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ABSTRACT 

Software development is prone to software faults due to the involvement of multiple 

stakeholders especially during the fuzzy phases (requirements and design). Software inspections 

are commonly used in industry to detect and fix problems in requirements and design artifacts, 

thereby mitigating the fault propagation to later phases where the same faults are harder to find 

and fix. The output of an inspection process is list of faults that are present in software 

requirements specification document (SRS). The artifact author must manually read through the 

reviews and differentiate between true-faults and false-positives before fixing the faults. The first 

goal of this research is to automate the detection of useful vs. non-useful reviews. Next, post-

inspection, requirements author has to manually extract key problematic topics from useful 

reviews that can be mapped to individual requirements in an SRS to identify fault-prone 

requirements. The second goal of this research is to automate this mapping by employing Key 

phrase extraction (KPE) algorithms and semantic analysis (SA) approaches to identify fault-

prone requirements. During fault-fixations, the author has to manually verify the requirements 

that could have been impacted by a fix. The third goal of my research is to assist the authors 

post-inspection to handle change impact analysis (CIA) during fault fixation using NL 

processing with semantic analysis and mining solutions from graph theory. The selection of 

quality inspectors during inspections is pertinent to be able to carry out post-inspection tasks 

accurately. The fourth goal of this research is to identify skilled inspectors using various 

classification and feature selection approaches. The dissertation has led to the development of 

automated solution that can identify useful reviews, help identify skilled inspectors, extract most 

prominent topics/keyphrases from fault logs; and help RE author during the fault-fixation post 

inspection.  
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1. INTRODUCTION 

This chapter presents the problem statement, dissertation goals, a brief description of key 

concepts, and the research framework for the rest of this dissertation document. 

1.1. Problem Statement 

Software development starts with gathering requirements from various stakeholders 

(some of whom are non-technical) and producing a natural language (NL) software requirement 

specification (SRS) document. The SRS document forms the basis for downstream software 

development activities i.e., design, coding, testing. Due to the inherent nature of NL and 

involvement of multiple stakeholders, requirements are prone to redundancy, inconsistency, and 

ambiguity. 

To verify requirement recorded in SRS, software companies employ peer-reviews (also 

referred as inspections or walkthroughs) to ensure that requirements meet certain quality 

standards (e.g., correctness, completeness). During a peer-review (will be referred to as 

inspection in this document), skilled inspectors are staffed who review the requirements 

document and report any potential faults. The faults are then handed back to the requirements 

author who must manually read through each reported review to identify useful reviews (that 

report actual fault) and remove non-useful reviews (false positives). Next, when fixing true faults 

in SRS, the author may need to manually check parts of the SRS that are affected (e.g., may 

contain similar faults) and need fixing and also avoid reintroducing new faults. This task to 

manually consolidate faults, manual mapping of useful reviews to SRS requirements, and search 

for requirements that need similar fixes is tedious, hectic, and time consuming. If information 

about useful reviews, skilled inspectors, and potential fault-prone requirements can be 
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automated, then the development time would be better spent towards actual software 

development.  

SRS requirements are highly interrelated and fault fixation post-inspection may produce 

another fault in the SRS. So, to ensure the validity of the SRS and to verify the impacts of any 

change occurred during fault fixation, the requirements author has to again manually inspect the 

whole SRS document, which is very tiresome process. So, this research aims at developing an 

automated approach using machine learning (ML) to guide the change impact analysis (CIA) 

during fault fixations to assist requirements author post inspection.   

Additionally, prior research [1]–[3], shows that that the quality of inspectors is most vital 

to inspection output as skilled inspectors can report a large number of faults more accurately and 

clearly (reducing false positives and redundancy in their performance). Using skilled inspectors 

also enable time savings because requirements author can validate reviews faster, and a better 

written review is also better when training the machine-based automated approaches. Therefore, 

this research aims to automate the following aspects of requirements quality. 

1.1.1. Proposed Solutions 

A brief description of research solutions for the above listed problems are discussed 

below: 

Validating reported requirement reviews: Prior research has utilized different variants of 

Machine Learning (ML) based techniques (families of Naïve Bayes (NB), Support Vector 

Machines (SVM), Decision Trees (DT), Regression and Ensemble classification) to validate 

textual reviews in other domains (e.g., movie reviews, product reviews) [4]–[7]. This dissertation 

is leveraging existing work and applying it to unstructured requirement reviews to automate the 

identification of true faults based on fault logs supplied by requirement inspectors. 
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Identify potential fault prone requirements: This step is being automated by automating 

the key phrase extraction (KPE) from fault logs and then mapping these keyphrases to individual 

SRS requirements to identify fault prone requirements in an SRS document. Prior research on 

existing key phrase algorithms [8]–[11], algorithms to identify semantically similar NL text 

[12]–[14] is being leveraged to ensure that mapping between key phrases from fault logs 

(extracted using KPE algorithms) to individual SRS requirements (using semantic similarity) is 

accurate. 

Identify interrelated requirements (IRR) in a SRS pre and post-inspection: To enable 

post-inspection fault fixation, this dissertation uses semantic analysis research [12], [15]–[19] to 

find interrelated requirements (IRR) by implementing algorithms like Latent Semantic Analysis 

(LSA) and Latent Dirichlet Allocation (LDA). The similarities obtained for SRS document with 

semantic algorithms are then transformed into graph using graph mining algorithms [20]. Pre-

inspection, IRR graph can be analyzed for loosely connected requirements (that may be 

extraneous), redundant requirements, and other fault-prone requirements. Post-inspection, IRR 

can be used to identify requirements that may need similar fixes when fixing the faults reported 

during the requirements inspection. 

Automating the selection of skilled inspectors: To enable the selection of skilled 

inspectors, this work tries to identify generalizable characteristics of an effective inspector (e.g., 

reading patterns (RPs)). Data collected during previous eye tracking studies of requirements 

inspectors were used to train the ML models that can guide the selection of skilled inspectors 

prior to the start of inspection process. 
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1.2. Dissertation Goals 

This dissertation leverages existing ML solutions from range of domains (code, design 

and testing [4], [21]–[25]) to help professional software engineers better manage the 

requirements inspection process, enable cost-savings and develop a better software product. The 

primary goal of this dissertation is formally defined as follows: 

To identify and analyze various machine learning, natural language processing, semantic 

analysis and graph mining approaches that can be applied to validate reviews, to select skilled 

inspectors, to find the fault prone requirements, and evaluating CIA in an SRS document to 

improve quality of software requirements. 

Another goal of this dissertation is to advance research into the use of ML and NLP 

methods to improve the quality of software requirements. Additionally, this dissertation shows 

that ML applications developed during this research can be extended to research problems in 

other domains. As an example, this dissertation proposed and subsequently validated a vertical 

mining approach that can support distributed processing of very large graph network. The 

vertical mining approach also supports dynamic update of output without having to re-compute 

from beginning (details appear in Chapter 8).  

The rest of this chapter describes pertinent key terms relevant, challenges, and research 

framework for this research. 

1.3. Key Terms and Key Concepts 

There have been few prominent definitions and terms that have been used throughout this 

dissertation and these are briefly discussed in this section. These key concepts are as follows:  
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1.3.1. Machine Learning, Classification and Clustering 

The idea of machine learning (ML) is to give computer systems the ability to learn i.e. 

learning some behavior of given tasks and then use that learned behavior to make decisions later 

on some new/unseen data. The intent of ML is to make predictions with data using statistical, 

and feature based techniques to alleviate the need to perform predictions based on human 

judgment [26], [27]. These predictions help analysts, researchers, scientists, and engineers to 

produce reliable decisions (classification or clustering) and to uncover hidden relationships 

within the data. The ability to make data-driven predictions, allows ML to overcome the need for 

strictly static programs by building a model from sample data (input). The ML approach is 

applied in a wide range of computing problems such as email filtering, text processing, intrusion 

detection in a network, computer vision, and optical character recognition [28]–[36]. 

Machine learning can be categorized into two parts 1) supervised learning and 2) 

unsupervised learning. ML approach that requires to be trained on some training data before it 

can predict outcome on test data is a supervised learning approach (e.g. classification) and the 

ML approach that do not requires to be trained on any training data is an unsupervised learning 

approach (e.g. clustering).  

The process of classification entails the assignment of ‘class’ label (e.g. true-fault or 

false-positive) to test dataset and is called ‘classification’. A classifier (a defined algorithm that 

learn over the input data to predict final outcome class) is employed that maps unforeseen data 

from the learned model to assign an appropriate class. For example, Naive Bayes. 

Clustering on the other hand groups data w.r.t their similarities. Clustering does not learn 

class-labels, but instead measures the distance between data (e.g. based on mean, standard 

deviation etc.) and then divide it systematically to form coherent grouping. 
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1.3.2. Ensemble Method 

Ensemble is a ML algorithm that combines several meta-algorithms to form one 

predictive model. It (ensemble) is developed in order to improve classification outcome, in 

which many weak classifiers (i.e. situation in which individual classifiers could not improve 

prediction accuracy) learns iteratively to improve predictive performance. The ensemble is used 

in this dissertation is developed from various ML classifiers to generate voting to arrive at a 

categorization of each review into a useful or non-useful review. 

1.3.3. Natural Language Processing and Part of Speech (POS) Tags 

Natural language (NL) processing combines computer science, computational linguistics 

and artificial intelligence in order to find ways for machines to understand, analyze and construct 

meaning from human language. Using NLP, programmers can structure knowledge to perform 

many language processing tasks e.g. translation, semantic relation extraction, speech recognition, 

sentiment analysis and topic segmentation, etc., [4], [6], [12], [18], [37]–[39]. 

NLP allows the machines to understand human language based on grammar, semantic 

relations and natural language rules such that machines could parse the input text to extract the 

queried information. Natural language toolkit (NLTK) provides capabilities required to process 

NL text. Using NLTK, a given text can be split into various part of speech (POS) components 

that helps in understanding the semantic constructs of the text. Many studies have shown 

applications of NLP at providing automated solutions (e.g. summarization of text blocks [40], 

[41]), and development of Chat bots (a deep learning model that interacts with humans) [42]. 

NLP has been extensively applied for pre-processing NL text (i.e., removal of stopwords, 

extracting POS tags, stemming and lemmatization) 
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The POS in NLP is the word category that have similar grammatical properties. The 

words that are categorized within same POS tend to have similar behavior for language syntax. 

The common examples for POS in English are verb, pronoun, noun, adjectives, adverbs, 

preposition, interjection, conjunction and determiners. The process to analyze POS tags from NL 

text is called ‘part of speech tagging’ (POS tagging). Tagging involves marking of each word in 

a corpus to its POS. POS tagging is helpful in identifying correct sentence structuring based on 

grammar syntax i.e. POS tagging can express correct word-form for a word that expresses 

multiple meanings. For example, consider the following sentence: 

“I left my wallet on the left side of my bed”. 

The word ‘left’ in above example sentence appears in this sentence in two different word-

form, though the spellings are similar. So, to differentiate between two different word-forms, 

part of speech tags are helpful. The outcome of above sentence with part of speech tags is: 

I (personal pronoun) left (verb past tense) my (possessive pronoun) wallet (Noun) on 

(preposition) the (determiner) left (adjective) side (Noun) of (Preposition) my (Possessive 

pronoun) chair (Noun) 

The importance of part of speech tagging (or POS tags) in text processing is their ability 

to provide information on lexical structure of text/sentence. Information about the lexical 

structure provide the ability to understand a text over its syntax, that help in understanding 

meaning, structure and type of affixes (a morpheme that is attached to the word stem) that it 

takes. 

1.3.4. Key Phrase Extraction (KPE) 

Key Phrase Extraction (KPE) is a process of extracting prominent (i.e., key) information 

from a NL text but in fewer words (referred to as keyphrases) and is achieved with unsupervised 
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and supervised approaches [11]. This dissertation work leveraged existing KPE approaches to 

extract key phrases from fault logs to identify problematic area in software requirements. For 

example, consider the following fault reported during the review.  

“The initial value of variableR was defined to be 10000. But now it is defined as 1000. 

Inconsistent value of variableR.”  

If an estimate about problem highlighted by this fault log is to be obtained; then it can be 

achieved by extracting a fewer key phrases automatically, such as “Initial value variableR”, and 

“Inconsistent value variableR”. Our proposed work then maps these keyphrases (using similarity 

measures) to the actual requirements in an SRS document to find fault prone requirements.  

1.3.5. Graph Mining 

The graphs are the pictorial representation to display data in an orderly and organized 

manner. A simple graph consists of nodes and edges, where nodes represent the data and the 

edge connecting two nodes represents the relationship between those two nodes. For example, a 

graph can be modelled in which the nodes represent the requirement number and edges represent 

similarity between two requirements. 

Next, the graph mining refers to mining various patterns (of node relationships) in a 

graph that conveys useful information. For example, mining highly similar requirements from 

the IRRs in a graph using cliques, k-cliques. These IRRs can help assist requirements author 

evaluating CIA during fault fixations. 

1.3.6. Key Algorithms Used 

The algorithms used in this dissertation work are divided around the following major 

goals and are shown in Table 1.1. 

Goal 1: Automation of validation process of requirement reviews. 
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Table 1.1. Key algorithms used 

Goal # Algorithms 

1 Various supervised learning algorithms from Bayesian, Support vector, Ensemble, Trees, 
and Regression. 

2 Three main categories of algorithms namely, supervised feature based, unsupervised 
statistical based, and unsupervised graph based 

3 Semantic similarity approaches, e.g., latent semantic analysis, graph mining algorithms 

4 Supervised learning approaches, feature selection algorithms 

 
Goal 2: Identify the fault prone requirements in an SRS. 

Goal 3: Identify the technique to guide CIA during fault fixation post inspections. 

Goal 4: Identify the characteristics of skilled inspectors. 

1.3.7. Evaluation Metrics 

To predict classification effectiveness at fault prediction, a metrics called confusion 

matrix is generally used by ML community (see Table 1.2). This matrix consisted of rows that 

represent predicted outcome class by a classifier whereas, columns represent actual class (see 

Table 1.2). 

Table 1.2. Evaluation metrics 

 Actual Class 

Fault Non-fault 

Predicted Class Fault True positive False positive 

Non-fault False negative True negative 

 
For a classifier to be efficient, it is highly expected to be able to significantly predict true 

positives and true negatives accurately. Various evaluation measures that asses classification 

efficiency are defined in Table 1.3. Apart from this, three other metrics are used to address goal 

2, and these metrics are Rand index, adjusted mutual information (AMI), and normalized mutual 

information (NMI). Their proof lies beyond the scope of this dissertation, so it is not discussed 

here (more details appear in chapter 6).  
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Table 1.3. Various metrics and their description 

SR 
# 

Name of the Metric Description Formulae 

1 # of true positives 
(TP) 

This is # of positives samples i.e., total # of true faults # of actual faults 

2 # of false positives 
(FP) 

These are non-faults that got predicted as faults. # of falsely predicted 
faults 

3 # of false negatives 
(FN) 

These are actual faults predicted as non-faults. # of falsely predicted 
non-faults 

4 Precision This metric denoted how many predicted faults are 
actual faults. 

TP/ (TP+FP) 

5 Recall It is the measure that denoted how many actual faults 
are predicted as faults. In other words, the proportion 
of true faults that are identified by a classifier. 

TP/ (TP+FN) 

6 F-measure This is harmonic mean of precision and recall. 2TP/ (2TP+FP+FN) 

7 G-mean It is a performance metric that consider true negative 
rate and true positive rate. 

√precision x recall 

 
1.3.8. Inspection Artifacts and Inspectors 

Inspection studies were conducted at North Dakota State University (NDSU) to generate 

inspection reviews that were used for validating the proposed approaches. There were four main 

artifacts that used during the dissertation - Parking Garage Control System (PGCS), Loan 

Arranger System (LAS), Restaurant Interactive Menu (RIM), and Wonders Of Weather (WOW). 

LAS and PGCS artifacts were developed by requirement experts and is used at Microsoft to train 

their employees over fault checklist technique to carry out inspections [15], [43], [44].  

RIM and WOW were developed under real project conditions through interaction with 

real client. All documents (except WOW) contained seeded faults that were available to authors 

in the form of master fault list. The inspectors’ reviews were checked against master fault lists to 

label each review as fault or non-fault. The WOW SRS was only used to evaluate the CIA 

approach because of its short length and comparatively small number of requirements than the 

other SRS documents. Overall, there were in total 82 reviewers involved across all the inspection 
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studies. Table 1.4 shows more details on participating subjects w.r.t undergraduate, graduate and 

industry inspectors. Most of these subjects had at least 2 years of experience in software. 

Table 1.4. Various SRS artifacts used in this dissertation 

SRS # of Seeded (Known faults) # of Pages # of inspectors in this study 

LAS 30 11 20 (industry personnel) 

PGCS 35 14 41 (27 UG, 14 Grad) 

RIM 150 21 21 (Grad) 

WOW NA 6 NA 

 
1.4. Research Framework 

To summarize, this subsection provides a high-level description (see Figure 1.1) of 

research framework and is organized around 4 major goals as described below: 

Goal 1- Automating the validation of requirement reviews: Development of a 

classification method (to classify NL requirement reviews into true faults and false positives) and 

its testing of effectiveness is achieved in the following steps: 

1. Identify the list of classifiers most applicable to inspection reviews from literature. 

2. Plan and execute inspection studies to collect NL inspection reviews across multiple SRS 

documents that can be used as training and testing sets during evaluation. 

3. Use NLP toolkit to pre-process reviews (removal of stop words, punctuations, articles, 

stemming/lemmatization etc. from a review sentence) that outputs review sentences 

without non-useful terms. 

4. Implement various classifiers identified in step 1 over output reviews to perform 

classification of inspection reviews into true positives vs. false positives. 

5. Evaluate the classification results using evaluation metrics (precision, recall, F-measure 

and G-mean) for each classifier that is used on various training and testing sets. 
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Figure 1.1. Research framework 

Goal 2- Identify the fault prone requirements in an SRS: Another dissertation goal is to 

provide requirement authors (post inspections) the list of fault prone requirements from 

requirement reviews through the following steps: 

1. Implement the KESRI (Keyphrase Extraction for Software Requirements Inspections) 

approach that input an SRS and true faults validated as result of goal 1 (step 3). 

2. The KESRI approach adapts various Key Phrase Extraction (KPE) algorithms to output 

the set of top ranked prominent phrases extracted from requirement reviews. These 

phrases provide the best contextual information about the fault (but in fewer words) 

without restricting the inspectors to adhere to any specific NL guidelines while 

documenting faults.  

3. The output from KESRI approach are the top ranked keyphrases (step 4), which are input 

to the MOKSA (Mapping Of Keyphrases to SRS Approach). The MOKSA approach 

maps these keyphrases to SRS using semantic similarity approaches. 

Step 3: 
I/P True 
Faults & 

SRS 

Useful and non-
useful Reviews 

SRS 

Reviews 

Implement 
LSA and 

LDA 

IRR 

Graph Mining 
Algorithms 

Step 1: Perform 
Inspection 

Step 2: Classification 
of reviews 

Step 5:  
Fault prone 

Requirement 
Step 4: I/P 
Keyphrases 

from 
KESRIs 

Step 6: 
Apply semantic 

analysis techniques 

KESRI 
Validation 
by Domain 

Expert MOKSA 
Step 9: Analyze 

IRR Graph 

Goal 
1 

Goal 2 
 

Step 7: Generate 
Graph  

Step 8: Generate 
IRR with 

Cliques, K-
Clique 

Communities 

Goal 
3 

Fix SRS 

Eye 
tracking 

inspection 
study 

Feature 
selection & 

ML 
algorithms 

Characteristics 
of skilled 
inspectors 

Goal 4 Step 10: 
Perform 

Inspection 
Step 11: 

various eye 
tracking 
features 



 

13 
 

4. The output of MOKSA (step 5) is the list of fault prone requirements in an SRS and these 

fault prone requirements are validated by domain expert. The result from goal 2 would 

enable requirements author with additional assist to fix all fault prone requirements post 

inspections and that can save a lot of valuable time. 

Goal 3- Identification of a technique to guide CIA during fault fixation post 

inspections: This goal assists the requirements authors in handling CIA during fault fixation post 

inspections. This goal helps the author with post inspection analysis of SRS document for 

strongly interrelated requirements (IRRs) using graph mining that are most likely be impacted by 

a change in one requirement. 

1. Implement a Latent Semantic Analysis (LSA) algorithm to develop similarity score 

matrix to establish relevance between each requirement in an SRS document (Step 6). 

2. Query each requirement against similarity score obtained in previous step, to find 

similarity of that query with other requirements (indexes) in SRS document. Store these 

indexes on a file. 

3. Generate an undirected graph from the indexes stored on the file (step 7). 

4. Implement graph mining algorithms (clique, k-clique community etc.) over the graph 

generated (in step 7) to find strongly interrelated requirements (IRRs). This is step 8 in 

goal 3. 

5. Analyze interrelated requirements (from step 8) and label highly impacted requirements 

in an SRS document based on for strongly related requirements (i.e. cliques, K-Cliques). 

Post-inspection, requirements author can verify CIA based on these related requirements 

and can fix fault in IRRs (Step 9 in Figure 1.1). 
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Goal 4- Selection of skilled inspectors: This goal aims at finding generalizable 

characteristics of skilled inspectors that can find higher number of faults. The selection of skilled 

inspectors is achieved in the following steps: 

1. The inspection study is performed using eye tracking equipment with PGCS SRS 

document at NDSU (step 10 in Figure 1.1). The output of this inspection is various 

features e.g., reading patterns, time spent per page, number of linear saccades scanned 

during inspections, etc., (step 11 in Figure 1.1). 

2. The features obtained in step 11 are analyzed using principal component analysis (a 

technique to evaluate the most informative features). 

3. Using the principal features evaluated in previous step are then used to train the ML 

models. The trained models are next tested using a test data to obtain the prediction. The 

features that best train the ML approach are labels as characteristic features to select the 

skilled inspectors. 

The results from this goal can help requirement authors determine the skilled inspectors 

that may have reported higher number of faults. The requirements author can priorities reviews 

of such a skilled inspector. 
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2. BACKGROUND 

This chapter discusses the existing work on ML and NL techniques most relevant to the 

dissertation focus areas. 

2.1. Machine Learning in Software Engineering 

In software engineering (SE), ML has been applied to predict software defects during 

code, design and testing phases [17], [23], [45]–[48]. Most of the related work has applied ML 

on code and design reviews (unstructured text) to help software developers fix those faults in 

order to improve software quality [16], [17], [22], [49]–[53]. These studies have shown that the 

use of automated tools (e.g. Gerrit for code reviews) [54]–[57] results in improved quality. These 

tools utilize version histories of a software project (i.e., code/design changes) to recommend 

problematic classes/design in a software project. 

To the best of my knowledge, ML approaches have not yet been applied to automate 

requirements inspection activities. Therefore, this dissertation is a first attempt at developing an 

automated approach to validate requirement reviews and find fault-prone areas in an SRS post 

inspection (refer chapter 1 for more details). 

In terms of validating reviews with supervised learning methods; Bosu et al., [4], Chen et 

al., [5] and Agarwal et al., [6] developed an approach to validate textual data (from code reviews, 

mobile apps, and tweets from twitter respectively) and categorize them into useful or non-useful 

reviews. These ML approaches (classification) use the training reviews to predict the outcome of 

test reviews. However, the results from application of these ML approaches showed a propensity 

towards misclassification errors (i.e., a false review is labeled as true and vice versa). This 

research tries to leverage the prior work on ML approaches and extend it on requirement reviews 

(details appear in chapter 3). 
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2.2. Machine Learning Algorithms 

Some of the major ML algorithms and techniques identified during the literature search 

are discussed below and are organized around major dissertation goals.  

Classifiers for validating requirement reviews: Stefan et al. [58] reported most 

applicable classification families (Statistical classifiers, Support Vector Machines, Ensemble, 

Decision Trees etc.) that can be used to predict fault prone modules. This dissertation plan to 

develop a technique using these prominent classifiers to validate inspection reviews and develop 

a recommender system (that produces final review categorization outcome). The proposed 

recommender system, in this dissertation, uses a voting method to predict the final outcome from 

various selected classifiers. Voting is a process in which the final outcome to a review is 

assigned based on majority prediction from all selected classifiers. The applicability of the voting 

method is motivated by Sun et al. [47], that showed that voting predicts the most number of 

faults, as well as most variant fault-types and that diverse classifiers, make better ensemble than 

individual classifiers. 

Keyphrase extraction algorithms for identification of fault-prone requirements: One of 

our goal aims at finding fault prone requirements by extracting prominent keyphrases from 

requirement reviews and then mapping them to individual requirements in an SRS. Keyphrase 

Extraction (KPE) is a process of extracting prominent phrases from an NL text with 

unsupervised and supervised learning algorithms [11]. This dissertation leverage existing KPE 

algorithms to extract prominent phrases from fault logs (requirement reviews) to identify the 

problematic requirements in an SRS. Most relevant KPE algorithms reported in literature [20], 

[59], [60], [6], [7], [16], [57], [61], [62], [75]–[77], can be categorized into three categories and 

are discussed below: 



 

17 
 

• Graph-based algorithms: Graph-based KPE algorithms ( e.g., Mihalcea et al., [63]) 

models the NL text into a graph, where key phrases are the nodes and the edges are the 

lexical structuring between two POS tags e.g., Noun-Verbs. These algorithms report that 

the best key phrases are extracted with Noun-Adjective lexical structuring. Their results 

guided my research at identifying lexical structuring most applicable to NL text in 

software requirements. Wan et al. [64], reported a similar approach (called CollabRank 

on Single-Document cluster) that clustered the documents before extracting keyphrases. 

This approach ranks prominent keyphrases higher because of their higher relevance 

within a document cluster. Other algorithms that use graph-based models include 

Multipartite Rank by [65], a supervised approach called PositionRank by [10], and LDA 

based TopicRank algorithm proposed by [9][66].  

• Statistical algorithms: These are unsupervised learning algorithms and in general use 

TFIDF score (to generate significance) for a term in a given text to identify prominent 

keyphrases from the NL text. Some approaches such as, KPMiner by El-Beltagy and 

Rafea [8], developed a KPE (called KP-Miner) from multilingual documents that can 

extract keyphrases without requiring training document for their algorithm. The 

prominent phrases are extracted through generation of candidate terms (based on TFIDF 

score) followed by weight assignment to rank the terms. Other similar models that can 

extract key phrases from NL text include YAKE [67], TOPIA [61], and RAKE [16], [61].  

• Feature-based algorithms: Witten et al. [68] developed a supervised learning algorithm 

called automatic keyphrase extraction (KEA) from text using lexical methods. Their 

approach generates the feature values for candidate terms based on frequencies of 

occurrence and then employ ML algorithms to identify the best keyphrase set. Similarly, 
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Nguyen et al. [69], proposed a model known as WINGNUS that generates key phrases 

using logical structures of the documents during candidate identification.  

KPE algorithms have been applied in software requirements domain to automatically 

extract glossary items [16] and to check conformance to NL requirements templates [57]. 

Aguilera and Berry [16] extracted phrases from an NL requirements document by identifying 

important topics in the text and then extracting prominent phrases from those topics. Some 

researchers have reported KPE using POS (such as nouns, adjectives, etc.,), parsing, and by 

using heuristic measures such as, Euclidean distance between two terms [16]. Some researchers 

have explored KPE from NL text using graph models [63], multipartite graphs [65], ranking 

models [64][10][66], lexical methods [68], building general-purpose KPE system [8], logical 

structure [69], and collective multilingual KPE model [67]. Aforementioned categories of 

algorithms were implemented and adapted to support key phrase extraction from software 

requirements document. 

Identifying CIA technique to support fault-fixations post inspections: To assist 

requirements authors during fault fixation, two competing algorithms namely Latent Semantic 

Analysis (LSA) and Latent Dirichlet Allocation (LDA) were analyzed. LSA is a semantic 

similarity technique based on a mathematical foundation known as singular value decomposition, 

whereas, LDA assigns similarity score to two words based on context in which they appear in a 

document [17], [40], [57], [70]. This decision of including LDA and LSA was guided by the 

evidence gathered from the literature. Within software engineering domain, semantic analysis 

has been applied to improve and automate various processes, e.g., extraction of glossaries, 

software requirements evolutions, finding similarities in bug-reports and software traceability.  
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Chetan et.al [16], used semantic analysis to extract candidate terms for glossary based on 

relevance between terms in a requirements document. They reported that using topic modeling in 

NL requirements resulted in 20% improvement in accuracy over generic term extraction tools. 

Similarly, the concept of semantic analysis was used on publicly available user reviews [19] to 

evolve requirements for future releases of the software. Software engineering researchers also 

applied semantic analysis [17] to automate the software traceability by using LDA to generate 

traceability links during software development. A similar work by Dit et.al [18] used the 

semantic similarity of comments in bug reports to detect duplicate bugs and save duplicated 

work. 

Motivated by the prior literature findings, this dissertation aims at using semantic 

analysis to automatically locate fault-prone areas in software requirements and to extract most 

similar requirements. The successful application of semantic analysis approaches on SRS and 

requirement reviews can assist requirements engineers post inspections 

Selection of inspectors: This goal aimed at finding characteristics of skilled inspectors 

that are most likely to report higher 3 of faults during inspection, and these characteristics were 

identified using supervised learning algorithms (by training them on inspection data).   

2.3. Natural Language Processing 

Software engineering researchers have applied NLP to process NL text (i.e. code reviews, 

test reviews) to improve software quality [16], [57], [71], [72]. These studies developed and 

validated automated approaches that can find valuable features (POS tags, most informative and 

similar features) from NL text (code reviews, app reviews etc.) to improve their predictions. For 

example, Guzman et al., [73], used online app reviews to analyze users’ feedback to identify app 

features that need improvement before next release. They showed that features extracted by their 
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NLP approach resulted in better software evolution task selection. Similarly, NL requirement 

reviews require a lot of pre-processing (i.e., removal of punctuations, stop words, removing 

slangs and fixing spelling mistakes), to extract the most valuable features. This research 

leverages work from studies [16], [57], [71], [72] that described NL preprocessing methods to 

convert unstructured reviews into more structured reviews. 

2.4. Role of POS Tags in Mining NL Text 

Natural language is built over part of speech (POS) tags like an adjective, adverbs, nouns, 

and verbs, etc., and all requirements are written by combining various POS tags [6], [7], [16], 

[57], [61], [62]. The identification of important POS tags that are pertinent to SRS quality and 

evaluation based on POS tags is one of the sub-goal of this dissertation. 

On that end, this dissertation found some studies in literature like Agarwal et.al [6], in 

which they used Twitter data (again unstructured text) to classify tweets into categories based on 

their polarity (positives, negatives and neutral) using Tree-based classification approach and part 

of speech (POS) tags. They reported improved results by POS extraction while implementing 

ML algorithm. Another work in the classification of NL text was presented by Gimpel et.al [7] in 

which they analyzed Twitter tweets using POS tags. They mentioned that the most prominent 

POS tags that are present in any tweet are Nouns (N), Adjectives (J), Adverbs (R), punctuations, 

Verbs (V) and Determiners (DT). The above-discussed work related to unstructured text and the 

use of POS tags gave us insight on implementing our proposed approach to automate inspection 

reviews to develop guidelines to write high-quality SRS document. The development of high-

quality SRS document can ensure comparatively less ambiguous requirements.  
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2.5. Graph Mining for Requirement Reviews 

Graphs have become intriguingly important to model complicated structures e.g. protein 

structure, network structure, biological structures, webs (with various hyperlinks to different 

webpages), circuits and social network [20]. All the links within a graph are called edges and an 

edge connects two nodes. Nodes may represent various locations for a path search problem, two 

different web pages in hyperlink evaluation in webs and so on. Many algorithms have been 

developed for mining crucial information such as shortest paths, centrality between-ness (to find 

out central node in a graph), to find isomorphic patterns (to locate similar patterns in a graph), 

clique mining (strongly connected component) [20]. 

As described in chapter 1, goal-3 aims at finding fault-prone areas in SRS document with 

the help of graph mining algorithms. Tang and Huan [74], [75], discussed the importance of 

node-centric detection for communities within a graph. A node-centric communities (in a graph) 

satisfies properties like reachability, mutuality and degrees (details in [75], [74]) for a specific 

node. Communities in graph include nodes that are closely-knit share some common traits. For 

example, a strong community with 5 nodes interconnected to each other in a social network 

graph may indicate that all the 5 nodes (that represent users or persons in this scenario) are 

mutual friends or family members or go to work together etc. A community contains edges 

between certain nodes. A community that contains an edge from each node to every other node is 

a strong community and is called a clique. The communities that share maximum number of 

edges across a given number of nodes (say N= 4) in a set of graph S, is said to be K-plex if every 

member is connected to N-K other members. K-plex are also known as relaxation on cliques i.e. 

for K=1 and N=4, the other members must be connected to 3 other members. A lot of work [20] 
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has been done to mine such strongly connected communities in a graph to locate cliques and K-

plex. 

On the similar track, requirements in a SRS document also have strong cohesion between 

other requirements in a document. These interrelated requirements in a SRS document could 

provide essential information on correlated requirements that are needed to be inspected while 

fixing for fault. The goal-3 in chapter 1 aims to find highly interconnected areas within a SRS 

document by mining for cliques and K-plex. The major challenge in this goal is to transform an 

entire SRS document into a graph to apply clique mining approaches.  
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3. AUTOMATING THE VALIDATION PROCESS OF REQUIREMENT REVIEWS 

This chapter discusses the work to automate the validation of requirement reviews into 

useful vs. non-useful category. To automate the inspection process, few studies have been 

conducted at North Dakota State University (NDSU), with SRS documents namely RIM, PGCS 

and LAS (details can be found in chapter 1). This chapter presents extensive details about 

proposed approach, experiment design, experiment methodologies, results, and discussion of 

results regarding these three studies to evaluate the review automation process; and these are 

referred to as study 1 [72], study 2 [76], and study 3 [77] (in chronological order). These three 

studies are described as sub-goals of goal-1 (see Figure 3.1). 

3.1. Study 1 - Validation of Inspection Reviews Over Variable Feature Set Threshold 

This study was conducted to identify the optimal number of features required and to 

identify prominent POS tags most suited to train model for validation of software reviews. 

Unlike prior studies, this study included reviews from a semantically similar domain (of movies) 

in addition to domain specific reviews (i.e., inspection reviews). This was done to understand the 

quality of features extracted from semantically similar domain, and the effect the large volume of 

features had on evaluation metrics. Another motivation to include movie reviews was to 

overcome biased classification due to class-imbalance problem (discussed later) with inspection 

reviews. 

To overcome class-imbalance, certain sampling techniques (random under sampling, 

random oversampling, synthetic minority oversampling technique, boosting etc.) were 

implemented for inspection reviews to select the most applicable sampling technique to 

inspection reviews and movie reviews. 
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Figure 3.1. Studies conducted to achieve goal-1 

Next, the complete feature set from both the domains was ranked separately based on 

their informative importance and was then divided into 20 equal intervals (each interval 

containing 5% of features). After that, a training model for each feature set interval and six POS 

tags (Nouns, Adverbs, Verbs, Adjectives, Determiners, and without-POS) was trained, to plot 

their classification prediction (for test set) against evaluation metrics (F-measure and G-mean).  

Finally, the outcomes (F-measure, G-mean etc.,) obtained for training models (inspection and 

movies) by manipulating number of features and POS tags, were contrasted to observe prominent 

POS tags and best feature set range. Extensive details can be found in [72] while some prominent 

results from this study-1 have been described in following subsequent sections. 

3.1.1. Proposed Approach  

Our proposed mining approach used supervised learning classifiers, reviews 

(requirements and movies) and features generated during study run to evaluate the accuracy and 

G-mean (i.e., geometric mean of precision and recall). Two types of review data sets 

(requirement reviews and online movie reviews) were used in this study to develop two different 

training models (inspection trained vs. movie trained respectively).  

The reviews generated online for movies were 10 times larger than software requirement 

reviews, were more readily available online, and were evaluated for addressing class imbalance 
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problem in mining. The reviews were divided equally into two categories: positive and negative. 

Positive reviews in context to movies used positive feedback to describe a movie while negative 

reviews used detrimental feedback to describe a movie. The study-1 used ‘positive’ category of 

movie reviews to train the model to detect false-positives and ‘negative’ category to detect true-

faults.  

The features were extracted from both ‘movies’ and ‘inspection’ reviews. The whole 

feature-set for both the reviews (‘movies’ and ‘inspection’) was divided into 20 intervals (5% to 

100%) of equal size to perform analysis within each feature-set interval. The model was trained 

20 times by gradually increasing the size by 5% each time until all features were used to train the 

model. The ‘movies trained’ and inspection trained model had a total of 11318 and 368 features 

respectively. The following example explains the idea behind extracting features with the help of 

NL text.  

3.1.1.1. Feature set generation 

Feature set generation is explained with an example (see Table 3.1) using three reviews. 

Two reviews in Table 3.1 are true-faults while one review is a false-positive. Each word in these 

reviews is a feature and collection of all the features from all the reviews in each category makes 

feature set.  

Table 3.1. Example of feature reviews categories 

Reviews Category 

The working of system in heavy load is not tested. Fault 

System load is not tested. Fault 

Who opened the gate? False-positive 

 
The extracted feature set is shown in Table 3.2. The feature “system: 2” is interpreted as 

“system” being the unique feature and the number after colons in “system: 2” denotes the 
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frequency of that feature in a fault class. A similar feature set as generated in Table 3.2 was used 

to train the models using supervised learning classifiers.  

Table 3.2. Example of feature set generation 

Reviews Class Feature set size 

“working:1”, “system:2”, “heavy:1”, “load:2”, 
“not:2”, “tested:2” 

Fault 6 

“Who:1”, “opened:1”, “gate:1” False-positive 3 

 
3.1.1.2. Assigning category to test review  

The assignment of category (i.e. fault or false-positive) to a test review is explained with 

the following example sentence which is tested against the feature set generated in Table 3.2. 

The test review is as follows: 

“System variable is not tested”. 

In this example, total size of the feature set is 9 (6 from fault category and 3 from non-

fault); various frequent occurring words in English such as ‘the’, ‘in’ and ‘is’ are removed as part 

of pre-processing task to create more informative and descriptive feature set. Our proposed 

approach extracted all unique features from a training sentence and stored them along with their 

frequency of occurrence. The test sentence was then tested against the feature set developed 

during training to assign a final category. As seen, the features from an example test sentence, 

“system” and “tested” have higher frequencies in “fault” of Table 3.2, while none feature occurs 

in false-positive class. So, this test sentence was assigned fault class because more informative 

features in fault class were matched.  

3.1.1.3. Feature set generation using POS tags  

POS tags are grammatical tagging or word-category disambiguation to mark up a word in 

text corpus corresponding to its lexical categories. Study-1 proposed an approach in conjunction 
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with POS tags to perform preliminary analysis of classification results for inspection reviews and 

movie reviews. Gimpel et al. [7], reported in their research that in any unstructured text, the most 

important POS tags are Nouns, Adjectives, Verbs, Adverbs and Determiners. They claimed that 

“the extraction of only important POS out of an unstructured sentence delivered apposite sense”.  

So, the study-1 trained classification model over feature sets obtained for each of the POS tags as 

guided by Gimpel et al., in [7]. The analysis was performed over 20 intervals (5% to 100%) of 

feature-set for each POS tag and during the analysis, it was observed that both the models 

performed poorer when trained over determiners. The reasons for this poor performance was due 

to use of ‘engish stopword’ that removed most of the determiners (like ‘the’, ‘an’, ‘that’ etc.) 

during preprocessing steps and the determiners did not provide any important information about 

context. 

Additionally, there were very low number of features generated during training on 

determiners for both the models (less than 50 in inspection trained and less than 100 in movies 

trained); so the determiners were removed from the analysis. The experiment design, experiment 

procedure, research questions investigated are discussed in next section.  

3.1.2. Experiment Design and Procedure  

Some details about major RQs, variables exploited in study-1 are discussed in this section 

as follows: 

3.1.2.1. Major research questions  

There were two major research questions that were investigated in study-1 are as follows. 

RQ-1: Does training our mining approach on movie reviews and using part of speech 

(POS) tags overcome class imbalance problem associated with inspection reviews? 
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RQ-2: What impact does the size of features set included in training model had on 

evaluation metrics (F-measure and G-mean) of validating reviews? 

3.1.2.2. Variables used  

There were independent and dependent variables that were included into experiment. 

These are discussed as follows: 

• Independent Variables: these are the variables that were manipulated during study run. 

The independent variables in this study were nine types of classifiers used (see Table 

3.3), training models (inspection trained and movie trained), feature set size (20 equal 

intervals) and six prominent part of speech (POS) tags (namely Nouns (N), Adjectives 

(J), Verbs (V), Adverbs (R), Determiners (D), and without-POS) that were used in this 

study. 

• Dependent Variables: These are the variables that were measured to record the effect of 

independent variables. Evaluation metrics (Geometric mean of precision and recall, F-

measure) and Threshold Value (the percentage of features needed to train the model to 

achieve higher G-mean) were used. 

Table 3.3. Various classifiers used in this study 

Classification Family Name of Classifiers 

Bayesian Naive Bayes (NB), Multinomial NB, and Bernoulli NB 

Support Vector Classification (SVC) Linear SVC and NuSVC 

Ensemble Random Forest and Extra Trees 

Regression Logistic and Stochastic Gradient Descent (SGD) 

Trees Decision Trees 
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Next, the details regarding various artifacts and subjects participated in this study are 

discussed. 

3.1.2.3. Artifacts and participating subjects  

There were two sets of artifacts that were used in study-1, where, one set consisted of all 

the reviews belonging to inspection of Parking Garage Control System (PGCS) SRS document 

and the other set consisted of reviews from closely related domain of movies. A total of 41 

inspectors from software engineering (SE) course at NDSU (27 undergraduates and 14 

graduates) participated and performed an inspection on software artifact that generated reviews 

used in this study.  

3.1.3. Results and Analysis 

This section report results regarding the application of two differently trained models 

(‘inspection’ vs. ‘movie’) and six POS tags (Nouns, Adverbs, Verbs, Adjectives, Determiners, 

and ‘without-POS’) at validating requirement reviews. The results compare G-mean and F-

measure of test-set that was tested across varying features (full feature set divided into 20 equal 

intervals) of each training model type. The percentage of features varied (5% to 100%), were 

plotted along X-axis while G-mean and F-measure was plotted along Y-axis (Figure 3.2 and 

Figure 3.3). The response variable (evaluation metrics) was observed for various POS 

explanatory variables over different feature set %age; W-POS, POS-J, POS-N, POS-R and POS-

V stands for ‘Without POS’, ‘POS adjective (J)’, ‘POS noun (N)’, ‘POS adverb (R)’ and ‘POS 

verb (V)’ respectively. The results shown in Figure 3.2 and Figure 3.3 were analyzed and 

discussed around the two RQ’s described earlier. 
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Figure 3.2. Results of movie trained model for G-mean and F-measure 

3.1.3.1. Results for RQ-1 treated for class-imbalance 

The purpose of this requirement question was to investigate if reviews from a 

semantically similar domain (movie domain) in NL context can overcome classification 

prediction of inspection model that was treated for class-imbalance threat. So, five POS tags as 

shown in Figure 3.2 and Figure 3.3, were analyzed for both the models trained on inspection and 

movies. Some major outcomes for this RQ are discussed below: 

• The model training (for both movie and inspection reviews) using W-POS (Without POS) 

did not show any stable trend in evaluation metrics. 

• Movie trained and Inspection trained model showed a stable trend for two part of speech 

tags (namely POS-N and POS-J). 

• Movie trained performed slightly better than inspection trained w.r.t Stable trend of POS-

N and POS-J. 

Implications from results of RQ-1: Inspection trained model showed slightly better 

performance than movies trained and the reason behind this was that the test reviews and training 

reviews belonged to same domain. The POS tags Nouns and Adjectives were prominent in both 

the models because reviewers tend to emphasize more on Nouns and Adjectives while reporting 

a fault. It was also observed that movies trained model yielded better stable trend (for POS-N 
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and POJ-J) than inspection trained because movie trained were larger corpus and consisted of 

most naturally occurring instances of reviews compared to inspection trained (where ROS was 

used to address class imbalance). 

 

Figure 3.3. Results of G-mean and F-measure of inspection trained model 

In conclusion, few inferences drawn from RQ-1 were the performance of both the models 

can be improved with POS tags and reviews from semantically similar domain (movie trained) 

could help in generating better stable trends (with specific POS tags) for evaluation metrics as 

compared to inspections domain (treated for class-imbalance).  

3.1.3.2. Results from RQ-2 treated for optimal feature set threshold 

This requirement question was investigated to study the threshold for most informative 

features-to-include in training model to achieve stable results. Each model was analyzed over 

complete range of feature set (i.e. from 5% to 100% features), where, the complete feature set 

was divided into intervals of 5% forming 20 equally spaced intervals. The reason to choose 20 

equal intervals was to observe the results by gradually adding small but significant number of 

features in next iteration, to sketch a refined prediction for complete data set. 

Next, the G-mean and F-measure was observed for the most balance percentage interval 

beyond which the gain in performance becomes stable. The other reason towards observing for 
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such a threshold interval was to minimize the tendency to misclassification error. The analysis 

was performed for each model using POS tags and variable feature sets against testing set 

(Figure 3.2 and Figure 3.3). The X-axis shows the percentage of features taken to train the model 

and Y-axis shows evaluation metrics. Some major outcomes with this RQ’s are discussed as 

below: 

• W-POS tag was found under-performing w.r.t other POS tags for both the models over 

entire range of features. 

• For movie-trained model, It was observed that a stable G-mean and F-measure was 

obtained for POS-N and POS-J beyond feature set percentage range of 45%, whereas for 

inspection trained, the stable trend for POS-N and POS-J was seen beyond feature set 

interval range of 65%.  

Implications from results of RQ-2: From the observations above, there were few 

implications about the results. First, validation of reviews was better performed with POS tags 

(POS-N and POS-J), and second, the most reliable feature set range with POS tags that gave the 

best performance was 45% (for movie trained) and 65% (for inspection trained).   

3.1.4. Discussion of Results 

The result presented in section 3.1.3 showed that POS tags (POS-N and POS-J) were 

most prominent. In this section, the evaluation regarding the results are presented for POS-N and 

POS-J with R-square and P-values that predict model’s capability. Next, the polynomial 

regression was used to fit the model’s prediction to maximum polynomial degree of three 

because beyond that the model resulted in over-fitting and complexity, such that it did not 

perform well on any new/unseen data.  
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3.1.4.1. Discussion on RQ-1 treated for class-imbalance 

The discussion in this section involves the applicability of movie reviews to validate 

inspection reviews. The R-squared values and P-values are discussed for both the models w.r.t 

evaluation metrics (discussed in Section 3.1.2). Table 3.4 below shows the R-square values and 

P-values for the POS tags that showed best stable trend among all POS tags considered for 

analysis. W-POS tag was also considered to evaluate the difference between the use of POS tags 

and without POS. The significant P-values are made bold and the discussion is presented below: 

• Movies trained model showed the better performance as the P-values for this model were 

significant with 95% of confidence for both POS-N and POS-J. 

• On the other side, W-POS failed to show any significant R-square value for any of the 

evaluation metric. 

Table 3.4. R-square and P-values for both trained models 

Trained 
models 

Inspection Trained Movies Trained 

G-mean F-measure G-mean F-measure 

POS-J 0.3827 0.4751 0.6135 (2) 0.6431 

P-Value 0.095836 0.034265 0.004016 0.002223 

POS-N 0.3489 (3) 0.5455 (3) 0.5266 (3) 0.5797 (3) 

P-Value 0.13163 0.012856 0.01706 0.007384 

W-POS 0.1103 (3) 0.2997 (3) 0.1158 (3) 0.1001 (3) 

P-Value 0.6434 0.199229 0.626847 0.674563 

 
The major implication from Table 3.4 was that using movies trained model provided 

significant results for both the evaluation metrics (G-mean and F-measure). The class imbalance 

can be improved by using reviews from a balanced review-set taken from semantically similar 

domain. 
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3.1.4.2. Discussion on RQ-2 treated for optimal feature set threshold 

This section presents the discussion on percentage of feature sets required to include 

while training a model. The discussion is presented for POS-N and POS-J for movies trained 

model in Figure 3.3. 

• The R-square value for POS-J (0.6431 in Figure 3.4b) and POS-J (0.6135 in Figure 3.4a) 

showed that our model was able to predict 64.31% of the variance in response variable. 

• The R-square values shown in Figure 3.4 were significant with P-value test at 95% 

confidence level. 

• In Figure 3.4, it was observed that for both POS-N and POS-J, the polynomial regression 

curve exactly fits the data points. POS-N data was exactly fit by polynomial regression 

over interval (35% to 60%) while POS-J data was fit over interval (40% to 90%) for both 

G-mean and F-measure. 

• From results in section 3.1.2, it was observed that the stable behavior in G-mean and F-

measure was shown beyond feature set interval 45%. This can be seen from Figure 3.4 

that beyond the interval value 45%, the polynomial curve exactly fits the data points for 

POS-N and POS-J. 

 

Figure 3.4. R-square and P-value analysis of movies trained data for POS-N and POS-J 
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3.2. Study 2 - An Empirical Investigation to Overcome Class-imbalance 

The focus of study-2 was on validating useful (true-faults) versus false-positives (non-

faults) reviews, overcoming class-imbalance (using sampling and various POS tags 

combination). Study-2 also focused on restricting misclassification error rate due to false 

classification prediction. The objectives for study-2 are derived from the future work of study-1 

and which are discussed as follows: 

• The classification results were analyzed over individual POS tags i.e. considering just one 

POS tag at a time like noun, adjective, adverb etc., and their various combinations can be 

used to further explore model effectiveness on requirement reviews. 

• The classification accuracy (in terms of G-mean and F-measure) was between 50-60%, 

and it was not significant and contained misclassification errors. So, study-2 explored 

ways to restrict misclassification. 

Study-1 provided some good insights on analyzing the classification problem with POS 

tags and reviews from semantically similar domain. Study-2 used these important insights from 

study-1 to train and analyze the models. Again, two sets of reviews were taken i.e. inspection and 

movies (same as in study-1). The class imbalance problem is handled by introducing some 

techniques like AdaBoost, SMOTE (Synthetic Minority Over-Sampling TEchnique), Random 

Over-Sampling (ROS) and Random Under-Sampling (RUS) techniques etc. More details about 

study-2 can be found in [76] and some details of study-2 about experiment procedure, design, 

methodology etc. are discussed in following subsequent sections. 

3.2.1. Proposed Approach 

Study-2 developed an automated mining approach to validate requirement reviews using 

supervised learning classifiers, NLP over various combinations of POS tags. In this section, 
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major components of study-2 are discussed at identifying true faults vs. false-positives in 

requirement reviews. 

3.2.1.1. Selection of classifiers, training and testing sets  

This section discusses selection of classification model, natural language processing and 

POS tags and training data set used to develop, and testing set used to test those classification 

models. 

Supervised learning classifiers (model selection): Nine (9) different classifiers were 

used to develop a training model that classified each individual review into a fault or a false-

positive category (Same as in study 1 and shown in Table 3.3). The classifiers were selected 

based on prior literature studies [6][20], [21] and based on the results during cross-validation 

(performed as part of model selection). Each review was classified based on the majority 

outcome from all nine classifiers (i.e. voting). To avoid situations of equal prediction conflict, an 

odd number of classifiers were used in this research to be able to classify each review either as 

fault or false-positive. 

Natural language and POS tags: NL requirement reviews were analyzed using same 

POS tags as used in study 1 (selected based on literature search [22]). Briand et al. [22], applied 

POS tags over twitter data and found that most valuable information can be extracted from POS 

tags like nouns (N), pronouns (PR), verbs (V), adjectives (J), determiner (D) and adverb (R). For 

example, the POS tagging is explained through the following inspection review: 

“This requirement does not provide error handling.” 

The dis-integration of this review over POS tags is shown below: 

“This/D requirement/N does/V not/R provide/V error/N handling/V” 
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Determiners were removed as part of stop words in NL text. So, the final POS tags 

analyzed were Adverbs (R), Verbs (V), Nouns (N), and Adjectives (J) along with their all their 

16 combinations (e.g., RV, JRV). 

Training and testing data sets: Study-2 was conducted with same reviews (used in study 

1) generated from PGCS inspection document. Total number of reported faults (reviews) were 

857 (201 true faults and 656 false positives). The 10-fold cross-validation was used and repeated 

10 times over nine different classifiers. Next, the cross-validation score was tested for all these 

nine selected classifiers using AdaBoost, RUS, ROS, SMOTE [17], [18], [20], and without 

sampling to address class imbalance problem (refer Table 3.5). Table 3.5 shows the mean score 

of all 10 repetition of cross-validation. 

Table 3.5. Cross validation results for model selection 

Classifiers Without Sampling Ada Boost RUS ROS SMOTE 

Naïve Bayes 0.721 0.717 0.622 0.737 0.746 

Multinomial Naïve Bayes 0.798 0.723 0.676 0.825 0.831 

Bernoulli Naïve Bayes 0.776 0.750 0.660 0.831 0.880 

Decision Tree 0.761 0.77 0.637 0.883 0.840 

Linear SVC 0.813 0.816 0.704 0.895 0.905 

Random Forest 0.805 0.808 0.670 0.925 0.919 

Extra Tree 0.818 0.819 0.682 0.951 0.938 

Logistic Regression 0.794 0.751 0.691 0.852 0.857 

SGD 0.775 0.732 0.684 0.871 0.890 

 
RUS, AdaBoost and without sampling methods were discarded because they resulted in 

low cross-validation score as compared to ROS and SMOTE (Table 3.5). It was observed that 

ROS and SMOTE performed almost identical in cross-validation, but ROS was chosen for study-

2 to address class imbalance because it out-performed SMOTE for decision-trees, Random 

Forest, extra trees (main ensemble classifiers). Also, it was easy to implement and less time 
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consuming to deliver results. The percentage split for training and testing data for both the 

models was 70% train and 30% test data (shown in Figure 3.5). 

 

Figure 3.5. Training and testing set split for study 2 

Models trained over requirement reviews are also referred to as ‘inspection trained’ and 

contained 920 requirement reviews (after ROS sampling). The ROS of test set is not performed 

to avoid redundant test reviews and to avoid excessive misclassification error. The model trained 

over movies reviews (that are publicly available at [59]) was referred to as ‘movie trained’.  

The next sub-section discusses the working of proposed approach of study-2. 

3.2.1.2. Working of proposed approach  

This section describes the process of training and testing our mining approach to classify 

a review into a true-fault or a false-positive. 

Training models and testing sets: As mentioned earlier, there were a total of 4 different 

POS tags (without considering determiners and W-POS) along with their all possible 

combinations (“J and R”, “J and V”, “R and V” and “J, R and V” etc.) to train our models. This 

resulted in a total of 15 different combinations of POS tags. Additionally, one model was trained 

without using POS (a conventional approach that acted as a control group). This resulted in 16 

857 reviews 
[656 NF & 201 F] 

Training-601 reviews 
[460 FP & 141 F] 

Testing-256 reviews 
[196 NF & 60 F] 

70% 30% 

Final training-920 reviews 
[460 FP & 460 F] 

ROS 
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different ways to train each model (separately for ‘inspection trained’ and ‘movie trained’). The 

following example explains the process to train ‘movies review’ model on Adjectives (“J”): 

Training: Each movie review was read by the model; and Adjectives (‘J’) as described 

earlier, were extracted from it. The extracted part from a review was called a feature and all 

extracted features from all the reviews formed a ‘feature set’ for Adjectives (J). This collection 

of feature set (for ‘J’) represented the trained model over POS tag ‘J’. This process was repeated 

for all 16 combinations of J, R, N and V including none. 

Testing: Each review from test set was tested against the trained model (developed 

during training for POS ‘J’). When a review was tested against model trained on Adjective (‘J’), 

then same POS tag (‘J’ in this case) was extracted from the test review. The extracted POS tag 

from test review was tested against feature set with all nine different classifiers (Table 3.3) to 

classify into a fault or false-positive (based on the majority outcome). 

Priority classes and confidence analysis: The priority analysis was performed (similar 

analysis that has been used successfully in the domain of movie reviews [24][25]) to determine 

the priority of requirement review. Priority classes described extent of review’s confidence in 

each class based on the priority value (higher the value more the confidence). The models were 

trained using 16 different model instances but used top 10 POS combinations out of 16. The 

formation of priority classes and confidence analysis is explained below: 

Confidence analysis: Every review in a test set was tracked when tested against the 

training model to develop its classification outcome. The analysis was performed for both trained 

models and the classification outcome for each review was combined from all the model 

instances (16 POS in total) to obtain confidence value. For example, if out of 16 POS model 

instances, 12 categorized a review into as true-fault, then that review is assigned a fault-
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confidence value of 0.75 (12/16) and a false-positive confidence value of 0.25 (4/16). This 

analysis was replicated for all reviews. 

Priority classes: The priority classes were used to analyze the dispersal of review 

confidence i.e. based on confidence-value. Priority classes assign unique interval to each review 

within each category (fault or false positives) based on extent of confidence; which defines the 

value with which a review was being classified to a category. For example, based on the total 

number of trained model instances (e.g., assumed 10), there were 10 different priority classes i.e. 

class-1 through class-10 for each category. The review assigned to class-1 represented the least 

confidence i.e. that review has least value of 0.1 with confidence of 10%. Each priority class had 

a unique confidence interval that defined the level of confidence a review was assigned to that 

category e.g. a review with fault confidence value of 0.7 (7/10) was assigned to priority class-7 

(confidence 70%) as a true-fault. This implied that the same review is classified as a false-

positive with a confidence of 30%. The advantage of assigning priority class to each review was 

that it helped to make efficient post-inspection decision i.e. reviews from class with high 

confidence most likely ensured accurate classification of those reviews. 

Table 3.6. Common POS tags across both models for interval-1 to interval-3 

Models Interval 1 Interval 2 Interval 3 Interval 4 

Movies JNR JN N RV J JR JNV JRVN R JV JRV NRV NV WPOS NR V 

Inspection JNR JN JR JNV NV NRV NR J R N JRV RV JRVN JV V WPOS 

 
Selection of POS tags for priority classes: One motive to include movie reviews was to 

find the generalized POS tags that could be applied to a similar domain in NL context. To find 

such generalized POS tags, the G-mean values obtained during training of model instances were 

analyzed for all 16 POS tags. The generalized POS tags were selected out of total 16 in a way 

that could assure the selection of most effective POS tags. Total 16 POS tags (sorted in 
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descending order of G-mean) from both trained models were divided into 4 equal consecutive 

intervals (see Table 3.6) and each interval contained 4 POS tags i.e. interval-1 contained top 4 

tags for both inspection and movies trained model; interval-2 contained next 4 top POS tags and 

so on up to interval-4 and together all sums to 16. The evaluation of priority classes was 

performed separately for four cases: Firstly, evaluation over interval-1 that output only two 

common POS tags (JNR and JN); Secondly, evaluation over consecutive interval-1 and 2 that 

output 5 common POS tags (JNR, JN, JR, J and JNV); Thirdly, evaluation of interval 1 to 3 that 

output 10 common POS tags among both models (see bold and underlined POS tags in Table 

3.6); Fourthly, over all intervals that output all POS tags. Top three intervals were chosen based 

on their most precise G-mean values that output 10 common/generalized POS tags, and the 

results were discussed based on these 10 POS tags that resulted in the formation of 10 priority 

classes. 

3.2.2. Experiment Methodology 

This section discusses major RQs, variables explored, and artifacts used in this study. 

Major research questions: There were two major research questions that were 

investigated in study-2 and these are as follows: 

RQ-1: How accurately does models trained on inspection reviews vs. movie reviews 

classify useful vs. non-useful reviews (i.e. true faults vs. false positives)? (Using combinations of 

POS tags). 

RQ-2: How does accuracy of true faults and false-positives spread across priority classes 

over part of speech (POS) tags? 
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3.2.2.1. Variables used  

There were independent and dependent variables that were included into experiment. 

These are discussed as follows. 

Independent variables: These variables were manipulated during study run (see [76] for 

more details) and these were the # of classifiers (i.e., 9), training models (i.e. 2), and the POS 

tags (N, J, R, and V) considered based on the results from study-1. 

Dependent variables: Evaluation metrics (Geometric mean of precision and recall, F-

measure) and Threshold Value (the percentage of features needed to train the model to achieve 

higher G-mean) are used. 

Artifacts and participating subjects: The same set of artifacts were used in this study that 

were used in study-1 (PGCS and movie reviews). 

3.2.3. Results and Analysis 

The analysis compared the results w.r.t evaluation metrics when used two different 

training models (inspection vs movie trained). Study-2 used the results from study-1 in 

determining the optimal percentage of features sets to train the models. Also, the prominent POS 

tags were chosen from study-1 to use their various combinations in developing priority classes. 

The results and important finding are discussed around the two RQ’s are discussed in section 

3.2.2. 

3.2.3.1. Results from RQ-1 treated for validation of reviews  

This research question was focused on investigating whether G-mean at classifying true-

fault (using various combinations of POS tags) varies when using different training data sets 

(i.e., when trained on inspection reviews vs. online movie reviews). To answer this RQ, the G-

mean values were compared for both training models among conventional approach (without 
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POS), approach using POS tags and our proposed approach with priority classes. The analysis of 

G-mean for these three approaches is discussed in subsections below. 

Conventional approach: This approach used supervised learning classifiers (listed in 

Table 3.3) without applying POS to classify reviews into either a true-fault or a false-positive 

(depending upon the majority outcome). The results regarding the number, percentage of 

correctly (and incorrectly) classified true faults (and false-positives) and G-mean for both 

training models are shown in Figure 3.6. The results in Figure 3.6 are presented in the form X (Y 

%) where ‘X’ being the number of correctly/incorrectly classified reviews and Y% represents 

corresponding percentage of correctly/incorrectly review. The results and major observations in 

Figure 3.6 are discussed below: 

• Inspection trained models were more accurate at classifying non-useful reviews (i.e., 

false positives) whereas movie trained models didn’t show a clear demarcation. 

• While using conventional approach can help save time that is otherwise spent removing 

the false-positives, it was not very useful due to large amount of reviews that were 

incorrectly classified (especially into a true-fault category). This information lead project 

managers to make incorrect post-inspection decisions (e.g., estimating the number of 

faults remaining post inspection? and deciding whether to re-inspect the artifact?). 

 

Figure 3.6. Classification results using conventional approach 

Test set 
256 reviews 

True faults 
Count 60 

False-positives 
Count 196 

35 (58%) 

24 (40%) 

25 (42%) 

36 (60%) 

146 (75%) 

98 (50%) 

50 (25%) 

98 (50%) 

Inspection 

Movies 
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Implications: The conventional approach was prone to misclassification and offered a 

considerable room for improvement. So, it was not recommended to make post-inspection 

decisions. 

Classification with POS tags: Similar analysis of G-mean (for true faults and false-

positives) across two training models was conducted using 10 (out of 16) most generalized POS 

tags. The results from this analysis are presented in Table 3.7 and discussed here within. 

Table 3.7. Classification accuracy using POS tags 

Variables POS TAGS 

Movies 
Trained 

JNR JN N J RV JR JNV R JRV NVR 

TN 14 19 19 37 65 42 41 48 96 101 

TP 59 56 54 50 47 46 44 43 29 25 

Precision 0.25 0.24 0.24 0.24 0.26 0.23 0.22 0.23 0.23 0.21 

Recall 0.98 0.93 0.90 0.83 0.78 0.77 0.73 0.72 0.48 0.42 

G-Mean 0.49 0.47 0.46 0.45 0.46 0.42 0.40 0.40 0.33 0.29 

Inspection Trained 

TN 130 138 122 90 135 94 137 31 132 138 

TP 42 40 37 44 30 46 36 52 34 35 

Precision 0.39 0.41 0.33 0.29 0.33 0.31 0.38 0.24 0.35 0.38 

Recall 0.7 0.67 0.62 0.73 0.5 0.77 0.6 0.87 0.57 0.58 

G-Mean 0.52 0.52 0.45 0.46 0.41 0.49 0.48 0.46 0.44 0.47 

 
Table 3.7 displays values of the following five metrics namely TN, TP, precision, recall 

and G-mean. Major observations are discussed below. 

• The maximum number of non-useful (TN) reviews were detected by POS: ‘NVR’ for 

both the models. On the other hand, there couldn’t be any POS tag that was able to detect 

significant faults for both movies trained and inspection trained model. The maximum G-

mean value (√precision x recall) obtained at detecting true-faults is around 0.5 for both 

the models and this value corresponds to POS: JNR. 
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• The result (G-mean) was prominent for POS tag ‘JNR’ and ‘JN’ among both the models 

but still, this approach was prone to misclassification. In conclusion, using combinations 

of POS tags, the misclassification error rate was still present and is not recommended 

either for post-inspection decisions or over conventional approach (without using POS). 

Implications: Based on these results, the prominent POS tag combinations that showed 

the maximum G-mean value was for ‘JN’ and ‘JNR’. Referring to study-1, POS-J and POS-N 

were the prominent and so is there combination (‘JN’ in study-2) but interestingly in study-2, 

POS-R (adverbs) in combination with POS-JN has appeared to be important. Models with 

combination of POS tags to validate reviews showed improved prediction as compared to models 

that didn’t consider POS tags, but they still did not improve misclassification rate. 

Additionally, a training models with combinations of POS tags, seemed good at 

classifying either true-faults or false-positives but not both. For example, POS tag ‘NVR’ 

resulted better at classifying non-faults for both the models but performed poorly in detecting 

faults. Therefore, it is very unlikely that using either model with POS technique could aid project 

managers or requirement engineers at accurately identifying both true-faults and fault-positives. 

Results analysis using POS tag combinations: The classification accuracy was analyzed 

on training models (inspection trained vs movies trained) over priority classes and collective 

POS tags (in order to improve upon results obtained from approaches discussed in section 3.2.3). 

The results are described in Table 3.8 w.r.t number of true-faults/fault-positives accurately 

identified by our proposed approach when applied across 10 combination of POS tags (i.e. 10 

most prominent POS tags among all combinations). 
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Table 3.8. Classification accuracy of fault & non-fault reviews using collective POS 

Movies trained POS tags Collective 
POS 

  J 

N 

R 

J 

N 

N J R 

V 

J 

N 

V 

J 

R 

J 

R 

V 

N 

V 

R 

R True faults 
located 

Fault reviews  241 233 231 209 178 199 200 128 119 191 60 (100%) 

Non-fault reviews 15 23 25 47 78 57 56 128 137 65 176 (90%) 

Inspection trained             

Fault reviews 109 99 112 151 91 95 149 98 93 218 57 (95%) 

Non-fault reviews 147 157 144 105 165 161 107 158 163 38 182 (93%) 

 
The columns ‘Collective POS’ collectively analyzes true-faults/fault-positives obtained 

from selected POS tags (Table 3.8). Each review in this approach was tracked and counted 

towards either fault or non-fault if it was found at least once in any POS tag combination i.e., if a 

review was identified as a true-fault by at least once out of 10 POS instances, then it was 

classified as a true-fault with 10% confidence. The idea for implementation of such an approach 

was to minimize misclassification error rate by implementing priority classes that adds 

confidence label to each review. The priority classes enabled requirement analyzer to make 

effective decisions based on confidence value rather than to ignore a review if true fault was 

incorrectly classified as non-fault. The major outcomes of this approach (Collective POS) are 

discussed below: 

• Classification accuracy of faults: Using collective POS approach, all true-faults were 

labelled (up to 95%) at least once into fault category in inspection trained and 100% true-

faults into fault category in movies trained. Moreover, movies trained was more biased 

towards classification of a review into fault category. 

• Classification accuracy of false-positives: Using collective POS approach, inspection 

trained model was able to label 93% of non-faults at least once into false-positive 



 

47 
 

category and movies trained model could label 90% of non-faults at least once as non-

fault. 

Implications: Collective POS approach resulted into more concrete solution to 

misclassification error rate. It guides the requirement analyzer/inspectors more efficient in 

making post-inspection decisions (e.g. when to stop re-inspection process). 

3.2.3.2. Results from RQ-2 treated over priority classes  

This section presents the analysis of true-faults vs false-positives accuracy for each 

priority class across each training model. The Acc% values signify the accuracy of a true-fault or 

false-positive within certain number of reviews in each priority class (Table 3.9). 

Table 3.9. Results on categorization into priority classes 

 Priority Class/ 
Confidence 

Test set 

True Fault Reviews False-positive Reviews 

  Movie trained 
(Acc %) 

Inspection trained 
(Acc %) 

Movie trained 
(Acc %) 

Inspection trained 
(Acc %) 

10% (1/10) 0 (0) =0 6 (46) =13 31 (36) =86 5 (13) =39 

20% (2/10) 0 (1) =0 2 (14) =14 55 (78) =71 16 (22) =73 

30% (3/10) 0 (0) =0 4 (45) =9 44 (54) =82 13 (15) =87 

40% (4/10) 1 (6) =17 4 (18) =22 27 (37) =73 17 (21) =81 

50% (5/10) 4 (17) =24 2 (14) =14 13 (17) =77 12 (14) =86 

60% (6/10) 10 (37) =27 4 (21) =19 5 (6) =83 14 (18) =78 

70% (7/10) 10 (54) =19 2 (15) =13 0 (0) =0 41 (45) =91 

80% (8/10) 23 (78) =30 6 (22) =27 1 (1) =100 12 (14) =86 

90% (9/10) 5 (36) =14 8 (13) =62 0 (0) =0 40 (46) =87 

100% (10/10) 7 (27) =26 19 (33) =57 0 (0) =0 12 (15) =80 

 
The higher Acc% values denote high density of true-fault/ false-positive within that 

priority class whereas the smaller value of Acc% signifies very sparse occurrence of true-faults 

or false-positives within that priority class. The outcome was combined from each POS model-

instances to assign a priority class to the review. 
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Table 3.9 shows our results for true-faults and false-positives for both models (movie 

trained, and inspection trained). The values in the form X(Y) =Z in cells means X is the number 

of true-faults (or actual false-positives), Y is total number of reviews that were classified as 

faults (or false-positive) in a particular confidence class and Z is the accuracy obtained by 

dividing X by Y. The major observations from Table 3.9 are: 

• Most reliable priority classes for identifying true-faults: Priority classes-8 and above for 

inspection trained model showed greater fault detection accuracy. Movies trained also 

performed reasonable in priority classes-8 and above. 

• Most reliable priority classes for identifying false-positives: Priority classes-3 to class-

10 were most reliable for identifying false-positive reviews for inspection trained model 

whereas priority class-1 to class-6 for movies trained model performed better. 

Implications: The major implications from this study were that the misclassification 

(TN) was curbed as each review was labelled with confidence percentage. Non-faults were better 

predicted by both the models, and the true faults were unevenly distributed across all priority 

classes. 

3.2.4. Discussion of Results 

The discussion is performed around the results shown in Table 3.8 and Table 3.9 that 

shows # of true faults/false positives across all priority classes for both models. The discussion is 

formulated below around the two research questions listed in section 3.2.2.  

3.2.4.1. Discussion on results from RQ-1  

From our results (Table 3.8), it was seen that there were improvements with ‘movies 

trained’ when compared with ‘inspection trained’ model. The improvements are listed below: 
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• One of the major improvements was that using ‘movie reviews’ to test reviews, all actual 

faults i.e., 60 (100%) were labelled as actual faults (see Table 3.8 for collective POS 

column). 

• It was observed that movies trained model was more inclined towards classifying each 

review as fault for most of the POS tags whereas inspection trained was more inclined 

towards non-faults. 

• The detection of false positives was significant for both the models with more than 90% 

labelled at least once into correct category (see collected POS column). 

• The non-faults that were misclassified by movies trained (196-176=20 in number; Table 

3.8) into faults (see movies trained fault priority class-10; Table 3.9) with 100% 

confidence were not problematic because that did not account for any true fault slippage. 

Similarly, this happened for inspection trained model with 14 non-faults misclassified 

into faults. On the contrary, any fault slipped through priority class (i.e. fault-

misclassified into non-faults and were not categorized at least once as fault) was more 

problematic because that slippage would propagate to later stages. 

It was observed that both the models could label a significant number of faults/non-faults 

into correct category. Considering the minority class (faults) prediction, movies trained 

addressed 100% faults. The requirement analyzer was thus provided with additional class label 

and assurance that misclassification is restricted; to assist him during post-inspection decisions. 

3.2.4.2. Discussion on results from RQ-2 

The purpose of this RQ was to find the accuracy of true faults and accuracy of false 

positives distributed within each priority class to investigate if there was any similarity for 
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accuracy across both trained models. For this purpose, each priority class was analyzed for both 

the models. Some major observations that were found interesting are discussed below: 

• An improvement that was shown by ‘movies trained’ model was the capability to report 

all true fault within least number of priority classes. As seen in Table 3.9, movie trained 

listed all faults and non-faults within seven priority classes and showed that the fault and 

non-fault concentration was more within seven priority classes as compared to ten 

priority classes by inspection trained. 

• It was observed that accuracy of true-fault detection in improved beyond 40% confidence 

value for both the models and was even greater beyond confidence level of 80%. 

• For false-positive category, ‘movies trained’ model showed improvement for priority 

class-1 to class-6 (again within least number of priority classes) as compared to 

inspection trained. Both models performed significantly well within non-fault classes 

(Acc% is large). 

• From Table 3.9, movies trained model for fault category in class-9, there were only 5 true 

faults out of 36 and the Acc% value is low (14%).  Which implied that misclassification 

chances were more in this class as compared to other. The priority class-1 to class-3 have 

Acc% value equals to zero (0) implied that none or very few reviews were categorized 

into these classes and hence misclassification chances within these classes were also none 

or least. 

The requirement analyzer is benefitted more of high fault/non-fault concentration that 

could provide better post-inspection decision (i.e. probability of true-faults/false-positives is 

more in each priority class). Moreover, movies trained model could report all true faults that 
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could ensure requirement analyzer that none out of total reported faults has slipped during 

classification. 

3.3. Study 3 - Validating Requirements Reviews with Fault-Type Level Granularity 

Based on the insights from study-1 and 2, where independent variables were manipulated 

like ‘artifacts involved in the study’, ‘POS tags’, and ‘features sets’ while keeping ‘faults types’, 

and ‘various classifiers’ constant. In study-3, the intent was to manipulate previously considered 

‘dependent variables’ i.e. ‘fault-types’ and ‘classifiers’, to observe classification results.  For this 

purpose, the effect of following variables was evaluated in this study-3: 

• The concept of validation of reviews over various ‘fault types’ was used to consider 

inspection reviews further into Ambiguous (A), Omission (O), Incorrect Facts (IF), 

Inconsistent Information (II), Miscellaneous (M) and Extraneous (E) categories instead of 

just labelling a review as true-fault vs non-fault. 

• In study-3, variable (‘type of classifiers’) was manipulated to validate inspection reviews 

into its correct fault-type. This study focused on evaluating classification results when 

firstly, individual classifiers were evaluated for each fault-type, and secondly, ensembles 

formed from most efficient individual classifiers were developed to validate fault-types. 

• The main contribution of study-3 was based on fault-type granularity (i.e. O, A, IF, II, E 

and M) to address some issues like finding most occurring fault-types, and fault-types 

that are most likely to be correctly classified by supervised learning classifiers. 

3.3.1. Proposed Approach 

Study 3 was executed at NDSU over the inspection data that was collected in previous 

three inspections studies. The data in the form of reviews was generated by inspection of LAS, 

RIM, and PGCS document in which a total of 82 inspectors participated that consisted of 35 
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graduate students, 27 under-graduate students and 20 experienced industry people. More details 

regarding our proposed approach is discussed in this section below. 

3.3.1.1. Experiment design  

This section discusses various RQs, variables, and data collection measures applied in 

this study. There were two major research questions that were investigated in study-3. The 

research questions are as follows: 

RQ-1: Which supervised learning classifiers, when applied to reviews collected during 

requirements inspections, can categorize individual fault-types into faults vs non-faults with 

higher accuracy? 

RQ-2: Do ensembles created from the best performing individual classifiers provide 

improved categorization of reviews into faults vs non-faults? 

Variables used in study-3: There were independent and dependent variables that were 

exploited in this experiment. These are discussed as follows: 

• Independent Variables: The independent variables in this study were the type of 

classifiers (nine classifiers are used), and fault types. 

• Dependent Variables: Evaluation metrics (Geometric mean of precision and recall, F-

measure) and Accuracy (It is a measure of true-faults and false-positives correctly 

detected by the classifiers) were used. 

Artifacts and participating subjects for study-3: There were three sets of artifacts that 

were used in the experiment. The artifacts used were PGCS, RIM, and LAS. The artifacts and the 

number of inspectors are shown in Table 3.10. The details about breakdown of each fault-type 

and artifact type in Table 3.10 can be found in [77]. 
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3.3.1.2. Preprocessing, model selection, testing and training sets 

The details regarding the proposed approach are discussed in this section that includes 

information about model selection, formation of training and testing sets, and working of 

proposed approach. 

Model selection: During our study run, each classifier (Table 3.3) was analyzed 

individually over each fault-type and the best classifiers were combined to form ensembles that 

performed voting to obtain majority outcome. The majority outcome was assigned based on 

voting of 9 classifiers. The odd number of classifiers was intentionally chosen for ensemble to 

avoid equal prediction conflict. 

Pre-processing and formation of training/test sets: In this section, the details regarding 

pre-processing of reviews are presented to enable division of data into training and testing set. 

Pre-processing: The inconsequential words were removed from the review corpus 

through NLTK’s stop words method. Next, there were multiple reviews that contained words 

that appears in several inflicted forms (e.g. walk, walks, walking, walked conveys same meaning 

but are treated differently during text classification because of grammar rules). So, pre-

processing of such words was taken care through lemmatization in NLTK package. 

Lemmatization returns the base form of the word i.e. in above example walk, walks, walking and 

walked are changed to walk. Sampling (ROS) was performed to address class imbalance 

problem. 

Training model: The reviews were split into 70%-30% ratio for training and testing 

purpose. Training of reviews was performed on 70% of total reviews obtained from all three 

inspection studies. The inspection studies used three different requirements document (i.e. LAS, 

RIM and PGCS). Training data resulted in number of fault types as listed in Table 3.10. 
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Table 3.10. Fault distribution across fault-types and inspection documents 

Fault 
type 

LAS 
(Industry 
20 sub) 

PGCS RIM 
(Grad 21 
sub) 

Total # of 
fault 
types 

Train 
(LAS+ 
PGCS 
+RIM) 

Test 
(LAS+ 
PGCS 
+RIM) 

Grad (14 
sub) 

UG (27 
sub) 

A 7 12 24 14 57 41 16 

O 10 16 29 21 76 53 23 

IF 3 11 30 43 87 60 27 

II 17 20 40 32 109 77 32 

E 0 6 10 6 22 15 7 

M 2 2 2 3 9 5 4 

Total 39 67 135 119 360 251 109 

 
This distribution (70% for training and 30% for testing) of faults across training and 

testing set was performed to ensure representation of each fault type (with similar distribution) in 

both training and test sets. Next, 10-fold cross validation was repeated 10 times to estimate the 

most effective classifiers to build training models. 

Test set: There was one test set that consisted of 457 number of reviews collected from 

all 3 studies (refer Figure 3.7). Our test set consisted of at least 30% of reviews from each 

inspection document. The selection of reviews in test set was random and through automation, it 

was ensured that it contains desired (70%-30%) instances of each fault type in both training and 

testing (see Figure 3.7). Moreover, the reviews in test set were not over-sampled in order to 

avoid duplicate misclassification error rate. 
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Figure 3.7. Training and testing set split of reviews for study 3 

3.3.1.3. Experiment procedure  

The working of our approach is discussed in this section that discusses the approach 

through which various fault-types are analyzed after classification. 

Supervised learning classification: In this section, various supervised learning 

approaches are discussed that were used to train each classifier. The selection of these classifiers 

was based on their successful usage in previous studies (study 1 and study 2) to mine reviews. 

The ROS sampling was performed because it yielded best cross validation results (Table 3.11). 

Each review in test set belonged to at most one of the fault types (A, O, IF, II, M and E) and each 

review was tracked against each classifier to count correctly classified fault with its fault type. 

Next, each classification outcome was collected and analyzed to answer our research questions. 

Voting through ensemble: Ensemble selected those classifiers that performed best 

against each fault-type and their combined prediction is used to generate voting to assign final 

class to each review. Our motive was to build ensemble based on most accurate classifiers for a 

fault-type. The aim of this analysis was to put more focus on certain fault-types that have not yet 

found in a requirement document. More details about study-3 can be found at [77] while some 

key details about this study are presented in following subsections. 

1519 reviews 
[1159 NF & 360 F] 

Training-1062 reviews 
[811 FP & 251 F] 

Testing-457 reviews 
[348 NF & 109 F] 

70% 30% 

Final training-1622 reviews 
[811 FP & 811 F] 

ROS 
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Table 3.11. Cross validation results for model selection 

Classifiers Without Sampling Ada Boost RUS ROS 

Naïve Bayes (NB) 0.773 0.754 0.657 0.785 

Multinomial NB 0.819 0.763 0.626 0.796 

Bernoulli NB 0.817 0.822 0.604 0.809 

Decision Tree 0.770 0.826 0.546 0.837 

Linear SVC 0.824 0.850 0.576 0.852 

Random Forest 0.818 0.849 0.584 0.857 

Extra Tree 0.835 0.858 0.649 0.975 

Logistic Regression 0.825 0.775 0.608 0.835 

SGD  0.783 0.783 0.561 0.855 

NuSVC 0.669 0.669 0.520 0.563 

 
3.3.2. Results and Analysis 

This section report results regarding classification accuracy of individual classifiers that 

are taken under consideration (Table 3.3). The analysis was performed around two research 

questions discussed earlier. The analysis discusses classifiers accuracy in predicting each fault-

type as well as analysis of ensemble using most accurate classifiers to test each fault-types. The 

results are organized around the following two research questions: 

3.3.2.1. Results from RQ-1  

This research question was focused on investigating the performance of individual 

classifier against each fault-type described in this paper. The fault distribution around three 

documents is shown in Table 3.10. The evaluation was performed using Accuracy percentage 

and G-mean. The results are shown in Figure 3.8, Y-axis (vertical axis) represent Accuracy in 

percentage and X-axis (horizontal axis) shows various classifiers that are used to perform the 

analysis. The results for each fault-type is discussed below: 
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Fault-type A (Ambiguity): From Figure 3.8 (1), the classifiers were arranged in 

descending order of their accuracy results. There was a total of 16 faults in test set that 

represented fault-type ambiguity (Table 3.10, Test column). The accuracy varied from 81.25% 

(13 out of 16) to 37.5% (6 out of 16) for different classifiers. It was seen that only three (out of 

ten) classifiers performed well (for fault-type A) compared to the other classifiers and were 

Multinomial naïve Bayes (MNB), Naïve Bayes (NB) and Bernoulli Naïve Bayes (BNB), all 

belonging to Bayesian family of classifiers. 

 

Figure 3.8. Results of fault type versus individual classifiers 

Fault-type O (Omission): Figure 3.8 (2) showed omission fault-types that were 23 in 

total present in test set (Table 3.10). The accuracy for omission fault type varied from 52.17% 

(12 out of 23) to 30.43% (7 out of 23). The only classifier that showed highest prediction 
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accuracy against fault-type O was shown by Decision Tree (DT) classifier that belonged to Trees 

family of classifiers. The fault-type O was the least accurately predicted fault-type. 

Fault-type IF (Incorrect Facts): Figure 3.8 (3) shows fault-type IF that were 27 in 

number. The classification accuracy was observed highest by Bernoulli NB classifier (90%) and 

went down to 74.1% (by Naïve Bayes). Overall, all classifiers performed well to predict fault-

type IF as three classifiers (MNB, Nu Support Vector Classifier (NuSVC), and Stochastic 

Gradient Descent (SGD) showed 85.18% accuracy and five classifiers showed accuracy between 

77% to 82%. So, almost all classifiers predicted IF fault with a significantly high accuracy. 

Fault-type II (Inconsistent Information): Figure 3.8 (4) in shows that the accuracy 

varied from 71.9% (highest) to 37.5% (lowest) for fault-type II. There were 32 faults in total that 

belonged to fault-type II. Results showed that all three classifiers from Bayesian family are the 

top performers. 

Fault-type E (Extraneous): There were 7 total Fault-type E in test set. There were four 

classifiers that equally performed and ranked top with 71.43% accuracy (Figure 3.8 (5)). These 

four classifiers were Extra Tree (ET) Classifier, Decision Tree (DT) Classifier, MNB and 

Random Forest (RF) Classifier. Interestingly, every classifier from Trees and Ensemble family 

performed well against fault-type E. 

Fault-type M (Miscellaneous): Figure 3.8 (6), showed prediction results corresponding 

to fault-type miscellaneous (M). There were 4 faults in total and two classifiers Extra Tree (ET) 

and Bernoulli NB (BNB) were able to predict 75% (3 out of 4) accurately. Rest all classifiers 

were able to predict at most 50% of true faults. 
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3.3.2.2. Results for RQ-2  

This research question was focused on investigating improvement in each fault-type 

when the best-performing individual classifiers were combined to create an ensemble that 

classified a test review through voting. The selection of classifiers for ensemble was done based 

on results shown for RQ-1. For each fault-type, the selection of classifiers for ensemble was 

almost different and was based on merit (see Figure 3.8). For our binary classification problem; 

it was required that the outcome be classified into either fault or non-fault. The merit of 

classifiers was based on accuracy percentage (i.e. include those classifiers that are above 

accuracy mean of all classifiers for each fault-type); for example, fault-type A (Figure 3.8 (1)) 

had a mean of 57.5% for all the classifiers (refer Table 3.12) and only first three classifiers were 

above this mean value. 

Table 3.12. Classifiers that qualified for ensemble 

Fault type Mean of 10 
classifiers 

# and Name of classifiers that 
qualified for ensemble 

Mean Acc. % of qualified 
classifiers for ensemble 

Type-A 57.5 3 (NB, MNB and BNB) 77.1 

Type-O 36.53 3 (DT, RF and BNB) 44.9 

Type-IF 81.48 6 (BNB, MNB, SGD, NuSVC, Linear 
SVC and DT) 

84.6 

Type-II 51.26 4 (BNB, NB, MNB and Linear SVC) 61.7 

Type-E 52.87 4 (ET, DT, RF and MNB) 71.43 

Type-M 55 2 (BNB and ET) 75 

 
In fault-type-A example, the number of classifiers were odd but if it were even then this 

even number tie was resolved based on overall G-mean (Figure 3.8) score of classifiers 

(classifier with greater G-mean score was included for each even tie). G-mean was also 

considered to evaluate improvement (in accuracy if any) of ensemble over individual classifier 
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(Figure 3.9). The following observations were noted for each ensemble that was created for each 

fault-type: 

Ensemble for fault-type A: From Table 3.12, three classifiers that qualify for ensemble 

were NB, MNB and BNB (notably, all were from Bayesian family). As the number of classifiers 

that qualified is odd, there did not exist equal prediction conflict, so all three of these classifiers 

were chosen to build ensemble for fault type-A. The improvement with ensemble was seen w.r.t 

G-mean score and classification accuracy (refer Figure 3.9). The results in Figure 3.9 showed 

classification accuracy with targeted ensemble along with comparison of improvement in G-

mean for each fault-type (Figure 3.10). 

 

Figure 3.9. Performance comparison of individual classification versus ensemble 

Ensemble for fault-type O: Fault-type O ensemble was developed from three classifiers 

that qualified and namely DT, RF and BNB. Almost all classifiers performed poor against fault-

type O. Decision Trees (DT) that performed best among all could only perform with an accuracy 

of around 52% (refer Figure 3.8 (2)). The ensemble for fault type O had average accuracy of 

44.9% for classifiers that qualified, and this accuracy improved to 47.8% using ensemble but G-

mean for ensemble type-O did not improve (Figure 3.9) making this ensemble unfit for fault 

type-O. 
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Figure 3.10. G-mean values of individual classifiers 

Ensemble for fault-type IF: The ensemble for fault-type IF was made from 5 out of 6 

classifiers that qualified. Linear SVC was removed from inclusion into ensemble because of its 

lower G-mean value among 6 qualified classifiers making the total number of classifiers odd i.e. 

5. There was good improvement in G-mean as well as in accuracy using ensemble. This result 

showed that use of ensemble for fault-type IF was helpful. 

Ensemble for fault-type II: The ensemble consisted of 3 out of 4 qualified classifiers and 

again for this fault-type, linear SVC was removed because of its lower G-mean value. The 3 

classifiers for ensemble were again all surprisingly from Bayesian family. This ensemble for 

fault-type II showed good improvement; as seen in Figure 3.9 that average accuracy (of qualified 

classifiers) versus ensemble accuracy was improved significantly (62% to 72%) along with 

improvement in G-mean score from 45.9% to 49.9%. 

Ensemble for fault-type E and M: The ensemble for fault-type E was formed with the 

selection of 3 classifiers out of 4 qualified; namely DT, MNB and RF leaving ET because of its 

lower G-mean value among all. Although ensemble for fault type-E showed improvement in 

accuracy but fails to show improvement for G-mean (Figure 3.9). On the other hand, with fault 

type-M, there were 2 qualified classifiers namely ET and BNB. As the number being even, one 

classifier had to be removed from consideration leaving behind only one for ensemble. One 

classifier for ensemble classifies the same way as individual and thus there was no improvement 

either in accuracy or G-mean. 
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3.3.3. Discussion of Results 

The major goals of this study are to analyze the prediction accuracy of various classifiers 

against specific fault-types and to analyze the improvement in accuracy/G-mean using ensemble. 

There were total 109 faults (A-16, O-23, IF-27, II-32, E-7 and M-4). 

3.3.3.1. Discussion for RQ-1 

This research question was focused on determining performance for each fault-type 

against the ten chosen classifiers belonging to five different classification families. Our belief 

was that each classification family will perform differently on reviews as each family executes 

classification problem through different mathematical functions. For example, Bayesian family 

includes prior and posterior probabilities and Decision Trees (DT) uses entropy/information-gain 

theory to classify test data. In rest of this section, major observations are discussed initially for 

each fault-type followed by discussion on implication of results. So, the major observations that 

are collected for individual classifiers against each fault-type are listed below: 

Fault-type A: Some major observations from results in Section 3.3.3 for ambiguous (A) 

fault-type are discussed below: 

● It was seen that all classifiers from Bayesian family outperformed other classifiers used 

in this study and classification results of all Bayesian classifiers were very close to each 

other making them first preference to be used against locating fault-type A. 

● Support vector classification family (Linear SVC and NuSVC) performed poorest making 

them unfit to use against ambiguous fault-types. 

Implications: It was observed that the reason for Bayesian classifiers to outperform other 

classifiers was because of description of ambiguous fault types. Bayesian classifiers works with 

the use of mathematical functions on probability that output most likely classification class for 
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the review under consideration. It was also observed that various specific feature terms like 

‘what’, ‘when’, ‘meant by’ etc. occurs frequently for ambiguous reviews that generated a high 

probability for a test review to be classified as fault. 

Fault–type O: This was the least correctly-identified fault-type by any classifier used in 

this study. Automated classification technique could find at most 12 omission (O) faults out of 

twenty-three (23). Major observations for this fault-type are as follows: 

● Only DT classifier could predict highest number of omission faults (12 out of 23). 

● Mean accuracy of all the classifiers against omission fault-type was 36.5% (this was the 

worst performance of classifiers among all fault-types in this study). 

Implications: There was fair possibility that omission type faults were responsible for 

overall degradation of automated classification results. Omission faults (23 in count) for this 

study that included 109 total true faults were responsible for decrease of more than 10% overall 

accuracy. I observed our test and training data set for omission type and found that the features 

that mostly described omission (e.g. ‘not’ and ‘no’) are usually removed from analysis using 

NLTK’s stop words. 

Fault-type IF: Incorrect Facts (IF) were the only fault-types that were predicted with 

good accuracy by all classifiers under consideration in this study. Major observations for fault-

type IF are as follows: 

● Highest accuracy was 89% (24 correctly classified out of 27) while least accuracy was 

74%. 

● Almost every classification family performed well in predicting correct classification 

class for test review. The average accuracy of all classifiers fort fault-type IF was found 

to be 81.5%. 
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Implication: Incorrect Facts (IF) were the easiest ones to locate because these consisted 

of many mismatched facts/variable-values across requirements document that were reported by 

almost every inspector. So, there were mostly similar description of IF fault-type present in both 

training and test reviews. So, all classifiers performed well during testing because they learned 

the same mathematical values and features during training. 

Fault-type II: Inconsistent Information (II) fault-type were highest in count in true-faults 

(82 in training and 32 in test set; for more details refer Table 3.10 for fault distribution). The 

major observations are discussed below: 

● Bayesian classifiers outperformed for fault-type II with Bernoulli NB at top with highest 

accuracy of 72%. 

● Mean accuracy (51.3%) of fault-type II was not as high as IF (81.5%) although they 

report semantically similar faults. 

Implications: The behavior of classifiers was cross-checked with inspection reviews 

collected during study and it was found that majority of reviews that reported fault-type II 

contained some one-character variable names specific to each requirements document that were 

important to distinguish fault vs. non-fault but were removed as part of stop words. There was 

strong implication to use some specific terminology while describing a fault review in NL e.g. 

‘do not occur’ can be written as ‘missing’ or one-character keywords could be changed to some 

more meaningful variables such that these are not removed from analysis. 

Fault-type E and M: These fault-types being least in number were discussed together in 

this subsection. There were in total eleven (7-E and 4-M) reviews in test set that represented 

these fault-types. The best performance for fault-type E was shown by ET, DT, MNB and RF 

classifiers while for fault-type M, ET and BNB performed highest. 
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Implications: Fault-type extraneous (E) was reported using few common features across 

training and testing set. From the results it was seen that DT, ET and RF classifiers performed 

well and could report significant count. Fault-type M contained very few reviews (4 in total) and 

it was very hard to perform analysis on few counts. So, some more concrete classification 

confidence is required to explain classification outcome. 

3.3.3.2. Discussion for RQ-2 

The purpose of this RQ was to investigate the performance of ensemble classifiers in 

categorizing a review into fault vs non-fault. The ensemble was created based on top individual 

classifiers that performed better than other classifiers for each fault-type. The discussion of 

ensemble approach in this section is presented individually over each fault-types followed by 

implications of result. 

Ensemble for fault-type A: Ensemble for fault-type A consisted of three classifiers 

namely NB, MNB and BNB, all from Bayesian family (see Table 3.12). Some major 

observations found (shown in Figure 3.11) are discussed as follows: 

• All ensemble classifiers that qualified belonged to Bayesian family. 

• Ensemble showed improvement in G-mean. 

• The faults were categorized only if 2 out of 3 ensemble classifiers labelled it fault; 

making the classification confidence of 67% (2 out of 3). 

 

Figure 3.11. Ensemble for fault type A (NB + MNB + BNB) 
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Implications: For fault-type A, ensemble with three classifiers was better than one. The 

classification results (faults/non-faults) were more reliable than individual classifier. Ensemble 

for fault-type A also performed better in predicting other fault-types i.e. IF and II. 

Ensemble for Fault-type O: Ensemble for fault-type O was built over three classifiers 

namely DT, RF and BNB (Figure 3.12). There were total 23 omission faults and following are 

some major findings: 

• The ensemble performed even worse than the individual classifiers. 

• G-mean value did not show any improvement. 

• The ensemble could not perform better for any fault-type. 

 

Figure 3.12. Ensemble for fault type O (DT+RF+BNB) 

Implications: Fault-type O were hard to locate through individual classifiers as well as 

through ensemble. 

Ensemble for Fault-type IF: Incorrect Fact (IF) type fault was most accurately and 

easily located in inspection reviews. There were 27 total faults of type-IF and ensemble using 

five classifiers was able to locate 23 faults (see Figure 3.13) 

• The ensemble predicted good number (85%) of IF faults. 

• There had been improvement in G-mean score of ensembles. 

 

Figure 3.13. Ensemble for fault type IF (DT+MNB+BNB+SGD+NuSVC) 
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Implications: It was observed that ensemble for fault-type A performed better with one 

more accurately classified fault than ensemble for fault-type IF. The G-mean value of ensemble 

A was also better than ensemble IF. Lower G-mean for ensemble IF was reflected because of its 

under-performance over fault-type A, O and II than ensemble for fault-type A. 

Ensemble for fault-type II: It was seen that for fault-type II, Bayesian classifiers 

qualified for ensemble and performed best among all other classifier (refer Figure 3.14). 

Ensemble showed improvement in G-mean while accuracy remained same as that of individual 

classifier (BNB). 

 

Figure 3.14. Ensemble for fault type II (NB + MNB + BNB) 

Ensemble for fault-type E: This fault-type consisted of very few count and ensemble 

with DT, MNB and RF could label these fault-types more accurately (85.72%). The ensemble for 

E also performed good over fault-type IF (74%) but was not as accurate as Bayesian family 

classifiers that gives accuracy of 89% for fault-type IF (see Figure 3.15). 

 

Figure 3.15. Ensemble for fault type E (DT+MNB+RF) 

Ensemble for Fault-type M: Ensemble for M consisted of just one classifier i.e. 

Bernoulli Naïve Bayes (BNB). 
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Figure 3.16. Ensemble for fault type M (BNB) 

The accuracy% of this ensemble was no different than accuracy of individual BNB 

classifier (see Figure 3.16). The only concern in using one classifier for ensemble M was; one, it 

was not ensemble because to make an ensemble there should be more than one classifier; two, it 

cannot be predicted with classification confidence i.e. no voting is possible. So, it is believed that 

the fault-type M is better found by individual BNB classifier. 
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4. SELECTION OF SKILLED INSPECTORS 

Although the inspections are effective to find faults early during the software 

development life cycle, but their effectiveness depends upon the selection of skilled inspectors 

that can find faults more number of faults. So, this chapter presents details about the selection of 

skilled inspectors to perform inspection of NL requirements document. This study attempted to 

find the generalizable characteristics of an inspector using an eye tracker (who can find a greater 

number of faults). 

4.1. Introduction  

Leading software companies employ inspections (defined by Fagan [78]) to find and fix 

faults early and avoid costly re-work later. Previous research estimated that the costs saved by 

performing early inspections to find faults (especially requirements where they are cheapest to 

find and fix) vs. testing can vary up to 17:1 work hours [3]. While inspections are useful, its 

effectiveness is reliant on the selection of skilled inspectors. Researchers and practitioners have 

tried to understand the background information (experience, education, personality etc.) to 

predict the performance of individual inspectors but have not been successful [79]. In fact, 

results at Microsoft and other major software companies showed that most skilled software 

inspectors had less experience and had non-technical background [79]. 

Motivated by these findings, Goswami et al., [15] leveraged the research from 

Psychology to show that Learning Styles (LS) can be used to select a team of inspectors. 

Goswami et al., conducted an industrial empirical study and reported that selecting inspectors 

with most dissimilar LSs can result in improved fault coverage. This finding was consistent with 

the results from a large-scale study at Microsoft [79] that managers tend to include inspectors 

from varied background, especially those with non-computer backgrounds. While LSs seemed 
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useful in selecting inspection teams, Goswami et al. [2], [3], [15], were not able to find common 

LSs that were positively correlated to individual inspection performance across studies. One of 

the reasons for this was that SRS documents are generally developed in NL and are not tailored 

to LSs of specific readers. One of the major results from these studies was that individual 

inspector (even within same LS category) exhibit different reading patterns (RPs) depending on 

the type of SRS being inspected which in turn impacts their ability to report faults. While LS is 

an abstract model of capturing the RPs of inspectors, more objective means of capturing RPs 

would help project managers identify skilled inspectors. It is believed that inspectors’ RPs are 

generalizable across SRS documents. 

Additionally, past research [77] has identified that software organizations need inspectors 

that can detect specific fault types (e.g., Ambiguous - A, Inconsistent Information - II, Omission 

- O, Incorrect Fact - IF) at a higher rate. Therefore, this research tried to characterize the RPs of 

inspectors and their capability at detecting various requirement fault types.  

To characterize RPs, an eye-tracking apparatus was used in a controlled environment 

wherein software engineers (with industry experience) reviewed an industrial strength NL 

requirement document and reported faults. This study collected several metrics to examine the 

RPs of inspectors (e.g. eye movements), their cognitive processing and their fault detection 

abilities across different areas of SRS (see Figure 4.1). Following are eye-tracking metrics that 

were collected and are being analyzed in this research: 

• Fixation: is a point where eyes are relatively stationary, and an individual is taking in the 

information. 

• Saccade: Quick eye movement between fixations.  
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• Scan paths: are a complete saccade-fixation-saccade sequence and interconnecting 

saccades.  

• Gaze: is the sum of fixations’ duration in an area. They are also known as “dwell”, 

“fixation cluster”, or “fixation cycle”. 

• The region of interest (ROI): is an analysis method where eye movements that fall under 

certain area are evaluated. 

 

Figure 4.1. Sample reading patterns showing fixations and scan paths 

Next, to better analyze the RPs of inspectors and predict their inspection effectiveness, 

ML algorithms (principal components and classification) were employed. The choice of ML 

algorithms was motivated by previous research [77], where it was found that ML algorithms 

have varying prediction accuracy for various fault-types. This study validated ML algorithms 

w.r.t RPs for each fault-type and applied principal components analysis to be able to best predict 

the capability of an individual inspector to report various faults-types. Open source commercial 

ML tool (WEKA - Waikato Environment for Knowledge Analysis) was used for implementing 

ML algorithms. This study reported results regarding the common RPs and most effective ML 

algorithm that can assist project managers select the most effective inspectors. 

4.2. Proposed Approach and Experiment Design 

There were two RQs identified for this study regarding identification of RPs of a skilled 

inspector and these RQs are as follows. 
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RQ-1: What reading patterns (RPs) of an inspector are most effective at reporting various 

fault-types? 

RQ-2: What type of ML algorithms can best predict inspectors’ effectiveness for various 

fault-types? 

4.2.1. Variables Used 

Various independent and dependent variables used in this study are discussed below. 

Type of classifiers: The classifiers from 5 different classification families (i.e. Bayesian, 

Support Vector, Ensemble, Trees and Lazy Learners) were chosen based on their applicability 

and performance as reported by prior inspection studies in literature [77]. 

Fault types: The reviews were divided into 6 fault-categories (i.e. ambiguous (A), 

inconsistent information (II), Incorrect fact (IF), Omission (O) and Extraneous (E) and 

Miscellaneous (M)). The fault concentration per fault category out of 35 seeded faults was A:4, 

II:12, IF:2, O:13, E:3 and M:1. The fault-types E and M were excluded from the study because 

these fault-types were only detected by at most 2 inspectors making this fault-type extremely 

imbalanced (i.e., likelihood of imbalanced distribution of instances in a binary classification 

problem [77]). Sampling E and M fault-types did not produce good samples and were not 

included for analysis. 

Attribute evaluators: Eye-tracking equipment recorded 21 RP attributes for each 

inspector. To select prominent attributes (features or principal components) that could accurately 

characterize the RPs of inspectors for all fault-types, three algorithms were selected and 

evaluated (Subset evaluation, information gain and wrapper method) based on literature [26], 

[80]. Table 4.1 provides a final list of fault-types, classifiers and attribute evaluators for all fault 

types. More details about classifiers and attribute selection appear later in this section. 
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Table 4.1. List of various variables exploited for each fault-type 

Fault types Classifiers Attribute Evaluators 

Type A, 

Type IF,  

Type II,  

Type O 

NB, RF, Lazy Learner, MNB, 

Ensemble (AdaBoost, Voting, 

Bagging) 

Classifier subset evaluator,  

Information Gain, 

Wrapper Subset Evaluation 

 
Training and test set: The eye tracking data used in this paper was generated from 39 

participants (majority of whom had around 2 years of SE experience) using PGCS document. 

This data was split into 70% for training and 30% for testing. Post inspection, final class attribute 

was labelled with binary class labels (‘yes’ or ‘no’ to denote the capability of an inspector to 

report a fault or not). If an inspector was able to report faults at least greater than or equal to 

mean of all the faults found within each fault-type, then that inspector was labeled with ‘yes’ in 

final class category. Final class label was required to evaluate prediction results of ML 

algorithms. For example, the mean number of faults found by each inspector for fault-type II was 

1.4; any inspector reporting 2 or more true II faults are labeled capable of reporting fault-type II 

(i.e. has a value ‘yes’ in final class attribute). 

Validation method: Throughout our experiment, 10-folds cross-validation method was 

used as it is most commonly used method to measure model performance. All the classifiers and 

ML approaches evaluated/used in this study were tested with default parameters, unless specified 

otherwise. 

Dependent variables: The following variables were collected to measure the effect of 

independent variables and acted as evaluation metrics. 

• Recall: It is the proportion of true positives that are correctly identified (i.e. sensitivity).  
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• Precision: It is the fraction of relevant instances among the retrieved instances w.r.t true 

positives. 

• F-measure: It is a measure of test’s accuracy and it considers both precision and recall. 

• ROC (Receiver Operating Characteristics): It is a graphical plot that illustrates the 

diagnostic ability of a binary classifier system as its discrimination threshold is varied. It 

is created by plotting true-positive rate and false-positive rate. The observations and 

results have been derived from F-measure and ROC curve. 

4.3. Experiment Procedure 

The experiment procedure consisted of following six steps as shown in Figure 4.2. The 

description of each step is presented briefly in this section. 

 

Figure 4.2. Overall experiment procedure 

Inspection data: The inspection data generated from the eye-tracking study [1] consisted 

of 21 different attributes (Features). The SRS was divided into three sections (introduction, 

general description and functional description) and the time was evaluated on these sections 

separately to better understand the impact of RPs. The description about 21 attributes is 

presented in Table 4.2.  

Preprocessing: Some features like ‘linear saccade per page and time taken’ etc. 

consisted of suffixes (e.g. % symbol, minutes) that required removal before being processed. The 

binary class attribute ‘actual faults’ contained total number of true-faults found by an inspector. 

Sampling 

Inspection Data 

Preprocessing 

Principal Feature 
Extraction 

Classification 
Approaches 

Results 
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This attribute was manually processed to represents the final class label (‘yes’ or ‘no’) for all the 

instances. The attributes id, total fixation at ROI, total time duration at ROI, total faults, 

efficiency and false positives were removed from the analysis because this experiment aimed at 

providing automated and generalizable attributes for determining the capability of an inspector 

post-inspection. These six attributes were manually calculated post-inspection, so these did not 

contribute towards general adaptability of features to other SRS documents where information 

about seeded faults (i.e., ROI or regions with seeded faults) was not known. The final dataset had 

15 total features including final class attribute. 

Table 4.2. Various eye tracking attributes recorded 

Categories Attributes (total 21) 

General id (# assigned as identifier) 

Fixation data per page Average fixation time, fixations per page, time spent per page, Linear 
saccades per page 

Fixation data at ROI (region of 
interest) 

Total fixation at ROI, total time duration at ROI 

# of time inspector went back 
to search an information 

Total lookups in introduction, total lookups in general description, total 
lookups in functional, total # of searches 

Time taken to search an 
information 

Time spent on reading introduction, time spent on reading description, time 
spent on reading functional requirements, total search time 

Inspection performance Total faults in SRS, false-positives by inspector, faults reported by inspector, 
actual faults (effectiveness), total time taken, efficiency (fault rate)  

 
Sampling: The data collected for PGCS document consisted of an uneven number of 

true-positive and false-positive instances; showing the class-imbalance problem. So, one of the 

sampling techniques i.e. SMOTE (Synthetic Minority Oversampling Technique) was applied 

with WEKA over the data to artificially generate minority class instances [76]. The data was then 

shuffled randomly (using Randomize filter in WEKA) to select unbiased training and test sets 

during validation stage of the experiment. 
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Principal feature extraction: Three types of techniques were used to evaluate best 

performing features for the given set of data. These techniques were based on ‘Classifier subset 

evaluation’, ‘Information gain’, and ‘Wrapper methods’. More details on these techniques can be 

found in [26], [80]. The selection of these techniques was based on their performance to rank 

principal attributes over 14 well-known benchmark datasets for classification and these selectors 

are well applicable to binary class problems. 

Classification approaches: The classifiers from five different classification families 

(discussed earlier in chapter 3) were trained and these classifiers were naïve Bayes (NB), 

Multinomial NB (MNB), Decision Trees (DT), Random Forest (RF), Lazy Network (Locally 

weighted learning), Stochastic Gradient Descent (SGD), and Ensemble (AdaBoost, Bagging, and 

Voting). 

Results: The performance evaluation was performed by collecting various metrics as 

described above. The results are shown w.r.t F-measure and ROC; because these were few 

metrics that were considered prominent among standard benchmarks to measure classification 

performance. The next section presents the results and discussion regarding this experiment.  

4.4. Results and Discussion 

This section presents the result on best classification approaches and prominent reading 

patterns that can predict inspector’s ability to report a specific fault-type. The prominent results 

are shown in Table 4.3 for all fault-type using the area under ROC curve as a prominent metric 

to evaluate classification performance based on features selected by varying classifiers over three 

attribute evaluation methods (see Table 4.1). The best performing classifiers, prominent features 

and evaluation results (%age of ROC) are highlighted with bold/underline in Table 4.3. The 
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percentage of ROC was used as performance evaluator for all fault-types. The results organized 

around the two RQs are as follows: 

4.4.1. Results for RQ-1 

This research question was aimed at finding which RPs (collected during the eye-tracking 

study) can help determine inspector’s ability at finding a specific fault-type. The experiment was 

evaluated using prominent features extracted in four ways to train a classifier; out of which, three 

attribute evaluator methods were used to extract features (See Table 4.1 for attribute evaluators) 

and the fourth method considered all available features. The key result findings (from Table 4.3) 

are shown below: 

• Most prominent feature set: The result showed that there were few prominent reading 

pattern features (out of 15) that were commonly ranked higher across all attribute 

evaluators used to predict inspection effectiveness for all fault-types. These features 

included average fixation time, linear saccades per page, fixations per page, time spent 

per page, and total lookups in functional. Using these subsets of features resulted in an 

improved prediction accuracy. 

• Other prominent features: In addition to above features, metrics related to time spent 

fixating or searching on different parts of SRS (or fixating or searching/lookups) 

strengthened the prediction results. Specifically, average fixation time, and total number 

of search time were most informative features. This was important result because 

companies rely on selecting inspectors that find faults faster to enable maximum cost 

savings. Evaluating the reading patterns with respect to the time spent can help 

characterize inspectors’ performance better as demonstrated in this research. 
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• Subset evaluators: Out of four different evaluator methods used in this research, Wrapper 

Subset Evaluation resulted in largest improvement in prediction accuracy. The percentage 

of AUC-ROC gain (shown in last column in Table 4.3) was a measure of improvement in 

prediction accuracy for fault-types. Based on these gains, accuracy at predicting 

inspectors for fault-type A is 81%, IF is 94%, II is 88%, O is 79%. These prediction 

results were noteworthy especially when comparing against similar research in other 

domains (e.g., 80% in dyslexia study and 74% in image-feature study described earlier). 

Implications: Using the findings from this study, most prominent features either 

belonged to inspectors’ reading patterns (average fixation time, linear saccades per page, 

fixations per page, total lookups in functional) or using the timing information (i.e. time spent 

per page, total search time). These features provided insights into inspectors’ ability to 

comprehend, analyze, and detect problems in SRS. These prominent features, when used by ML 

algorithms predict inspectors’ abilities to find different fault types in an SRS. 

4.4.2. Results for RQ-2 

This question aimed at finding the most suitable classifiers that could predict the 

effectiveness of an inspector at reporting a fault-type. The result and discussion are based on the 

data presented in Table 4.3. The evaluation metrics Precision, Recall, and F-measure are 

represented using P, R, and F respectively in Table 4.3. The ROC curve is only sketched (Figure 

4.3) for the most prominent fault-type (IF) and most applicable evaluation method (i.e., wrapper 

method using RF classifier). The result in Figure 4.3 shows that the largest gain (94% when 

using wrapper method vs. 80% without) for AUC-ROC metric for fault-type-IF. Readers can 

reference Table 4.3 that shows accuracy gains across all classifiers (i.e. random forest, Lazy 

Learner, Naive Bayes, Voting, AdaBoost, and Bagging); all evaluation methods (information 
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gain, wrapper subset, and classifier subset) and for all fault-type. Some of the major observations 

from Table 4.3 are discussed below: 

 

Figure 4.3. ROC curve of fault type-IF for wrapper subset method using RF 

• Selection of best performing inspectors were most accurately predicted by Random 

Forest (RF) classifier when used to create ensemble or voting method for almost every 

fault-type. RF when used with ensemble methods resulted in accuracy between 80% and 

94%. The companies can rely on these results to guide the selection of most skilled 

inspectors.   

• In terms of accuracy for fault-types, the largest prediction accuracy values ranged from 

94% for fault-type IF, 88% for II, 81% for A, and 79% for O. Mostly, this accuracy was 

obtained when selected features were related to RPs (i.e., fixations and saccades). Figure 

4.3 shows the ROC curve of various classification types (AdaBoost, Voting and 

Ensemble) using RF as classifier (Table 4.3 shows more details on performance of 

classification types when used with various classifiers for all fault-types). 
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Table 4.3. Experiment results for all considered fault-types 

Evaluator 
Method – 
Fault type 

Classification Type Selected Features TP 
rate 

FP 
rate 

P R F AUC 
ROC 
% 

None RF All 80.8 34.6 70 80.8 75 75.5 
 
Classifier 
Subset - A 

Ensemble (Bagging with 
RF) 

Avg. fixation time, Linear saccades per page, Total 
lookups in general description, Total lookups in 
functional, Total # of searches, Total search time, 
Faults reported                      

84.6 34.6 71 84.6 77.2 78.7 

Lazy Learner with RF -Same as immediate row above- 80.8 30.8 72.4 80.8 76.4 80.7  
 
Information 
Gain - A 

Lazy Learner with RF Total time taken, Time spent per page, Fixation per 
page, Total lookups in intro, Linear saccade per 
page, Faults reported, Total lookups in general 
description 

80.8 30.8 72.4 80.8 76.4 80.7  

Ensemble (AdaBoost 
with RF) 

-Same as immediate row above- 80.8 34.6 70 80.8 75 77.6 

Wrapper 
Subset - A 

Ensemble (Bagging 
with RF) 

Linear saccades per page, Total lookups in general 
description, Faults reported 

92.3 42.3 68.6 92.3 78.7 80.2 

Lazy Learner with NB -Same as immediate row above- 80.8 38.5 67.7 80.8 73.7 77.4 
         
None RF All 46.7 3.2 93.3 46.7 62.2 79.4  
Classifier 
Subset - IF 

Ensemble (AdaBoost 
with RF) 

Average fixation time, Total lookups in introduction 70 9.7 87.5 70 77.8 83.4 

 
 
Information 
Gain - IF 

RF Total lookups in intro, Total lookups in functional, 
Time per page, Time reading intro, avg. fixation 
time, fixation per page 

83.3 6.5 92.6 83.3 87.7 92.6 

Ensemble (Bagging with 
RF) 

-Same as immediate row above- 83.3 3.2 96.2 83.3 89.3 92.0  

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

-Same as immediate row above- 66.7 3.2 95.2 66.7 78.4 91.9  

 
Wrapper 
Subset - IF 

Ensemble (AdaBoost 
with RF) 

Average fixation time, Time spent per page, Total 
lookups in intro, Total lookups in functional, time 
reading description, total time taken 

83.3 3.2 96.2 83.3 89.3 94 

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

-Same as immediate row above- 93.2 3.2 96 80 87.3 93.2  

Lazy Learner with RF -Same as immediate row above- 86.7 6.5 92.9 86.7 89.7 93.5  
         
None RF All 70.8 34.8 68 70.8 69.4 79.3 
Classifier 
Subset - II 

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

Average fixation time, Fixation per page, Time spent 
per page, Linear saccade per page, Total lookups in 
functional, Total # of searches, Time spent reading 
description, Total search Time 

79.2 34.8 70.4 79.2 74.5 79.7 

Ensemble (AdaBoost 
with RF) 

-Same as immediate row above- 79.2 34.8 70.4 79.2 74.5 79.4 

 
 
Information 
Gain- II 

Ensemble (AdaBoost 
with RF) 

Total lookups in functional, Time spent per page, 
Total search time, Fixation per page, Linear saccade 
per page, Time spent reading description, Total # of 
searches, Avg. fixation time 

79.2 34.8 70.4 79.2 74.5 79.4 

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

-Same as immediate row above- 79.2 34.8 70.4 79.2 74.5 79.7 

        
 
Wrapper 
Subset - II 

 RF Total lookups in Functional, Time spent reading 
intro 

66.7 13 84.2 66.7 74.4 86.7 

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

-Same as immediate row above- 70.8 13 85 70.8 77.3 85.5 

Lazy Learner with RF -Same as immediate row above- 75 17.4 81.8 75 78.3 87.6 
         
None RF All 69.6 29.2 69.6 69.6 69.6 69.7 
Classifier 
Subset - O 

Lazy Learner with RF Average Fixation Time, Linear Saccade Per Page, 
Time spent reading intro 

52.2 45.8 52.2 52.2 52.2 55.9 

Information 
Gain - O 

Lazy Learner with RF Total time taken, Linear saccade per page, Total 
lookups in intro, Time spent per page, Faults reported, 
Fixations per page 

73.9 37.5 65.4 73.9 69.4 66.3 

Wrapper 
Subset - O 

Voting (RF, Bagging 
with RF, and AdaBoost 
with RF) 

Average fixation time, Time spent per page, Total 
lookups in functional, Total search time, Total time 
taken 

78.3 16.7 81.8 78.3 80 79.3  

Ensemble (AdaBoost 
with RF) 

-Same as immediate row above- 73.9 20.8 77.3 73.9 75.6 78.5  
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Implications: These results also showed that random forest (either alone) or when used 

with ensemble or voting methods can strengthen the characteristics for selecting inspectors that 

would identify larger number of faults. RF classifier uses multiple decision trees to fit the data 

(i.e. train) to classify test data. The majority features from eye-tracking data being continuous in 

nature were best split in intervals by the underlying decision trees. This resulted in strongly 

learned RF classifier that outperformed other classifiers over test data. It was also observed that 

the prediction is accurate and generalizable when features contains RPs of an inspector. 

Inspectors that tend to fixate more, exhibit linear saccades, performed more searches were more 

likely to identify more faults. 
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5. KEY PHRASE EXTRACTION FROM FAULT LOGS 

This chapter concentrates on proposing an automated approach to identify key phrases 

from fault logs (that points to faults) and then mapping those keyphrases to SRS document 

(chapter 6) to identify fault-prone requirements that needs a fix (goal-2). Automation using our 

proposed approach saves time and provide additional decision-making support (based on 

mathematical foundations) to requirements authors during post-inspection fixation process. 

5.1. Introduction 

Our previous work (see Figure 5.1) was focused at automated validation of requirement 

fault logs (i.e., identifying true-positives (TPs) vs false-positives (FPs)) [72], [76], [77]. The 

proposed work in this chapter is motivated by positive results from our prior work and is focused 

on automating the identification of “problematic areas” in an SRS based on the fault logs. To 

achieve this automation, several ML KPE algorithms were employed to develop KESRI 

(Keyphrase Extraction in Software Requirement Inspections) approach that would automatically 

extract keyphrases from fault logs and would reduce manual analysis of each fault log. 

The KESRI approach was validated against the keyphrases extracted by manual analysis 

(details appear later). To implement and validate KESRI, an inspection study at NDSU was 

executed that collected fault logs which were validated for true faults (using prior work). The 

true faults were next fed to the KESRI approach to extract keyphrases (corresponding to 

problematic parts of SRS) that can then be prioritized during fault fixation. 
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Figure 5.1. The KESRI approach 

5.1.1. Proposed Approach 

Our proposed approach adapted existing KPE algorithms (that have been applied on NL 

text) to NL software requirements. KESRI can be used in unsupervised (without SRS) and 

supervised learning (with SRS) mode and would extract key information from NL fault logs. 

This section presents the working example of how KESRI would extracts keyphrases from fault 

logs (reported during an inspection) to highlight problematic areas in an SRS (to assist post-

inspection activities). Various steps involved are shown in Figure 5.2 and a sample fault log 

(representative of nature of fault logs) listed below is used to explain the working of our 

approach. 

“The initial value of r was defined to be 10000. But now it is defined as 1000. Inconsistent value 

of r.” 

 
Figure 5.2. Steps involved in KESRI approach 
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5.1.1.1. Preprocessing  

NL fault log text inputted to KESRI approach needs to be normalized to maintain 

consistency with SRS text. For this purpose, both inputs (SRS and fault logs) used by KESRI are 

preprocessed to filter non-useful text (e.g., removal of stop words, lemmatization, spelling 

corrections). All the NL text was converted to lowercase and all the acronyms in a given NL text 

were converted to their full abbreviations to maintain consistency. Any variable or expression 

listed as a single character was converted to a standard format to avoid them from being removed 

as part of stop words removal or as part of any parameter setting (e.g., removal of words that are 

less than 3 characters in length). The NL text can have hyphenated words and the preprocessing 

step would de-hyphenate these words to avoid miscalculation of frequency counts. As an 

example, at the end of this step, the sample fault log considered to explain working of KESRI is 

preprocessed and is shown below. 

“the initial value rvariable defined 10000 but defined 1000 inconsistent value rvariable” 

Preprocessing step on original sample fault removed stop words (e.g., ‘of’, ‘was’, ‘.’), the 

text is converted to lowercase, and a single character variable ‘r’ is converted to a standard 

variable form i.e. rvariable. Similarly, the complete SRS document was preprocessed (in 

supervised learning) to normalize its text to reduce any potential bias during KPE from fault logs 

as well as during model training with the SRS. 

5.1.1.2. Natural language processing and parameter tuning  

Application of KESRI required certain ML algorithm parameters to be tuned (e.g., POS 

tag combinations, window of words to consider, inclusion or exclusion of stop words, # of N-

grams to consider etc.) to ensure that keyphrases extracted from fault logs were consistent with 

software requirements text. The parameter tuning was guided based on our previous findings and 
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literature on application of ML on software requirements. For example, our prior work [72], [76], 

[77] reported that POS tag combination of nouns and adjectives are most applicable when 

validating requirement fault logs using ML algorithms. Similarly, based on literature findings, 

most keyphrase extraction algorithms used N-grams between length 3 and 5. After stop words 

removal (during preprocessing), the length of fault logs was reduced, and N-grams (1≤N≤3) 

were more likely to generate prominent keyphrases. More details about additional parameters 

appears in Table 5.1. 

Table 5.1. Parameter tuning of KESRI approach 

Algorithm Stop 
words 
removal 

POS 
reqd. 

Document 
frequency 
weighting 

N-
gram 

Other/Remarks 

TFIDF Yes No SRS doc. Freq. 3 3-gram is used because of Stopwords removal 
KPMiner Yes No SRS doc. Freq.  1-5 Least allowable seen freq. is set to 3 and cutoff is set to 200, 

parameter boosting is set to 3. 
YAKE Yes No Window parameter 1-3 Window size is set to 2 to compute right/left context, and redundant 

keyphrases are removed using Levenshtein distance with threshold 
of 0.8.  

Text Rank No Yes Weighting is by 
selecting top 33% 
words as candidate 

No Words in a key phrase (window) is set to 3, the top-percent is set to 
0.33 to generate candidate keyphrases from top 33% highest ranked 
words. POS tags used are noun, proper nouns, and adjectives. 

Single 
Rank 

No Yes # of co-occurrences 
of words using 
window parameter 

No POS tags used are nouns, proper nouns, and adjectives. Window 
parameter is set to 10 

Topic Rank Yes Yes Weights assigned 
using random walk 

No The longest sequence of nouns, proper nouns, and adjectives are 
used to create candidate phrases. The clustering of terms is 
calculated using average linkage graph strategy and setting the 
threshold parameter to 0.74.  

Topical 
Page Rank 

Yes Yes Single topical page 
rank in a given 
window 

No The window is set to 10 and the candidate keyphrases are selected 
using a regular expression “zero or more adjectives followed by one 
or more nouns”. The LDA model is used to calculate word topics. 

Position 
Rank 

No Yes Using sum of 
word’s score 
computed using 
random walk. 

3 Window size is 10 and the POS tags nouns, proper nouns and 
adjectives are used. Uses grammar rule to only consider those 
phrases that have zero or more adjectives followed by one or more 
nouns. 

Multipartite 
Rank 

Yes Yes Weights calculated 
using random walk. 

No The longest sequence of nouns, proper nouns, and adjectives is 
selected for candidate phrases. The weights are controlled by setting 
the alpha value to 1.1, threshold to 0.74, and by using average 
linking method. 

KEA Yes No SRS doc. Freq. 1-3 SRS document freq. is used, and the default model file defined in 
PKE package is used. The default package uses Naïve Bayes to train 
the model. 

Wingus No Yes SRS doc. Freq. No Only noun phrases are used to create candidate selection. The default 
model is used that is trained using Naïve Bayes. 

TOPIA No No SRS doc. Freq. No We set the number of words in a phrase be between 3 and 5. The 
algorithm works with some pre-defined set of rules to determine key 
phrases. We used the default rules for key extraction. 

RAKE Yes No SRS doc. Freq. No We set the number of words in a phrase between 3 and 5.  
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ML algorithms: KESRI utilized ML KPE algorithms that belonged to both supervised 

and unsupervised learning domain. When used in unsupervised mode, KESRI extracted key 

phrases from fault logs alone whereas when used in supervised mode, KESRI used fault logs, 

SRS and training models trained on specific features (e.g., frequency of terms, POS tag or 

combination of POS tags). 

Keyphrase extraction: The KESRI approach extracted keyphrases using KPE algorithms 

which were then compared against the manually extracted keyphrases (from an expert and 

discussed in the validation section of this chapter). This subsection only discusses the 

algorithmic application of KPE. 

KPE algorithms (listed in Table 5.1) were implemented to extract keyphrases of any 

length N (where 1≤N≤∞), but in this study N was set to 1 (i.e., 1-word). The details of individual 

algorithms are beyond the scope of this research and some more details discussed in chapter 2. 

To explain the working of KESRI approach, a concise and high-level overview of working of 

one algorithm per category is presented in Table 5.2 using the same sample fault (after 

preprocessing). The keyphrases were extracted and ranked (in decreasing order) by KPE 

algorithms based on the highest value of weight that a phrase carried (i.e., the numerical value 

that signifies importance of a term in a text). Every KPE algorithm family used different weight 

assigning principle guided by their theoretical underpinnings. For example, few KPE algorithms 

used SRS document frequencies (i.e., TFIDF), and few based on co-occurrences of certain 

combination of POS tags like nouns and adjectives etc., to assign weights to keyphrases (refer 

Table 5.1). 

The KESRI approach enabled the requirements authors to select top ranked X number of 

phrases based on N-word length (where, 1≤X≤∞, and 1≤N≤∞). However, the KESRI approach 
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can theoretically retrieve infinite # of top phrases and N-word phrases, but there is usually an 

upper bound on the value of X and N, and varies based on the length of the document that is 

being used to extract keyphrases (e.g., 1≤X≤350, and 1≤N≤5 for fault logs in our validation 

study). Our evaluation results showed that the higher value of N results in very low X number of 

phrases. The example output of keyphrases from our sample fault example (with X=5, and N=2) 

is shown in the Table 5.2. 

Table 5.2. Working example of KESRI for selected family of KPE algorithms 
 

Unsupervised Graph Based Unsupervised Statistical Based Supervised feature based 

Algorithm  Text Rank YAKE KEA 

Overview Text Rank Algorithm constructs a 
graph of co-occurring combination of 
POS tag (e.g., only nouns and 
adjectives within a window of 2 
consecutive words in a text) that are 
added to a graph with an edge 
denoting co-occurrence. If a word 
appears more than once, then that 
word has more than one edge to 
denote co-occurrence with multiple 
words. The words are ranked based on 
the # of edges and the importance of 
its co-occurring words. 

YAKE extract phrases based on 
characteristics such as Casing (case 
aspect of a word), position 
(assuming that relevant words 
occur at the beginning), word 
frequency, relatedness (words 
occurring to the left/right of a 
word), and word difference (i.e., 
how often a candidate word 
appears in different sentences). The 
ranking of key phrases is based on 
heuristics, and TFs. 

KEA identifies key phrases 
using Naive Bayes supervised 
training model. The SRS 
document in our case is used 
to train the model. KEA 
identifies key phrases using 
lexical methods to calculate 
feature scores for its 
candidates. The test set (i.e. 
fault logs) is tested against the 
trained model to extract most 
important phrases. 

Key 
phrases 
extracted 

Initial value Value rvariable, 1000 inconsistent, 
initial value, inconsistent value, 
defined 1000 

Value rvariable, initial value, 
rvariable defined, defined 
1000, 1000 inconsistent 

 
5.2. Experiment Design 

This section present details regarding the application and evaluation of KESRI approach 

on a sample SRS document that was reviewed by a skilled set of inspectors. This section presents 

the design of inspection study that was conducted at NDSU along with variables that were 

exploited, and the data collected during the inspection study. This section also present RQs that 

were investigated and the metrics that were used to validate the KSERI approach. 
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5.2.1. Research Questions 

Two major research questions were formulated and investigated in this study, and these 

are presented as following. 

RQ-1: How effectively does KESRI approach extracts keyphrases from fault logs? 

RQ-2: What family of keyphrase extraction algorithms are most applicable to 

requirements fault logs? 

5.2.2. Algorithms Used  

The independent variables included different categories of KPE algorithms (listed in 

Table 5.3) and the length of key phrases extracted from each algorithm (i.e., 1-words). The 

dependent variables included precision, recall and F-measure of these independent variables 

(Table 5.4). 

Table 5.3. Key extraction algorithm categories 

Category Sub-category Algorithms 

Unsupervised Statistical KPMiner, YAKE, RAKE, TOPIA 

Graph Based TextRank, Single Rank, Topic rank, Topical page rank, Position rank, and 
Multipartite rank 

Supervised Feature based KEA, and WINGUS 

 
5.3. Experiment Procedure  

This section presents details about the inspection study (that was conducted to collect 

fault logs), validation metrics and algorithmic details (adapting KPE algorithms, creating training 

sets), and criterion used to evaluate the performance of KPE algorithms. 

Table 5.4. Evaluation metrics for KESRI approach 

Metrics Definition Formulae 

Precision (P) Denotes the # of selected relevant phrases TP/(TP+FP) 

Recall (R) Denotes the # of selected relevant phrases TP/ (TP+FN) 

F-measure (F) It is the harmonic mean of both precision and recall 2 (P*R)/(P+R) 
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5.3.1. Variables Used  

This section discusses various variables exploited in this study along with data collection 

procedures and metrics used. 

Inspection study: The inspection study was conducted at NDSU where inspectors were 

trained on using fault checklist (FC) technique to review and report faults in an externally 

developed SRS document and it was validated using metrics shown in Table 5.4. 

SRS artifact: The parking garage control system (PGCS) requirements document was 

inspected during the study. PGCS had been used in prior inspection studies including our prior 

work [72], [76], [77]. PGCS requirements document is 14 pages long and is seeded with 35 

defects across 61 functional and non-functional requirements. 

Inspectors and data collected: A total of 41 inspectors inspected the PGCS document. 

The inspectors were computer science students (both graduates and undergraduates) and had at 

least 2 years of work experience. Students were trained on how to use FC and they subsequently 

used FC to inspect the PGCS document. A total of 201 true fault-logs (i.e., true faults) were 

reported during inspections and were input to KESRI approach. 

5.3.2. Application of KESRI on PGCS fault logs  

This section presents more details about implementation of the KESRI approach using 

python 3.7 library version along with API from different packages like NetworkX (for graph 

models), Gensim (for semantic similarity approaches like LSI and LDA), Jellyfish (for syntactic 

similarity), NLTK (for basic NLP operations like stop words removal, POS tag generation), PKE 

library (to implement various supervised and unsupervised keyphrase extraction algorithms), 

TOPIA (term extraction), and RAKE (key phrase extraction). This subsection provides details on 
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how KESRI was adapted to extract keyphrases from PGCS fault logs. This subsection is centered 

on the steps involved in extracting keyphrases from SRS fault logs. 

Step 1 - input - preprocessing of SRS and fault logs: The preprocessing of fault logs and 

SRS is performed by converting all the acronyms to their full abbreviations to maintain 

consistency across the text and to avoid misleading frequency counts (e.g., to avoid separate 

frequency calculation of the acronym ‘SRS’ and ‘software requirements specification’). Next, all 

mathematical expressions (e.g. ‘a>0’) were manually spaced to treat them as individual tokens. 

This enabled KESRI approach to generate frequency count for ‘a’, ‘>’, and ‘0’ individually. The 

entire SRS and fault logs were preprocessed to maintain consistency, such as, ‘xvariable’, where 

‘x’ was substituted with name of single character variable (e.g., ‘a’ in a>0 was converted to 

avariable>0). This preprocessing step would ensure that no relevant phrases are lost during the 

extraction which is a common drawback of some of the existing KPE algorithms that tend to 

exclude single length characters. 

Additionally, these single character variables across different functionalities in an SRS 

and if these are lost during the KPE implementation, then I would lose the ability to map these 

phrases to individual requirements (a future step when mapping phrases to requirements that 

needs fixation). For example, the variable ‘r’ referred in an SRS for ‘hourly_rate’ in parking 

garage scenario and is also referred in many other functionalities such as, bill_generation, 

weekday_rate, and weekend_rate (1.5 times hourly rate on weekday). So, these single character 

variables should be extracted (e.g., using Xvariable format) to enable mapping them to faulty 

requirements in an SRS. 

Step 2 - output - extraction of keyphrases: The keyphrases of length up to N-words (with 

1≤N≤3) can be extracted with KESRI approach and can be used in supervised and unsupervised 
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mode. Supervised KPE algorithms require term frequencies to train the model prior to keyphrase 

extraction. The term frequency count (in an SRS) were used to assign the weights (i.e. a 

numerical value that denotes the importance of each  term) which in turn were used to calculate 

the importance of a phrase extracted from the fault logs (details about weighting discussed in 

Table 5.1). The disintegration of text (both SRS and fault logs) into N-words for frequency 

counts was done using N-grams (discussed in chapter 2) followed by weight assignment to rank 

keyphrases. 

Step 3 - validation of KESRI output: To facilitate validation of KESRI, the manual KPE 

was performed by the domain expert to obtain the most relevant keyphrases from preprocessed 

fault logs but without ML assistance. This manual step identified all relevant terms from the fault 

logs. For example, in the sample preprocessed fault log considered (in section 5.1), the most 

relevant terms extracted from domain expert included “inconsistent”, “value”, and rvariable”. 

The manual extraction included a constraint that these terms should also appear in an SRS. The 

KPE algorithms are currently not able to implement this feature (i.e., to only extract keywords 

from fault logs that also appear in an SRS). Because inspectors report faults using unrestricted 

NL and those logs may include phrases (e.g., understand, inconsistent) that don’t exist in PGCS 

SRS. For example, considering the sample isolated fault log, “the initial value rvariable defined 

10000 but defined 1000 inconsistent value rvariable”, the set of 1-word phrases extracted from 

KESRI approach included {‘rvariable’, ‘defined’, ‘inconsistent’, ‘10000’}. In the same example, 

manual extraction of 1-word phrases included {‘rvariable’, ‘value’, ‘10000’, and ‘1000’}. Few 

major observations when comparing the outputs of KESRI vs. Manual extraction based on this 

one sample scenario is discussed below: 
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• TPs are {‘rvariable’, ‘10000’} because these phrases appeared in KESRI output and were 

also manually extracted; 

• FPs are {‘defined’, ‘inconsistent’} because these terms were only extracted from KESRI 

and did not appear during the manual extraction because of the constraint that terms to be 

extracted should also appear in an SRS. This was done because different inspectors tend 

to use different verbiage to indicate the same fault and I am only considering phrases 

extracted from fault logs that also appear in an SRS. 

• FNs are {‘value’, ‘1000’} because these does not appear in the KESRI output but were 

manually extracted. These values did not appear in KESRI because I used an isolated 

fault (as an example to explain the evaluation process), but the KPE algorithms 

(supervised and unsupervised) uses different algorithmic underpinnings to extract 

keyphrases. Results would be better with a greater number of fault logs. 

Next, the entire fault logs (201 in number) are input to KESRI that output a set of 1-word 

phrases that are evaluated using the set of manually extracted keyphrases. The values of 

evaluation metrics are calculated using TPs, FPs, and FNs (as shown in the example above) for 

all the KPE algorithms 

5.4. Results 

This section presents the results centered around two RQs that evaluated the performance 

of 11 different KPE algorithms (belonging to supervised and unsupervised category) when 

extracting keyphrases from fault logs. To help the reader, the F-measure values for all 11 

algorithms are grouped based on the length of keyphrases extracted. These results are shown in 

Figure 5.3 and discussed below. Major observations regarding the results presented in Figure 5.3 

follows. 
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• 1-word phrases: F-measure of all algorithms varies between a minimum of 48 (for 

TOPIA) and a maximum of 66 (for KEA). KEA performed the best but still misses some 

relevant phrases that are otherwise extracted from an expert. 

• 2-word phrases: F-measure for 2-word phrases was higher across all algorithms (when 

compared against F-measure for 1-word phrases). Yet again, KEA performed the best 

with F-measure of 77%, a big improvement. 

• 3-word phrases: F-measure for 3-word phrases could only be calculated for KEA and 

Wingus because all other algorithms could not output enough 3-word keyphrases to 

enable F-measure calculation. Of the two that did report the values, KEA performed best 

with an F-measure of 83%. 

 

Figure 5.3. Comparison results of KPE algorithms 

Implications: Based on the above key findings, KEA was most likely to retrieve most 

relevant keyphrases from requirement inspections fault logs as would have retrieved manually by 

an inspector. It can be speculated that supervised learning algorithms (Wingus and KEA) i.e. 
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feature based are better suited than most unsupervised learning algorithms (both statistical and 

graph based) to extract relevant keyphrases. 

5.5. Discussions 

Few algorithms (e.g., TopicRank, TextRank, and RAKE) did not retrieve adequate 

number of 3-word phrases, and this scenario was most prevalent with graph-based algorithms. It 

was observed that the following factors were crucial for the retrieval of low number of phrases. 

• Most of the graph-based algorithms extract nouns, proper nouns, and adjectives from the 

text (fault logs in our case). Also, these graph-based algorithms extract keyphrases based 

on certain combinations of nouns with adjectives, or extraction of those keyphrases 

where noun and adjectives appear within a certain window of words etc. There were only 

201 reported fault logs that were further preprocessed (removal of stopwords) and 

resulted in even shorter text. This was one of the prominent reasons for certain algorithms 

such as TopicRank, TextRank etc., resulted in very few numbers of phrases. 

• Another reason for retrieval of limited number of phrases was that the RAKE algorithm 

was configured to retrieve the words that have minimum frequency of occurring > 3. 

Since, our faults logs are preprocessed and was a smaller text corpus, which made it 

difficult for the algorithms to extract keyphrases that occur frequently (i.e. more than 3). 

Adjusting the frequency of occurrence to less than 3, compromised with the effectiveness 

of keyphrases. 

The following conclusions can be drawn regarding the best performing algorithms: 

• Supervised learning algorithms performed best (based on their higher F value) because 

they used training model to identify the keyphrases. In our case, the model was trained on 
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actual PGCS SRS and was later used to extract keyphrases. The trained model was 

created using Naive Bayes classifier. 

• Most of the unsupervised (graph based and statistical) algorithms performed poorly when 

compared with supervised algorithms. 
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6. MAPPING FAULT LOGS TO SRS REQUIREMENTS 

This proposed work is the extension of our work (Keyphrase Extraction in Software 

Requirements Inspections) a.k.a., KESRI approach (discussed in chapter 5) that automated the 

extraction of key phrases from NL fault logs (output of the inspection process). Post-inspections, 

KESRI can help requirements authors by extracting relevant keyphrases from NL fault logs but 

they need to be mapped to individual SRS requirements. This mapping of extracted keyphrases 

to SRS requirements is a cumbersome, time-consuming, and tedious process. The current work 

maps the keyphrases (that conveys the fault context) to the requirements in an SRS. This chapter 

presents our proposed approach i.e., Mapping Of Keyphrases to SRS Approach (MOKSA) that 

input keyphrases of length 3-words (generated in by KESRI), SRS document, and similarity 

algorithm. The output of MOKSA algorithm is faulty requirements that are highly impacted by 

the faults from fault logs. 

6.1. Proposed Approach 

As discussed in chapter 5, the MOKSA takes input keyphrases (e.g., 3-word length), SRS 

document (PGCS), and a similarity measure (i.e., semantic similarity) to identify fault-prone 

requirements that need fixation. This section presents the working example of mapping 

keyphrases to the SRS document with semantic similarity measures. The overall proposed 

approach is shown in Figure 6.1, and the example keyphrases from KEA are shown in Table 6.1. 

As shown in Figure 6.1, the extracted keyphrases from the fault logs were inputted to the 

MOKSA. Our prior work automated the KPE from fault logs. Based on the prior results, the 

keyphrases of length 3-words were being extracted from class of ML algorithm (belonging to 

supervised feature-based algorithms) because they produced best results. To help the reader, the 

proposed mapping approach (shown in Figure 6.1) is explained using top-11 ranked keyphrases 



 

97 
 

(of 3-word length) extracted from a type of supervised feature-based ML algorithm (KEA). Each 

step in Figure 6.1 is described as following. 

 

Figure 6.1. Overview of MOKSA approach 

Identifying the # of clusters: MOKSA takes input the user specified number of 

keyphrases (e.g., 11-keyphrases used in this example) and outputs # of clusters needed to most 

appropriately group the keyphrases as opposed to using a user predefined number of clusters. 

This is done through clustering algorithm called ‘Affinity Propagation’. 

Clustering the keyphrases:  Using a variety of clustering algorithms (agglomerative, K-

Means, affinity propagation, spectral, and ward hierarchical), the keyphrases extracted were 

grouped (based on their similarity) into # of clusters (identified during the Step 1). As seen in 

Table 6.1, 11-keyphrases when fed to Affinity Propagation algorithm outputs the number of 

clusters (3 in this case) which were in turn fed to clustering algorithms (K-means in this case), 

and outputs the placement of those keyphrases in each of those 3 clusters (that are color coded). 

So, essentially, at the end of step-2, related problems were grouped together that were identified 

during the review and can next be mapped to the requirements in SRS. 

Training the model to map keyphrases to SRS: During this step, MOKSA trained a 

model using semantic similarity algorithms (e.g., LSA) to learn the NL semantics of the SRS 
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(e.g., PGCS) document. The learning algorithms find patterns in the learning data (i.e., SRS 

document) that could later mapped the queried data (i.e., clustered keyphrases) to the 

requirements in an SRS. 

Table 6.1. Output of MOKSA approach using sample 3-word keyphrases 

Keyphrases from KEA Affinity 
Propagation 

K-Means Clusters 

Step-1 
(3-word 
length) 

car leaving parking, number parking 
spaces, parking space available, driver 
call someone, someone help cashier, 
previously 1000 10000, monthly ticket 
increase, ticket increase rvariable, 
purchasing monthly ticket, nothing say 
gate, say gate close 

3 clusters 
(Step-2) 

Step-3 

{car leaving parking, number parking 
spaces, parking space available, someone 
help cashier}, {nothing say gate, say 
gate close}, {driver call someone, 
previously 1000 10000, monthly ticket 
increase, ticket increase rvariable, 
purchasing monthly ticket} 

 
Testing the model: The clusters of keyphrases (output of clustering the keyphrases step) 

were queried against the supervised ML model trained on SRS (i.e., PGCS). This step queries 

each cluster (containing keyphrases from fault logs) one at time against the trained model and 

outputs the list of requirements that were most related to clustered keyphrases i.e., maps 

clustered keyphrases to potentially faulty requirements in an SRS. 

6.2. Study Design 

This section present details regarding experiment design that was used to evaluate 

MOKSA including research questions explored, variables exploited, data collected and 

evaluation metrics used in this study. 

6.2.1. Research Questions  

Two major research questions were evaluated in this study and are listed below. 

RQ-1: Which clustering algorithms provide the most accurate clusters for keyphrases 

from fault logs? 
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RQ-2: Which semantic similarity measure (LSA or LDA) performs more accurate 

mapping of keyphrase clusters to SRS requirements? 

6.2.1.1. MOKSA study design 

This section presents some important details about the design of artifacts, inspectors, and 

evaluation metrics used in this study. 

Artifacts and inspectors: This study is an extension of KESRI and utilizes same # of 

inspectors (i.e., 41) and artifact (PGCS that resulted in 201 fault logs). 

Evaluation metrics: The MOKSA included clustering algorithms for clustering 

keyphrases (that were being evaluated - RQ1) and also included semantic similarity techniques 

(that were being also being compared - RQ2). To answer RQ1, literature search [81] yielded 

three most commonly used cluster evaluation metrics that were applied when evaluating 

MOKSA’s key clustering algorithms. A brief description of these three metrics follows: 

• Rand Index: considers pair of keyphrases (at a time) and then evaluates their cluster 

placement by comparing it with manual clustering. Rand Index outputs whether the pairs 

of keyphrases are placed in the correct cluster (assuming an expert is placing keywords in 

clusters correctly) [81]. As an example, if 6 keyphrases are partitioned in two different 

manners (manual partition and algorithm partition), Rand Index performs pairwise 

comparison (for all 15 pair of keyphrases 6C2) and outputs the # of agreements and # of 

disagreements in manual vs. algorithmic clustering. 

 # of pairs of elements that are both correctly clustered by both manual and algorithm 

(referred as a); 

 # of pairs of elements that one or both are incorrectly clustered by algorithm (again 

assuming manual clustering the correct) and referred as b; 
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The rand index is calculated as (# of pairs in agreement)/ (total # of pairs), i.e., (a)/ (a+b). 

The denominator is total number of pairs, so, rand index represents the frequency of agreements 

over total # of pairs. The output value can range from 0 (no agreement) or 1 (complete 

agreement) between algorithm and manual clustering. 

• Information theory-based metrics (adjusted and normalized) mutual information: 

evaluates the cluster performance based on their purity i.e., keyphrases placed in the 

correct clusters. But purity is easily manipulated to generate high value e.g., for singleton 

clusters the purity is as high as 1. To adopt a more precise measure, adjusted mutual 

information (AMI) and normalized mutual information (NMI) between two clusters is 

being used to measure the information one cluster carries regarding the true cluster 

belongingness. We normalized mutual information score to scale the results between 0 

(poor clustering) and 1 (perfect clustering). NMI is not adjusted to evaluate predictions 

by a chance i.e., the NMI score is unbounded when a large value for # of clusters is used 

for fixed number of data elements. On the other hand, the adjusted mutual information is 

adjusted for predictions based on chance and can be scaled to have values in range [0, 1]. 

Both these metrics are compared along with Rand Index as part of RQ1 [81] [82]. 

In regards to RQ2, the mapping of keyphrase clusters to individual SRS requirements 

(generated by LSA and LDA) are being evaluated by comparing it against the clusters generated 

by the domain expert (often referred to as evaluation by semantics [81]). 

6.3. Experiment Procedure and Validation  

This section provides working details of MOKSA including description of tuning 

parameters used in algorithms used in this study. MOKSA was executed using Python 3.7 library 

version along with API from other packages including NetworkX (for graph models), Gensim 
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(for semantic similarity approaches like LSA and LDA) and SKLearn library (to implement 

various clustering algorithms). The overview of experiment procedure is presented below and is 

organized around steps in Figure 6.1. 

Step 0- preprocessing input to MOKSA: At the completion of inspection study, a total of 

201 true faults were identified. These fault logs were fed to KESRI approach (Chapter 5) and 

resulted in a list of top-N keyphrases (where N is 60) and each keyphrase is of length 3.  A list of 

top-60 key phrases are inputted to MOKSA. 

Step 1 - identifying the # of clusters: MOKSA executed ‘Affinity Propagation’ clustering 

algorithm and outputs the # of clusters where all the keyphrases can be placed. The top-60 

keyphrases (output of Step 0) when fed to Affinity Propagation algorithm resulted in 14 unique 

clusters. 

Step 2 - placement of keyphrases in each cluster: Clustering algorithm grouped top-60 

keyphrases (output of Step 0) into 14 clusters (output of Step 1). This process was executed for 

each of five clustering algorithm (used in MOKSA) and their performance was compared using 

evaluation metrics to identify the best performing clustering algorithm. 

Validation: Each clustering algorithm placed each keyphrase to a particular cluster which 

were evaluated against the manual cluster assignment (by the domain experts). Then, evaluation 

metrics (random index, adjusted mutual information gain, and normalized mutual information 

gain) measured the performance of clustering algorithms in terms of values ranging from 0 (poor 

clustering) to 1 (best clustering). The clustering algorithms that were categorized as pairwise 

distance between neighbors were run 10 times and then average of all the values was used as the 

final value for the evaluation metrics. This step was performed because K-Means randomly 

selects the initial means for the given # of clusters (i.e. 14 in this case) that results in different 
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values for each run. So, to estimate the metric value for these clustering algorithms, it is a 

common practice to run it several time and report the mean of all the runs as the final value. 

Step 3 - mapping of keyphrase clusters to individual SRS requirements: To map 

keyphrase clusters (output of Step 2) to individual SRS requirements, PGCS requirements were 

used to train the model with two competing similarity algorithms (LSA vs. LDA). Next, the 

trained model was queried by the keyphrase clusters (identified by best performing clustering 

algorithm from Step 2) and mapping of clusters to PGCS requirements was generated by LSA 

and LDA. This mapping was evaluated by a domain expert, who validated the mapping produced 

by LSA and LDA by comparing it against their predicted mapping (i.e. if they were to manually 

map keyphrase clusters to requirements in an SRS). During the comparison, output of LSA/LDA 

were generated by varying different similarity threshold values (ranging from 80% similarity to 

100%). 

6.4. Results and Discussion 

This section presents the result in terms of RQs identified in Section 6.2. 

RQ-1: evaluates performance of 5 clustering algorithms in terms of the placement of top-

60 keyphrases in each of 14 clusters. Table 6.2 shows a comparative evaluation of these 5 

clustering algorithms using three evaluation metrics. Major observations from Table 6.2 are as 

follows: 

Table 6.2. Cluster evaluation metrics 

Metrics Pairwise neighbor distance Graph based neighbor distance 

K-Mean Ward Hierarchical Agglomerative Affinity Propagation Spectral 

Rand index 0.52 0.62 0.62 0.72 0.36 

Adjusted mutual information 0.61 0.71 0.70 0.73 0.49 

Normalized mutual 
information 

0.79 0.84 0.83 0.86 0.74 
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• Based on Rand index, the performance of clustering algorithms in terms of level of 

agreement varied ranging from 36% agreement (Spectral) to 72% agreement (Affinity 

propagation). While affinity propagation algorithm performed best, the overall 

performance of algorithms was generally low for Rand index. 

• Based on information theory metrics, algorithms exhibited better performance. Yet again, 

affinity propagation performed the best and Spectral and K-Means algorithms performed 

worse. While the value (73%) was same as for Rand Index, NMI metric produced best 

results. Most of the algorithms clustered keyphrases at a high rate, specifically, ward 

hierarchical, Agglomerative and Affinity propagation were best performing. 

Discussion on RQ-1: Additional insights from the results (in Table 6.2) are discussed 

below: 

• Type of Metric: The Rand index values showed large disparity among clustering 

algorithms and may not be applicable to all family of clustering algorithms. Some 

algorithms used bottom-up clustering approach and pair wise comparison was not best 

suited to evaluate their performance. Also, Rand Index was more rudimentary metric 

where only # of complete agreements points were considered. Both NMI and AMI 

metrics measured mutual dependence between two clusters and used information gain to 

evaluate clustering performance as opposed to just relying on # of pure agreements. The 

AMI has lower score than NMI because there were more restrictions-imposed w.r.t 

generating predictions by chance. However, AMI score is a better indicator for situations 

where # of clusters are very large and it is not very true predictive of cluster performance 

when # of clusters are low (as in our approach with only 14 clusters). 
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• Worst Performing: Spectral clustering algorithm, graph-based algorithm (that performs 

best for fully connected graph) uses linkage between graph nodes to calculate the 

pairwise distance between the keyphrases in each cluster (pairwise distance between the 

nodes of a graph). During the execution, it was discovered that Spectral clustering did not 

always result into fully connected graph which in turn impacted the clustering 

performance. 

• Best Performing: Affinity propagation identified the prominent exemplars from the list of 

keyphrases in each cluster. The exemplars were iteratively updated by calculating their 

suitability to become the exemplar of another cluster. This iteration process continued 

until the algorithm converged (i.e., no more exemplars were identified). As the final 

clustering was a result of multiple iterations to identify true exemplars, this algorithm 

reported the best score among all clustering algorithms. 

Implications: From the results and the discussion around RQ1 presented above, it can be 

concluded that the most appropriate clustering algorithm to cluster keyphrases from software 

fault logs were Affinity propagation and hierarchical clustering algorithms. Assuming the type 

of the data (i.e., keyphrases from software fault logs) the # of clusters was small and there is 

negligible amount of ‘chance’ to miscalculate MI; the NMI metric can be true representative of 

most appropriate clustering evaluator. 

RQ-2: This RQ evaluated the mapping of keyphrases clusters (produced by Affinity 

Propagation algorithm - Best performing clustering algorithm) to individual PGCS 

requirements. Two semantic based mapping approaches (LSA and LDA) were evaluated using 

two different training models created for LSA and for LDA separately over an entire PGCS SRS 

document that included 61 requirements (functional and non-functional). During the testing, each 
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of 14 keyphrase clusters were queried (using LSA and LDA) against the respective training 

models. The output generated from LSA and from LDA is shown in Figure 6.2. 

 

Figure 6.2. Cluster evaluation using graphs with LSA and LDA 

The values shown in individual nodes can be positive or negative. The positive values 

denote the requirements # in PGCS (this value can range from 1-first requirement to 61-last 

requirement). The negative values denote the # of keyphrase cluster (this value can range from 0-

first cluster to 13-last cluster). The edges represent similarity between keyphrase cluster and 

individual requirements. For example, a subset of LDA output shown in Figure 6.3, and it 

indicates that node denoted with -9 (cluster #10) is mapped to individual requirements denoted 

by nodes 5, 16, 22, 26, 40, 52, 53, 55, 56, 57, 59. This means that keyphrases in cluster#10 are 

similar to the text of requirements that it is linked to. 

 

Figure 6.3. Example of one cluster from LDA 
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To evaluate the correctness of this clustering output, a general practice [81] is to 

manually perform the mapping (as a requirements author would do) and identify disagreements 

between automated output and manual output. To provide an overview of the results shown in 

Figure 6.2, two major observations became apparent as listed below and discussed: 

Best performing algorithm: LDA performed a more accurate mapping of keyphrase 

clusters to requirements and is recommended to be used for post-fixation analysis. The process 

of evaluation of this RQ was performed by a domain expert through analysis of semantics of 

requirements generated with LSA and LDA mapping. The discussion about important 

observations (identified by the domain expert) is presented as following. 

• LDA is a probabilistic algorithm that uses Bayesian classification to find the similarity of 

NL text within the trained model, whereas, the LSA uses singular value decomposition 

(SVD) based on tf-idf scores of the terms (proof is beyond the scope of this paper). LSA 

uses tf-idf score to assign the weights to the words during model training and then uses 

the same principal for queried words to map to similar requirements. 

• The queried clusters of keyphrases had inspector specific words that did not exist in the 

training and hence resulted in mapping them to wrong requirements. Whereas the LDA 

using Bayesian classification (which is probabilistic) assigned mapping of unseen words 

based on probabilities. 

Similarity threshold: One of the major analysis involved at identifying/evaluating the 

mapping was the determination of the threshold at which similarity between keyphrase text and 

PGCS requirements was most appropriate. The most appropriate similarity threshold value was 

identified to be around 90% that generated most accurate mapping. The mapping of keyphrase 

clusters to requirements was approved or disapproved based on the similarity score threshold 
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generated during this process i.e. if a cluster A is tested for similarity with requirement R results 

in a similarity score value of 0.70, that implies that A & R have 70% similarity to each other. A 

high value of similarity score (more than 0.95) ensured that the highest semantically similar 

results are approved but it may result in unwanted exclusion of true results. Also, a low value for 

similarity threshold can result in inappropriate mapping, where, the mapping of keyphrase cluster 

is approved because the inappropriate mapping satisfied the threshold value. To evaluate the 

optimal threshold value, the authors executed the experiment with multiple threshold values and 

identified that the most accurate result of mapping is achieved by setting the threshold value to 

be around 90%. The mapping of clusters to requirements is shown as a graph in Figure 6.2. 

Implications: The LDA graph generated independent/dense clusters of requirements 

impacted by one or more faults, while the clusters of LSA were slightly more interconnected. 

Manual evaluation reported that the LSA was prone to miss to include some of the requirements 

within the clusters (which can be mapped into the clusters by setting a low threshold value than 

90%, but then it results in inappropriate mapping). Based on these results, LDA was 

recommended for mapping keyphrase clusters to SRS requirements. 
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7. CHANGE IMPACT ANALYSIS FOR FAULT FIXATION SUPPORT 

The proposed work in this chapter attempted to automate fault-fixation during software 

inspection process by finding IRRs. The IRRs were identified by first generating a semantic 

score of the SRS, followed by querying each requirement against the generated semantic score 

(see Figure 7.1) to identify related fault prone requirements during fault fixation (goal-3). The 

related requirements for each query were then transformed into a graph model to be mined using 

graph mining algorithms (cliques, K-Clique communities etc.) to extract strongly similar 

requirements (i.e. IRRs) based on similarity threshold. The IRRs can help requirements authors 

pre-inspection to improve quality of SRS document by removing redundant and extraneous 

requirements. Post-inspection, IRRs can be used to identify those requirements that may have 

been impacted or need similar fixes when fixing the faults reported during the requirements 

inspection. 

 

Figure 7.1. Overall steps for evaluating CIA during fault fixations 

7.1. Proposed Approach 

The proposed work in this paper has two major RQs that are identified, and our approach 

is discussed around these RQs. 

7.1.1. Research Questions  

RQ-1: Generation of IRRs for an SRS to help requirements author pre-inspection. 

SRS 

Semantic Score of SRS 

SRS (Queried) 

Graph generation 

Graph Mining Algorithms 

Strong IRRs (Cliques, K-Clique, Centrality) 

SA Models 

Similarity threshold 
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RQ-2: Analysis of impact of a change using IRRs post-inspection 

7.1.1.1. Proposed approach for RQ-1 

This RQ helps the requirements author pre-inspection to locate redundant and extraneous 

requirements; these requirements can be extracted from graph of IRRs (Figure 7.2). The overall 

procedure is explained in following steps: 

Step 1: This RQ aimed at applying semantic analysis over complete SRS document to 

develop term-document matrix. 

Step 2: Next, each requirement was queried against term-document matrix obtained for 

SRS document to find most similar requirements for that query.  

 

Figure 7.2. Steps involved in generation of IRRs 

Input 

Semantic Analysis (LSA/LDA): to generate term-document 
matrix 

Preprocessing: removal of stop words, punctuations, 
stemming and lemmatization etc. 

Preprocessing: remove stop words, punctuations, 

stemming and lemmatization etc. 

SRS Document 

Term-Document Matrix 

Input:  
Term document matrix queried for each 

requirement One requirement at a 
time 

Similarity Measure: Jaccard coefficient, 
cosine or Euclidean 

List of related requirements (based on similarity 
Threshold) corresponding to each query 

Graph Conversion: 
Find cliques and K-Cliques 

Strongly connected components (IRRs) 
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Step 3: The selection of similar requirements is based on most optimal value of similarity 

threshold (refer Figure 7.2 for ‘similarity measure’ step). The optimal value of similarity 

threshold is a challenge and needs to be evaluated experimentally. 

Step 4: These similar requirements obtained as a result in step 3 for each query were 

labelled as related requirements corresponding to that query. 

Step 5: The output in step 4 for all queried requirements were converted to graph to apply 

graph mining techniques e.g. Clique mining or K-Cliques mining. 

Step 6: The graph obtained in step 5 can be analyzed for extraneous requirements by 

mining for any singleton node. Redundant requirements can be extracted by setting a higher 

similarity threshold value. 

Validation of RQ-1: The validation of RQ1 can be achieved by analyzing redundant and 

extraneous requirements obtained with actual seeded redundant requirements in SRS document. 

SRS document (like RIM, PGCS and LAS) contained this information (i.e. requirement #, fault-

types etc.). The expected outcome (i.e. redundant requirements) can be identified with higher 

value of similarity threshold (close to 1). 

7.1.1.2. Proposed approach for RQ-2 

Several requirements in an SRS were interrelated to many other functionalities in a 

software project under development. The knowledge of IRRs can help understand CIA because a 

change in one requirement tend to affect semantically similar requirements. The overall approach 

is shown in Figure 7.2 and is described in following steps: 

Step 1 to 5: These steps are same as described in RQ1. 

Step 6: Any cliques or K-Clique found for the graph in step 5 gives strongly interrelated 

requirements (IRRs) in an SRS document. 
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Step 7: The output in step 6 is used to analyze change-impacted requirements in an SRS 

document post-inspection. 

Validation of RQ-2: The validation of RQ2 was two-fold: 1) analyzing change-impacted 

requirements and, 2) re-inspecting requirements that needed a fix. Validation of CIA can be 

achieved by analyzing output of K-Clique communities (Figure 7.3) and finding N-hop paths to 

determine impact of change on subsequent requirements. For example, see Figure 7.3, where the 

impact of change in requirement-A was analyzed on requirements B and C that are 2-hops away 

(highlighted in green) from the source of change (i.e. A). This analysis was useful in predicting 

ripple effect of a change. For the validation purpose, a domain expert analyzed the requirements 

and created a group of those requirements that were highly similar and would impact other 

requirements if there were a fault. Next, the graph mining algorithms were used to extract the 

strong IRRs and were validated against the prediction of a domain expert. 

 

Figure 7.3. Outcome and evaluation of RQ2 

Post-inspection, validation of requirements that needs a fix can be achieved using IRRs 

(obtained by graph mining algorithms) while changing or fixing a seeded fault in an SRS 

document (see dotted circle in Figure 7.3). SRS documents (like RIM, PGCS and LAS) contain 

the fault information (i.e. requirement number etc.) along with fault-types. Inconsistent 

information (II) fault-type describes inconsistency in similar requirements but across various 

parts within the SRS document. The expected outcome (i.e. interrelated requirements) of RQ2 
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should have at least fault-type II as part of cliques and K-Cliques. The K-Cliques were calculated 

using clique percolation method (i.e., incrementally building over K-1 cliques to construct K-

Clique). The algorithmic description of Clique percolation method is out of the scope of this 

research and is not discussed. The existence of II fault-types in strongly connected components 

can assure that the proposed work (RQ2) was able to detect potential fault-prone areas. 

7.2. Experiment Design 

This section presents experiment design followed to implement proposed approach. The 

experiment procedure as shown in Figure 7.2 was followed while implementing semantic 

analysis (SA) algorithms to develop IRRs for an SRS. Few details regarding experiment design 

are as follows: 

• Semantic analysis algorithm used: The initial results were obtained using LSA 

algorithm. 

• SRS artifact: The SRS artifact (wonders of weather) that is being tested in this approach 

is developed by software engineer graduate students at North Dakota State University 

(NDSU) for real-world requirements and was four pages long that consists of 21 

requirements. This SRS is selected because of its small number of requirements that can 

be checked/evaluate comfortably. 

• Preprocessing: Natural language toolkit (NLTK) was used to remove stop words, 

punctuations and perform lemmatization in the SRS document. Acronyms were 

substituted with full names to construct a rich vocabulary. 

• Toolkits used: Processing of SRS text was handled using NLTK to filter stop words and 

infrequent words. Gensim open source package was used to execute LSA algorithms. To 

implement graph concepts, a python-based package named ‘NetworkX’ was used. The 
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results from queried requirements (step 2 in RQ1) were further filtered keeping those 

requirements that had similarity score greater than 95%. 

• Validation of results: The results obtained were validated against the IRRs extracted by a 

domain expert versus IRRs extracted using LSA model. 

 

Figure 7.4. The IRR graph generated using LSA 

7.3. Results and Discussion 

The results obtained are shown and discussed using Figure 7.4, Figure 7.5, Figure 7.6, 

and Table 7.1. The requirement numbers (shown in Table 7.1) are obtained by implementing 

various graph mining algorithms. The requirement numbers in square brackets (i.e. []) shows 

semantically similar requirements. Three graph mining algorithms were implemented and are 

shown in Table 7.1. The results are discussed corresponding to RQs identified earlier. 

Table 7.1. Resulting IRRs with graph mining approaches 

Attributes Description 

# of Reqd. 21 

Cliques [0, 4, 14, 6, 5, 13], [0, 4, 14, 6, 2], [16, 17, 18, 19], [1, 3, 20], [3, 
11, 20], [8, 12, 15], [9, 10], [11, 12], [1, 5], [7] 

3-clique Communities [0, 2, 4, 5, 6, 13, 14], [1, 3, 20, 11], [16, 17, 18, 19], [8, 12, 15], 

Centrality [0, 4, 5, 6, 14] value=0.4 

 
RQ-1: IRRs and pre-inspection decisions: The graph of IRRs that was generated for the 

SRS used in this study is shown in Figure 7.4. There were few highly IRRs (cluster of nodes), 

singleton (that exists standalone) and redundant requirements as shown in Figure 7.4. These 
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requirements were manually tested and evaluated for extraneous or standalone or redundant 

requirements. The results in Table 7.1 were obtained by implementing various graph mining 

algorithms. For example, results from clique mining algorithm (req # [7], [9 & 10], [11 & 12]) 

were standalone and represented highly co-related requirements. The author manually checked 

the relevance of results and found out that requirement #7 was standalone requirement i.e. it 

presented important functionality but was not related to other functional requirements. This is 

crucial insight on assessing CIA if a change is made in requirement #7 which is standalone. 

Requirements #9-10 and 11-12 were very similar (fairly redundant) because they contained 

information about some common functionalities. Pre-inspection, these results can be tested for 

term-substitution faults to limit ambiguity and redundancy across similar requirements. 

RQ-2: IRRs to find fault-prone areas and to study CIA: The results (IRRs) obtained in 

Table 7.1 are used to identify fault-prone requirements to study CIA and the evaluation is shown 

in Figure 7.5 and Figure 7.6. 

 

Figure 7.5. Clique evaluation 

The analysis is performed using G-mean (X-axis) as evaluation metrics and two graph 

mining approaches (i.e., Clique mining and K-Clique mining) that extracted IRRs (Y-axis). Both 

the graph mining algorithms extracted IRRs using 95% semantic similarity threshold and 

83.3 91.3
100

70.7 70.7
86.6

0
20
40
60
80

100
120

IRRs 1 (6 reqd) IRRs 2 (5 reqd) IRRs 3 (4 reqd) IRRs 4 (3 reqd) IRRs 5 (3 reqd) IRRs 6 (3 reqd)

G
-M

E
A

N

INTER RELATED REQUIREMENTS

Evaluation using cliques at 95% semantic similarity



 

115 
 

contains different # of requirements in each IRR (see Figure 7.5 and Figure 7.6). The results are 

discussed as following. 

• Clique evaluation: cliques provided strongly IRRs (or fault-prone areas) and validation 

against manually extracted IRRs also revealed that these requirements are highly 

correlated. Since the cliques are very restrictive and extract only those grouping that are 

highly connected to each other and hence, these missed few requirements that were 

otherwise identified as related by a domain expert. Therefore, there g-mean value ranged 

between 70 and 100. But these cliques were able to identify some strong related 

requirements (e.g., requirement # [16, 17, 18, 19], [1, 3, 20]), and any change in one 

requirement (say req# 3 in 1-3-20 clique) required to re-inspect req# 1 and 20 because 1-

3-20 are fault-prone (strong IRRs). 

 

Figure 7.6. K-Clique evaluation 

• K-Clique Communities: The study of CIA was further strengthen using K-Clique 

communities (K=3 in Table 7.1 and Figure 7.6). The K-Cliques were generated using 

clique percolation method and since the SRS document used in this study only had 21 

requirements, so a smaller value of K (i.e., 3) was used to extract strong IRRs. The 

requirements were not documented considering to be related only to a specific group of 
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requirements. So, the K-Cliques are better suited to find loose (but still high) relatedness 

among requirements. From Figure 7.6, it was observed that the K-Cliques had shown 

better G-mean value than Cliques and the value ranges between 81 and 100. This graph 

mining algorithm allowed author to further check the impact of Change in req#3 on 

subsequent requirement (i.e. req# 11 in K-clique 1-3-11-20) and this ripple effect was 

identified using K-clique community algorithm or finding N-Hops in a graph (explained 

in section 7.1). Centrality measures central requirements in a graph. More the centrality 

(i.e. close to 1), the more CIA is needed. The proposed algorithms presented few 

emerging insights and will be explored in future on few more industry strength SRSs to 

better understand the most applicable SA and graph mining algorithms. 
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8. APPLICATION OF ML TO OTHER AREAS 

This chapter presents few of the application area (w.r.t graphs) that was also explored as 

part of this dissertation. The long-term goal of this application is to be able to extract ripple 

effect during requirements CIA during fault fixations. But this research is not limited to 

requirements alone and can strengthen general approaches in graph theory, especially, path 

search algorithms, finding all the paths of different lengths in a graph (also well suited to explore 

ripple effect of a change if requirements are represented in the form of a graph). For this purpose, 

this dissertation attempted development of an algorithm that is scalable, dynamic and robust to 

find existing paths in a graph. The existing path search algorithms in a graph do not scale well 

(when it comes to efficiency) as data size increases. These existing algorithms are not applicable 

for distributed processing due to increased pre-processing requirements and complexity. When 

using the existing algorithms, any addition of new edges to existing graph requires re-

identification of paths between all vertices and re-computation of relevant metrics from scratch.  

Vertical data structure has been used successfully in machine learning applications like 

exploring scalability in semantic web data management and classification using nearest neighbor 

classifiers and have shown improvement in efficiency and accuracy. Vertical bit vectors are 

processed independent of each other and this makes them an ideal fit for distributed processing. 

In this chapter, this dissertation discussed a vertical breadth first multi-level algorithm to find all 

paths in a graph. 

8.1. Overview of Vertical Breadth First Multi-Level Algorithm  

Our proposed approach is shown using a sample graph shown in Figure 8.1 and is further 

explained using the high-level steps shown in Figure 8.2 and described as following: 
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Step 1: Initial vertical bit vectors are obtained from adjacency matrix and are labelled for 

each vertex. That is, for a graph with four vertices, each column of adjacency matrix represents 

four initial vertical bit vectors (E1, E2, E3, and E4 are the four initial vertical bit vectors in 

Figure 8.1). 

 

Figure 8.1. Example graph and lower triangular matrix representation 

Step 2: Next, I applied a combination of breadth-first approach and logical operations to 

further explore existing paths from initial vertical bit vectors (more details appear in Figure 8.5). 

Step 3: The algorithm keeps exploring until no new paths are found and then all the 

explored paths are grouped into levels to form a multilevel path tree (details in Figure 8.6). 

Step 4: The paths explored are indexed and stored in index list to enable faster look-up. 

Step 5: The shortest-paths can be found by querying the index list that was created in 

Step 4. 

Our proposed solution does not require re-computation when new edges are added in a 

graph, thereby avoiding useless extra computations. 

Contributions: I evaluated my algorithm on undirected and unweighted graphs because, 

in an undirected graph, the edge runs both ways between two vertices. Implementation of my 

proposed algorithm on undirected graphs can be helpful in analyzing graphs of social networks, 

social communities, internet networks etc., to mine social relations. 
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The contribution is demonstrated by the ability of my proposed algorithm to 

accommodate addition or deletion of an edge within the social media network, without re-

computation. The breadth-first approach is versatile and can also be implemented in depth-first 

manner to suit distributed processing algorithms without excessive pre-processing overhead. The 

proposed algorithm presents a mathematical formula that are generalized for any size of graph 

i.e. our algorithm is scalable. 

Similar terms: The terms multi-level bit vector tree (MBVT) and Allpath algorithm are 

used interchangeably in this paper. Throughout this paper, the term graph refers to unweighted 

bidirectional graph. The major advantage of using this sort of the graph is that when analyzing a 

social network graph, the presence of undirected link shows the existence of some relation 

between two persons. So, adding weight to the link does not represent any physical distance of 

separation among two vertices and is not relevant to our study. 

8.2. Key Concepts Related to Graphs 

This section provides some necessary details regarding terminology associated with 

graphs and vertical bit vector approach. The graph G1 is shown in Figure 8.1 with 4 vertices, 4 

edges and its lower triangular matrix representation. Please note that the graph G1 in Figure 8.1 

is used as reference to explain various terminologies defined below: 

Vertices and edges: The ‘v’ in graph G1 represent set of vertices and ‘e’ represents set of 

edges that joins any two vertices. In graph G1, v contains 1, 2, 3, and 4 labelled vertices and e 

contains edges 1-3, 1-4, 2-4 and 3-4. Each edge is a pair (x, y) where x, y ∈ v. 

Loop and sub-graph: With respect to graphs, a loop is an edge from a vertex to itself. A 

graph that has a cycle is called cyclic graph and acyclic otherwise. An undirected graph without 
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any loop is called a simple graph. Various terminologies associated with graphs such as for H to 

be a subgraph of G, it must satisfy a condition such that H= (vH, eH) if vH ⊆ v, eH ⊆ e. 

Undirected graph: The graph in which direction of edges is not considered i.e. an edge is 

considered both ways. For example, G1 is undirected graph, where an edge 13 ≈ 31. 

Clique: A subgraph is called a clique if there is an edge between all pairs of nodes. It is 

an N-clique, if N vertices within a clique has edges between each possible pair. For example in 

G1, The edges connecting vertices 1, 3 and 4 makes a 3-clique because every vertex is reachable 

directly from any other vertex. 

Degree of a graph: Degree of a vertex in undirected graph is generally denoted as vi ∈ v, 

where vi is the number of edges incident on that vertex. For example, degree of vertex-4 is 3. 

Adjacency matrix: The mathematical matrix representation to denote existence of an 

edge between all vertices of a graph. The elements of the matrix indicate whether pairs of 

vertices are adjacent or not in the graph e.g. in Figure 8.1, presence of an edge between a pair of 

vertices is shown with 1 if there is an edge and 0 otherwise. The adjacency matrix has all zeros 

on its diagonal for a simple graph. This matrix is symmetric if the graph is undirected. 

Vertical data structure: Vertical data structure refers to horizontal processing of vertical 

columns of an adjacency matrix. For the graph G1 (Figure 8.3), the vertical data structure is built 

from each column of adjacency matrix. The vertical columns (E1, E2, E3, E4) in Figure 8.3 

represent the vertical data structures corresponding to each node in graph G1. Each vertical 

column (e.g., E1) represent the vertices that can be reached from vertex-1. One of the advantages 

of vertical data structure is that it can be independently explored to find all the paths from any 

starting vertex. The computational overhead and update of vertical data structure (with addition) 

of an edge is discussed later. 
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Ideally, in a connected graph, the connecting edge between two vertices should be 

considered only once to avoid repetition and extra work. Our algorithm avoided this extra pre-

processing by using lower triangular matrix representation (Figure 8.1). Moreover, I marked the 

edge between vertexes ‘v’ to itself with a 0 because our algorithm does not include any cycle 

during path generation. 

8.3. Terminology Associated with Proposed Work 

This section presents a detailed discussion on underlying mathematics and working of our 

proposed algorithm. The proposed algorithm operates over vertical bit vectors that generates a 

new path vectors (also in vertical form) using logical operations to form subsequent levels of a 

multilevel path tree. Hence, this algorithm is referred to as multi-level bit vector tree (MBVT) in 

this paper. The overall working of our proposed algorithm is shown in Figure 8.2. 

 

Figure 8.2. Overall working of proposed algorithm 

The MBVT represents the paths in a graph, so in this study, it is interchangeably referred 

to as multilevel path trees or path trees or Allpath trees algorithm. The adjacency matrix serves 

as a root in path tree algorithm and newly generated bit-vectors (or paths) become subsequent 

levels (explained later in this section). The paths are generated and added at appropriate levels of 
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Logical operations on bit-vectors 

Generation of MBVT 
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MBVT until the algorithm reaches stopping condition. The final MBVT is the basis to search for 

the shortest path when the source and destination nodes are given (discussed later). The 

advantage of MBVT is that it does not require re-computation with the addition and removal of a 

node from the graph. 

The proposed algorithm is explained by using graph G1 shown in Figure 8.1 (also in 

Figure 8.3). Ideally, in a connected graph, the connecting edge between two vertices should be 

considered only once to avoid repetition. The graph G1 shown in Figure 8.3 has 4 vertices and 4 

edges. This graph has been chosen from a simplicity point of view, to enable the authors in 

describing the working of the proposed algorithm. 

 

Figure 8.3. Two levels of path tree of graph G1 

Definitions and Acronyms: The following definition and acronyms have been used in 

this paper. 

• Edgepath: It is denoted as a vertical bit vector and shows the presence of every edge 

from vertex ‘vi’ to vertex ‘vj’ in a graph containing N vertices (i, j ∈ N). Edgepaths are 

defined for each vertex as (E1,…..,En); if N is 2 then there is a single edge (one path) 

connecting two vertices and if N≥2, then there are N edgepaths corresponding to each 

vertex. 
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For example, if N=3 then there are three edgepath vectors (E1, E2, E3) and there can be at 

most two path/two edges starting from vertex 1 to vertex 3. The value of edgepath E1 (0, 0, 1) 

means there is only one edge from vertex-1 to vertex-3 i.e. presence of 1 in an edgepath vector 

shows the existence of a path. Since the edgepath is corresponding to vertex-1 (i.e. E1) and 1 is at 

index 3 (i.e. 001), there is a path from vertex-1 to vertex-3. In a similar way, if edgepath of 

vertex-2 is E2 (1, 0, 1) then it means there are two edges from vertex-2; one edge runs from 

vertex-2 to vertex-1 and another from vertex-2 to vertex-3. 

• Vector Length (VL) in our approach refers to the number of vertices present in the graph. 

For example, graph G1 in Figure 1 has 4 vertices so the vector length (VL) is 4 for this 

graph. 

• Multilevel path tree: It is the path tree that contains all the paths reachable from each 

vertex. This tree is generated in the form of a hierarchy, where the root is an adjacency 

matrix and subsequent hierarchies are generated through logical operations (more details 

appear later). 

• Level defines the hierarchy within multilevel path tree e.g. graph G1 in Figure 8.3, Level-

1 represents all the paths that are at one edge distance from a specific source vertex. So, 

edges from V1 (1 is source vertex in this case) in Level-1 are [(V1, V3), (V1, V4)]. 

Similarly, Level-2 would show all the paths that are at 2-edge distance from the source 

vertex. If the source vertex is 1 then from Figure 3, the edges in level 2 are [(V1, V3, V4), (V1, 

V4, V3), (V1, V4, V2)]. 

Generation of edgepath vectors: In our all-path tree algorithm, each edge in the graph is 

generated with a mathematical formula. Edge path vector Ek(Vm) in Equation 1 below has been 

used to generate all the edges present in a graph G1, where k, Vm∈ VL (Vector Length). The 
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generation of edgepaths vectors (E1, E2, E3, and E4) at level-1 in Figure 8.3 follows conversion 

formulae in equation 1. 

 (Eq. 1) 

Generation of vertex mask path vector: The mask vector corresponding to each vertex 

acts as a filtering condition to exclude source vertex in the MBVT during all-path generation. 

The Mk(Vm) in Equation 2, is used to label mask for each vertex in the graph G1 where k, Vm∈ 

VL (see Figure 8.4).  

 (Eq. 2) 

Additionally, the complement of vertex mask (denoted by M’h, where h∈VL) is used to 

exclude already generated vertices in MBVT during all-path generation. The step by step details 

of the operation are explained next. 

Multilevel path tree algorithm: The all path algorithms use tree like data structure that 

stores data in vertical bits (i.e. column wise). The multilevel vertical bit-vector tree (MVBT) data 

structure is known as path tree (see Figure 8.3). 

In Figure 8.3, the edge mask Ek (Vm) at level-1, consists of vertical bit-vectors in the form 

of 0 and 1 (for ∀ Vm∈VL). The value of 0 means there is no path from vertex k to vertex m and 

1 means that there is a path from vertex k to vertex m ∀k, Vm ∈VL. A level-0 in Figure 8.3 

represents the structure of bit vectors at the top of the tree. 

For example: At level-0, the value 1 for all the vertices show that every vertex is 

reachable within the graph i.e. there is at least one path from a vertex k to some other vertex m in 

level-1. Similarly, the presence of 0 at level-0 for any index would show isolated vertex in a 

Ek(Vm) = 1,      if ∀k,m, ∃ an edge between Vk and Vm and Vk ≠ Vm, k,m∈VL 
0,      otherwise 

Mk(Vm) =  1,     ∀k, m, for bit number = k and k, m ∈VL 
 
 0,      otherwise 
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graph. The notation for edge mask and vertex mask in the following section is going to be Ek and 

Mk for the sake of simplicity instead of writing Ek(Vm) and Mk(Vm) where k, Vm ∈VL. 

8.4. Proposed Approach 

The proposed algorithm (all-path) starts with generation of adjacency matrix of the graph 

G1 (see Figure 8.4) followed by the creation of the edgepath vectors Ek and vertex mask vectors 

Mk. Compliments of vertex mask (i.e. M’k) are created for the graph G1 to restrict the already 

generated vertices during generation of all the paths. 

In Figure 8.4, the edge mask Ek is shown as a vertical bit vector. The length of Ek is equal 

to vertex length (VL), which is 4 in this case. Similarly, M’k and Mk are written into vertical bit 

vectors. The all-path algorithm is developed to find all 2-length paths, 3-length paths up to the 

longest path present in the graph without having the need to re-compute during addition or 

deletion of a vertex. The underlying mathematical formulae of proposed algorithm is discussed 

next. 

Generalized formulae for all length paths: In this section, a generalized mathematical 

expression for finding all-length paths in a graph has been explained. Our proposed algorithm 

makes use of breadth first approach but on vertically structured data. Our algorithm is 

generalized, and it can be implemented in depth-first manner. The advantage of using vertical 

vector representation is that the algorithm is scalable to graphs of all sizes. 

The mathematical expression works by computing the logical AND between Ek and M’j 

(see Equation 3). These values are obtained from a list, which is denoted as ListEi,….j (see 

Equation 3). ListEi,….j has the index values of vertices that has 1 in their edgepaths. The steps to 

generate all-length paths using generalized formulae is explained with an example as follows: 
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Step 1: To explain the working, an edgepath vector E1 (0, 0, 1, 1)T from level-1 is 

considered from graph G1 (see Figure 8.4). Here the superscript T is transpose that will represent 

the vector E1 in vertical form. This example first compute 2-length path and that’s why the 

general formulae Eh, k is used to compute it (Equation 3).  

 
Figure 8.4. Path tree form of graph G1 

Step 2: To generate level-2 for E1, the value of 1 is present at index 3 and 4. That shows 

that there is a path from 13 and 14 (This is also visible in adjacency matrix). The ListE1, in 

this case contains the values {3, 4}. These values represent k in generalized formulae. 

 (Eq. 3) 

Step 3: The values of k are read one at a time to generate next level path vectors i.e. for 

level-2 starting at source vertex 1. The paths through vertex 3 (13?) and vertex 4 (14?) 

are explored and represented as edgepaths E13 and E14. The symbol ‘?’ is the vertex at level-2 yet 

to explore (see Figure 8.5). 
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Figure 8.5. The 2-length paths from vertex 1 

Step 4: Next, Ek and M’h values are calculated. The first value of k from the ListE1 is 3 

(see step 3 above), so the Ek becomes E3 and h is the starting vertex i.e. vertex 1. So, the value of 

M’h becomes M’1. Once, these values have been generated, the logical AND is performed 

between bit-vector Ek and M’h as shown in Figure 8.5. The resultant edgepath vector from 

logical AND process is E13 (0001)T and E14 (0110)T. The edgepath vector E13 has 1 at index 4, 

and the path is read as 134. 

Step 5: The 2-length edgepath E13 (0001)T is explored to generate 3-length path for the 

MBVT approach using the formulae Eh, i…j, k as shown in Equation 3. E13 has a value of 1 at 

index 4, so, the value of k is 4, i…j is 3 and h is 1. The logical AND between E4, M’3 and M’1 

yields the edgepath E134 (0100)T displaying the path as 1342. If the edgepath E134 is 

further explored to obtain 4-length path using the same formulae then it results in E1342 (0000)T 

and this is the stopping condition for further exploration. 

Observation: The versatility of the algorithm lies in its capability to find all the paths by 

using logical AND operation over the MBVT, where the 1-length paths can be easily calculated 

from the level-1 of Ek. Whereas, 2-length and 3-length paths are calculated recursively from their 

immediate predecessors (as explained in step 1 to 5 above). The working of formulae in Equation 

3 is shown in Figure 8.6 that explains how the algorithm explores path from vertex-1 (i.e. h=1) 

For h=1, 1-LengthListE1= {0, 0, 1, 1} 
 

K= {3, 4} 
 

E3              && 
1 
0 
0 
1 

 

M’1= 
0 
1 
1 
1 

 

E13 
0 
0 
0 
1 

 

Ek && M’h 
 

E4             && 
1 
1 
1 
0 

 

M’1    = 
0 
1 
1 
1 

 

E14 
0 
1 
1 
0 

 

Ek && M’h 
 



 

128 
 

until stopping condition is met. In a similar way, edgepath vector E142 and E143 can be recursively 

explored. 

Any loop formed at any level of path tree will not be explored while generating next level 

edgepaths because logical AND operation for such a case will always generate output bit vector 

containing all 0’s. The complement of Mj makes sure that the immediate vertex j, just traversed 

from a given source vertex is not added again in path tree while generating subsequent levels 

from that source vertex. In generalized formulae, the subscript (i….j) represents all the vertices 

to which the existing path from the starting vertex have been counted. The proof of general 

formulae for all-path lengths ∀N, N≥3, has explained in theorem 1 below. 

Theorem 1. The N-length path Eh, i…j, k in a given graph ∀N, N≥3 can be found by 

performing logical AND between the vertical bit vectors of Ek AND M’i…j for ∀k, where k∈(N-

1)-length List Ei…j. 

Proof: For N=1, 1-length path is obtained from the basic path vectors of Ek, ∀k, k∈VL, 

so 1-length paths are calculated from the adjacency matrix formed for every vertex to every other 

vertex and that’s why there is no logical AND operations involved in calculating 1-length paths. 

For N=2, there is only one most recent visited vertex (in this case from source vertex), so logical 

AND is performed between Ek and M’h, i…j (i…j for N=2 is empty, as there are no intermediate 

vertices other than source vertex, which is denoted by h). So, in other words, M’h, i…j can be 

replaced by M’h where (i…j) represents source vertex as the most recent visited vertex. The 

reason for choosing the complement of most recent vertex is to restrict visiting same vertices 

again. 

When N≥3, there are at least 1 most recent visited vertex other than the source vertex.  

So, it is required to not visit them again because we do not want any loop back to the visited 
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vertices. So, it is required to compliment all the vertex masks of the visited vertices other than 

the source vertex and it is always going to be 1 less than the total number of visited vertices 

because source is counted as visited. Hence M’i…j =M’i &&M’i1 &&M’i2&&M’i3…..&&M’j  

∀i … j, source vertex h∉ (i … j). 

The visited vertices are generated one after another in a sequential manner and are 

generated from the path trees at (N-1)th iteration. Lastly, the resulting path tree of M’i…j is 

logically AND by Ek at Nth level, because at that level I want to visit all the vertices from Ek 

excluding those which have been already visited (M’i…j). Hence, this is the proof for Theorem 1. 

End condition for algorithm:  The end condition is not hard to determine. The algorithm 

stops when all the paths have been found and the condition which determines whether all the 

paths have been determined is the most recent path tree value of Eh, i…j, k from generalized 

formulae. If the path tree of all resulting Eh, i…j, k is (0, 0, 0, 0)T for all the vertices, that would tell 

that all the paths of various lengths have been found in the graph. 

Theorem 2. The value 0 for all indexes in any edge mask Eh,i…j,k,∀h, h∈VL,  with h as 

source vertex shows that there does not exist any un-counted path. 

Proof: The vertex Vi which has been visited from a starting source vertex Vh are not 

included again by calculating logical AND with complement of M’i. That means for any next 

iteration, the algorithm will calculate the logical AND between compliments of vertex mask (Mk) 

of all in visited vertices list. This implies that when there is 0 value at all the indexes at edge 

mask path tree (Eh, i…j, k), and thus the algorithm cannot go any iteration further as there does not 

exist any new non-visited vertex that can be reached from current vertex. Hence, the value of k 

will also be 0 and there will not be any edge mask for k equals 0. So, it acts as end condition for 

the iteration. 
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Space analysis of proposed algorithm: It can be seen from Figure 8.6 that the algorithm 

requires exponential amount of space. For a simple graph G1, there were total of 84 edgepath 

vectors (4 in level-1, 16 in level-2 and 64 in level-3) generated in MBVT.  In general, the total 

number of edgepath vectors of length equal to VL for a MBVT having N levels can be calculated 

from the following equation (Eq. 4): 

# of edgepaths =� (𝑽𝑽𝑽𝑽)𝒊𝒊𝑵𝑵
𝒊𝒊=𝟏𝟏 ,  Where VL is the vector length (i.e. 4 for G1) (Eq. 4) 

 
Figure 8.6. Generation of multi-level bit vector tree (MBVT) 

It is also seen in MBVT that a lot of computation is involved that results in zero edgepath 

vector (i.e. E (0000)T). It is also seen that a vertex having a value 0 in an edgepath never appear 
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in subsequent paths, so, it could be excluded from exploration to save space. For example, E1 

(0011)T has value 0 for vertex 1 and vertex 2. To check all the paths generated from E1, it is seen 

that edgepath vectors for E11 and E12 are zero and also, their subsequent levels also results in zero 

edgepath vectors. So, this unnecessary computation could be avoided to enable faster generation 

of all-paths and lookup during path search. 

It is very important to present a suitable mechanism to make efficient use of space. I 

developed an algorithm that is another novel contribution to convert this exponential space 

requirement into linear space using indexing. Next section discusses generation of indexes and 

then conversion of these indexes to generate path labels. 

8.5. Finding Shortest Paths 

The shortest path is found from the MBVT generated earlier. The MBVT is one-time 

process and has all the paths generated from each starting vertex. The addition or removal of any 

edge in the graph can be updated within the MBVT generated for all-paths (discussed in section 

8.4). The approach to find shortest paths start from the top level (root or level-0) of MBVT and 

continues until the path is found or the leaf edgepath vector is reached. The root of the graph G1 

has the edgepath vector E (1111)T at level-0 (see Figure 8.7) and has 3 levels. Search of shortest 

path through each edgepath that was generated in MBVT is computationally expensive. As 

discussed earlier, zero edgepath vectors add computational and space complexity, so, I present 

only useful edgepath vectors in Figure 8.7. As discussed earlier, the MBVT requires exponential 

amount of space. So, this section also discusses our novel approach to convert exponential 

amount of space into linear amount of space. This is achieved through generation of indexes to 

keep track of paths. The index generation is discussed in next sub-section. 
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Generation of index list: The values at level-0 show that there are 1-length paths that 

exists from all the vertices i.e. there is no isolated vertex. In order to generate index list, the 

index of 1’s in all the edgepaths in level-1 are important to be known to generate subsequent 

level of MBVT. The following steps explains the generation of index list. 

Step 1: The index list at level-1 is formed by searching for the value of 1 in each 

edgepath vector. The index list is generated by scanning edgepaths in column-raster scan i.e. E1 

is scanned first and the indexes 3 and 4 are stored in the list, followed by a scan of E2 edgepath 

vector. The index list of level-1 is shown in Figure 8.7. 

Step 2: Indexes of next level edgepath vectors are only included in index list if their 

logical operation results in non-zero-bit vector. The advantage of storing indexes into a list is that 

it ensures efficient and quick search through the path tree. 

Step 3: It is very easy to generate vertical bit vector from index value (as shown in Figure 

8.7). For example, at level-1 the edgepath E1 is (0011)T and adds value 3 and 4 to index list. 

Similarly, at level-2 the edgepath E13 is (0001)T and its corresponding index value is 28 [first 16 

corresponds to level-1 + 4 for E11 + 4 for E12 +4 (because 1 is present at 4th bit of E13)]. E11 and 

E12 have zero-bit vectors and that’s why their index value does not exist in index list. In this way, 

the indices are generated at each level of MBVT. 

Step 4: The highest index value for level-2 is 80 (because 16 for level-1 and 64 for level-

2). The highest value of an index at level-3 will be 336 i.e. 80 for up to level-2 and 256 for level-

3. So, the general formulae for highest number of an index at a given level L can be calculated 

by the following equation (Eq. 5): 

Highest index # = � (𝑽𝑽𝑽𝑽)𝒊𝒊+𝟏𝟏𝑳𝑳
𝒊𝒊=𝟏𝟏  (Eq. 5) 
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Using this formula, the highest # of index in level-3 is 1360 (i.e. 16+64+256+1024= 

1360). It is worth to note that the formulae above just give the highest possible value of index in 

the index list for a given level, whereas only those indexes are stored in index list where there 

was a 1 in the edgepath vector (see index list in Figure 8.7). 

 
Figure 8.7. Multilevel path trees for graph G1 

Observation: The MBVT is very sparse tree with only a few 1s. So, storing only the 

values of 1 in index list would decrease the exponential space requirements to linear space 

requirements. The shortest paths are searched using the index list and the algorithm is explained 

in next sub-section. 

Shortest path search algorithm: The index list generated for MBVT can retrieve the 

edgepaths from the list values to search for any existing shortest path. The conversion from index 

list to edgepaths is very simple and is explained in this sub-section. 
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Conversion from index list to edgepaths: The edgepaths Ek from index value are 

retrieved through simple mathematics. For example, consider an index value of 45 for graph 

having a Vector Length (VL) of 4. The conversion takes place in following steps: 

Step 1: Initially the index value is processed to retrieve the level of MBVT that this index 

value refers to. This is simply checked using the formulae defined to calculate highest index 

number i.e. � (𝑽𝑽𝑽𝑽)𝒊𝒊+𝟏𝟏𝑳𝑳
𝒊𝒊=𝟏𝟏 . 

Step 2: The formulae when tested on index value 45, retrieves level-2 for this index 

value. This is calculated by checking for range of each level based on VL. The level-1 lies 

between 1 and 16 (VL2), level-2 lies between 17 and 80=16 + 64 (VL2 +VL3) and so on. Clearly, 

the index value falls into level-2; so, 45 is 29th place in level-2. 

Step 3: Once, the information about the level of index value is known then it is very easy 

to compute intermediate path for this index value. Next, the formulae to generate intermediate 

path is explained as follows: 

1. Value of k: 29 modulus (%) VL gives k (i.e. 1). 

2. Value of h: (29 / VLcurrentLevel) + 1 gives h i.e. 2.  [value of current level is 2] 

3. Value of intermediate path: It is calculated as [(29%VLcurrentLevel)/ VLcurrentLevel-1 +1] 

outputs 4. Here the value of current level is 2 and It is recursively iterated until value of 

level is 1. 

The outcome path for index value 45 is Eh, intermediate, k i.e. E (241). Let’s take 

another example with an index value of 126 that is explained in next sub-section (i.e. E1342 in 

Figure 8.6). 

Generalizability of our index conversion algorithm: The generalizability of step 2 and 

step 3 above for any level of MBVT is explained by taking an example of index value 126 
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corresponding to edgepath vector E134 (0100)T for graph G1. In other words, this edgepath vector 

shows the path 1342. The steps 2 and 3 should be able to retrieve this path and the 

working is described as follows: 

• As mentioned in step 2, the first requirement is to calculate the level for this value. This 

is the edgepath vector of graph G1, so this has VL of 4. Using the formulae to find 

highest index # in a given level L, the highest level for index value 126 is 3. The index 

value 126 is 46th position in level-3 (see Figure 8.6 to check graph). 

• Value of k: this is calculated by computing the modulus of 46 with VL, and this gives 2. 

So, the k=2 in this index case. 

• Value of h: This is calculated by the formulae [(index_position_in_current_level / 

VLcurrentLevel) + 1] i.e. [(46/VL3) + 1] is equals to 1. The value of h is calculated to be 1. 

• Value of intermediate path: In this case of index value, the intermediate path contains 

two nodes (i.e. 3 and 4 for E1342). In order to be able to find these two intermediate paths, 

our algorithm should be able iterate until a stopping condition is reached. The path is 

iterated until the value of currentlevel becomes 1 in the equation 

[(index_position_in_current_level % VLcurrentLevel) / VLcurrentLevel-1 +1]. 

 Iteration 1:  The value of currentlevel variable is 3 for the index value 126 and 

the formulae is calculated as [((46%VL3)/VL2) + 1], where VL is 4 for graph G1. 

This iteration results in the intermediate path value of 3. The value of currentlevel 

is decrement by 1 after every iteration. So, the value of currentlevel becomes 2 

after this iteration and would execute the formulae recursively until it becomes 1. 

 Iteration 2: The value of currentlevel is 2, so the formulae is calculated as 

[((46%VL2)/VL1) + 1], and this iteration results in 4. The value of currentlevel 
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becomes 1 and the algorithm comes out of loop with two values as output i.e. 3 

and 4. This was our desired intermediate path. 

The formulae described in step 2 and 3, was able to generate intermediate path for 

different levels. Hence, the algorithm can reproduce the path from the index value. The path is 

Eh, intermediate_path, k and this becomes E1342 from the values of h and k calculated above. 

Explanation of shortest path search with an example: The strength of our MBVT 

approach is the tree traversal approach using the index lists. In a normal tree traversal approach, 

a shortest path from a vertex h to k (where h, k ∈VL) is searched within the multi-level path tree 

from Eh until first k appears. 

• Shortest path search from MBVT: To find shortest path from h=1 to k=2 in graph G1 

(see path tree in Figure 8.6), level 1 is checked at index h=1 to see if there is a value 1 at 

index 2 in edgepath vector E1 (0011)T. There is 0 at index value 2 in this edgepath and it 

means that there is no direct shortest path from 1 to 2. So, the next level is checked i.e. 

level 2 within multilevel path tree which represents paths from Eh until I get 1 at index 2. 

As seen at this level I get 1 at index 2 in level 2 for E1, 4. So the shortest path is 142. 

The shortest path can be very easily looked up by traversing the multilevel tree level by 

level until I get 1 at the desired index when starting from source vertex bit vector. 

• Shortest path search from index list: The shortest path can be searched from the index 

list. For example, the path 142 can be searched from the index values. In this 

example, the path 142 can be expressed as E142, which is equivalent of Eh, 

intermediate_path, k. Here, the h is 1, intermediate path is 4 and k is 2. The shortest path can be 

checked, first of all, for the value of k using the formulae defined for conversion from 

index values. If the value of k is 2, then the value of h should be calculated for that index 
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value. The value of intermediate path should only be explored if h and k have been 

obtained. The algorithm to find shortest path from index values is shown in Figure 8.8. 

The algorithm takes, index list, source vertex, destination vertex, and vector length as 

arguments. 

 
Figure 8.8. Algorithm to search shortest paths from index values 

Graph data sets used in this study: There are three data sets that have been taken in this 

study to perform analysis (see Figure 8.9) and called them graph 1 (G1), graph 2 (G2) and graph 

3 (G3). All these graphs had different number of vertices and edges. These graphs were selected 

to study the execution time effect by taking simple graphs with different nodes and 

interconnecting edges. 

The three graphs are selected based on a linear increase in number of nodes. These graphs 

are shown in Figure 8.9. Another motivation was to test our algorithm on smaller graph to study 

and explore efficient methods that could be analyzed manually to validate the results. I tested my 

algorithm over graphs in which some of the nodes are not reachable (e.g. graph G3, nodes 3 and 

4). It was also intended that if promising results are found then our next step would be to use 

ShortestPath (int Indexes, int VL, int source, int dest) { 
For each value in Indexes: 
Calculate currentlevel from the index 
Calculate K from value % VL 
IF K equals dest THEN 

Calculate H from value / VLcurrentlevel +1 
IF H equals source THEN 

Calculate intermediatePath (int VL, int currentlevel, int index) 
Print Shortest Path // i.e. H, intermediatePath and K 

ELSE break 
ELSE break 

Read Next value from Indexes 
END For 
} 
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bigger graphs and execute our algorithm using distributed processing. Some big social network 

graphs are also next in line to be explored using our proposed algorithm.  

 

Figure 8.9. Various graph data sets used in this study 

8.6. Results and Discussions 

Multilevel bit vector tree (MBVT) algorithm requires exponential amount of space to 

store all the paths that are generated. This proposed approach also presents a way to convert 

exponential space requirement into linear space by storing paths in the form of indexes. The 

results and discussion in this section is presented using shortest path search using index list. The 

search for shortest path using index list is faster because very few comparisons are needed. In 

our proposed work, MBVT was generated to find all the paths in a graph and index list was used 

to search for the shortest path. 
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Figure 8.10. Results on average search time for various graphs 

This section presents discussion on time taken by our proposed algorithm (Allpath/ 

MBVT) to search shortest path between source and destination vertices (selected at random 

during runtime). This section also compares results of shortest path search time (Figure 8.10) and 

execution time (Figure 8.11) taken by Allpath, Dijkstra and Floyd’s algorithm for three graphs 

namely G1, G2 and G3. This section also compares results of shortest path search time (Figure 

8.10) and execution time (Figure 8.11) taken by algorithms in Nano-seconds. 

Experiment details: The experiment was run on intel-core-i7 processor with main 

memory of 4 gigabyte and CPU clock of 2.4 GHz. The algorithms are executed in java 

programming environment through Eclipse IDE. The experiment was run 100 times to avoid any 

researcher’s bias to obtain more precise and accurate results. 

Performance results: The search time (efficiency) for finding shortest path from source 

to destination vertex was repeated 100 times and the average is plotted in graph shown in Figure 

8.10. The source and destination vertices were also selected at random during each experiment 

run.  The execution time (Figure 8.11) for all three algorithms was also repeated 100 times and 

their average is taken as final execution time. It is seen from Figure 8.10 that Allpath algorithm 
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outperforms Floyd’s and Dijkstra for all three graphs w.r.t search time. Allpath performed best 

while Dijkstra performed least w.r.t search time. Floyd’s algorithm slightly underperformed 

Allpath. On the contrary in Figure 8.11, Allpath performed exponential w.r.t overall execution 

time to generate multilevel path vectors. The execution time approximately becomes twice when 

number of vertices are doubled in a graph (Figure 8.10). 

 

Figure 8.11. Results on overall execution time for all three graphs 

Discussion of results: The results of Allpath algorithm can be better understood by 

exploring its complexity. The result showed significant improvement in shortest path search time 

(Figure 8.10). Therefore, the analysis of comparisons needed to find shortest paths is performed 

in Table 8.I. In this section, some theoretical discussion on path update are presented for Allpath 

(multilevel) algorithm. We present analysis of our Allpath (multilevel) algorithm in terms of 

number of comparisons with Dijkstra’s algorithm (undirected edges and equal weights), Floyd’s 

algorithm. The Table 8.1 shows worst case comparisons between these algorithms. 

Symbols used to analyze complexity: In Table 8.1, k is the tree width, r is number of 

nodes, n is number of edges, M is maximum number of bit vectors present and L is total number 

of levels in multilevel path tree. The analysis of the result is discussed in next section alongside 

advantages of index-based solution to our MBVT approach. From the results it can be inferred 
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that multilevel path tree algorithm is slower at tree generation step while it is faster when it 

comes to search or update an edge in a graph. 

Allpath update complexity: Path update in worst case assumes that if there are maximum 

possible number of  bit vectors (M) at last level of vector length (VL) are present; then based on 

bit vectors at last level, our multilevel path tree algorithm has maximum of logVL M levels (i.e. 

L= logVL M). For example, in a graph with VL=4 and having maximum of 256 total # of bit 

vectors (M) at last level, then the total # of levels (L) are 4 (i.e. log4 256). The analysis of 

complexity has been presented in Table 8.1. If n edges have been updated at each level, then the 

upper bound of # of updates required at a specific level for the whole graph are (n logVL M). 

Table 8.1. Number of comparisons 

Algorithms Algorithm Operations Comparison for edge Update  

Dijkstra’s (single source) O (k2 log r log (k log r))  O (k2 log r log (k log r)) 

Floyd’s O (r3) O (r3) 

Allpath (at any level) O (m x VL) O (n logVL M) 

 
Allpath complexity: In a similar way, to calculate the complexity of the MBVT algorithm 

in a worst-case scenario is calculated using number of bit vectors and number of 1s at a given 

level. Assuming there are m number of bit vectors and each bit vector has VL number of 1s then 

there are (m x VL) number of bit vectors that are generated at next level. It is also worth noting 

that if m ≈ VL at each level then the algorithm runs in exponential time but it is one time process 

and new edges can be dynamically added or removed without computing the whole tree again. 

The shortest path search algorithm described earlier (Figure 8.8) using indexes has resulted in 

shortest path calculation even faster in quadratic amount of time and expects that this algorithm 

can further be improved by using distributed processing (subject to evaluations). 



 

142 
 

Allpath algorithm generates new bit vectors for subsequent level on each occurrence of 1. 

This makes Allpath algorithm exponential in execution. That’s why the execution time taken by 

Allpath algorithm is more than other two algorithms. The advantages of our proposed algorithm 

despite exponential complexity is as follows: 

• It is very convenient to be executed in distributed computing because bit vectors at root 

node can be processed independent of each other. 

• Generation of multilevel path vectors are one-time process and results in speed gain for 

shortest path search. 

• Path update is easy to accommodate without repeating whole process. 

Multilevel tree algorithm has proven to be the superior algorithm (among existing ones) 

to find the shortest paths with forbidden paths and without forbidden paths. In [83], an algorithm 

to find multiple shortest paths (k-shortest paths) is presented [83], which (multiple shortest paths) 

our algorithm is also generating by generating all lengths of paths. Newman in [84] presented an 

algorithm to find all the collaboration of authors in scientific papers in various fields. Newman 

described his technique to find shortest path between two authors in his collaboration network 

using Queues. 

Our multilevel path algorithm also finds shortest path between two authors in relatively 

faster manner with the use of vertical data structures because vertical data structure is best fit for 

logical operations to perform. Restricted Shortest Path (RSP), ∈-Approximation, backward-

forward heuristic and Lagrangian based methods have major issues of large computational time 

[85] while our multilevel path algorithm’s computation time is less expensive using the logical 

operations, which can further be reduced to the factor of O (n logVL M) by the use of indexes to 

represent position of 1’s in multilevel trees. When indexes are used then I need not to traverse 
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throughout the bit vector to check the presence of 1’s and this makes algorithm even more 

efficient by skipping unnecessary computations. 
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9. RESEARCH CONTRIBUTIONS 

This section discusses the major contribution of the work described in this dissertation to 

requirement inspections and research. This section also enlists the publications that will be used 

to disseminate the work done during the dissertation. 

9.1. Contribution to Requirement Inspections and Research 

This research illustrated that manual inspection tasks that are cost and time intensive can 

be automated using state-of-the art ML and graph mining approaches. This dissertation produced 

techniques that can automate the selection of inspectors pre inspection and analysis of data 

collected during the inspection (i.e., validation of inspection reviews, identification of fault-

prone areas in an SRS document, and analysis of impact of a change during fault fixation). When 

used in industrial settings, this will improve software development efficiency by providing 

automated support for requirements author and inspection managers. While ML has been applied 

in other domains, to the best of my knowledge, this is one of the earliest efforts at using theories 

grounded in machine learning to develop research solutions that can help improve quality of NL 

requirements document. 

Some of the research contributions include an improved understanding of features of 

various ML algorithms that will help other researchers when using these approaches in RE or 

similar domains. Specifically, this dissertation provides useful insights into: 

• feature set threshold when extracting most informative features from NL reviews,  

• mechanism for training classifiers using reviews from semantically similar domain; 

• prominent POS tags and ensemble classifiers most applicable to NL fault logs and NL 

requirements; 

• using eye tracking data to predict the characteristics of most skilled inspectors; 
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While the approaches proposed and validated in this dissertation (e.g., KESRI) were 

validated w.r.t NL requirements, they can be applied to extract pertinent information from any 

unrestricted NL text (i.e., without needing any conformance standards). This appeals to the wide 

application of this research work beyond software engineering domain. It is hoped that this work 

will motivate other researchers to employ automated ML approach in software engineering 

discipline for advancing the SE practice and to improve the quality of requirements produced 

during the development. 

In particular, the application of graph mining approaches to find cliques and K-plex to 

when using LSA, LDA and other graph mining approaches can help requirements authors 

visualize interrelated requirements, make appropriate changes and assess the quality of the fixes. 

9.2. Publication and Dissemination 

This section describes the publications that resulted from the work done for this 

dissertation. The publication plan is described in terms of articles that have been published, 

under review, and being prepared for submission. 

9.2.1. Refereed Conferences 

1. Singh, M., Walia, G., and Goswami, A. "Validation of Inspection Reviews over Variable 

Features Set Threshold", IEEE International Conference on Machine Learning and Data 

Science (ICMLDS-2017), Dec 14-15 Dec, India. 

2. Singh, M., Walia, G., and Goswami, A. "An Empirical Investigation to Overcome Class-

imbalance in Inspection Reviews", IEEE International Conference on Machine Learning 

and Data Science (ICMLDS-2017), Dec 14-15 Dec, India. 

3. Singh, M., Vaibhav, A., Walia, G., and Goswami, A. "Validating Requirements Reviews 

by Introducing Fault-Type Level Granularity: A Machine Learning Approach", ACM 
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SIGSOFT Innovations in Software Engineering (ISEC 2018), Feb 9-11, Hyderabad, 

India. 

4. Singh, M., Vaibhav, A., Walia, G."A Vertical Breadth-First Multilevel Path Algorithm to 

Find All Paths in a Graph", International Symposium on Big Data Management and 

Analytics (BIDMA 2018), April 24-25, Calgary, Canada. 

5. Singh, M., "Automated Validation of Requirement Reviews: A Machine Learning 

Approach", 26th IEEE International Requirement Engineering Conference (RE '18), 

August 20-24, 2018, Banff Canada. 

6. Singh, M., Walia, G., Goswami, A., "Using Supervised Learning to Guide the Selection 

of Software Inspectors in Industry", In proceedings of 29th IEEE International 

Symposium on Software Reliability Engineering (ISSRE 2018), October 15-18, 

Memphis, Tennessee, USA. 

7. Singh, M., "Semantic Analysis and Graph Mining Approach to Generate Inter-related 

Software Requirements", ACM sponsored 16th International Doctoral Symposium on 

Empirical Software Engineering (IDoESE 2018), October 10, Oulu, Finland. 

9.2.2. Future (Journal/Conference) Publications 

1. Singh, M., Walia, G.S, “Using Keyword Extraction from Inspection Logs to Guide Post 

Inspection Fault Fixation in Software Requirements”. (to be submitted) 

2. Singh, M., Walia, G.S, “Mapping Fault Logs from Software Inspections to Fault Prone 

Requirements in an SRS Document”. (to be submitted) 
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10. CONCLUSION AND FUTURE SCOPE 

This dissertation employed various ML approaches (both supervised and unsupervised), 

NLP approaches, and graph mining approaches to automate pre and post inspection activities. 

This chapter discusses the major implications of this work and presents some future directions. 

The software development is a process driven approach that starts with the identification 

of requirements about the system to be designed and build. To develop a reliable software 

system, it must be inspected regularly to find and fix faults, which is a tedious and time-

consuming activity. The faults that propagate to the later stages are hard to find and costlier to 

fix. So, it is crucial to find and fix faults during the early phase of software development (i.e., 

requirements). Inspections are employed to find faults, where skilled inspectors inspect the SRS 

document and generate the fault logs, which are then handed back to requirements author to fix. 

The requirements author manually identifies the true fault log before fixing it in the SRS 

document, which is time-consuming and tedious process. 

This dissertation attempted to automate certain pre and post-inspection activities by 

employing ML approaches. These include using ML to validate true faults versus false positives, 

identification of faulty requirements from validated true faults (using semantic similarity 

measures) and assessing the impact of a change (using graph mining approaches) in a 

requirement during fault fixation. 

I successfully implemented ML, NLP, and graph mining algorithms to automate the post-

inspection activities and selection of these algorithms was guided based on their successful 

implementation in other domains of software engineering (e.g., design, testing, text processing 

etc.). The results in this dissertation validated my approaches and identified some important 
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insights that will guide future research directions. These important insights and the future scope 

are discussed for each research goal identified in chapter 1. 

10.1. Goal 1 - Validation of Requirement Reviews 

Applying various ML algorithms, leveraging NLP algorithms, and employing POS tags; 

this research showed that useful NL reviews can be automatically detected thereby saving costs 

that are otherwise spent manually identifying true faults (and false positives). ML algorithms 

when using POS tags (nouns and adjectives) performed best. Priority classes (i.e., validation 

prediction through voting) were employed to successfully classify NL reviews. 

The future scope of this research is to investigate the impact of deep learning algorithms 

for validating requirement reviews. More replications of this work using different SRSs across 

multiple studies will help generalize the results. 

10.2. Goal 2 - Finding Fault Prone Requirements  

To automate the information extraction from inspection fault logs, three types of KPE 

algorithms (supervised feature based, unsupervised graph based, and unsupervised statistical) 

were used. The results showed that supervised learning feature-based algorithms performed best 

at extracting keyphrases of length 3-words. The researchers can use the KESRI approach to 

extract any number of keyphrases (of any length) in NL text e.g., extracting bug information 

from commit messages during mining software repositories. 

The MOKSA approach identified most applicable clustering algorithm (nearest neighbor 

vs. graph based nearest neighbor) to cluster keyphrases, and the most applicable semantic 

similarity measure (LSA, LDA) to map clusters of keyphrases to requirements in an SRS 

document. The results found that Affinity propagation (a graph based nearest neighbor) approach 
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is best suited to cluster keyphrases, and LDA algorithm is best suited to map keyphrases to 

requirements in an SRS. 

The studies were done using artificially seeded faults and researchers knew the master 

fault list. To be able to apply KESRI and MOKSA in industry, it will need to be validated with 

artifacts with naturally occurring faults and in a live setting. This is an immediate next step at 

improving the keyphrase extraction approach presented in this dissertation. 

10.3. Goal 3 - Guiding the Change Impact Analysis 

This research aimed at generation of interrelated requirements (IRRs) for an SRS 

document, such that pre-inspection, the requirements author could identify term substitution 

errors, and redundant requirements, while post inspection, the authors could use IRRs to guide 

CIA during fixing a requirement. This research reported that the IRRs (generated using LDA) are 

the best representative of actual related requirements. This research also reported certain graph 

mining techniques (cliques and K-Plex) can reported highly impacted requirements because of a 

change during a fault fixation. This research can give insights to the SE researchers identify 

redundant requirements, redundant errors in software documents. 

The immediate future work is to evaluate my proposed approach using other semantic 

and syntactic algorithms (e.g. RP, cosine similarity etc.). Furthermore, another study as part of 

the future work is to evaluate ripple effect of CIA using N-hop path algorithms by applying 

interactive change/fixations in the requirements. 

10.4. Goal 4 - Selection of Inspectors 

This research investigated the characteristics of an effective inspector that could report 

faults with significant precision while inspecting an SRS document using eye-tracking 

equipment. This research also investigated the best suited ML algorithms and feature evaluator 
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methods to identify inspector’s characteristics. The results reported that the best inspector 

characteristics involves the reading patterns (i.e., linear saccades), fixations on SRS document, 

and the average time spent on each SRS page during inspection. 

The future work includes the replication of this study with different inspectors (i.e., from 

industry), with additional classification families like Neural Networks, when inspecting different 

requirements documents, and with varying experiences. Also, I plan to expand the number of 

attribute evaluation methods in future replications. 

10.5. Application to Other Domain 

This dissertation presented the novel application of ML algorithm to develop a data 

structure that can support faster mining of large graph data using parallel processing. The other 

advantage of this application is that it can support dynamic update of data without having to 

perform re-computations (which is a desirable characteristic to support distributed processing). 

The long-term benefit of this research is to generate all existing paths in a graph of 

requirements to evaluate CIA. 
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