061          85        957         123        281        218 
Env x S     2   1376       853      1181        182        772         552        777        832 
N x S     4     230       361        317        197        192         240        262        222 
Env x N x S     8     269       247        277*        376        240*         257        202*        191* 
N x Sp     4     106         86          72        464*        125           75        141        141 
Env x N x Sp     8     461       187        270*        111        195         238        221*        236* 
S x Sp     1         0.006       161          87        218        166           64        367        358 
Env x S x Sp     2       13.2       470*        261        163        176           49        486**        203 
N x S x Sp     4     255       404*        422*          81        292*         231        322**        286* 
Env x N x S x Sp     8     149         83          74        231          66         188          45          56 
Error 108     149       141        143        145        113         154        155        140 
CV, %        25         31          26          20           21           30          34          28 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Mean squares values in columns 1-5 were divided by 1000, but not in columns 6-8. 
¶Total N = leaf + root/stem N. 
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Table 3.50. Analysis of variance and mean squares of absolute values for brassica leaf, root/stem, leaf + root/stem, dead matter and 
total biomass yield, and total N for leaf, root/stem and total forage yield for N and S rates in Prosper 2012 and 2014 and Walcott, ND, 
in 2014. 

Source of variation  df Leaf 
yield§ 

Root/ 
stem yield 

Leaf and 
root/stem 

yield 

Dead 
matter  

Total 
biomass 

yield 

Totael   
leaf  N  

Total root/ 
stem N 

Total 
forage N¶ 

Env†     2 19577  199414  281525 190096***   922590   79425   34552 196746 
Rep(env)     6   2565      3302    10839     2091*     13854       644     1925     4158 
Sp     1   4068  851286**  973068**   30190 1346052**   19251 119129 234224* 
Env x Sp     2 26761*‡      8532      5154     1986       5649     3179     7908     7781 
Env x Sp x rep     6   3318***      1904      6393       372       6171     2417***       734     5083** 
N     4 15018***    21268*    70275**     4021**   107042**     6887***     9653**   32268*** 
Env x N     8     632      3877      6544       316       8843       132       879     1196 
S     1   6645      4115    21223       633     29195         18       755       540 
Env x S     2   6063***    14617    36627       376     33761     1357     3502     9168 
N x S     4     953      5299      8683       224       7055       472     1046     1909 
Env x N x S     8   1223      3899      9205*       393     10674*       431       799*     1908* 
N x Sp     4     377      1321      1871     1099       5287       273       591     1410 
Env x N x Sp     8   1692*      3227      7208       405       8818*       484       998**     2427* 
S x  Sp     1         0.1      1073      1096     1006       4205       214     1164     2378 
Env x S x Sp     2       51      8958*      7829       454       8387         97     2128**     1809 
N x S x Sp     4   1015      6310*    11837*       209     11641*       302     1248**     2432* 
Env x N x S x Sp     8     647      1221      2180       584       2392       217       142       413 
Error 108     637      2571      4463       374       5572       333       690     1470 
CV %        25          31          26         20           21         30         34         28 
† Env=Environment, Rep=Replicate, Sp= Species and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Mean squares values in columns 1-5 were divided by 1000, but not in columns 6-8. 
¶Total N accumulation = N accummulated by leaves + root/stem. 
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Table 3.51. Analysis of variance and mean squares of forage quality components of brassica leaves for N and S rates in Prosper 2012 
and 2014, and in Walcott, ND, in 2014. 

Source of 
variation 

df     Ash     CP§    NDF   ADF   ADL IVDMD NDFD   TDN 

Env†     2   60970 109225  75505 17385  2481  24339 34015 67638*** 
Rep(Env)     6     1063     1889      327       51      86      158       82     858* 
Sp     1     8989   41466    1875   3389    769  16859   7432 18269 
Env x Sp     2     5440   73904***  26503* 12434**  5254***    3837   1681   5848 
Env x Sp x Rep     6     1377***‡     1371***      454     273*      99***      214*     125   1408*** 
N     4     1518     1914      780     467      97      194       55   1333 
Env x N     8       416     1056      551     397      65      348     195*     457 
S     1       736     6504    1543     524    370      236       13     495 
Env x S     2       846     2370      809     117      89      368     222   1009* 
N x S     4         27         81      127       88        2        39       30       22 
Env x N x S     8       325       481      461     174      31        67       90     513 
N x Sp     4       286       231    1163     659      33        41       52     114 
Env x N x Sp     8       583       431      458     311*      35      259     236*     433 
S x Sp     1       358     2054*      148         0.005      97*      598     182     428 
Env x S x Sp     2       854         67        98     329        5      482     149   1088* 
N x S x Sp     4       733       237      166       72        8      164     134     925 
Env x N x S x Sp     8       263       217      389     186      21      124     105     396 
Error 108       280       301      225     123      20        93       89     318 
CV, %          11         14          6         6        9          1         1         2 
† Env=Environment, Rep=Replicate, Sp= Species  and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 3.52. Analysis of variance and mean squares of forage quality components of brassica root/stem for N and S fertility in Prosper 
2012 and 2014, and in Walcott, ND, in 2014. 

Source of variation df    Ash     CP§    NDF     ADF    ADL IVDMD  NDFD    TDN 

Env†     2   2013  13055 467585 269692  15525 411292 275838   96691 
Rep(Env)     6     278      815     1029       632        53     1063     1034       736 
Sp     1 18666  39073 733317 438376  30135 661025 714067 377346 
Env x Sp     2   3408    5476   45904**   29045**    2257**   50573**   42278*  24718*** 
Env x Sp x Rep     6     239***‡      651     1262*       722*        44     1134     1244*       688** 
N     4     316    1045     1432       910        80     1936     1631       785 
Env x N     8     159      526       784       519        47     1215       838       454 
S     1     765    3125       186       216        37       777         61     1307 
Env x S     2     584    2256       224       207        37       716       197       450 
N x S     4       56      208     2417**     1463**      102*     2549**     2421**       629* 
Env x N x S     8       68      246       234       132        16       284       226       149 
N x Sp     4     124*      283     1496       844        50     1126     1171       386 
Env x N x Sp     8       25      131     1031*       664**        68**     1576**    1401***       593* 
S x Sp     1     948    3538       159       144        35       423         18     1271* 
Env x S x Sp     2     322*    1159*     1960**     1105**        80**     2085**    2954***         50 
N x S x Sp     4       29        94       436       259        29*       543       407       227 
Env x N x S x Sp     8       57      166       183       100          7       148       112       132 
Error 108       49      165       458       275        24       540       453       179 
CV, %          9        12           6           6        10           3           3           2 
† Env=Environment, Rep=Replicate, Sp= Species  and cultivars. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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The relative values for leaf and root/stem yield, total forage biomass yield (leaf + 

root/stem), dead matter yield, total biomass yield (leaf + root/stem + dead matter biomass yield) 

and total N showed linear response with increasing N rates (0, 50, 100, 150, and 200 kg N ha-1) 

(Figs. 2, 3, and 4).  These increments in yield with increased N rates are in accord with 

Chakwizira et al. (2015), who reported a linear response to N rates up to 200 kg N ha-1.  Other 

authors also reported increments in yield with increasing N rates (Jung et al., 1984; Albayrak and 

Camas, 2005), however, these authors find quadratic response instead of the linear response 

observed in the present study.  In most of the cases, the difference in biomass yield between the 

highest N rate (200 kg N ha-1) and the lowest (0 kg N ha-1) was between 15% (dead matter yield) 

and 23% (leaf yield).  The differences in total N was higher in leaves with 33% and lowest in 

root/stem with 20%, when the highest and lowest N rates per each parameters were compared. 

Even though S main effect was not significant for biomass yield for this experiment (Table 3.50), 

the differences between 0 S and 40 kg S ha-1 were between 1 and 6 %, with the highest 

difference in leaves and lowest in dead matter (data not shown). 

The trend observed in N as main effect could be explained because brassica forages 

respond to N fertilization up to 400 kg N ha-1 (Fletcher et al., 2010a; Chakwizira et al., 2015). 

The available N for forage brassicas (swede and kale) in the present experiment could have 

limited the growth to reach the maximum potential yield, thus brassicas showed a lineal response 

instead of typical quadratic response observed in experiments with different N rates (Albayrak 

and Camas, 2006).  Another important factor that could explain the observed response to N 

fertilization is the N soil content.  Prosper 2012 and Walcott 2014 shown 44 and 31 kg N ha-1 (N-

NO3 in the soil at 0-60 cm).  The soil N-NO3 plus the highest N rate used in the present 

experiment would have had less than 250 kg N ha-1 available for brassica growth, in these two 
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environments (Table 3.3), which is less than the recommendations of Chakwizira et al. (2015). 

Conversely, Wilson and Manley (2006) did not find a response to N in kale because the N 

content of the soil was high.  According to Fletcher et al. (2007), kale can have null response to 

N in soils with high NO3-N; conversely, in low N soils the response is usually significant. 

However, is important to know that forage brassicas can take up water and nutrients from 0.9 to 

1 m deep (Fletcher et al., 2010a; Fletcher and Chakwizira, 2012).  Thus, the N available for plant 

growth could have been greater than 250 kg N ha-1.  Additionally, Vos and van der Putten (1997) 

reported that the response to N fertilizer in brassicas depends on the amount of residual and 

mineralized N in the soil, which is influenced by the previous cropping history. 

Nitrogen response also is related with the water availability.  The response can be greater 

when irrigation is used or at least adequate rainfall occurs during the growing season (Fletcher et 

al., 2010b; Chakwizira et al., 2013; Chakwizira et al., 2015).  Brassicas must have at least 500 

mm of water to avoid yield reduction by water deficit (Wilson and Maley, 2006).  Fletcher et al. 

(2010b) mentioned that drought conditions of 100 mm rainfall produce half of yield compared 

with full irrigation (328 mm).  However, in the environments evaluated in the present 

experiments the rainfall was low (210, 267, and 251 mm of rainfall in Prosper 2012 and 2014 

and Walcott 2014, respectively).  This agrees with de Ruiter et al. (2009), who reported water 

availability is the main environmental source of forage yield variation in brassicas.  

Also, an interesting aspect is related with the trend shown by relative leaf and dead matter 

biomass yield.  With 0 kg N ha-1, forage yield was composed of 31% leaves and 58% dead 

matter, but with the highest N rate applied, the percentage of both leaves and dead matter 

increased (Figs. 2 and 3), respectively.  That probably occurred, because with limited N the leaf 

area declined faster as leaves senesced mobilizing N to growing points and new leaves (Wilson 
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and Maley, 2006).  The relative total N was higher for leaves than for root/stem, and as N rates 

increased total N increased.  The total N rate was greater for leaves which can be observed in 

Fig. 2.  These results are in accord with the information provided by Chakwizira et al. (2015), 

and Wilson and Maley (2006). 

It was interesting that forage quality was not affected by N rates as expected, especially 

for CP.  Several studies have reported that CP can increase in leaves and root/stem with N 

fertilization but the response depends on N fertilization and weather conditions (Pelletier et al., 

1976; Albayrak and Camas, 2005).  In general, higher CP is explained by higher leaf:stem ratio 

which is promoted by N availability (Pelletier et al., 1976; Moate et al., 1999).  Conversely, other 

authors did not find effect of increasing N rates on leaf and root yield of turnip (Keogh et al, 

2011).  The lack of response to N was likely due to high soil N or high mineralization rate of 

residues of the previous crop.  

       

 
Fig. 3.2. Regression model for relative leaf (y1), root/stem (y2), and total forage yield (leaf + 
root/stem, y3) of swede and kale averaged affected by different N rates averaged across three 
environments in Prosper and Walcott, ND, in 2012 and 2014. 
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Fig. 3.3. Regression model for relative dead matter (y1) and total biomass yield (leaf + root/stem 
+ dead matter, y2) of swede and kale averaged, affected by different N rates averaged across 
three environments in Prosper and Walcott, ND, in 2012 and 2014.  
 

 

 
Fig. 3.4. Regression model for relative leaf, root/stem, and leaf + root/stem total N of swede and 
kale averaged, affected by different N rates averaged across three environments in Prosper and 
Walcott, ND, in 2012 and 2014. 
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3.5. Conclusions 

Full season forage brassicas have an interesting potential in North Dakota, due to the 

high biomass yield and forage quality.  However, differences among species and cultivars within 

a same species were observed.  Forage quality of all brassicas was high, with highly digestible 

forage.  Brassica leaves have high crude protein, and stems/roots have high energy, hence they 

are a very good source for milk and beef production, respectively. In general, species with thick 

stems had higher fiber content and lower fiber digestibility than species with emlarged roots, and 

vice versa, but the fiber in leaves are similar. 

Kale and swede had the highest forage yield, mainly because they have a longer growth 

period to accumulate biomass.  Some forage rape cultivars and hybrids also produce high forage 

biomass, and they have the ability to regrowth, which is desirable characteristic for grazing 

utilization during a long period.  Conversely, species with longer growth period have not time for 

regrowth, thus, they must be utilized completely in just one grazing. 

Sowing date can affect yield components, but in general did not influence forage quality 

of brassicas.  Delaying sowing date reduced total forage yield in all species, but kale and swede 

are more affecte due to the longer growth period that they need to reach maturity.  Root/stem 

yield is more affected than leaf yield when the sowing date is delayed.  Hence, beef producers 

that need high energy for winter feeding, must sow kale or swede early in spring to maximize the 

forage yield. 

Plant density did not have an effect on forage yield averaged across environments and 

species, probably because forage brassicas have the ability to self-thinning, adjusting the plant 

density to minimize the competition.  However, a significant interaction was observed in swede, 

with higher root yield compared with other species, mainly at lower plant density 
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Plant density has an effect on forage quality, because higher plant densities increase 

fiber content (NDF) and decrease the digestibility of the of the fiber (NDFD).  Hence, farmers 

that need highly digestible forage for livestock, must reduce plant density to increase forage 

brassica digestion.  

Kale and swede forage biomass yield (leafand root/stem) increased up to 200 kg N ha-1 

in a linear response, indicating that these species could actually have a response to greater N 

rates.  Sulfur and the interaction between N and S did not have an effect in forage yield and 

quality.  Fields with higher N or low water availability can not show positive response to N 

fertilization.  Brassicas under irrigation or grown in zones with high rainfall during spring and 

summer, can response to higher N fertilization, producing higher biomass yield. 

3.6. Literature cited  

Abrams, S.M., J. Shenk, and F.E. Westerhaus. 1987. Determination of forage quality by near 
infrared reflectance spectroscopy: Efficacy of broad-based calibration equations. J. Dairy 
Sei.70:806-813. 

Albayrak, S., N. Camas, and C. Sevimay. 2004. The influence of row spacing on root and leaf 
yields and yields components of forage turnip (Brassica rapa L.). Turk. J. Field Crops. 
9:72-77. 

Albayrak, S., and N. Camas. 2006. Performance of forage turnip (Brassica rapa L.) cultivars 
under different nitrogen treatments. J. of Fac. Of Agric. 21(1):44-48. 

Almond, J., T. Dawkins, and M. Askew. 1986. Aspects of crop husbandry, pp. 127-175. In: 
Scarisbrick D. H. and D. W. Daniels (Eds.). Oilseed Rape, Collins Professional and 
Technical Books, London. 

Ayres, L., and B. Clements. 2002. Forage Brassicas: quality crops for livestock production. 
Agfact P2.1.13, 1st ed. New South Wales, Australia. 13 p. 

Barnes, R., and C. Nelson. 2003. Forage and grasslands in a changing world. p. 3-23. In Barnes, 
R.F., C.J. Nelson, M. Collins, and K.J. Moore (ed.). Forages: An introduction to 
grassland agriculture (6th ed.). Iowa State Press, Ames, IA. 

Benedict, C., C. Miles, and S. Johnson. 2013. Vegetable fodder and forage crops for livestock 
production: rutabagas. Washington State Univ. Ext. Fact Sheet, FS054E. 5 p. Available at 
http://cru.cahe.wsu.edu/CEPublications/FS054E/FS054E.pdf. (Accessed 23 January 
2017).  



 

 

156 
 

Bilgili, U., M. Sincik, A. Uzun, and E. Acikgoz. 2003. The influence of row spacing and sowing 
rate on seed yield and yield components of forage turnip (Brassica rapa L.). J. Agron. 
Crop Sci. 189:250-254. 

Brown, H., S. Maley, and D. Wilson. 2007. Investigations of alternative kale management: 
production, regrowth and quality from different sowing and defoliation dates. Proc. of the 
New Zealand Grassland Assoc.. 69:29-33. 

Cataldo, B.A., M. Haroon, L.E. Schrader, and V.L. Youngs. 1975. Rapid colorimetric 
determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. 
Plant Anal. 6:71-80. 

Chakwizira, E., J. de Ruiter, and S. Maley. 2015. Nitrogen uptake and nitrogen use efficiency of 
forage kale crops grown under varying amounts of water and nitrogen fertiliser rates in 
shallow soils. Proc. of the 17th ASA Conference, 20-24 September 2015, Hobart, 
Australia. Available at www.agronomy2015.com.au. 

Chakwizira, E., R. Gillespie, S. Maley, M, George, and A. Michel. 2013. Water and nitrogen use 
efficiency of forage kale crops. Agr. New Zealand. 43:67-80.  

Chen, G., A. Clark A. Kremen Y. Lawley, A. Price, L. Stocking, and R. Weil. 2007. Brassicas 
and mustards. p. 81-90. In A. Clark, ed. Managing cover crops profitably. 3rd ed. 
Sustainable Agric. Res. and Education, College Park, MD.  

Cho, N., W. Jin, Y. Kang, B. Kang, and Y. Park. 1998. Effect of sowing rate on growth, yield 
and chemical composition of forage rape cultivars. Korean J. Crop Sci. 43(1):54-58. 

De Ruiter, J., D. Wilson, S. Maley, A. Fletcher, T. Fraser, W. Scott, S. Berryman, A. Dumbleton, 
and W. Nichol. 2009: Management practices for forage brassicas. Forage Brassica 
Development Group. Christchurch, New Zealand. 62 p. 

Dibb, C., and A. Brown. 1964. Effect of dates of sowing on two types of kale and one of 
stockfeed swedes at various harvesting dates. Expl. Husb. 11:75-82.  

Fletcher, A., and E. Chakwizira. 2012. Developing a critical nitrogen dilution curve for forage 
brassicas. Grass Forage Sci. 67:13-23. 

Fletcher, A., D. Wilson, S. Maley, J. Mccallum, and M. Shaw. 2010a. The effect of sulphur and 
nitrogen fertiliser on levels of antinutritional compounds in kale. Proc. New Zealand 
Grassland Assoc. 72:79-84. 

Fletcher, A., H. Brown, D. Wilson, and S. Maley. 2007. Forage production and nitrogen uptake 
of kale. p. 335-342. In Chapman D.F., Clark D.A., Macmillan K.L. and Nation D.P. 
(eds.) Proc. of the 3rd Australasian Dairy Science Symp. National Dairy Alliance: 
Melbourne, Australia. 

Fletcher, A., S. Sinton, R. Gillespie, S. Maley, R. Sim, J. de Ruiter, and E. Meenken. 2010b. 
Drought response and water use efficiency of forage brassica crops. Agronomy New 
Zealand, 40:105-117. 

Francisco, M., P. Velasco, M. Lema, and M. Cartea. 2011. Genotypic and environmental effects 
on agronomic and nutritional value of Brassica rapa. Agron. J. 103(3):735-742. 



 

 

157 
 

Franzen, D. 2013. North Dakota Fertilizer Recommendation: Tables and Equations. 
https://www.ndsu.edu/fileadmin/soils/pdfs/sf882.pdf (Accesed 10 April 2017). 20p. 

Frischke, A. 2011. Lamb production from spring-summer grazing of forage brassica. BCG 2011 
Season Research Results. Available at 
file:///C:/Users/x/Downloads/lamb_production_from_spring_summer_grazing_of_winfre
d_forage_brassica%20(2).pdf. (Accessed 4 January 2017). 3p. 

Fulkerson, B. 2008. Growing forage rape (Brassica napus) in autumn. Future Dairy Tech. Note. 
Univ. of Sydney, Australia. Available at http://futuredairy.com.au/wp-
content/uploads/2016/02/TechNoteBrassica2008.pdf. (Accessed 28 January 2017). 6p. 

Fulkerson, R., and W. Tossell. 1972. An evaluation of marrow stem kale. Can. J. Plant. Sci. 
52:787-793. 

Garcia, S., W. Fulkerson, and S. Brookes. 2008. Dry matter production, nutritive value and 
efficiency of nutrient utilization of a complementary forage rotation compared to a grass 
pasture system. Grass Forage Sci. 63:284-300. 

Gowers, S., R. Butler, and S. Armstrong. 2006. Yield comparisons of old and new cultivars of 
swedes (Brassica napus ssp. napobrassica) in Southland, New Zealand. New. Zeal. J. 
Crop Hort.. 34:109-114. 

Gramshaw, D. and F. Crofts. 1969. Effect of seeding rate and nitrogen fertilizer on production of 
autumn sown rape (Brassica napus) on the Central Tablelands of New South Wales. 
Australian Journal of Experimental Agriculture and Animal Husbandry. 9:350-356. 

Grant, C., and L. Bailey. 1993. Fertility management in canola production. Can. J. Plant Sci. 
73:651-670. 

Griffin, J., G. Jung, and N. Hartwig. 1984. Forage yield and quality of Brassica sp. established 
using preemergence herbicides. Agron. J. 76:114-116. 

Harper, F., and I. Compton. 1980. Sowing date, harvest date and the yield of forage brassica 
crops. Grass and Forage Science. 35(2):147-157. 

Hepp, C., R. Muñoz, P. Almonacid, R. Salvo, O. Teuber. M. Monsalve, and E. Monsalve. 2012. 
Agronomic phase and potential yield of forage brassicas used as bioenergy sources. In 
Hepp, C. (ed.) Local model of forage brassica production with bioenergy and forage uses. 
Instituto de Investigaciones Agropecuarias. Coyhaique (Chile). 82 p.  

Jacobs, J. and G. Ward. 2011. Effect of nitrogen application on dry matter yields, nutritive 
characteristics and mineral content of summer-active forage crops in southern Australia. 
Anim. Prod. Sci. 51:77-86. 

Jacobs, J., Ward, G., McDowell, A., and Kearney, G. 2001. A survey on the effect of 
establishment techniques, crop management, moisture availability and soil type on turnip 
dry matter yields and nutritive characteristics in Western Victoria. Australian J. Exp. 
Agricul. 41:743-751. 

Janzen, H., and J. Bettany. 1984. Sulfur nutrition of rapeseed. Influence of fertilizer nitrogen and 
sulfur rates. Soil Sci. Soc. Am. J. 48:100-107. 



 

 

158 
 

Judson, H., D. Ferguson, M. Cutts, and A. Moorhead. 2013. Live weight gain of lambs grazing 
three forage rapes which differ in total dry matter yield. Proc. of the New Zealand 
Grassland Assoc. 75:257-260. 

Jung, G., R. Kocher, and A. Glica. 1984. Minimum-tillage forage turnip and rape production on 
hill land as influenced by sod suppression and fertilizer. Agron. J. 76:404-408. 

Jung, G., R. Byers, M. Panciera, and J. Shaffer. 1986. Forage dry matter accumulation and 
quality of turnip, swede, rape, Chinese hybrids and kale in the eastern USA. Agron. J. 
78:245-253. 

Jung, G., W. McClellan, R. Byers, R. Kocher, L. Hoffman, and H. Donley. 1983. Conservation 
tillage for forage brassicas. J. Soil Water Conservation. 38(3):227-230. 

Kalmbacher, R., P. Everett, F. Martin, and G. Jungs. 1982. The management of brassica for 
winter forage in the sub-tropics. Grass Forage Sci. 37(3):219-225. 

Kaur, R., S. Garcia, W. Fulkerson, and I. Barchia. 2011. Degradation kinetics of leaves, petioles 
and stems of forage rape (Brassica napus) as affected by maturity. Animal Feed Sci. 
Technol. 168:165-178. 

Keogh, B., T. McGrath, and J. Grant. 2011. The effect of sowing date and nitrogen on the dry-
matter yield and nitrogen content of forage rape (Brassica napus L.) and stubble turnips 
(Brassic rapa L.) in Ireland. Grass and Forage Sci. 67:2-12. 

Kunelius, H., J. Sanderson, and P. Narasimhalu. 1987. Effect of sowing date on yield and quality 
of green forage crops. Can. J. Plant Sci. 67:1045-1050.  

Kunelius, H., L. Halliday, J. Sanderson, and U. Gupta. 1989. Effect of harvest dates on yield and 
composition of forage kale. Can. J. Plant Sci. 69:143-149.  

Lemus, R. and J. White. 2014. Forage Brassicas for winter grazing systems. Cooperative Ext. 
Center, Mississippi State Univ. Available at http://msucares.com/pubs/publications/ 
p2845.pdf. (Accessed 31 January 2017).  

Lemus. R. 2009. Forage Brassicas for Winter Grazing Systems. Available at 
http://msucares.com/crops/forages/newsletters/09/9.pdf. (Accessed 28 January 2017). 6p. 

Liu, W., Y. Deng, S. Hussain, J. Zou, J. Yuan, L. Luo, C. Yang, X. Yuan, and W. Yang. 2016. 
Relationship between cellulose accumulation and lodging resistance in the stem of relay 
intercropped soybean Glycine max (L.) Merr. Field Crops Res. 196:261-267. 

Mitchel, R., and J. Nelson. 2003. Structure and morphology of legumes and other forbs. p. 51-97. 
In Barnes, R.F., C.J. Nelson, M. Collins, and K.J. Moore (ed.). Forages: An introduction 
to grassland agriculture (6th ed.). Iowa State Press, Ames, IA. 

Moate, P., D. Darley, J. Roche, C. Grainger, M. Hannah, and K. Martin. 1999. Turnips and 
protein supplementsfor lactating dairy cows. Australian J. Expeimental Agriculture.  
39:389-400. 

Najda, H. 1991. Forage brassicas. Alberta agriculture, food and rural development. Agri-Facts 
Agdex 128/20-1. Available at 
http://www1.agric.gov.ab.ca/$Department/deptdocs.nsf/all/agdex135. (Verified 7 April 
2017). 2 p. 



 

 

159 
 

NDSU. 2003. Carrington Research Extension Center 2003 Variety Trial Data. Available at 
http://www.ag.ndsu.edu/varietytrials/carrington-
rec/2003Trial%20Results/2003bf03res.pdf/view. (Verified 8 April 2017). 

Neilsen, J., B. Rowe, and P. Lane. 2008. Vegetative growth and development of irrigated forage 
turnip (Brassica rapa var. rapa). Grass Forage Sci. 63:438-446.  

Nichol, W., A. Westwood, A. Dumbleton, and J. Amyes. 2003. Brassica wintering for dairy 
cows: overcoming the challenges. Proc. of the South Island Dairy Event (SIDE), 
Canterbury, New Zealand. p 154-172. 

North Dakota Agricultural Weather Network (NDAWN). 2016. NDAWN Center. North Dakota 
State Univ., Fargo, ND. Available at http://ndawn.ndsu.nodak.edu. (Accessed 15 March 
2017). 

Pelletier, G., E. Donefer, and J. Darisse. 1976. Effects of dates and levels of N fertilization on 
yields, chemical an in vitro digestibility of forage kale. Can. J. Plant Sci. 56: 63-70. 

Penrose, C., H. Bartholomew, R. Sulc, S. Schumacher, and R. Duff. 1996. Performance of 
brassica cultivars from New Zealand and United States seed sources in Southeast Ohio, 
USA. Proc. of the New Zealand Grassland Assoc. 57:111-113.  

Piri, I., A. Rahimi, A. Tavassoli, F. Rastegaripour, and M. Babaeian. 2012. Effect of sulphur 
fertilizer on sulphur uptake and forage yield of Brassica juncea in condition of different 
regimes of irrigation. Afr. J. Agric. Res. 7(6):958-963. 

Rao, S., and F. Horn. 1986. Planting season and harvest date effects on dry matter production 
and nutritional value of Brassica spp. in the Southern Great Plains. Agron. J. 78:327-333. 

Rowe, B and J. Neilsen. 2010. Effects of irrigating forage turnips, Brassica rapa var. rapa, 
during different periods of vegetative growth. 1. Turnip yields, yield components, and 
growth rates. Crop Pasture Sci. 61:885-891. 

Rugoho, I., S. Gibbs, and G. Edwards. 2014. Dry matter intake and body condition score gain of 
dairy cows offered kale and grass. New Zeal. J. Agr. Res. 57(2):110-121. 

Salmon, R.W., and A.J. Dumbleton. 2006. The effect of seed treatment and depth of sowing on 
forage brassica crop establishment in no-tillage situations. Proc. of the New Zealand 
Grassland Assoc. 68:211-214.  

SAS Institute, 2014. SAS User’s Guide: Statistics. SAS Inst., Cary, NC. 

Sharaan, A. and K. Abdel-Gawad. 1986. Effect of cultivars and seeding rate on forage rape yield 
and crude protein content in rape (Brassica napus L.). Ann. Agric. Sci. 24:1857-1870. 

Smith, D., and M. Collins. 2003. Forbs. p. 215-230. In Barnes, R.F., C.J. Nelson, M. Collins, and 
K.J. Moore (ed). Forages: An introduction to grassland agriculture (6th ed.). Iowa State 
Press, Ames, IA. 

Speirs, J. and W.J. Mitchell. 2013. Estimation of nitrogen by Kjeldahl`s method note in the 
ammonia distillation. J. Inst. Brewing. 42:247-250. 

Stefanski, E., S. Garcia, S. Farina, D. Tan, and D. Tanner. 2010. Effects of sowing rate and 
grazing management of forage rape (Brassica napus) on grazing behavior and utilization 
by dairy cattle. Anim. Prod. Sci.. 50:560-567. 



 

 

160 
 

Stephen, R. 1976. Effect of sowing and harvest dates on the leaf and stem yield of marrowstem 
kale in relation to feed quality. Proc. of the Agronomy Soc. of New Zealand 6:43-48. 

Teuber, O., P. Almonacid, M. Monsalve, and E. Monsalve. 2009. Production and nutritional 
quality of five brassicas forages species (Brassica spp.) in the Intermediate Zone of 
Aysen, Patagonia (Chile). Document presented at XXXIV Congreso Anual de la 
Sociedad Chilena de Producción Animal. Pucón (Chile). 

Thompson, B. and D. Stevens. 2012. A comparison of the intake of cows grazing swedes and 
kale and consequent condition score change. Proc. of the New Zealand Grassland Assoc. 
74:63-68. 

Tiryakioglu, H. and M. Turk. 2012. Effects of different sowing and harvesting times on yield and 
quality of forage turnip (Brassica rapa l.) grown as a second crop. Turkish J. Field Crops. 
17(2):166-170. 

Turk, M., S. Albayrak, C. Balabanli, and O. Yuksel, 2009. Effects of fertilization on root and leaf 
yields and quality of forage turnip (Brassica rapa L.). J. Food Agric. Environ. 7(3-4): 
339-342. 

Undersander, D.  and Moore. 2004. Relative forage quality (rfq) -indexing legumes and grasses 
for forage quality.  In: Proceedings, National Alfalfa Symposium, 13-15 December, 2004, 
San Diego, CA, UC Cooperative Extension, University of California, Davis 95616. 4p. 

Villalobos, L. and J. Brummer. 2013. Evaluation of Brassicas for fall forage. In: Proc. Western 
States Alfalfa and Forage Symposium, Reno, NV, 11-13 December, 2013. UC 
Cooperative Ext., Plant Sciences Dep., Univ. of California, Davis, CA. Available at 
http://alfalfa.ucdavis.edu/+symposium/proceedings/2013/13WAS-
23_Villalobos_Brassicas.pdf. (Accessed 6 January 2017). 9 p. 

Vos, J., and P. van der Putten. 1997. Field observations on nitrogen catch crops. I Potential and 
actual growth and nitrogen accumulation in relation to sowing date and crop species. 
Plant Soil. 195:299-309. 

Ward, G. and J. Jacobs. 2013. Effects of defoliation intensity at the first grazing of forage rape 
(Brassica napus L.) by dairy cattle on subsequent regrowth potential, total DM 
consumed, nutritive characteristics and nutrient selection. Anim. Prod. Sci. 53:226-233. 

Web Soil Survey, 2013. Available at http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. 
(Accessed 27 February 2017).  

Westwood, C., and H. Mulcock. 2012. Nutritional evaluation of five species of forage brassica. 
Proc. of the New Zealand Grassland Association 74:31-38. 

Wiedenhoef, M., and B. Barton. 1994. Management and environment effects on Brassica forage 
quality. Agron J. 86:227-232. 

Wilson, D., and S. Maley. 2006. Nitrogen balance for kale. In “Groundbreaking Stuff”. (ed.) N. 
Turner and T. Acuna. Proccedings of the 13th Australian Agronomy Conference. Perth, 
Western Australia, 10-14 September 2006. Available at 
http://regional.org.au/au/asa/2006/posters/systems/4550_wilsondr.htm. 



 

 

161 
 

Wilson, D., J. Reid, R. Zyskowski, S. Maley, A. Pearson, S. Armstrong, W. Catto, and A. 
Stafford. 2006. Forecasting fertilizer requirements of forage brassica crops. Proc. of the 
New Zealand Grassland Assoc. 68:205-210. 

  



 

 

162 
 

CHAPTER 4. AGRONOMIC STUDIES OF BRASSICA COVER CROPS          

4.1. Abstract 

Cover crops are defined as a crop to provide soil protection, but they offer a variety of 

ecosystem services and can be used as forages.  The objectives of this study were: 1) to 

determine the brassica cover crops that adapt to North Dakota and can produce high forage yield 

of good quality, and 2) to determine the sowing date and plant density to optimize forage yield.  

Several species of forage brassicas were sown after August in two locations, in North 

Dakota in 2013-2014.  In general, biomass yield was higher for tops than roots in all species. 

Turnip cv. Appin had the highest above ground biomass yield of all species evaluated while root 

yield and total N was highest in radish cv. Groundhog.  Forage quality varied among species and 

part of the plant (roots and tops).  Tops had higher CP than roots.  Radish tops had the highest 

CP, NDF, and ADF while turnip roots had the highest CP.  Despite the differences, all forage 

brassicas had very high digestibility and are of high quality forage for grazing late in the fall in 

North Dakota.  The first sowing date (8-9 August) had higher or similar forage yield than the 

second sowing date, indicating that forage brassicas for grazing should be sown as soon as 

possible after wheat harvest in North Dakota to optimize forage yield and quality.  Forage quality 

was not influenced by sowing date.  The highest plant density evaluated (≥200 plants m-2) 

produced the highest forage yield across all species, although fiber components (NDF and ADF) 

were higher, reducing the forage quality.  All forage brassicas can be used as cover crops for 

grazing in North Dakota, but it is important to know that marked differences exist among species 

and cultivars within species.  Before deciding which forage brassica(s) to select, growers should 

consider cultivar trials near their location to identify the species and cultivars with the highest 

potential forage yield and quality.  
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4.2. Introduction 

Cover crops are defined as a crop to provide soil protection, and to enhance soil 

characteristics between two cash crop cycles or between trees in orchards or vineyards (SSSA, 

2008), providing several environmental and agronomic benefits (Weil and Kremen, 2007).  

Cover crops have been used since the Roman Empire in Europe, and from middle 1800’s in the 

USA, until they were shelved when synthetic fertilizer become popular in 1950’s (White, 2014). 

Nowadays, they have resurged covering 10.3 million ha in USA in 2013, with a goal of 20 

million ha by 2020 (White, 2014).  North Dakota had an estimated area of 86,000 ha of brassica 

cover crops in 2012 (Berti et al., 2015). 

Annual species and/or their mixtures can be used as cover crops due to their faster growth 

in poor conditions (Fageria et al., 2005).  Plants belonging to Fabaceae (legumes), Poaceaea 

(grasses) and Brassicaceae (brassicas and mustards) are the most widely used as cover crops 

(Clark et al., 2007; Chen et al., 2007; Cupina et al., 2011; Gieske et al., 2016).  Cover crops 

provide several environmental and agronomic benefits (Weil and Kremen, 2007) among them: 1) 

enhancing soil fertility with essential mineral nutrients,  2) reducing nutrient losses (Meisinger et 

al., 1991; Sainju et al., 1998; Vos and Van Der Putten, 2004; Fageria et al., 2005; Cupina et al 

2011; Dagel et al., 2014), 3) increasing soil organic matter content and C sequestration (Sainju et 

al., 2001; Dabney et al., 2001; Fageria et al., 2005), 4) improving soil structure, conserve soil 

moisture, decrease compaction, and reduce soil erosion (Williams and Weil, 2004; Fageria et al., 

2005), 5) increasing soil biological activity (Fageria et al., 2005), 6) suppressing weeds, 

decreasing disease and insect problems (Fisk et al., 2001; Fageria et al., 2005), and 7) improving 

yield of subsequent crops (Sainju et al., 2001; Fageria et al., 2005; Dagel et al., 2014).  In spite of 

these benefits, the integration of cover crops in cropping systems brings costs and disadvantages. 
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The direct costs are associated with sowing (Snapp et al., 2005), while perceived disadvantages 

include competition for water with the main crop, immobilization of N (Dabney et al., 2001), and 

delaying the soil warming  in the spring delaying sowing (Vos and Sumarni, 1997; Snapp et al., 

2005; Stavi et al, 2012). 

Brassica cover crops can improve several soil physical traits.  The plant biomass (tops 

and roots) of forage radish can increase soil organic carbon content (Mutegi et al., 2011; Stavi et 

al., 2012).  These organic components improve soil structure and increase soil biological activity 

(Carrera et al., 2007).  Soil aggregation and porosity is increased by brassica cover crops, 

enhancing water-holding capacity (Prichard, 1998, Dabney et al., 2001) and air and water 

conductivity (Chen et al, 2014).  Water conservation is also improved by the residue left by 

cover crops on the top soil (Clark et al., 2007).  Soil bulk density can be enhanced with brassica 

cover crops (Stavi et al., 2012) and soil compaction is reduced (Williams and Weil, 2004; Clark 

et al., 2007).  The long and thick taproot can break soil compaction efficiently (Weil and Kremer, 

2007; Chen and Weil, 2010; Chen and Weil, 2011).  Once the taproots are killed and 

decomposed, root channels left in the soil can facilitate root growth of the next cash crop 

improving water infiltration (Weil and Kremer, 2007; Chen et al, 2014).  Soils that have had 

forage radish have reduced water run-off when high rainfall events occur (Weil and Kremer, 

2007).  Brassica cover crops can prevent soil erosion caused by winter and spring rains (Dabney 

et al., 2001; Weil and Kremer, 2007), reducing the forces of soil detachment and transport 

(Kaspar and Singer, 2011).  

Brassica cover crops improve soil fertility by capturing leachable nutrients (Dabney et al., 

2001; Sarrantonio, 2007).  Brassicas are the most efficient crops in reducing NO3-N leaching and 

they can decrease leaching by 60 to 90% (Kristensen and Thorup-Kristensen, 2004; MacDonald 
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et al., 2005; Dean and Weil, 2009; Liu et al., 2015; Lacey and Armstrong, 2015).  The root 

morphology and its ability to grow fast and deep in the soil are the main contributors to its 

efficient scavenging ability (Sainju et al., 1998; Chen et al., 2007; Weil and Kremen, 2007).  The 

amount of N accumulation in the tissue is affected by species/cultivar, environment, and 

management (Thorup-Kristensen, 1994; Brennan and Boyd, 2012; Lacey and Armstrong, 2015; 

Gesike et al., 2016).  Brassica cover crops can increase solubilization and availability of P in the 

soil (Shahbaz et al., 2006; Marschner et al., 2007; Makela et al., 2011).  However, several 

freezing/thawing cycles can release the P content in the tissue, increasing potential water soluble 

P release to the environment (Riddle and Bergström, 2013; Liu et al., 2014; Liu et al., 2015).  

Brassica cover crops are used widely in pest control.  Isothiocyanates and other toxic 

compounds are generated from the hydrolysis of glucosinolates (Brown and Morra, 1996; 

Haramoto and Gallandt, 2005; Laegdsmand et al., 2007).  These toxic secondary compounds 

have the potential to control weeds, disease, insects, and nematodes (Brown and Morra, 1997; 

Rosa et al., 1997; Sarwar et al., 1998; Kirkegaard and Sarwar, 1998; Gardiner, 1999; Haramoto 

and Gallandt, 2004; Malik et al., 2008; Weil and Kremer, 2007; Kirkegaard et al., 2008; Ackroyd 

and Ngouajio, 2011; Makela et al., 2011; Björkman et al, 2015).   

The interaction between species/cultivar, location, season/climate, and management will 

determine the cover crops biomass production (Balkcom et al., 2007).  Brassica species can 

produce between 3.0 and 10 Mg DM ha-1 (Balkcom et al., 2007; Björkman et al., 2015); radish 

biomass yield ranges from 1.2 to 13.1 Mg DM ha-1 (Ngouajio and Mutch, 2004; Balkcom et al., 

2007; Samarappuli, and Berti, 2011; Geiske et al., 2016) and rapeseed ranges between 2.2 to 6.7 

Mg DM ha-1 (Balkcom et al., 2007; Chen et al., 2007).  In general, early fall sowing dates 

improves biomass yield (Balkcom et al., 2007; Weil et al., 2009), delaying the sowing date 
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reduces growth and yield (Villalobos and Brummer, 2013).  Brassica cover crop sowing rates 

range between 5.6 to 14.6 kg ha-1 but is increased by 25 to 50% when broadcasted (Balkcom et 

al., 2007). 

The specific objectives of this research were: 1) to identify brassicas species and cultivars 

with high biomass yield and quality when grown as cover crops in North Dakota; and 2) to 

determine the optimum sowing date and plant density of different brassica cover crop species. 

4.3. Materials and methods 

4.3.1. Experimental sites 

Field experiments were conducted from 2013 to 2014 located at two North Dakota State 

University (NDSU) research sites at Prosper (46°58´N, 97°3´W, elevation 284 m), and Fargo 

(46°52´N, 96°47´W, elevation 274 m).  The soil type at Prosper is a Kindred-Bearden silty clay 

loam (Kindred: fine-silty, mixed, superactive, frigid Typic Endoaquoll; Bearden: fine-silty, 

mixed, superactive, frigid Aeric Calciaquoll; Perella: fine-silty, mixed, superactive, frigid Typic 

Endoaquoll).  The soil type at Fargo is; Fargo silty clay soil (fine, smectitic, frigid Typic 

Epiaquert) (Web Soil Survey, 2013).  The previous crop at all two locations was either oat 

(Avena sativa L.), spring wheat (Triticum aestivum L.) or barley (Hordeum vulgare L.) and the 

experimental plots were planted using a no-till system into the previous year crop residue. 

4.3.2. Experimental design and management 

Three experiments were conducted with different brassica species as cover crops: 1) 

species/cultivars experiment (S/CE), 2) sowing date experiment (SDE), and 3) sowing 

rate/density experiment (SR/DE).  The S/C experiment were conducted at Fargo and Prosper in 

2013 and 2014.  Five different species: turnip (6 cultivars), forage rape (2 cultivars), hybrids (5 

cultivars), radish (3 cultivars), and Ethiopian cabbage (1 cultivar) were evaluated (Table 4.1).  
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All experiments were designed as a randomized complete block design (RCBD), with three 

replicates.  

Table 4.1. Species/cultivars, 1000-seed weight and sowing rate of cover crops planted at Fargo 
and Prosper, ND, in 2013 and 2014. 

Specie/Cultivar 
 

Company 
 

1000-seed 
weight 

Sowing rate† 

2013 2014 

  g -------kg ha-1------ 

Turnip     

   Appin Welter Seed & Honey 4.4 5.7 5.8 

   New York MillBorn Seed 1.8 5.9 5.8 

   Rack Ampac 2.8 5.6 5.6 

   Pointer Ampac 2.6 5.6 5.7 

   Purple Top Millborn Seeds 2.4 5.6 5.6 

   Barkant Barenburg 1.9 5.6 5.9 

Rape     

   Barnapoli Welter Seed & Honey 3.5 6.8 6.8 

   Dwarf Essex Millborn Seeds 4.7 7.1 7.2 

Hybrid‡     

   Winfred Millborn Seeds 4.7 6.9 6.8 

   Pasja Ampac 2.5 7.1 7.3 

   Hunter Millborn Seeds 3.1 6.7 6.8 

   T-Raptor Barenburg 3.2 6.7 7.0 

   Vivant Mountain View Seeds 2.8 6.7 6.7 

Radish     

   Daikon Millborn Seeds 14.9 11.2 11.3 

   Graza PGG - 12.0 12.3 

   Groundhog Welter Seed & Honey 18.5 11.4 11.8 

Ethiopian cabbage     

   Corinne PGG 2.8 7.1 7.0 
† The sowing rates were corrected for % seed germination. Germination tests were conducted per 
every species/cultivars, every season. 
‡ Hybrid Winfred (Brassica rapa L. x B. oleracea L.), hybrid Pasja, Hunter, T-Raptor, and 
Vivant (Brassica rapa L. x B. napus L.) 
 

The SD experiment was conducted at Fargo in 2014 and Prosper in 2013 and 2014.  The 

experimental design was a RCBD with three replicates, and a split-plot arrangement.  The 

sowing dates (two) were the main plot.  The sub-plots were four species, turnip cv. Purple Top, 

forage rape cv. Dwarf Essex, radish cv. Daikon, and Hybrid cv. Pasja.  The SR/D experiment 
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were conducted in Fargo in 2014 and Prosper in 2013 and 2014.  The experimental design was a 

RCBD with three replicates, and a split-plot arrangement.  The four plant densities were assigned 

to the main plot.  The brassica cover crops turnip cv. Purple Top, radish cv. Daikon, and hybrid 

cv. Pasja were assigned to the sub-plot.  

Experiments were established in a no-till system, on top of cereal stubble (oat, wheat, or 

barley), using a plot-cone planter (Wintersteiger, Plotseed XL, Salt Lake City, UT).  Glyphosate 

[n-(phosphonemethyl)glycine] was applied before or after sowing to control weeds or cereal 

volunteer regrowth, with an application rate of 1.1 kg ai ha-1.  Cover crops were sown using a 

specific sowing rate of pure live seed (PLS) according with the recommendation for each species 

(Table 4.1) and a depth of approximately 8 to 15 mm.  The SR/D plots were sown with the 

normal sowing rate for each species.  One plot was left unthinned and the others were thin down 

to 15, 10, and 5-cm apart in the row to obtain four different densities (44, 66, 133, and >200 

plants m-2).  Each plot was 1.2 m wide and 6.1 m long (7.4 m-2), with 8 rows of crop 15 cm apart.  

The sowing date for S/C and SR/D experiments was between August 8 to 12 in 2013 and 2014 

(Table 4.2).  The SD experiment had two SD, August 9 to 12 for the first SD, and August 23 to 

25 for the second SD, considering both years (Table 4.2). 

One application of Sniper (bifenthrin: (2 methyl[1,1'-biphenyl]-3-yl) methyl 3-(2-chloro-

3,3,3-trifluoro- 1-propenyl)-2,2-dimethyl-cyclopropanecarboxylate) to control flea beettle 

(Phyllotetra cruciferae L.) was done two weeks after sowing.  Helix Xtra (difenoconazole: 1-[2-

[2-chloro-4-(4-chlorophenoxy)phenyl]-4-methyl-1,3-dioxolan-2-ylmethyl]-1H-1,2,4-triazole) 

was used as a seed treatment to prevent flea beetle damage using 1.5 L 100 kg seed-1, with no 

apparent benefits in the control.  Fertilizers were not applied to cover crop experiments. 
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Table 4.2. Sowing and harvest dates and number of days from sowing to harvest in each 
experiment at Fargo and Prosper, ND, in 2013 and 2014. 

 2013 2014 

Exp./Location Sowing Harvest No. days Sowing Harvest No. days 

Fargo       
  S/CE† 8 Aug 21 Nov 105 11 Aug 30 Oct 80 
  SR/DE‡    11 Aug    4 Nov 85 
  SDE¶       
   Date 1    11 Aug 29 Oct 79 
   Date 2    26 Aug 29 Oct 64 
Prosper       
  S/CE 9 Aug 15 Nov 99 12 Aug 31 Oct 80 
  SR/DE 9 Aug 19 Nov     103 12 Aug    3 Nov 83 
  SDE       
   Date 1 9 Aug 12 Nov 96 12 Aug 24 Oct 74 
   Date 2    23 Aug 12 Nov 82 25 Aug 24 Oct 61 
†S/CE: Species/cultivar experiment 
‡SR/DE: Sowing rate/density experiment 
¶ SDE: Sowing date experiment 
 

4.3.3. Evaluations 

Brassica cover crops were harvested in November in 2013 and in October and early 

November in 2014 (Table 4.2).  Three plant height measurements were taken before harvest in 

each plot from the soil surface to the longest vegetative part of the plant.  Biomass yield was 

measured harvesting 1m2 randomly in each plot to determine both above and belowground 

biomass.  Enlarged roots and/or taproots were removed from the soil pull them up or using a 

shovel, to harvest the maximum of enlarged or taproot tissue.  Each whole plant harvested was 

divided in above ground biomass (stems and leaves, henceforth “tops”) and below ground 

biomass (roots) and bagged separately.  Large roots of radish or turnip were chopped in a food 

processor to 5 mm of thickness or less (Sunbeam food processor Model Le Chef, Chicago, IL) 

when fresh, leaving thin slices of 5 mm.  All the samples bags were weighed wet and dried at 

around 43.3°C.  Samples remained in the driers several days until the weight loss was stabilized 

and were weighed to obtain the dry weight. 
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Dried samples were ground in a mill (Wiley Mill standard Model Nº3, Philadelphia, PA) 

to 1-mm mesh and then sent to laboratories to determine nutritional values.  All the samples were 

analyzed in a near infrared reflectance spectroscopy (NIRS) (Foss-Sweden Model 6500, 

Minneapolis, MN) in Dr. Undersander’s laboratory, Agronomy Department, University of 

Wisconsin, Madison, following the methods described by Abrams et al. (1987).  Chemical 

analysis for some samples of leaves, stems, and roots were conducted at Animal Sciences 

Nutrition Laboratory at NDSU.  The results were used to build the equation to determine 

nutritional values in the NIRS.  The component determined were ash, crude protein (CP), acid 

detergent fiber (ADF), neutral detergent fiber (NDF), neutral detergent fiber digestibility 

(NDFD), acid detergent lignin (ADL), in vitro dry matter digestibility (IVDMD), and total 

digestible nutrients (TDN). 

The total N in each species/treatment plot was determined from CP content, obtained 

from NIRS results.  Total N was calculated with the equation: N = CP/6.25 (Kjeldahl method) 

(Speirs and Mitchell, 2013).  Total N was calculated arithmetically multiplying the above and 

below ground forage biomass yield in kg ha-1 by the N content.  Total N (kg N ha-1) of forage 

produced was calculated using the N concentration (%) in the tissue (tops or roots), times the 

total biomass yield produced per ha. 

4.3.4. Statistical analysis 

The statistical analysis was conducted using standard procedures for a simple RCBD and 

a RCBD with a split-plot arrangement.  Each location-year combination was defined as an 

‘environment’ and was considered a random effect in the statistical analysis.  Specie/cultivars, 

sowing rates, and plant densities were considered fixed effects.  Analysis of variance and mean 

comparisons were conducted using the procedure Mixed of SAS (SAS, 2014).  Error mean 
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squares were compared for homogeneity among environments according to the folded F-test and 

if homogeneous, then a combined ANOVA was performed across environments.  Treatment 

means separation was determined by F-protected LSD comparisons at the P≤0.05 probability 

level. 

4.4. Results and discussion 

4.4.1. Rainfall and temperature  

 The historical 25-years rainfall average was 467 and 445 mm for Fargo and Prosper, 

respectively (Fig. 4.1) (NDAWN, 2016).  The rainfall was below the 25-year historical average 

during sowing time (August 2013) in Fargo and Prosper, and in 2014 in Fargo but not in Prosper. 

Limited rainfall in August 2013 delayed germination and emergence of cover crops.  Sowing 

dates in Fargo and Prosper were 8 and 9 August, respectively, but the first effective rain was in 

August 29 in Fargo (21 days later) and 25 August in Prosper (16 days later).  During September 

and October 2013, the rainfall was above the 25-year average in Fargo and Prosper, but in 2014 

rainfall was below average in both places.  October 2014 was the driest month of the season in 

Fargo and Prosper with less than 10 mm of rainfall, which likely affected the cover crops growth 

late in the season.  Water availability is the most important factor on forage brassica growth (de 

Ruiter et al., 2009; Fletcher et al., 2010).  Total rainfall for the whole growing season (August to 

October) was between 220 and 224 mm in Fargo and Prosper 2013, respectively, and between 93 

and 110 mm for Fargo and Prosper 2014, respectively. 

The minimum and maximum temperature recorded during 2013 and 2014 were relatively 

similar with the 25-year minimum and maximum temperature averaged across the growing 

season (Fig. 4.1).  In 2013, the minimum and maximum temperature were between 1 and 3°C 

higher than the 25-year average between August and October in Fargo and Prosper.  Differences 
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between minimum and maximum temperature during August to October 2014 were lower 

compared with 2013.  In general, daily temperature decreased from 13 and 28°C  in July to 1 and 

15°C in October, for minimum and maximum, respectively, slowing down growth at the end of 

the season.  Temperature for germination was optimal during August, because the bare soil in 

Fargo and Prosper in both season was >21°C at sowing (data not presented).  This temperature is 

optimal for a fast germination and emergence (Smith and Collins, 2003), allowing plants to 

emerge in 10 days or less after sowing as long soil water is available (Jung et al., 1986). 
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Fig. 4.1. Monthly average minimum and maximum air temperatures and monthly total rainfall in 
2013 and 2014 compared with the 25-yr (1990-2014) average at Fargo (A) and Prosper (B). 

 



 

 

173 
 

4.4.2. Brassica cover crops species and cultivars performance 

The analysis of variance across three environments in Fargo 2014 and Prosper, ND, in 

2013 and 2014, for tops (leaves + stems), roots, total forage yield (tops+roots), total N in tops, 

roots, and total N of forage yield are presented in Table 4.3.  Species and cultivars, henceforth 

‘species’, main effect was significant for tops and roots biomass yield and roots total N.  The 

interaction between species and environment was not significant for any parameters. 

Even though cover crops were sown at a time of the season with high temperature (over 

20°C), most of the growth occurred when temperaures started declining, which affected their 

biomass accumulation (Wiedenhoeft, 1993; de Ruiter et al., 2009).  Additionally, water supply 

was low in most of the cases, during sowing and growing, reducing total biomass yield (Rowe 

and Neilsen, 2010).  

Top biomass yield fluctuated between 1.6 Mg ha-1 in radish cv. Graza and 3.6 Mg ha-1 in 

turnip cv. Appin (Table 4.4).  Turnip cv. Appin had significantly higher tops yield than all radish 

cultivars, forage rape cv. Dwarf Essex, and turnip cv. Rack and New York.  The root biomass 

yield was lower compared with that of tops and fluctuated between 0.5 and 1.8 Mg ha-1. 

‘Groundhog’ radish had the highest root yield, different than all forage rape and hybrid cultivars, 

Ethiopian cabbage cv. Corine and radish cv. Graza.  The top and root biomass yield in this study 

were lower than the total biomass yield reported by Dean and Weil (2009), even though their 

growing season is longer (4 to 5 months).  A high leaf/root ratio is normal in cover crops at early 

stages, because after the initial tap root development, above ground plant parts grow faster (Isse 

et al., 1999; Dean and Weil, 2009).  The total N by tops was not significant, probably due to 

differences in top biomass yield across environments that masked differences in one particular 

environment.  The total N in roots was the lowest in Ethiopian cabbage cv. Corine and highest in 
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radish cv. Groundhog with 4 and 35 kg N ha-1, respectively.  ”Groundhog” was different than 

most species and cultivars, except turnip cv. Appin and Purple Top, and radish cv. Daikon (Table 

4.4).  Other authors have reported similar responses in total N by forage radish even in areas with 

longer growing season, (Isse et al., 1999; Dean and Weil, 2009).  However, Kristensen and 

Thorup-Kristensen (2004) and Weil et al. (2009) reported higher total N than the present study in 

forage radish due to a rapid growth and high N availability in the soil (Weil et al. 2009), and 

also, because the radish taproot can reach 1.8 m deep, taking up N from very deep zones 

(Alayna, 2012).  In general, the total N reported in the present study can be considered low, most 

likely due to lack of water for growth.  Nitrogen immobilization could  also have played a minor 

role in the low total N observed since cover crops were sown on cereal residue with a high C:N 

ratio, (Dean and Weil, 2009).  

The analysis of variance across three environments, Fargo 2014 and Prosper 2013 and 

2014, indicated the species main effect was significant for all forage quality components of plant 

tops, except ADL.  The interaction between species and environment was significant only for 

ash, NDF, IVDMD, NDFD and TDN (Table 4.5).   

Top ash content fluctuated between 113 g kg-1 in Ethiopian cabbage cv. Corine and 196 g 

kg-1 in radish cvs. Daikon and Groundhog (Table 4.6), which were higher or similar in ash 

content than hybrids, turnips, and forage rape in other studies (Westwood and Mulcock, 2012; 

Barry, 2013).  Differences in ash content reported by other studies is a result of the part of the 

plant reported, just tops (Westwood and Mulcock, 2012) or the whole plant (Barry, 2013).  The 

species with the highest CP content in the tops was radish, with values of 180 and 178 g kg-1 for 

‘Groundhog’ and ‘Daikon’, respectively.  The lowest CP content was 137 g kg-1 in forage rape 

cv. Hunter and T-Raptor.  Radish cv. Daikon had the highest content of NDF and ADF with 268 
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and 206 g kg-1, respectively.  In general, CP was lower than that reported by other researchers 

(Wiedenhoeft and Barton, 1994; Kaur et al., 2011, Westwood and Mulcock, 2012) which can be 

explained by low soil water availability and high temperature observed in some environments 

which likely limited N absorption decreasing the CP content in the tissue (Dean and Weil, 2009). 

The lowest fiber values were in hybrids cv. Winfred and Hunter with 217 g kg-1 of NDF, and 164 

g kg-1 of ADF with turnip cv. Barkant.  Similar fiber content values in hybrids has been reported 

before (Guilard and Allinson, 1988; Wiedenhoeft and Barton, 1994; Kaur et al., 2011). 

Environmental conditions such as high temperature, light intensity, photoperiod, and low soil 

water availability can increase fiber content and decrease CP content (Guillard and Allinson, 

1988; Wiedenhoeft and Barton, 1994).  Several authors have reported that CP content is about 25 

to 60% greater in the aerial part than in the roots (Rao and Horn, 1986; Jung et al., 1986; Smith 

and Collins, 2003; Nichol et al., 2003; Villalobos and Brummer, 2013; Lemus and White, 2014).  

The IVDMD and NDFD values were lower in radish cv. Groundhog with 876 and 920 g 

kg-1, respectively and highest in hybrid cv. Hunter with 912 and 942 g kg-1, respectively.  The 

lowest TDN was in radish cv. Daikon and Groundhog, with 704 and 705 g kg-1, respectively and 

the highest value was 800 g kg-1 in the hybrid cv. Winfred (Table 4.6).  Logically, species with 

the highest NDF and ADF also had the lowest IVDMD, NDFD, and TDN.  Conversely, some 

hybrids with low fiber content, were the species with higher digestibility.  Higher fiber content 

decreases fiber digestibility and digestible nutrients due to the rumen microbes have more 

difficulty to digest the fiber (Depeters and Heguy, 2013).    

The analysis of variance across three environments, Fargo 2014 and Prosper 2013 and 

2014, indicated the species main effect and the species and environment interaction were 

significant for all forage quality components of roots (Table 4.7).  The root ash content 
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fluctuated between 52 and 86 g kg-1 and CP between 63 and 126 g kg-1, with the lowest content 

in Ethiopian cabbage cv. Corine and the highest in turnip cv. Purple Top and Appin, respectively 

(Table 4.8). The ash content in roots was lower than in leaves because leaves had more 

contamination with soil because roots were washed before drying them.  

Radish was the species with the lowest fiber and lignin content in the roots.  The NDF, 

ADF, and ADL contents were higher in Ethiopian cabbage cv. Corine, with 734, 567, and 133 g 

kg-1, respectively.  Ethiopian cabbage was significantly different with all species and cultivars in 

all of these three parameters evaluated.  The lowest content of NDF, ADF, and ADL was found 

in radish cv. Daikon, with 216, 167, and 23 g kg-1, respectively.  The lower fiber content could 

be explained by the short growing season.  Fiber accumulation accelerates when the plant is 

reaching maturity (Wiedenhoeft and Barton, 1994), but in this case cover crops grew less than 

105 days, remaining in vegetative stage.  In addition, radish was the species with the highest 

IVDMD, NDFD, and TDN with average of 879, 891, and 808 g kg-1, respectively, followed by 

turnip and hybrids.  The lowest IVDMD, NDFD and TDN were found in Ethiopian cabbage cv. 

Corine, with 357, 370 and 409 g kg-1, respectively, followed by forage rape cv. Barnapoli.  
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Table 4.3. Analysis of variance and mean squares for tops, roots, top + root biomass yield and total N of brassica cover crops in Fargo 
2014 and Prosper 2013 and 2014, ND. 

Source of 
variation 

df       Top      
      yield 

     Top  
   total N   

    Root  
    yield 

    Root  
   total N  

 Top + root 
     yield          

Top + root  
   total N    

Env†   2       6688‡§     17312*     5822*      930     10984    15368 
Rep(Env)   6       3520**       2887*       625*      282**       6992***      4932** 
Sp 16       2307*         176     1418***      726***       2932      1989 
Env x Sp 32       1093         913       215        91       1727      1328 
Error 96         949       1013       209        78       1661      1430 
CV, %            36           47         45        49           35          44 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Mean squares values in columns 1-3 were divided by 1000, but not columns 4, 5, and 6. 
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Table 4.4. Mean biomass yield of tops, roots, total forage, and total N of different species/cultivars of brassica cover crops averaged 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 Tops  Root Total§ 

Species/cultivar  Yield Total N Yield Total N  Yield Total N  

 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 Mg ha-1 kg ha-1 
Turnip       
   Appin            3.6            97            1.4            28            5.0          124 
   New York            2.4            58            1.2            24            3.6            82 
   Rack            2.4            61            1.3            21            3.6            82 
   Pointer            3.3            82            1.3            24            4.6          106 
   Purple Top            2.7            74            1.3            26            4.0            99 
   Barkant            3.0            70            1.3            21            4.3            91 
Forage rape       
   Barnapoli            2.7            68            0.5              5            3.2            74 
   Dwarf Essex            2.3            56            0.7              9            2.9            65 
Hybrids       
   Winfred            3.1            73            0.8              9            3.8            83 
   Pasja            3.2            81            0.6            12            3.8            92 
   Hunter            3.0            67            0.8            14            3.8            81 
   T-Raptor            2.8            64            0.6            12            3.5            76 
   Vivant            2.8            66            0.7            13            3.5            79 
Radish       
   Daikon            2.1            61            1.5            30            3.6            91 
   Graza            1.6            47            1.1            22            2.8            69 
   Groundhog            2.1            61            1.8            35            3.8            95 
E. cabbage†       
   Corinne            2.6            67            0.5              4            3.2            71 
        LSD‡ (0.05)            1.0            NS            0.5              9            NS            NS 
† E. cabbage = Ethiopian cabbage. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§ Total yield includes tops and roots. 
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Table 4.5. Analysis of variance and mean squares of forage quality components of brassica cover crop tops in three environments, 
Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

Df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   2   36185***‡   50765***  45528***  23585***   4050***     510*    4545***  43572*** 
Rep(Env)   6       202     1654**    1072***      182       74*       42      112      334 
Sp 16     7851***     1472*    1907***    1249***       59   1040***      345**    9410*** 
Env x Sp 32       459***       644      497**      148       45     157**      113*      430* 
Error 96       192       495      241      125       29       75        69      240 
CV, %            8         14          7          6       11         1          1          2 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.6. Mean forage quality components of brassica cover crop tops averaged across three environments, Fargo 2014 and Prosper 
2013 and 2014. 

Species/cultivar Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

 ------------------------------------------------------------------g kg-1--------------------------------------------------------------- 
Turnip         
   Appin        184        157        230       174       47.3       899       936       723 
   New York        188        147        238       179       47.9       892       926       717 
   Rack        177        153        233       173       47.2       903       934       731 
   Pointer        186        144        224       167       48.0       911       940       724 
   Purple Top        180        156        241       173       46.0       890       928       724 
   Barkant        178        141        223       164       49.1       907       937       732 
Forage rape         
   Barnapoli        129        157        226       179       48.3       899       934       782 
   Dwarf Essex        117        149        234       177       50.7       896       929       795 
Hybrids         
   Winfred        116        147        217       175       50.1       908       936       800 
   Pasja        184        148        222       167       48.3       904       936       726 
   Hunter        174        137        217       167       51.0       912       942       738 
   T-Raptor        188        137        227       173       51.2       907       934       721 
   Vivant        187        150        227       170       48.0       910       941       724 
Radish         
   Daikon        196        178        268       206       43.4       877       925       704 
   Graza        184        169        244       179       44.3       894       931       719 
   Groundhog        196        180        263       198       42.1       876       920       705 
E. cabbage†         
   Corine        113        162        227       196       47.1       896       927       795 
        LSD‡ (0.05)          21          24          21         12         NS         12         10         20 
† E. cabbage = Ethiopian cabbage. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.7. Analysis of variance and mean squares of forage quality components of brassica cover crop roots in three environments, 
Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   2   2371***‡  10476***  441588*** 272642***  14883*** 434607*** 286877***  88647*** 
Rep(Env)   6       97      268      5929***     3484***      205***     5570***     4085**    2075*** 
Sp 16   1068***    3707***  187879*** 110284***    8247*** 188690*** 191286***  96168*** 
Env x Sp 32     198***      656***      9480***     5311***      363***     8038***     8259***    2978*** 
Error 96       86      267      1198       687        48     1132     1020      492 
CV, %        12        15          11         11        16           4           4          3 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.8. Mean forage quality of brassica cover crop roots averaged across three environments, Fargo 2014 and Prosper 2013 and 
2014. 

Species/cultivar Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

 ------------------------------------------------------------------g kg-1--------------------------------------------------------------- 
Turnip         
   Appin         86        126        247       192         30       849       863       793 
   New York         85        121        221       172         25       877       888       800 
   Rack         76        105        252       193         29       854       864       800 
   Pointer         76        111        252       194         29       854       866       800 
   Purple Top         86        123        243       188         28       863       876       796 
   Barkant         71          97        218       168         22       887       898       820 
Forage rape         
   Barnapoli         54          71        571       437         96       536       543       605 
   Dwarf Essex         67          94        405       307         60       709       711       734 
Hybrids         
   Winfred         64          86        412       313         63       697       700       729 
   Pasja         82        122        259       198         32       843       853       794 
   Hunter         81        122        261       200         33       839       850       792 
   T-Raptor         83        125        264       202         34       836       844       789 
   Vivant         83        123        253       194         31       847       858       795 
Radish         
   Daikon         85        125        216       167         23       887       899       807 
   Graza         80        121        225       173         27       866       877       808 
   Groundhog         85        125        219       170         23       884       898       808 
E. cabbage†         
   Corine         52          63        734       567       133       357       370       409 
        LSD‡ (0.05)         14          25          94         70         18         86         87         52 
† E. cabbage = Ethiopian cabbage. 
‡ LSD= Least significant difference used as mean separation method, with a probability of 0.05. 
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN).
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4.4.3. Sowing date effect on brassica cover crops forage yield and quality 

The analysis of variance and mean squares for brassica cover crop tops, roots, top + root 

biomass yield and the total N of the biomass yield, for different sowing dates (SD) combined 

across three environments (Fargo 2014 and Prosper 2013 and 2014), are presented in Table 4.9. 

The interaction species by SD was significant for all the parameters evaluated.  The SD main 

effect was significant only for root and top + root biomass yield, and root total N.  The species 

main effect was significant for all parameters evaluated except tops total N and total N of 

biomass yield. 

The top biomass yield was higher in the hybrid cv. Pasja with 4.0 Mg ha-1 (Table 4.10). 

In SD2, radish cv. Daikon had the lowest yield with 1.9 Mg ha-1.  The effect of SD was 

significant only in radish and the hybrid, with higher biomass yield in SD1 for both crops.  The 

root yield was higher in turnip cv. Purple Top with 1.9 Mg ha-1, which was significantly higher 

to all other yields except radish cv. Daikon in SD1.  The total biomass yield (top + root) had 

significant differences across the SDs for turnip, radish, and hybrid, but not for forage rape.  The 

SDs had effect on turnip, radish, and hybrid with higher yield in SD1compared with SD2.  The 

highest yield was in hybrid cv. Pasja with 4.7 Mg ha-1 in SD1, which was different with forage 

rape in SD1 and all the yields in SD2. 

Other authors have also reported that early fall sowing dates increase biomass yield 

(Balkcom et al., 2007; Weil et al., 2009; Villalobos and Brummer, 2013).  Radish yield was more 

sensitive to a delay in sowing date than forage rape.  Weil et al., (2009) reported this same trend, 

indicating sowing date is more critical in forage radish than rapeseed, in the mid-Atlantic, 

allowing the crop to take up significant amounts of soil N before it is frost-killed.  Radish is frost 

tolerant but several continuous nights with -5°C can kill it, which can make a difference in total 
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forage production  by November (Weil et al., 2009).  Radish grows best when planted from late 

July to early September but significant amounts of N can be captured by it when planted as late 

as 1 October (Weil et al., 2009).  In the southern Great Lakes Region, optimum sowing date for 

mustard is recommended from 13 to 23 August for optimal growth and no later than early 

September for adequate stands (Björkman et al., 2015).  Delaying the sowing date reduces dry 

matter yield accumulation during the fall and early winter (Villalobos and Brummer, 2013).  

The top total N in hybrid cv. Pasja was 95 kg N ha-1, which was higher than in turnip and 

forage rape in SD1 and radish and hybrid in SD2 (Table 4.11).  Root total N was higher in turnip 

and radish in SD1 with 31 and 32 kg N ha-1, respectively, which were higher than forage rape 

and hybrid in SD1 and all species in SD2.  The higher total biomass yield N was in radish and 

hybrid with 106 and 107 kg N ha-1, respectively.  The SD effect was clear in radish and the 

hybrid where the total N in SD1 was significantly higher than the total N in SD2.  A higher total 

N is related directly to forage yield, thus delaying the sowing date decreased N accumulation in 

all species, especially in radish. 

The analysis of variance for top quality components in different sowing dates (SD) 

combined across three environments (Fargo 2014 and Prosper 2013 and 2014), are presented in 

Table 4.12.  The interaction species by SD and the SD main effect were not significant for any 

components evaluated.  The species main effect was significant in all quality components except 

ADF. 
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Table 4.9. Analysis of variance and mean squares for brassica cover crop tops, roots, top+root yield, and total N for sowing date (SD) 
in three environments, Fargo 2014 and Prosper 2013 and 2014. 

Source of variation df Top yield§ Root yield Top + root yield Top total N  Root total N  Total biomass 
yield N¶ 

Env†   2      11295          992          18278*        2653         103        3581 
Rep(Env)   6        1109            32            1137        1770             9        1929 
SD   1        4483        7474*          23533*          624       1597*        4224 
Env x SD   2          316          178              912          311           19          390 
Env x SD x Rep   6          685*‡          111              659        1031*           30        1104* 
Sp   3        3935**        3745**            2619*          720       1346***          248 
Env x Sp   6          342          232              522          489           43          650 
SD x Sp   3        1493*          879**            2149*        1603*         254*        1873* 
Env x SD x Sp   6          231            68              335          283           31          372 
Error 36          248            58              330          366           15          430 
CV, %             18            27                16            26           24            24 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Mean squares values in columns 1-3 were divided by 1000, but not columns 4, 5, and 6. 
¶ Total biomass yield N = total N by tops + root. 
 

 

 

 

 

 



 

1
8
6
 

Table 4.10. Mean biomass yield of brassica cover crop tops, roots, and top + root in four species and two sowing dates (SD) averaged 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 Top yield Root yield Top + root yield 

Species SD1§ SD2 Mean SD1 SD2   Mean SD1 SD2  Mean 

 -------------------------------------------------------------Mg ha-1---------------------------------------------------------- 
  Turnip    2.7    2.7    2.7    1.9    0.8    1.3    4.5    3.5    4.0 
  F. rape†    2.7    2.7    2.7    0.6    0.4    0.5    3.3    3.1    3.2 
  Radish    2.7    1.9    2.3    1.8    0.7    1.3    4.4    2.6    3.5 
  Hybrid    4.0    2.8    3.4    0.7    0.3    0.5    4.7    3.2    3.9 
          Mean    3.0    2.5     1.2    0.6     4.2    3.1  
LSD‡ (0.05), SD    NS      NS      NS   
LSD (0.05), Sp    NS      NS      NS   
LSD (0.05), SDxSp 
     SDxSp1 
     SDxSp2 
     SDxSp3 

    
   0.6 
   0.6 
   0.6 

   
   0.4 
   0.4 
   0.5 

   
   0.8 
   0.8 
   0.9 

  

† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp1 to compare species means within a same SDs; SDxSp2 to compare SD means within the same species, 
and SDxSp3 to compare different SDs means between different species means. 
§ Targeted days SD1 = August 1; SD2 = August 15. 
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Table 4.11. Mean total N of brassica cover crop tops, roots and tops + roots in four species and two sowing dates (SD) averaged across 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

 Tops total N Roots total N  Tops + roots total N 

Species SD1§ SD2 Mean SD1 SD2  Mean SD1 SD2 Mean 

 -------------------------------------------------------------kg ha-1------------------------------------------------------------ 
  Turnip     62     72     67     31     16     23      93     88    90 
  F. rape†     71     80     75       8       7       8      79     87    83 
  Radish     74     61     68     32     15     23    106     76    91 
  Hybrid     95     66     80     12       7       9    107     72    89 
          Mean     75     70      21     11       96     81  
LSD‡ (0.05), SD    NS      NS       NS   
LSD (0.05), Sp    NS      NS       NS   
LSD (0.05), SDxSp 
     SDxSp1 
     SDxSp2 
     SDxSp3 

    
    23 
    20 
    23 

   
      7 
      6 
      7 

   
     26 
     22 
     26 

  

† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp1 to compare species means within a same SDs; SDxSp2 to compare SD means within the same species, 
and SDxSp3 to compare different SDs means between different species means. 
§ Targeted days SD1 = August 1; SD2 = August 15. 
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Table 4.12. Analysis of variance and mean squares of forage quality components of brassica cover crops for two sowing dates (SD) in 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   2  20237**‡  10093 15860*   3044*   785  1480*  2447*  24922** 
Rep(Env)   6      189    1138     345*     171     88    101    177      167 
SD   1        85    6593   1275     624   430      98        0.07        34 
Env x SD   2      186      792     285       86     45      25        6      115 
Env x SD x Rep   6      131    1448**       78     143     98**      36      59      127 
Sp   3  21135***    8368*   4102**   1541   433*  2773**    799**  26463*** 
Env x Sp   6      192    1134*     396     358     73*    177      41      274 
SD x Sp   3      310      669     162       55     36      73      46      290 
Env x SD x Sp   6      103      253     414     121     16      57      37      161 
Error 36      264      431     284     113     23      94      67      332 
CV, %         10        12         8         6     11        1        1          2 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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The ash  and CP content was higher in radish cv. Daikon, with a mean of 195 and 197 g 

kg-1, respectively (Table 4.13).  The NDF was higher in radish with 233 g kg-1, which was 

significantly higher than forage rape and the hybrid, and similar with turnip.  The ADL was 

higher in hybrid and turnip with 47.8 and 45.5 g kg-1, respectively (Table 4.14).  The IVDMD 

and NDFD were higher in the hybrid with 918 and 946 g kg-1, respectively, both significantly 

higher than turnip and radish (Table 4.14 and 4.15).  The TDN had the higher value in forage 

rape with 801 g kg-1, which was higher than all other species evaluated (Table 4.15).   

The analysis of variance for root quality components in different sowing dates (SD) 

combined across three environments, Fargo 2014 and Prosper 2013 and 2014, are presented in 

Table 4.16.  The interaction species by SD was not significant for any the components evaluated. 

The SD main effect was only significant for ADL and species main effect was significant for all 

parameters except ash and CP. The NDF, ADF, and ADL were lower in radish cv. Daikon which 

were different with forage rape, but similar with turnip and hybrid (Table 4.17 and 4.18).  The 

ADL content was affected by SDs, where ADL was significantly lower in SD1 than SD2, with a 

mean of 37.7 and 41.2 g kg-1, respectively.  The IVDMD and NDFD in turnip, radish, and the 

hybrid were higher than 831 and 838 g kg-1(Table 4.18 and 4.19).  The TDN was higher in 

turnip, radish, and hybrid with 789, 795 and 794 g kg-1, respectively, (Table 4.19).      
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Table 4.13. Mean forage quality (Ash, CP, and NDF) for brassica cover crop tops of four species and two sowing dates (SD) averaged 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 Ash CP NDF 

Species SD1§   SD2  Mean    SD1     SD2  Mean    SD1   SD2  Mean 

 ----------------------------------------------------------------g kg-1----------------------------------------------------------- 
  Turnip     169    181    175    144     166    155    220   216   218 
  F. rape†     116    120    118    163     187    175    205   196   200 
  Radish     201    193    197    181     209    195    241   225   233 
  Hybrid     180    180    180    146     147    147    206   201   203 
          Mean     167    169     158     178     218   209  
LSD‡ (0.05), SD      NS       NS       NS   
LSD (0.05), Sp       11        28        16   
LSD (0.05), SDxSp      NS       NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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Table 4.14. Mean forage quality (ADF, ADL, and IVDMD) for brassica cover crop tops of four species and two sowing dates (SD) 
combined across three environments, Fargo 2014 and Prosper, ND, 2013 and 2014. 

                       ADF                       ADL                   IVDMD 

Species    SD1§   SD2  Mean    SD1    SD2   Mean   SD1  SD2 Mean 

 -------------------------------------------------------------g kg-1---------------------------------------------------------- 
  Turnip    167    162    164    48.0    43.0    45.5    902   899   900 
  F. rape†    164    159    162    46.0    39.4    42.7    908   908   908 
  Radish    184    173    178    40.0    32.9    36.4    892   885   889 
  Hybrid    158    155    157    48.2    47.3    47.8    917   918   918 
          Mean    168    162     45.6    40.7     905   903  
LSD‡ (0.05), SD     NS        NS       NS   
LSD (0.05), Sp     NS        6.9        11   
LSD (0.05), SDxSp     NS        NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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Table 4.15. Mean forage quality (NDFD and TDN) for brassica cover crop tops of four species and two sowing dates (SD) combined 
across three environments, Fargo 2014 and Prosper, ND, 2013 and 2014. 

                             NDFD                             TDN 

Species    SD1§    SD2   Mean   SD1   SD2  Mean 

 -----------------------------------------------------------g kg-1----------------------------------------------------- 
  Turnip     935     933    934    741    729    735 
  F. rape†     941     945    943    802    801    801 
  Radish     934     931    932    709    716    713 
  Hybrid     946     946    946    735    735    735 
          Mean     939     939     747    745  
LSD‡ (0.05), SD      NS       NS   
LSD (0.05), Sp         5        14   
LSD (0.05), SDxSp      NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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Table 4.16. Analysis of variance and mean squares of forage quality components of brassica cover crop roots of four species and two 
sowing date (SD) combined across three environments, Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   2     3962*‡    3122 291978** 175129**   8303** 289415** 179055**  32053* 
Rep(Env)   6         46        89       234       156       12       284       228      205 
SD   1     1369    6555     6013     3417     217*     4005     2791    2781 
Env x SD   2       108      948       434       228         6       254       235      156 
Env x SD x Rep   6         57      138       558       341       29       657       596      250 
Sp   3       569    1584 132781**   74512**   5928** 129724** 139948**  32315** 
Env x Sp   6       154      436*   13164*     7312*     497*   10727*   10968*    2488* 
SD x Sp   3         91      149     4178     2440     195     4673     4124    1180 
Env x SD x Sp   6         54        53     1798*     1014*       62*     1441*     1431**      406 
Error 36         44      106       541       308       23       511       423      223 
CV, %            8          9           8           8       12           3           3          2 
† Env=Environment, Rep=Replicate, Sp= Species (forage brassica species and cultivars). 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.17. Mean forage quality (Ash, CP, and NDF) for brassica cover crop roots of four species and two sowing dates (SD) 
averaged across three environments, Fargo 2014 and Prosper 2013 and 2014. 

                       Ash                         CP                       NDF 

Species    SD1§   SD2  Mean   SD1   SD2  Mean   SD1   SD2  Mean 

 -------------------------------------------------------------g kg-1----------------------------------------------------------- 
  Turnip     80     94     87    106    133    119    231    259    245 
  F. rape†     69     80     74      91    110    101    436    409    422 
  Radish     82     87     84    115    128    122    226    261    243 
  Hybrid     76     81     79    105    124    114    249    285    267 
          Mean     77     85     104    124     285    304  
LSD‡ (0.05), SD    NS       NS       NS   
LSD (0.05), Sp    NS       NS        94   
LSD (0.05), SDxSp    NS       NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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Table 4.18. Mean forage quality (ADF, ADL, and IVDMD) for brassica cover crop roots of four species and two sowing dates (SD) 
averaged across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 ADF ADL IVDMD 

Species    SD1§   SD2  Mean    SD1    SD2   Mean   SD1   SD2  Mean 

 ----------------------------------------------------------------g kg-1---------------------------------------------------------- 
  Turnip    179    202    191    25.7    33.6    29.6    873    837    855 
  F. rape†    333    312    322    69.4    63.2    66.3    665    698    682 
  Radish    174    202    188    23.9    31.1    27.5    879    845    862 
  Hybrid    192    217    204    31.9    36.9    34.4    841    820    831 
          Mean    219    233     37.7    41.2     815    800  
LSD‡ (0.05), SD     NS        2.4       NS   
LSD (0.05), Sp      70      18.2        85   
LSD (0.05), SDxSp     NS        NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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Table 4.19. Mean forage quality (NDFD and TDN) for brassica cover crop roots of four species and two sowing dates (SD) averaged 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

                                NDFD                             TDN 

Species     SD1§     SD2  Mean   SD1   SD2   Mean 

 ---------------------------------------------------------g kg-1--------------------------------------------------- 
  Turnip     881     847    864    802    777    789 
  F. rape†     668     700    684    703    714    708 
  Radish     888     856    872    806    785    795 
  Hybrid     845     830    838    801    787    794 
          Mean     821     808     778    765  
LSD‡ (0.05), SD      NS       NS   
LSD (0.05), Sp       85        41   
LSD (0.05), SDxSp      NS       NS   
† F. rape = Forage rape. 
‡ LSD at 0.05 of significance. SD to compare among SD means averaged across species; Sp to compare among species means 
averaged across SDs; SDxSp to compare different species means and SD means. 
§ Targeted days SD1= August 1; SD2= August 15. 
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4.4.4. Plant density effect on forage yield and quality of forage brassicas 

The analysis of variance for brassica cover crop tops, roots, top + root biomass yield and 

total N of different plant densities (PD) combined across three environments (Fargo 2014 and 

Prosper 2013 and 2014), are presented in Table 4.20.  The interaction of species by PD was not 

significant for any the parameter evaluated.  Plant density was significant for tops, top + root 

biomass yield and tops total N.  The plant density effect was positive due to the targeted plant 

density was closer to the final plant density determined at harvest time (Table 4.24).  The species 

was significant for top and root yield and total root N.  

The highest plant density (PD4) had the highest yield (3.0 Mg ha-1) and total N (79 kg N 

ha-1), which was significantly different from PD1 and PD2 and similar with PD3 (Table 4.21). 

The root biomass yield (1.4 Mg ha-1) and total N (26 kg N ha-1)  was highest in turnip (Table 

4.22).  The PDs were significant in total biomass yield (tops + roots), with the highest yield for 

PD4 with 3.9 Mg ha-1 (Table 4.23). 

The analysis of variance for top quality components of brassica cover crops, in different 

plant densities (PD) combined across three environments (Fargo 2014 and Prosper 2013 and 

2014), are presented in Table 4.25.  The interaction of species by PD was not significant for any 

of the components evaluated.  The PD main effect was only significant for ash content, while 

species main effect was significant in all quality components evaluated. 

 The ash content was higher at PD4 with 174 g kg-1, which was different from PD1 and 

PD2 but similar to PD3 (Table 4.26).  Additionally, radish was the species with the higher ash 

content compared with turnip and hybrid.  The highest ash content was 180 g kg-1.  The CP 

content was higher in radish roots with 189 g kg-1, which was different with turnip and hybrid. 

The NDF and ADF were highest for radish cv. Daikon, with contents of 231 and 183 g kg-1, 
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respectively (Table 4.27).  The hybrids had the lowest fiber content with 209 and 160 g kg-1 of 

NDF and ADF, respectively.  The lowest content of ADL was in radish with 39.7 g kg-1, (Table 

4.28).  The hybrids had the highest digestibility with 906 and 937 g kg-1 for IVDMD and NDFD, 

respectively (Table 4.28 and 4.29).  The TDN was higher in turnip and hybrids with 747 g kg-1, 

which were different with radish (Table 4.29). 

The analysis of variance for root quality components of brassica cover crops, for different 

plant densities (PD) combined across three environments (Fargo 2014 and Prosper 2013 and 

2014), are presented in Table 4.30.  The interaction of species by PD and the species main effect 

were not significant for any of the components evaluated.  The PD main effect was significant 

for all quality components except ash and CP content. 

 The ash and CP content were not significant between plant densities (Table 4.31).  The 

NDF, ADF and ADL were higher in PD4 with 284, 221, and 37.5 g kg-1, which were always 

significantly higher than PD1 and PD2, but equal to PD3 (Table 4.32 and 4.33).  The IVDMD 

and NDFD were always higher in PD1, with 856 and 867 g kg-1, respectively (Table 4.33 and 

4.34).  The TDN was also higher in PD1 with 802 g kg-1, which was different with PD3 and PD4 

but similar to PD2 (Table 4.34).  

 



 

1
9
9
 

Table 4.20. Analysis of variance and mean squares for root, tops+roots N total in a plant density (PD) study in three environments, 
Fargo, 2014 and Prosper, ND, in 2013 and 2014. 

Source of  
variation 

 df   Top yield   Root yield Top+root yield Top total N  Root total N  Total biomass       
N¶ 

Env†   2     45634*‡      9877*     97810**     44824*      3277*    72339* 
Rep(Env)   6       5890**        123       6048**       4894          48      5041 
PD   3       8725**        435       5540*       7169*          38      6244 
Env x PD   6         838        369       1095       1207          74      1394 
Env x PD x Rep 18         999**        115       1440*       1868***          40      2278*** 
Sp   2       2384*      6975*       1207       1384      2646*      3753 
Env x Sp   4         136        923**         671         344        266*        959 
PD x Sp   6         340        234       1008         327          79        703 
Env x PD x Sp 12         437        151         719         441          52        633 
Error 48         344        102         640         311          36        483 
CV, %            26          30           24           28          30          27 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Mean squares values in columns 1-3 were divided by 1000, but not columns 4, 5, and 6. 
¶ Total biomass N = Total N of tops + roots. 
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Table 4.21. Mean biomass yield and total N of tops of three species and four plant densities (PD) averaged across three environments, 
in Fargo 2014 and Prosper, ND, in 2013 and 2014. 

 Top yield Top total N 

Species  PD1‡  PD2  PD3  PD4 Mean  PD1 PD2  PD3 PD4 Mean 

 --------------------------Mg ha-1------------------------- --------------------------------kg ha-1----------------------- 
  Turnip   1.6   1.7   2.2   2.7   2.1    48   45   66   69   57 
  Radish   1.5   2.1   2.4   2.7   2.2    48   65   79   85   69 
  Hybrid   1.8   2.1   2.9   3.5   2.6    41   49   78   84   63 
          Mean   1.7   2.0   2.5   3.0     46   53   74   79  
LSD† (0.05), PD   0.6        23     
LSD (0.05), Sp   0.2       NS     
LSD (0.05), PDxSp   NS       NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1= 44 plants m-2; PD2 =66 plants m-2; PD3= 133 plants m-2; PD4 ≥ 200 plants m-2. 
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Table 4.22. Mean biomass yield and total root N of three species and four plant densities (PD) averaged across three environments, in 
Fargo 2014 and Prosper, ND in 2013 and 2014. 

 Root yield Root total N 

Species  PD1‡  PD2  PD3  PD4 Mean  PD1 PD2  PD3 PD4 Mean 

 -------------------------Mg ha-1-------------------------- -------------------------------kg ha-1------------------------ 
  Turnip   1.8   1.4   1.2   1.2   1.4    32   25   23   22   26 
  Radish   1.2   1.3   1.1   1.1   1.2    23   26   23   24   24 
  Hybrid   0.6   0.6   0.5   0.6   0.6    10     9   10   11   10 
          Mean   1.2   1.1   1.0   1.0     21   20   19   19  
LSD† (0.05), PD   NS       NS     
LSD (0.05), Sp   0.6        11     
LSD (0.05), PDxSp   NS       NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1= 44 plants m-2; PD2 =66 plants m-2; PD3= 133 plants m-2; PD4 ≥ 200 plants m-2. 

 

 

 

 

 

 



 

2
0
2
 

Table 4.23. Mean biomass yield and total N of tops + roots of three species and four plant densities (PD) averaged across three 
environments in Fargo 2014 and Prosper 2013 and 2014. 

 Top + root yield                          Top + root total N 

Species  PD1‡  PD2  PD3  PD4 Mean  PD1 PD2  PD3 PD4 Mean 

 ----------------------------Mg ha-1---------------------- ------------------------------kg ha-1------------------------- 
  Turnip   3.5   3.1   3.4   3.8   3.5    80   70    89    91   82 
  Radish   2.8   3.4   3.5   3.9   3.4    71   91  103  109   93 
  Hybrid   2.4   2.7   3.4   4.0   3.1    51   58    87    95   73 
          Mean   2.9   3.1   3.4   3.9     67   73    93    98  
LSD† (0.05), PD   0.7       NS     
LSD (0.05), Sp   NS       NS     
LSD (0.05), PDxSp   NS       NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1= 44 plants m-2; PD2= 66 plants m-2; PD3= 133 plants m-2; PD4 >200 plants m-2. 
 

 

Table 4.24. Species/cultivars and final plant density of cover crops at harvest time at Fargo and Prosper, ND, in 2013 and 2014. 

Species/cultivar  PD1†  PD2  PD3 PD4 

 ------------------------------------------------plants m-2------------------------------------------------------- 
Turnip   44   70    78  251 
Radish   38   66    60  112 
Hybrid   44   65  105  217  
† Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 > 200 plants m-2. 
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Table 4.25. Analysis of variance and mean squares of forage quality components of brassica cover crop tops for plant density (PD) in 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

df Ash CP§ NDF ADF ADL IVDMD NDFD TDN 

Env†   2   3232  13567*  19906***       479   1332*     3694*    5565**    4756 
Rep(Env)   6     464      664      284       116       45         40      166      329 
PD   3     794*‡    1016      139         41       56       205        20      677 
Env x PD   6     143    1538      388       129       85       200      229      194 
Env x PD x Rep 18     230**    1089***      172         98       53***       143*      147*      282** 
Sp   2   4901**  14824**    4859*     4797*     637*     9940**    3093*    6421** 
Env x Sp   4     177      625      304       397*       43       369*      210*      182 
PD x Sp   6     164      299        96         39       23         46        55      151 
Env x PD x Sp 12     118      323      107         81       16         80        64      147 
Error 48       94      242      124         68       12         68        69      108 
CV, %          6          9          5           5         8           1          1          1 
† Env=Environment, Rep=Replicate, Sp= Species. 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.26. Mean forage quality (Ash and CP) for brassica cover crop tops of three species and four plant densities (PD), combined 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 Ash CP 

Species   PD1‡   PD2   PD3  PD4 Mean   PD1   PD2  PD3  PD4 Mean 

 ----------------------------------------------------------------g kg-1--------------------------------------------------------- 
  Turnip   150   158   160   163   158    168   157   169   153   162 
  Radish   176   182   178   184   180    179   187   199   189   189 
  Hybrid   158   157   163   176   164    143   145   158   149   149 
          Mean   161   165   167   174     163   163   175   164  
LSD† (0.05), PD       8         NS     
LSD (0.05), Sp       9          16     
LSD (0.05), PDxSp    NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1= 44 plants m-2; PD2= 66 plants m-2; PD3= 133 plants m-2; PD4 ≥200 plants m-2. 
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Table 4.27. Mean forage quality (NDF and ADF) for brassica cover crop tops of three species and four plant densities (PD), combined 
across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 NDF ADF 

Species   PD1‡  PD2  PD3  PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 ----------------------------------------------------------------g kg-1--------------------------------------------------------- 
  Turnip   227   222   224   223   224    172   168   173   173   172 
  Radish   236   234   227   228   231    183   184   182   185   183 
  Hybrid   208   211   204   212   209    158   162   159   163   160 
          Mean   224   222   218   221     171   171   171   174  
LSD† (0.05), PD    NS         NS     
LSD (0.05), Sp     11          13     
LSD (0.05), PDxSp    NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 ≥200 plants m-2. 
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Table 4.28. Mean forage quality (ADL and IVDMD) for brassica cover crop tops of three species and four plant densities (PD), 
combined across three environments, Fargo 2014 and Prosper 2013 and 2014. 

 ADL IVDMD 

Species PD1‡   PD2   PD3   PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 -------------------------------------------------------------g kg-1------------------------------------------------------------ 
  Turnip   42.6   44.6   43.1   47.4   44.4    885   888   881   884   885 
  Radish   41.7   40.4   37.0   39.7   39.7    876   874   869   872   873 
  Hybrid   48.9   49.3   45.8   48.3   48.1    911   905   904   903   906 
          Mean   44.4   44.8   42.0   45.1     891   889   885   887  
LSD† (0.05), PD     NS         NS     
LSD (0.05), Sp     4.3          13     
LSD (0.05), PDxSp     NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 ≥200 plants m-2. 



 

2
0
7
 

Table 4.29. Mean forage quality (NDFD and TDN) for brassica cover crop tops of three species and four plant densities (PD), 
combined across three environments, Fargo 2014 and Prosper 2013 and 2014. 

                                  NDFD                                     TDN 

Species  PD1‡  PD2  PD3  PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 -------------------------------------------------------------g kg-1------------------------------------------------------------ 
  Turnip   922   925   919   920   921    754   749   743   742   747 
  Radish   919   923   919   922   921    727   722   726   721   724 
  Hybrid   939   935   938   937   937    753   753   748   735   747 
          Mean   927   927   925   927     744   741   739   733  
LSD† (0.05), PD    NS         NS     
LSD (0.05), Sp     10            9     
LSD (0.05), PDxSp    NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 ≥200 plants m-2. 
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Table 4.30. Analysis of variance and mean squares of forage quality components of brassica roots in a plant density (PD) study in 
Fargo 2014 and Prosper 2013 and 2014. 

Source of 
variation 

df    Ash    CP§     NDF     ADF    ADL  IVDMD    NDFD   TDN 

Env†   2    126  1208 411581*** 242697*** 14860*** 404464*** 267846*** 71337* 
Rep(Env)   6    149    524     1038       570       27       884       655       72 
PD   3    291  1674     7616*     4993*     399*   10076**     6891**   2620* 
Env x PD   6      98    363     1062       594       44       664       585     295 
Env x PD x Rep 18    102***‡    306***       718       472       45     1012       824     523** 
Sp   2  1219  6362       951       182     144     3194     4602     696 
Env x Sp   4  1906***  5638***     5502***     2757**     192**     4531**     4092***   1091* 
PD x Sp   6        7      55     1165       621       24       551       455     151 
Env x PD x Sp 12      72**    237**       496       308       23       471       366     243 
Error 48      22      80       808       482       31       809       737     205 
CV, %         6        7         11         11       17           3           3         2 
† Env=Environment, Rep=Replicate, Sp= Species (forage brassica species and cultivars). 
‡ *, **, *** Significant at 0.05, 0.01, and 0.001 probability levels, respectively.  
§ Forage quality components: Crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin 
(ADL), in vitro dry matter digestibility (IVDMD), neutral detergent fiber digestibility (NDFD) and total digestible nutrients (TDN). 
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Table 4.31. Mean forage quality (Ash and CP) for brassica roots of three species and four plant densities (PD) combined across three 
environments, Fargo 2014 and Prosper 2013 and 2014. 

 Ash CP 

Species  PD1‡  PD2  PD3 PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 ---------------------------------------------------------------g kg-1--------------------------------------------------------- 
  Turnip   78   81   83   84   82    106   114   117   121   114 
  Radish   84   87   91   93   89    125   131   140   146   136 
  Hybrid   74   76   79   82   78    104   105   115   121   111 
          Mean   79   81   84   86     112   117   124   129  
LSD† (0.05), PD  NS         NS     
LSD (0.05), Sp  NS         NS     
LSD (0.05), PDxSp  NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1= 44 plants m-2; PD2= 66 plants m-2; PD3= 133 plants m-2; PD4 ≥200 plants m-2. 
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Table 4.32. Mean forage quality (NDF and ADF) for brassica roots of three species and four plant densities (PD), combined across 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

 NDF ADF 

Species   PD1‡   PD2   PD3  PD4 Mean   PD1   PD2   PD3  PD4 Mean 

 ----------------------------------------------------------------g kg-1-------------------------------------------------------- 
  Turnip   249   257   272   278   264    192   199   211   215   204 
  Radish   251   264   274   268   264    195   205   214   212   207 
  Hybrid   241   259   285   307   273    185   197   220   235   209 
          Mean   247   260   277   284     191   200   215   221  
LSD† (0.05), PD     22          16     
LSD (0.05), Sp    NS         NS     
LSD (0.05), PDxSp    NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 = >200 plants m-2. 
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Table 4.33. Mean forage quality (ADL and IVDMD) for brassica roots of three species and four plant densities (PD), combined across 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

 ADL IVDMD 

Species PD1‡   PD2   PD3   PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 ----------------------------------------------------------------g kg-1-------------------------------------------------------- 
  Turnip   27.3   29.8   32.6   34.3   31.0    864   851   836   829   845 
  Radish   30.1   33.2   35.7   36.7   33.9    849   834   819   815   829 
  Hybrid   29.0   31.6   37.3   41.4   34.8    855   847   814   797   828 
          Mean   28.8   31.5   35.2   37.5     856   844   823   814  
LSD† (0.05), PD     4.4          17     
LSD (0.05), Sp     NS         NS     
LSD (0.05), PDxSp     NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 = >200 plants m-2 
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Table 4.34. Mean forage quality (NDFD and TDN) for brassica roots of three species and four plant densities (PD), combined across 
three environments, Fargo 2014 and Prosper 2013 and 2014. 

 NDFD TDN 

Species   PD1‡  PD2  PD3  PD4 Mean   PD1  PD2  PD3  PD4 Mean 

 ----------------------------------------------------------------g kg-1-------------------------------------------------------- 
  Turnip   876   867   850   847   860    803   795   787   785   793 
  Radish   863   852   841   839   849    795   788   779   779   785 
  Hybrid   863   851   825   811   838    808   800   788   776   793 
          Mean   867   857   839   832     802   794   785   780  
LSD† (0.05), PD     16          11     
LSD (0.05), Sp    NS         NS     
LSD (0.05), PDxSp    NS         NS     
† LSD at 0.05 of significance. PD to compare among PD means averaged across species; Sp to compare among species means 
averaged across PDs; PDxSp to compare different species means and PD means. 
‡ Targeted PD1 = 44 plants m-2; PD2 = 66 plants m-2; PD3 = 133 plants m-2; PD4 = >200 plants m-2. 
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4.5. Conclusions 

Brassica cover crops have an interesting potential for late grazing in North Dakota, due to 

the high biomass yield and forage quality.  In general, biomass yield was higher in tops than 

roots in all species.  Turnip cvs. Appin, Pointer, Barkant ,and Purple Top had the highest above 

ground biomass yield.  Root biomass yield was higher in radishes cvs. Groundhog and Daikon.   

Forage quality varied among species, cultivars, and with the part of the plant (tops and roots).  

Crude protein and fiber digestibility were higher in tops, and fiber content was higher in roots.  

Cover crops with enlarged root (radish, turnip, and some hybrids) have, in general, less fiber in 

the edible parts of the plants than specieswith thick stems, which confer desirable characteristics 

to feed livestock. 

The first sowing date (9-12 August) had the highest forage yield.  Delaying sowing 

decreased the root biomass yield of species with enlarged root (radish and turnip).  However, 

tops biomass yield did not decrease when sowing date was delayed, except in radish and hybrids.  

Forage quality was not influenced by sowing date, but was affected by species.  Brassica cover 

crops sown with the purpose of grazing them, should be sown as soon as possible after wheat 

harvest in North Dakota to optimize forage yield and quality.  

The highest plant density evaluated (≥200 plants m-2) produced the highest tops and total 

forage biomass yield across all species.  Root yield was not affected by plant density.  Top CP, 

NDF, and NDFD was similar in all plant densities.  Root fiber content increased when plant 

density increased, but the digestibility of the root fiber decreased when plant density increased.    

All forage brassicas can be used as cover crops for grazing in North Dakota, but it is 

important to know that marked differences  in total forage yield exist among species and 

cultivars within species.  Before deciding what forage brassica(s) to select, growers should look 
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at cultivar trials near their location to identify the species and cultivars with the highest potential 

forage yield and quality.  
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