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Abstract 

The Road Impact Factor is a measure of ride-quality.  It is derived from the average inertial 

response of vehicles to road roughness.  Unlike the International Roughness Index, the most 

common measure, the road impact factor does not rely on specialized instrumentation to measure 

spatial deviations from a flat profile.  The most significant advantage of the Road Impact Factor 

is that low-cost sensors distributed in smartphones and connected vehicles generate the 

measurements directly.  Standardizing the sample rate of inertial sensors in vehicles will provide 

consistent measures at any speed.  This study characterizes the impact of sample rate and 

traversal volume on measurement consistency, and conducts case studies to validate the theories 

developed for a recommended standard at 64 hertz. 
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Introduction 

Transportation agencies in rural areas face the enormous challenges of accurately forecasting 

pavement deterioration and assuring consistent repair quality without disrupting traffic flows.  

Maintaining a state of good repair requires continuous and consistent performance measures, 

especially in regions where roads deteriorate rapidly, such as rural freight corridors and oilfields.  

The Federal Highway Administration (FHWA) requires annual reporting of the International 

Roughness Index (IRI), the most common measure of ride quality for the National Highway 

System (HPMS 2012).  However, transportation agencies do not regularly monitor the ride 

quality of repaired and local roads because of the high complexity and cost of producing the IRI. 

To provide continuous, network-wide, and lower-cost ride-quality measures, the author 

developed and validated a new approach called the Road Impact Factor (RIF).  It is derived 

directly from inertial sensors onboard vehicles (Bridgelall 2014a).  The emerging dominance of 

mobile device applications (apps), social media, and connected vehicles presents significant 

opportunities for the ubiquitous deployment of wireless sensors to monitor and report ride 

quality through cloud computing.  An additional benefit of the RIF is its direct proportionality to 

the IRI as demonstrated in previous case studies (Bridgelall 2014a).  This was also demonstrated 

in a previous publication (Bridgelall 2014b) by deriving the ratio of the RIF and the IRI for the 

same quarter-car impulse response.  To standardize the approach for consistent RIF measures 

across all vehicle types, inertial sensors must use the same sample rate.  Selecting the minimum 

sample rate that captures all the roughness energy from any vehicle will minimize power and 

data storage requirements.  This study characterizes the RIF variability with sample rate and 

traversal volume, and validates the relationship through case studies. 
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This is the first study to characterize the trade-off between inertial sensor sample rate, 

traversal volume, and RIF variance.  Related studies utilize inertial data to correct for reference 

plane variations in laser-based road profilers (Hegmon 1992), to estimate the profile of a terrain 

(Ward and Iagnemma 2009), and to evaluate vehicle dynamics across different terrain types 

(Dawkins 2011).  Those studies utilized the highest sample rate achievable by the inertial sensors 

available at the time. 

This paper is organized as follows:  the next section reviews the RIF model and its associated 

speed-independent transform called the time-wavelength intensity transform (TWIT).  The third 

section introduces a frequency response model to identify a vehicle’s modal resonance 

parameters from sampled inertial data and to relate signal energy to sample rate.  The fourth 

section develops a theoretical relationship between the RIF variance, signal energy, and traversal 

volume.  The fifth section presents case studies that validate the models by quantifying the RIF 

margin-of-error (MOE) for three distinct pavement roughness categories.  The final section 

summarizes and concludes the study. 

Roughness Evaluation Model 

Previous research (Bridgelall 2014a) defined the RIF, denoted RL[p], as the g-force per meter 

(g/m) sensed when traversing a road segment of length L, during time-period p where: 
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The instantaneous traversal speed is (t) and the vertical acceleration output from the sensor is 

gz(t).  The corresponding TWIT is speed-independent.  It is a linear combination of the average 

RIF from each speed band where the coefficients are the percentages of vehicle traversals for 
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each band.  The TWIT for a road segment k during an arbitrary time-interval P of time-index j 

is denoted k[Pj] where: 
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The speed-band or window size is  and the window index is w.  The average RIF of vehicles 

traversing segment k, within a speed band w, and during time increment Pj is denoted 

as ][kR j

w

P

 .  The corresponding traversal volume is denoted as ][kN j

w

P

 .  The total number of 

speed bands available for segment k is Bk.  A key property of the TWIT is that it emphasizes 

roughness from longitudinal profile wavelengths that the vehicle population experiences at the 

most common speed ranges. 

Vehicle Response Energy 

Road roughness excites the vibration modes of a moving vehicle.  The damped mass-spring 

model for each wheel-suspension assembly or “quarter-car” includes a series combination of 

sprung and unsprung masses that represent the body suspension and wheel components 

respectively.  A pair of second-order differential equations characterizes each model.  Their 

solution identifies the dominant resonant frequencies and damping ratios of each mode as 

functions of the vehicle body mass, wheel mass, spring constants, and damping coefficients 

(Angeles 2011).  These physical parameters must be known to determine the characteristics of 

each quarter-car mode.  The vertical acceleration at the sensor location is the vector sum of 

responses from roughness excitation at each quarter-car.  To characterize the roughness energy 

from vehicle vibrations, the Nyquist Theorem (Oppenheim and Schaefer 1975) dictates that a 
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sensor must sample the motion response at a rate that is at least twice that of the highest mode 

frequency.  The vertical acceleration responses from road roughness typically contain an 

insignificant amount of energy above the damped tire resonance frequency. 

It is standard practice for vehicle manufacturers to attenuate the suspension motion between 4 

and 8 hertz because vibration levels within that frequency range are the most harmful to humans 

(Griffin 1990).  To achieve this, suspension system engineers design the sprung mass resonant 

frequency between 0.9 and 1.5 hertz for all vehicle types (General Motors 1987).  Consequently, 

the unsprung mass resonance frequencies are typically about ten times higher than those of the 

sprung mass modes (Gillespie 2004). 

This research finds that it is analytically convenient to identify the dominant resonance 

frequencies and their damping ratios by decomposing the composite inertial spectrum into 

individual quarter-car systems as illustrated in Fig. 1.  The Discrete Fourier Transform (DFT) of 

the sensor signal characterizes the frequency response of the sensor and the aggregate responses 

from n quarter-cars.  Modeling the DFT as a modulation of the sensor response with a linear 

combination of responses from each damped mass-spring system produces an estimate of their 

resonance frequencies and damping ratios.   Suitable linear programming techniques can identify 

the linear combination coefficients and the model parameters that minimize the estimate error.  

The second-order low-pass filters (LPFs) are Fourier Transforms of the impulse responses of 

under-damped mass-spring systems.  The resonant frequencies of the sprung and unsprung mass 

modes of each quarter-car contribution are f[s,n] and f[u,n] hertz respectively.  Their corresponding 

damping ratios are respectively [s,n] and [u,n].  Hence, the magnitude spectrum of the composite 

transfer function Gz(f) as a function of frequency f is: 
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where W is the number of wheel-spring assemblies, and the subscripts m = 1 and m = 2 

enumerate the sprung (s) and unsprung (u) mass-spring system parameters respectively.  The 

sensor function g(f) is a second derivative operator, and the coefficients of the LPF linear 

combination are [m,n]. 

A vehicle traveling a segment of length L at a constant speed will produce a finite time 

signal with longitudinal energy density L
gzE .  Sampling the time-limited signal gz(t) produces a 

vector gz[k] with samples at time instants k.  From Parseval’s Theorem (Chen 2004): 
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where Gz[k] is the DFT of gz[k].  At a sample rate of fs both vectors contain NfL s )/(  samples 

of the signal plus noise.  The sample error sequence, en includes quantization noise, electronic 

noise, and wheel-path variations among traversals.  The noise energy N is:   
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where 2
],[ neE is the expected value of the squared sample-errors or equivalently the noise power 

(Skylar 2009) for traversal .  For a given sample rate fs the variance of the signal energy among 

traversals is equivalent to the variance of the noise energy among traversals where: 

     2
],[2

2
],[ 1





 n

ss

nL
gz eEVar

ff

eE
VarNVarEVar 














  (6) 



Inertial Sensor Sample Rate Selection for Ride Quality Measures 

Raj Bridgelall, Ph.D. Page 7/18 

 

This expression shows that increasing the sampling rate decreases the signal variance, thereby 

improving the consistency of the sampled signal energy from one traversal to the next. 

RIF Variance 

The RIF for a segment of length L, traveled at a mean speed  for the th traversal is: 
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From the theory of error propagation (Ku 1966), the standard deviation of the RIF, L
RIFs is: 
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where  Var is the variance of the mean speed among traversals.   The covariance of the mean 

speed and the vertical acceleration signal energy is denoted 2
Es .  The random variables for mean 

speed and vertical acceleration signal energy are independent; therefore, the covariance factor 

must be zero.  Evaluating the partial derivatives indicated in Equation (8) and substituting the 

noise energy factor from Equation (5) yields: 
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where L
gzE and Nt  are the averages of the vertical acceleration signal energy and the mean speed 

among traversals.  Hence, the RIF variance among traversals increases when the variance of the 

mean traversal speed increases, but decreases when the sample rate increases.  The RIF MOE for 

a (1-)% confidence interval with significance  is the inverse power function (Papoulis 1991): 
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where N is the traversal volume, and t1-/2 is the t-distribution with degrees of freedom (df), 

which equals N – 1. 

Case Study 

Three sedans of different sizes, a large van, and a sports utility vehicle (SUV) provided 

affordable and convenient platforms to collect data for all case studies.  The sedans were a 

Toyota Camry LE 2007, a Subaru Legacy 2007, and a Ford Contour 1995.  The van was a Ford 

E350 2011 and the SUV was a Ford Explorer 2001.  The sprung and unsprung mass responses 

for all vehicles were between 1 and 2 hertz, and 11 and 20 hertz respectively.  As indicated in 

previous work, automotive engineers design the suspension responses of all standard roadway 

vehicles to be similar because of the need to provide a consistent human ride comfort (Bridgelall 

2014b). 

The author developed a custom iOS® data logger application (app) to run on any Apple 

iPhone model that includes a global positioning system (GPS) receiver of any type, and at least 

one accelerometer.  The specific model used was an iPhone 4S with iOS Version 7.1 and 8 GB 

memory.  The GPS receiver sampled at a default rate of approximately one hertz.  The app 

provided a form to select the accelerometer sample rate from 1 hertz to 128 hertz inclusive.   To 

compare the RIF at different sample rates, the author used the same Subaru Legacy sedan with 

the smartphone secured flat onto the dashboard. 
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Frequency Response 

A vertical acceleration signal is sampled at 128 hertz using a Toyota Camry 2007 LE sedan 

equipped with an inertial sensor.  Fig. 2 shows the DFT of the sampled signal (solid line).  The 

dotted line is a least squares fit of Equation (3) with W=1 for the response range from 0.1 to 20 

hertz.  The coefficient of determination for this fit is 91.8%.  The model indicates that the sprung 

and unsprung mass modes are in the vicinity of 1.8 and 12 hertz respectively, with corresponding 

damping ratios of approximately 0.3 and 0.1.  It is evident that there are several peaks in the 

region of each dominant mode.  Those are because of harmonics produced when the quarter-cars 

of each axle crosses the same bump (Bridgelall 2014b).  For this estimate, the ratio of the 

unsprung mass to the sprung mass LPF amplitude coefficient is approximately 5.7. 

Margin-of-Error 

The segment of Bolley Drive on the North Dakota State University campus, shown in Fig. 3, 

contains a two-track rail grade crossing that produces a noticeably rougher ride than the rest of 

the segment.  The crossing consists of four rails.  The 50 meter segment north of the crossing is 

significantly rougher than the 50 meter segment south of the crossing.  However, the north 

segment is much smoother than the 50 meter segment containing the crossing.  To quantify and 

compare the roughness of these road segments, the driver maintained a speed of approximately 7 

m·s-1 throughout all segments.  The smartphone app logged the inertial sensor gz[k] output by 

sampling at rates of approximately 1, 2, 4, 8, 16, 32, 64, and 93 hertz.  For each sample rate, 

Table 1 lists the averages and standard deviations of the RIF from 28 traversals.  Two outlier 

data logs from each set of 30 traversals were removed.  Fig. 4 plots the average RIF.  For all 

sample rates, the relative differences in roughness for each segment corresponded to roughness 

differences that the driver perceived.  As expected, the roughness measure generally stabilized as 
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the sample rate increased beyond 32 hertz, which is about twice the unsprung mass resonance of 

the vehicle.  Similarly, the trend in Table 1 shows that the standard deviations of the roughness 

measure generally decreased as the sample rate increased. 

Fig. 5 plots the MOE as a percentage of the mean RIF.  This implies that equal magnitude RIF 

variations will appear as larger percentages for a lower RIF values than for a higher ones.  For 

example, the RIF standard deviation is approximately 0.05 g/meter for each of the road segments 

sampled at 32 hertz.  However, their corresponding MOEs are 10% for the smooth segment with 

an average RIF of 0.16 g/meter, but only 4% for the rail-grade segment with a much higher 

average RIF of 0.57 g/meter.   As anticipated from Equation (9), the MOE for all roughness 

categories declined as the sample rate increased.  Increasing the sample rate beyond twice the 

dominant mode frequency provided diminishing returns in MOE reduction.  The RIF standard 

deviation measured from all sample rate data sets was within 5% of the theoretical value 

predicted by Equation (9).   The average of the mean traversal speed  and its standard 

deviation across  = 28 traversals was 7.15 ms-1 and 0.45 ms-1 respectively. 

From the central-limit-theorem (Papoulis 1991) and Equation (10), the variability of the mean 

RIF diminishes with increasing traversals.  Fig. 6 plots the MOE as a function of the traversal 

volume across a 200 meter section of Bolley Drive that includes all three segments.  For sample 

rates of at least 64 hertz, the MOE drops below 5% after only 6 traversals.  In general, as the 

traversal volume increased, the MOE diminished more slowly for higher sample rates than for 

the lower sample rates.  This is because a higher sample rate reduces the noise energy, per 

Equation (5), thereby improving the signal consistency from one traversal to the next.  The trend 

in error reduction with traversal volume is an inverse power function that closely approximates 

Equation (10). 
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Summary and Conclusions 

When using the RIF, a fixed sample rate for inertial sensors will provide consistent 

characterization of ride quality across all vehicle types.   The minimum sample rate should be at 

least twice the highest dominant mode of all vehicles traversing the segment.   It is analytically 

convenient to estimate the suspension system model parameters directly from the vertical 

acceleration signal samples when the sprung and unsprung masses and spring constants are 

unknown.  Given that standard design practices attenuate suspension responses to excitation 

frequencies above approximately 32 hertz, the sample rate recommended for standardization is 

64 hertz. 

The case study demonstrated that the RIF margin-of-error diminishes asymptotically when the 

sample rate increases beyond this recommended frequency.  The RIF variance decreases when 

the signal sample rate increases.  However, increasing the sample rate beyond 64 hertz provides 

diminishing returns in RIF consistency.  Given a sample rate and speed variance, the RIF 

variability diminishes as the inverse square-root of the traversal volume.  Therefore, the traversal 

volume needed for a desired level of RIF accuracy is proportional to the square of the RIF 

standard deviation. 

Future work will use the theoretical framework developed here to characterize the accuracy of 

models that can incorporate the RIF to forecast pavement deterioration and vehicle operating 

costs.  The RIF can also estimate the location of pavement distress symptoms.  Therefore, future 

work will characterize symptom location accuracy in terms of vehicle suspension parameter 

variations and errors in geospatial position estimates. 
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Notation 

The following symbols are used in this paper: 

ALP[n]  = low-pass filter amplitude for quarter-car n; 

Bk  = number of speed bands available for segment k; 

L
gzE   = vertical acceleration signal energy per length of road; 

L
gzE   = average of the vertical acceleration signal energy among traversals; 

e[n,]  = sampled signal error (noise) for traversal ; 

f  = frequency in hertz; 

fs  = signal sample rate in hertz; 

f[c,n]  = low-pass filter cut-off frequency for quarter-car n; 

f[s,n]  = sprung mass resonance mode frequency; 

f[u,n]  = unsprung mass resonance mode frequency; 

gz(t)  = g-force output from a vertical acceleration sensor as a function of time t; 

Gz(f)  = magnitude spectrum of the vehicle inertial response; 

L  = length of road segment; 

N  = noise energy random variable for traversal ; 

Nv  = the traversal volume; 

][kN
w  

= number of vehicles traveling across segment k, within speed band w; 
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][kN jP

 
= number of vehicles traveling across segment k, within time-period Pj; 

Pj  = time-period increment of instance j; 

RL[p]  = RIF for segment of length L evaluated in time-period p; 

][kR jP

 
= average RIF for segment k, within time-period Pj; 

][kR
w  

= average RIF for segment k, within speed band w; 

LR  
 

= RIF for segment of length L when traversed at an average speed ; 

L
RIFs   = standard deviation of the RIF for segment of length L; 

2
Es   = covariance of the average speed and vertical acceleration signal energy; 

T  = total traversal time across a segment; 

dft ,2/1    = t-distribution with  significance and df degrees of freedom; 

U(t)  = the Heaviside step function; 

[u,n]   = proportion of each LPF in the parallel filter model; 

w  = speed band window size and instance w; 

g  = inertial sensor function; 

   = mean or constant speed for traversal ; 

Nt   = average of the mean speed for all traversals; 

(t)  = instantaneous traversal speed as a function of time; 

)( jk P  = TWIT for time-period increment instance j; 

[s,n]  = damping ratios of the sprung mass frequency response; 

[u,n]  = damping ratios of the unsprung mass frequency response. 
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Table 1: The averages and standard deviations of the RIF for the three road segments at different sample rates 

 Smooth Rough Tracks 
Rate (Hz) Avg. RIF sRIF Avg. RIF sRIF Avg. RIF sRIF 

1 0.136 43.8% 0.264 38.2% 0.404 47.2% 
2 0.088 32.1% 0.200 38.8% 0.342 60.0% 
4 0.118 21.8% 0.257 25.8% 0.452 23.2% 
8 0.145 20.6% 0.299 19.7% 0.539 16.6% 

16 0.140 21.4% 0.281 15.7% 0.558 9.2% 
32 0.164 25.3% 0.355 14.5% 0.574 9.9% 
64 0.151 19.1% 0.342 13.4% 0.553 7.2% 
93 0.153 12.9% 0.294 10.0% 0.527 6.8% 
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Figure 1. Method of estimating the vehicle mechanical filter parameters 
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Figure 2.  DFT of sensor output versus estimate of mechanical filter response 
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Figure 3.  Photographs of Bolley Drive sections analyzed (Imagery: Google) 

 

 

Figure 4.  RIF of 50 meter road segments at different sample rates 
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Figure 5.  RIF margin-of-error versus sample rate 

 

 

Figure 6.  Margin-of-error as a function of traversal volume 

 

 


