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ABSTRACT 
 

Advances in oil extraction technology such as hydraulic fracturing have improved 

capabilities to extract and produce oil in the Bakken and Three Forks shale formations located in 

North Dakota, Montana, Manitoba, and Saskatchewan.  From 2004 to the present, there has been 

a significant increase in oil rigs and new oil wells in these areas, resulting in increased impacts to 

the local, county, state, and federal roadway network.  Traditional methods of rural traffic 

forecasting using an established growth rate are not sufficient under the changing traffic levels.  

The goal of this research is to develop a traffic model that will improve segment specific traffic 

forecasts for use in highway design and planning.  The traffic model will consist of five main 

components: 1) a Geographic Information Systems (GIS) network model of local, county, state 

and federal roads, 2) a truck costing model for use in estimating segment specific user costs, 3) a 

spatial oil location model to estimate future oil development areas, 4) a series of mathematical 

programming models to optimize a multi-region oil development area for nine individual 

input/output movements, and 5) an aggregation of multiple routings to segment specific traffic 

levels in a GIS network model.   
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CHAPTER 1.  INTRODUCTION 
 

1.1. Background 

In 1951, the Ameralda Hess Corporation drilled an oil well near on a farm owned by 

Clarence Iverson near Tioga, North Dakota, located in eastern Williams County.  This well, 

known as the Clarence Iverson No.1 “gets the credit for the first major discovery in the Williston 

Basin” (Hintze 2011).  Prior to the drilling of the Clarence Iverson No. 1, as far back as 1921, 

geologists had identified the potential for oil deposits within the Williston Basin.  However, 

exploration attempts were met with varying degrees of success and oil output (Hintze 2011).  

The Williston basin covers portions of Montana, North Dakota, and South Dakota in the United 

States and Manitoba and Saskatchewan in Canada, as shown in Figure 1.   

Figure 1. Extent of the Williston Basin with major structures shown (Heck, et al. 2002) 

 

The Williston Basin consists of numerous oil formations as shown in Figure 2.  Each 

formation is arranged in sequence of timeframe of deposition.  In 2002, the Madison formation 
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was the most productive oil formation in North Dakota, producing 60% of all oil in the state to 

date, followed by the Duperow (9.7%), Red River (8.4%), Tyler (5.8%), Spearfish (3.7%), and 

Bakken (3.1%) (Heck, et al. 2002).  With the introduction of new exploration and extraction 

technologies, the relative productivity of these formations has changed.  As of December 2011, 

the Madison formation had contributed 46% of historical production, followed by the Bakken 

(16.5%), Red River (5.3%), Devonian (4.9%), Silurian (3.2%), and Duperow (2.5%) (North 

Dakota Industrial Council, Oil & Gas Division n.d.).  Of note is that the largest producing oil 

formations were formed during the late Devonian and Mississipian systems. 

Figure 2. Generalized stratigraphic column for the Williston Basin (Heck, et al. 2002) 
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While historical oil development has been centered in the Mississippian system, primarily 

in the Madison Lodgepole and Mission Canyon formations, recent development has been 

centered in the late Devonian system.  Within this system, the Duperow formation had been the 

largest area of productive exploration and development until the early 2000s, but beginning in 

the mid-2000s, the focus has been on the Bakken formation located in the late Devonian and 

early Missippian systems. The extent of the Bakken formation in the United States is shown in 

Figure 3.  A 2008 United State Geological Survey (USGS) study of the Bakken formation 

suggests large previously undiscovered volumes of oil, with a mean estimate of 3.65 billion 

barrels (United States Geological Survey 2008).  Continental Resources, Inc. estimated the 

recoverable oil at 24 billion bbl in 2011 (OGJ editors 2011).  The USGS began reevaluating 

Bakken reserves in 2012, and updated estimates are expected during the 2014 fiscal year (United 

States Department of the Interior 2011).   

The Bakken formation consists of three members.  “the Upper Member, a 23-foot thick 

black marine shale; the Middle Member, an 85-foot thick interbedded layer of limestone, 

siltstone, dolomite, and sandstone; and the Lower Member, a 50-foot thick black marine shale” 

(Grape 2006).  Early exploration focused on the upper and lower members that consisted of 

shale, and recent exploration has been focused on the middle member, which is located 

approximately two miles below the surface, varying in depth by geographic area.  The Bakken 

formation is located between two tight formations:  the Lodgepole above and the Three Forks 

below.  The Lodgepole is a limestone formation that is 900 feet thick, and the Three Forks is a 

250-foot formation.  Each of these formations consists of low-permeability carbonates, which 

effectively act as a seal on each edge of the Bakken, thereby creating increased pressures and 

temperatures.  This combination of pressure and temperature converts the kerogen content of the 
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Figure 3. Map showing Williston Basin Province boundary and the Bakken-Lodgepole system  
in Montana, North Dakota, and South Dakota. (United States Geological Survey 2008)  

  

shales to petroleum.  Additionally, the pressure and temperature conditions result in natural 

fracturing of the shales and the middle member, resulting in an overpressured formation capable 

of high production rates.  Once areas within the formation exceed 100 degrees celsius, they are 

considered thermally mature or effectively heated sufficiently to produce crude petroleum 

(Grape 2006). The thermally mature boundaries dictate the likelihood of successful exploration 

and production.  Figure 4 shows the boundaries of the thermally mature areas of the Bakken in 

North Dakota.  Within these boundaries, significant crude oil reserves are known to exist.  

However, using traditional vertical drilling techniques, much of these reserves cannot be 

extracted in an economically viable fashion.   
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Figure 4.  Existing oil wells in relation to thermal maturity (Nordeng 2010) 

 

 

1.1.1. Drilling Technology 

Traditional methods of oil extraction involve drilling a vertical well to an underground oil 

pool and extracting the oil directly.  As mentioned above, early drilling of the Bakken focused on 
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the upper and lower shale members.  “Success in these efforts hinged on connecting 

conventional vertical wellbores with an existing natural fracture system while not ruining the 

wellbore in the process with introduced drilling fluids.  The shale itself is highly reactive with 

water and swells when exposed to it, which can seal off a productive fracture system” (Grape 

2006).  The natural fractures release crude oil so that it may be extracted; therefore, locating 

these fractures was essential.   

A limitation of drilling at natural fractures is that the natural fracturing process only 

releases a portion of the available crude oil.  However, a new technique known as hydraulic 

fracturing was introduced in the 1920s (Grape 2006).  Hydraulic fracturing is an artificial method 

of well stimulation used to maximize the availability of crude oil.   Within the Bakken formation, 

it is commonly used to enhance existing fracture systems to allow the oil to flow freely within 

the formation.  A combination of water and chemical additives are pumped into the formation at 

high pressure.  When the pressure exceeds the strength of the rock, additional fractures are 

created, often hundreds of feet from the wellbore.  At this point, a proppant is introduced to the 

fractures to keep them from closing when pumping pressure is released (United States 

Environmental Protection Agency 2012). 

More recently, technological advances have further improved the economic viability of 

Bakken wells:  directional or horizontal drilling.  Directional drilling involves the drilling of any 

non-vertical wellbore.  Initial directional drilling was known as slant drilling, as the wellbore was 

drilled at a diagonal. This allowed the extraction of oil reserves underneath an already developed 

surface area, or in certain cases, outside the existing boundaries of the oil field.  Within the 

Bakken formation, the practice of horizontal drilling is commonplace.  Horizontal drilling 

consists of an initial vertical wellbore which, at a specified depth, is deviated at an angle that is 
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adjusted until the final wellbore is a horizontal lateral wellbore.  As the middle member of the 

Bakken is a relatively narrow 85 feet, this allows a much larger contact area between the 

wellbore and the formation, which is greatly enhanced through hydraulic fracturing.   

A portion of the vertical alignment of the wellbore is enclosed in a concrete casing, 

thereby preventing contamination of groundwater formations during the fracturing process.  The 

horizontal lateral portion of the wellbore is perforated to allow maximum contact area between 

the liner and the formation.  Once in place, the hydraulic fracturing process commences with the 

end result of longitudinal fractures along the horizontal lateral.  Multiple fracturing stages ensure 

that fractures occur along the entire horizontal alignment.   

North Dakota Industrial Commission Oil and Gas Division statistics show that traditional 

methods (vertical drilling) of oil extraction from 1970 to 1990 in North Dakota had resulted in an 

average daily production range of 25-32 barrels (BBLS) of crude oil per well.  Within two years 

of the introduction of horizontal drilling, coupled with hydraulic fracturing in North Dakota, the 

average daily production rate rose to 49-55 BBLS of crude oil.  By the end of 2012, the average 

well production rose to 87 BBLS of crude per day, for an average production of 575,490 BBLS 

statewide daily.  Over the same timeframe, the total number of producing wells more than 

doubled from 3,212 to 6,636 (North Dakota Industrial Commission, Oil and Gas Division 2012). 

1.1.2.  Freight Traffic Generation 

With the move to horizontal drilling and hydraulic fracturing from traditional vertical 

drilling, the number of economically productive development units has increased.  This has 

resulted in increased drilling, causing an increase in total truck numbers required to service oil 

development.  A 2006 study report published by the North Dakota Department of Transportation 

(NDDOT) compared the loaded truck volumes associated with each type of well technology.  In 
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the report, a vertical well was estimated to generate a total of 395 loaded truck trips:  264 

inbound trips and 164 outbound trips.  Drilling a horizontal well was estimated to generate a total 

of 606 loaded truck trips:  402 inbound trips and 280 outbound trips (North Dakota Department 

of Transportation 2006).  In 2006, the majority of Bakken formation development was located in 

the Elm Coulee oilfield in Montana, and the impacts to North Dakota state highways were 

primarily due to development outside of the state.  Connecting highways specified in the report 

included ND highway1804 between Williston and the Montana border, US highway 85 from 

Williston to Alexander, ND, and ND highway 68 between US 85 and the Montana border.   Each 

of these highways provided a direct connection between the Williston area and the Elm Coulee 

oil field.   

Beginning in 2007, oil development increased in North Dakota, near the Mountrail and 

Williams County border. With the change in geographic location of drilling activity came 

changes to the drilling processes, resulting in additional truck trips generated.  Recent estimates 

by NDDOT show approximately 400 inbound truck trips associated with the drilling of a 

traditional vertical well, consistent with the 2006 estimates.  Movements associated with 

horizontal drilling have increased significantly since the 2006 study, primarily due to increases in 

the number of hydraulic fractures as well as enhancements to the horizontal drilling processes.  A 

2010 study estimates a total of 1,100 inbound loaded truck trips for an average horizontal well in 

North Dakota (Upper Great Plains Transportation Institute 2010).  A 2012 study has increased 

this number to 1,150 inbound loaded truck trips (Upper Great Plains Transportation Institute 

2012).  Individual truck movements for a typical Bakken horizontal well including hydraulic 

fracturing are shown in Table 1.   
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Table 1. Drilling related movements per typical Bakken well (Upper Great Plains Transportation 
Institute 2012) 

Item Number of Loaded Trucks 
Sand 100 
Freshwater 450 
Wastewater 225 
Frac Tanks 115 
Rig Equipment 65 
Drilling Mud 50 
Chemical 5 
Cement 20 
Pipe 15 
Gravel and Scoria 80 
Fuel Trucks 7 
Frac Pumper Trucks 15 
Workover Rigs 3 
Total 1,150 

 

Locations for inputs are widespread throughout the study region.  Sand for use in 

hydraulic fracturing is obtained at sand transload facilities, as the bulk of the material is shipped 

in from out of the region by rail. Fresh water is sourced from local groundwater, municipal water 

sources, and surface water from rivers.  Frac tanks move from site to site to provide temporary 

storage capacity during the fracturing process.  Rig equipment moves from site to site, and 

includes the heavy equipment associated with the initial drilling process.  Drilling mud, 

chemicals, and fuel are generally sourced from larger cities within the areas where well service 

companies are located.  Pipe, like sand, is obtained from rail transload facilities.   

Crude oil and saltwater comprise the main outputs from oil production.  Currently, for 

every three barrels of crude oil produced, one barrel of saltwater is produced.  Saltwater is 

disposed to injection wells, which are located throughout the study area.  Crude oil is transported 

to a transload facility or refinery for export out of the state.  There is only one refinery in North 

Dakota, located in Mandan, which consumes a small portion of the oil patch’s production.  The 
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remainder is transported by truck or small diameter pipe to transload facilities for further 

transportation by pipeline or rail. 

Of note are the number of truck trips associated with sand and water.  A typical Bakken 

horizontal well in 2012 utilized 3 million gallons of water, and 4 million pounds of sand during 

the fracturing process, representing a total of 550 inbound loaded truck movements.  Once 

production begins, the produced water is then transported to saltwater disposal wells (SWD) for 

injection and disposal.   The number of trucks associated with outbound oil and saltwater varies 

based upon the location of wells and the initial production (IP) rate  (Helms, Director, Oil and 

Gas Division 2011).   

1.2. Statement of the Problem 

NDDOT utilizes a 20-year design standard for all highways in the state. In planning 

terms, this is defined as the design life.  The design life is the desired life of a highway based 

upon an expected number of equivalent single axle loads (ESALs).  An ESAL is a standardized 

measure of the impact that an 18,000-pound four-tire axle would have on either a flexible or 

rigid pavement.  Based on that estimate, the highway structure is designed to last 20 years.  

Pavement design begins with the estimation of the total ESALs over a segment of highway over 

the 20-year design life of the pavement.  The pavement life is further defined in terms of the 

service life of the pavement.  The service life is the actual life of a highway.  The service life of a 

highway may be different than the design life if the number of ESALs is different than 

anticipated when designing the highway.  If the ESAL levels increase beyond the levels used in 

the pavement design, the service life of the pavement would be decreased. 

As an example, a sample pavement section may be designed for 100 ESALs per day.  For 

flexible pavements, the design life is consistently 20 years.  Converting the daily ESALs to 
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annual ESALs yields 36,500 ESALs per year.  Over 20 years, this represents a total of 730,000 

ESALs.  If the ESAL levels would conform to the 100 ESAL per day forecasts, the service life of 

this example highway segment would be equal to the design life.   

However, in western North Dakota, anecdotal evidence has provided examples of 

highways that are receiving ESAL factors that are higher than the design ESALs by a factor of 

10.  In the example above, this would reflect a highway segment which is receiving 1,000 

ESALs per day.  The design life would still be 20 years under this case, but the service life 

would be reduced to two years, due to the highway segment receiving 20 years of ESAL impacts 

within a two-year timeframe.   

The goal of pavement design and traffic forecasting is for the service life to equal the 

design life.  “That is to say that when properties and structural conditions of the existing 

pavement, base and subgrade materials are known, the existing traffic and loads are known and 

an accurate estimate of future traffic and load growth are known; the pavement design process 

will result in a design life and service life which will be equal to 20 years” (North Dakota 

Department of Transportation 2006).  The first components of the conditional statement, 

structure, and existing traffic can be readily observed through field study and traffic count 

collections.  Accurate estimates of future traffic and load growth require forecasting models and 

knowledge of trends in equipment usage over time.   This study attempts to improve the MDT 

and NDDOT design processes for highways by improving the accuracy of traffic forecasts in the 

area impacted by increased oil extraction. 

Trend analysis is currently used to forecast traffic levels on state highways within the 

study region (Levi 2012).  Periodic traffic counts are conducted to assess existing traffic levels.  

These are compared against similar counts in previous years, and a growth rate is calculated 



12 
 

based upon the change in traffic volume over time.  In the absence of a new major traffic 

generator(s), this approach provides reasonable results.  For example, in a rural area not 

impacted by oil development, the primary freight generators would be through traffic and 

agricultural movements.   Normal growth factors may include increasing population in the larger 

cities, which the through movements serve, and increased agricultural tonnage as a result of 

changes in crop mix and yield rates by year.  Trend analysis may sufficiently reflect expected 

traffic growth under these conditions. 

However, when a major traffic generator such as a grain shuttle elevator or processing 

facility is introduced, trend analysis is insufficient to predict future flows, as it is heavily 

influenced by historical data, which were collected prior to the new traffic, and does not predict 

the new generators themselves.  Once sufficient historical data are available following the 

inclusion of the major generator, trend analysis may be sufficient to predict future rural traffic 

flows as the network becomes consistent again. 

In oil development areas, many major traffic generators are added each year, and a 

consistent network of origins, destinations, and volumes do not exist and will not until 

development has ceased.  Under these circumstances, trend analysis is not sufficient to estimate 

future traffic and ESAL levels.   

Recent oil development has introduced many significant traffic generators throughout a 

22- county region in North Dakota and Montana.  In 2012, it was forecasted that 2,000 new wells 

will be drilled (Helms, Director, Oil and Gas Division 2011). At 2,300 truck trips per well, this 

represents a total of 4.6 million truck trips annually, related to drilling activities.  In addition, 

average annual well production of 23,291 BBLS per well adds roughly 500,000 truck trips.  In 

total, this represents of 5.1 million one-way, or 10.2 million truck trips when the empty backhaul 
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is considered.  The addition of these truck trips has placed considerable stress on the existing 

highway system.   

Recent forecasts estimate that the level of drilling will peak at 2,000 new wells per year 

in 2012 and continue at that level through 2016 (Figure 5).  At this point, total annual new wells 

will decrease slightly each year until 2023, when a more significant decrease will occur. 

Figure 5.  Historical and expected new wells by year   

 

From 2006 to 2011, there was a significant increase in the number of wells drilled, and a 

corresponding increase in truck trips generated from oil activity.  Under traditional trend 

analysis, traffic growth is significantly underestimated over this time period.  As traffic count 

data is collected, the trend analysis may be updated but still produce significant errors due to the 

scope and duration of oil development.   

Due to the importance of ESAL estimates for use in pavement design to meet the 20-year 

design life standard, traditional forecasting methods cannot be used. Traditional forecasting 

would result in significant over-building or under-building of highways to meet the expected 

ESAL loads.  In the case where the trend included historical traffic data before significant oil 

development alongside current traffic data that show significant three- or four-fold increases in 
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traffic, the ESAL forecast at the end of the design life would far exceed expected actual ESAL 

figures.  This would result in a highway segment that is built to specifications to handle traffic 

far above actual traffic values, consuming excessive highway funds.  Similarly, if the trend 

analysis does not include current counts reflecting the additional ESAL factors as a result of 

increased oil development, excessive highway fund expenditures may arise as the service life 

would be shorter than the design life, necessitating multiple improvements to meet the design 

life.   Moreover, as pavement condition deteriorates, lower cost improvements such as thin-lift or 

structural overlays may no longer be feasible, and more costly improvements such as 

reconstruction become necessary.   

1.3. Objective of Research 

The objective of this research is to develop a traffic model to estimate truck volumes 

generated by oil development in eastern Montana and western North Dakota for specific 

highway segments for the next 20 years.  Results of this model will provide improved forecasts 

of truck volumes and ESALs, which will provide improved information to pavement design and 

planning officials for use in corridor planning and pavement design.    

1.4. Importance of the Study 

This study will follow the four-step approach to traffic modeling, with two specific sub-

models designed to improve the accuracy of the models.  The components of the four step model 

are 1) trip generation, 2) trip distribution, 3) mode split, and 4) traffic assignment. Both gravity 

models and optimization models rely on a unit of impedance between origins and destinations.  

Often this is a function of time, distance, or cost.  One may assume that time is an accurate 

representation of driver behavior, particularly with passenger travel.  Trucking companies often 

quote prices on a per-mile basis, so distance should be minimized in this case.  This study 
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considers cost associated with distance and time.  Variable costs such as fuel consumption, tire 

wear, maintenance, and repairs are primarily a function of distance, although travel speed is large 

component of fuel consumption.  Variable labor costs are a function of time, based upon trip 

distance and travel speed.  Moreover, the study will utilize a segment-specific cost model, which 

is unique in the fact that it directly considers travel speed, surface type (and the impacts of 

roadway condition on trucking cost) as well as distance and wait time at facilities. Previous 

optimization studies utilized distance as a proxy for cost or per-mile cost derived from a survey, 

rather than actual roadway characteristics.   

The proposed optimization model is similar to methods used to estimate flows of 

agricultural production from fields to grain elevators, fields to processors, between elevators, and 

to final destinations.  A key portion of this model is the selection of origin destination pairs.  

Previous studies have assigned pairs based upon geographic proximity, and selected least cost 

routes to connect them.  This study approaches the problem first from the route perspective by 

connecting all possible origins and destinations using a least cost algorithm.  The cost of each 

route is used as an arc cost in the optimization model, which selects the set of routes to minimize 

the total system cost. 

This study will also utilize a new method of forecasting future well locations.  Previous 

studies have randomly distributed wells, or located them based upon proximity to existing wells.  

Multiple methods of well location will be examined and tested for the level of improvement 

relative to previous methods.  This study will utilize the Susceptible, Infected, and Recovered 

(SIR) method, which is used for modeling the spread of disease epidemics.    

Finally, previous studies of truck transportation in the Bakken formation have focused on 

individual states and not the entire region.  A study currently underway includes the Montana 
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portion of the Bakken, along with the border counties, and this study will expand further to 

include the entire U.S. side of the formation.  Ideally, the study would contain the entire 

formation extending into Saskatchewan and Manitoba, but initial contacts have added 

uncertainty to data availability from those provinces.   

This study utilizes five individual models.  The GIS network model provides information 

on the speed, surface type, and connectivity of the road network over which shipments are 

routed.  The truck cost model estimates the cost of operating over these segments based upon 

roadway characteristics and wait times.  The forecasting model estimates future locations of 

wells based upon historical data.  The network routing algorithm provides the least cost paths 

from all origins to all potential destinations, providing a route optimized set of transportation 

options.  The trip distribution model utilizes a mathematical programming model to choose the 

routes that result in the minimum distribution cost for the entire system.   

1.5. Organization of the Study 

The remainder of this dissertation is organized by chapter.   Previous studies are reviewed 

in Chapter 2 with a focus on the traffic modeling processes, impedance factors, and forecast well 

distribution.  Methodology is discussed in Chapter 3, beginning with the tasks required to locate, 

route, and optimize oil-related movements within the study area.  In addition, data sources are 

discussed, including types of data, sources, and data quality.  Chapter 4 presents the results of the 

analysis including sensitivity analysis, and comparison of selected methodologies against 

traditional methodologies.  Chapter 5 discusses the impact of the results and uses the results to 

draw conclusions and offer suggestions for future improvements.   
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CHAPTER 2.  LITERATURE REVIEW 

As discussed in Chapter 1, the objective of this study is to develop a freight traffic model 

to assign and estimate the impacts of oil development in eastern Montana and western North 

Dakota on the highway systems in these areas.  In the practical sense, this study utilizes a 

mathematical optimization model with inputs generated by a GIS network model, a truck cost 

model, and an oil production location forecasting model to predict truck trips on highway 

segments.     

Traffic models often follow the Four Step Model (FSM) approach. Although this study 

uses a modified version of the FSM, the FSM serves as an organizational tool for the beginning 

of this chapter.  Following discussion of the FSM, relevant truck cost modeling literature is 

presented, as cost minimization is the basis of the traffic assignment component of this study.  

Spatial modeling of epidemics is discussed next, and parallels to expansion of oil exploration are 

drawn.  The chapter closes with a brief review of optimization models and a summary of 

conclusions comparing this study to existing research. 

2.1. Four-Step Models 

Conventional transportation modeling utilizes the FSM.  The components of the FSM are 

1) trip generation, 2) trip distribution, 3) mode split, and 4) traffic assignment.  Significant 

quantities of research have applied the FSM for use in urban area vehicle routing.  This section 

will review literature relevant to each of these FSM sub-models and describe improvements on 

these models that will be addressed in this research.  

2.1.1. Trip Generation 

The first step in the development of a transportation model is identification of the origins 

and destinations of the trips to be modeled.  Trip generation forecasting identifies the type and 
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scope of movements between traffic analysis zones (TAZ).  TAZ are defined as “Geographic 

areas dividing the planning region into relatively similar land use and land activity.  Zones 

represent the origins and destinations of travel activity within the region…every household, 

place of employment, shopping center, and other activity…are first aggregated into zones and 

then further simplified into a single node called a centroid”  (Barton-Aschman Associates, Inc. 

1998).  The ideal size of the TAZ depends on the use of the model:  “large-sized zones for 

system or statewide planning…medium-sized zones for arterial planning...small-sized zones for 

corridor analysis”  (Cambridge Systematics 2007).  In passenger trip generation models, these 

zones are generally defined using population or geographic area, though population is favored.   

In freight models, the TAZ can range from a geographic area to a single point. 

Trip generation begins with activities and the type and number of trips generated by each 

activity.  The end result is that trip generation, “translates the FSM from activity-based to trip-

based, and simultaneously severs each trip into a production and an attraction, effectively 

preventing network performance measures from influencing the frequency of travel”  (McNally 

2007). This should not be taken to mean that network factors such as highway condition would 

not impact the trips, rather the trips are as a result of activities (i.e., the demand for trips is a 

derived demand).  In reality, a significant change in network performance would influence the 

activities, thereby impacting trip generation.  From the outset, definition of the TAZ themselves 

and activities occurring within the TAZ is the focus.  Trip generation studies generally focus on 

one of two methods:  category-analysis or regression analysis.  Category-analysis or cross-

classification analysis assumes that similar activities such as businesses generate similar trips 

within the same category.  For example, a hardware store of a given size is expected to generate 

the same number of trips as a similar hardware store of comparable size.  The number of trips 
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generated is estimated based on previous observation in other geographic areas.  A drawback of 

category analysis is the assumption that trip generation for a particular category is the same 

across different geographic areas.  As mentioned above, the size of the TAZ should be 

determined based upon the use of the model.  The size of the TAZ also determines the level of 

aggregation of activities.  This document describes a study that will examine trips at the highway 

segment level, which is even further disaggregated than a corridor study to assess impacts on 

particular highway segments.  As the number of TAZ increase, so does the computational 

burden.   

There is extensive literature on the generation of passenger trips in urban areas, with 

frequent use of the category-analysis model utilizing frequency and intensity of activities within 

the TAZ.  Passenger trip generation rates by activity may be estimated based upon primary or 

secondary data or gleaned from previous research.  The Institute of Transportation Engineers 

published trip generation rates by land uses ranging from residential to large-scale retail 

(Institute of Transportation Engineers 2008).  Trip generation rates in this publication are 

estimated from a number of previous studies, and are the “standard by which local traffic impacts 

are typically estimated” (Cervero and Arrington 2008).  A 2002 review of freight trip generation 

studies shows frequent usage of linear regression analysis to estimate freight trips generated by 

firms as a function of land use and vehicle types (Iding, Meester, and Tavasszy 2002).   

While no trip generation rates from oil and gas development are presented in the ITE 

publication, specific information regarding the number, type, and truck configurations are 

available through previous studies and state transportation departments (Mitra, Tolliver, and 

Dybing 2012)  (Colorado Department of Transportation 2010). 
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2.1.2. Land Use Forecasting 

Existing land use is a key input to the trip generation component of the FSM.  Since 

planning horizons for roadway networks are long term in nature, the expected changes in land 

use throughout the study area must be forecasted.   Significant research has been undertaken to 

forecast urban and suburban land use changes.  However, as the topic of this study is primarily 

rural agricultural areas, a review of urban literature was not conducted.  Distribution of new 

wells is a key component to assessing traffic impacts of oil development, and a review of 

potential methods is included.   

The area of oil development in the Bakken formation is primarily agricultural, ranch, or 

park lands.   It is unlikely that other industrial uses of the land will occur.  It is not expected that 

significant changes in land use from existing use will change, only the addition of oil activity.  

For example, oil development on agricultural land will not contribute a land-use footprint large 

enough to displace future agricultural activity.  

Two primary methods of distributing new well locations are discussed in the 

methodology section of this proposal.  A review of literature indicated that these methods have 

not been used in published works to date.  Previous studies have used ad hoc location of new 

wells based upon existing well locations and permit applications within geographic boundaries 

(Upper Great Plains Transportation Institute 2010).  In addition, maximum likelihood 

distribution of future wells was tested, but predicted the spread of new wells near Lake 

Sakakawea, and did not reflect oil development on the opposite side of the lake, where 

significant development is currently underway (Upper Great Plains Transportation Institute 

2012).  As described in Chapter 3, this study utilizes a spatial technique to distribute new well 

locations.  The technique has previously been used to model the spread of disease epidemics.  It 
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is primarily based upon exposure of a portion of a population to infected individuals in this 

study, the technique is used to describe the extent, spread, and duration of oil development. 

2.1.3.  Trip Distribution and Traffic Assignment 

Trip generation focuses on trips originating as a result of activities present within some 

zones, and trips attracted by activities present within other zones.   Once the origins, potential 

destinations, and number of trips have been identified, movements between production (origins), 

and (attractions) destinations are estimated.  Distribution refers to the selection of flows between 

origins and destinations, and is generally made using a gravity model or linear programming 

model.  Traffic assignment occurs once movements between origins and destinations have been 

selected, and the minimum cost route between them is selected.  The distinction between 

distribution and assignment is that distribution selects the origin and destination for individual 

trips generated, and assignment selects the method of connecting them.  This is generally the 

final step in the FSM, but in the case of optimization models, traffic assignment for all possible 

destinations from origins is completed to generate arc cost data for the model.   

The gravity model for trip distribution contains three primary components:  zones where 

trips originate, zones where trips terminate, and a measure of separation between the zones.  The 

measure of separation between the zones is a key factor, as it represents the level of attraction 

between the zones or repulsion between zones.  In many cases, a generalized cost of traveling 

between the zones, often a combination of travel time, distance travelled, and actual costs is used 

(S. P. Evans 1972).  “It is assumed that the number of trips per unit time between pairs of zones 

for a particular purpose is proportional to a decreasing cost function of the cost of traveling 

between them” (E. Evans 1970).  The use of the gravity model for trip distribution is widespread.  
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The end result of this type of analysis is the number of trips between each origin and each 

destination (trip assignment).   

Optimization is another method of distributing trips between origins and destinations.  An 

example from the Eastern Washington Intermodal Transportation Study utilized a mathematical 

programming model using GAMS to distribute grain flows from fields to elevators in 

Washington State (Jessup and Ellis 1997).  The optimization seeks the minimum cost of 

distributing grain subject to cost associated with trip distance. Given known grain production and 

known grain demand at elevators, assignment of trips between townships and elevators was 

made by estimating the least cost set of shipping routes.  Transport costs were estimated using a 

regression equation estimated from elevator survey responses concerning truck costs per 

bushel/mile (Jessup and Ellis 1997). 

A more recent study utilizes similar methods to develop a traffic model for grain 

transportation in North Dakota from township to elevator or processor, and transshipments 

between elevators.  In this study, the objective function minimizes the distance of travel, as grain 

trucking rates are quoted on a per-mile basis, and distance is used as a proxy for transportation 

cost (Tolliver, et al. 2011). 

2.1.4. Mode Split 

This study focuses only on truck transportation generated by oil development in the study 

region.  For these movements, there are no alternative modes.   

2.2.      Truck Cost Modeling 

As mentioned above, trip distribution and assignment seeks to select routes and assign 

traffic subject to a measure of impedance.  This impedance may be defined as time, distance, 

cost, or a combination of the three.  This study utilizes a cost-minimization approach based upon 
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route- specific truck costs that depend on characteristics of individual segments of roadway.  Due 

to the importance of the truck cost model component to this study, a review of previous research 

is presented.   

2.2.1. Approximating Truck Rates with Truck Costs 

Truck cost may be described in two different ways.  To the firm operating a private fleet, 

this may be long-run marginal cost of the trip, including operating cost and the opportunity cost 

of capital.  To the firm utilizing for-hire trucking firms, this is the price paid for shipping cargo 

from an origin to a destination.  The former is the trucking cost, and the latter is the truck rate.  

This distinction is important, as this study utilizes an economic-engineering truck cost model to 

estimate trip costs, and assumes that the truck cost is representative of the truck rate paid for 

these shipments.  For this assumption to be acceptable, a number of economic factors must be 

discussed. 

Truck movements modeled in this study are all truckload movements.  That is, the 

shipper provides sufficient quantities of cargo that the cubic capacity or the weight capacity is 

reached, and there is a single shipper for each movement.  The truckload trucking industry is 

comparable to a perfectly competitive industry.  Characteristics of a perfectly competitive 

industry include a large number of firms, freedom of entry and exit, no control over prices, and 

all firms producing a homogenous product (McCarthy 2001). Entry and exit to the industry is 

relatively easy, as the only resources needed are capital to purchase a truck and trailer and a 

qualified driver to drive the truck.  As it is a truckload industry, consolidation terminals are not 

needed as would be the case in less-than-truckload firms.  Services provided by truckload firms 

are homogenous within trailer types.  For all types of industries, the profit maximizing level of 

output is the level of output where marginal revenue is equal to marginal cost.  Since firms in a 
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perfectly competitive industry have no control over prices, price is constant over all levels of 

output, therefore marginal revenue is equal to price, and the profit maximizing level of output 

occurs where price is equal to marginal cost.   

In this study, the economic cost of trucking is used rather than accounting cost.  Thus 

explicit and implicit costs are included.  Explicit costs of providing truckload service are those 

costs mentioned above that are directly related to the operation and ownership of the trucking 

equipment.  Implicit costs include the opportunity costs of operating a trucking firm, which are 

the foregone returns on their capital investment that may have been realized if the investment 

was not made in trucking..  Accounting profit is equal to the total revenue minus the total explicit 

costs.  Economic profit is equal to the total revenue minus the explicit and implicit costs, and 

therefore considers opportunity cost.  In the long run, in a perfectly competitive industry, 

economic profits are equal to zero (McCarthy 2001). 

In the short run, only variable inputs are easily changed.  In the truckload industry, 

variable inputs would be fuel, labor, tires, maintenance, and repairs.  In the long run, all inputs 

are variable, including the number and type of trucks.  While a trucking firm could charge a price 

that did not recover fixed costs in the SR, if it does not charge a price high enough to cover fixed 

costs, eventually it will have to exit the industry.   Thus, it is reasonable to assume trucking firms 

charge a price high enough to recover all of their costs.   

As mentioned above, the profit maximizing level of output for a perfectly competitive 

firm occurs where price is equal to marginal cost.  In the short run, this would represent the 

marginal costs of providing truckload service given current capital investment (i.e., number of 

trucks).  In the long run, firms adjust all inputs (including capital) to minimize costs.  If a firm 

experiences excess capacity in the short run, they will reduce their capital; while if they 
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experience overuse of capital, they will employ the optimal amount of capital for the output they 

provide, they are in long-run equilibrium, and their long-run marginal cost is equal to short-run 

marginal cost.    

In a perfectly competitive industry, firms are forced by the marketplace to achieve long-

run equilibrium.  Firms that operate at excess capacity or not enough capacity will be forced to 

adjust capacity or be forced out of the market by more efficient firms.  Moreover, entry and exit 

will occur until firms in the industry achieve zero economic profit.   This is where price equals 

long- run marginal cost equals average cost, and where average cost is at a minimum.   Because 

of this feature of perfectly competitive markets, if the assumption is made that firms are in long-

run equilibrium, price can be approximated by the total average costs that they experience.      

Economies of scale occur when average total cost decreases as additional units of output 

are produced. “For motor carriers most evidence seems to point to constant returns to 

scale…Most cost studies of the trucking industry therefore reflect a technological structure that 

is conducive to an industry that would be (and is) highly competitive without regulation of prices 

and entry”  (Gomez-Ibanez, Tye, and Winston 1999).  The lack of scale economies in the motor 

carrier industry indicates that the costs of firms providing truckload services face similar costs 

for providing services, regardless of firm size.   

Specification of the marginal cost of a truck movement requires consideration of joint 

costs associated with fronthaul and backhaul movements.  “Joint costs exist when the provision 

of a specific service necessarily entails the output of some other service…Return trips (or ‘back-

hauls’), where the supply of transport services in one direction automatically implies the 

provision of a return service, are the classic examples in transportation economics”  (Button 

2010).  To accurately reflect the marginal cost of a shipment, changes in total cost as a result of 
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the shipment must be considered.  If there is a loaded fronthaul, and an empty backhaul, the 

marginal cost of the truck trip is the cost of the round-trip, as the purpose of the trip is 

specifically for the loaded inbound movement, and therefore all costs of the trip may be 

attributed to the loaded portion.   If there is both a loaded fronthaul and backhaul, there are dual 

purposes to the trip, and the marginal cost of the trip in each direction should be considered.    In 

this study, the vast majority of the truck movements have an empty backhaul, so the round trip 

cost represents the marginal cost of the trip.  A subset of trips involving movements of rig 

equipment are loaded both inbound and outbound, and the cargo is the same in both directions.  

For these trips, the marginal cost is the cost of the shipment in each direction. 

If the marginal cost of the truck trip is equal to the price of the movement, then truck 

costs may be used to approximate truck rates.  As described below, the explicit and implicit costs 

of providing truckload service are considered.  This includes an opportunity cost of capital.  The 

opportunity cost of capital should represent the value of foregone earnings in an equally risky 

alternative.  The finance literature provides guidance for obtaining an opportunity cost of funds 

provided by all investors.  The weighted average cost of capital is a weighted average cost of 

debt and equity (weighted by the share of each in the firm’s capital structure), where the cost of 

equity is obtained from the capital asset pricing model.   

2.2.2. Truck Cost Components 

Truck costs of individual movements are a function of trip distance, operating 

characteristics, vehicle characteristics, input prices and equipment prices. As outlined in this 

section, estimates of these costs are obtained through a variety of methods, including surveys of 

trucking firms, experimentation, and economic-engineering models that utilize operating 
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characteristics from observation of operating factors.  Often, estimating truck costs is made 

difficult by a lack of publicly available data.  

Automobile cost estimates and resale values are widely available from multiple sources 

such as manufacturers, dealers, and resellers, and serve primarily as a marketing tool for 

consumers.  Similar data are not readily available for trucks.  “This is probably because buyers of 

trucks are more knowledgeable about their purchases, and hence have less use for such services” 

(Barnes and Langworthy 2003).  In addition, trucking firms as a business are required to keep 

detailed records for fuel tax, registration, and accounting purposes, and have greater amounts of 

data upon which to estimate individual cost components.  A typical automobile owner would not 

have similar incentives to collect detailed data, thereby creating an opportunity for third parties 

to present these data as an educational and marketing tool.   

In a 2003 research report, the Minnesota Department of Transportation (MNDOT) 

conducted a review of prior truck cost studies and models, with a focus on conventional semi-

truck cost components for data collection purposes to  develop a spreadsheet-based truck costing 

model (Barnes and Langworthy 2003).  The MNDOT study review focused on the data used to 

obtain cost estimates as well as the distribution of the individual component costs.   

A distinction should be drawn between linehaul and terminal truck costs.  Most truck cost 

models consider the linehaul components of truck costs, such as fuel, labor, mileage-related 

maintenance, tire wear, and mileage-related depreciation.  Terminal costs such as loading, 

unloading, and fuel consumption due to idling and queuing times are often not considered and 

distributed over trip mileages.  Moreover, in some cases, terminal costs may be wrongly 

attributed to linehaul operations.  For example, if the annual opportunity cost of truck ownership 

is divided by the annual miles, some costs that are really incurred while waiting at terminals are 
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attributed to linehaul operations.  When using a per-mile cost to estimate truck cost for individual 

shipments, this could result in an overstatement of long-haul movement costs relative to short- 

haul movement costs.   As presented in Chapter 3, this study will incorporate estimates of 

terminal costs for different facility types to reflect the entire trip cost for use in the optimization 

model.   

Linehaul cost components may be classified as vehicle-based and driver-based.    

Vehicle-based cost components include fuel, truck and trailer depreciation and opportunity costs, 

repair and maintenance, fuel taxes, truck insurance premiums, tires, licensing, permits and tolls.  

Driver-based cost components are divided among wages, benefits and bonuses  (Trego and 

Murray 2010).  Although specified separately in Trego and Murray (2010), fuel taxes are 

included in fuel price, and will not be addressed separately in this model.  These costs may also 

be classified as fixed or variable in the short run.  Fixed costs include truck and trailer 

depreciation and opportunity cost, insurance premiums, licensing, and permits.  Variable cost 

components include all driver-related costs, fuel and oil, tires, fuel taxes, and tolls.  Economic 

theory states that in the short run, only variable costs may be easily changed, and vary with 

differing levels of output, or in the case of truck costing models, miles driven.  For the variable 

cost components, there may be a linear or non-linear relationship between trip distance and 

variable costs.  Fixed costs do not change with output and cannot be changed in the short run, 

and the per-mile impact of fixed costs is dependent on annual truck utilization.    

In the long run, both variable and fixed costs are variable.  Due to the longer planning 

horizon, changes to the amount and type of capital investment is possible; therefore considering 

fixed inputs variable in this context is appropriate.  In the case of firms providing truckload 

services, this would primarily be changes in the size of the fleet.  It also needs to be considered 
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because the other possible decision is exit.   If firms don’t earn fixed costs, they will sell their 

trucks and exit the industry.   Since the capital requirements for equipment are relatively small 

compared with other industries, entry and exit to the industry would also be easy.   

2.2.3. Variable Costs 

As outlined above, variable costs vary with changes in output in the short run.  That is, as 

the number of miles driven increases, the variable costs associated with the trip increase.   The 

five major variable cost components are fuel consumption, oil consumption, tire wear, 

maintenance and repair, and labor.  Fuel consumption models are based upon experimental tests 

of different vehicle types on differing terrain at a range of travel speeds.  Oil consumption is 

often estimated as a function of distance as it is “a relatively unimportant component of vehicle 

operating cost,” and estimates are obtained through a survey instrument rather than 

experimentation (US Department of Transportation 1982).       

Because estimates of tire wear costs are rare, much of the truck cost literature cite the 

U.S. Forest Service tire wear models, which were developed as a part of an overall vehicle 

costing system (Della-Moretta and Sullivan 1976).  Of note in this research is the importance 

given to tire wear due to roadway conditions traveled by forest service vehicles.  The model 

presented in Della-Moretta and Sullivan (1976) was designed to consider the impacts of low 

standard roads traveled by logging vehicles.  In recent models, fuel consumption and labor costs 

account for higher proportions of truck costs due to the relative consistency in highway 

conditions.  Tire wear costs are estimated through consideration of tire wear estimates, total 

miles driven, and tire costs (Berwick and Dooley, Truck Costs for Owner/Operators 1997). 

Labor costs are estimated through calculation of the total labor hours driving and waiting 

at origin and destination.  Some models include wage variations between driving and waiting 
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times to account for compensation practices within the industry (Berwick and Farooq, Truck 

Costing Model for Transportation Managers 2003).  Utilizing such a model for a route-specific 

costing function must consider the application of per-mile terminal costs over differing trip 

lengths.  Per-mile cost estimates derived, including terminal costs, must not be applied generally 

throughout an entire network, as the proportion of terminal costs per mile would certainly vary 

based upon the length of the trip.  For example, consider a 50-mile and 100-mile truck trip which 

includes linehaul costs of $2.50 per mile and terminal costs of $40.  The cost of the 50-mile trip 

would be $165 and the cost of the 100-mile trip would be $290. This equals $3.30 per mile or 

$2.90 per mile for the 50- and 100-mile trips respectively.  Each per-mile cost estimate is only 

applicable for trips that have the distance specified in the model, and cannot be used as a 

network-wide per- mile cost.  This study separates linehaul and terminal costs, as linehaul costs 

are consistent over all roadway miles within roadway categories.  Terminal costs are added after 

the route selection process has been completed.   

As mentioned above, roadway condition may have a significant impact on variable truck 

costs, particularly with tire wear.  Adjustment factors for tire wear, maintenance, and repair 

based upon present serviceability ratings (PSR) have been estimated separately using the U.S. 

Forest Service slip-energy model.  (US Department of Transportation 1982)  Building upon these 

assumptions, adjustment factors for tire wear, maintenance, and repair based upon roadway PSR 

were estimated (Barnes and Langworthy 2003). 

In the review of literature, Barnes and Langworthy (2003) provided comparisons of 

variable cost estimates for fuel, tires, and maintenance and repair from previous studies.   
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Table 2.  Truck literature short run variable cost summary (cents per mile)  (Barnes and 
Langworthy 2003) 

Source Total Costs Fuel Maint./Repair Tires 
Roth, 1992 121 17.3 12.0 2.5 

Faucett, 1988 109 21.6 10.9 3.5 
Berwick, 1996 104 19.0 10.0 4.0 
USDA, 1995 108 19.1 15.5 2.8 
Trimac, 2001 174 24.4 10.5 3.5 
Volvo, 2000 64 6 mpg 7.1 2.1 

 

2.2.4. Fixed Costs 

Variable costs are one component of truck costs.  This study utilizes a total cost per mile 

for providing truck transportation, and therefore must consider fixed costs in conjunction with 

variable costs.  Fixed-cost components do not change with varying levels of output.  Data items 

considered in truck costing models are purchase price, salvage price, useful life, depreciation, 

insurance, and opportunity cost (Berwick and Dooley, Truck Costs for Owner/Operators 1997).  

Purchase price, salvage price, and interest estimates are typically obtained through surveys of 

truck manufacturers and trucking firms and used to calculate depreciation cost.  Depreciation 

expenditures are divided into two categories:  use-related (miles) and time-related (years).  

Often, the two are mixed as is the case in Berwick and Dooley (1997), as the useful life is 

specified in years, and the depreciation cost is converted to per-mile costs by dividing annual 

depreciation by annual mileage.   

“Depreciation expense is one of the most difficult of all non-fuel running costs to 

estimate correctly.  The major area of contention in the debate concerning depreciation is what, if 

any, portion of the expense should be assigned to operation of the road” (US Department of 

Transportation 1982).  Whether time-based or use-based depreciation is considered, the 

estimation principles are the same.  Time-related depreciation is approximated by the reciprocal 

of the maximum useful life of semi tractors and trailers in years.  Use-related depreciation is 
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approximated by the reciprocal of the maximum useful life of semi tractors and trailers in miles.  

The primary difference between these two measures is annual truck utilization, measured in 

miles traveled per year.   

While depreciation considers the per-unit application of fixed costs, it does not directly 

consider the opportunity cost of the capital invested in truck equipment.  The weighted average 

cost of capital is a representation of the minimum return on capital investment that a firm must 

earn or the capital will be invested elsewhere.   The cost of capital is the “weighted average of 

the cost of equity and after-tax cost of debt, weighted by market values of equity and debt” 

(Damodaran 2012).  For the purposes of this study, the weighted average cost of capital is 

adjusted to reflect pre-tax cost of capital.  The rationale for this is that the post-tax cost of capital 

in marginal cost calculation would result in a price that is below the level necessary to meet the 

necessary return plus the tax burden.    

2.3. Contribution of the Research 

This study follows the four-step approach to traffic modeling, with a truck cost and 

spatial distribution model designed to improve the accuracy of the forecasts.  The truck cost 

model offers an improvement over previous studies in that the impedance used in the routing and 

optimization models expressly considers surface condition and travel speeds in calculating 

trucking costs.  As mentioned in the trip distribution section, both gravity models and 

optimization models rely on a unit of impedance between origin and destination sets.  Often, this 

is a function of time, distance, or cost.  One may assume that time is an accurate representation 

of driver behavior, particularly with passenger travel.  Trucking companies often quote prices on 

a per-mile basis, so distance should be minimized in this case.  This study considers cost 

associated with distance and time.  Moreover, the study will utilize a segment-specific cost 
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model, which is unique in the fact that it directly considers travel speed, surface type (and the 

impacts of roadway condition on trucking cost) as well as distance and wait time at facilities. 

The optimization studies mentioned above utilize distance as a proxy for cost or per-mile cost 

derived from a survey, rather than actual roadway characteristics.   

This study also makes an improvement over previous studies in the optimization method 

used.  The optimization model utilized in this study is similar to methods used to estimate flows 

of agricultural production from fields to elevators, fields to processors, between elevators, and to 

final destinations.  Previous studies have assigned origin-destination pairs based upon geographic 

proximity, and selected least cost routes to connect them.  This study approaches the problem 

first from the route perspective by connecting all possible origins and destinations using a least 

cost algorithm.  The cost of each route is used as an arc cost in the optimization model, which 

selects the set of routes to minimize the total system cost.  This allows for a more accurate 

assignment of traffic flows that may not necessarily be limited to flows of points in close 

proximity. 

A third improvement this study makes is in forecasting locations of traffic generators.  

This study utilizes new methods of forecasting future well locations.  Previous studies have 

randomly distributed wells, or located them based upon proximity to existing wells.  Multiple 

methods of well location are examined and tested for the level of improvement relative to 

previous methods.  Methods include: maximum likelihood algorithms and the Susceptible, 

Infected, and Recovered method, which is used for modeling spread of disease epidemics.    

Finally, previous studies of truck transportation in the Bakken formation have focused on 

individual states and not the entire region.  This study will expand further to include the entire 
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U.S. side of the Bakken formation.  Ideally, the study would contain the entire formation 

extending into Saskatchewan and Manitoba, but is unavailable from those provinces.   

This study utilizes five individual models.  The GIS network model provides information 

on the speed, surface type, and connectivity of the road network over which shipments are 

routed.  The truck cost model estimates the cost of operating over these segments based upon 

roadway characteristics and wait times.  The forecasting model estimates future locations of 

wells based upon historical data.  The network routing algorithm provides the least cost paths 

from all origins to all potential destinations, providing a route optimized set of transportation 

options.  The trip distribution model utilizes a mathematical programming model to choose the 

routes that result in the minimum distribution cost for the entire system.     
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CHAPTER 3.  DATA AND METHODS 

This chapter outlines the methodology used to develop a freight traffic model to estimate 

impacts of oil development and exploration in eastern Montana and western North Dakota.  This 

chapter is organized into six major sections, based upon individual models utilized in the 

analysis:  1.  GIS network modeling, 2.  Truck cost model, 3.  Network routing algorithm, 4.  

Future well distribution, 5.  Route assignment/trip distribution, and 6.  Summary of methods.  

Within each section, the data requirements necessary for each step in the analysis are discussed.   

3.1. GIS Network Model  

The GIS network model used in this study consists of shapefiles containing line and point 

features.  The line features are the highway networks themselves.  Point features represent 

potential origins and destinations within the study area. 

Roadway shapefiles have been obtained from the North Dakota GIS Hub and the 

Montana Department of Transportation.  Each of these data sources are maintained by the 

respective departments, and include information on roadway surface type, jurisdiction, and 

location.  The roadway networks include all roadway types: trails, township, county, county 

major collectors, forest service, tribal, state, and federal.    Within the state and federal roadway 

types, functional classes are included to designate interstate, US, and ND highways. 

The primary limitation of the roadway networks in the GIS shapefiles is identification of 

roadway segments below state and federal jurisdictions.  Often, the Emergency 911 (E911) 

roadway address is included, but identification is not included on the entire network population.  

This study disaggregates the network to the segment level for cost calculations, and combines 

individual segments into routes.  Next, traffic volumes are assigned to these routes.  Finally, the 

routes are disaggregated to the component segments to summarize traffic volumes from multiple 
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sources to individual segments.  Due to the data handling techniques involved, a unique identifier 

for each road segment is required.  Since the identifiers on the existing datasets do not meet this 

standard, a unique identifier is generated for each segment, with logic that will allow it to be 

cross referenced to the original dataset for visualization purposes.   

A secondary limitation of the roadway network is speed limit data. The speed limit is a 

critical data component for use in cost calculations.  Expected truck route selection would 

involve traveling to a higher jurisdiction of road wherever possible due to faster travel speeds 

and improved roadway condition.  For example, if an oil well is being drilled in a rural area that 

is serviced by a township road, it is expected that the driver will use this road to travel to the 

nearest county or state highway for the longer portion of the trip.   

For state and federal roadways, speed data are obtained from the Highway Performance 

Monitoring System (HPMS) datasets provided by each department of transportation.  The HPMS 

data contain detailed information about roadway geometry, condition, and traffic volumes.  

However, these data do not exist for every segment within the study area as the HPMS is a 

representative sample of the highway system.  This sample is expanded to represent the overall 

highway network conditions.  General speed limit rules by state are shown in Table 3  and Table 

4.  Since the study area primarily consists of rural roads with minimal changes in speed limits, it 

is assumed that the speed limits assigned to the samples are representative of the non-sample 

segments as well.  One possible violation of this assumption would occur when a state highway 

goes through a small town where speed limits typically decrease to 45 or 25 mph.  For local and 

county roads, a database of speed limits is not available.  General rules are established for each 

surface type and jurisdiction to approximate travel speeds on these segments. 
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Table 3.  North Dakota standard speed limit guidelines (North Dakota Department of 
Transportation 2011) 

Speed 
Limit 

Criteria 

20 mph School zones, when view is obstructed 
25 mph Business districts, residential areas, parks 
55 mph Gravel, dirt, or loose surface 
65 mph Paved two-lane highways 
70 mph Paved and divided multilane highways 
75 mph Access controlled, paved and divided, 

multilane interstate highways 
 

Table 4.  Montana truck speed limit laws (Montana Department of Transportation 2010) 
Speed Limit Criteria 
 Daytime 
65 mph Interstate 
60 mph Primary and Secondary 
 Nighttime 
65 mph Interstate 
55 mph Primary and Secondary 

 

The geographic scope of the study is presented in Figure 6. 

Figure 6.  Study area 

 

The network comprises connected, individual segments with the attributes describing the 

travel speed, surface type, jurisdiction, and functional classification.  The next step in the 

analysis is to identify the locations that will be connected via the GIS network.   
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3.1.1. Locations 

A transportation analysis zone describes the geographic unit and the level of 

disaggregation within the study network.  In urban traffic models, this is typically defined by 

census characteristics such as population.  The focus of this study is freight rather than passenger 

traffic, so boundaries will be set based upon geography rather than population.    

The base geographic area in oil development is the spacing unit.  In North Dakota, this is 

typically a 1,280-acre tract, one mile by two miles in dimension.  Ideally this would be the unit 

of analysis for this study.  However, computational limitations necessitate that a larger unit of 

development be used in this analysis.  In this study, the total number of spacing units would 

exceed 10,000, exceeding the software’s capabilities. 

This study will use the township as the traffic analysis zone.  A six mile by six mile 

township represents 18 1,280-acre spacing units.  Aggregating oil development at this level will 

introduce a degree of error, as forecasted wells will be assigned to the centroid of the township.  

The error arises from the point at which the truck movements will enter or leave the township.  

Because the location of the new wells is at the centroid, the maximum possible error is 3 miles in 

any direction.  In comparison, the maximum error of using the centroid of a spacing unit is one 

mile in any direction.   

The U.S. Bureau of Transportation Statistics National Transportation Atlas Data (NTAD) 

shapefiles of county subdivisions provide township boundaries, as well as township centroids.  

Many counties in western North Dakota and eastern Montana have unorganized townships, and 

there is no legal distinction for township boundaries within these counties.  However, this study 

utilizes township as the transportation analysis zone for boundary purposes rather than 

organizational purposes.  The township centroids serve as the destination for inbound 
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movements and the origin for outbound movements.  Locations of the input locations and 

outbound destinations are discussed below.   

3.1.1.1.  Freshwater 

Freshwater is the largest generator of truck trips in the hydraulic fracturing process, 

comprising more than one-third of the total truck trips.   Freshwater sources include 

groundwater, municipal water systems, rivers, and surface water.  Due to the high demand for 

water at each well site, it is expected that freshwater will be a constraining factor for the 

distribution model.  Both Montana and North Dakota have regulatory bodies that govern the total 

output and quantity of the water available for sale to secondary parties for each water source.   

Montana freshwater sources are obtained from the Montana Department of Natural 

Resources and Conservation database.  Specific output volumes and use classifications are used 

to define the subset of existing water resources available for use in oil development.  North 

Dakota fresh water sources are obtained from the North Dakota State Water Commission, which 

maintains a shapefile of all permitted and water permit applications, along with associated annual 

capacities.   

In the 2011 North Dakota Legislative Session, House Measure 1206 addressed the 

development of the Western Area Water Supply Project, which involves the construction of a 

pipeline system designed to connect municipalities, rural water users, and water sources (Chapter 

61-40 Western Area Water Supply Authority 2011). With the expanded population growth in 

western North Dakota, this is expected to provide sufficient water resources to support future 

population levels.  In addition to human consumption, a portion of the water will be available for 

use by the oil industry.  Shapefiles of the water depot locations have been obtained from the 
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Western Area Water Supply Authority management, along with expected completion dates and 

expected capacity available for oil development use.  

Figure 7.  Freshwater locations

 

3.1.1.2. Sand 

Sand is used in the hydraulic fracturing process to prop open cracks in the oil bearing 

shale following the detonation of explosive charges.  By maintaining these gaps within the shale, 

additional oil may be extracted from the well.  The type of sand used as proppant in the Bakken 

development has very specific characteristics and is not found in North Dakota or Montana.  All 

sand used in the fracturing process is brought into the region via rail.   

There are currently five locations in the study area that are sand transload facilities, all of 

which are located in North Dakota.  They are located near the cities of Beulah, Dickinson, Minot, 

Ross and Williston.  These facilities serve all sand demands within the model and are currently 

not limited by capacities. 
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Figure 8.  Sand transload locations 

 

3.1.1.3. Oil Transload  

Outbound oil from producing wells is moved by truck or pipeline to oil collection 

facilities.  Oil collection facilities include rail transload facilities and pipe transload facilities.  

The mode which is used to transport crude oil to collection facilities depends on terrain, pipeline 

connectivity, age of the development area, and production rate.  Individual wells are often 

connected to a small diameter pipeline that runs on the surface.  The incidence of this connection 

is dependent on the terrain and distance to the nearest collection facility.  Recent history has 

indicated that within three years after drilling, a portion of new wells will be connected to this 

type of pipeline system, thereby reducing the number of trucks moving over the highway system 
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(Helms, Director, Oil and Gas Division 2011).  Mode data for existing wells are maintained by 

the state of North Dakota, but not the state of Montana.  Interviews with the Montana Oil and 

Gas Board have indicated that transportation practices in Montana are similar to North Dakota 

(Halvorson 2012). Whether or not an individual well is connected to the pipeline system is 

dependent on terrain, production rate, and proximity to other connected wells or oil fields 

(production density).  North Dakota collects monthly mode choice information for existing wells 

for crude oil outputs, but does not maintain a historical database upon which statistical analysis 

could be conducted.    

Oil transload facilities represent the second major constraint in the distribution model.  

Table 5 shows that additional oil handling capacity has been added in recent years, and is 

expected to continue into the near future, based upon permit applications and company press 

releases.  The primary mode used is pipeline, and additional pipeline capacity is expected to be 

brought on line by 2013.  However, additional capacity shown in 2012 and 2013 is not currently 

available, and may not be constructed for numerous reasons including environmental, economic, 

or funding considerations.  Rail transload facilities are currently expanding, and are expected to 

expand throughout the near term, as indicated by railroad press releases.   

Within the model, only the oil collection facilities that are in existence during the year of 

analysis will be considered.  In future years, only facilities that are currently under construction, 

or have existing dedicated funding sources will be included.   
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Table 5.  Historical and forecasted outbound oil transportation capacity (Kringstad 2010) 
Transportation System 
Capacity, Barrels Per Day 

2007 2008 2009 2010 2011 2012 2013 

Pipeline Transportation        
Butte Pipeline 92,000 104,000 118,000 118,000 118,000 118,000 118,000 
Enbridge ND 80,000 110,000 110,000 161,500 161,500 161,500 161,500 
Tesoro Mandan Refinery 58,000 58,000 58,000 58,000 58,000 58,000 58,000 
Enbridge Sweet Only - - - - 23,500 23,500 23,500 
Enbridge Bakken 
Expansion 

- - - - 25,000 25,000 145,000 

Butte Pipeline Expansion* - - - - 32,000 32,000 32,000 
Butte Loop* - - - - - 50,000 50,000 
Plains Bakken North* - - - - - 50,000 50,000 
Keystone XL Interconnect 
* 

- - - - - - 100,000 

Pipeline Only Total 230,000 272,000 286,000 337,500 418,000 518,000 738,000 
        
Rail Transportation        
Various sites - 30,000 30,000 30,000 30,000 30,000 30,000 
EOG Rail - - 65,000 65,000 65,000 65,000 65,000 
Dakota Transport Solutions - - - 20,000 40,000 40,000 40,000 
Hess Rail - - - - - 60,000 60,000 
Rangeland COLT Hub - - - - - 27,000 27,000 
Rail only Total - 30,000 95,000 115,000 135,000 222,000 222,000 
Total  230,000 302,000 381,000 452,500 553,000 740,000 960,000 

 

The typical capacity of a crude truck shipment is 220 barrels of oil.  Considering this, the 

total outbound crude oil capacity in 2012 represents 3,363 loaded truck trips and 3,363 empty 

backhaul trips daily.   
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Figure 9.  Oil transload locations 

 

3.1.1.4. Existing Wells  

Shapefiles of existing well locations have been obtained from the Montana Oil and Gas 

Board and the North Dakota Oil & Gas Division.  Data for existing wells in Montana include 

monthly production reports, gas flaring statistics, as well as saltwater-oil ratios for individual 

wells.  North Dakota data include the location of each individual well, but not historical 

production data.  Monthly data have been requested from the Oil & Gas Division, but will only 

serve as a snapshot of production, as confidentiality requirements prevent the full release of data.   

Outbound crude oil moves by either truck or gathering pipeline to transload facilities.   

Gathering pipelines are typically small diameter pipes laid on the ground surface.  Multiple wells 

connected to this system feed into a tank battery and are fed to a crude oil pipeline.   
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Figure 10 shows the production curve of a typical Bakken well.  The initial production 

rate is shown as the intercept of the Y axis.  Following the initial production of the well, there is 

a sharp decline in the first four years, followed by a more gradual decline.  From interpretation of 

the data underlying this chart, it shows that 64.7% of a well’s production occurs within the first 

three years, with the remaining 35.3% in years 4 through 35.   

Figure 10.  Typical Bakken well production curve (North Dakota Industrial Commission, Oil and 
Gas Division 2012) 

 

3.1.1.5. Saltwater Disposal 

Saltwater disposal (SWD) well locations are obtained from shapefiles from the Montana 

and North Dakota regulatory authorities and are shown in Figure 11.  As mentioned above, North 

Dakota data include volumes and mode used for delivery to injection wells.  While Montana data 

include monthly saltwater production, North Dakota data do not.  However, the ND Oil & Gas 

Division provides a Barrels of Oil/Barrels of Saltwater (2:1 BO:BSW) ratio which will be used 

to estimate the saltwater production in relation to known oil production.  The locations of SWD 

disposal wells are shown in Figure 11 below. 
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Figure 11.  Saltwater disposal locations 

 

3.2. Truck Cost Model 

A major distinction between this study and previous studies integrating GIS and 

mathematical programming models is the estimation of arc costs.  The cost associated with the 

selection of a route between origin and destination is a sum of the costs of each segment along 

the route.  Due to the rural area in which oil development is occurring, very few origins or 

destinations will be located directly on a state highway.  In fact, many truck trips will be 

generated on township or county roadways, which have differing surface types and travel speeds.    

This study utilizes economic engineering methods to estimate truck costs.  Truck 

movements modeled in this study are bulk truckload movements with the exception of 

overweight non-divisible equipment movements.  It is likely that the incidence of economies of 

scale are limited, if present at all.  If this assumption is correct, the economic-engineering 
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approach to estimating truck costs is sufficient.  Moreover, the truckload market is highly 

competitive, due to the ease of entry and low fixed costs, as the network and facilities are 

provided by government or other private entities.  The estimated long-run marginal cost will be 

used to approximate the truck rate for individual shipments.  This study assumes that motor 

carrier firms are in long-run equilibrium.  Therefore, since this implies that long run marginal 

cost is equal to long-run average cost, the study calculates long run marginal cost of individual 

shipments by using average cost per mile estimates that are based on annual miles driven by 

trucking firms. 

According to the FHWA, eight primary factors contribute to variable truck costs: fuel 

consumption, oil consumption, tire wear, maintenance and repair, use-related depreciation, 

accidents, emissions, and running speeds.  Since this study approximates truck rates with long-

run marginal cost, costs that are fixed in the short run are considered as well (including 

opportunity cost of capital).  As the focus of this study is exclusively on route selection and 

optimization, costs associated with externalities such as accidents and emissions will not be 

taken into consideration (US Department of Transportation 1982).  Moreover, accident rates are 

influenced by traffic levels and other factors.  There is an obvious connection between running 

speed and fuel consumption, and a connection between labor costs and running speed.  The 

tradeoff between fuel cost and labor cost depends highly on the input prices for each.  In addition 

to linehaul costs associated with the transportation of oil inputs or outputs, consideration will be 

given to the terminal costs that arise from the transportation process.   
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3.2.1.  Variable Costs 

The short-run variable cost components considered in this study are fuel, labor, tires, 

maintenance, and repair.  This section outlines how each of these cost components is calculated.  

3.2.1.1. Fuel Consumption 

Fuel consumption is estimated using the procedures outlined in Berwick and Dooley 

(1997).    The equation for fuel costs is based upon truck fuel efficiency at 55 miles per hour.  

Fuel consumption is a function of weight and speed and varies between loaded and unloaded 

movements as well as truck type and configuration (Berwick and Dooley, Truck Costs for 

Owner/Operators 1997).  The fuel cost equation is based upon previous research, and costs are 

estimated for level terrain (Knapton 1981).  This equation is further modified to reflect fuel 

efficiency decreases as speed increases above 55 miles per hour.  For each 1 mile per hour above 

55 miles per hour, fuel economy drops an estimated 2% (Ryder 1994).  A more recent report by 

Bridgestone Truck Tire Company estimates the fuel economy drop at 1.6% per mile per hour 

over 55 miles per hour (Bridgestone Firestone North American Tire, LLC 2008).  The difference 

between the two estimates is probably a result of improved truck engine and drivetrain 

technology. Thus, the more recent estimate of the fuel economy change from speed is used.   

The modified fuel consumption equation for speeds greater than 55 is: 

(1) Miles	per	Gallon ൌ ቈ
ଵ

ሺ୚େሻ∗ቀృ౒౓
భబబబ

ቁା୊େ
቉ ∗ ሾሺ1 െ ሺ0.016 ∗ ሺMPH െ 55ሻሻሿ 

Where: 

FC = fixed coefficient (varies by truck type) 

GVW = gross vehicle weight 

VC = variable coefficient (varies by truck type) 



49 
 

MPH = miles per hour 

The first term of the equation represents the fuel consumption at a constant speed of 55 

miles per hour.  The second term represents the reduction in fuel efficiency for each mile per 

hour above 55 miles per hour, adjusted to reflect current estimates from Bridgestone Firestone 

North American Tire, LLC.  Fixed fuel consumption coefficients are presented in Table 6 and 

variable fuel consumption coefficients are presented in Table 7.  These coefficients refer to the 

fixed and variable components to fuel consumption estimated at a 55 mph running speed.   

Table 6. Fuel consumption fixed coefficient, by trailer type  
(Berwick and Farooq, Truck Costing Model for Transportation Managers 2003) 

Configuration RMD Conventional Spread Tandem Tridem 
Van 0.0008 0.0008 0.0008 0.0008 
Flatbed 0.0009 0.0009 0.0009 0.0009 
Hopper 0.0008 0.0008 0.0008 0.0008 
Tanker 0.0009 0.0009 0.0009 0.0009 
Reefer 0.0008 0.0008 0.0008 0.0008 
53’ Dry Van  0.0008   

 

Table 7.  Fuel consumption variable coefficient, by trailer type 
(Berwick and Farooq, Truck Costing Model for Transportation Managers 2003) 

Configuration RMD Conventional Spread Tandem Tridem 
Van 0.1203 0.11068 0.11068 0.1155 
Flatbed 0.113592 0.1045 0.1045 0.1090 
Hopper 0.1203 0.11068 0.11068 0.1155 
Tanker 0.113592 0.1045 0.1045 0.1090 
Reefer 0.1203 0.11068 0.11068 0.1155 
53’ Dry Van  0.11068   

 

The results of equation 1 represent fuel consumption in miles per gallon.  The reciprocal 

of this estimate is the gallons of fuel consumed per mile.  This is multiplied by the fuel cost per 

mile to estimate the fuel consumed per mile traveled, and is calculated for each road segment 

within the study area based upon roadway travel speed.  The fuel price in Williston, ND, at the 
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time of this study was $4.24 per gallon for #2 diesel, including state and federal fuel taxes (North 

Dakota Gas Prices 2012). 

The fuel consumption equation for speeds 55 or less is: 

(2) Miles	per	Gallon ൌ ቈ
ଵ

ሺ୚େሻ∗ቀృ౒౓
భబబబ

ቁା୊େ
቉ 

3.2.1.2. Maintenance and Repair 

Maintenance and repair costs are estimated with the methodology outlined in Berwick 

and Dooley (1997).  Baseline estimates of maintenance and repair for trucks is estimated to be 

$0.09 per mile at the base gross vehicle weight.  This estimate is adjusted using a formula  that is 

a function of gross vehicle weight and percent time loaded or empty (Faucett & Associates 

1991).  The base gross vehicle weight is 58,000 pounds and maintenance and repair costs are 

adjusted by 0.00097 cents per 1,000 pounds above or below the base weight.   

(3) Loaded Truck Adjustment = ((GVW-58,000)/1000)*0.00097*Percent time loaded 

(4) Empty Truck Adjustment = -((58,000-GVW)/1000)*0.00097*Percent time empty 

 These estimates are based upon costs from Berwick and Dooley (1997), and it is highly likely 

that costs have increased in the 15-year interim.  Maintenance and repair cost estimates derived 

from these equations are adjusted for inflation using the “Motor vehicle repair and maintenance” 

producer price index from the Bureau of Labor Statistics (U.S. Bureau of Labor Statistics 2012). 

3.2.1.3. Tire Wear 

Tire wear costs are estimated using the methodology presented in Berwick and Dooley 

(1997), and are a function of weight, distance, and tire cost.  Below weights of 3,500 pounds per 

tire, it is assumed that tire cost is independent of weight.  Base tire costs are estimated by 

dividing the tire cost by the useful life of the tire.  This estimate is adjusted by weight of the 
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truck.  Tire weights greater than 3,500 pounds are increased by 0.7% for each 1% increase in tire 

weight, this adjustment is added to the base tire cost.  For tire weights less than 3,500 pounds, the 

base tire cost is utilized.  The base tire cost per mile is adjusted using the following formula: 

(5) Tire cost/mile adjustment=(GVW/tire-3500)/3500*100*0.007*Tire Cost/miles 

Where: 

GVW=Gross Vehicle Weight  

Tire Cost=Cost of trailer or tractor tire 

Miles=Expected tire wear life in miles 

In addition, tire costs per mile vary based upon the surface condition of the roadway over which 

the miles are traveled.   

3.2.1.4. Surface Condition 

Roadway surface condition has an impact on maintenance, tire costs and repair.  It is 

evident that the rougher the roadway surface, the greater the tire wear, as well as greater wear 

and tear on the vehicle represented by increased maintenance, repair and tire costs.  Surface 

condition also affects fuel consumption.  If the roadway surface has deteriorated to the point at 

which the travel speed has decreased, it is likely that the fuel efficiency of the vehicle has 

increased due to slower travel speeds.  Since this study utilizes lower travel speeds on lower 

class roads, which typically have poorer surface conditions, it is assumed that the relationship 

between fuel consumption and surface type has been considered indirectly in the fuel 

consumption equation of the truck costing model.   

A common measure of the condition of a roadway surface is the Present Serviceability 

Rating (PSR).  Primary factors in the calculation of this number are travel speed, cracking, and 

pavement distress.  Guidelines for PSR ranges are presented in Table 8.  
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Table 8.  Present serviceability rating  (Federal Highway Administration 2003) 

PSR DESCRIPTION 

4.0- 5.0 

Only new (or nearly new) superior pavements are likely to be smooth enough and 
distress free (sufficiently free of cracks and patches) to qualify for this category. Most 
pavements constructed or resurfaced during the data year would normally be rated in 
this category. 

3.0 - 4.0 

Pavements in this category, although not quite as smooth as those described above, 
give a first-class ride and exhibit few, if any, visible signs of surface deterioration. 
Flexible pavements may be beginning to show evidence of rutting and fine random 
cracks. Rigid pavements may be beginning to show evidence of slight surface 
deterioration, such as minor cracking and spalls. 

2.0 - 3.0 

The riding qualities of pavements in this category are noticeably inferior to those of the 
new pavements and may be barely tolerable for high-speed traffic. Surface defects of 
flexible pavements may include rutting, map cracking, and extensive patching. Rigid 
pavements may have a few joint fractures, faulting and/or cracking and some pumping.

1.0 - 2.0 

Pavements have deteriorated to such an extent that they affect the speed of free-flow 
traffic. Flexible pavement may have large potholes and deep cracks. Distress includes 
raveling, cracking, and rutting and occurs over 50% or more of the surface. Rigid 
pavement distress includes joint spalling, faulting, patching, cracking, and scaling and 
may include pumping and faulting. 

0.0 - 1.0 
Pavements are in extremely deteriorated conditions. The facility is passable only at 
reduced speed and considerable ride discomfort. Large potholes and deep cracks exist. 
Distress occurs over 75% or more of the surface. 

 

Table 9 presents adjustment multipliers to represent increased costs due to surface 

condition.  A surface with a pavement serviceability rating greater than 3.5 (PSR), analogous to 

an international roughness index (IRI) of less than 80 represents baseline cost conditions.  For 

this study, it is assumed that state highways within the study region fit within this category due to 

the funding and maintenance levels. As the roadway condition deteriorates, the adjustment 

multiplier increases.  A recent study in western North Dakota surveyed road conditions of paved 

county major collector (CMC) routes.  The average PSR weighted by mileage is 3.088, which 

would result in a multiplier of 1.05, or a 5% increase in cost above the baseline (Upper Great 

Plains Transportation Institute 2012). PSR values for gravel roads have been estimated at 1.5 and 
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1.8, which would utilize the adjustment multiplier of 1.25, representing a 25% increase in cost 

above the baseline (Hough, Smadi, and Schulz 1996).  The multipliers presented in Table 9 are 

used to adjust the tire and maintenance and repair costs to reflect the impact of roadway 

condition.   

Table 9.  Truck cost adjustment factors due to surface condition (Barnes and Langworthy 2003) 
PSR IRI 

(inches/mile) 
Adjustment 
Multiplier 

< 2.0 170 1.25 
2.5 140 1.15 
3.0 105 1.05 

>3.5 80 1.00 
 

The pavement condition adjustment multiplier is only applied to the costs that are directly 

impacted by pavement roughness, and not reflected by changes in speed.  These costs include 

maintenance, repair, and tire costs.  As discussed above, pavement roughness impacts travel 

speed and therefore fuel costs are approximated by speed limit differences by pavement class and 

surface type.   

3.2.1.5. Driver Wages  

One significant attractor of labor to the Bakken region has been high wages during a time 

of economic downturn in other parts of the country.  Due to the higher hourly rate, travel time 

and queuing costs contribute significantly to total truck costs.  Assuming fuel consumption of 5 

miles per gallon, an average speed of 55 miles per hour, and a fuel price of $4.00 per gallon, the 

hourly fuel consumption cost equals $44.00 per hour.  Recent job advertisements posted on the 

North Dakota Job Service website indicate that truck driver wages in the oil patch range from 

$60,000-$100,000 per year, or roughly $28-$48 per hour  (North Dakota Job Service 2012).  As 

wages approach the upper end of the range, the impact of travel speed and queuing become more 
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significant.  It should be noted that this is labor cost attributed to linehaul activities.  The labor 

component of terminal costs is discussed later. 

(6) Labor Cost = (Length/MPH)*WR 

Where : 

Length = segment length 

MPH = speed in miles per hour 

WR = hourly wage rate for truck drivers 

The driver cost equation divides the length of the segment by the speed to obtain the 

number of hours that it will take a driver to travel the segment.  This is multiplied by the wage 

rate per hour to calculate the labor cost per mile traveled. 

3.2.1.6. Running Speeds 

Each segment is assigned a speed limit based upon known posted limits, surface type, and 

road condition.  It is assumed that drivers will drive within the legal speed limit, unless bound by 

condition and surface type factors or congestion.  Speed limits were presented earlier in Table 3 

and Table 4.  However, the impacts of road conditions on tire wear and maintenance are not 

reflected by the running speed over the roadway segments.  Therefore an alternate method to 

relate roadway conditions is needed to reflect these increased costs.  

3.2.2. Fixed Costs 

The fixed cost components considered in this study are depreciation, insurance, sales tax 

on the tractor and trailer purchase, license fees, and opportunity cost.  This section outlines how 

each of these cost components is calculated.  
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3.2.2.1. Depreciation and Opportunity Costs 

Depreciation is the cost attributable to reduction in the value of an asset due to use and 

time.  The useful life of tractors is assumed to be five years, and 10 years for trailers (Berwick 

and Dooley, Truck Costs for Owner/Operators 1997).  Annual depreciation for tractor and trailer 

equipment is calculated using equations 6 and 7 below:   

(7) Tractor Depreciation = (Purchase price-Salvage price)/Useful-life/Annual miles 

(8) Trailer Depreciation = (Purchase price-Salvage price)/Useful-life/Annual miles 

Dividing these estimates by the annual truck utilization yields the per-mile depreciation 

cost for tractors and trailers.  Annual utilization estimates for for-hire trucking firms was 

obtained from the 2002 vehicle use and inventory survey, and was estimated to be 68,200 miles 

per year (US Census Bureau 2004).  Estimates for individual truck types were provided in the 

inventory and use survey, but it likely that utilization of tank trucks in particular within the state 

of North Dakota has significantly changed since 2002.   

Depreciation considers only the proportional equipment costs per mile and does not 

account for the opportunity cost of the capital invested in trucking equipment.  The total cost of 

equipment is the summation of the depreciation and opportunity cost.  To represent the 

opportunity cost of capital invested in trucking equipment, the before-tax weighted average cost 

of capital is used.  The weighted average cost of capital estimate is obtained from Damodaran 

Online, and is adjusted to represent the pre-tax cost of capital.  Consideration of the post-tax cost 

of capital in marginal cost calculation would result in a price that is below the level needed to 

meet the necessary return plus the tax burden.   The pre-tax weighted average cost of capital is 

calculated as: 
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(9) ቀ ୉

ୈା୉
ቁ େు
ଵି୘

൅ ቀ ୈ

ୈା୉
ቁ Cୈ 

Where: 

E=Equity 

D=Debt 

CD=Cost of Debt 

CE=Cost of Equity 

T=Tax Rate 

For the trucking industry, the ratio of equity to debt and equity is 70.35%, the cost of equity is 

8.97%, the ratio of debt to debt and equity is 29.65% the tax rate is 25.48% and the cost of debt 

is 5.29% (Damodaran 2012).  Entering these numbers into the above equation, the before-tax 

weighted average cost of capital for the trucking industry is 10.04%   

To estimate the opportunity cost, the following formula is used: 

(10) Opportunity Cost=(Purchase price+Salvage price/2)*Cost of Capital 

3.2.2.2. Insurance 

Insurance premiums are paid on an annual basis.  To convert the annual premiums to a 

per-mile cost, the following formula is used:  

(11) Insurance Cost=Insurance premium/Annual Miles 

3.2.2.3. Sales Tax 

The motor vehicle excise tax is 5% of the purchase price (the sales price less any trade-in 

amount) or, if the vehicle is acquired by means other than purchase, the tax is 5% of the fair 

market value (Office of State Tax Commissioner 2012).  The sales tax is incurred only at the 
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time of purchase.  To convert the sales tax to an annual per-mile cost estimate, the following 

equation is applied: 

(12) Sales Taxes=(Purchase price/Useful Life)*Sales tax rate 

3.2.3.  Terminal Costs 

As mentioned above, wait times at loading or unloading facilities can contribute 

significantly to the trip cost due to labor prices.  It is unclear whether route selection will be 

influenced by wait times, except where there are significant differences in wait times between 

facilities.  For example, a truck delivering sand to a rig site would likely not be impacted by wait 

times, because the expected wait time is similar for all sand transload facilities.   Anecdotal 

evidence has suggested that there is wide variability in the wait time for freshwater sources.  

Depending on the loading equipment and demand, wait can range from minutes to hours.    

Data on wait times and loading/unloading times at origins and destinations were obtained from 

telephone surveys of transportation companies providing well service in western North Dakota 

and are shown in Table 10. 

Table 10. Reported wait and loading times at oil-related facilities 
 Wait time at 

Origin 
Loading time at 

Origin 
Wait time at 
Destination 

Unload time at 
Destination 

Freshwater 90-150 minutes 30 minutes Minimal 45 minutes 
Sand 15 minutes 30 minutes 75 minutes 45 minutes 
Pipe Minimal 45 minutes 30 minutes 45 minutes 
Oil Minimal 60 minutes 10 minutes 60 minutes 
SWD 10 minutes 45 minutes 75 minutes 60 minutes 

 

The labor rate of $40 per hour is applied to the wait and loading time at origins and 

destinations.  Fuel consumption during idling averages one gallon of diesel per hour of idling 

time (Oregon Department of Environmental Quality 2010). Total terminal hours are equal to the 
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total wait and loading/unloading time at the origin or destination.  Terminal costs are equal to the 

total terminal hours multiplied by the summation of driver wages and idling costs. 

(13) Terminal Cost at Origin = (WTO+LTO)*[W+(FCI*FP)] 

(14) Terminal Cost at Destination = (WTD+LTD)*[W+(FCI*FP)] 

Where: 

WTO=Wait time at Origin 

WTD=Wait time at Destination 

LTO=Loading time at Origin 

LTD=Unloading time at Origin 

W=Hourly driver wage rate 

FCI=Hourly fuel consumption while idling (gallons/hour) 

FP=Fuel price per gallon 

Within the framework of the analysis, it is expected that the inclusion of terminal costs 

will not likely impact the route selection, as the trip must necessarily include the dummy link to 

connect to the facilities.  Even in cases of freshwater movements, where total terminal time 

varies significantly, least cost route selection will not be impacted.  However, the optimization 

model will seek to minimize the total distribution cost of freshwater within the study area, and 

the optimal origin-destination assignment will likely be impacted by differences in terminal 

costs.   

For all locations other than freshwater, a constant terminal cost is applied.  For freshwater 

locations, the estimated wait time is based upon the expected throughput capacity.  It is assumed 

that the loadings of freshwater are consistent throughout the year.  If this assumption is correct, 

the average loading time can be inferred from annual capacity as well as flow rates at the sites.  
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Since the freshwater data sources originate from two different governmental sources, data 

elements are not consistent across all facilities.  In the North Dakota water data provided by the 

State Water Commission, total annual capacity is measured in acre-feet.  Montana’s Division of 

Natural Resources provides annual capacity in million gallons.  Conversion of acre-feet to 

gallons provides a common measure of capacity.  As mentioned above, it is assumed that the 

loadings are consistent throughout the year and flow rates can be calculated by dividing annual 

capacities by the number of working hours during the year.  This estimate approximates the wait 

time at the facility.  Wait times are calculated for each water facility in the analysis area.   

3.2.4. Total Trucking Costs 

Total trucking costs are calculated for each segment of road based upon jurisdiction, 

surface type, and average surface condition.  In addition to road segments, terminal costs are 

applied to dummy segments that connect the highway network to the origin and destination 

facilities.  The summation of the linehaul (road segment) and terminal (dummy segment) costs 

on an individual route represents the total long range marginal cost associated with the origin and 

destination movement. 

3.3. Network Routing Algorithm 

Once the network has been established, and connectivity ensured, route generation occurs 

between possible origins and possible destinations.  Each township is connected to each of the 

origin and destination locations for future use in the network optimization models.  Connection 

of each potential origin and destination is done for two reasons.  The first is to avoid arbitrarily 

designating the maximum distance which shipments may travel.  Second, due to the capacity 

limitations placed on freshwater and oil collection facilities in the optimization models, complete 

connectivity of origins and destinations are critical.  
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To generate the optimal route between origins and potential destinations, ESRI ArcMap 

Network Analyst is used.  Network Analyst utilizes Dijkstra’s algorithm to select the least cost 

path between an origin and multiple destinations.  “The shortest path problem with nonnegative 

arc lengths is one of the most natural network optimization problems and occurs widely in 

practice.  Dijkstra’s algorithm is the best known algorithm for the problem in theory and the 

most robust in practice” (Review of Dijkstra’s Algorithm).   

Link costs are estimated using the truck cost methodology for individual segments based 

upon speed and surface factors.   The purpose of routing in this study is to identify the least cost 

routes between origins and destinations for use as arc costs in a distribution optimization model.  

Dijkstra’s algorithm is a search algorithm that computes the shortest paths among non-negative 

edges with assigned costs to all destinations from a source, instead of selected origin-destination 

pairs (Medhi 2007).  “It starts from the source node and iteratively expands a tree that ultimately 

spans all nodes reachable from that source” (Misra 2009).  The algorithm output is the set of 

least cost routes between the source node and all destination nodes.  The aggregation of each link 

cost represents the minimum truck cost between origins and destinations. The selected route cost 

does not change as traffic is assigned; therefore, congestion costs are not expressly considered.  

This study will explore an iterative process to recalculate route costs post traffic assignment to 

generate new link costs for use in route selection.   

Routing in Network Analyst first begins with network construction.  The roadway 

shapefiles from Montana and North Dakota are merged using the merge utility under the 

geoprocessing menu.  This merge combines two independent network shapefiles into a new, 

single output dataset.  As the two original files have differing attributes, prior to the merge, the 

number of attributes were minimized to common attributes to streamline the merge and minimize 
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merge errors.  After the completed merge, the attribute database file was imported into SAS in 

order to repopulate the attribute table and perform conversions to add consistency between the 

files.  This network is then used to create a routable network for use in routing.   

Creation of the network dataset involves multiple steps.  The first of which is to ensure 

network connectivity.  ArcMap has two methods of accomplishing this: connectivity by end 

point and connectivity by any vertex.  For this study, connectivity by any vertex was selected, as 

it not only connects end points between segments but also any intersection between segments.  

Once connectivity is ensured, attribute variables for use as costs for minimization in the routing 

algorithm are selected.  As described earlier, segment cost representing the truck cost of 

traversing an individual segment is selected.  In addition to the objective attribute, time and 

distance are selected.  In the Network Analyst routing options, these attributes may be 

accumulated in the same manner as cost, although not selected as the minimization objective.  

This provides additional data for sensitivity analysis.     

Once the routable network has been completed, the next step is to specify the problem 

type.  Since this study utilizes the cost between origin and destination facilities, the closest 

facility problem is selected.  The closest facility problem selects the minimum cost route 

between an incident (origin) and facility (destination).  For example, in the sand routing problem, 

there are a total of 1,582 township incidents, and nine sand facilities.   

Prior to network routing, analysis properties are adjusted on a case-by-case basis to 

ensure the correct analysis scope and type.  First, the analysis settings are modified to specify 

that the model impedance is defined as cost.  The number of facilities to find is set at the total 

number of facilities in the routing problem, for reasons previously described.  Accumulation 
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settings are specified to include accumulation of route cost, time, and distance, although the 

closest facility problem minimizes route cost only.  Following these steps, route selection begins.   

The duration of the routing process depends on the total number of origins and destinations.  For 

all outbound routes, there are a total of 1,582 origins and varying numbers of destinations, 

depending on output type.  For each destination, 1,582 routes will be selected.  Once the total 

number of routes exceeds 250,000-300,000, Network Analyst automatically halts the process and 

produces an error message citing memory limitations.  The number of potential routes in each 

iteration depends on the number of facilities as well as the distance, as longer routes would be 

composed of additional segments, thereby adding to the total memory load.  Experimentation 

resulted in an upper limit of 150 destinations from each township per routing session.  For this 

reason, where the number of locations exceeds 150, multiple runs were conducted and the 

resulting route costs were aggregated to a single file.   

Using this method, each origin is connected to each potential destination.  The set of 

origins and destinations are not fixed throughout the entire analysis, as drilling locations will 

change from year to year, and additional locations will be added to the network as time 

progresses.  For example, the base set of oil collection facilities is expected to expand between 

2012 and 2015 as additional capacity is introduced, as shown in Table 5.    

The existing route sets are first used to connect sources of existing oil and saltwater 

production to oil collection facilities and saltwater disposal wells.  As shown in Figure 12, 

inbound inputs to drilling are routed to the township TAZ and represented by the top set of 

arrows.  Outbound movements of crude oil to collection facilities and saltwater to SWD facilities 

are represented by the lower set of arrows.  
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Figure 12.  Movement classes 

 

Through these steps, the cost of the route between each origin and destination is 

calculated.  However, terminal costs are also included to reflect the true cost of the truck trip.  As 

mentioned previously, terminal costs reflect the cost of loading and unloading and wait times at 

well sites or transload facilities, including associated labor and fuel costs due to idling in a 

queue.  For each of the origin and destination locations, a dummy link is constructed and is 

assigned a cost based upon the terminal costs consisting of wait, loading, and unloading times.  

The sum of the linehaul costs estimated from the truck cost model and the terminal costs at the 

dummy link represent the total cost of the route, as shown in Figure 13. 

Figure 13.  Relationship between linehaul, terminal, and route costs 

 

3.4. Future Well Location Distribution 

Forecasting future traffic volumes over highway segments due to oil development 

requires forecasts of new wells by year, and the expected duration of production.  Forecasts 
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provided by the North Dakota Oil & Gas Division contain the expected number of new wells by 

year and county.  Since the level of this analysis is below the county level, a method to further 

disaggregate the forecasts to the township level is required.   

3.4.1. Oil Production Forecasts 

3.4.1.1. Oil Exploration and Drilling Phases 

Recent Bakken development has followed two primary drilling phases.  The first phase 

involves drilling a single well to secure a lease on a spacing unit. Spacing units are 640- or 

1,280-acre land units and the base unit of development.  Most Bakken spacing units are 1,280 

acres.  Prior to initial exploration, oil companies negotiate a drilling lease with landowners for a 

specified dollar amount per acre.  Once the lease goes into effect, the oil company must drill at 

least one well within five years, or forfeit their lease in the absence of a lease extension.  Many 

existing leases have been in effect since the beginning of the newest Bakken boom in 2006-2008, 

and renegotiation of leases would result in significantly higher lease rates, hence the motivation 

to secure the leases wherever possible.   

The second phase is also known as the “fill-in” phase.  As mentioned in the introduction, 

a typical Bakken spacing unit will have a total of seven wells drilled.  The fill-in phase may 

occur at any time following securement of the lease.  Since there is a higher penalty in the form 

of higher lease rates with not completing a Phase I well within a specified time, there is a greater 

incentive for Phase I completion.  The incentive, according to regulatory representatives, drives 

the number of drilling rigs within the development area. 

The North Dakota Oil and Gas Division produces forecasts of oil development on a 

periodic basis.  Forecasted oil development is disaggregated to the county level.  The method of 

forecasting the number of wells to be drilled in each county is a function of the number of 
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undeveloped spacing units, units under development, completed units, and rig numbers.  The 

number of rigs by county each year is forecasted by the Oil & Gas Division and is the primary 

driver of oil development.  Statewide estimates are shown in Table 8.  The left vertical axis 

represents the number of rigs estimated by year.  The right vertical axis shows the total number 

of wells drilled by year.  Note that as the number of rigs decreases starting in 2023, so does the 

rate of new wells added, as the new wells are a function of the number of rigs operating in the 

state.   

Figure 14.  Historical and forecasted rig and well numbers (Helms, Jobs Projection Expected 
Case 2012) 

 

The scope of oil development in North Dakota is 17 counties: Billings, Bowman, Burke, 

Divide, Dunn, Golden Valley, Hettinger, McHenry, McKenzie, McLean, Mercer, Mountrail, 

Renville, Slope, Stark, Ward, and Williams.   

The Montana Oil and Gas Board do not provide formal public forecasts.  Discussions 

with OGB representatives, however, indicate that future development will occur within three 
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counties in Montana:  Sheridan, Roosevelt, and Richland.  However, due to input source and 

output destination locations being outside of the primary development area, the geographic scope 

has been increased to 11 counties in Montana.  There is significant cross border traffic resulting 

from inputs such as gravel sourced in Montana for use in North Dakota wells, and outputs of 

crude oil produced in North Dakota, but shipped to a transload facility in Montana.   

Oil exploration and extraction in the Bakken formation has occurred and is continuing to 

occur in two phases.  The first phase involves drilling of a single well to secure spacing units on 

an oil lease.  The second phase includes the drilling and fracturing of additional wells to 

complete the spacing unit development.  Initial development of the Bakken formation in North 

Dakota using horizontal drilling occurred in 2006-2007.  As shown in Figure 15, the initial phase 

of this round of development occurred in south central Mountrail County.   

Figure 15. Wells drilled in Mountrail County, ND, in 2007 
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Each dot on the map represents a single well.  Note that early development is distributed 

throughout the area, with single wells at most locations.  This distribution represents a 

combination of exploration and lease securement, as single wells within spacing units are shown.  

Figure 16 includes all wells drilled from 2007-2009.  The distribution of wells has expanded 

outside the initial area of development, but the spacing between the wells still signals that Phase 

I development is still underway.  This is indicated by single points spaced roughly one mile 

apart, representing a single well on a one-mile by two-mile spacing unit, with infrequent multiple 

locations within the spacing unit proximity.  When Phase II drilling occurs, multiple wells are 

located directly adjacent to existing wells, often within distances of 100 yards or less.  Note that 

Phase I and Phase II drilling may occur simultaneously within a geographic area.   

Figure 16.  Wells drilled in Mountrail County, ND, 2007-2009 
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Figure 17 shows the locations of all wells drilled in southern Mountrail County between 

2007 and 2011.  The rows of oil wells located north of New Town, ND, represents areas where 

Phase II or fill-in drilling has occurred.  Many of the spacing units in this area are fully 

developed, and drilling will cease.   This Phase II activity can be seen directly north of New 

Town in the lower center of the figure.   The lines of adjacent wells represent spacing units that 

have completed Phase II of exploration.   

Figure 17.  Wells drilled in Mountrail County, ND, 2007-2011 

 

As Figures 15-17 show, there is significant variation in distribution of these wells at the 

sub-county level.  However, forecasts of future oil development in North Dakota are at the 

county level.  One method used in a previous study to disaggregate the county forecasts was to 

randomly distribute future wells throughout the county.  In certain counties this is representative 

of observed development.  However, the Mountrail County example provides evidence that this 
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method is not acceptable overall.  The maps show a clear eastern boundary of oil development 

within Mountrail County, running north and south of Parshall, ND.  This represents the 

“economic boundary” of oil development within Mountrail County under current market and 

regulatory conditions.   

The locations of future wells and potential economic boundaries are dependent on the 

level of production that can be obtained at new well sites.   The North Dakota Geological Survey 

outlines the thermally mature areas of the Bakken formation.  The majority of existing 

development has occurred within these thermally mature areas, and represents the potential outer 

economic boundaries of Bakken development.  Figure 18 shows the location of the boundaries of 

the thermally mature area of the Bakken formation overlaid with existing oil wells categorized 

by initial production rates.  Historically, the development of horizontal wells in the North Dakota 

Bakken centered in southern Mountrail County, and has expanded to the south, west and 

northwest.   
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Figure 18.  Existing oil wells in relation to thermal maturity (Nordeng 2010) 
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3.4.1.2. Factors Influencing the Likelihood of Development 

A prerequisite for well drilling is location within the economically viable portion of the 

Bakken formation.   The primary definition of the economically viable portion of the Bakken can 

be taken to coincide with the mature area of the formation.  The vast majority of existing Bakken 

wells is located within the thermally mature area boundaries.  However, there have been 

successful wells drilled in northeastern Divide County and southern Burke County, which are 

outside of this boundary.  An alternative definition would be within demarcated Bakken Oil & 

Gas fields as outlined in Figure 18.  Similar to the boundaries of the thermally mature areas, 

there are exceptions to the use of these boundaries, and it is expected that additional oil fields 

will be defined as oil development progresses.   

Historical data have shown that new wells are generally drilled within close proximity to 

existing wells.  In the initial development timeframe, this was not necessarily the case as a base 

set had not yet been established.  Recent development has shown considerable clustering within 

sub regions.   

The spacing unit is the base unit of development.  Using the assumption of a maximum of 

five to seven wells per spacing unit based upon historical practices, the existing number of wells 

in any given spacing unit may prove to be a useful predictor of future development.  Upon 

completion of Phase 1 drilling activities, it is assumed that Phase 2 drilling will occur at a later 

period.  Once the total of five to seven wells is drilled, the spacing unit will not receive 

additional wells, and the unit is considered fully developed.  However, not all spacing units 

receive five to seven wells, as productivity and economic considerations may limit the 

development.  Additionally, the timeframe between completion of Phase 1 and Phase 2 drilling is 

not known, and may range from months to years.   
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It is unclear whether there are dependencies between locations aside from proximity.  The 

ownership of specific leases is unknown outside of state trust land leases.  If one oil exploration 

firm were to secure leases over a large continuous geographic area, advance planning with 

respect to gathering pipelines could be completed and development could operate in an efficient 

least-cost manner, as the location of future wells would be determined by connectivity to the 

firm’s existing network.  However, as evidenced by trust land leases ownership, it appears that 

no one firm demonstrates widespread continuous ownership.  While it is certain that clustering of 

new wells is occurring, the rationale is assumed to be that the wells are simply located in highly 

productive and economically viable oil fields.  It is certain, either way, that the spatial location of 

new wells will be correlated to the location of existing wells, which is consistent with Tobler’s 

First Law of Geography, which states “everything is related to everything else, but near things 

are more related than distant things” (Tobler 1970).  In the case of oil development, there are 

highly, moderately, and marginally productive oil development areas.  The closer the proximity 

of a location to higher production areas, the greater is the expected density of exploration.   

3.4.1.3. Spatial Data Analysis 

In this study, the Susceptible, Infected and Recovered model is used as a method of 

modeling future oil development.  This model was initially designed for use in modeling the 

spread of disease epidemics (Shulgin, Stone, and Agur 1998).  The organization of the model is 

as follows: 

N=population  

St=segment of the population who have not encountered the disease at time t 

It=segment of the population who are infected with the disease at time t 

Rt=segment of the population who have previously been infected but are now recovered at time t 
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The three groups can further be described as fractions of the total population N 

st=St/N  

it=It/N 

rt=Rt/N 

Where: St+It+Rt=N and st+it+ rt=1 

The model assumes that one can only move from S to I to R, and not in the opposite 

direction.  That is, once infected with a disease such as chicken pox, upon recovery the infected 

develops an immunity that prevents them from future infections.  A fully developed spacing unit 

will have five to seven wells upon completion.  For the purposes of this study, the midpoint of 

six wells is used.  In the situation of oil development, one could group spacing units in similar 

categories:  Susceptible (undrilled), Infected (at least one well drilled but less than or equal to 

five), and Recovered (six wells drilled, exploration complete)  (Shulgin, Stone and Agur 1998).   

In the SIR epidemic model, there are two potential movements, between S and I and between I 

and R.  The rate at which population moves from S to I is represented by , which represents the 

contact rate.  The infection is spread from I to S.  The rate at which population moves from I to R 

is represented by , which represents the rate of recovery.  Equation 1 shows that the number of 

susceptible persons in time period t+1 is equal to the starting population of S minus the 

proportion of susceptible population multiplied by the Infected population and the contact rate.  

The recovered population is equal to the starting recovered population plus the infected 

population multiplied by the recovery rate.  Finally, the number of infected persons is equal to 

starting infected plus the portion of susceptible now infected minus the number of infected now 

recovered.   

(15) S୲ାଵ ൌ S୲ െ βs୲I୲ 
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(16) R୲ାଵ ൌ R୲ ൅ γI୲ 

(17) I୲ାଵ ൌ I୲ ൅ βs୲I୲ െ γI୲ ൌ I୲ሺ1 ൅ βs୲ െ γሻ 

In the oil forecasting usage,  represents the spread of Phase I development, which 

historically is based upon geographic location and proximity to existing wells and � represents 

the time period corresponding with Phase II or fill-in drilling.  In forecasts of oil development in 

the Bakken, the total number of wells drilled during time period t is a function of the number of 

drilling rigs in time t.  Full forecasts are presented later in this document and show that there is 

an increased number of drilling rigs during the Phase I stage of oil exploration and a decrease at 

a later date, which will be represented by differing contact and recovery rates.  Once a spacing 

unit has been fully “infected” with seven wells, it is deemed recovered.  In the SIR model, 

exposure and recovery are typically measured in days, where well development would instead be 

measured in years.  Figure 19 illustrates the model results of North Dakota spacing units under 

test contract and recovery rates using formulas 1-3 above. Contract and recovery rates will be 

calibrated based upon known well location data from 2005-2011 and new wells forecasted by the 

North Dakota Oil & Gas Division.  Roughly 7,700 spacing units have been defined in North 

Dakota, and the figure illustrates the number of spacing units in each category over time.   
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Figure 19.  Demonstration of SIR model for ND spacing units 

 

Spatial distribution of the susceptible, infected, and recovered spacing units by time first 

begins with the definition of a two-dimensional lattice so geographic location between spacing 

units may be quantified.  The level of aggregation in this study is the township level, which 

represents a geographic area of 36 square miles, which consists of 18 1,280-acre spacing units.  

Since a typical 1,280-acre spacing unit will have five to seven wells before it is complete, we 

may use the midpoint of six as a representative total.  As a township consists of 18 1,280-acre 

spacing units, complete exploration would represent 108 wells.    A subset of the existing 

township boundary shapefile is selected, with outer boundaries being the thermally mature area 

of the Bakken formation, and designated as the two-dimensional lattice for use in the spatial SIR 

model.  Within the lattice, each cell will have four neighbors:  one to the north, one to the south, 

one to the east, and one to the west, which share a boundary with the central cell. Each cell will 

be given an initial state of S, I or R, based upon known observations.   
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Using methodology outlined in Tome and Ziff (2010), a stochastic lattice model with 

asynchronous dynamics with corresponding distribution algorithm will be developed.  As above, 

each cell can be occupied by only one state:  S, I, or R.  “At each time step, a site is randomly 

chosen and the following rules are applied: (i) if the chosen site is in state S or R, it remains 

unchanged, (ii) If the chosen site is in state I then (a) with the probability c the chosen site 

becomes R and (b) with the complementary probability b=1-c a neighboring site is chosen at 

random…if…in state S it becomes I; otherwise it remains unchanged” (Tome and Ziff 2010).  

Probabilities are based upon rate of contact and recovery. 

(18) b ൌ β/ሺβ ൅ γሻ 

(19) c ൌ γ/ሺβ ൅ γሻ 

The SIR model will be simulated using a dynamic Monte Carlo method.  The procedure 

begins with random selection of an I site randomly from the available list of I sites.  Next, a 

random number x in (0,1) is generated.  If x≤c then I is now R.  If x≥c, one of the four nearest 

neighbors of the I site is randomly selected.  If the neighbor is S, then it is now I, and added to 

the list of I sites.  This procedure is repeated as long as I sites remain (Tome and Ziff 2010).  

Thus the distribution of I and R is made throughout the lattice.  The movement between S and I, 

and I and R are limited by the number of forecasted new wells by county in a given time period, 

with the movement between S and I representing one new well, and the movement between I and 

R representing five new wells.    

The SIR model considers clustering and proximity in addition to rate of spread and 

recovery to model the spread of epidemics.  Oil development, like epidemics, occurs in clusters 

in areas of close proximity.  This is as a result of location of economically viable drilling 

locations due to the underlying geology and the resulting productivity of oil wells.  By directly 
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considering existing economically viable production areas, the SIR model estimates the spatial 

development of oil development and accounts for clustering.  This method is likely superior to 

random distribution of future wells within the study area, as development firms seek to minimize 

the costly movement of oversize and overweight rig equipment while seeking to maximize return 

by focusing on areas that have proven economic viability.    

As described earlier, public land lease locations are available from the North Dakota 

State Land Department, which provides data on the year of lease origination as well as the lease 

termination year.  Historical data have shown that leases are often drilled in the last year of the 

lease, thereby preventing renegotiation of the lease terms.  This study did consider the use of 

these lease locations as representative new “infections.”  However, assumptions would have to 

be made as to the development timeframe of surrounding private lands, as private land leases are 

confidential.  Due to the nature of these assumptions and the limited timeframe for public land 

data, public land leases were not utilized for modeling the future spread of development.  

Moreover, a lease represents the timing of exploration on a single spacing unit.  This study 

aggregates development to the township level, and utilizing lease expiration data would 

necessitate assumption that a single spacing unit is representative of the entire township.   

3.5. Mode Choice 

In North Dakota and Montana, once an oil well has reached completion and begins 

producing crude oil, the outbound oil may be transported to a collection facility by truck or 

pipe.  Construction of collector pipelines represents a significant investment with per-inch per-

mile costs ranging from $50,000 to $75,000 (Kringstad, 2012).  For 3-inch pipe, this represents a 

cost of $150,000 per mile.  Factors influencing the likelihood of investing in pipe infrastructure 

include ownership, productivity, and density.  The first factor refers to the percentage of the draw 



78 
 

area in which a single firm has ownership.  The rationale is that if a firm had a significant lease 

investment in an area, the more likely they are to invest in pipelines.  Productivity refers the 

initial production rate of wells drilled in an area, and varies significantly throughout the study 

area.  For example, in 2012, new wells in Mountrail County had an average initial production 

rate of 803 barrels of oil per day.  In McKenzie County, average initial production exceeded 

1,300 barrels of oil per day.  As production increases, the number of daily trucks required to 

transport crude oil to collection facilities increases, as does the trucking cost.  The terminal and 

linehaul costs of pipeline transportation are significantly different than those of truck 

transportation, and there is certainly a threshold where pipe transportation becomes the least cost 

option.  Finally, production density is a combination of ownership and productivity.  Historical 

data reflect that as portions of the oil patch become more mature, pipeline transportation 

increases.   This is analogous to the recovery stage in the SIR model, wherein oil development 

would cease as the density of wells has reached a maximum.  For the purpose of this analysis, 

once a township reaches maturity, it is assumed that outbound oil is transported by pipeline.    

3.6. Route Assignment/Distribution Model 

Assignment of routes for individual truck movements will be done through a constrained 

optimization model.  Each township has multiple origins from which inputs may be sourced, yet 

only one will be chosen.  Assignment of origin-destination pairs assumes that the source 

movement is an all-or-nothing assignment, as the route costs of alternative sources will remain 

the same for all truck trips.  It should be noted that within the optimization framework, the 

township represents both an origin and a destination.  For inbound drilling-related movements, 

the origins are the sources of the inputs, and the destination is the township well site.  For 
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outbound production-related movements, the origin is the township, and the destinations are 

collection facilities or disposal wells.   

The objective of the oil development distribution model is to minimize the total cost of 

moving six inputs and two outputs from input origins and to output destinations (Equation 20), 

subject to the following constraints: the demands at the township well sites (Equation 21), the 

supply capacities at input origin locations (Equation 22), handling capacities at destination 

locations (Equation 23), and the number of trucks on a route must be greater than or equal to 

zero (Equation 24).   

(20) Min∑ ∑ ∑ c୧୨୩ ∗ x୧୨୩ ൅ ∑ ∑ ∑ c୨୪୩ ∗ x୨୪୩
୭
୩ୀଵ

୮
୪ୀଵ

୫
୨ୀଵ

୭
୩ୀଵ

୫
୨ୀଵ

୬
୧ୀଵ  

(21) ∑ x୧୨୩ ൌ D୨୩	∀jk
୬
୧ୀଵ  

(22) ∑ x୧୨୩ ൑ S୧୩	∀ik
୫
୨ୀଵ  

(23) ∑ x୧୨୩ ൑ U୪୩	∀lk
୫
୨ୀଵ  

(24) x୧୨୩	are	non െ negative	integers	for	all	i, j, k 

Where: 

i=Index for input origin 

j=Index for township 

k=Index for freight class 

l=Index for outbound destination 

cijk=Cost of carrying freight k between i and j 

xijk=Truckloads of freight k between i and j 

cjlk=Cost of carrying freight k between j and l 

xjlk=Truckloads of freight k between j and l  

Dj=Demand at township j  
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Si=Supply at origin i 

Uj=Capacity at destination l 

This study does not expressly consider the impact of congestion on the state highway 

system.  It is possible that as additional trucks are assigned to a highway segment, the cost of 

traveling that segment may rise due to decreased travel speed resulting from congestion.  

Theoretically, this could redirect background traffic to other highway routes.  Due to the 

connectivity of the state highway system in western North Dakota, it is assumed that the impacts 

of congestion would be minimal on route selection.  This assumption does not ignore the reality 

that congestion is occurring, but that the impacts are limited due to the lack of alternative routes 

crossing the Missouri River and Lake Sakakawea.   

3.7. Route Disaggregation and Segment Assignment 

The distribution model assigns truck movements to individual routes. An individual 

segment of the state highway system may theoretically be included in each route that was 

chosen.  For this reason, the selected routes must be disaggregated to component highway 

segments in order to assign the traffic flows to individual segments.   

3.8. Model Calibration 

Forecasted truck traffic due to oil production represents a portion of total truck traffic 

over roadway segments.  Total traffic is a combination of oil movements modeled in this study, 

secondary traffic, and local and through traffic.  Secondary traffic is generated as a result of oil 

development.  Examples would include construction, retail, and fuel movements generated by 

population increases within the study area.  Local traffic includes movements that would likely 

be generated whether or not oil development occurred, and would include agricultural and 
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manufacturing movements.  Through traffic includes movements that do not originate or 

terminate within the study region, including long haul movements.   

Each of these traffic classes lend themselves to distinct roadway functional classes.  For 

example, long-haul through movements would be more likely to use routes including 

interregional corridors or interstate highways due to travel speed, connectivity, and access 

control.  Secondary movements are often long-haul movements that terminate within the study 

area, and also would utilize interregional corridors and interstate highways.  Local movements, 

including modeled oil movements, would use all functional classes of highway, as the generation 

and termination points are located in rural areas, often not directly connected to interregional or 

interstate highways.   

Pavement designers consider the total traffic over a highway segment.  While the 

incremental oil traffic would be useful to a planning official, the total traffic is what drives 

design.  There is not a linear relationship between truck AADT and improvement cost, although 

there is assuredly a positive correlation.   

Traffic model calibration requires inclusion of external traffic variables to estimate the 

total traffic over a highway segment.  “Calibration in the traditional four-step modeling process 

was accomplished by modifying model parameters until the models replicated the travel patterns 

exhibited by the O-D survey” (Federal Highway Administration 1990).  In this study, the 

calibration effort focuses primarily on non-modeled traffic components.  Traffic count 

classification data are collected from MDT and NDDOT, and is either in point or line shapefiles.  

For point shapefiles, the nearest traffic observation on a route is used to represent traffic at the 

segment level. Line shapefiles are preloaded with segment level traffic data.  The difference 

between observed and modeled traffic is the focus of the calibration effort. 
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For all levels of traffic, it is expected that increases will occur over the analysis period 

whether or not oil development occurs.  To account for future non-modeled traffic, growth 

factors must be applied to the base year traffic.  Two previous studies are used to generate traffic 

growth factors to apply to non-modeled traffic.  The first study is the Freight Analysis 

Framework (FAF).  FAF “estimates commodity movements by truck and weight for truck-only, 

long distance moves over specific highways. Models used to disaggregate flows are based on 

geographic distributions of economic activity rather than a detailed understanding of local 

conditions and the resulting network flows should not be used as a substitute for local data to 

support local planning and project development” (Federal Highway Administration 2010).  The 

second is a more recent draft traffic forecast report in the Williston, ND area.  Different growth 

rates are estimated for background (non-oil related) and oil related (activity based) traffic (SRF 

Consulting 2012). 

Growth estimates from these two studies vary greatly, primarily due to the underlying 

methodology and timeliness of data.  FAF utilizes 2007 traffic data, which are prior to 

widespread increases in oil development within the study region.  Growth factors from FAF may 

prove useful for modeling the through traffic component, and background traffic in the lesser 

impacted oil counties.  SRF background traffic growth factors are based upon trip generation 

estimates tied to population growth within the Williams, McKenzie, and Mountrail County areas, 

which represent the most significantly impacted oil counties in the study.  Due to the differences 

in assumptions, a single set of growth factors was not applied to the entire study area.  In higher 

development counties, the SRF growth factors are used, and in the fringe counties, the FAF 

growth factors are used.   
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CHAPTER 4.  RESULTS 

This chapter is organized into three main sections that correspond to the three major 

models used to develop truck traffic forecasts.  The first outlines the truck cost model results, 

which are presented for four different truck configurations across a number of travel speeds.  The 

next section presents the results of the SIR model to predict oil development and discusses 

measures of accuracy in predictions of development timeframes and spatial distribution of wells.  

The third section presents the results of the traffic model, first visually for the entire study 

region, and then route-specific forecasts for a number of the high impact highways.  Within each 

section, comparisons to existing methods are presented and conclusions are drawn on the 

effectiveness of the methods used in this study. 

4.1.   Truck Cost Model 

Truck cost estimates were calculated for use in approximating truck rates charged to 

travel over individual roadway segments in the model.  Truck cost serves as the primary form of 

impedance in the routing model, and the optimization model objective is to minimize 

transportation cost.  This section outlines individual estimates of truck cost measures used in the 

routing analysis.   

4.1.1. Model Parameters   

Cost factors used in the truck cost model are presented in Table 11.  Parameters are 

grouped by variable and truck configuration.  With the exception of trailer price, all variables are 

consistent across truck configurations.   
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Table 11.  Truck cost model parameters by truck configuration 
Variable Conventional Flatbed Conventional 

Tanker 
Conventional 

Dump 
RMD Tanker 

Tractor – Useful Life 5 years 5 years 5 years 5 years 
Trailer – Useful Life 10 years 10 years 10 years 10 years 
Salvage Value 30% 30% 30% 30% 
Annual Mileage 68,200 miles 68,200 miles 68,200 miles 68,200 miles 
Purchase Tax Rate 5% 5% 5% 5% 
Cost of Capital 7.88% 7.88% 7.88% 7.88% 
Trailer Price $39,450 $37,500 $43,295 $75,000 
Tractor Price $111,000 $111,000 $111,000 $111,000 
Labor Rate $40/hour $40/hour $40/hour $40/hour 

 

4.1.2. Truck Cost Model Estimates 

This section presents the cost estimates generated by the truck cost model.  Variable and 

fixed cost components are discussed individually, and a brief description of model outputs are 

presented.    

4.1.2.1.    Variable Costs 

Fuel consumption estimates for different truck configurations are presented in Table 12 

below.  All estimates are presented in miles per gallon.  As speed of travel increases, the fuel 

economy decreases across all truck configurations.   

Table 12. Fuel economy by truck configuration and travel speed 
Truck Trailer 40 45 50 55 60 65 70 
Conventional Flatbed 5.39 5.39 5.39 5.39 4.84 4.31 3.77 
Conventional Tanker 5.39 5.39 5.39 5.39 4.84 4.31 3.77 
Conventional Hopper 5.72 5.72 5.72 5.72 5.15 4.57 4.00 
RMD Tanker 5.20 5.20 5.20 5.20 4.60 4.16 3.60 

  

Conversion of fuel economy resulted in the per mile variable cost for fuel.  As specified 

in Chapter 3, the fuel cost used was $4.24 per gallon.  Estimates of fuel cost per mile are shown 

in Table 13. Per-mile fuel cost at 70 miles per hour is roughly double per-mile costs at 40 miles 

per hour. 
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Table 13.  Fuel cost per mile by truck configuration and travel speed 
Truck Type Trailer 40 45 50 55 60 65 70 
Conventional Flatbed $0.79 $0.79 $0.79 $0.79 $0.88 $0.98 $1.12 
Conventional Tanker $0.79 $0.79 $0.79 $0.79 $0.88 $0.98 $1.12 
Conventional Hopper $0.74 $0.74 $0.74 $0.74 $0.82 $0.93 $1.06 
RMD Tanker $0.82 $0.82 $0.82 $0.82 $0.92 $1.02 $1.18 

 

Labor cost is primarily a function of travel speed and wage rate per hour.  As speed 

increases, the labor cost per mile decreases.  Labor costs are consistent across all truck 

configurations. However, in reality there may be higher wages for drivers of longer rocky 

mountain double rigs due to the requisite skill and experience.  Additionally, truck driver wages 

used are representative of oil trucking only, and would not be directly transferrable to other 

commodity movement.  Labor cost estimates are shown in Table 14.  The tradeoff between fuel 

and labor costs is evident as travel speed increases.  As mentioned above, as speed increases 

from 40 miles per hour to 70 miles per hour, the per-mile fuel cost roughly doubles.  As speed 

increases from 40 miles per hour to 70 miles per hour, labor costs decrease by roughly half.   

Table 14.  Labor cost per mile by truck configuration and travel speed 
Truck Type Trailer 40 45 50 55 60 65 70 
Conventional Flatbed $1.00 $0.89 $0.80 $0.73 $0.67 $0.62 $0.57 
Conventional Tanker $1.00 $0.89 $0.80 $0.73 $0.67 $0.62 $0.57 
Conventional Hopper $1.00 $0.89 $0.80 $0.73 $0.67 $0.62 $0.57 
RMD Tanker $1.00 $0.89 $0.80 $0.73 $0.67 $0.62 $0.57 

 

Maintenance and repair costs estimates are relatively consistent over all single trailer 

configurations.  Baseline estimates of maintenance and repair for trucks is estimated to be $0.09 

per mile at the base gross vehicle weight.  This estimate is adjusted using a formula that 

considers the gross vehicle weight and percent time loaded or empty (Faucett & Associates 

1991).  The base gross vehicle weight is 58,000 pounds, and maintenance and repair costs are 

adjusted by 0.00097 cents per 1,000 pounds above or below the base weight.   As shown in Table 
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15, loaded truck maintenance and repair costs are 12.6 cents per mile for all conventional 

configurations, with an increase to 13.1 cents for the rocky mountain double configuration.  A 

similar relationship occurs with empty maintenance and repair costs per mile. 

Table 15.  Maintenance and repair cost per mile by truck type 
Truck Type Trailer Loaded Empty 
Conventional Flatbed $        0.126 $        0.077 
Conventional Tanker $        0.126 $        0.076 
Conventional Hopper $        0.126 $        0.076 
RMD Tanker $        0.131 $        0.080 

 

Tire wear costs are estimated using the methodology presented in Berwick and Dooley 

(1997), and are a function of weight, distance, and tire cost.  Below weights of 3,500 pounds per 

tire, it is assumed that tire cost is independent of weight.  Base tire costs are estimated by 

dividing the tire cost by the useful life of the tire.  This estimate is adjusted by weight of the 

truck.  Tire weights greater than 3,500 pounds are increased by 0.7% for each 1% increase in tire 

weight, this adjustment is added to the base tire cost.  For tire weights less than 3,500 pounds, the 

base tire cost is utilized.  Per mile estimates of tire costs are presented in Table 16.  For all 

conventional truck configurations, the tire costs for trucks and trailers are consistent, as the 

legally loaded weight and number of tires are consistent.  Truck tire costs for rocky mountain 

double configurations decreases as the increase in tires is not proportional to the increase in 

weight.  However, trailer tire costs double as the number of trailer tires also double.   

Table 16. Per mile tire cost by truck type 
Truck Type Trailer Truck Trailer Total 
Conventional Flatbed  $0.02325   $0.0210  $0.0443 
Conventional Tanker  $0.02325   $0.0210   $0.0443 
Conventional Hopper  $0.02325   $0.0210   $0.0443 
RMD Tanker  $0.01956   $0.0420   $0.0616  
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Adjustment factors based upon roadway surface condition are presented in Table 17.  As 

described in Chapter 3, these adjustment factors are used to reflect increases in tire, maintenance, 

and repair costs due to pavement roughness measures.   

Table 17.  Surface condition adjustment factors 

Truck Type Trailer 

State  
Paved 

Adjustment 

County 
Paved 

Adjustment 

Gravel 
Adjustment 

Conventional Flatbed 1.00 1.15 1.25 
Conventional Tanker 1.00 1.15 1.25 
Conventional Hopper 1.00 1.15 1.25 
RMD Tanker 1.00 1.15 1.25 

  

Total variable costs are presented in Table 18.  The cost estimates vary by speed, with the 

least cost travel speed consistently in the 55 to 60 miles per hour range.  This is as a combination 

of the decreasing labor costs as travel speed increases versus the increasing fuel costs as travel 

speed increases, and demonstrates the tradeoff between the two.   

Table 18.  Total per mile variable costs by truck configuration and travel speed 
Truck Type Trailer 40 45 50 55 60 65 70 
Conventional Flatbed $1.99 $1.88 $1.79 $1.70 $1.71 $1.77 $1.87 
Conventional Tanker $1.99 $1.88 $1.79 $1.70 $1.71 $1.77 $1.87 
Conventional Hopper $1.94 $1.83 $1.83 $1.66 $1.66 $1.71 $1.80 
RMD Tanker $2.04 $1.93 $1.93 $1.76 $1.78 $1.83 $1.94 

4.1.2.2.      Fixed Costs 

The salvage value of the truck and trailer are calculated at 30% of the purchase price.  

Depreciation estimates are shown in Table 19 below.  Annual depreciation is equal to the 

difference between purchase price and salvage value divided by the useful life.  Annual 

depreciation divided by the annual utilization results in the per mile depreciation cost.  The 

opportunity cost of truck and trailer ownership is calculated at the midpoint of the ownership 

cost and equally distributed over the useful life of the truck.  Per-mile opportunity cost is 

calculated by dividing annual opportunity cost by annual utilization.   
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Table 19.  Depreciation and opportunity cost by truck type:  annual and per mile 
 Depreciation Opportunity Cost 

Truck Type Annual Per Mile Annual Per Mile
Conventional Flatbed $18,301 $0.2684 $7,314 $0.1072 
Conventional Tanker $18,165 $0.2663 $7,220 $0.1059 
Conventional Dump $18,570 $0.2723 $7,501 $0.1099 

RMD Tanker $20,790 $0.3048 $9,043 $0.1326 
 

Per mile estimates of insurance, license fees, sales taxes, and firm overhead are presented 

in Table 20.  Insurance and license fees are a flat annual rate and division by annual utilization 

results in a per-mile cost.  Sales taxes are incurred during the first year of ownership, and 

converted to a per-mile estimate by dividing total taxes paid by useful life and annual utilization.   

Table 20.  Per mile insurance, license, sales tax and overhead by truck type 
Truck Type Insurance License Fees Sales Taxes Overhead 
Conventional Flatbed $0.1053 $0.0219 $0.0191 $0.1070 
Conventional Tanker $0.1053 $0.0219 $0.0190 $0.1070 
Conventional Dump $0.1053 $0.0219 $0.0195 $0.1070 
RMD Tanker $0.1053 $0.0219 $0.0218 $0.1070 

 

The summation of variable, fixed, and opportunity costs are presented in Table 21.  

Travel speeds of 55-60 miles per hour produce the lowest total per-mile truck cost, which is 

primarily due to the tradeoff between fuel costs and labor costs as travel speed increases.   

Table 21.  Total per mile linehaul truck costs by truck configuration and travel speed 
Truck Trailer 40 45 50 55 60 65 70 
Conventional Flatbed $2.89 $2.78 $2.69 $2.60 $2.61 $2.67 $2.77 
Conventional Tanker $2.88 $2.77 $2.68 $2.60 $2.61 $2.66 $2.76 
Conventional Hopper $2.85 $2.74 $2.65 $2.57 $2.57 $2.62 $2.71 
RMD Tanker $3.04 $2.93 $2.84 $2.76 $2.78 $2.83 $2.94 

 

This study utilizes a segment-based truck rate approximated by truck costs that vary by 

travel speed, roadway condition, and truck configuration.  In addition, terminal costs associated 

with each individual movement class are included to reflect the true cost of the trip, which is 

used to approximate truck rates.  Table 22 presents a sample movement of sand from a transload 
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facility to a township.  The round trip distance of this trip is 50 miles, and there is an empty 

backhaul.  For comparative purposes, two roadway types are shown:  gravel and paved state 

highway.  In reality, movements will likely travel over a combination of gravel, county paved, 

and state paved segments to complete a trip, but this illustration assumes the entire trip occurs 

within these two categories of roads.    

Table 22.  Comparison of truck costs by roadway type and condition 
 Gravel State Highway 
PSR 2.0 3.5 
Linehaul Cost per Mile $2.74 $2.57 
Miles 50 50 
Total Linehaul Cost $137.00 $128.50 
Total Terminal Cost $121.66 $121.66 
Terminal Cost per Mile $2.43 $2.43 
Total Cost per Mile $5.17 $5.00 

 

The PSR for gravel roads is assumed to be 2.0, and 3.5 for state highways.  In reality, the 

PSR for gravel may be lower, but tire and repair and maintenance cost adjustment factors 

consider all PSR values below 2.0 to be equal.  On gravel roads, the linehaul cost per mile is 

higher than state highways due to surface condition and travel speed.  For both shipments, the 

trip distance in miles is equal.  The total linehaul cost is calculated by multiplying the linehaul 

cost per mile by the trip distance.  Total terminal cost assumes a 15-minute wait and 30- minute 

loading time at the origin and a 75 minute wait and 45-minute unloading time at the destination.  

Dividing the total terminal cost by the trip distance results in the terminal cost per mile, which 

are equal for both movements.  The total cost per mile is the summation of linehaul cost per mile 

and terminal cost per mile.   

The literature review cited a number of studies that used a per-mile truck cost which was 

constant across all roadway segments.  Route selection and optimization using these cost 

estimates effectively minimizes the distance between origins and destinations, as each mile of 



90 
 

road is assigned the same cost.  As an example, assume that the per-mile cost used to select 

routes is equal to the state highway total cost per mile, $5.00, as specified in Table 22.  If this 

cost is used for all segments considered in the routing process, individual roadway characteristics 

and travel speed would not be considered, and the cost for gravel segments would be 

underestimated by $0.17 per mile.  By directly considering roadway condition and travel speed, 

the true cost for a trucking firm to provide services more closely approximates truck rates.  

Moreover, routes selected using a segment specific truck cost would not over or underestimate 

the actual cost of traveling over those segments.   

In addition to consideration of segment specific characteristics, if terminal costs are 

included in a given constant per-mile truck cost estimate, the portion of terminal costs attributed 

to long  trips may be overstated in comparison with shorter trips.  Table 23 presents two trips that 

are equal in every way except the length of the trip.  As before, this trip represents a sand 

movement from a transload facility to a township well site with empty backhaul.  For each trip, 

the linehaul cost per mile is equal, but the total linehaul cost for the 25-mile trip is one half that 

of the 50-mile trip.  Total terminal costs are equal for each trip, but the per mile cost of the 25 

mile trip is greater than the per-mile terminal cost of the 50-mile trip, as there are fewer miles to 

which to attribute the terminal costs.   

Table 23. Comparison of truck costs by trip distance 
 50 Mile Trip 25 Mile Trip 
PSR 3.5 3.5 
Linehaul Cost per Mile $2.57 $2.57 
Miles 50 25 

Total Linehaul Cost $128.50 $64.25 
Total Terminal Cost $121.66 $121.66 
Terminal Cost per Mile $2.43 $4.87 
Total Cost per Mile $5.00 $7.44 
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In this scenario, the terminal cost component of total cost is directly attributed to the trip 

itself.   Thus, the terminal costs per mile vary with trip length.  Studies that utilize a constant per-

mile truck rate for all trip distances and include a terminal cost component may incorrectly 

attribute terminal costs per mile as the length of the trip varies.  For example, if the cost 

estimates for the 50-mile trip presented in Table 23 would be used to represent the per-mile cost 

for every roadway segment in the study area, it would attribute a $2.43 per mile terminal cost to 

each mile traveled.  This would be appropriate if every trip was 50 miles in length.  However, as 

the trip distance decreases from 50 miles, the impact of terminal costs would be understated, 

since the trip basis is 50 miles.  Moreover, as trip distance exceeds 50 miles, the terminal costs 

per mile would be overstated, as the total terminal cost would be spread over additional miles, 

thereby reducing the per-mile terminal costs.  Direct consideration of the terminal costs at the 

destinations ensures that the per-mile terminal costs are correctly attributed based upon trip 

distance.   

4.2. Truck Routing 

One of the improvements that this study makes with respect to route selection is using 

segment specific-truck cost estimates rather than using a standard per-mile cost of travel for all 

segments and routes.   Use of a constant per-mile cost for all segments and routes effectively 

selects routes based upon distance, rather than true truck costs, and does not approximate the rate 

that trucking firms charge for their services.   Additionally, this method does not consider 

roadway characteristics such as surface condition and travel speed, as a constant per-mile cost is 

applied to all roadway segments.     

To represent differences in route selection based upon distance and truck cost, routes 

connecting sand transload facilities and townships were generated using both distance and truck 
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cost.  Differences are categorized by distances and costs.  Comparison of differences in total 

distance under both distance-optimized and cost-optimized routes for sand movements are shown 

in Table 24  below.  Statistical measures are shown in the first column.  The second column 

presents these measures under the distance-optimized routing.  The third column presents the 

statistical measures under cost-optimized routing.  It should be noted that for all comparisons, the 

numbers and route locations are equal.   Under both distance- and cost-optimized routes, the 

minimum distance is equal.  The maximum distance under cost-optimized routing is greater than 

the maximum distance under distance-optimized routing, which indicates that route selection 

differs under each optimization method.  As would be expected the sum of all route distances 

under distance-optimized routing is less than the sum of distances under cost-optimized routing.   

Table 24.  Comparison of distance statistics under distance- and cost-optimized routing 
 Distance Optimized Cost Optimized 
Number of Routes 14,148 14,148 
Minimum Distance 1.23 1.23 
Maximum Distance 342.43 401.21 
Sum of Distances 1,784,704.95 1,882,544.63 
Mean Distance 126.15 133.06 
Standard Deviation 67.11 67.26 

 

As this study utilizes minimum cost as the method of routing, comparison of the costs 

under minimum distance and minimum cost is required.   Table 25 presents a comparison of cost 

outputs under each routing method.  As before, the number of routes under each routing method 

is equal, as is the minimum cost route.  The maximum route cost under distance optimization is 

greater than the maximum cost under cost optimized routes.  Of particular note is the difference 

between the sum of costs under distance-optimized routes and cost-optimized routes.   
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Table 25.  Comparison of cost statistics under distance- and cost-optimized routing 
 Distance Optimized Cost Optimized 
Number of Routes 14,148 14,148 
Minimum Cost $2.98 $2.98 
Maximum Cost $1,155.45 $948.77 
Sum of Costs $5,199,441.72 $4,303,950.72 
Mean Cost $367.50 $304.20 
Standard Deviation $186.46 $150.39 

 

From the results presented in Table 24 and Table 25, it is clear that the routes selected 

under minimum cost criteria are different than those under minimum distance criteria.  

Consideration of segment-specific cost factors necessitates that each segment, or categories of 

segments, be given specific costs as a result of roadway condition and travel speed.   

4.3. SIR Model 

A SIR model was developed to model the spread of oil development throughout the study 

area.  The SIR model was developed to model the spread of epidemics, thereby classifying 

portions of a population as susceptible, infected, or recovered at different time periods.  The total 

population is equal to S+I+R.  A person may move from S to I and I to R, but not from R to I or I 

to S.  For the purposes of this study, the susceptible group represents townships in which oil 

development has not yet occurred, or is in the early stages of development.   The infected group 

represents townships that have completed Phase I drilling.  Phase I drilling refers to drilling at 

least one well per spacing unit to secure leases.  The recovered group represents townships that 

have completed Phase II drilling.  Each spacing unit, when fully developed, will receive five to 

seven wells, with a midpoint of six.  Since a township consists of 18 individual 1,280-acre 

spacing units, Phase I completion represents 18 wells within a township, and Phase II completion 

represents a total of 108 wells within a township.  Movements from S to I represent a township 



94 
 

moving from zero wells drilled to 18 wells drilled, equaling 18 new wells.  Movements from I to 

R represent a township moving from 18 wells drilled to 108 wells drilled, equaling 90 new wells.   

The rate of infection, which represents the movement from the undeveloped to the Phase I 

completion, is represented by parameter �.  The rate of recovery, which represents the 

movement from Phase I to Phase II completion, is represented by parameter �.  The starting 

values of these parameters are unknown.  Historical data are limited to four years of exploration 

in the Bakken formation.  Forecasts of future development provided by the Oil & Gas Division 

include the number of new wells per year through 2035.  In the absence of significant historical 

data, the SIR model parameters were used to fit the model to the forecasts provided by the Oil & 

Gas Division through the least squares procedure.  The selected parameters were:  =0.7547, 

=0.1183.  The number of predicted wells per year under the forecast given by the ND Oil & Gas 

Commission and the SIR model are presented in Table 26.  It should be noted that the given 

forecast is itself a forecast, and its accuracy is based upon the best information available to the 

Oil & Gas Commission.  Of note is that the initial year forecasts of new wells under the SIR 

methodology reflect new wells, additional wells will be drilled as a result of existing drilling 

activity in the region, either Phase I or Phase II activities.   

 

 

 

 

 

 

 



95 
 

Table 26.  Comparison of given forecasts and SIR forecast annual new wells per year 
Year Given Forecast SIR Forecast 
2012 1,271 809 
2013 2,410 1,244 
2014 2,430 1,843 
2015 2,430 2,577 
2016 2,490 3,316 
2017 2,370 3,814 
2018 2,395 3,854 
2019 2,379 3,469 
2020 2,377 2,933 
2021 2,358 2,462 
2022 2,354 2,099 
2023 2,138 1,818 
2024 2,134 1,589 
2025 1,966 1,395 
2026 1,966 1,228 
2027 1,304 1,082 
2028 1,304 954 
2029 1,300 842 
2030 1,002 743 
2031 912 655 
2032 434 578 
Total 39,720 39,303 

=0.7548, 0.1183,  MAPE=0.34, RMSE=644.52 
 

 As described in Chapter 3, the model uses existing locations as seed points from which 

“infection” may spread.  In terms of oil development, this represents the expansion from drilled 

areas into undrilled areas.  The SIR model predicts the spread from one area to another, but does 

not return the expected annual number of wells directly.  Once the township moves from S to I, it 

is assumed that 18 wells are drilled during the year that the infection occurs.  For movements 

from I to R, the duration of drilling was calculated by subtracting the year of infection from the 

year of recovery.  This represents the duration of Phase II drilling within the selected township.  

The annual number of wells for Phase II drilling is equal to 90 wells divided by the duration.  

Due to potential rig availability issues, it is assumed that drilling occurs at a consistent pace 
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within the years between infection and recovery, and not all at once during the year of recovery. 

The mean duration of drilling in townships was 7.12 years, with a minimum duration of 3 years 

and a maximum duration of 17 years.  Once Phase I is completed, the mean number of wells in a 

township drilled per year is 12, with a minimum of 4 and a maximum of 24.  The SIR model 

varies from the given forecast in that the number of expected wells beginning in 2015 exceeds 

the given forecast until 2023, at which point the given forecast exceeds the SIR forecast.   

To evaluate the usefulness of the SIR model to model oil development spatially, the 

forecast drilling locations were compared against drilling rig locations at the time of the analysis.  

Drilling rig locations are only available for North Dakota wells at the time of the analysis, so the 

Montana counties and forecasts are not included in the visualization.  Figure 20 shows the 

forecasted drilling locations represented by hollow squares, and the actual rig locations on 

November 2, 2012, with an X.   
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Figure 20. Existing rig locations and SIR model forecasted locations: 2012 
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In 2012, the SIR model estimates 288 drilling locations in North Dakota, based upon 

currently infected townships that are in the process of recovery (Phase II drilling) and newly 

infected townships (Phase I drilling).  The SIR model predicts the location of new infections 

which represents a movement from state S to state I, with each location representing 18 new 

Phase I wells.  In addition, the SIR model predicts Phase II drilling (state I to R) based upon the 

township recovery year and the existing number of wells.  Of these 288 locations, 17 are Phase I 

infections, and 271 are Phase II wells.  Thus, a total of 306 Phase I wells and 503 Phase II wells 

for a total of 809 wells are predicted to be drilled in 2012 by the SIR model. Since a comparison 

of forecasted locations to actual drilling locations is required to assess location accuracy, only 

the drilling locations selected by the SIR model will be compared to the actual drilling locations 

as of November 2, 2012 based on rig locations.   

To compare the model’s effectiveness to random selection of drilling locations, 288 

drilling locations, the same number as predicted to be drilling in 2012 by the SIR model, were 

selected at random.  Model accuracy was calculated by calculating the distance from each 

selected drilling location to actual rig locations.  These distances were calculated for the 288 SIR 

selected locations as well as the 288 randomly selected locations.  A comparison of the two 

distance calculations is shown in Table 27.   

Table 27.  Comparison of SIR to random location 
 SIR Forecast Random Selection
Count 288 288 
Minimum Distance 0.25 1.62 
Maximum Distance 45.14 151.22 
Sum of Distance 2,848 10,859 
Mean Distance 9.89 37.70 
Standard Deviation 8.83 39.76 
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The distances shown in Table 27 represent the distance between predicted and actual 

locations and are used to measure location error.  The minimum location error for the SIR model 

is 0.25 miles as compared with 1.62 miles for random selection.  The maximum location error 

for the SIR model is 45.14 miles as compared with 151.22 miles for random selection.  The 

average location error of the SIR model is 9.89 miles, while the average location error for 

random selection is 37.70 miles.  From these statistics, it appears that the SIR model more 

accurately predicts well drilling locations than a random selection of drilling locations. 

However, because several predicted locations may use the same existing location to assess 

proximity, this is not a perfect measure of spatial forecast accuracy.  To supplement this spatial 

measure of forecast accuracy a comparison is made between the predicted number of wells at the 

township level from the SIR model (wells existing prior to 2012 plus new wells) and currently 

existing wells at the township level.  In the 288 townships the SIR model lists as drilling in 2012, 

the actual minimum number of wells is 1 and the maximum number of wells is 67.  The average 

number of existing wells in those townships was 10.67 with a standard deviation of 11.04 wells.  

This compares to an SIR prediction of 26.27 wells, on average, for these townships.  In the 288 

townships selected at random, the actual minimum number of wells is zero and the actual 

maximum is 48.  The average number of existing wells in these townships is 3.87.  Under 

random prediction, the number of wells in each township could be anywhere between 0 and 108.  

Thus, a random number is generated for each.  The average number of wells predicted in the 

randomly selected townships is 54. This average is different than the actual average of 3.87 that 

exists in these randomly selected townships.  

While these data provide comparisons between SIR and randomly selected drilling 

locations and existing number of wells, it does not specify the degree of error.  To assess the 
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degree of error in the predicted number of wells against random selection of locations, the mean 

absolute percentage error is calculated.  For SIR selected locations, the MAPE of existing versus 

predicted wells is 156.88.  For randomly selected locations, the MAPE of existing versus 

randomly selected wells is 322.52.  While the SIR has a high degree of error, it is important to 

clarify that this is not only a measure of the number of existing wells, but rather is a combination 

of location error and prediction error.  When compared with random selection error in location 

and number of wells, the SIR predicted well numbers is a superior prediction method.   

4.4.  Traffic Model Forecasts 

Following the completion of optimization models for each of the movement classes for 

each year in the analysis period, route segments were collected.  The aggregation of the traffic 

flow over each segment represents the total direct impact of oil development within the study 

region, which is the sum of individual movements.    

Presentation of traffic forecast results are difficult, as there are 4,034 individual highway 

segments with 20 years each of truck traffic, flexible ESAL and rigid ESAL forecasts.  Due to 

the volume of data, results are presented visually in maps with variations in map symbology 

representing different traffic volumes.  The results are presented annually for the first five years 

of the analysis, and in five-year increments following 2017.  Where major changes in traffic 

volumes occur, highway segments and rationale for the traffic volume changes are provided.   

The first year of the analysis was 2012.  Traffic forecasts for 2012 are shown in Figure 21.  As 

was expected, significant traffic can be found near the dense development areas in Dunn, 

McKenzie, Mountrail, and Williams Counties in North Dakota.  In particular US 85, US 2, ND 

22, ND 23, and MT 16 have significant forecasted impacts.   
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Figure 21.  Truck traffic forecast 2012 

 

Truck traffic forecast estimates in 2013 are presented in Figure 22.  While visually, the 

results appear similar to 2012, there are significant increases along US 85 and ND 23, primarily 

driven by production and exploration in the areas surrounding Lake Sakakawea.   
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Figure 22.  Truck traffic forecast 2013 

 

Figure 23 presents the traffic forecasts for 2014.  During this year, significant increases 

occur along US 2 between Williston and Minot, as well as ND 23 near Newtown and ND 200 

east of Killdeer.  The latter of these increases is due to frac sand movements originating in 

Beulah, ND. 

 

 

 

 

 



103 
 

Figure 23.  Truck traffic forecast 2014 

 

Truck forecasts for 2015 are presented in Figure 24.  Areas of increase from 2014 include 

those mentioned above, as well as additional increases on US 85 from Watford City to Williston, 

ND.  Similar increases occur through 2017 as shown in Figure 25 and Figure 26. 
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Figure 24.  Truck traffic forecast 2015 
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Figure 25. Truck traffic forecast 2016 
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Figure 26.  Truck traffic forecast 2017 

 

As time progresses in the traffic forecasts, the impact of additional producing wells 

becomes evident in traffic growth throughout the entire study area.  All primary corridors in 

North Dakota see growth, but the impact of oil development near Sidney, MT, along with cross-

border movements of inputs and outbound oil lead to growth on MT 200 from the North Dakota 

line to Sidney.  Additionally, traffic increases on MT 16 from Culbertson to Sidney, MT.   
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Figure 27.  Truck traffic forecast 2022 

 

From 2022-2027, growth is consistent throughout the study area, as the number of new 

wells begins to decrease as shown in Figure 28.  Both the SIR model and forecasts from the 

North Dakota Oil & Gas Division show that at this period in time, the rig numbers in the area 

will have already begun to decrease.  As rig numbers decrease, the number of new wells will also 

decrease.  As a result of the steep production decline curve seen in Bakken wells described in 

Chapter 1, this will also result in a decrease of oil production throughout the entire region.   
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Figure 28.  Truck traffic forecast 2027 

 

Growth from 2027-2032 still occurs even as forecasted oil development and production 

decline, primarily as a result of the annual growth in background traffic, which comprises 

through movements, local movements, and population-related movements.  Figure 29 presents 

the traffic forecasts in 2032.    
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Figure 29.  Truck traffic forecast 2032 

 

As discussed earlier, it is expected that freshwater availability would be the limiting 

factor in the optimization problems.  To assess the impact of the capacity limitations for 

freshwater inputs on the solution, shadow prices were collected from the output data.  As there 

are many individual freshwater sources, all shadow prices are not presented.  Rather, discussion 

on the changes in shadow prices based upon locations is included.   Shadow prices represent the 

change in the objective value if a constraint is relaxed.  In this case, the constraints under 

consideration are the output capacities at freshwater locations.  As a reference point, the 

optimization results from 2022 are selected, as this is this final year of peak drilling according to 

the North Dakota Oil & Gas Division.  For the freshwater optimization problem, all shadow 
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prices are negative, as an increase in the constrained capacity results in a decrease in the 

objective function which minimizes total distribution costs. 

Shadow prices for freshwater capacities range from -42.92 to -271.34 in the 2022 

optimization run.  This means that adding one additional truckload of freshwater capacity at 

various facilities decreased trucking costs by $43 to $271.  This suggests that oil developers may 

be willing to pay large amounts to expand water capacity in some areas.  Of note is that the 

largest shadow prices (in absolute value) occur within the primary oil development area, as this 

is the primary area of demand for freshwater.  Also of note is that shadow prices in Montana are 

larger in later years, as is reflected in the sourcing of freshwater from the western area of the 

study region, thereby necessitating longer distance trips.    

The traffic model estimates generated by this study reflect the impact of oil development 

within the study area.  Individual movements include inbound inputs to well locations and 

outbound crude oil and saltwater to collection facilities.  Growth in background traffic is 

considered through the model calibration.  Model calibration involves the comparison of 

observed traffic counts to predicted oil movements.  Since oil traffic is only a portion of the total 

traffic observed, consideration of the background traffic is necessary to forecast total truck traffic 

for planning and design uses.  A lower annual growth factor is used for modeling the through 

traffic component, and background traffic in the lesser impacted oil counties, and is arrived at 

through examination of pre-oil development traffic.  Impacted traffic growth factors are based 

upon trip generation estimates tied to population growth within the Williams, McKenzie, and 

Mountrail County areas, which represent the most significantly impacted oil counties in the 

study.  Due to the differences in assumptions, a single set of growth factors was not applied to 
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the entire study area.  In higher development counties, the impact area growth factors were used, 

and in the fringe counties, the baseline growth factors were used.   

This study expressly considered oil traffic movements in conjunction with oil 

development throughout the study area.  This contrasts with traditional “look back” methods or 

trend analysis.  Traditional trend analysis involves the calculation of a traffic growth rate based 

upon a number of previous traffic observations.  Often, the three previous traffic counts are used 

to develop a growth rate, which is then applied to the 20-year traffic forecast.  Due to variations 

in the frequency of traffic counts, this could equal a time period from three to 12 years.  

Frequency of traffic counts depend on expected changes in traffic over the short term.  Prior to 

oil development, traffic counts were conducted in one-third of North Dakota each year.  This 

means that every three years, a count is conducted, and a trend would be developed from changes 

in traffic over nine years.  Recently in western North Dakota, due to increases in traffic, this 

interval has decreased to one year, and data are collected annually.   

Pavements are designed to withstand a cumulative number of ESALs over the design life 

of the pavement.  Typically for flexible pavements, this is a 20-year design life.  The service life 

of the pavement is the actual life of the pavement, and reflects differences in ESALs from the 

design.  If the forecast number of ESALs is equal to the number of design ESALs, the service 

life is equal to the design life.  If the actual number of ESALs exceeds the design ESALs, the 

service life of the pavement is less than the design life of the pavement.   

The objective of this study was to develop a traffic model that improves truck and ESAL 

forecasts above traditional traffic forecasting techniques.  To assess whether this objective has 

been met, comparison of traditional forecasts and this study’s forecasts is required.  The 

Highway Performance Monitoring System provides NDDOT traffic forecasts reported to the 



112 
 

U.S. Department of Transportation.  “The HPMS is a national level highway information system 

that includes data on the extent, condition, performance, use and operating characteristics of the 

nation's highways”  (Federal Highway Administration 2012).  Of these data, existing AADT, 

future year AADT, and percent trucks are used to calculate the existing and future year truck 

numbers.  The most recent data available are the 2010 HPMS dataset, reported to FHWA in 

2011.   

Two highways in North Dakota that have been significantly impacted by oil traffic are 

US 85 from Watford City, ND, to US 2 west of Williston, ND, and ND 23 from Watford City to 

New Town, ND.  As these segments are significantly impacted, they will be used to illustrate the 

differences between forecasting methods.  HPMS traffic data and future year traffic data for 

these segments are presented in Table 28.   

Table 28.  Traditional truck traffic forecast results:  US 85 and ND 23 
 Reference Point 2010 Trucks 2031 Trucks Annual Growth Rate 
US 85 152 778 960 1.1114% 
ND 23 42 1,252 1,704 1.7172% 

 

For comparative purposes, the traffic forecasts presented in Table 28 will be used against 

model traffic forecasts in two ways.  The 2010 traffic forecast will be compared directly against 

model forecasts.  Next, the growth rate from the 2010 forecast will be used to forecast traffic 

from the base 2012 truck count numbers.  The comparison for US 85 at milepost 152 is shown in 

Figure 30.  The top line represents the study forecasts, the middle the original trend line applied 

to 2012 base traffic counts, and the lower line represents the original forecast.   

It is clear that if the original forecast were used for pavement design purposes that the 

pavement would be substantially under-built, and the service life would be far below the design 

life of the pavement.  However, it is unlikely that pavement designers would directly use the 
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2010 forecasts without consideration of current traffic.  For this reason, application of the growth 

rate from the 2010 forecast to current traffic levels is a more appropriate comparison.  For all 

years during the analysis period, the study forecast exceeds the traditional forecast.  It should be 

also noted that the model forecast does not grow in a simple linear manner, rather it represents 

increases and decreases in oil growth throughout the analysis period.  For this segment of 

highway, if the model forecast is accurate, the service life of this segment of highway would be 

less than the design life, and additional improvements and maintenance would be required during 

the 20-year period.    

Figure 30.  Comparison of traditional forecasts to model forecast: US 85 at milepost 152 

 

A similar comparison for ND 23 at milepost 42 is shown in Figure 31.  Again, the 

original forecast would result in significant under-building of this roadway, which would result 

in multiple improvements over the analysis period.  But, as mentioned above, it is unlikely that a 

pavement designer would utilize this forecast without consideration of current traffic levels.  

This section of pavement differs from the US 85 example in that the study forecast initially 
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exceeds the updated trend line, but in the latter years of the analysis, the trend line exceeds the 

study forecast.  As previously discussed, the spread and duration of oil development in North 

Dakota is expected to reach a peak in the mid-2020s, and decrease from that point into the future.  

The study forecast shows this mid-range peak in traffic before it plateaus from 2024 to 2026.  If 

the pavement were designed using the original trend with the updated base, the pavement would 

be over-built for the cumulative 20-year traffic levels, if the study forecast is accurate, as the 

cumulative study ESALs are less than the updated trend line cumulative ESALs. 

Figure 31.  Comparison of traditional forecasts to model forecast:  ND 23 at milepost 42 

 

It is expected that highway planning officials would use these traffic forecasts in 

conjunction with existing traffic forecasting methods for use in planning decisions and pavement 

design. The model presented in this document is based upon assumptions and traffic data 

provided in 2012. As time progresses, current traffic data should be considered when making 

comparisons between model results and existing traffic forecasting methods. 
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4.5. Study Contribution and Research Application  

4.5.1. Study Contribution 

This study utilized an optimization model which has been utilized in numerous previous 

studies, to select least cost set of routes between origin and destination pairs.  However, this 

study used optimization to select the origin-destination pairs themselves in addition to the least 

cost set of routes.  This contrasts with previous studies that selected origin-destination pairs 

based upon geographic proximity.   

This study presents an application of the SIR model to spatial distribution of freight 

generators, specifically future well drilling locations.  As historical data are limited, it may be of 

use to further validate this model in the future when additional data become available.  The use 

of this type of model may be transferrable to other freight generation modeling, particularly if the 

locations of the activities are bound by nature and significant clustering can be found.  In this 

study, geology was the deciding location factor rather than economic activity. 

The truck cost model outlined in this study improves on truck costs used in previous 

network analysis studies.  This study considers a truck type specific cost, which varies by the 

individual roadway segment.  As segment condition, surface type, and travel speed vary, costs 

are also likely to vary.  Use of a network-wide constant per-mile truck cost would not directly 

consider segment conditions, and therefore produce results that are not representative of actual 

travel costs.  This means that the optimization model will choose routes that are not 

representative of those actually chosen.  In contrast, by considering segment characteristics, this 

study more accurately predicts routes where traffic travels, and improves on segment specific 

forecasts.    
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Traffic forecasting techniques used in this study serve to improve upon existing rural 

road traffic forecasting methods.  One specific contribution is to include explicit consideration of 

major traffic generators.  In comparison to traditional trend analysis, which derives traffic growth 

factors based upon previous observations, the timing of the observations is critical to assessing 

the potential impacts of new freight generators.  As this study considers freight generators 

directly, the forecasts produced reflect the timing of the traffic generated, and reduces the 

potential for error as seen in trend analysis.   

The timing of the traffic impacts is important, because pavements do not deteriorate in a 

linear manner as additional ESALs are introduced.  Pavement preservation analysis considers the 

impact of timely maintenance and improvements and compares the costs of each.  Application of 

these maintenance and improvement activities prior to significant pavement deterioration results 

in a significantly lower cost improvement type (e.g. asphalt overlay instead of reconstruction).  

Knowledge of when the pavement will experience ESAL loads allows planners and pavement 

designers to time improvements more appropriately, thereby minimizing improvement costs. 

Rural states essentially compete with urban states for highway funding.  This requires rural states 

to justify the benefits and costs of scarce funds spent on rural road improvement.  Urban road 

improvements have significant benefits; these improvements impact large numbers of travelers 

and economic activities.  However, these benefits come at a significant cost due to the type of 

infrastructure being improved and the impact of construction on economic activities and land 

use.  Rural roads, in comparison, have relatively low traffic volume, and therefore lower 

benefits.  However, these benefits come at a significantly lower cost due to the type of 

improvement implemented.   
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States have limited highway funding from which to improve their roads.  As funding is 

scarce, the focus for state planning officials should be on the most efficient and productive uses 

of existing funds.  Traffic forecasting is important to proper pavement design, and therefore to 

the allocation of these scarce funds among the roadways in the state.  The cost of enhanced 

forecasting methods as presented in this study is very small in comparison with the benefits of 

avoiding poor forecasts that result in incorrect allocation of scarce funds.   

State and federal highways are funded through the Highway Trust Fund, which is 

composed of revenues collected from federal fuel taxes.  These funds are then redistributed to 

states based upon a funding allocation formula.  Currently, North Dakota and Montana receive 

more revenue from the Highway Trust Fund than is generated in the respective states.  Due to 

increased fuel efficiency in recent years coupled with higher vehicle miles of travel, the revenue 

generated by the Highway Trust Fund has decreased while miles traveled have increased.  In 

addition, inflation in highway construction costs in recent years has placed constraints on the 

number and type of improvements that are funded by the Highway Trust Fund appropriations.  

These trends may result in lawmakers revisiting the allocation of funds through the funding 

allocation formula, which may result in a decrease of funds for use in rural road maintenance and 

improvement.  If highway funds to rural states were decreased through changes in the allocation 

formula, the importance of forecast accuracy would certainly increase.   

4.5.2. Research Application 

This study focused on modeling traffic generated due to oil development and production 

within eastern Montana and western North Dakota.  Methods presented in this study are readily 

transferable to other geographic regions and trip generation activities.  The existing study would 
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be further improved through inclusion of additional traffic generation activities such as explicit 

consideration of agricultural movements.   

The models presented in this study are directly applicable for assessing the impacts of 

infrastructure development.  Since the truck costs used as impedance factors in the routing 

algorithm are segment specific, any changes in surface condition or type will change the cost of 

traveling over those segments.  This may be particularly useful for benefit-cost analysis of 

potential improvements, as changing the cost through roadway improvement will likely change 

the distribution of traffic.  In addition to roadway-specific analysis, investment in other 

infrastructure may increase or decrease traffic on certain segments.  The tools in this study will 

allow researchers to consider impacts of the location of new facilities such as shuttle elevators 

and water depots, or state investment in railroads and pipelines.  Depending on the location and 

type of infrastructure being considered, there may be an increase or decrease in traffic.  Since 

this study explicitly considers traffic generators, build and no-build scenarios would show the 

impacts of location of these types of facilities. 

Scenario analysis is another use for the methods presented in this study.  For example, if 

the oil producing region were to experience drought conditions within the next 20 years, it is 

likely that the water locations would have reduced capacities due to changes in water permitting.  

The result of these capacity changes may result in exploration companies traveling out of the 

direct oil producing region to source freshwater, thereby increasing the geographic scope of 

highway impacts due to oil development.   

Environmental impacts may be assessed through these models as well.  Dust generation 

on unpaved roads has become a concern for residents, farmers and ranchers.  As the number of 

trucks traveling over an unpaved road increases, so does the dust that is generated.  This study 
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could further be adapted to consider county roads, and environmental impacts of truck generated 

dust could be considered. 

Finally, a variation in the use of this model would be to assess benefits and costs of 

various potential highway improvements when funding levels change. The model could be used 

to assess the traffic impacts of changes in pavement condition.  In the short run, this would 

consist of comparing the impacts of various alternative improvements.  However, in the long run, 

this type of analysis could be used to study the impacts of decreased funding levels or the 

impacts of increased highway construction costs, or a combination of the two.  Since funding is 

scarce, if costs continue to increase, the number of miles that may be improved per year will 

decrease, thereby resulting in overall system deterioration.   

4.6. Summary 

This chapter presented the results of the truck cost, SIR, and traffic forecasting model.  

Truck costs were estimated for different truck configurations over a range of travel speeds.  

Comparisons of segment-based truck cost estimates to constant per-mile truck cost estimates 

were presented.  In addition, comparison of terminal cost per-mile attribution demonstrated the 

importance of cost specification at the segment level.  SIR forecast results were presented, and 

comparison of SIR forecasts to actual forecasts were provided.  In addition, the spatial 

distribution of wells using the SIR model was compared against random assignment of wells.  

Traffic forecasts by year were presented along with discussion of significantly impacted roads 

and likely causes.  Comparison of model forecasts against trend line analysis showed the 

implications of using traditional forecasting techniques in the environment of changing traffic 

levels.  The following chapter will provide a summary of the study, and identify study limitations 
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and future areas of research to increase understanding of highway impacts of oil development in 

eastern Montana and western North Dakota.   
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CHAPTER 5.  CONCLUSIONS AND FUTURE RESEARCH 

5.1.       Conclusions 

A truck traffic model was developed to estimate traffic levels under widespread and high-

volume oil development in eastern Montana and western North Dakota.  Development of the 

model required estimation of multiple models to estimate truck cost, development timeframes, 

development locations, selected truck routes, and optimization.   

Truck costs were estimated using an economic engineering model, which included individual 

calculations for fuel consumption, maintenance and repair, tire costs, fixed costs, and opportunity 

costs. Each cost was converted to per-mile costs and applied to individual roadway segments 

based upon surface type, roadway condition, posted speed limits, and jurisdiction.  These costs 

represented impedance factors for use in selecting segments to connect origins and destinations 

by routes using a route selection algorithm.   

Routes were generated for each possible origin and destination within the study region, 

and costs were accumulated.  For origins and destinations, terminal costs due to loading and wait 

times were estimated using throughput, loading, and wait time estimates.  Terminal costs were 

applied to each origin and destination.  These terminal costs were added to the linehaul segment 

of the trip representing the total terminal and linehaul costs for an individual truck movement.   

Future well development was estimated using an SIR model, which estimated the timing and 

distribution of new wells within the study area.  Results indicate that the SIR may be useful in 

predicting the number and spread of new oil wells within the Bakken formation.  However, due 

to limited historical data in the formation, future assessment of the accuracy of this forecasting 

model should be completed.  Moreover, as the assessment of the temporal distribution of new 

wells was compared to another forecast, the importance of comparison with historical data is 
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imperative.  As discussed throughout this document, oil development within the region is very 

dynamic, and many exogenous factors may positively or negatively impact the extent and 

duration of oil exploration within the Bakken region. 

A series of optimization models were developed to select the set of least cost routes 

between each origin and destination with the objective of minimizing the total distribution cost 

for each commodity movement class.  Individual segments were collected for each route 

included in the least cost set, and traffic volume estimates were aggregated at the segment level.  

The traffic model was calibrated using observed traffic volumes through traffic classification 

counts obtained from MDT and NDDOT.   

It is expected that the traffic model estimates will be used in conjunction with traditional traffic 

forecasting methods, and routinely examined as historical traffic data become available.  

However, the model developed in this study expressly models oil-related movements, which is a 

significant improvement over traditional trend analyses, and the direct impacts of oil 

development on state highways may be directly assessed through interpretation of model results.   

5.2. Limitations of the Study 

While this study is a comprehensive analysis of inbound and outbound oil-related 

movements in Montana and North Dakota, it is necessary to acknowledge the study limitations in 

relation to assumptions and data availability.  The township centroid is the representative 

destination for inbound movements and origin for outbound movements.  While each township 

may contain many miles of road, only one road segment is chosen to connect the centroid to the 

state highway system.  This level of aggregation introduces a level of error in the routing, which 

is deemed acceptable to the author.   
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With the origin destination pairing, it was assumed that any well site may source inputs 

or ship outputs to any possible destination.  This may not be entirely consistent with real-world 

practice, as some facilities may be owned and maintained solely for the transportation of one 

firm’s commodities, thereby excluding competitors.  This assumption was made due to lack of 

data on precise ownership of existing and future oil well locations. 

5.3. Future Research 

Oil development and exploration in the Bakken region is very dynamic, and this study 

utilized assumptions and forecasts based upon the best information available at the time.  Several 

issues should be considered for future research topics, based upon the study assumptions.   First, 

this study focuses only on the truck movements generated by oil development and exploration, as 

the purpose of the study is to assess the resulting highway impacts.  Oil exploration, 

development, and distribution in the Bakken are a multimodal venture which includes truck, rail, 

and pipeline movements.  Future research considering the entire oil distribution system from 

inputs to crude oil at refineries and export locations would greatly develop the understanding of 

the transportation impacts of oil development in the region.  While additional trucks traveling the 

roadways in the area add significantly to the infrastructure needs, consideration of capacity 

limitations of rail and pipeline for transportation of outbound crude oil to destinations is 

important, as these capacity limitations may have an impact on the modal share into the future. 

Of all the movements considered in this study, freshwater sourcing for use in hydraulic 

fracturing appeared to be the limiting factor.  Recent construction of the Western Area Water 

Authority pipeline has added to the total capacity of the region for freshwater, and it is expected 

that similar projects will continue into the future.  However, as local freshwater capacity reaches 

upper limitations, exploration firms will need to travel further to source the freshwater needed 
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for the hydraulic fracturing process.  This effectively expands the study area far beyond the oil 

development areas, and the corresponding highway impacts will follow.  Throughout the study 

period, capacities were held constant.  In reality, changing weather patterns may increase or 

decrease the permitted capacities over the study period.   

This study presented the use of the SIR model to estimate new well numbers and 

locations.  However, at the time of the study, roughly 8,000 wells were active in the study region, 

with 38,000 new wells expected throughout the entire period.  As additional historical data 

become available, it would be useful to further validate the SIR model parameters and reassess 

the model utility, as well as exploration of other spatial distribution models to improve forecast 

accuracy.  

Finally, traffic congestion is not directly considered in this study.  As the optimization 

model assigns traffic volumes to routes based upon truck costs, travel time costs may impact 

route selection under situations where roadway congestion becomes an issue.  Future research, 

including dynamic assignment, may prove useful in considering the impacts of roadway 

congestion on route selection and assignment of O-D pairs.   
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