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Abstract 

Connected vehicles present an opportunity to monitor pavement condition continuously by 

analyzing data from vehicle-integrated position sensors and accelerometers.   The current 

practice of characterizing and reporting ride-quality is to compute the international roughness 

index (IRI) from elevation profile or bumpiness measurements.  However, the IRI is defined only 

for a reference speed of 80 kilometers per hour.  Furthermore, the relatively high cost for 

calibrated instruments and specialized expertise needed to produce the IRI limit its potential for 

widespread use in a connected vehicle environment.  This research introduces the road impact 

factor (RIF) which is derived from vehicle integrated accelerometer data.  The analysis 

demonstrates that RIF and IRI are directly proportional.  Simultaneous data collection with a 

laser-based inertial profiler validates this relationship.  A linear combination of the RIF from 

different speed bands produces a time-wavelength-intensity-transform (TWIT) that, unlike the 

IRI, is wavelength-unbiased.  Consequently, the TWIT enables low-cost, network-wide and 

repeatable performance measures at any speed.  It can extend models that currently use IRI data 

by calibrating them with a constant of proportionality. 
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Introduction 

The international roughness index (IRI) and power spectral density (PSD) are the two indices 

most widely used to summarize ride-quality and pavement condition.  Producing them requires 

calibrated profiling equipment and personnel with specialized training.  Even with the latest 

high-speed profiling technologies, transportation agencies cannot afford the time and expense 

necessary to produce ride-quality measures more frequently than once per year.  Consequently, 

symptoms of distress conditions go unnoticed.  An example is a frost heave that appears and 

disappears in between data collection cycles.  To mitigate these problems, agencies are seeking 

lower-cost approaches to comply with federal condition reporting requirements for the national 

highway network.   

The IRI is derived from the accumulated suspension movement of a simulated quarter-car 

called the Golden Car, rolling over an elevation profile at a fixed reference speed of 80 

kilometers per hour (km/h), which is about 50 miles per hour (Gillespie 1981).  The IRI is 

undefined at other speeds, making it nearly impossible to characterize ride-quality for urban 

roads using the existing standard.  The mechanical filter model used to compute IRI emphasizes 

wavelength energy near the modal resonances, and attenuates those that fall outside of the 

frequency pass-band.  This filtering action results in wavelength biases that could mask some 

distress symptoms (Marcondes et al. 1991).  Consequently, practitioners often utilize the PSD to 

detect underlying or developing faults by analyzing the full, unbiased wavelength composition of 
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an elevation profile.  Computing the PSD requires sample sequences from relatively long 

pavement sections, thereby limiting its use for distress symptom localizing within a few meters 

of the actual problem area (Perera and Kohn 2005). 

The IRI is currently the recommended means of quantifying ride-quality.  Even though its 

shortcomings are widely acknowledged, no other research has demonstrated an improved means 

or lower cost methods to produce it.  Several efforts examined the possibility of estimating the 

IRI or the elevation profile from accelerometer data but have not derived a theoretical 

relationship.  A research team from the University of Tokyo found that the root-mean-square 

(RMS) of the accelerometer signal was correlated to the elevation profile data (Fujino et al. 

2005).  A team from the University of Pretoria (South Africa) found that it is possible to train an 

artificial neural network to estimate the elevation profile from accelerometer data, within 20% 

accuracy (Ngwangwa et al. 2010).  An Auburn University team recently produced similar results 

by training an artificial neural network to estimate the IRI.  They found that the RMS of the 

accelerometer output generally provided a better correlation with the IRI (Dawkins et al. 2011).  

This research derived improved indices, the road impact factor (RIF) and its corresponding 

time-wavelength-intensity-transform (TWIT).  They combine the localization capabilities of the 

IRI with the broad-band spectral decomposition features of the PSD.  Transportation agencies in 

the United States and other countries are collaborating with leading vehicle manufacturers to 

promote travel safety and efficiency through vehicle-to-vehicle (V2V) and vehicle-to- 

infrastructure (V2I) communications (USDOT 2012).  When enabled in connected vehicle 

protocols, centralized computing platforms will access data from vehicle accelerometers and 

global positioning system (GPS) receivers or odometers to produce a ride-quality for any speed.  

This research derives, simulates, and validates a direct proportionality relationship between the 
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RIF and the IRI.  A linear combination of RIF from a broad range of speeds produces the TWIT, 

which is also directly proportional to the IRI but is significantly less wavelength-biased.  A 

connected vehicle compatible means of characterizing ride-quality will reduce the cost of 

pavement condition monitoring and broaden substantially its scope and regularity from existing 

inspection approaches.  The proportionality relationship with IRI can extend existing 

deterioration forecasting models with data from connected vehicles by directly substituting the 

IRI for TWIT and a constant of proportionality. 

Theoretical framework 

The next sections present an analytical framework to examine relationships between the RIF, 

TWIT and IRI as functions of bump height, bump width, and longitudinal speed. 

Bump model 

Let the bump function be a continuously differentiable Gaussian radial bases function 

(Buhmann 2008): 

   2
exp)(  -- xxz  (1) 

The amplitude is , the distance from the origin is , and the sharpness is .  Let the approximate 

bump width  be: 






e2
  (2) 

where e is a mathematical constant that is the base of the natural logarithm.  Fig 1(a) shows the 

spatial elevation profile of a four centimeter high by one meter wide bump z(x) as a function of 

bump width or longitudinal distance x, and its second derivative ),(xz which is the slope change 
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profile.  The latter is in units of slope/meter and represents the rate of change of slope with 

respect to longitudinal distance. 

The vertical acceleration energy produced from traversing a bump is directly proportional to 

the slope change profile and the square of the speed .  This relationship is derived later.  The 

intensity and frequency composition of the vertical acceleration energy increases with 

longitudinal speed and decreases when bumps are wider.  Fig 1(b) shows the Fourier Transform 

of the vertical acceleration energy produced from traversing a four centimeter high by one-meter 

wide bump at  = 8 km/h, the same bump traversed at 12 times the longitudinal speed , and a 

bump that is half as wide (0.5  w) and traversed at  = 8 km/h.  The overall suspension response 

of a typical vehicle has the characteristic shape shown in Fig 1(b) where the positions of the 

lower and upper peaks are the sprung and unsprung mass resonances of the mechanical filter 

respectively (Jazar 2008).  The model for the suspension response spectra in this simulation is a 

double pole, Type-I Chebyshev band-pass filter with pass-band ripple factor of 2.1.  It is 

implemented as a digital infinite impulse response filter with low and high cutoff frequencies of 

1-hertz and 12.5-hertz respectively.  The vehicle suspension responds in proportion to the 

product of the bump spectra and the vehicle response spectra.  It is evident that the suspension 

response in this model will approach a peak for speeds approaching 8 km/h and then taper off as 

the bump energy translates away from the modal resonance at higher speeds. 

The IRI wavelength bias 

  Defining Uz(x) as a rectified elevation profile (REP), which is an accumulation of the 

rectified slope ),(xz gives: 
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 dzxU
x

z 
0

)()(   (3) 

Fig 2 shows the REP relative to an example spatial elevation profile z(x)= z1(x) + z2(x) + z3(x) 

that consists of three bumps z1(x), z2(x) and z3(x)where the parameter matrix for their height , 

distance from the origin , and approximate width  in meters are: 
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 (4) 

The values are selected so that a bump that is half as wide must also be one quarter shorter to 

produce an equal intensity slope change profile.  Incidentally, a linear combination of bumps 

with randomly distributed heights, widths, and location simulates a characteristic road elevation 

profile. 

The Golden Car mechanical filter pass-band characteristics are similar to the Chebyshev 

model previously introduced.  Fig 2 compares the magnitude of the suspension stroke 

accumulations for a Golden Car traversing the three previously defined bumps at a constant 

speed of 8 km/h and 80 km/h.  After traveling 3 meters at a speed of 8 km/h, the accumulated IRI 

is greater than the REP.  Conversely, the accumulated IRI is less than the REP when traveling 

the same distance at a speed of 80 km/h.  As described earlier, traveling at a much higher speed 

translates the vertical acceleration energy further away from the suspension modal resonance, 

which leads to significantly less IRI accumulation.  Hence, it is not possible to compare 

bumpiness from IRI accumulated at different speeds. 

The road impact factor 

The slope rate, which is the second derivative of equation (1), produces the vertical 

acceleration from traversing a single bump such that: 
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The temporal elevation profile is z[x(t)].  Applying the chain rule of differentiation to the 

composite function z[x(t)] provides the general solution: 

)()()()())(()( 2

2

2

xztxxztxtxz
dt

d
tz    (6) 

For the special case of constant speed where   )()( ttx the longitudinal acceleration 

is 0)( tx and the expression simplifies to  xztz  2)(  . 

The vertical acceleration response that a vehicle occupant feels is a convolution of the vertical 

acceleration input with the impulse response of the vehicle suspension filter vz(t) such that: 

 -  dztvtS zout )()()(   (7) 

An accelerometer mounted to the body of the vehicle measures this vertical acceleration as gz(t) 

=   Sout(t), where  is the accelerometer proportionality constant.  The average vertical 

acceleration experienced when traveling at a constant speed  across a portion of the road, which 

is a road segment of length L is: 

 



L

z

T

z

L

z
L dtttg

L
dtttg

L
dxxg

L
g

000

)()(
1

)()(
1

)(
1

 (8) 

because dx = (t)dt.  The Parseval Theorem relates the energy of the signal in the temporal and 

frequency domains (Oppenheim and Schaefer 1975) as: 

  dttgdffG zz

22
)()(  (9) 

Defining the road impact factor (RIF) as: 
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essentially utilizes the time domain accelerometer signal to quantify the average vertical 

acceleration energy produced from segment k per unit distance L.  Fig 3(a) compares the RIF and 

the accumulated ‘IRI’ for a range of speeds across the same 4-centimeter high by 1-meter wide 

bump.  The RIF is a function of the resultant vehicle suspension response sensed at the 

accelerometer position and the suspension impulse response as defined in equation (7).  The IRI 

quarter-car mechanical filter assumes nearly a factor of two amplification of the sprung mass 

resonance over the unsprung mass resonance (Gillespie 1981).  This amplification difference and 

a coupling of the spring responses produce the two local maxima observed below the 50 km/h 

region.  The Chebyshev model of the suspension response at the accelerometer location assumes 

equal responses from both of the modal excitations.  Therefore, the RIF response shows a 

smoother transition as bump energy shifts from lower to higher frequencies.  For a fixed 

longitudinal speed, both RIF and IRI are directly proportional to the bump height as shown in 

Fig 3(b). 

The time-wavelength-intensity-transform 

Let the time-wavelength-intensity-transform (TWIT), denoted by the dependent variable, be 

the weighted average RIF by traffic volume N within a speed window of size  such that: 
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The data collection time-interval is P, which could be any resolution desired, for example 

minutes, hours or days, and Pj is an integer time index j for the analysis.  Therefore, the total 

analysis time elapsed is P  j.  Similarly, the speed window index w contains parameters from 

traversals where the speed  falls within the speed range (w-1)  <    w.  The average 
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RIF and the number of vehicles traveling across segment k, within the speed band w, and in 

time increment Pj is ][kR j

w

P

 and ][kN j

w

P

 respectively.  The total number of speed bands 

available for segment k is Nk.  Fig 4(a) is a graphical representation of the TWIT for data taken 

from a hypothetical road segment, and accumulated for a time-period of one day.  It is a 

histogram of the relative vehicle volume N for each of the w = {1 … 8} speed bands that are  

= 5km/h wide.  The lower vertical axis is the average RIF computed for data within each of the 

eight speeds bands. 

From Bernoulli's Theorem (Papoulis 1991), as the vehicle volume across the segment grows, 

the average RIF measured at a given speed will converge to the ride quality that the occupant of 

a typical vehicle experiences.  Therefore, as the number of traversals and speed bands increase, 

the TWIT produces a less wavelength biased representation of the pavement distress symptoms.  

The weighted linear combination of RIF creates an adaptive property that emphasizes 

wavelengths that most significantly affect ride quality at speeds that a majority of users travel the 

segment. 

The vertical acceleration potential 

Defining a vertical acceleration potential (VAP) Ez(L) gives: 

 dz
L

LE
L

z 
0

2
)(

1
)(   (12) 

The VAP is in units of slope per foot of longitudinal distance and is a speed-independent 

measure of the spatial profile bumpiness.  From equation (6), the slope rate, which is the vertical 

acceleration input to a vehicle traveling a profile z(x) at some speed , is directly proportional to 
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the slope change profile )(xz .  Equation (12) shows that VAP is an LTI transformation of the 

slope change profile. 

Combining equations (7) and (10) yields: 
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which shows that RIF is an LTI transformation of the slope rate.  From the distributive property 

of LTI systems (Chen 2004), the RIF, and by extension its linear combination, the TWIT, must 

be directly proportional to the VAP.  The experimental results described later validate this 

postulation.  Fig 4(b) shows the TWIT and the VAP for a range of heights of a one-meter wide 

bump.  Their direct proportionality is evident. 

Experiments 

The North Dakota Department of Transportation provided test data from an inertial profiler 

equipped with left wheel path (LWP) and right wheel path (RWP) height sensors, an 

accelerometer positioned on the floor between the driver and passenger seats, and a GPS 

receiver.  Fig 5 shows data collected from six constant speed traversals of a 150-meter section of 

the IRI test track located near Monticello, Minnesota.  The median wheel path (MWP) data is the 

average of the LWP and RWP measurements.  This is compared with the REP previously 

defined. 

The height sensors measure the vertical distance from the vehicle chassis to the wheel path 

surface.  Hence, the data includes height variations from sprung mass modal excitations that 

produce chassis bounce.  The common practice to stabilize the reference plane is to remove the 

chassis bounce by computing its displacement by double integration of the accelerometer data.  

However, electronic noise and unknown initial conditions typically lead to errors that result in 
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inconsistent measurements (Janoff 1990).  The differentiation process to produce the REP from 

the MWP is essentially a high pass filter that attenuates the sprung mass response near one-hertz.  

This process effectively removes the sensitivity to reference plane bounce as observed by the 

repeatability of the REP relative to the MWP in the figure. 

Results 

Let the percent variability of a data set having values {D1, D2, …, DN} be: 

D

DD
N

V

N

n
n
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-

 1

1

 
(14) 

where D is the average of N values.  Table 1 summarizes the statistics of the data obtained from 

the six traversals.  The last row lists their variability from the mean as a percentage (V%).  As 

expected, the MWP variability is significantly higher than any of the other statistic, primarily due 

to the Inertial Profiler reference plane bounce.  The REP varies less.  The VAP is produced from 

the second derivative of the MWP and listed in percent slope per meter (% slope/m).  The VAP 

varies less than the REP because of the double derivative.  Consequently, the VAP is a candidate 

speed-independent characterization of bumpiness from Inertial Profiling data.  The author will 

explore this potential in future work. 

The inertial profiler sampled the elevation profile at fixed distance intervals regulated by the 

longitudinal speed shown in the second column.  The IRI algorithm converted the spatial 

elevation profile into a temporal elevation profile by assuming a fixed sample period that is 

equivalent to capturing the profile samples at the IRI reference speed.  The IRI shown in the 

fourth column is in meters per kilometer (m/km).  The IRI variation is slightly less than the VAP 

because the IRI attenuates any variations in elevation profile energy contributions from 
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wavelengths outside of the quarter-car mechanical filter pass-band.  The VAP is unfiltered, 

except for the inherent anti-alias filtering of the elevation profiler height sensor. 

The RIF is listed in 10-3 g per meter.  Factors in the overall RIF variation include sensor 

errors, wheel path variations, traversal distance variations, and traversal time variations.  Instead 

of attempting to quantify the source of all error contributions to the RIF, it would be more 

insightful to lump the total error into an equivalent factor that is of some significance.  From 

equation (10), the RIF variability for an average traversal speed of is proportional to the 

ratio TL / , which are variations in the average path distance and the traversal time because: 
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With all other factors being equal, approximately 25 centimeter variation in the average traversal 

distance of 150 meters would produce the RIF variation listed. 

The RIF/VAP ratio is within 5% margin of error and validates the direct proportionality 

relationship postulated earlier.  Similarly, the RIF/IRI ratio validates the hypothesis that one can 

substitute for the other in models by calibration with a constant of proportionality. 

Summary and Conclusions 

The RIF is a statistical characterization of ride quality that appears suitable for deployment in 

a connected vehicle environment.  It is proportional to the average energy of the vertical 

acceleration experienced per unit of longitudinal distance when traveling a segment at a specified 

speed.  The TWIT is a linear combination of the average RIF produced at different speeds.  The 

theoretical derivations, simulations, and experimental results demonstrate that the TWIT is 

directly proportional to the IRI.  The TWIT approaches a wavelength-unbiased characterization 

of bumpiness as vehicle volume, speed spread, and suspension diversity increases.  When 
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incorporated into pavement deterioration models, the TWIT will produce optimum maintenance 

triggers based on the ride quality that the actual vehicle population experiences when traveling a 

segment at prevailing speeds.  This property is in contrast to the IRI that characterizes ride-

quality at a fixed reference speed.  The RIF/IRI proportionality for constant speed traversals 

could extend models that use IRI to compare and forecast ride-quality at a specified speed. 

This research also introduced the VAP, which is an inertial profiler reference plane stabilized 

and speed-independent characterization of bumpiness.  It is derived from elevation profile 

samples recorded at fixed distance intervals.  The VAP is a candidate index to characterize 

pavement bumpiness in urban driving situations where traffic conditions and irregular road 

geometry make it impossible to maintain a fixed profiling speed.  Future research will examine 

further the relationship between the VAP and the TWIT and their utility in characterizing the 

bumpiness of urban roads.  Extensions of this research will deploy smart phone apps to collect 

GPS and accelerometer data at different sample rates to examine TWIT performance tradeoff 

with vehicle volume. 

Acknowledgement 

This work is based on research supported by the North Dakota Department of Transportation 

(NDDOT) and the United Stated Department of Transportation (USDOT), Research and 

Innovative Technology Administration (RITA) under the Rural Transportation Research 

Initiative. 

Notation 

The following symbols are used in this paper: 

[C]  = Golden Car matrix of damping coefficients; 

Ez(L)  = VAP for road segment of length L; 
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e  = mathematical constant equal to 2.71828; 

gz(t)  = g-force output from a vertical acceleration sensor as a function of time t; 

Lg   = average g-force experienced on segment of length L; 

[k]  = Golden Car matrix of spring rates; 

L  = longitudinal profile (or segment) length; 

[m]  = Golden Car matrix of sprung and unsprung masses; 

Nk  = number of speed bands available for segment k; 

][kN
w  

= number of vehicles traveling across segment k, within speed band w; 

][kN jP

 
= number of vehicles traveling across segment k, within time-period Pj; 

Pj  = time-period increment instance j; 

RL[k]  = RIF for segment k of length L; 

][kR jP

 
= average RIF across segment k, within time-period Pj; 

][kR
w  

= average RIF across segment k, within speed band w; 

T  = total traversal time for a segment; 

V  = variability in a set of data points; 

vz(t)  = vehicle suspension system impulse response as a function of time t; 

x(t)  = longitudinal distance traveled as a function of time t; 

ys  = sprung mass linear motion; 

yu  = unsprung mass linear motion; 

z(x)  = spatial elevation profile as a function of longitudinal distance x; 

)(xz   = slope profile as a function of longitudinal distance x; 

)(xz   = slope change profile as a function of longitudinal distance x; 
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z(t)  = temporal elevation profile as a function of time t; 

)(tz   = slope rate as a function of time t; 

  = bump amplitude; 

  = bump distance from the origin; 

  = accelerometer proportionality constant; 

w  = speed band window size and instance w; 

  = approximate bump width; 

  = constant longitudinal speed; 

(t)  = longitudinal speed as a function of time; 

  = bump sharpness; 

)( jk P  = TWIT for time-period increment instance j; 
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Table 1.  Statistics of test path data 

  Speed MWP IRI REP VAP RIF RIF/VAP RIF/IRI 

Test (km/h) (meters) (m/km) (meters) (% slope/m) (10
-3

 g/m)     

1 55.46 0.089 1.59 0.269 2.71 98.26 36.3 61.8 

2 55.56 0.157 1.59 0.292 2.67 95.32 35.7 59.9 

3 55.54 0.095 1.59 0.275 2.65 87.94 33.2 55.3 

4 55.61 0.153 1.54 0.294 2.64 94.99 36.0 61.7 

5 55.69 0.217 1.56 0.335 2.75 91.99 33.5 59.0 

6 55.79 0.134 1.57 0.286 2.65 98.53 37.2 62.8 

AVG 55.61 0.141 1.573 0.292 2.68 94.51 35.29 60.08 

V% 0.16% 24.73% 1.06% 5.20% 1.29% 3.20% 3.73% 3.33% 
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Fig. 1. (a) Bump and slope change profile (b) Frequency spectra of slope rate relative to the 

vehicle suspension response. 
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Fig. 2. Simulated bumps, the rectified elevation profile, and IRI accumulations at 8 km/h and 80 

km/h. 
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Fig. 3. The RIF and the ‘IRI’ (a) as a function of speed (b) as a function of bump height at 80 

km/h. 
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Fig. 4. (a) Graphical representation of the TWIT (b) VAP and TWIT from a 1-meter wide bump. 
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Fig. 5. Inertial Profiler data from multiple test path runs. 

 


