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ABSTRACT 

 This study examined the effects of chronic static stretching on dorsiflexion range of 

motion (ROM), calf strength, and calf girth when immobilized for two weeks. Thirty-six North 

Dakota State University students participated in this study and were divided into one of three 

groups: control group (CG), experimental group (EG), and experimental stretching group (ESG). 

All participants completed a pre-test of calf girth, strength, and dorsiflexion ROM. After the 

pretest, both experimental groups wore an immobilizer for two weeks. In addition, the ESG 

stretched for 10 minutes, twice daily. Data analysis indicated significant differences were found 

between groups for post-test measures of girth (F2,31=6.50, p=0.0048), dorsiflexion ROM 

(F2,31=29.06, p<0.0001), and strength (F2,31=6.74, p=0.0041). Post hoc testing indicated 

significant increases in dorsiflexion ROM and calf strength in the ESG and significant decreases 

in dorsiflexion ROM and calf strength in the EG. Also, the EG lost more girth than the ESG.  
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CHAPTER I. INTRODUCTION 

Stretching has long been an essential aspect of athletic performance. The effects of acute 

static stretching have been greatly studied and have shown a decrease in muscle performance.
1
 

However, chronic stretching, which is defined as a stretching program done over several days to 

weeks and emphasizes the long-term or chronic effects of stretching,
2
 has been shown to 

improve performance. More specifically, chronic stretching has increased muscle strength and 

endurance over time.
3
 The ability to increase muscle strength through a low-intensity component 

of an exercise program such as static stretching could be ideal for post-operative athletes.  

Furthermore, the maintenance of muscle strength is crucial in the return-to-play progression of 

the initial stages of rehabilitation for injured athletes. 

Stretching can enhance the hypertrophic effect when implemented with a resistance 

training program.
2
 Furthermore, stretching has been shown to increase strength in humans while 

activity is restricted.
2
 Although not the primary purpose of static stretching, longer periods of 

static stretching may result in stretch induced hypertrophy.
4
 Animal studies that have induced 

static stretching to a muscle have noted muscle hypertrophy after the static stretch had been 

continuously applied for long periods of time.
5,6

 These animal studies are not applicable to 

human studies due to the duration of stretch that is induced (up to 24 hours per day), therefore, 

human research is needed to analyze the effects of chronic stretching on strength during 

immobilization. 

Finally, immobilization can cause a dramatic decrease in muscle size after two weeks.
7
 

This decrease in muscle size after immobilization can be a predictor of the return-to-play 

progression. Athletes must return to normal muscle size and strength before returning to play.
8
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Decreasing the amount of atrophy and the amount of strength lost due to immobilization by static 

stretching could be ideal for individuals that are immobilized. 

Research Questions 

1. Does static stretching of the plantarflexor muscles during two weeks of immobilization 

result in a decrease in atrophy? 

2. Does static stretching of the plantarflexor muscles during two weeks of immobilization 

result in a reduction in loss of muscular strength? 

3. Does static stretching of the plantarflexor muscles during two weeks of immobilization 

result in a reduction in loss of dorsiflexion ROM? 

Research Hypothesis 

1. It is hypothesized that static stretching during two weeks of immobilization of the 

plantarflexors will result in a decrease in atrophy, a reduction in loss of muscle strength, 

and a reduction in the loss of dorsiflexion ROM. 

Assumptions 

1. The Cybex II Isokinetic Dynamometer is a valid measurement of muscular strength. 

2. Strength gains after two weeks of stretching are strictly due to the static stretching 

program. 

3. Strength gains are due to the stretch induced muscle hypertrophy and not another factor. 

4. Verbal cues for stretching will create the same tension in stretches with each person. 

5. All subjects are creating the same about of tension in the muscle with a stretch. 

6. The data from this study can be implemented in the clinical setting with injured athletes. 
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Limitations 

1. Stretching cannot be induced for several hours a day, as demonstrated in animal studies, 

to receive the same fast onset of stretch induced hypertrophy; however, several sessions 

of static stretching for two-weeks may have the same effect. 

2. Atrophy and the decrease in strength of an injured athlete are closely compared to 

subjects who are immobilized without an injury. 

Delimitations 

1. Subjects did not possess previous injury to the calves. 

2. Healthy subjects were chosen in this study. 

3. Stretching was induced twice daily for two weeks with the duration approximately twenty 

minutes a day; Thirty seconds was spent on gastrocnemious and soleus five times. 

Organization of Literature 

Chapter I: Introduction 

Chapter II: Review of literature 

Chapter III: Methodology 

Chapter IV: Manuscript, includes the results, to be submitted for publication 

Chapter V: Conclusion/ Clinical Application 

Definitions of Terms 

Active—Dynamic flexibility.
8 

Acute Stretching—Stretching for a single bout or for a short duration. Acute stretching 

will focus on the acute effects of stretching.
2 

Atrophy—The loss in muscle mass or strength due to a decrease in physical activity.
9 
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Constant-Angle Stretching—Static stretch that is held at the same point for a period of 

time.
10 

Constant-Torque Stretching—Static stretch that is kept at constant resistance.
10 

Chronic Stretching—Stretching for an extended period of time usually consisting of 

weeks. Chronic stretching focuses on the chronic effects of stretching or a stretching program.
2 

Cybex II Isokinetic Dynamometer—Equipment used to measure strength isokinetically.
8
 

Healthy—A person who does not suffer from any health related illnesses and does not 

have a history of lower leg injury. 

Injury—Any damage or harm done to the body.
8 

Isokinetic—A movement that takes place at a constant speed.
9 

Long-Term Stretching—See Chronic Stretching 

Hypertrophy—Increase in cell size.
9 

Muscle Hypertrophy—Increase in muscle size.
9 

Muscle Strength—The ability for a muscle to create a force with maximal effort.
8
 The 

amount of force that can be produced using the Cybex II Isokinetic Dynamometer will indicate 

muscle strength.  

Non-Taxing Exercise—An activity that puts a minimal amount of stress on the body. 

Passive—Static flexibility.
8 

Physically Active—Someone who works out or participates in a strength training 

program for a minimum of one to a maximum of seven days per week. 

Post-operative—The time immediately after a person who has undergone a surgery. 

Range of Motion (ROM)—The amount of motion received at a joint in various action.
8 
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Resistance Training Program—A program consisting of several exercises that create a 

resistance for a muscle or muscle group with the goal to increase muscle strength.
8 

Return-to-Play Progression—The development of a subject throughout a rehabilitation 

process to return to normal physical activities or to return to a sport.
8 

Static stretching—Elongation of a muscle to the point where there is a discomfort and 

then holding this position for a length of time.
8 

Strain—Deformation of muscular tissue.
8 

Stretching—Elongating a muscle.
8 

Stretching Program—A number of stretching exercises that are applied several times a 

week for several weeks targeting certain muscles.
2 

Stretch Induced Hypertrophy—A theory for why there is an increase in strength due to a 

stretching program.
4 

Abbreviations 

Hours (hr), Minutes (min), Seconds (s), Weeks (wk) 
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CHAPTER II. LITERATURE REVIEW 

This literature review discusses the effects of chronic static stretching on ankle strength 

and atrophy after two weeks of immobilization and is organized by the following topics: 

 Databases and Key Words Searched 

 Stretching Terminology 

 Hypertrophy 

 Atrophy 

 Range of Motion 

 Chronic Stretching Effects When Added to Other Techniques  

 Chronic Stretching Effects with Limited Activity 

 Stretching Theories Examined in Animal Studies 

 Summary 

 

Databases and Keywords Searched 

 The following databases were searched in writing this literature review: National Library 

of Medicines; Pub med (Medline and EBSCO) and sport discus (SPORTDiscus).  Journal articles 

written in English between the years 1927 and 2011 were searched. Additional references were 

collected by a careful analysis of the citations of others’ research. The following key words were 

used: 

1. Acute Stretching  

2. Atrophy 

3. Chronic Stretching 

Effects 

4. Exercise 

Performance 

5. Hypertrophy  

6. Long-Term 

Stretching 

7. Passive Stretching 

8. Performance 

9. PNF stretching 

10. Static stretching 

11. Strength 

12. Stretching 

13. Stretch Induced-

Hypertrophy
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Stretching Terminology 

Categories. Stretching has long been an important aspect of athletics. Stretching is the 

state of a muscle being extended or elongated. There are two categories of stretching that are 

based on the period stretching is induced: acute stretching and chronic stretching. Acute 

stretching is performing a bout of stretch on a muscle for a short period of time.
2
 Acute 

stretching is termed this way because it examines the short-term effects of stretching. Chronic 

stretching is defined as a stretching program done over several days to weeks and emphasizes the 

long-term or chronic effects of stretching.
2
 These two classifications of stretching have very 

different acute and chronic effects and are important to analyze. In a recent meta-analysis,
2
 21 

articles were analyzed on the acute effects of different types of stretching. All of these articles 

found negative effects on performance: force, torque, and jump. In fact, these negative results of 

acute stretching can last up to 30 minutes.
11

 Other research has shown that the negative effects of 

acute stretching can be counteractive when the proper warm up was implemented.
12

 Although 

many negative effects of acute stretching on physical performance have been noted, the effects 

of chronic stretching have only recently been studied. This literature review will focus on the 

chronic effects of stretching and more specifically the effects on muscular strength and muscle 

size. 

Types.  There are three main types of stretching: proprioceptive neuromuscular 

facilitation (PNF), ballistic, and static. PNF stretching is the most taxing on the body and 

requires assistance by an additional person. This technique involves a combination of active and 

passive stretching.
13

 In contrast, ballistic stretching consists of a repetitive bouncing movement 

when the muscle is in an elongated position.
13 

 Ballistic stretching has been known to create a 

greater environment for injury.
14

  Finally, static stretching consists of the muscle being elongated 
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slowly and then being held for 6-60 s. This stretching technique is more frequently used because 

it is easy to use and is least commonly associated with injury. This method has proven to be an 

effective method of stretching to increase joint ROM,
13

 however, no studies have been done on 

what stretching method is best to increase muscle performance.  

Types of Static Stretching. Static stretching is used most frequently, but is a loosely 

defined term that implies no change in motion or angle to a joint when a stretch is given. Static 

stretching can be done individually and consistently, and has a small chance of injury making it 

the best choice for stretching a large group of people.
15

 A static stretch can be held at the same 

point for a period of time which is termed constant-angle stretching. Constant-angle stretching is 

the elongation of a muscle until discomfort (maximal ROM) and then holding the stretch.
11

 A 

factor in decreasing maximal ROM is the stretch reflex. Muscle spindles are located in the 

muscle itself and are responsible for sensing a change in muscle length.
9
 When a muscle is 

drastically elongated, the muscle fibers respond to prevent damage as well as the golgi tendon 

organs. The golgi tendon organs are located in the tendons associated with muscle and are 

responsible for detecting changes in muscle tension.
9
 Once a stretch is held for a certain length of 

time, the golgi tendon organs are inhibited, and the amount of torque is changed.
9
 For this 

reason, a muscle can be slightly stretched further after approximately seven seconds, increasing 

the maximal ROM. Stretching that is kept at a constant resistance is entitled constant-torque 

stretching.
11

 This type of stretch provides the greatest amount of resistance throughout the static 

stretch. In addition, constant-torque stretching has been shown to decrease musculotendinous 

stiffness.
11

 For this reason, constant-torque static stretching may be the best type of static 

stretching to use when looking for the greatest results. 
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Duration.  Another important aspect of stretching is the duration of the stretch. Static 

stretch is most effective for increasing muscle flexibility at 30 s as opposed to 0, 15, or 60 s.
15

  

Also, the amount of times per week a stretch is induced is important when looking at chronic 

stretching.  It has been suggested that stretching should be performed three times a week with a 

36 to 48-hour rest period in between each session.
16

 However, other research states that a stretch 

should be performed at least three times a week, or more preferably, daily.
14, 15

 Additionally, 

stretching should be performed four to five times in each session for each muscle or muscle 

group. Although the duration of stretching has been studied greatly with the goal of an increasing 

range of motion (ROM), stretching duration, with the objective to increase strength via 

hypertrophy, is yet to be studied.  

Hypertrophy 

Generally, strength is directly correlated with the size of a muscle. Hypertrophy is 

defined as an increase in cell size.
9
 The actin and myosin contractile proteins increase in size and 

number resulting in hypertrophy.
17

 In eccentric training, muscle cells also add sarcomeres 

longitudinally, thus adding length to the muscle fiber as well.
18 

There are three main components 

of skeletal muscle hypertrophy: satellite cells, immunology, and growth factor proteins. Satellite 

cells assist in the growth, maintenance, and repair of damaged muscle tissue and increase the size 

and number of actin and myosin within a muscle fiber. Satellite cells are activated when the 

muscle fiber receives any form of trauma, overload, or damage, which in turn can develop as a 

result of injury, resistance training, or, arguably, stretching.
4
  

The inflammatory response also plays an important part with muscle hypertrophy.  

Inflammation generally follows trauma with the purpose of containing and repairing body tissue 

and cleaning up waste products.
9
 Neutrophils are one of the first cells to appear at the injury site 
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in the inflammatory process. Additionally, neutrophils have been known to aide in muscle 

regeneration. Neutrophils can be helpful during phagocytosis by eliminating debris and 

stimulating satellite cells to the area.
4
 Finally, growth factors, such as insulin-like growth factors 

(IGF), are involved in muscle hypertrophy. These growth factors are very specific proteins that 

aide in the inflammatory process. Hypertrophy can be observed when a trauma is induced on a 

muscle. The main hypertrophic trauma induced on a muscle is experienced through strength 

training. It can be argued that stretching, although not as traumatic as strength training, is a mild 

form of trauma to the muscle sparking the inflammatory response and resulting in hypertrophy.
4 

Along with hypertrophy, muscle force is also an important factor in strength. Muscle 

force can be explained through the length tension velocity relationship. This relationship 

explains that length and velocity are the two main factors in force. Length depends on the 

number of cross bridges the actin and myosin have in contact with each other. Velocity is 

dependent on the speed the cross bridges can move.
9
 Without full ROM, maximum force is 

difficult to obtain. For this reason, the strength induced muscle hypertrophy theory may be due to 

a physiological change in muscle size or possibly a change in muscle length. 

Measuring Muscle Strength.  Muscle strength is a fairly loose term and can be 

measured in several different ways. Isokinetic testing has been used in sports related facilities 

since the 1960s.
19

 Some authors have found isokinetic testing to be reliable
20

 while others have 

found relatively low reliability coefficients
21

. However, a well-defined test protocol for 

isokinetic testing in ankle plantarflexion and dorsiflexion provides a procedure that is reliable for 

quantifying muscle function.
22

 Peak torque, work, and power are all measurements that can be 

obtained using the Cybex II Isokinetic Dynamometer.
23

 However, significant difference in scores 

when using the Cybex II Isokinetic Dynamometer have been observed to be due to differences in 
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age and weight.
24

 According to Holmback et al.,
25

 peak torque is commonly used to determine 

maximal isokinetic strength. 

Atrophy 

Muscle atrophy is a decrease in muscle size resulting from disuse. The reduction in 

muscle protein synthesis is believed to be the initial cause of atrophy during disuse of the 

muscle.
9
 Secondly, atrophy can occur due to the increased muscle protein break down.

9
 Muscle 

atrophy can also result from disuse, such as immobilization or bed rest. Muscle atrophy is more 

predominant in the early phases of immobilization. Some muscles demonstrate greater rates of 

atrophy than others during immobilization. Many studies have looked at atrophy by looking at 

muscle cross sectional area. Muscle cross sectional area of the thigh and calf decreased at 

approximately 2-3% each week during the first month of bedrest.
26

 Cross-sectional area was 

reduced in the plantarflexor muscle by 3.2% (3,976/4,518 mm
2
) while knee-extensor muscles 

decreased 3.6% (6,650/7,347 mm
2)

 and hip-extensor muscles by 2.3% (8,728/8,931 mm
2)

 during 

bed rest for one month. In a study by Stevens et al.
7
 where the ankle was immobilized for seven 

weeks, dorsiflexors atrophied 18.9% while plantarflexors atrophied 24.4% respectively. Most of 

the atrophy happened in the first two weeks equaling 9.6% dorsiflexion and 14.1% 

plantarflexion.
7
 Resistance exercise provides the muscle with an overload stimulus and promotes 

an increase in protein synthesis resulting in hypertrophy.
9
 Without an overload to the body, there 

is an increase in muscle protein breakdown resulting in atrophy. 

Immobilization. Immobilization is usually done by casting or bracing. Immobilization in 

a muscle’s shortened position is often done after injury to aid in the healing process, but results 

in atrophy.
27

 This atrophy can usually be reversed after returning to activity. However, observed 

immobilized stretching of rat hind legs led to a 7% increase in muscle protein synthesis
27

, which 
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may be the reason for stretch-induced muscle hypertrophy. An increase in muscle protein 

synthesis is seen during hypertrophy. Because it is unethical to immobilize a human being in a 

stretched position, bouts of stretching throughout a long period of time has similar effects as 

immobilizing a muscle in a lengthened position.
4
  

Measuring Atrophy. Muscle size can be measured various ways. The gold standard for 

measuring muscle size is observed through Magnetic Resonance Imaging (MRI). Because an 

MRI is expensive and time consuming, another way to measure muscle size is through girth 

measurements. Girth measurements measure the circumference of a muscle area. Although girth 

measurements do not solely measure muscle (e.g. bone, adipose tissue, and skin), they have been 

observed to be a reliable predictor of atrophy.
28

 Girth measurements are also significantly 

correlated with measures of muscle cross sectional area.
28

 Depending on the tape measure used 

to measure girth, the reliability of the measurement can increase. Tape measures that have a 

spring-loaded handle make every measurement of girth have the same amount of tension while 

pulling around the muscle. Girth measurements are suggested after surgery to analyze 

differences between muscle size in the involved and uninvolved body segments.
28

  

Range of Motion 

The area through which a joint can move freely without pain is defined as its range of 

motion (ROM).
8
 An individual can have normal ROM or they can be hypermobile or 

hypomobile. Hypermobile means that a joint has an excessive amount of motion more than 

normal. A hypomobile joint has a lack of motion compared to normal ROM. Range of motion 

can be improved through several different stretching techniques as previously discussed. Chronic 

stretching can increase joint ROM by 8° in healthy muscles.
29

 It is unknown if the amount of 

motion a joint has is a predictor of the amount of strength that can be produced.  
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Measuring Range of Motion. A goniometer is an instrument that measures joint ROM. 

There are three parts to the goniometer: 1) a stationary arm, 2) a movement arm, and 3) a 

protractor/fulcrum. When measuring the motion of a joint, the stationary arm does not move 

while the movement arm is used to determine the angle of motion. The fulcrum is the moving 

point that is aligned with the joint, while the protractor displays degree/joint angle; a number that 

is often considered the gold standard for measuring joint ROM.  

Chronic Stretching Effects When Added To Other Techniques 

 Several researchers have found greater strength gains in subjects who add stretching to 

additional training programs.
3, 30-31

 Kokkonen et al.
3
 matched 16 men and 16 women to partners 

of the same gender and similar 1RMs for knee extension. Subjects were randomly assigned to a 

weight-training group or to a weight-training stretching group.  Both groups completed a weight 

training program which consisted of knee flexion, knee extension, and leg press. The weight was 

determined by the pre-test 1RM, and previously measured by using the Nautilus knee flexion and 

extension machine (Paramount Fitness Corp., Los Angeles, CA USA) and the Paramount 

plateloaded bilateral 45º leg press machine (Paramount Fitness Corp., Los Angeles, CA, USA).
3
 

In addition to the weight training program, those chosen for the experimental stretching group 

came in on two additional days per week when they did not complete resistance training and 

participated in a 30 minute stretching program. Stretches were included that were specific to the 

hamstrings, quadriceps, adductors, abductors, external and internal rotators, plantar flexors, and 

dorsiflexors. After eight weeks of training, the subjects completed a post-test. Strength gains 

were seen in both groups for all three 1RM tests. However, 1RM for knee extension in the 

weight training and stretching group (781 ± 238 N) was significantly greater than the weight 

training group (733 ± 247 N). This significant difference was also seen in the 1RM leg press 
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(1190 ± 389 N, 1052 ± 478N). Kokkonen et al.
3
 concluded that strength gains in early-phase 

novice lifters can be enhanced by adding a stretching program to a weight training program. 

 Dintiman
30

 examined the effects of several different combinations of flexibility, sprint, 

and weight training programs on ROM, leg strength, and running speed. This experiment 

consisted of 145 subjects divided into five groups: Experimental Group A (sprint training and 

flexibility training program), Experimental Group B (sprint training and weight training), 

Experimental Group C (sprint training, flexibility training and weight training program), Control 

Group I (sprint training), and Control Group II (inactive). Each subject ran the 50yd-dash for 

time, recorded leg strength using a dynamometer, and had several flexibility measurements 

taken.  The appropriate stretching, strength, and sprint training programs were added to each 

group for a total of eight weeks; after eight weeks several post-tests were performed. Strength 

gains in all the groups were found (Group A = 28.20 lb, Group B= 137.30 lb, Group C= 154.50 

lb, Control I= 35.20 lb) compared to the inactive group (Control II= 6.40 lb). The group with all 

three programs (stretching, strength, and sprint) had the largest increase in leg strength. This 

information is important to note for athletes with no restrictions. According to this study, the best 

approach to improve leg strength in sprinters is to add all three of these aspects to their programs. 

Although strength gains in the sprint training and stretching group were not greater than the 

experimental groups and Control Group I, strength gains were much greater in Group A than the 

Control Group II. That being said, there was an increase in performance when stretching alone 

was the intervention compared to the inactive group. Also, as previously stated, the Experimental 

Group A had a larger improvement (0.42s) than the Control Group I (0.33s) and Control Group 

II (0.06s) on sprint speed. Groups involving stretch training (Experimental Groups A and C) had 
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a significantly great increase in ROM in trunk flexion and extension, shoulder flexibility, and 

ankle flexibility than the other groups. 

 Finally, unlike other research results,
3,30

 Wilson et al.
31

 composed a study involving 

stretching and strength in the upper extremity. Sixteen male powerlifting subjects were used for 

an eight-week period to measure muscle stiffness and rebound and purely concentric bench press 

performance. All subjects participated in a pre-test for flexibility, series elastic component 

stiffness, rebound bench press, and purely concentric bench press performance. The subjects 

were split into two groups: a control group and an experimental group. Both groups participated 

in an eight-week training program, but twice a week the experimental group also performed 

several stretches such as the chest stretch, or a pole stretch that lasted a total of 10 to 15 minutes 

each session. After eight weeks, a post-test was performed and data were compiled. There was a 

significant difference in musculotendinous stiffness between pre- and post-tests in the 

experimental group at 70% (pre= 18,271 ± 4,090 N·m
-1

, post 16,038 ± 3,603 N·m
-1

) and in the 

maximal load condition (pre= 18,271 ±3,535 N·m
-1

, post= 16,965 ±3,129 N·m-
1
). Although 

average resultant velocity produced was not stated to be significant, an increase in rebound 

bench press has been shown an improvement from pre (0.288 ± 0.04 m·s
-1

) to post (0.264 ± 0.05 

m·s
-1

) compared to the control group pre (0.218 ± 0.05 m·s
-1

) and post (0.218 ±0.06 m·s
-1

) data.  

Knowing that an increase in performance can be seen when stretching is added to other 

programs, it is important to look at stretching without a resistance program to see if it has the 

same effect on strength.  

Chronic Stretching Effect With Limited Activity 

 Many healthy subjects do not need to depend on stretching to increase strength when 

resistance training is adequate. For some, however, resistance training may not be an option. The 
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elderly, injured, or post-operative patients may not be able to physically participate in resistance 

training and may need a low-intensity component like stretching to develop strength. The 

evidence disparity between stretching in combination with strength training or stretching alone 

has resulted in several authors looking at the effects that stretching alone has on strength.
32-34

 

Kokkonen et al.
32

 gathered 38 subjects and split them up into various groups: stretching group 

and no stretch group (11 females and 8 males in each group). Although physical activity was not 

strictly limited, subjects could not participate if they were physically active more than 60 min/d 

for three times per week. All subjects performed several pre-tests for strength, strength 

endurance, 20-m sprint, vertical jump, and standing long jump; the pre-test data were collected 

over a course of three days. The stretching group participated in a 10-week stretching program 

that lasted 40 min and was performed three times per week. There were a total of 15 exercises 

that focused on the lower body. After the 10-week period was over a post-test was completed.  

 The post-test results presented a significant improvement over the pre-test score in the 

stretching group  for sit and reach, standing long jump, vertical jump, 20-m sprint, knee flexion 

and extension 1RM, and knee flexion and extension endurance. There were no significant 

differences in the control group for any variables. Differences in strength between and within 

groups were observed. Within the stretching group, an increase in 1RM for knee flexion by 

15.3% (51.0 ± 14.1kg/44.7 ± 14.5kg) and extension by 32.4% (82.0 ± 25.8 kg/ 63.8 ± 25.8 kg) 

was observed. Within the control group, knee flexion increased 3.3% (47.0 ± 14.4 kg/46.1 ± 15.1 

kg) and knee extension increased 2.8% (71.0 ± 20.8 kg/ 69.7 ± 21.5kg). The difference between 

the stretching group and control group for knee flexion (CI of 95% = 12.4 ± 5.8%) increased as 

well as knee extension (CI of 95% = 29.6 ± 13.2%).
32 
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 Large increases in endurance were also noted in this study. Within the stretching group, 

an increase in knee flexion endurance by 30.4% (22.3 ± 4.7kg/17.2 ± 3.4kg) and extension by 

28.5 % (23.7 ± 4.7 kg/ 18.5 ± 3.1 kg) were observed. Within the control group, knee flexion 

endurance changed -0.9% (19.3 ± 4.4kg/19.5 ± 4.1kg), and knee extension endurance changed     

-0.1% (16.6 ± 3.6 kg/ 18.6 ± 2.7 kg). Increases in strength and endurance for knee extension and 

flexion were increased drastically over 10 weeks of stretching.
32 

 Handel et al.
33

 also investigated stretching with a focus on the effects on maximum 

torque. Testing took place prior to the stretching program, at four weeks, and at the end of the 

eight-week program. The stretching program consisted of contract-relax stretches for a total 

duration of 10 min. An isokinetic dynamometer was used to measure torque. A remarkable 

21.6% increase was seen in torque under the eccentric load with both knee extensor and flexor 

groups. Eccentric load increased 12.9% more than the concentric load. 

 In another study
34

 that looked at the best way to improve hamstring flexibility through 

stretching, isokinetic peak torque was evaluated after the increase of hamstring flexibility. 

Nineteen subjects stretched one leg using static stretching, and the other using PNF stretching 

five days a week for three weeks. Greater ROM gains were seen in PNF stretching (9.5º) than 

static stretching (8.0º). Isokinetic measures increased significantly at 60º/s and 120º/s 

eccentrically and at 120º/s concentrically. This indicates that there is a striking increase in 

isokinetic torque eccentrically and concentrically after PNF and static stretching of the 

hamstrings. 

 There have been two studies that have not found significant improvement in muscle 

performance by using a long-term stretching program.
35,36

 Bazett-Jones et al.
35

 used 21 subjects 

in a six-week static stretching program. Pre-tests consisted of bilateral knee ROM, 55-m sprint 
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time, and vertical jump; these tests were conducted again at three weeks and at at six weeks. The 

stretching protocol consisted of four repetitions of static hamstring stretching on each leg for 45s. 

No significant differences were found in any of the four variables. The authors suggest that the 

performance improvements were not found due to the fact that ROM was not increased. 

Secondly, LaRoche et al.
36

 observed the effects of four weeks of static or ballistic 

stretching on 29 males on hip extension. Pre and post measurements were taken on peak torque, 

rate of torque development, work, and peak torque angle. Subjects were divided into three 

groups including a ballistic group, static group, and control group. Both of the stretching groups 

participated in ballistic or static stretches for three days per week for four weeks, equaling a time 

of ten minutes per session. If there was an increase in strength due to stretching, both stretching 

groups would be significantly different than the control group; however, this was not the case. 

Peak torque increased in the static group (5.4 ± 19.0%), ballistic group (7.8 ± 12.7%), and 

control group (6.1 ± 17.9%). Rate of torque development increased in the static group (4.8 ± 

22.7%), ballistic group (3.6 ± 28.0%), and control group (9.7 ± 24.0%). Also, work increased in 

the static group (3.9 ± 7.0%), ballistic group (14.7 ± 27.4%), and control group (9.7 ± 9.5%). 

Although there was not a significant difference, increases were seen within each group. More 

importantly, a decrease in strength was not seen in these groups which means stretching could 

possibly maintain strength. This study also did ballistic stretching which is not suggested. The 

population that has been looked at in each of these articles on stretching and strength varies 

across gender, age, and physical capabilities relating to several people. These gains in strength 

may be due to physiological changes in the muscle that are supported by the basic science 

evidence on stretch-induced hypertrophy.
2 
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Stretching Theories Examined in Animal Studies 

Stretch Induced Muscle Hypertrophy.  In terms of research, several animal studies 

have investigated stretch-induced hypertrophy.
4,6,27,37-42

 Goldspink
6
  looked at the role of passive 

stretching in slowing muscle atrophy. More specifically, Goldspink looked at protein synthesis 

being one of the main contributors to stretch induced hypertrophy. The combination of stretching 

and electrically stimulating muscles was examined for muscle protein synthesis. Muscle protein 

synthesis was seen to have about a 7% increase per day with stretching alone and a 9% increase 

per day with stretching and electrical stimulation. 

In another study by Goldspink,
27

 the authors used young growing male rats and 

immobilized one leg flexed (soleus lengthened and extensor digitorum longus shortened) or 

extended (soleus shortened and extensor digitorum longus lengthened) and used the other leg as 

a control. Goldspink
27

 then measured protein synthesis. Each rat was in the casting for six hours, 

24 hours, or seven days. A significant increase in atrophy is noted after immobilizing a muscle in 

a shortened position. While immobilized in a lengthened position, there is a stimulation of 

protein synthesis and an induced growth of muscle. The rapid growth in the rat soleus muscle 

was due to increased rates of protein synthesis which induced the growth of muscles held in the 

lengthened position. In order to guarantee protein synthesis, the muscle needs to have a prime 

loading force against the muscle.
37

 When this tension is produced, an increase in protein 

synthesis promotes hypertrophy.  

 Leterme et al.
38

 also did a similar study on immobilization of the soleus in a lengthened 

position during non-weight bearing (NWB) activity. Male Wistar rats were divided into three 

groups. The control group was weight bearing while the other two groups were NWB. Of the two 

NWB groups, one group was strictly NWB while the other was NWB with the hind legs 
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immobilized into dorsiflexion for the entire study (14 days). The NWB immobilized stretching 

group not only prevented the loss of force output but also prevented the loss of muscle mass. The 

NWB and stretching group increased muscle wet weight/body weight by 5% (0.44 ± 0.04mg/g) 

compared to the control group (0.42 ± 0.01mg/g), which the NWB group had a significant 

change of -26% (0.31 ±0.02mg/g) less than the control group. Stretching not only maintained the 

muscle wet weight/body weight ratio but also had an increase. This difference could be due to 

the additional sarcomeres that are added to both ends of the muscle after long-term periods of 

stretching are induced. When the numbers of sarcomeres are increased, the muscles ability to 

produce more force increases, thereby increasing strength.  

It is known that atrophy is the physiological, biochemical, and histochemical change 

towards faster-twitch muscle fibers having decreases in strength.
38

 According to Leterme et al.
38

, 

when the soleus was placed under a stretch during NWB activity, there was a greater percentage 

of Type I muscle fibers activity (86.7 ± 2.3) than NWB mice that were not placed under a stretch 

(73.4 ± 2.0). It was also shown to have a decrease in Type IIA muscle fibers from the NWB and 

stretch induced group (7.5 ± 2.1%) to the NWB group (23.7 ± 2.1%). Repression of the fast-

twitch muscle fibers was seen as well as the slow-twitch muscle fibers being activated during 

extensive stretching. When comparing type I to type IIA-IIX, the NWB and stretching group 

(93.7 ±2.0%) and control group (92.7 ±2.4%) were most similar in type I muscle fibers versus 

the NWB group (78.9 ± 2.2%). Stretching had shown to decrease the change of different fiber 

types, thereby hindering atrophy. Therefore, if there are no gains in strength, there could be 

maintenance of strength and muscle size through NWB activity when stretching is implemented. 

If immobilization in a stretched position for an extended period of time maintains muscle types 
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in turn maintaining strength in rats, stretching for multiple long periods of time could possibly 

have the same effect on humans. 

Immobilization in a stretched position has had similar effects when stretching is 

implemented for several times throughout time. Coutinho et al.
39

 looked at the effects of 

stretching for 40 minutes every three days for a three-week period on muscle weight, length, 

serial sarcomere number, and fiber area. Eighteen Wistar rats were placed in three different 

groups: A) left soleus immobilized in shortened position, B) same as group A, with the addition 

of a 40-minute stretch, and C) the non-immobilized soleus was only stretched. Group C, the non-

immobilized stretching group, had an increase in length (5±2%), serial sarcomere number 

(4±4%), and fiber area (16±44%) when comparing the left stretched soleus to the non-stretched 

soleus. The immobilized group A had a decrease in weight (44±6%), length (19±7%), serial 

sarcomere number (23±15%), and fiber area (37±31%). The immobilized stretching group B also 

had a reduction but had milder muscle fiber atrophy compared to group A with 22±40% fiber 

area reduction compared to 37±31%. The stretching group had a decrease in atrophy compared 

to the non-stretching immobilized group  

 A separate study was done on four chicken wing muscles that experienced stretching for 

5 weeks but were not immobilized.
4
 The two muscles mainly focused on were the anterior 

latissimus dorsi and the patagialis. Weight of the anterior latissimus dorsi increased 81% from 

the control (0.170 ± 0.014g) to the experimental group (0.309 ± 0.015g). This was the same for 

the patagialis with an increase of 63% from control (0.159 ± 0.006g) to experimental (0.260 ± 

0.007g) groups. Length of the anterior latissimus dorsi increased 24% from the control (2.5 ± 

0.0cm) to the experimental group (3.1 ± 0.1cm). This was the same for the patagialis with an 

increase of 22% from control (2.7 ± 0.1cm) to experimental (3.3 ± 0.1cm) groups. Length 
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changes were virtually fulfilled at one week.  Cross-sectional muscle growth was fulfilled at five 

weeks. Muscle cross-sectional area of the anterior latissimus dorsi increased 54% from the 

control (4.77 ± 0.42mm
2
) to the experimental group (7.37 ± 0.56mm

2
). This was the same for the 

patagialis with an increase of 49% from control (7.22 ± 0.48mm
2
) to experimental (10.77 ± 

0.60mm
2
) groups. Mitochondrial enzyme proportions were unchanged in the anterior latissimus 

dorsi but were altered in the stretched patagialis. Stretching of chicken wings resulted in muscle 

growth. 

 Besides possible structural changes to the muscle during stretch induced muscle 

hypertrophy, there are cellular effects of stretch induced muscle hypertrophy. As previously 

stated, neutrophils are one of the first cells to appear in the inflammatory process. These cells 

have been known to appear at the first sign of injury and weaken muscle degeneration. 

Additionally, neutrophils have also been known to aide in muscle regeneration. Neutrophils can 

be helpful during phagocytosis by eliminating debris and stimulating satellite cells to the area.
4
 If 

these proteins can be seen after stretching, the inflammatory process is taking place and with 

inflammation comes hypertrophy. Pizza et al.
40

 studied the effects of stretching and isometric 

contractions on neutrophil involvement. Seventy-one male mice were split into four groups: 

control, passive stretching, isometric contractions, and lengthening contractions. All four groups 

had the same surgical procedure and the three groups were compared to the control group to rule 

out the fact that increase in neutrophils could be due to the procedure and not the treatment. The 

control group had shown no increase in neutrophils. All three groups saw an increase in 

neutrophil concentrations and macrophage concentrations most significantly after three days of a 

stretching program. This means that neutrophils, a main component of inflammation, are seen in 

the area being stretched after long periods of stretching. 
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Other authors have looked at hormonal changes in the body during hypertrophy. More 

specifically, insulin-like growth hormone I (IGH-I) has been looked at after chronic bouts of 

stretching. Yang et al.
41

 looked at the effect of six days of immobilization in a stretched position. 

One leg of several rabbits immobilized the tibialis anterior and extensor digitorum longus in an 

elongated position while the soleus was immobilized in a shortened position. The opposite leg of 

each of the rabbits was use as the control group. Changes in muscle mass between groups were 

significant (P < 0.01). The extensor digitorum longus increased 19.3% (2.5 ± 0.04g vs 3.0 ± 

0.1g) as well as the tibialis anterior with a 33% increase (2.4 ± 0.04g vs 3.2 ± 0.2 g). 

Additionally, a decrease in muscle mass of 33% (2.2 ± 0.1 g vs 1.4 ± 0.1 g) was observed after 

six days of no use of the soleus. The muscle that was not used but was casted had a major 

decrease in muscle mass, while muscles that were stretched had an increase in muscle mass. 

IGF-I measurements were gathered using situ hybridization sections. Specific data were not 

given for the IGF-1 mRNA level, but essentially the soleus was unchanged while the tibialis 

anterior increased five times greater than the unstretched leg (p < 0.001). After six days of 

immobilization in a stretched position, an increase in IGF-1 was seen, as well as an increase in 

muscle mass. After reviewing several other articles, Goldspink
6
 examined IGF-1 and concluded 

that IGF-1 is the main growth factor that is contributed to the repair and remodeling of tissue in 

several muscle types. Because this hormone is seen after long-term stretching, hypertrophy could 

be taking place.  

Rather than focusing on one cause of stretch induced muscle hypertrophy, Sasai et al.
42

 

combined several theories of stretch induced hypertrophy. Cell cultures of 13-day-old chicken 

embryos were used to analyze muscle growth. A stretch of 1/6 Hz was induced in the 

longitudinal axis for a period of 72 hours. An increase in diameter of 30 ± 1.91µm (micrometer) 
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after being stretched was significantly greater compared to the static culture with a diameter of 

20 ± 0.66 µm (P < 0.01). The involvement of PI3K/Akt/TOR pathway was also analyzed in 

stretch induced myotube hypertrophy. As IGF-1 stimulation decreased diameter, it was noted 

that PI3K/Akt/TOR pathway could play an important role in stretch induced hypertrophy. This 

pathway plays an important role due to its ability to accelerate protein synthesis as well as 

prevent protein degradation. For this reason, IGF-1 is important in activating the PI3K/Akt/TOR 

ultimately inducing hypertrophy in stretched muscles.  

Increase Muscle Length Theory.  The main goal of stretching has been believed to 

decrease musculotendinous stiffness which in turn increases joint ROM.  However, several 

authors believe decreasing musculotendinous stiffness will increase strength as well. Some 

authors
43

 have found a decrease in musculotendinous stiffness to be the main factor of stretch 

induced muscle hypertrophy. Others believe an increase in strength is due to an increase in 

ROM, as well as a decrease in musculotendinous stiffness.
15

 Guissard et al.
44

 looked at neural 

and mechanical limits to ROM. Twelve subjects participated in 30 sessions of static stretching of 

the plantar-flexor muscle. Passive stiffness was analyzed five separate times: before (1.13 ± 0.04 

Nm/º), 10 sessions (0.96 ± 0.05 Nm/º), 20 sessions (0.89 ± 0.04 Nm/º), 30 sessions (0.76 ± 0.04 

Nm/º), and retention (0.84 ± 0.04 Nm/º). A significant decrease was seen at 10 sessions and 

within the last three groups (P < 0.001). Passive stiffness not only decreased after 10 days of 

stretching but also continued to decrease during treatment and after treatment by 33%. Maximum 

voluntary contraction was also noted to improve although this was not seen to be significant. 

Data are as follows: before (93.7 ± 5.7 Nm), 10 sessions (94.5 ± 6.6 Nm/º), 20 sessions (96.4 ± 

5.9 Nm/º), 30 sessions (98.8 ± 8.4 Nm/º), and retention (99.3 ± 4.8 Nm/º). Maximal voluntary 

contraction of the plantar flexor muscles increased with time when a stretch was implemented. 
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The authors also concluded that an increase in ROM resulted in an increase in torque. As 

previously stated, increasing ROM could result in optimal muscle use. If the actin and myosin 

filaments can be fully used through the entire ROM, an increase in force produced will be seen. 

This increase in force production could in turn increase muscular strength. As of now, it is 

difficult to note if strength changes in humans are due to change in length or tension instead of a 

physiological change in muscle size. 

Summary 

 Arguably, the easiest and safest method for stretching is static stretching. More 

specifically, constant–torque stretching is the most effective form of static stretching. Stretching 

should be held for 30 seconds to get the greatest gain in ROM. Acute effects of stretching, such 

as decrease muscle strength, have been found; however, the chronic effects of stretching have 

been shown to increase strength when added to a resistance training program. Chronic stretching 

alone has increased muscle strength in humans. Stretching during immobilization in animals has 

shown an increase in strength but has yet to be studied in humans. Based on current data, there 

could be several different factors that could explain the gains in strength through chronic 

stretching. 
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CHAPTER III. METHODS 

Experimental Design 

 A 2 x 3 factorial pretest-posttest randomized control trial with a repeated measures design 

was used to examine the effects of two weeks of immobilization on the calf muscles strength, 

size, and dorsiflexion ROM after a chronic static stretching program was implemented. The 

independent variables are time (pre and post) and group (control, experimental, and experimental 

stretching).  The control group (CG) completed the pre and post testing sessions.  The 

experimental group (EG) completed a pre- and post-test and wore the immobilization boot called 

the Walker (Aircast FP Walker, DJO Inc., Vista, CA) for two weeks. The experimental 

stretching group (ESG) participated in the pre- and post-test, wore the Walker for two weeks, 

and participated in a stretching program twice daily. A total of 24 Walkers were donated by Don 

Joy. The dependent variables are calf strength, calf girth, and dorsiflexion ROM. Strength was 

measured by using the Cybex II Isokinetic Dynamometer (Cybex, Division of Lumex Inc., 

Ronkonkoma, NY) and muscle size was determined by using the Lufkin tape measure with a 

Gulick spring-loaded handle attachment (Lafayette Instruments, Laffayette, IN). 

Subjects  

Thirty-six female subjects enrolled at North Dakota State University participated in this 

study (C: n=12, EG: n=12, ESG: n=12). Subjects were excluded if they had a history of lower 

leg injuries or if they had lower extremity surgery in the past year. This study was approved by 

the North Dakota State University Institutional Review Board (Appendix A) and all subjects 

gave informed consent prior to participating in this study (Appendix B). 
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Procedures 

 Subjects were recruited through an email as seen in Appendix C. Subjects received 

compensation to participate in this study as shown in Table 1.  

Table 1. Payments per Subject 

Group Control Experimental Stretching 

Pre $5.00 $5.00 $5.00 

During $0.00 $35.00 $35.00 

Post $5.00 $5.00 $5.00 

Total $10.00 $45.00 $45.00 

Total Amount $1, 200.00   

 

The study began by asking subjects to participate in a familiarization test. During this 

familiarization test, subjects practiced using the Cybex II Isokinetic Dynamometer. Additionally, 

each subject was informed regarding which group they were randomly selected to be in, C, EG, 

or ESG. For the pre-test, subjects warmed-up on the Monark 817 Stationary Exercise Bike for 

five minutes. Then, subjects performed measurement variables on both legs that include 

dorsiflexion ROM, calf girth, and calf strength. Dorsiflexion ROM was measured bilaterally 

while the subject was lying prone using a goniometer. Each subject started with their ankle in 

neutral then was asked to flex into complete dorsiflexion. Dorsiflexion ROM procedures 

followed that of the Starkey et al.
45

 book with the patient lying prone. However, the patient had 

the knee fully extended instead of flexed at 90°.
45 

Dorsiflexion ROM  was measured three 

separate times and averaged. The procedure for girth measurements was the same as Ross et al.
26

 

Girth was measured at the thickest part of each calf. This area was marked with a pen and 

measured from the distal aspect of the lateral malleolus to have the same distance for the post-

test. Finally, the Cybex II Isokinetic Dynamometer test was done for both ankles. All of the data 

was recorded on a data sheet (Appendix D). Data recorded for the entire left leg can be seen in 

Appendix E. 
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Following the pre-test, subjects in EG and ESG were fitted for the Walker on the left leg. 

The subjects were instructed to start wearing the Walker on day one of the experiment 

immediately upon waking the next morning. The subjects were allowed to remove the Walker 

when showering or when sleeping. They were given a log for self-recording of each time the 

subject’s took the Walker off (Appendix F). The EG was instructed to return on two separate 

occasions over the course of the experiment to be seen by one of the researchers. The schedule 

for EG and ESG is shown in Table 2. 

Table 2. Schedule 

Familiarization 

Test/ Pre-Test 

Familiarization with Cybex II Isokinetic Dynamometer  

Pre-test 

1. Record Demographics 

2. Warm-up on Bike 

3. Girth Measurements 

4. Dorsiflexion ROM with Goniometer 

5. Cybex II 

Fit left leg to Walker and receive Log 

Week 

One/Two: ESG 

Day 1: Start wearing Walker in the morning 

Day 1-3, 7-10, 13-14: 

1. Stretch with researcher 

2. Stretch on your own 

Day 4-6, 11-12: 

1. Stretch on your own twice per day 

Week 

One/Two: EG 

Day 1: Start wearing Walker in the morning 

Day 3 and 10: 

1. Meet with researcher 

Day 15 (All 

groups): 

Post test 

1. Turn-in Walker and Log 

2. Warm-up on Bike 

3. Girth Measurements 

4. Dorsiflexion ROM with Goniometer 

5. Cybex II 

Pay Subjects 

 

When the EG and ESG returned to meet with the researcher, the researcher ensured that 

the Walker was being properly and safely worn at all times. The researcher also answered any 

questions and examined the physical appearance of the ankle to ensure safety throughout the 
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experiment. The ESG was also required to return during the weekdays to participate in a ten-

minute stretching program of the immobilized leg. They were required to stretch for a total of 20 

minutes a day (10 minutes with the researcher and 10 on their own). 

The stretching program (see Table 3.) consisted of 30s periods of stretching on a pro-

stretch (Prostretch original and wood, Medi-Dyne Health Care Productions, Colleyville, TX), 

which is a small manual therapy device used to assist with muscle stretching of the lower leg, 

with the knee bent at approximately 30º of knee flexion (followed by 30s of rest). The subjects 

stretched for 30s with a straight leg followed by another 30s of rest.  This two-minute cycle of 

stretch (straight-leg)—relax—stretch (bent leg)—relax was repeated five times for a total time of 

10 min. All stretching was done on the immobilized ankle. 

 

 

 

 

 

 

 

 

The subjects were advised to stretch until discomfort was felt. At no time were the 

subjects asked to stretch to or beyond a level of pain. Throughout the remaining cycles of the 

stretching routine, subjects were encouraged to stretch their lower leg muscle group to a 

maximum tension without experiencing pain. No warm up was done prior to stretching. 

Table 3. Stretching Protocol  

Stretch Stretch Time Rest Time Cumulative 

Straight Leg 0:30 0:30 1:00 

Bent Knee 0:30 0:30 2:00 

Straight Leg 0:30 0:30 3:00 

Bent Knee 0:30 0:30 4:00 

Straight Leg 0:30 0:30 5:00 

Bent Knee 0:30 0:30 6:00 

Straight Leg 0:30 0:30 7:00 

Bent Knee 0:30 0:30 8:00 

Straight Leg 0:30 0:30 9:00 

Bent Knee 0:30 0:30 10:00 
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A separate home-stretching program was given to the ESG to take home and complete 

every day. This stretching protocol was the same stretching routines that include wall stretching 

exercises (compared to using the pro-stretch) with a bent knee and straight leg for the same 

period as described previously. The ESG was told to stretch twice daily for two weeks, whether 

they are performing the stretching program with the researchers in the lab or performing the 

home-stretching program exercises.  

Following two weeks of immobilization, each subject returned to the original 

familiarization location to participate in the post-tests. First, the subjects warmed up on the 

Monark 817 Stationary Exercise Bike for five minutes. Then, girth measurements were obtained 

and dorsiflexion ROM was measured bilaterally. Finally, the Cybex II Isokinetic Dynamometer 

test was administered. Identical testing procedures were used for both the pre- and post-tests. 

Following the post-test, each subject handed in their respective completed written logs and 

returned the Walker. Upon completion of the pre- and post-testing procedures, subjects were 

compensated for their services and were given a take home rehab program to regain muscle 

strength and obtain normal function (Appendix G). Subjects were debriefed and offered the 

opportunity to see the results of the study once the data was analyzed. 

Instrumentation  

The Cybex II Isokinetic Dynamometer was used to determine peak torque. To normalize 

this data, percent body weight (%BW) was used. The Cybex II Isokinetic Dynamometer was 

calibrated prior to testing. The ankle was tested as described in the Cybex II Isokinetic 

Dynamometer manual.
46

 Special attention was given to the proper placement of the joint to the 

axis.  The speed was set at 30º/s for each subject. Verbal cues were given to motivate the 

subjects for maximum effort. 
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Statistical Analysis 

An analysis of covariance (ANCOVA) was used to examine differences among groups 

with the covariant being pre-test scores. Post hoc analysis involved the use of least significant 

difference (LSD) post hoc t-test. The level of significance was set at p<0.05. The statistics are 

shown in Appendix H. The intraclass correlation coefficient for the pre-post left leg calf girth, 

calf strength, and dorsiflexion ROM were .992, .803, and .812 respectively. Statistical Analysis 

Software (SAS) was used for statistical analysis. 
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Abstract 

Title: Chronic stretching during two weeks of immobilization decreases loss of girth, 

strength, and Dorsiflexion ROM  

Context: Chronic stretching is proposed to improve muscle performance. During 

immobilization, there is an extensive loss in muscle strength, muscle size, and joint ROM. 

Chronic static stretching may maintain muscle strength, muscle size, and dorsiflexion ROM 

during immobilization.  

Objective: To investigate the effects of chronic static stretching on plantarflexor 

strength, calf girth, and dorsiflexion ROM after two weeks of immobilization.  

Design: Randomized controlled clinical trial.  

Setting: Athletic training room.  

Patients or Other Participants: Thirty-six female college aged (19.81±2.48) students.  

Interventions: Participants were randomly placed into one of three groups; control group 

(CG), experimental group (EG), and experimental stretching group (ESG). Each group 

participated in a familiarization period, a pre-test, and, two weeks later, a post-test. The EG and 

ESG wore the Walker for two weeks on the left leg. During this time, the ESG participated in a 

stretching program, which consisted of two 10-minute stretching procedures each day for the 14 

days.  

Main Outcome Measures: Three ANCOVA’s were used to determine differences in 

girth, strength, and dorsiflexion ROM between groups with an α level of < 0.05.  

Results: A significant linear relationship between pre and post-test were found with girth 

(F1,31=1158.3, p<0.0001), dorsiflexion ROM (F1,31=89.02, p<0.0001), and strength (F1,31=42.10, 

p<0.0001). Significant differences were found between groups for post-test measures of girth 
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(F2,31=6.50, p=0.0048), dorsiflexion ROM (F2,31=29.06, p<0.0001), and strength (F2,31=6.74, 

p=0.0041). Post hoc analysis showed that CG ultimately maintained girth, dorsiflexion ROM, 

and strength. Post hoc testing also showed that the EG lost more girth than the ESG,  the EG 

decreased dorsiflexion ROM and the ESG increased in dorsiflexion ROM, and the EG decreased 

strength and the ESG increased in strength.  

Conclusion: Chronic static stretching during two weeks of immobilization can decrease 

the loss of calf girth, calf strength, and dorsiflexion in the ankle.  

Keywords: chronic stretching, immobilization 

Introduction 

Throughout the years, acute static stretching has been shown to decrease muscle 

performance.
1
 However, chronic stretching has been shown to improve performances such as 

1RM
2
, flexibility, gait economy

3
, running speed

4
, peak torque

5
, and vertical jump

6
. Impressively, 

stretching has been shown to increase muscle strength and endurance over time when physical 

activity is limited.
7
  In an article by Kokkonen et al.

7
, 10 weeks of chronic stretching with limited 

activity resulted in an increase in 1RM  knee flexion by 15.3%, 1RM extension by 32.4%, knee 

flexion endurance by 30.4%, and knee extension endurance by 28.5%. The researchers could 

only find two published studies that have not found significant increase in performance when 

stretching is implemented.
8-9

  

Stretch induced hypertrophy has been found in several animal research studies with long 

periods of static stretching resulting in stretch induced hypertrophy in animals.
10

 Stretch induced 

hypertrophy is the promotion of tissue growth due to stretching. This promotion of tissue growth 

can be due to several aspects that result in hypertrophy including cellular, hormonal, or structural 

changes. Goldspink
11

 found muscle protein synthesis was seen to have about 7% increase per 
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day when stretching was induced. Goldspink
12

 also found that immobilizing a rat’s hind legs in 

the muscles shortened position lead to a significant increase in atrophy, while immobilizing a 

rat’s hind leg in the muscles lengthened position stimulated protein synthesis and induced growth 

of the muscle. Furthermore, Leterme et al.
13

 immobilized rat hind legs during non-weight bearing 

activity and found additional sarcomeres added to both ends of the muscles. Pizza et al.
14

 found 

an increase in neutrophil and macrophage concentrations after three days of stretching rats. Holly 

et al.
10

 found muscle longitudinal and cross sectional area growth of chicken wings after 

stretching. Lastly, Coutinho et al.
15

 immobilized rat hind legs and then had some participate in 40 

minutes of stretching daily mimicking something that could be done on humans. Slightly more 

muscle atrophy was found in the immobilized group compared to the immobilized stretching 

group. Much of the research performed on animals have had evidence of hypertrophic effects, 

however, we do not know the effect chronic static stretching has on immobilized human muscle. 

The lack of human research on chronic stretching during immobilization makes it difficult to be 

confident in the usefulness of stretching to increase or maintain muscle performance during 

immobilization. 

Therefore, the purpose of our study was to investigate calf girth, dorsiflexion ROM, and 

calf strength when chronic static stretching was implemented during two weeks of 

immobilization. We hypothesize that the loss of strength, girth, and motion would be substantial 

in the EG but will be minor in the ESG. 

Methods 

Participants. Thirty-six subjects participated in this study. Four subjects were removed 

from this study because they were suspected of not completing the protocol. The control group 

(CG) consisted of 12 women (age= 21.58 ± 3.29 years, height= 162.98 ± 4.94 cm, and mass= 
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64.11 ± 8.67 kg), the experimental group (EG) consisted of 10 women (age= 18.70 ± 0.82 years, 

height=  165.10 ± 5.49 cm, and mass= 62.73 ± 5.57 kg), and the experimental stretching group 

(ESG) consisted of 10 women (age= 18.80 ± 0.79 years, height= 164.59 ± 6.75 cm, and mass= 

67.59 ± 18.81 kg). Subjects were excluded if they had a history of lower leg injuries or if they 

had lower extremity surgery in the past year. This study was approved by the Institutional 

Review Board and all subjects gave informed consent prior to participating in this study. 

Procedures. One researcher completed all of the testing. For the first day, all subjects 

completed a familiarization test with the Cybex II Isokinetic Dynamometer (Cybex, Division of 

Lumex Inc., Ronkonkoma, NY). Then, for the pre-test, subjects warmed-up on a Monark 817 

Stationary Exercise Bike for five minutes prior to collecting measurement variables that include 

dorsiflexion ROM, calf girth, and calf strength. Dorsiflexion ROM was measured with a 

goniometer with the patients lying prone as described in Starkey et al.
16

 This measure was taken 

three times with the average being used for the data analysis.  The procedure for girth 

measurements followed the same procedure described in Ross et al.
17

 Girth was measured by 

using the Lufkin tape measure with a Gulick spring-loaded handle attachment (Lafayette 

Instruments, Laffayette, IN). Finally, the Cybex II Isokinetic Dynamometer was used to measure 

peak torque at a rate of 30°/s. Procedures for the Cybex II Isokinetic Dynamometer testing 

followed the Cybex II Instruction Manual.
18

 

Following the pre-test, subjects in EG and ESG were fitted for the Walker (Aircast FP 

Walker, DJO Inc, Vista, CA) on the left leg. The subjects were instructed to start wearing the 

Walker on day one of the experiment immediately upon waking the next morning. The subjects 

were allowed to remove the Walker when showering or when sleeping and were required to fill 

out a log for the amount of time the Walker was off and the reason why the Walker was off. The 
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EG was instructed to return on two separate occasions over the course of the experiment to be 

seen by a researcher to ensure the Walker was being worn and to examine any complaints. The 

ESG, however, saw the researcher on nine separate days to ensure the stretching program was 

completed and performed correctly. When the subjects were stretching with the researcher, the 

pro-stretch (Prostretch original and wood, Medi-Dyne Health Care Productions, Colleyville, TX) 

was used, however, when the subjects were stretching at home they used the wall stretch. The 

stretching program is shown in Table 1.  

Following two weeks of immobilization, the post-tests were completed. Identical testing 

procedures were used for both the pre-tests and post-tests. Following the post-test, each subject 

handed in their respective completed written logs. All subjects recorded in their logs that they 

stretched every day twice a day. The subjects in the EG averaged 34.22 ± 12.50 min a day with 

the Walker off while the ESG had an average of 25.91 ± 16.49 min off. Means of girth, 

dorsiflexion, and strength are reported in Table 2.  

Statistical Analysis. An analysis of covariance (ANCOVA) was used to examine 

differences among groups. The covariant was the pre-test scores. Post hoc analysis involved the 

use of least significant difference (LSD) post hoc t-test. The level of significance was set at 

p<0.05. The intraclass correlation coefficient for the pre-post left leg calf girth, calf strength, and 

dorsiflexion ROM were .992, .803, and .812 respectively. Statistical Analysis Software (SAS) 

was used for statistical analysis.  

Results 

Girth. There was a significant linear relationship between pre-test and post-test girth 

scores (F1,31 =1158.3, p<0.0001), indicating there is a linear relationship between the two testing 

times. Furthermore, there was a significant difference of the post girth measure between the three 
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groups (F 2,31=6.50, p=0.0048). Post hoc analysis using LSD (least significant 

difference=0.4132) and showed that the significance could be attributed to the CG maintaining 

girth and the EG losing more girth than the ESG (Figure 1.). 

Range of Motion. There was a significant linear relationship between pre-test and post-

test range of motion scores (F1,31 =89.02, p<0.0001), indicating there is a linear relationship 

between the two testing times. Furthermore, there was a significant difference of the post 

dorsiflexion ROM measure between the three groups (F 2,31=29.06, p<0.0001). Post hoc analysis 

used LSD (least significant difference=2.0316) and showed that the significance could be 

attributed to the CG maintaining dorsiflexion ROM, the EG decreasing in dorsiflexion ROM and 

the ESG increasing in dorsiflexion ROM (Figure 2.). 

Strength. There was a significant linear relationship between the pre-test and post-test 

strength scores (F1,31 =42.10, p<0.0001), indicating there is a linear relationship between the two 

testing times. Furthermore, there was a significant difference of the post strength measure 

between the three groups (F 2,31=6.74, p=0.0041). Post hoc analysis using LSD (least significant 

difference=4.3824) showed that the significance could be attributed to the CG maintaining 

strength, the EG decreasing in strength and the ESG increasing in strength (Figure 3.). 

Discussion 

The most significant observation of our study was the response of the ESG on girth, 

strength, and dorsiflexion ROM. As hypothesized, the ESG had a slightly smaller loss in calf 

girth compared to the EG. Also, interestingly, the ESG increased in plantarflexor strength and 

dorsiflexion ROM after the two weeks of immobilization when chronic static stretching was 

implemented. 
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Muscle atrophy of 14.1% has been observed in the plantarflexor muscles of injured 

subjects in the first two weeks of immobilization.
19

 In our study, the EG lost approximately  0.58 

cm girth after two weeks of immobilization compared to the ESG who lost approximately 0.34 

cm. A study with a similar design as our study was done on rats with immobilized hind legs for 

three weeks and a 40 minute stretching program every three days showed a reduction in muscle 

atrophy compared to the group of rats that did not stretch during the three weeks of 

immobilization (22 ± 40 vs 37 ± 31%).
15

 Leterme et al.
13

 immobilized rat hind legs in the 

stretched position for 14 days and also saw that stretching prevented the loss of muscle mass. 

The group in the stretched position saw a 2%  decrease in muscle wet weight (109.7 ± 7.5 mg), a 

5% increase in muscle wet weight/body weight (0.44 ± 0.04 mg/g), and a 34% decrease in cross-

sectional area (7.7 ± 0.9 mm
2
) when compared to control (111.5 ± 2.1mg, 0.42 ± 0.01mg/g, and 

11.6 ± 0.4mm
2
). The rats who had their muscles immobilized in a shortened position had a 27% 

decrease in muscle wet weight (81.8 ± 4.7 mg), a 26% decrease in muscle wet weight/body 

weight (0.31 ± 0.02 mg/g), and a 56% decrease in muscle cross-sectional area (5.1 ± 0.3mm
2
) 

when compared to the control group.
13

 Although these are animal studies, our data is similar with 

current research in finding that stretching during immobilization can decrease the loss of girth. 

Muscle ROM is usually increased with stretching.
19

 Our results show that dorsiflexion 

ROM increased in the ESG about 25% (14.28 ± 5.25 to 17.88 ± 5.48°) while the EG decreased 

about 28% (15.22 ± 3.74 to 10.88 ± 1.90°). Kokkonen et al.
7
 limited subject’s activity for 10 

weeks while adding a 40-minute stretching program, 3 times per week and saw an increase in sit 

and reach of 18.1% (36.2 ± 5.5 to 42.6 ± 5.6 cm). Guissard et al.
20

 noted that 6 weeks of static 

stretching of the plantarflexor muscles for ten minutes five days a week increased ankle 

dorsiflexion 30.8% (24.6 ± 0.8 vs 32.2 ± 0.8°). Several animal studies also found an increase in 
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muscle length with different protocols. Coutinho et al.
15

 found an increase in muscle length in rat 

hind legs that were submitted to stretching every 3 days for 40 minutes for 3 weeks by 5 ± 2% 

(15 ± 0.7 vs 14 ± 0.9 mm). Holly et al.
10

 found that after stretching chicken wings for five weeks, 

longitudinal length was completed after one week.  

 In our study, strength increased in the ESG by about 11% (32.70 ± 7.20 vs 36.30 ± 8.50 

%BW) while the EG decreased in strength by about 16% (37.10 ± 11.00 vs 31.20 ± 6.66 %BW). 

Kokkonen et al.
7
 found similar results when stretching inactive (<60min·d

-1
) subjects for 10 

weeks, 40 minutes per day, 3-d·wk
-1

.  Within the stretching group an increase in 1RM for knee 

flexion by 15.3% (51.0 ± 14.1kg vs 44.7 ± 14.5kg) and extension by 32.4% (82.0 ± 25.8 kg vs 

63.8 ± 25.8 kg) was observed.  Large increases in endurance were also noted in this study. 

Within the stretching group, an increase in knee flexion endurance by 30.4% (22.3 ± 4.7kg/17.2 

± 3.4kg) and extension by 28.5 % (23.7 ± 4.7 kg/ 18.5 ± 3.1 kg) were observed. Although 

activity was limited, the participants were still allowed to be active if it was less than 60 minutes 

a day for three days a week. Kokkonen et al.
7
 also found increases in sprint and jump 

performance, however, Bazett-Jones et al.
8
 did not find significant improvements in sprint and 

jump performances after 6 weeks of stretching. 
 

Although this study does not examine why these results take place, it is important to 

know that the stretch-based muscle improvements may be due to changes such as the increase in 

protein synthesis, growth factor production, or neutrophil elevation. Goldspink
11

 found protein 

synthesis to be one of the main contributors to stretch induced hypertrophy. Rat muscle protein 

synthesis was seen to have about a 7% increase per day with stretching. This study concluded 

that the rapid growth in the rat soleus muscle was due to increased rates of protein synthesis, 

which induced the growth of muscle. Goldspink
12

 examined IGF-1 and concluded that IGF-1 
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was the main growth factor that was contributed to the repair and remodeling of tissue in several 

muscle types and was seen when chronic stretching was implemented. Lastly, Pizza et al.
14

 

studied the effects of stretching and isometric contractions on neutrophil involvement. Rats 

induced to stretch saw an increase in neutrophil concentrations and macrophage concentrations 

most significantly after three days of a stretching program. There are several theories that range 

from neurological changes to the change in muscle length that have been observed to be the 

cause of stretch-induced hypertrophy but further research is needed for a better understanding of 

stretch-induced hypertrophy.  

Chronic stretching should be considered in an athlete’s everyday training. However, one 

clinical implication of this study is that injured athletes who are currently limited in activity 

could stretch to see maintenance of performance while inactive. Although this study immobilized 

patients instead of limited the participant’s activity, others have found that stretching during 

limited activity will enhance strength.
7
 This study found that an increase in strength can happen 

if stretching is implemented to a muscle that is unused. These findings can also promote the 

implementation of stretching into the clinical setting to increase ROM. Although stretching has 

been used to increase ROM in active athletes for several years
1
, this study shows that when 

immobilized, an increase in ROM can still be seen when stretching is implemented. Finally, 

atrophy happens immediately when immobilization takes place.
23

 Decreasing the amount of 

atrophy could improve the return to play progression. Our research found that less girth was lost 

during two weeks of immobilization when stretching was implemented. If stretching is an option 

for rehabilitation, according to this research, it should be used to possibly decrease the amount of 

girth loss. 
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One important limitation to this study was that there were no blinding actions taken for 

the subjects or researchers. To dismiss this limitation in the future, the researchers should not 

inform the subjects what the main outcome would be and blind the researcher who is doing the 

pre and post-testing. The second important limitation was that the subjects in this study were 

attempting to mimic the initial stages of an injury, but the participants were not actually injured. 

Also, during an immobilized injury it is unlikely an athlete would able to stretch as directed in 

this study, however, we wanted to isolate the calf to see how it would act independently when 

stretching was added during immobilization.  

Future research should be done on stretching increasing strength in the contralateral 

muscle. Nelson et al.
21

 looked at this in humans and Coutinho
15

 found this in rats. More 

specifically, Nelson et al. stretched one calf 3 d·wk
-1

. Nelson et al. examined uninjured patients 

and found in increase in 1RM of the stretched calf of 29% and an increase in the non-stretched 

calf of 11%. Many times, an athlete cannot move an injured body segment, so it would be 

beneficial to do research on the effects chronic static stretching the uninjured limb may have on 

the injured limb. It would also be important to look at the elderly who are inactive to see if 

stretching could help maintain strength. Also, more research should be done on different body 

segments to see if they act differently than the ankle. More research should also be done on 

mimicking the initial stages of rehab using injured patients instead of healthy ones. It is unknown 

if stretching during the initial stages of rehab in an injured athlete can reap benefits, however, 

this study suggests that stretching for 20 minutes a day for two weeks during immobilization of 

the ankle can decrease the loss of girth, strength, and ROM in healthy college aged students.  
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Conclusion 

In conclusion, stretching during immobilization showed a decrease in the loss of strength, 

girth, and ROM. The physiological reasons as to why this happens still remains unclear so future 

research is needed to develop the reasons as to why the changes happen. This study provides a 

better base of research with stretching during immobilization and the effects on strength, girth, 

and ROM. 
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Table 5. Girth, Dorsiflexion, and Strength (Mean ± SD) 

Group Girth (cm) ROM (º) Strength (%BW) 

 

Pre Post Pre Post Pre Post 

CG 35.36 ± 2.67 35.45 ± 2.72 15.00 ± 5.14 14.10 ± 5.28 34.83 ± 6.66 32.92 ± 7.68 

EG 34.52 ± 1.81 33.94 ± 1.63 15.22 ± 3.74 10.88 ± 1.90 37.10 ± 11.00 31.20 ± 6.66 

ESG 35.35 ± 4.30 35.01 ± 4.09 14.28 ± 5.25 17.88 ± 5.48 32.70 ± 7.20 36.30 ± 8.50 

 CG= control group, EG= experimental group, ESG= experimental stretching group.  

 

 

 

 

 

 

 

 

 

 

Table 4. Stretching Protocol  

Stretch Stretch Time Rest Time Cumulative 

Straight Leg 0:30 0:30 1:00 

Bent Knee 0:30 0:30 2:00 

Straight Leg 0:30 0:30 3:00 

Bent Knee 0:30 0:30 4:00 

Straight Leg 0:30 0:30 5:00 

Bent Knee 0:30 0:30 6:00 

Straight Leg 0:30 0:30 7:00 

Bent Knee 0:30 0:30 8:00 

Straight Leg 0:30 0:30 9:00 

Bent Knee 0:30 0:30 10:00 
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Figures 

 

Figure 1. Girth. Mean ± SD calf girth measurements in cm at pre-test and two weeks after at the 

post-test. 
a
=CGpostgir > ESGpostgir > EGpostgir. Significance accepted with  p < 0.05. 

 

 

 

Figure 2. Dorsiflexion. Mean ± SD dorsiflexion measurements at pre-test and post-test. 
a
=ESGpostrom > CGpostrom > EGpostrom. Significance accepted with p<0.05 

  

32

33

34

35

36

37

38

39

C
ir

cu
m

fe
re

n
ce

 (
cm

) 

Pre                                              Post 

CG

EG

ESG

a 

8

10

12

14

16

18

20

D
o

rs
if

le
xi

o
n

 (
°)

 

Pre                                                 Post 

CG

EG

ESG

a 



 

48 
 

 

 

Figure 3. Plantarflexion. Mean ± SD Cybex II Isokinetic Dynamometer measurements at pre-

test and post-test. 
a
=ESGpoststrng > EGpoststrng. Significance accepted with p<0.05 
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CHAPTER V. DISCUSSION/CLINICAL APPLICATION 

The research questions for this study were 1) does static stretching of the plantarflexor 

muscles during two weeks of immobilization result in a decrease in atrophy?  2) does static 

stretching of the plantarflexor muscles during two weeks of immobilization result in a reduction 

in loss of muscular strength? and 3) does static stretching of the plantarflexor muscles during two 

weeks of immobilization result in a reduction in loss of dorsiflexion ROM? The hypothesis was 

that static stretching during two weeks of immobilization of the plantarflexors would result in a 

decrease in atrophy, a reduction in loss of muscle strength, and a decrease in the loss of 

dorsiflexion ROM. After the statistical analysis, it was observed that there was a decrease in 

atrophy and there was a reduction in the loss of muscle strength. In fact, muscle strength 

increased after two weeks of stretching. One of the most significant observations in the study 

was the effect that stretching had on girth, strength, and dorsiflexion ROM. The ESG had a 

smaller decrease in girth measurements when compared to the EG. Additionally, the ESG 

increased in plantarflexor strength and dorsiflexion ROM after the two weeks of immobilization 

when chronic static stretching was implemented compared to the EG.  

Stevens et al.
7
 found that muscle atrophy in the plantarflexor muscles of an injured 

subject was 14.1% in the first two weeks of immobilization. This was over 50% of the entire 

muscle atrophy that took place over a 7-week period (14.1% vs 24.4%). In our study, the EG lost 

approximately 0.58 cm (34.52 ± 1.81 vs 33.94 ± 1.63) girth after two weeks of immobilization 

compared to the ESG who lost approximately 0.34 cm (35.35 ± 4.30 vs 35.01 ± 4.09). Our study 

closely mimicked the design of another study by Coutinho et al.,
39

 however, this study was an 

animal study. Coutinho et al.
39

 examined rats with immobilized hind legs for three weeks and a 

40 minute stretching program every three days. The results showed a reduction in muscle 
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atrophy compared to the group of rats that did not stretch during the three weeks of 

immobilization (22 ± 40 vs 37 ± 31%).
39

  

In another study performed on animals, rat hind legs were held in the stretched position 

for 14 days and also saw that stretching prevented the loss of muscle mass.
38

 Leterme et al. found 

that the rats who had their muscles immobilized in a shortened position had a 27% decrease in 

muscle wet weight (81.8 ± 4.7 mg), a 26% decrease in muscle wet weight/body weight (0.31 ± 

0.02 mg/g), and a 56% decrease in muscle cross-sectional area (5.1 ± 0.3mm
2
) when compared 

to the control group (111.5 ± 2.1mg, 0.42 ± 0.01mg/g, and 11.6 ± 0.4mm
2
). However, the group 

that stretched during immobilization saw a 2%  decrease in muscle wet weight (109.7 ± 7.5 mg), 

a 5% increase in muscle wet weight/body weight (0.44 ± 0.04 mg/g), and a 34% decrease in 

cross-sectional area (7.7 ± 0.9 mm
2
) when compared to the control group.

38
 Our data closely 

compares to these findings by other researchers. However, these studies are all animal studies 

which warrants further research supporting this study.  

Range of motion is usually increased with stretching.
13

 Our results show that dorsiflexion 

ROM essentially stayed the same in the CG (15.00 ± 5.14 vs 14.10 ± 5.28), increased in the ESG 

about 25% (14.28 ± 5.25 vs 17.88 ± 5.48°), and decreased in the EG about 28% (15.22 ± 3.74 vs 

10.88 ± 1.90°). Kokkonen et al.
3
 did not immobilize subjects but instead limited subject’s 

activity for 10 weeks while adding a 40-minute stretching program, 3 times per week. Stretching 

was observed to result in an increase in sit and reach scores of 18.1% (36.2 ± 5.5 vs 42.6 ± 5.6 

cm). Additionally, Guissard et al.
44

 noted that 6 weeks of static stretching of the plantarflexor 

muscles for ten minutes five days a week increased ankle dorsiflexion 30.8% (24.6 ± 0.8 vs 32.2 

± 0.8°).  
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Several animal studies with different methods found an increase in muscle length after 

stretching was implemented. As previously stated, Coutinho et al.
15

 submitted rat hind legs to 40 

minutes of stretching every three days for three weeks. This protocol was observed to increase 

muscle length by 5 ± 2% (15 ± 0.7 vs 14 ± 0.9 mm). Holly et al.
10

 found an increase in 

longitudinal length after stretching chicken wings for five weeks. It was additionally noted that 

longitudinal length was complete after one week. These animal studies show that stretching for 

long periods during immobilization as well as immobilizing the muscle in a stretched position 

can increase muscular ROM. The human subject studies have shown that stretching can increase 

ROM but our study is the only one that has shown stretching during immobilization increased 

dorsiflexion ROM. 

Kokkonen et al.
7
 stretched inactive (<60min·d

-1
) subjects for 10 weeks, 40 minutes per 

day, 3-d·wk
-1

 and examined the effects the stretching had on strength.  Within the stretching 

group an increase in 1RM for knee flexion by 15.3% (51.0 ± 14.1kg vs 44.7 ± 14.5kg) and 

extension by 32.4% (82.0 ± 25.8 kg vs 63.8 ± 25.8 kg) was observed.  Large increases in 

endurance were also noted in this study. Within the stretching group, an increase in knee flexion 

endurance by 30.4% (22.3 ± 4.7kg/17.2 ± 3.4kg) and extension by 28.5 % (23.7 ± 4.7 kg/ 18.5 ± 

3.1 kg) were observed. Kokkonen et al.
7
 also found increases in sprint and jump performance. 

However, Bazett-Jones et al.
8
 did not find significant improvements in sprint and jump 

performances after 6 weeks of stretching. Bazett-Jones et al.
8
 discussed the reason they did not 

experience an increase in performance may be due to the lack of ROM improvements shown in 

their study. Although activity was limited in the Kokkonen et al.
7
 study, the participants were 

still allowed to be active for less than 60 minutes a day for three days a week. In this study, 

however, activity was prohibited because the subjects were immobilized by the Walker. This 
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study found that after two weeks of immobilization, strength increased in the ESG by about 11% 

(32.70 ± 7.20 vs 36.30 ± 8.50 %BW) while the EG decreased in strength by about 16% (37.10 ± 

11.00 vs 31.20 ± 6.66 %BW). The researchers could not find published research on human 

strength gains due to stretching during immobilization. Further research is needed to support the 

findings of this study.
 

It is important to examine why stretch-induced hypertrophy happens, even though this 

study did not examine the root cause. Many believe that stretch-induced hypertrophy is either a 

physiological or physical change. Protein synthesis is one of the processes that has been studied 

greatly and believed to be the main contributor to stretch-induced muscle hypertrophy.
6
 Rat 

muscle protein synthesis was found to have about a 7% increase per day when rat skeletal muscle 

was immobilized in a lengthened state. This study concluded that the rapid growth in the rat 

soleus muscle was due to increased rates of protein synthesis, which induced the growth of 

muscle.  

Goldspink
11

 also examined IGF-1 and concluded that IGF-1 is the main growth factor 

that contributed to the repair and remodeling of tissue in several muscle types. Goldspink
11

 found 

this factor when chronic stretching was implemented. Yang et al.
41

 also looked at insulin-like 

growth hormone and found after six days, some increases in insulin-like growth hormone in the 

stretched muscle. Additionally, Holly et al.
4
 examined mitochondrial enzymes and noted 

proportions improved in chicken wings after stretching. Lastly, Pizza et al.
14

 studied the effects 

of stretching and isometric contractions on neutrophil involvement. Rats induced to stretch saw 

an increase in neutrophil concentrations and macrophage concentrations most significantly after 

three days of a stretching program. There are several theories that range from neurological 

changes to the change in muscle length that have been observed to be the cause of stretch-
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induced hypertrophy. However, further research is needed for a better understanding of stretch-

induced hypertrophy.  

Chronic stretching should be implemented in an athlete’s everyday training when 

physically able. However, one clinical implication of this study is that injured athletes who are 

currently limited in activity could stretch to see maintenance of performance while inactive. 

Although this study immobilized patients instead of limiting the participants’ activity, atrophy 

occurs during inactivity and immobilization. This study found that an increase in strength can 

occur when stretching is implemented to a muscle that has limited activity. These findings can 

also promote the implementation of stretching into the clinical setting to increase ROM. 

Although stretching has been used to increase ROM in active athletes for many years
1
, this study 

shows that when immobilized, an increase in dorsiflexion ROM can still happen when stretching 

is implemented. Finally, atrophy happens immediately when immobilization takes place.
8
 

Decreasing the amount of atrophy could improve the return to play progression. This research 

found that less girth was lost during two weeks of immobilization when stretching was 

implemented. If stretching is an option for rehabilitation, according to this research, it could 

possibly be used to decrease the amount of girth loss. Further research is needed to confirm this 

assumption. 

One important limitation to this study was that there was no blinding. To dismiss this 

limitation in the future, a double-blinded study should be implemented. The researchers should 

not inform the subjects what the main outcome would be, and the researcher who is doing the 

pre- and post-testing should be blinded as to who is in which group. This would especially be 

beneficial for the strength testing to ensure encouragement is given to all participants equally. 

The second important limitation is that this study was trying to mimic the initial stages of an 
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injury, but the participants were not injured. During an immobilized injury it is unlikely the 

athlete is able to stretch as directed in this study, however, the calf was isolated to see how it 

would act independently when stretching was added during immobilization. Some delimitations 

in this study were the inclusion/exclusion criteria. Only healthy, college-aged, female students 

with no history of chronic calf injury could participate. Also, another delimitation was the 

selection of the stretching program. Finally, ANCOVA was chosen because some of the pre-test 

measures varied between groups, even though subjects were randomly selected into groups. 

Therefore, pre-test scores were used as the covariate.  

 Some assumptions made in this study were that the Cybex II Isokinetic Dynamometer is a 

valid measurement of muscular strength and that the primary researcher was competent at taking 

these measures. It was also assumed that each subject stretched the same based on the verbal 

cues of the primary researcher. Additionally, whether the subjects actually stretched was based 

on the findings in the logs and the interactions with the subjects, which was an 

objective/subjective observation from the primary researcher.  

Future research should be done on stretching increasing strength in the contralateral 

muscle. Nelson et al.
47

 examined the effects stretching had on the contralateral muscle. 

Participants stretched one calf 3 d·wk
-1

 and found in increase in 1RM of the stretched calf of 

29% and an increase in the non-stretched calf of 11%. Often, moving the injured body segment is 

unwarranted, so it would be beneficial to do research on the effects chronic static stretching the 

uninjured limb may have on the injured limb. It would also be important to look at the elderly 

who are inactive to see if stretching could help maintain strength. Also, more research should be 

done on different body segments to see if they act differently than the calf muscle. More research 

should also be done on mimicking the initial stages of rehab using injured patients instead of 



 

55 
 

healthy ones. It is unknown if stretching during the initial stages of rehab in an injured athlete 

can reap benefit, however, this study suggests that stretching for 20 minutes a day for two weeks 

during immobilization of the ankle can decrease the loss of girth, strength, and dorsiflexion 

ROM in healthy college aged students.  

In conclusion, stretching during immobilization showed a decrease in the loss of strength, 

girth, and dorsiflexion ROM. The physiological reasons as to why this happens still remain 

unclear, so future research is needed to develop a reason as to why it happens. This study 

provides a better base of research with stretching during immobilization and the effects on 

strength, girth, and dorsiflexion ROM. 
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APPENDIX A. IRB APPROVAL LETTER 
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APPENDIX B. INFORMED CONSENT 
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APPENDIX C. PARTICIPANT RECRUITMENT EMAIL 

Email Heading: EARN MONEY BY PARTICIPATING IN A RESEARCH STUDY 

 

NOTICE TO PARTICIPATE IN A STUDY:  

 

Dr. Bryan Christensen PhD and graduate student Samantha Narveson ATC are conducting a 

study on the effects of stretching during two weeks of immobilization. Subjects will receive $10 

to $45 compensation based on what group they are randomly placed in. 

 

Control Group 

· Complete pretest (30 min) 

· Come back two weeks later to complete post test (30 min) 

· Compensation is $10.00 

 

Experimental Group 

· Complete pretest (30 min) 

· Wear ankle brace for two weeks 

· Come in to researchers on 3 occasions for examination 

· Complete posttest (30 min) 

· Compensation is $45.00 

 

Stretching Group 

· Complete Pretest (30 min) 

· Wear ankle brace for two weeks 

· Stretch for 20 min a day (weekdays stretch with researcher for 10 min) 

· Complete posttest (30 min) 

· Compensation is $45.00 

 

*The pre and posttests consist of tests for calf strength, flexibility, and size. 

 

The purpose of this study is to determine if stretching during immobilization can decrease in the 

loss of muscle size and strength.  

 

If you are interested in participating in this study or have any questions, please contact Samantha 

Narveson at 507-951-3128 or samantha.narveson@ndsu.edu or Dr. Bryan Christensen at 

bryan.christensen.1@ndsu.edu. Thank you for your time! 

 
Samantha Narveson, ATC, LAT, CPT 
Graduate Assistant Athletic Trainer 

North Dakota State University Volleyball 
Phone: 701-793-4746 

Email: Samantha.Narveson@ndsu.edu 

 

https://bluprd0811.outlook.com/owa/redir.aspx?C=xqzfnSwByka73cOXkOiUhaJmoFQ62M8IWwaS948m_zanSTrn43ScUkjftZ0cRjjjnRKPWCbsJ9Y.&URL=mailto%3abryan.christensen.1%40ndsu.edu
https://bluprd0811.outlook.com/owa/redir.aspx?C=xqzfnSwByka73cOXkOiUhaJmoFQ62M8IWwaS948m_zanSTrn43ScUkjftZ0cRjjjnRKPWCbsJ9Y.&URL=mailto%3aSamantha.Narveson%40ndsu.edu
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APPENDIX D. DATA SHEET 

Pre-Test/Post-Test 

 

 

 

 

 

 

 

 

 

Participant 

Name 

G
ro

u
p

 

Length 

from 

Right 

Fibula 

ROM Girth 
Cybex II 

Dynamometer 

Right Left Right Left Right Left 
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APPENDIX E. RECORDED DATA 

 

 

 

Group    

# 

Girth ROM Strength Demographics 

Pre Post Pre Post Pre Post 
Age 

Height 

(in) 

Weight 

(lb) 

CG 1 36.4 37.0 14.3 10.7 35 37 23 63 132 

CG 2 35.1 35.0 18.7 18.0 35 29 25 69 140 

CG 3 33.4 33.4 6.5 7.7 34 26 23 63 145 

CG 4 41.7 42.0 5.0 5.2 21 21 18 63 116 

CG 5 37.6 37.8 23.0 23.8 39 30 18 64 173 

CG 6 35.1 35.7 16.7 15.0 45 45 18 63 154 

CG 7 35.6 35.5 12.7 11.3 24 24 24 65 150 

CG 8 33.4 33.3 13.7 14.7 37 42 25 64 133 

CG 9 32.5 32.5 15.3 14.3 38 32 18 63 135 

CG 10 37.5 36.8 18.7 17.7 36 31 23 63 120 

CG 11 33.4 33.9 18.7 19.8 41 43 26 67 175 

CG 12 32.6 32.5 16.8 11.0 33 35 18 63 123 

EG 1 32.7 32.4 9.8 6.7 41 32 19 63 133 

EG 2 36.1 34.3 10.2 12.2 32 26 18 69 125 

EG 3 37.7 37.0 21.7 10.8 43 34 19 66 167 

EG 4 36.0 35.8 16.7 10.3 55 34 18 66 143 

EG 5 33.0 32.5 14.8 10.5 36 38 20 64 125 

EG 6 32.3 32.3 16.8 10.7 21 23 18 64 132 

EG 7 35.5 35.0 13.8 10.5 27 26 18 66 140 

EG 8 34.9 34.3 16.7 13.0 46 35 19 61 142 

EG 9 34.2 33.3 19.0 13.7 24 22 20 65 144 

EG 10 32.8 32.5 12.7 10.5 46 42 18 66 132 

ESG 1 33.7 33.7 20.3 25.0 44 54 18 66 126 

ESG 2 37.6 37.6 10.0 15.0 21 30 19 64 159 

ESG 3 39.5 37.8 13.7 17.0 30 36 18 66 171 

ESG 4 34.1 33.5 14.8 20.0 32 34 18 62 125 

ESG 5 29.0 29.2 15.2 16.5 33 35 20 64 120 

ESG 6 37.2 37.0 13.3 17.5 31 38 19 64 163 

ESG 7 31.5 31.2 23.8 27.7 42 46 19 63 112 

ESG 8 31.0 30.6 11.3 15.3 38 34 19 62 118 

ESG 9 43.1 42.5 4.8 7.8 24 23 20 71 251 

ESG 10 36.8 37.0 15.5 17.0 32 33 18 66 145 
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APPENDIX F. TIME LOG 

 

Name:                                                             Group (circle one): Stretching/ NON-Stretching

Day 
Wake Up 

(on) 
off on off on 

Go To Bed 
(off) 

Total Time 
Off (min) 

Reason for 
Taking 

Walker Off 

One                 

Two                  

Three                 

Four                 

Five                 

Six                 

Seven                 

Eight                 

Nine                 

Ten                 

Eleven                 

Twelve                 

Thirteen                 

Fourteen                 
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APPENDIX G. REHABILITATION PROGRAM 

 

Range of 

motion 

Strengthening Balance/ 

Proprioception 

Functional 

Standing 

ProStretch 

 3 x 30 sec 

Theraband 

3 x 15 each leg 

 Inversion 

 Eversion 

 dorsiflexion 

Windmills  

3 x 45 sec each leg 

Line Jumps 

3 x 30 sec 

 forward/back 

 side/side  

Wall Stretch 

3x30 seconds 

 Bent 

Knee 

 Straight 

Leg 

Calf Raisers 

2x25 each leg 

Ant Stomps 

3 x 10 each leg  

Heisman’s 

3 x 30 sec 

 

 

 Walking 

20 yards each 

 Toes 

 Inversion 

 Eversion 

Single Leg Ball Toss 

2 x 15 each leg 

Box Jumps 

3x1 minute 
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APPENDIX H. STATISTICS 

                         Ankle Strength Study -- Samantha Narveson 

                                          ANCOVA for Girth 

 

                                                      Sum of 

        Source                      DF         Squares     Mean Square    F Value    Pr > F 

        Model                        3     262.4242391      87.4747464     405.99    <.0001 

        Error                         28       6.0329484       0.2154624 

        Corrected Total        31     268.4571875 

 

                       R-Square     Coeff Var      Root MSE    PostGirL Mean 

                       0.977527      1.332293      0.464179         34.84063 

 

        Source                      DF       Type I SS     Mean Square    F Value     Pr > F 

        Group                        2      12.8541875       6.4270937        29.83       <.0001 

        PreGirL                     1     249.5700516     249.5700516    1158.30    <.0001 

 

        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

        Group                        2       2.8009586         1.4004793         6.50        0.0048 

        PreGirL                      1     249.5700516     249.5700516    1158.30    <.0001 

 

                                     t Tests (LSD) for PostGirL 

 

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error 

rate. 

 

                               Alpha                            0.05 

                               Error Degrees of Freedom           28 

                               Error Mean Square            0.215462 

                               Critical Value of t           2.04841 

                               Least Significant Difference   0.4132 

                               Harmonic Mean of Cell Sizes  10.58824 

 

                                  NOTE: Cell sizes are not equal. 

 

                    Means with the same letter are not significantly different. 

 

                         t Grouping          Mean      N    Group 

 

                                  A       35.4500     12    CG 

 

                                  B       35.0100     10    ESG 

 

                                  C       33.9400     10    EG 
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                             Ankle Strength Study -- Samantha Narveson 

                                     ANCOVA for Range of Motion 

 

                                                       Sum of 

        Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

        Model                        3     708.4780323     236.1593441      45.35    <.0001 

        Error                         28     145.8166552     5.2077377 

        Corrected Total        31     854.2946875 

 

                       R-Square     Coeff Var      Root MSE    PostRomL Mean 

                       0.829313      15.98282      2.282047         14.27813 

 

        Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

        Group                        2     244.9096875     122.4548437      23.51    <.0001 

        PreRomL                   1     463.5683448     463.5683448      89.02    <.0001 

 

        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

        Group                        2     302.6438445     151.3219223      29.06    <.0001 

        PreRomL                   1     463.5683448     463.5683448      89.02    <.0001 

 

 

                                     t Tests (LSD) for PostRomL 

 

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error 

rate. 

 

                               Alpha                            0.05 

                               Error Degrees of Freedom           28 

                               Error Mean Square            5.207738 

                               Critical Value of t           2.04841 

                               Least Significant Difference   2.0316 

                               Harmonic Mean of Cell Sizes  10.58824 

 

                                  NOTE: Cell sizes are not equal. 

 

                    Means with the same letter are not significantly different. 

 

                         t Grouping          Mean      N    Group 

 

                                  A       17.8800     10    ESG 

 

                                  B       14.1000     12    CG 

 

                                  C       10.8900     10    EG 
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                             Ankle Strength Study -- Samantha Narveson 

                                          ANCOVA for Cybex 

 

                                                       Sum of 

        Source                      DF         Squares     Mean Square    F Value    Pr > F 

 

        Model                        3     1155.389772      385.129924      15.89    <.0001 

        Error                         28      678.485228       24.231615 

        Corrected Total        31     1833.875000 

 

                      R-Square     Coeff Var      Root MSE    PostCybexL Mean 

                      0.630026      14.72168      4.922562           33.43750 

 

        Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

        Group                        2      135.258333       67.629167         2.79       0.0785 

        PreCybexL                1     1020.131438     1020.131438     42.10      <.0001 

 

        Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

        Group                        2      326.430640      163.215320        6.74        0.0041 

        PreCybexL                1     1020.131438     1020.131438      42.10      <.0001 

 

 

                                    t Tests (LSD) for PostCybexL 

 

NOTE: This test controls the Type I comparisonwise error rate, not the experimentwise error 

rate. 

 

                               Alpha                            0.05 

                               Error Degrees of Freedom           28 

                               Error Mean Square            24.23162 

                               Critical Value of t           2.04841 

                               Least Significant Difference   4.3824 

                               Harmonic Mean of Cell Sizes  10.58824 

 

                                  NOTE: Cell sizes are not equal. 

 

                     Means with the same letter are not significantly different. 

 

                            t Grouping          Mean      N    Group 

 

                                     A        36.300           10     ESG 

                                     A 

                                B  A        32.917            12     CG 

                                B 

                                B             31.200            10     EG 


