
North Dakota State University
Graduate School

Title

Implementation of Bus-Based and NoC-Based

MP3 Decoders on FPGA

By

Kianoosh Karami

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To prntect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Karami, Kianoosh, M.S., Department of Electrical and Computer Engineering, College
of Engineering and Architecture, North Dakota State University, November 2011.
Implementation of Bus-Based and NoC-Based MP3 Decoders on FPGA. Major Professor:
Dr. Cristine! Ababei .

The trend of modern System-on-Chip (SoC) design is increasing in size and number

of Processing Elements (PE) for various and general purpose tasks. Emergence of Field

Programmable Gate Array (FPGA) into the world of technology has lowered the limitations

faced by Application Specific Integrated Circuit (ASIC) design. FPGA has a less time-

to-market and is a perfect candidate for prototyping purposes due to the flexibility they

create for the design and this is the key feature of the FPGA technology. Technology

advancements have introduced reconfiguration concepts which increase the flexibility of

FPGA designs more.

One method to improve SoC's performance is to adopt a sophisticated communication

medium between PEs to achieve a high throughput. Bus architecture has been improved to

meet the requirements of high-performance SoCs, however, its inherently poor scalability

limits their enhancement. The Network-on-Chip (NoC) design paradigm has emerged to

overcome the scalability limitations of point-to-point and bus communication.

This thesis presents an investigation towards NoC versus bus based implementation

of an SoC. An MP3 decoder has been selected as an application to be implemented on

the proposed design. The final design in the thesis demonstrated that the NoC based MP3

decoder achieves a 14% faster clock frequency and real time operation with the NoC based

design decode an MP3 frame on average in 10% less time that the bus based MP3 decoder.

111

ACKNOWLEDGMENTS

I am very grateful to take this opportunity to thank Dr. Cristine! Abebei, Dr. Chao

You, Dr. Benjamin Braaten and Dr. Chad Ulven for serving on my graduate committee.

Especially, I would like to thank Dr. Abebei for his constant support and patience with me.

I would like to thank the Center For Nanoscale Science and Engineering, Mark

Pavicic, and Mike Reich for believing in me and giving me the oppurtunity to learn and

gain experience under their supervision.

Finally, I would like to thank my family for always believing and supporting me

throughout my life.

lV

TABLE OF CONTENTS

ABSTRACT . Ill

ACKNOWLEDGMENTS . 1v

LIST OF TABLES . 1x

LIST OF FIGURES . x

CHAPTER 1. INTRODUCTION

1.1. Field Programmable Gate Arrays . 1

1.2. Bus.. 2

1.3. Network-on-Chip . 3

1.4. Summary . 5

1.5. Thesis Outline . 6

CHAPTER 2. STATE OF THE COMMUNICATION PARADIGMS FOR SOC
DESIGNS 7

2.1. Summary . 9

CHAPTER 3. MP3 DECODER. 10

3.1. MP3 Decoder's Algorithm......... 10

3.2. Synchronization between the MP3 Decoder and the Bitstream 12

3.3. Layer and Side Information Block . 12

3.4. MP3 Decoding Block Diagram . 12

3.5. Partitioning the MP3 Decoder's Components . 13

V

CHAPTER 4. BUS BASED IMPLEMENTATION OF MP3 DECODER. 16

4. l. Introduction . 16

4.2. Architecture.. 16

4.3. Operation . 16

CHAPTER 5. NETWORK-ON-CHIP 20

5.1. Introduction . 20

5.2. Architecture . 20

5.3. Router . 21

5.3. l. Input Buffers . 22

5.3.2. Arbiter. 23

5.3.3. Switch Box . 23

5.4. Routing Algorithms . 24

5.5. Packet Structure . 25

5.6. Network Interface . 26

5.7. Simulation Example of Data Transfer in the NoC Based MP3 Decoder 26

CHAPTER 6. IMPLEMENTATION OF THE MP3 DECODER ON FPGA . . . 29

6. l. Development of HDL Sources for Each PE . 29

6.1.1 . Differences in Transfer of Data Between the PEs in Python
and Actual HDL Implementation . 30

6.2. Floating Point Representation . 31

6.2.1. Floating Point Format . 32

Vl

6.2.2. Conversion from Fixed Point to Floating Point. 33

6.2.3. Addition and Multiplication . 36

6.2.4. Resource Usage of Multipliers and Adders 36

6.2.5. Conversion From Float Point to Fixed Point 37

6.3. Parallel Processing . 38

6.4. Interface Between FPGA and the Host Computer. 41

6.4.1. Virtual Serial Port. 41

6.4.2. Communication Wrapper . 42

6.4.3. Host Command Interface . 42

6.5. Audio Processing . 43

6.6. FPGA Implementation : Common Implementation Elements 47

6.6.1. Block Random Access Memory 47

6.6.2. Clocking . 48

6.6.3. Handshake. 48

6.7. Manual Mapping of MP3 Decoder on 3x3NoC: Different Design
Aspects 49

6. 7. I. Interactions between the Processes . 49

6.7.2. Mapping of PEs on NoC 50

CHAPTER 7. RESULTS . 56

7.1. Device Utilization Summary . 56

7 .2. Layout . 56

7.3. Critical Path.. 57

Vil

7.4. Performance . 58

7.5. Power Consumption . 59

7 .6. Experimental Setup. 60

7. 7. Challenges Faced during Working on this Project 61

CHAPTER 8. CONCLUSION AND FUTURE WORK . 66

8.1. Conclusion . 66

8.2. Future Work. 66

BIBLIOGRAPHY. 67

Vlll

LIST OF TABLES

Table

1.1 Bus versus NoC arguments. 5

3.2 Frame Header bits information.... 13

6.3 Look up table for floating point representation of the global gain. 34

6.4 Bits 23 to O of the floating point representation with relationship to Gn. 36

6.5 Bits 30 to 24 of the floating point representation with relationship to Gn. . . . 36

6.6 25 bytes of bitstream is sent from the host computer to the MP3 decoder. . . . 43

6.7 BRAM usage in the PEs 49

7 .8 Device utilization summary for NoC and bus based MP3 decoder. 56

7.9 Performance results. 62

7.10 Power estimation for NoC and bus based MP3 decoder.......... 65

lX

LIST OF FIGURES

Figure Page

1.1 Simple FPGA structure with interconnection blocks serving the same purpose
as the routing channel. 2

1.2 Shared system bus. 3

1.3 An example of a heterogeneous NoC architecture. 4

3.4 32 bits of frame's layer info. 12

3.5 Block diagram of the MP3 decoder. 14

4.6 High level architecture of the bus implemented in the design. 17

4. 7 Tri-state switches used in the bus. 18

4.8 Transfer of data through the bus. 18

5.9 NoC Topology - 3 x 3 Homogeneous. R stands for router. 21

5.10 Architecture of the router implemented in the NoC. 22

5.11 Body flit structure.. 26

5.12 Simulation example of data transferred between two of the PEs in the NoC
based MP3 decoder. 28

6.13 Storing and reading side information by different PEs in the MP3 decoder
in the Python. 31

6.14 Sync sends the side information block directly to the other PEs.. 32

6.15 IEEE 754 single precision standard. 32

6.16 32 Bit floating point multiplier resource estimation using DSP48E slices. . . . 37

6.17 32 Bit floating point multiplier resource estimation without using DSP48E
slices. 38

6.18 Parallel Processing between Huffman and Dequantization. 40

X

6.19 Graphical User Interface when the host computer is not connected to the
MP3 decoder. 44

6.20 Graphical User Interface when the host computer is connected to the MP3
decoder 45

6.21 AC Link. 45

6.22 Bi-directional AC-link frame with slot assignments .. 46

6.23 AC-link output frame.. 47

6.24 Configuration of PLL used to generate 87.5 MHz clock frequency. 50

6.25 4-phase handshake. 51

6.26 Interactions between the PEs in the NoC. 52

6.27 First phase of placement of PEs in the NoC. 54

6.28 Final phase of placement of PEs in the NoC . 55

7.29 Layout of the NoC based MP3 decoder showing the PEs. 57

7.30 Layout of the NoC based MP3 decoder showing the Routers. 58

7.31 Layout of the bus based MP3 decoder showing the PEs. 59

7.32 Layout of the bus based MP3 decoder showing the Bus. 60

7.33 Critical Path shown in the Device for a NOC based MP3 decoder. 61

7 .34 Description of the critical path shown in the device for the NoC based MP3
decoder. 61

7.35 Critical path shown in the device for the Bus based MP3 decoder. 62

7.36 Description of the critical path shown in the device for the Bus based MP3
decoder 63

7.37 MP3 decoder setup shown with a computer host and speakers. 64

xi

7.38 ML501 development board shown with auxiliary connections. 64

xii

CHAPTER 1. INTRODUCTION

1.1. Field Programmable Gate Arrays

An FPGA is a semiconductor device designed to be configured by the designer

after fabrication . Hardware Description Language (HDL) is generally used to determine

the software and behavior configuration of an FPGA. FPGAs are free of any previously

installed hardware function, therefore allowing the designer to adapt the FPGA to any

new standards and configure the FPGA for any desired application while maintaining the

freedom to reconfigure the FPGA for any other specific applications later hence "field

programmable". Reconfigurable hardware gained attention for its ability to prototype

applications faster than other technologies. Reconfigurability is one of the many reasons

why FPGA technology has replaced ASIC design 's long and expensive time-to-market [l].

There is no "standard" structure for FPGAs, therefore many different architectures

exist. The most simple structure of an FPGA cell is shown in Figure 1.1 . A simple

FPGA cell structure consist of I/0 blocks, Configurable Logic Blocks (CLB) and routing

channel. Most of the CLBs contain Look Up Tables (LUT) along with flip flop architecture

in some determined architecture. LUT contains the configuration logic of the FPGA cell.

The routing channel is responsible for routing a circuit based configuration of the CLBs.

Due to the high count of FPGA cells that is continuously increasing with advancements

in technology, Computer Aided Tools (CAD) are needed to properly implement a design

on an FPGA chip. Xilinx [2] and Altera [3] are the two leading companies that have been

impacting the FPGA technology with their product and offer many sorts of different FPGA

chips. Xilinx provides Xilinx ISE as a CAD tool for their FPGA technology. Xilinx ISE

provides designers with a set of tools to implement a design on an FPGA.

A bitstream is the configuration data downloaded into an FPGA chip to be configured

into a new design. The conversion of HDL source into a bitstream consists of two oper­

ations: synthesis and implementation. Xilinx ISE provides Xilinx Synthesis Tools (XST)

1

Log i c Block
Int rconnection
Re sources

Figure 1.1. Simple FPGA structure with interconnection
blocks serving the same purpose as the routing channel.

and other tools [2] to synthesize and generate bitstreams from the design for the targeted

FPGA chip. The designer can use Xilinx ISim to verify and simulate the design or any

other HDL or schematic based design. The designer could also use on chip testing such as

ChipScope to troubleshoot the design.

1.2. Bus

The processing power of SoC has increased to embed data intensive applications,

and more attention has been focused on the communication aspect of the SoC. SoC enables

implementation of wide range of applications that employ parallel processing with some

required to fulfill real-time requirements. During the early stages of the SoC concept, the

SoCs had generally been employing buses and point-to-point links [4]. Bus is a set of

address, data and control lines that are shared by the connected PEs that contend among

themselves to transfer data through the bus to other connected PEs. Figure 1.2 shows a

shared system bus with eight PEs with four masters and four slaves. In Figure 1.2, the

2

arbiter periodically checks the requests from the master interfaces, and grants bus access

to the master with the highest priority. The bus allows for the master to send string of data

without having to request for bus access again.

M1 M2 M3 M4

Figure 1.2. Shared system bus.

1.3. Network-on-Chip

As the number of PEs within an SoC increases, the complexity of connections be­

tween the PEs also increase. Point-to-point connection between the PEs is the most efficient

connection [5], however it leads to inefficient use of resources, silicon area and diminished

design flexibility. One cost factor when designing the system is measured by chip area and

power dissipation.

The architecture of the bus has been improved to meet the requirements of high

performance SoCs [6], however, its poor scalability limits the enhancement. Current state­

of-the art bus architectures, such as the AMBA multi-layer, STBus, and SonicsMX enable

the instantiation of multiple buses operating in parallel, thereby providing a crossbar archi­

tecture [7]. However, as all the PEs in the design need to be connected to the crossbar, such

architecture is non-scalable for large number of PEs in the design.

The NoC architecture has been proposed to meet the communication needs and

Quality of Service (QoS). QoS is associated primarily with latency and throughput. It

3

is desired to lower the latency and increase the throughput to increase the performance of

the SoC. A simple NoC connecting multiple PEs has been shown in Figure 1.3 [8].

individual r clock so urces7 ------.

router
(switch

I PMU I __ M_e_m_o_r_ie_s_ P_e_r_ip_h_e_r_a_1 _1P_s___,

Figure l.3. An example of a heterogeneous NoC archi­
tecture.

Buses have been vastly used in SoC due to their well understood concepts, compati­

bility with different processor interfaces, area taken on the chip and the zero latency after

arbiter has granted control. The performance of the SoCs will be decided by the efficiency

of the connections between PEs and customized modules [8]. Despite the advantages of

the bus such as their simplicity to implement, their architecture will not meet the increased

communication requirement because of the bandwidth bus shares with all the attached

devices. Another disadvantage of the bus is that the clocking frequency of global wiring

becomes tightly constrained by the electrical properties of deep sub micron processes [9].

NoC has emerged as a new paradigm for SoC communication infrastructure and as a

replacement to buses and dedicated interconnections [10, 11]. The NoC architecture uses

layered protocol and packet-switched networks with on chip routers, links and network

4

interfaces with predetermined network topology.

1.4. Summary

Table 1.1 discusses the pros and cons of NoC and bus based communication in­

frastructure [12]. NoC achieves better scalability than bus and point-to-point with large

numbers of PEs in an SoC [13]. Recent analysis [14] has shown linear increase in power

and area used for NoC with addition of PEs to the SoC, whereas buses and point-to-point

display super linear growth.

Table 1.1. Bus versus NoC arguments.

Bus Pros & Cons NoC Pros & Cons
Electrical performance degrades with - + Only point-to-point one-way wires are
addition of units. used, for all network sizes, thus lo-

cal performance is not degraded when
scaling.

Bus timing is difficult in a deep sub - + Network wires can be pipelined be-
micron process. cause links are point-to-point.
Bus arbitration can become a bottle- - + Routing decisions are distributed, if
neck. The arbitration delay grows with the network protocol is made non-
the number of masters. central.
The bus arbiter is instance-specific - + The same router may be re instanti-

ated, for all network sizes.
Bus testability is problematic and slow. - + Locally placed dedicated built-in self

test is fast and offers good test cover-
age.

Bandwidth is limited and shared by all - + Aggregated bandwidth scales with the
units attached. network size.
Bus latency is wire-speed once arbiter + - Internal network contention may cause
has granted control. a latency.
Any bus is almost directly compatible + - Bus-oriented IPs need smart wrappers.
with most available IPs, including soft- Software needs clean synchronization
ware running on CPUs. in multiprocessor systems
The concepts are simple and well un- + - System designers need reeducation for
derstood. new concepts

5

1.5. Thesis Outline

The proposed design is implementation of both bus and NoC based MP3 decoder

on FPGA. The MP3 decoder's algorithm is discussed in Chapter 3. Bus and NoC com­

munication will be discussed briefly in Sections 4 and 5 respectively. Implementation of

the MP3 decoder on the FPGA chip using bus and NoC based communication is discussed

in Section 6. Results of the implementation of both NoC and bus based MP3 decoder is

reported in Chapter 7. Conclusion and future work is discussed in Chapter 8.

6

CHAPTER 2. STATE OF THE COMMUNICATION PARADIGMS

FOR SOC DESIGNS

SoC is growing in complexity level and the number of independent applications on a

single chip. There are a growing number of applications that require a system architecture

to be scalable on the physical, architectural and functional level. Many applications have

constraints on real-time performance, such as maximum time allowed for an application to

be executing commands (e.g., MP3 decoder).

In the implementation of a multi-processor SoC, the bus architecture comes to the

forefront. The performance of the system is not dependent only on the processors's speed

but also on the bus's architecture, which may impact the system's performance. An ef­

ficient bus architecture and arbitration for reducing contention plays an important role in

maximizing the performance of the system. AMBA [15) offers the simplest architecture

compared to any other bus. AMBA and IBM CoreConnect [16) are two widely used on

chip buses. AMBA and IBM CoreConnect both have a split bus architecture, with a low

speed peripheral bus attached to the main high speed system bus through a bridge. Sonics

MicroNetwork [17) is a time division multiple access based bus, which can be easily

adapted to different needs while providing high bandwidth utilization. The architecture

of the bus has been improved to meet the requirements of high performance SoCs (6),

however, its inherently poor scalability limits the enhancement. Many NoC architectures

have therefore been proposed to meet such demands. The advantages of spatial-reuse

packet/wormhole switched networks were reported and explored in comparison with buses

in [10, 18, 19).

It is claimed in (20) that different types of networks will be required for each applica­

tion. The authors in (20) provide a step through methodology to provide a flexible network

for an optimum solution to develop the communication infrastructure of a new system. Cost

performance trade off is a major issue in NoC design and this constitutes the effectiveness

7

of the NoC in a given design. There are five major key factors to determine the efficiency of

NoC: silicon area, network saturation threshold, communication throughput, packet latency

and power consumption [21]. The SPIN Micro Network [22, 23 J was the first published

attempt to solve the bandwidth bottleneck, when interconnecting a large number of PEs.

Growing system size with increasing performance variation has impacted globally

synchronous operations. There have been NoCs presented that consider the synchronous

performance issue such as Dally's NoC [18], /ETHEREAL [24], XPIPES [25], NOSTRUM

[26] with a global synchronous clock, which may be hard to implement with given time

constraints [27]. Also, there have been some asynchronous NoCs presented such as CHAIN

[28], MANGO [29], QNOC [30], ANOC [31]. Another drawback of globally synchronous

operation is a large peak current at the clock edge leading to ground bounce and voltage

drops, which in turn induce jitter in both clock and data, causing the system to operate in

the unstable region. These drawbacks have lead to the concept of Globally Asynchronous

Locally Synchronous (GALS), which suggests implementation of the SoC as synchronous

islands that communicate asynchronously [32].

A drawback of GALS approach is the lack of design tools' availability along with

complications that arise with ensuring QoS of the communication needs. Another approach

that has been taken in [33, 34] has been a meso-synchronously clocked system, which

employs a single clock across the entire system, but at arbitrary phases. Meso-synchronous

NoC's power dissipation is much less than synchronous NoC, and Meso-synchronous NoCs

are scalable due to the phase difference between the clock-phase of different regions.

There have been NoCs based on Time Division Multiplexing (TOM) [24]. TOM

communication allows for transfer of two or more bitstreams simultaneously as sub chan­

nels in one communication channel. The IETHEREAL[24] NoC uses contention-free

routing, or pipelined TOM circuit switching, to implement its guaranteed performance

services. The focus of !ETHEREAL NoC is to guarantee QoS specially ordered, lossless,

8

uncorrupted data delivery, throughput and bounded latency. Such requirements of TDM

NoC make the performance of NoC predictable, which can then accommodate applications

in real-time requirements. TOM has the drawback of the connection latency being inversely

proportional to the connection bandwidth.

An NoC emulation framework has been implemented onto an FPGA platform [35].

The authors in [35) cite utilization of the FPGA as an active element in the emulation

control layer to speed up functional validation and to add flexibility to the NoC configu­

ration exploration, instead of merely being the platform where the circuit is prototyped,

as emulation is typically used. Ehliar et al. [36] have proposed an FPGA based NoC

architecture similar to the NoC implemented in this project.

In [37), the authors employ the partial dynamic reconfiguration technology of the

FPGAs in their proposed framework . The proposed partial and dynamic reconfigurable

NoC can enhance the performance of the NoC by dynamically establishing or deleting

a number of dedicated point-to-point connections between the routers . Another dynamic

reconfigurable NoC is presented in (38), where the routers are controlled by some signals

to prevent packets from queuing up in the internal buffer, which will decrease the size of

the internal buffer. This NoC can be reconfigured to adjust the properties of the NoC such

as routing scheme and buffer sizes at run-time. However, the changes dynamically made to

NoC have to be already allocated for at design time.

2.1. Summary

During the early stages of SoC design, bus and point-to-point were vastly used as

the communication infrastructures of the SoCs. Over the years, their poor scalability and

slow performance rate have created a demand for a faster and more scalable communication

paradigm such as NoC. Variations of NoC have been presented to meet demands of different

applications with constraints on their performance implemented on an SoC.

9

CHAPTER3.MP3DECODER

MP3 is a codec formally known as Moving Pictures Experts Group (MPEG)-1 Audio

Layer 3, and it is defined in the MPEG-1 standard. This standard defines three different

audio codecs, where layer l is the simplest and has the worst compression ratio, and layer

3 is the most complex but has the highest compression ratio with the best audio quality per

bit rate. The MP3 encoded files are made up of several "frames", which are consecutive

blocks of data. Each frame is consisted of two granules with two possible channels. Each

granule contains 576 samples. While important for unpacking the bit stream, frames are

not fundamental and cannot be decoded individually.

3.1. MP3 Decoder's Algorithm

The MP3 decoder's algorithm is made up of the following functions [39]:

1. Find and Read Header: The MP3 decoder has to align itself with the MP3 file

bitstream, by identifying the MP3 frames within the MP3 file. This function finds

and identifies series of information regarding the newly found frame.

2. Get Side Information: The MP3 decoder requires block of information for each

channel in a granule to properly transform data into sample values. This function

extracts the block of data needed, called side information.

3. Get Scale Factors: There are scale factor bands that span the frequency spectrum of

the hearing bands of the human ear. Each scale factor band requires a unique factor

for each channel in a granule, called scale factor. Get Scale Factors function extracts

the scale factors.

4. Huffman Decoder: The MP3 encoder uses Huffman encoding technique to com­

press and reduce the size of the data. Huffman Decoder uses the reverse technique to

decompress data using different Huffman tables.

10

5. Sample Dequantization: Huffman decoder's data are dequantized using the proper

values of the scale factors to create a set of data called sample values.

6. Stereo: MP3 decoder supports four different channel modes. Stereo will properly

adjust the dequantized samples based on the frame's channel mode. The adjusted

samples are called stereo samples.

7. Reorder: Stereo samples that use the short time window setting must now be re­

ordered.

8. Alias Cancellation: The MP3 decoder applies alias cancellation to stereo samples

that use the long time window setting (long blocks) to compensate for the frequency

overlap of the sub-band filter bank.

9. Inverse Modified Discrete Cosine Transform (IMDCT): This function transforms

each sub-band into the time domain.

10. Frequency inversion: After IMDCT function, every second sample in every second

sub-band needs to be multiplied by -1 to correct for the frequency inversion of the

sub-band filter bank.

11. Sub-band Synthesis: Finally, the 32 sub-bands are combined into time domain

samples that cover the whole frequency spectrum. One sample is taken from each

sub-band and transformed using a transform similar to the discrete cosine transform.

The results are pulse code modulation (PCM) samples, which are calculated by

means of a windowing operation. PCM values are the decoded audio samples for

each frame.

11

3.2. Synchronization between the MP3 Decoder and the Bitstream

Any file with .mp3 extension indicates that the file is an MP3 file . The MP3 file

may include some information about the audio properties of the .mp3 file such as the artist,

author, name of the track and etc. Therefore, in order to start decoding any information, the

decoder and the file must be aligned perfectly. The decoder and the MP3 file 's bitstream

are aligned by an entity called the sync word. This process is called sync word detection.

The sync word is 12 consecutive I bits in a row with the first 8 bits in one byte, and the

following 4 bits in the next byte. Decoding a frame starts after a successful sync word

detection.

3.3. Layer and Side Information Block

Following a successful sync word detection, the next 20 bits represent the frame's

layer information. These 20 bites are called frame header bits. Table 3.2 shows the relation

between particular frame header bits in Figure 3.4 and the properties of the frame's layer.

31 0

Ill-- I II
A BCD E F GH I J KLM

Figure 3.4. 32 bits of frame's layer info.

3.4. MP3 Decoding Block Diagram

The block diagram of the MP3 decoder is shown in Figure 3.5. Once synchronization

was successful and side information block has been retrieved, the first loop will begin. The

first loop will continue until both of the granules of the frame has been processed. The

stereo will perform stereo decoding on two granules of the frame. Second loop will begin

after stereo decoding is finished. After completion of the second loop, the PCM values are

saved or streamed.

12

Table 3.2. Frame Header bits information.

Sign Length Position Dec
A 12 (31-20) Sync Word
B 1 (19) MPEG Audio version ID.
C 2 (18-17) Layer Description.
D I (16) Protection bit.
E 4 (15-12) Bit rate Index.
F 2 (11-10) Sampling rate frequency index
G 1 (9) Padding bit.
H 1 (8) Private bit. This bit is only for informa-

tional purposes.
I 2 (7-6) Channel Mode. If the channel mode bits

are 00, the frame is stereo, if the bits are
01, the frame is joint stereo, if the bits
are IO the frame is Dual channel (2 mono
channels)

J 2 (5-4) Mode Extension.
K I (3) MP3 file Copyright protection.
L 1 (2) Originality of the MP3 file .
M 2 (1-0) Emphasis.

3.5. Partitioning the MP3 Decoder's Components

There are total of 11 functions to the MP3 decoder's algorithm with an another

function needed to handle the control of the MP3 file 's bitstream and the operation of

the functions in the proper manner, called Manager. Manager is very similar to the

operating system used in [40). For example, Manager must ensure Huffman Decoder is

not accessing the MP3 file's bitstream prior to the Getting Scale Factors. Grouping some

of the functions allows to simplify the MP3 decoder and reduce the need for more resources

with consideration of implementing the MP3 decoder on an FPGA chip.

The Find and Reader Header function with the layer and side information block

component are very much intertwined together and can be grouped together because their

processes are sequentially grouped with following bitstreams. The new function is called

13

Adjust the channel
and granule

Adjust the channel
and granule

No

No
Read Bitstream

Yes
Get Side Information

Get Scale Factors

Huffman Decoder

Dequantization

Yes
Stereo

Reorder

Alias Cancellation

IMDCT

Frequency Inversion

Sub-band Synthesis

Done with Second Loop?

Figure 3.5. Block diagram of the MP3 decoder.

Save Results

Yes

Sync. Frequency inversion is a very small task that can be done along with IMDCT.

Grouping of Frequency inversion and IMDCT forms Hybrid . For a single channel in a

granule, the decoder is either reordering or performing alias cancellation, therefore these

two tasks can be combined. This function is called Antialias.

14

Stereo decoding, Huffman decoding, Dequantization, Sub-band synthesis and Get­

ting Scale Factors will remain intact with the following names Stereo, Huffman, Dequan­

tization, Synthesis and Get Scale.

15

CHAPTER 4. BUS BASED IMPLEMENTATION OF MP3

DECODER

4.1. Introduction

Different bus architecture have been discussed in [4]. The bus implemented in this

design is a shared system bus. A system bus is composed of three separate components,

Data Bus, Address Bus, Control Bus. Control bus contains an arbiter, which is a round­

robin arbitration system, which allows the connected PEs to contend for equal rights to

control the bus. Data and Address Bus contain the data and the address of the packet in the

bus. Control Bus is used to control the flow of the packets between the PEs connected to

the bus.

4.2. Architecture

Figure 4.6 shows high level abstraction of the implementation of the bus. Data bus

is 16 bits, address bus is 8 bits and control bus is 2 bits to make a 26 bit bus. Each PE has

three extra signal lines connected to the bus. First signal is called Request flag, which each

PE uses to signal the arbiter for control of the bus. Once the arbiter grants any PE control of

the bus, it will do so through the second signa~ called Grant Control. Also, the control line

of the tri-state buffers used to allow the PE to insert data into the bus is active as shown in

Figure 4.7. Third extra line participates in a flow of the data as an acknowledgment signal

from the slave PE to the master PE.

4.3. Operation

Figure 4.8 shows a simple transfer of data between two PEs through the bus. Xilinx

ISim was used to simulate and verify the transaction through the bus. During this simulation

a PE located at port 2 will transfer data to PE located at port l . The following steps take

place in order for the transaction:

16

PE PE PE PE PE

Figure 4.6. High level architecture of the bus implemented in the
design.

l. Port 2 will raise its flag PORT2J?eq, which is the request flag for the PE located at

port 2.

2. Bus is not currently being used, this is done by checking the JobJ?eq. JobJ?eq is

high when the bus is in use. Step 1 tr1.ggers the arbiter to determine if port 2 can

control the bus.

3. Bus grants port 2 (Grant_Access equals to 1, which translates to port 2) the right

to use the bus. The bus then lowers Grant_FORT Master[1]. The bus will set the

control line of the tri-states buffers used to allow port 2 to control the bus to active.

4. Once port 2 has noticed that it has been granted the right to control the bus, it will

begin transferring data by setting data on BUSJJata and BUS.Address.

5. Port 2 will use the 4-phase handshake through the BUS_Control to control the flow

of the data. BUS.Address is set to OxlO, which states that data is coming from port

17

Bus

PEo
26 26

PE1
2~
I

C2

26 i 26
PE2

Figure 4.7. Tri-state switches used in the bus.

Figure 4.8. Transfer of data through the bus.

2, and is traveling to port l. BUS_Control[O J is the request flag controlled by port 2,

and the BUS_Control[J] is the acknowledgment signal from port l.

18

6. Once port 2 has completed sending data, it will lower PORT2_Req, which releases

the bus of its control.

7. Bus deactivates the control line of the tri-states for port 2 and the arbiter will allow

other ports to control the bus.

19

CHAPTER 5. NETWORK-ON-CHIP

5.1. Introduction

The concept of NoC was introduced in Section 1.3. Main Components of the NoC

are routers, network interface, and physical links between each router. NoC properties and

the design methodology are explained in the following sections.

5.2. Architecture

NoC is a 3 x 3 homogeneous mesh network. Differences, advantages and require­

ments of each NoC topology have been explored in [41]. There are total of 9 routers. Each

router has a location ID based on their location in the network.

Mesh topology has been known for its simplicity in the design phase and implementa­

tion. Due to the simple traffic within the MP3 decoder, and previously known destinations

of each packet, mesh topology has been chosen. Mesh topology 's downside is its long

diameter which creates a larger communication latency. Application specific computation

time may overshadow the longest latency in mesh topology but steps have to be taken to

avoid long diameters between the origin and the destination of the data. Efficient mapping

of the PEs on the NoC will help reduce the long latency. The mapping process is explained

in Section 6. 7.

High level abstraction of the implemented NoC is shown in Figure 5.9. The blue

rectangular box in between the PE is the Network Interface (NI), which serves as the

intermediate stage between a router and a PE.

In Figure 5.9, PE's location is identified by two numbers, where the first number is

the x-axis, or horizontal axis position, and the second number is the y-axis, or the vertical

axis position. The numbering starts from left to right for the x-axis and top to bottom for

the y-axis. Physical links create the physical connection between the routers.

20

PE
(0, 2)

PE
(0, I)

PE
(I , 2)

PE
(I , I)

i-------------iR

PE
(2, 2)

PE
(2, I)

i-------------iRi-------------iR

PE
(0, 0)

etwork Interface -
Physical Links

PE
(I , 0)

PE
(2, 0)

Figure 5.9. NoC Topology - 3 x 3 Homogeneous. R stands for
router.

5.3. Router

The router is the main component of the NoC, which sends and receives packets

from each port. Each router has five ports: north, east, south, west and PE. The names are a

direct correlation of to where the ports are connected to. Each router has the following

components: input buffers, switch box and an arbiter. Components of the routers are

explored in the following sections.

The high level architecture of the router is shown in Figure 5.10. In a 3 x 3 homoge-

21

nous network with mesh topology, some of the ports and components do not exist.

Arbiter

PE PE

N N

E E

w w

s s

Figure 5.10. Architecture of the router implemented in the NoC.

5.3.1. Input Buffers

The input buffers are used to store data between stages of the NoC. The input buffers

store data from the neighboring routers or the Nls. Once the input buffer contains an

element, the input buffer flags the arbiter informing the availability of data in the input

buffer. Input buffers have one channel, and can hold up to 8 elements.

The population of the input buffer is the number of elements present in the buffer. If

the population is less than 8, then the buffer will set a flag as an indication of availability

of the input buffer. Any storing component is required to check the availabi li ty flag before

sending any data, this ensures that no data is mishandled. If the population of the buffer

equals 8, then the buffer's availability flag is not set and the storing component will have to

wait until the flag is set.

22

Input buffers are of a First In First Out (FIFO) system. Elements that arrive earlier

will be sent first. One very general method is to order the elements in the buffer based

on how early they arrived. If there is a transaction between the input buffer and another

component, the method calls for re-ordering of the buffer. This method ensures index O is

the next element to be sent at all times. Once the element in index O is sent, element 1 will

then be shifted to index 0. This method is exhaustive and not very efficient. It also may

take some clock cycles for the buffer to be ready to store and send data, as a result a latency

is introduced to the NoC.

To overcome the exhaustive method of re-ordering, circular buffering is used. Cir­

cular buffering is a method that requires two registers to indicate which index the next

incoming element will be stored and which index holds the next element that will be sent

next. For example, if there are 4 elements stored in the buffer, the storage index for the next

incoming element is 4. If the buffer has already sent two of the four elements, then the value

of the sending index will be 2. This method does not require shifting of elements in the

buffer, and will not create any extra delay by moving data around in the buffer internally.

Also, circular buffering uses the dedicated RAM components of the FPGA chip.

5.3.2. Arbiter

The arbiter is the component that ensures all the buffers will be given equals right

to send data through the switch box. The arbiter uses a round-robin ordering system. For

example, if the input buffer for the PE has data and has the right over all the other input

buffers, then it will be given the right to use the switch box. Once the input buffer for the PE

has successfully used the switch box, it will then have the least priority between all the PEs.

5.3.3. Switch Box

The switch box or also known as the cross bar, is simply where the data from the

23

input buffers are routed to the neighboring routers or the Nis. Once an input buffer has a

population of one or more, it will flag the arbiter. Once the buffer is granted the right to

use the switch box, the switch box will then retrieve its data and store it in a 1 element

long register for each input buffer. Each element contains the destination of the element. In

order to determine and check the availability of the destination, the element from the input

buffer needs to be retrieved first and stored into a register. Once the element is stored into

the temporary register, the destination of the element is determined. The switch box will

then check the availability of the destination. If the destination is available, then the switch

box will route the element to the destination. However if the destination is unavailable, the

switch box will check again within the next clock. Once the destination becomes available,

the element can be routed and allow for other elements from that particular input buffer to

be routed.

The temporary registers allow for other input buffers to use the switch box. For

example, suppose one router has elements coming in from the NI and traveling west, and

one element coming from the south and traveling north. If west is busy, and the PE has the

higher priority, the switch box will not have to wait for west to become available in order

for the south elements to travel north. However, elements in the PE traveling somewhere

else besides west will have to wait for the elements traveling west to exit the router before

they can be routed. This problem may be solved by adding more virtual channels to the

input buffers. Also, if output buffers are added to the router, only the elements traveling to

the busy destinations will have to wait, however this is not a guaranteed solution.

5.4. Routing Algorithms

Routing algorithms can be either deterministic or adaptive [41]. For the simple

communication needs of the MP3 decoder, the routing algorithm is deterministic. Odd­

Even or XY routing algorithms are examples of deterministic algorithms. The XY routing

24

algorithm is used in the NoC. Elements will travel to the east or west (x-axis) until the

elements reach a point where their current position in the network is equal to their destina­

tion's x-axis position. Elements will then complete their y-axis route until they reach the

destination. For example, suppose an element starts at position (I, 0) and will travel to its

destination at (2, 2). The packet will travel from router (1, 0) to (2, 0) and it is now at the

same column or the same x-axis position with the destination. The packet will then travel

to (2, 1) and (2, 2) afterwards.

S.S. Packet Structure

Packet is an organized structure of data, as a message from one PE to another PE. The

packet is made up of flits (flow control digits). Usually a packet can contain a head, body

and tail flit, where the head and tail indicate the beginning and the end of the packet along

with other information such as length of the packet or priority level which may influence

the NoC to treat the packet differently than others. Since the NoC will not reserve any

buffer slots for any packet and is independent of the packet's priority or information, there

is not a need for head and tail flits . Body flit contains data and the destination of the packet.

Alternatively, the body flit can only contain the data and leave the destination and origin

location to the head and tail flits . However, this method requires extra logic where as the

routers will have to have extra logic such as a counter to account for the size of the packet,

and buffers. For simplicity, the packet will only contain body flits that will have the data

along with the destination and origin of the packet.

A single flit's architecture is shown in Figure 5.11. Each flit is 26 bits long, the first

two bits are the flit type bits which dictate whether the flit is a head, body or tail. The

next four bits called the destination bits, inform the router location of flit's destination. The

next four bits called the origin bits and have no effect in the operation of the NoC, but it is

informative for the PEs. The next 16 bits are the data bits and contain the data portion of

25

the packet.

25

Data Bits X Y X Y Flit Type
Origin Destination

Figure 5.11. Body flit structure.

The size of the flit dictates the width of the input buffers and the physical links. It

also influences operation of the PEs. For example, some PEs may require to send a data

that is 32 bits long, but with the current settings of the packet, they are forced to send the

32 bit long in a two flit long message. There is a large amount of data transferred between

PEs which are 8 and 32 bits long. 16 bits were presumably used for data width to account

for both 8 and 32 bits long packets.

5.6. Network Interface

The NI or sometimes regarded as wrapper is the component between the router and

the PE. The NI will wrap and unwrap the data bits into and out of a packet. The NI is

regarded as the PE port to router in the NoC.

5.7. Simulation Example of Data Transfer in the NoC Based MP3 Decoder

Figure 5.12 shows example of data sent from a PE in the MP3 decoder to an another

PE. All the data shown is in hexadecimal format. Data is originated at the location (1, 0)
\

where it translates to binary value of O 100 for origin bits of the packet and is traveling to

PE at location (1, 1) which translates to binary value of 0l01 for the destination bits of the

packet.

1. During the first step, the PE at location (I, 0) checks the wrapper's availability flag.

26

If the flag is set to high, then the wrapper has open slots. PE will set the data on

Output and raise the PE_Talks flag.

2. The wrapper or the NI for the PE at location (l, 0) will be notified of new data by

PE_Talks flag. The wrapper will then wrap the data on Output_From_p£ register and

store the packet into the buffer. Along with the data, there is another four bit register

controlled by the PE to indicate where the data is traveling to.

3. The wrapper looks to send the newly stored packet in the buffer to the NoC. The

wrapper starts by reading the NoC's availability flag. If the NoC is available, the

wrapper will set the packet's data on the DATA_To_NoC and raise the Tell_NoC flag.

4. The PE input buffer in router at location (1, 0) will receive and store the data on

PE_J _0_To~_J _o into the buffer. The PE input buffer will then notify the arbiter in

router at location (1, 0).

5. The arbiter in the router at location (I, 0) grants the switch box the permission to

retrieve the data from the PE input buffer. The switch box determines that the data is

traveling north. The switch box will then prompt the south input buffer of the router

at location (1, I) by setting the flag Tell_N high.

6. The south input buffer in the router at location (l, I) stores the data on the DATA.Yrom--5

into the buffer. The south input buffer in the router at location (1, 1) now has data

available and will notify the arbiter in the router at location (1, 1).

7. The arbiter in the router at location (1, 1) grants the switch box to retrieve the data

from the south input buffer. Once the data is retrieved, it can be determined where

the data is traveling to. The switch box will then prompt the wrapper at location (l,

l) by setting the flag Tell_p£ high.

27

8. The wrapper at location (1 , l) position will unwrap the data bits and the origin bits

of the packet and store them into a buffer. The buffer in the wrapper at location (1,

1) contains data for the PE, and notifies the PE at (1 , l) position by raising AlertYE

flag and setting the data on lnput_ToYE.

Figure 5.12. Simulation example of data transferred between two of the PEs in the NoC based
MP3 decoder.

28

CHAPTER 6. IMPLEMENTATION OF THE MP3 DECODER ON

FPGA

Previo.us section introduced the high level of abstraction of the MP3 decoder. The

MP3 decoder is partitioned into nine blocks implemented on different PEs. Many MP3

decoder open sources are publicly available. One open source MP3 decoder library has

been used as a reference to develop HDL code for each PE of the MP3 decoder, as explained

in Section 6.1. While developing HDL sources, I realized that there are factors that must

be considered and are different from the open source library. For example, certain data

types are required by multiple PEs explained in Section 6.2. HDL code is written to take

advantage of the platform such as parallel processing, which is explained in Section6.3.

Once the HDL sources have been written, I realized that there are common aspects in the

both NoC and Bus based implementations of the MP3 decoder. These common aspects

include floating point representation of data, parallel processing, interface between the

FPGA and a computer host, audio processing and some common FPGA requirements.

However, mapping the MP3 decoder PEs is different and will be discussed.

6.1. Development of HDL Sources for Each PE

The Fraunhofer Institute has been the main developer of MPEG audio Layer-3 and the

MP3 standard that has been approved is mainly based on their work. There are many open

sources available written in different programming languages. The Fraunhofer Institute

has provided an open source library written in C that decodes any MP3 file and outputs the

result in a Audio Interchange File Format (AIFF). In order to gain more insight about the

operation of the MP3 decoder I wrote a Python version based on the open source library

provided by Fraunhofer Institute. The replication allowed me to gain more insight in the

relation between each function, the block diagram, and the operation of the MP3 decoder.

The Python module does not assume the MP3 decoder is implemented on the FPGA .

29

Hence, developing the HDL source will be a separate effort. The differences are explained

in Section 6.1.1 .

6.1.1. Differences in Transfer of Data Between the PEs in Python and Actual HDL

Implementation

Even though the Python code provides a very easy understanding of the MP3 decoder,

there are differences, which change the writing the HDL sources particularly Verilog. The

NoC and bus based verilog codes create an isolation between each PE, which means no

register or data is shared between PEs unless sent to one another through the NoC or bus.

In Python a list or a buffer can be shared throughout the whole code or certain classes

containing data such as a side information block. Each processor has access to the memory

elements of the buffer, which is not true in the case for the proposed design. Figure 6 . 13

shows that the Side Info function will write data to a shared buffer between multiple

functions. This shared buffer is accessed by seven different functions. The proposed

implementation does not provide a global buffer that can be accessed by multiple PEs. It

is possible to designate a PE to be a memory module connected to the NoC and bus in the

design. Adding a memory module is not an effective solution since PEs can contain large

blocks of memory which can store data for their own purposes, this is further explained

in Section 6.6. Also, with the addition of a memory module, the traffic in the design will

increase. The number of PEs will also decrease from 9 to 8 which then requires for two

more PEs to be grouped together.

The option of having a global buffer may be more efficient in different applications.

For example, for an application where a lot of data is required by multiple PEs, it will

be required that each PE to contain a large memory to fit that data. This replication of

the memory in each PE will then waste si licon area, however, the design would be more

efficient if one global buffer existed for each PE.

30

Synthesis

Get Scale

Huffman

Sync Stereo

j Dequantization /

Hybrid

Antialias

Figure 6.13. Storing and reading side information by different PEs in the
MP3 decoder in the Python.

My solution is to send the data to the PEs directly. For example, the PEs will have

to save the "side information" block locally. Figure 6.14 shows the different processes that

handle side information. To reduce congestion in the NoC and bus and to reduce the size of

local buffers, Sync block will send only the required part of the side information to rest of

the PEs. For example, global gain value used for dequantizing the Huffman decoded data

for each channel is a subset of side information block. The only PE that requires global

gain is the Dequantization block. Therefore, it is unnecessary to send the complete side

information block to all the PEs that need subsets of it. This method reduces buffer size in

the PEs and lowers the traffic in the design.

6.2. Floating Point Representation

Most of the PE's input and output data are floating point real numbers. Antialias,

Dequantiztion, Hybrid, Synthesis and Stereo are the PEs that compute multiplications

and/or additions of floating point data.

31

Synthesis

Get Scale

Huffman

Sync Stereo

/ Dequantization /

Hybrid

Anti alias

Figure 6.14. Sync sends the side information
block directly to the other PEs.

6.2.1. Floating Point Format

Floating point numbers are represented in IEEE-754 format [42]. The single preci­

sion format uses 32 bits and it has one sign bit, 8 bits for the exponent width, and 23 bits

for the significant precision. Figure 6.15 shows the bits in a single precision representation .

If the width is increased, the accuracy of the representation increases, however number of

the logic and flip flops will rise with a more accurate floating point representation.

The value of a real number represented in floating point in IEEE-754 formation is

given by equation 6.1 , where sb is the sign bit value, eb is the exponent bits value and bi

3 1 0

Sign Exponent Fraction

Figure 6.15. IEEE 754 single precision standard.

32

represents the bit value of ith bit of the floating point.

(6.1)

6.2.2. Conversion from Fixed Point to Floating Point

At some stage during the decoding procedure, the decoded value needs to be trans­

lated from fixed point to the floating point representation. The conversion happens in

Dequantization where multiplication of series of numbers takes place. To dequantize

numbers, a constant value over a single channel in a single granule is used as a base value.

During the operation of Dequantization, different numbers will be multiplied to the base

value. At the end of the operation of Dequantization, value of the each 18 Huffman decoded

value for each sub-band is raised to the power of l Assume G9 to be the global gain value

from side information block for a single channel in a single granule, then base global gain

value is given by equation 6.2

(6.2)

It is obvious that getting the floating point representation of the base global gain

may be lengthy and may require complicated logic. Since the base is two, a simple shift

arithmetic could solve this issue. Furthermore, there is a division by four which is not an

integer division, therefore an exact value of the exponent is needed. Hence, an arithmetic

shift will not work. A subtraction is needed along with division to compute the exponent

value of the global gain base value. Beyond that, it is necessary to do a power operation

to compute the result. As a last step, an IP core is required to translate the fixed point, or

any other representation of the result, to the floating point representation. This process can

introduce a large delay and also be wasting resources available.

I addressed this issue by using a look up table where as for each G9 , the floating point

33

representation of the base global gain value is stored. Since the global gain value from the

side information is 8 bits long, a look up table of 256 x 32 bits table is required. This

approach eliminates the any need for a non integer division and a power arithmetic but still

requires a lot of of resources. The size of the look up table is 8192 bits. Look up table

solutions seem to take a large amount of resources and therefore increase the size of the

design. The FPGA chip may not contain enough logic space for the design with the current

size of the look up table. Therefore, the look up table solution fine tuned to decrease its

size. For example, patterns can be detected which, can be explored to lower the size of the

look up table.

Assume Gn to be the G 9 subtracted by 210. Table 6.3 show the hexadecimal floating

point representation of the base global gain value in the IEEE-754 single precision format.

Table 6.3. Look up table for floating point representation of the global gain .

I Gn I Global Gain I Floating Point Representation I
.
0 1 0x3F800000
l 0.840896415 0x3F5744FD
2 0.707106781 0x3F3504F3
3 0.594603558 0x3Fl837F0
4 0.5 0x3F0OOO00
5 0.420448208 0x3ED744FD
6 0.35355339 l 0x3EB504F3
7 0.297301779 0x3E9837F0
8 0.25 0x3E800000
9 0.210224104 0x3E5744FD
10 0.176776695 0x3E3504F3

11 0.148650889 0x3El837F0
12 0.125 0x3E0OO0OO
13 0.105112052 0x3DD744FD
.

Pattern 1: It is not possible to get a base global gain value which is negative, hence,

bit 31 or the sign bit will always be 0. This reduces the look up table to from 256 x 32 bits

34

to 256 x 31 bits.

Pattern 2: Bits 23 to 0 will always be one of the eight options. Table 6.4 shows the

eight options and the relationship between Gn and bits 23 to 0.

Furthermore, the pattern across bits 23 to O reduces the table to be 256 x 7 bits plus

an 8 x 23 bit look up table. The size of the table is therefore decreased from 8192 to 1976

bits.

Pattern 3: Another pattern can be recognized in Table 6.3 . Bits 30 to 24 seem to only

change for every 8 Gn. Table 6.5 displays the relationship between Gn and the values of

bits 30 to 24.

It can be noted that bits 30 to 24 are equal to 63 - n!3 . The division is in integer

division so no special IP core is needed to implement it. Hence, the 256x7 bit look up table

is eliminated, and the final size of the look up table is now 184 bits, which has been in this

way decreased by 98%.

IEEE 754 single precision format allows for the numbers that are the result of integers

divided by factors of two exponents to base power of two to be translated with a small look

up table for certain bits and a simple equation for the rest.

This technique is used for the Dequantization procedure since the values that are

required to be shifted to the IEEE 754 format are all created by raising number two to

a linear function of subsets of the side information block. This technique requires no

additional IP core for the shift to floating point representation and only a small sized look

up table and a simple equation is required .

The values that are decoded by Huffman block do not follow the same order as all

the other values in Dequantization. The values from Huffman are raised to the power of

l A semi-large look up table was implemented to translate the decoded data to IEEE 754

single precision. There are other methods involving around implementation of the power

arithmetic along with optimization approaches in (39].

35

Table 6.4. Bits 23 to 0 of the floating point representation with relationship to Gn.

I Gn mod 8 I bits 23 to 0 I
0 0x800000
1 0x5744FD
2 0x3504F3
3 0xl837F0
4 0x0OO000
5 0xD744FD
6 0xB504F3
7 0x9873F0

Table 6.5. Bits 30 to 24 of the floating point representation with relationship to Gn.

I bits 30 to 24 I
.

-3 ,-2, ... ,3,4 63
5,6, .. . , 11,12 62

13,14, ... ,19,20 61
.

6.2.3. Addition and Multiplication

To do addition, subtraction or multiplication on the floating point numbers, Logi­

CORE Floating-Point IP core from Xilinx tools [43) was used to create a 32 x 32 bit

multiplier and adders.

6.2.4. Resource Usage of Multipliers and Adders

If the multiplier or adder uses DSP48E slices, then the maximum latency and number

of flip flops and look up tables needed to implement the multiplier or the adder are reduced.

However, the number of DSP48E slices is limited. A DSP48E slice is a digital signal

processing logic element included on certain FPGA device families that allows designers

36

to implement multiple slower operations in a single DSP48E slice using time-multiplexing

methods. Figure 6.16 shows the relationship between latency and speed, flip flops and

LUTs if DSP48E slice is fully used for the multipliers. Figure 6.17 shows the relationship

if DSP48E slices are not used in creating the multiplier.

+_~ 410
400 -

)60 -

320 -

280 -

Cll
il.) 240 -
() ,_ • ::I LUTs
0 200 - • Cll FFs
~ 160 - - ■ Speed (MHz)

120 - 114
99

80 -

40 - -··------ - I
-1---l-

Latency

Figure 6.16. 32 Bit floating point multiplier resource estimation using DSP48E slices.

I conclude that it is better to use DSP48E slices if possible, since the number of LUTs

and flip flops used will decrease and the maximum clock frequency will be higher than not

using DSP48E slices.

6.2.5. Conversion From Float Point to Fixed Point

Sub-band synthesis output 576 of 32 bit of data for each channel in a granule. Each

one of the 32 bit needs to be shifted from IEEE 754 floating representation to a 20 bit

fixed point. The DAC within driver requires data to be 20 integer bits and zero fraction

bits in the fixed representation of the PCM data. The process of this shift is done through

37

+--------+-----+---
V) 440 •
~ -l---+----1--____j._ __ -;/

~ ~=:~=====t=====t=====t===t,j===-+-----+----+---- -----
0 360 :'1----1------l----L- //·--!----I- -f--- - -1-- ----= •
Vl 320 ._t=====t=====t:=====t=-;./::=j=====±-- -1----~ .I) n•,.

210
=::r=i--==--==--~Ec=-=--=-=--=-E~=-=~=-=~;r~,;~1""i- =~:t~~=1:~-_✓,;~?!.=:-"-/==f=====··t~=-=j

240 ::t-t----f----f---/-/=-1--,-</c:::....../-- --+---+-
200 :}·---+----+---//!-/--lv-s,;:':;..

LUTs

■ FFs

■ Speed (MHz)

/ .,.,.
•60 =t===t===~c::::j===:j===±=====±=====t====j
120 :1----1----1-----l----+---+---1-----l---

~=~=====~=====t====j=====⇒=====t=~--1-----1---~ 1----1----I-----!------+-----···-·'--~-- ----- ---
40 :l----t----1-----l----+-----f-----+-------

Latency

Figure 6.17. 32 Bit floating point multiplier resource estimation without using
DSP48E slices.

LogiCORE Floating-Point IP core from Xilinx tools [43]. Sub-band Synthesis core will

shift the data into this pipelined core and the audio driver will store the results into a FIFO

buffer. Sub-band Synthesis core could also send the floating points to an off chip audio

decoder or media storage where it may need to be shifted back to fixed point value.

6.3. Parallel Processing

Parallel processing is the ability to process multiple operations or tasks simultane­

ously. Such ability can speed up the execution of an application. For example, Huffman

block processes 32 sub-bands, each containing 18 samples, creating a large output called

Huffman Decoded Table (HOT). HOT is then treated as an input by Dequantization. De­

quantization processes HOT one sub-band at a time and creates a large output of its own

called Dequantized Samples Table (DST). DST is then treated as an input by Stereo. For

38

any sub-band that Dequantization is processing, Dequantization does not require any data

from any other sub-band, hence creating an opportunity of employing parallelism. Instead

of Huffman computing complete HOT, Huffman can decode one sub-band at a time before

processing again. Huffman can then proceed to send the 18 samples of that particular sub­

band to Dequantization. Once the transaction of sending the 18 samples of the particular

sub-band to the PE is finished, Huffman proceeds to decode the next sub-band. Meanwhile,

Dequantization receives the 18 samples of that particular sub-band and starts dequantizing

the 18 samples. Dequantization then sends the 18 dequantized samples of that particular

sub-band to Stereo. Much like Huffman, once Dequantization is done sending the row of

data, it can begin to process the next sub-band if the 18 Huffman decoded samples of that

next sub-band is available.

Parallel processing can be found in three different solutions. Assume th to be the

time it takes for Huffman to decode 18 samples in a single sub-band, and td to be the time

for Dequantization to dequantize 18 samples of data in a single sub-band, and t n to be the

time for a 18 samples elements to travel from one PE to another.

Solution One: If th is less than td, then Huffman is not be able to decode 18 samples

in a single sub-band until the Dequantization has fini shed dequantizing with the previous

sub-band. Dequantization dictates when Huffman can start. Figure 6.18 shows the behavior

of this case. The total time it takes for the 32 sub-band in one channel to be dequantized in

this solution is 32 * td + 64 * tn .

Solution Two: If td is less than th, then Huffman does not depend on Dequantization.

As soon as Huffman has decoded 18 samples of data in one sub-band, Huffman can proceed

to sub-band and produce 18 elements. The total time it takes for the 32 sub-band in one

channel to be dequantized in case two is 32 * th + 64 * tn.

Solution Three: If Dequantization is unable to empty its output buffer by sending the

18 elements to Stereo, then both Huffman and Dequantization must wait for the previous

39

Huffman Input Data Ready

Huffman Process

Huffman Send Output

Dequantization Input Data Ready __ ___,

Dequantization Process __ ___,

Dequantization Send Output ____ _

u u
u u
n n

Figure 6.18. Parallel Processing between Huffman and Dequantization.

u LJ

u LJ

n n

PEs in the application to finish their task. The total time it takes for the 32 sub-band in

one channel to be dequantized depends on other factors. If the network is congested, it can

be argued that parallelism may not be useful. If Dequantization stays idle until the next

PE allow it to send data, it is then preferred for dequantization to complete dequantizing

complete by increasing the buffers in Dequantization and Huffman.

It should be noted that if parallel processing was not employed, the time for 32 sub­

bands to be dequantized would be 32 * th + 32 * td + 32 * t n, which is much larger than any

of the discussed cases earlier.

The faster the data gets processed by the decoder, the faster the response of the

decoder is. If parallel processing is not employed between Huffman and Dequantization,

then in order for Dequantization to begin its process, it needs to completely receive the

complete HOT. The HOT which is stored in a 32 x 18 x 32 bits buffer has to empty its

data before allowing Huffman to start processing again. Another buffer with the same size

has to exist to store the data for Dequantization since there are no shared buffer or registers

between different PEs. This method seems to employ a three separate 18,432 bits long

buffer, which is very large. However with parallel processing, we need only three separate

40

L

L

r

1 x 18 x 32 buffers which are 576 bit long and also ~ the size of the serial processing

method.

6.4. Interface Between FPGA and the Host Computer

The MP3 decoder requires data from the host computer to decode. Also, the MP3

decoder could send the data back to the host computer instead of playing it directly through

the speakers. The decoded data is the audio data in an AIFF file. Standard AIFF is a

leading format (along with SOIi and WAY) used by professional-level audio and video

applications, and unlike the better-known lossy MP3 format, it is non-compressed (which

aids rapid streaming of multiple audio files from di sk to the application), and lossless.

In my design setup, the connection is through a virtual serial port that uses USB

connection on the computer side and serial communication port on the FPGA develop­

ment board side. Simple implementation of a receiver and transmitter on FPGA was

the prominent reason to use the serial communication. Another reason for using serial

communication is the easy implementation of sending and handling data in the computer

side by using modules precompiled to handle the adversities of serial communication.

However, this approach has the disadvantage that it cannot handle high bandwidths.

6.4.1. Virtual Serial Port

With serial ports not being used in the computers anymore, one way to establish

a serial communication with another core is to emulate the serial communication using

hardware kit and software on the computer side. Virtual serial ports fully emulate real

ones, so that an application communicating with a virtual port never suspects the difference.

Moreover, using virtual ports is often more convenient than using real ones since virtual

serial port connection offers better stability.

41

6.4.2. Communication Wrapper

Just like the Network Interface in the Router of the NoC, an interface module or a

wrapper is needed between the MP3 decoder and the host, called Communication Wrapper.

Communication Wrapper is responsible for wrapping and unwrapping data in a different

format than that used in the Network Interface. Each time the host or the Communication

Wrapper communicate with one another, each party sends a single byte at a time.

A header format is needed so both of the devices are aware of what type of message

they are receiving. The header format has four bytes; the first three bytes represent the

length of the message. Since only 8 bits can be transferred at a time, the range is limited

to range of O to 255. Some of the required data by the MP3 decoder may exceed 256

bytes, like for example the length of the incoming batch of MP3file. It is known that the

length cannot exceed 70,000 bytes which is the dedicated RAM's size to hold the MP3 file .

Therefore, the first three bytes will determine the length of the packet.

The fourth byte is the message type. Depending on the previously agreed byte value

between the both parties, the type of message or command can be determined.

Let us assume the host is sending 25 bytes of data to the MP3 decoder, the contents of

the packet is described in Table 6.6. The first four bytes indicate that the PC is sending 29

bytes and 25 bytes of the bitstream. The communication wrapper stores the 25 data bytes

into the RAM.

However since the Host is unaware how many bytes are available in the RAM, it will

send a 4 byte message that prompts the MP3 decoder to send back a packet containing the

number of free slots in the RAM.

6.4.3. Host Command Interface

It is required that a command interface exists on the host that will interpret the

commands from both the user of the MP3 decoder and the MP3 decoder itself. Once the

42

Table 6.6. 25 bytes of bitstream is sent from the host computer to the MP3 decoder.

I Byte counter I Decimal value I Description

0 0 low byte of the length
I 0 middle byte of the length
2 25 high byte of the value
3 55 predefined value for MP3 file contents
4 bitstream byte 0 byte O of the bitstream

4+n ... byte n of the bitstream
29 ... byte 25 of the bitstream

user has selected a MP3 file to decode, it will then be sent through the serial communication

to the FPGA. FPGA will save the incoming file contents in a large RAM that can contain

up to 70,000 bytes. In this case the MP3 file that can be decoded needs to be less than

70,000 bytes in size. Once the MP3 file is completely sent to the FPGA, another command

is sent to the MP3 decoder to start decoding.

The Python language was used to create the command interface. PySerial, which is a

Python module, was used to establish a communication between the host and MP3 decoder.

The Python IO module selects the desired MP3 file and allows access to the file.

To provide a more user friendly command interface, Tclffk framework was used to

create a Graphical User Interface(GUI). Figure 6.19 shows the GUI when it is not connected

to the MP3 decoder. Many of the features are not available because of no connectivity

between the two cores. When the GUI and MP3 decoder establish a connection, the GUI

will look like the Figure 6.20. The user can select an MP3 file by pressing the Browse

button, once the User presses Start Decoding, the selected file is sent to the FPGA.

6.5. Audio Processing

The ML501 development board has an the Analog Devices AD 1981 Audio Codec

which supports stereo 16-bit audio with up to 48-kHz sampling. The AD 198 lB contains

43

7' GUI - PC <-> MP'3 Decoder

Connection between PC and MP3 Decoder:

Connection Statu!i"! Not Connected

Port: N/A

Baud Rate: N/A

I Connect

User Panel

[Quick Connect ![Disconnect]

Choose your MP3 file! I Browse

! start Listening] [Stop Listening I[Start Decoding]

Figure 6.19. Graphical User Interface when the host com­
puter is not connected to the MP3 decoder.

an Audio Codec 97 (AC 97) Architecture and Digital Interface (AC-link) designed to

implement audio functionality in a given system. The AC 97 Codec performs DAC and

ADC conversions, mixing, and analog VO for audio (or modem), and always functions

as slave to an AC 97 Digital Controller. The digital link is bi-directional, five wire time

domain based interface that connects the AC 97 Digital Controller to the AC 97 Codec.

AC-link 5 wires are BIT_CLK, RESET, SDATA-1N, SDATA_OUT and SYNC. When

the AC 97 is configured as a primary codec, BIT _CLK is driven by the codec and clocks

the stream of the serial data. RESET is the reset line of the codec and is active low. SDATA

IN and SDATA OUT are used to transmit serial data in and out of the codec. SYNC is used

for synchronization of each frame. The interface is shown in the Figure 6.21.

AC-link handles multiple input and output PCM audio streams, as well as control

register accesses employing a time division multiplexed (TOM) scheme that divides each

audio frame into 12 outgoing and 12 incoming data streams, each with 20-bit sample

resolution. With a minimum required DAC and ADC resolution of 16-bits, AC 97 could

also be implemented with 18 or 20-bit DAC/ADC resolution, given the headroom that the

44

7~ GUI - PC <-> MP3 Decoder

Connection between PC and MP3 Decoder:

Connection Status: Connected

Port: COM3

Baud Rate: 115200

Connect [[ci~·i·~·k··E~'~~-~-~t]l[Disconnect l
User Panel

Choose your MP3 file! [Browse

[Start Listening] [Stop Listening]I Start Decoding]

Figure 6.20. Graphical User Interface when the host com­
puter is connected to the MP3 decoder.

AC-link architecture provides.

The AC 97 Controller signals synchronization of all AC-link data transactions. The

AC 97 Codec drives the serial bit clock onto AC-link, which the AC 97 Controller then

qualifies with a synchronization signal to construct audio frames. SYNC, fixed at 48 kHz, is

derived by dividing down the serial bit clock (BIT _CLK). BIT _CLK, fixed at 12.288 MHz,

provides the necessary clocking granularity to support 12 20-bit outgoing and incoming

time slots. AC-link serial data is transitioned on each rising edge of BIT _CLK. The Codec

AC '97 Controller AC '97 Codec
IPrtmarv\

SYNC
r

BIT CLK
...-

SDATA OUT

SDATA IN
~

RESET#
r

Figure 6.21. AC Link.

45

samples at the falling edges of BIT _CLK. The AC-link protocol uses a 16-bit time slot (Slot

0) to validity the time slots use for the current audio frame being received. SYNC is set

high by the controller for the slot 0. The 13 time slots is shown in Figure 6.22.

Slot 1 and 2 are used to set some of the registers within the codec in this case

AD1981B. Some of the registers are volume control where within power up sequence, the

audio output are muted and require modification. Along with volume settings, the settings

of the DAC included in the codec require to be changed and modified to accommodate

the current MP3 file's settings such as sampling frequency of the PCM samples. AD1981B

provides sampling frequency range between ?kHz and 48kHz in steps of I Hz, which covers

every possible sampling frequency used for encoding a MP3 file. Slot 3 and 4 are 20 bit

PCM data for Left and Right channels. Rest of the slots are not used. Figure 6.23 illustrates

the time slot based AC-link protocol.

The ML50 l development board contains five separate jacks, three for audio out

including headphones and analog line out. The PCM results of the sub-band synthesis

is transition from floating point representation into a 20 bit fixed point value and stored

into a FIFO RAM. The FIFO RAM is divided into two different banks, where each banks

contain PCM data for each granule in an MP3 file frame. Each bank also contains data for

both of the channels within the granule of the audio frame. Once a bank is read, the bank

is empty to be written to by the sub-band synthesis. The driver will then read data from the

Slot #

SYNC

SDATA OUT
(Controller output)

SDATA IN
(Codec output)

0 2 3 4 5 6 7 8 9 10 11 12

~ ~ ~ ~ ~, - - - - ~2 - ~
AllOR DATA L FRONT R FRONT DAC CENTER L SURR R SURR LFE DAC DAC CTRL

STATUS STATUS PCM
TAG AllOR DA TA LEFT

PCM UNE I
RIGHT ADC

SLOTREQ 3-12

r PCML -,-PCML - r PCliR-r PCMR- r PCML - r PCMRr PCMC- ,
I (n+1J_,_ (n+1) I /n•IJ _' ,,,.,, _ ,, (n•l/_ 1 (n+I) _ ' (n+1J _,

PCM
MIC RSRVD RSRVD RSIMJ '-!:J;;2 HSET ~

ADC STA1US

Figure 6.22. Bi-directional AC-link frame with slot assignments.

46

Figure 6.23. AC-link output frame.

next bank while the sub-band synthesis fill s up the recently emptied bank. One method to

validate liveliness and process of the MP3 decoder is to ensure when the AC 97 driver has

read a bank, the next bank has been filled up.

6.6. FPGA Implementation: Common Implementation Elements

This design is implemented on ML501 development board housing a XC5YLX50

FPGA. The XC5VLX50 FPGA has 7200 slices, in which each slice contains four LUTs

and four flip-flops. The XC5VLX50 also has 48 DSP48E slices .

6.6.1. Block Random Access Memory

Block Random Access Memory (BRAM) is dedicated, configurable memory with

address, data and control ports. For designs where a lot of data is stored, BRAM is the

most efficient method, instead of exhausting the flip flops available on the chip.

The BRAM in Virtex-5 FPGAs stores up to 36K bits of data and can be configured

as either two independent 18 Kb RAMs, or one 36 Kb RAM. Each 36 Kb block RAM can

be configured as a 64K x l (when cascaded with an adjacent 36 Kb block RAM), 32K x

1, 16K x 2, 8K x 4, 4K x 9, 2K x 18, or lK x 36 memory. Each 18 Kb block RAM can

be configured as a 16K x 1, 8K x 2, 4K x 4, 2K x 9, or lK x 18 memory. Write and

47

read are synchronous operations in the Block RAMs, two ports are symmetrical and totally

independent, sharing only the stored data. BRAM is used for all the PEs with large buffers.

Table 6.7 shows the PEs that use BRAM.

6.6.2. Clocking

After the design is synthesized, mapped and routed onto the FPGA, the highest

clocking frequency is found. It may vary based on the design. The clock generator on

the ML50 I board provides several clock frequencies. One of the frequencies is 100 MHz

single ended which is used as an input into Phase Locked Loop (PLL) in the FPGA. The

Phase Locked Loop is also configured at different configurations to output different clocks.

Figure 6.24 shows the PLL configuration for generating 87.5 MHz clock.

6.6.3. Handshake

An important characteristic of the transfer of data is the handshake protocol. In this

section, 4-phase handshake protocol is described as the handshake protocol used for every

instance where data is transferred.

A 4-phase handshake is defined by four steps as shown in Figure 6.25.

1. assert request

2. assert acknowledge

3. de-assert request

4. de-assert acknowledge

Data can be transferred during the first or second step. When the switch box in the

NoC is transferring data, the data is transferred at first step . However, when switch box is

retrieving data from one of the input buffers, first step requires the data to be transferred on

48

Table 6. 7. BRAM usage in the PEs.

PE Size (rows x bits) Purpose
Manager 4098 X 8 Known as hbuf in the MP3 decoder algorithm
Huffman 2308 X 8 Huffman Table contents
Antialias 576 X 32 Input data Dequantized and stereo jointed Data
Hybrid 18 X 32 Input data from Antialias
Hybrid 1152 X 32 Previous channel data

Sub-band Synthesis 576 X 32 Total hybrid output for one channel and one granule
Sub-band Synthesis 2048 X 32 Used for Sub-band Synthesis process
Sub-band Synthesis 2304 X 16 Decoded PCM values for a frame

the second step.

6.7. Manual Mapping of MP3 Decoder on 3x3NoC: Different Design Aspects

One of the most crucial factors in the performance of the system is placing or map­

ping the PEs on the NoC architecture. MP3 decoder was partitioned into 9 PEs in Section

3.5, and each PE needs to have a location on the NoC. A shared system bus does not carry a

notion of location since each connected component to the bus is treated equally. Placement

of PEs on the NoC affects the performance. The following sections explain the process

of placing or mapping the PEs on the NoC, which i did manually. However, this mapping

process can be automated too.

6.7.1. Interactions between the Processes

Replicating the Fraunhofer lnstitute 's open library helped me to understand the flow

chart of the MP3 decoder as shown in Figure 3.5. The flow chart helped develop an

interaction map between the tasks of the MP3 decoder. Figure 6.26 shows the interactions

between PEs, which helps in the process of placing the PEs.

49

~ Clock m,quency
CLKIN1

~--100_,I @ Ml:!z O !J.S

~ Use lnpij Mer to S01XCe CLKJNl

0 Single &ided

0 Differertial

Feecl>ack ~: I CLKFBOUT wihout BUFG

~~:~
e.idwdh: OPTIMIZED ...

.Bef-,ce Clock Jlter /o.oooooo j O !.!I @ 1!S

CLKJN1 lnpiJ Frequency: 100 MHz

G]

0
·\·-~-IL]

··-..-1-EJ

~Vaue: ~

cJ
□
~

I p~ ll~1ll~2l~~lo~~U:11~
CLKOUT0 87.500 MHz 0.0 MHz [!__ _lli] 0.000 ... I 0.500 _@ 0.166 ns

Figure 6.24. Configuration of PLL used to generate 87.5 MHz clock
frequency.

6.7.2. Mapping of PEs on NoC

Besides the interactions between the PEs, there are other factors that influence the

placement such as the number of packets transferred between the PEs. For example,

Sync will transfer a lot of bitstream bytes to the Manager, However Hybrid interacts with

Manager four times during each frame and each time only a single flit long long packet

is transferred. The importance of placing Sync and Manager close is higher than that of

placing Hybrid and Manager close.

50

A.CK

Figure 6.25. 4-phase hand­
shake.

One of the factors involved in increasing speed of the application in the NoC [44]

is the optimal placement of the PEs. If Synthesis is placed at location (0,0) and Hybrid

at location (2,2), then the data from the Hybrid has to travel four links to arrive to the

destination. In a 3 x 3 homogenous NoC using X-Y routing algorithm, the longest path

has four links. The longer the path, the longer it takes for a packet to travel from point

A to point B. Therefore, the best placement of two PEs where large amounts of data are

transferred between them, is to place them where the path between them is only one link if

possible.

As a starting point, the flow of the MP3 bitstream and the results are observed.

Bitstream is transferred to Sync through Manager with Sync requesting more bits of the

MP3 file from Manager. Sync and Manager should then be placed close to each other.

Synthesis is the last PE in the loop. The output from the Synthesis are the result that can

be sent back to the PC or played through an audio codec, Therefore the Synthesis is best

placed close to the Hybrid.

Manager block is the most important component of the MP3 decoder since a large

number of data transferred occurs in Manager. Manager establishes the communication

with the host computer. Hence Manager must be placed at a location on the outside border.

Manager can be placed on any PE that is not PE (1, 1).

Manager interacts with four PEs. Therefore, Manager is placed on an inside bor-

51

start --

Figure 6.26. Interactions between the PEs in the NoC.

dering PE with three links. Manager can be placed at any of the four possible locations

(1,0), (0,1), (1,2) or (2, 1) in the platform, and Manager was placed at position (l ,0). The

neighboring positions to Manager are then (0,0), (1, l) and (2,0). Sync is required to be

a neighboring PE of Manager. Since Manager handles communication with PC or other

component, Synthesis is added as a neighbor of Manager.

Sync interacts with the all the PEs. Therefore, its best placement is at location (l, l)

where it has four 1 link neighboring PEs and the other four PEs are only two links away.

Since Sync is now placed at (l, 1), Synthesis can be placed at (0,0) or (2,0). Due to the

symmetry created by placing Manager at position (1,0), Synthesis can be placed at either

52

position and produce the same results. So for this case, Synthesis is placed at (2,0).

Manager also interacts with two more PEs: Huffman and Get Scale. As shown in

Figure 3.5, after synchronization and extraction of the side information block, Get Scale is

the next process. After that, Huffman can start processing. The only interaction between

Hybrid and Manager is a one element long packet for each channel in a single granule that

informs Manager of completion of a channel in a granule of a frame. The small traffic

between Hybrid and Manager does not require for Hybrid to be placed close to Manager.

The current placement of PEs is shown in Figure 6.27.

Figure 6.27 shows that Synthesis has one PE neighbor that can be explored. Figure

6.26 shows that Hybrid is the only PE besides Manager and Sync which are already placed,

to interact with Synthesis and the magnitude of the interaction between Hybrid and Syn­

thesis is a large percentage of the traffic. So it is better for Hybrid to be placed very close

to Synthesis so the distance between them is only one link. Hybrid is consequently placed

at location (2, l).

After placing Hybrid at location (2, 1), Hybrid has one vacant neighbor left. In Figure

6.26, Antialias sends its output which is a 4608 element long packet for each frame to

Hybrid. Therefore, it is better for Antialias to be placed at location (2,2). This creates

another tight constraint on the placement of the PE at location (1,2). Figure 6.26 shows

that Stereo sends its output to Antialias, hence another strong reason why Stereo should be

placed at (1 ,2). Such dependencies require to place Dequantization at location (0,2).

Two processes and locations now remain to be decided; Get Scale and Huffman and

two locations (0,0), (0, 1). Huffman can be placed at (0, l). This results in Huffman being

placed at two links away from Manager which is not very desirable. Instead if Huffman

is placed at location (0,0), Huffman would be two links away from Dequantization, and

Get Scale would be also two links away from Manager. Hence, it is better if if Huffman is

placed at (0, 1). On the contrary, Sync and Get Scale are idle when Huffman is in execution,

53

Manager Synthesis

Sync

?

Figure 6.27. First phase of placement of PEs in the NoC.

so the only traffic between Huffman and Manager is the data between the Huffman and

Manager. Get Scale is therefore placed at location at (0,0).

The final placement is shown in Figure 6.28.

54

Communication with PC:

Manager Synthesis

Huffman Sync Hybrid

NoC:

Stereo Antialias

Figure 6.28. Final phase of placement of PEs in the NoC

55

CHAPTER 7. RESULTS

In this Chapter, I discuss the results achieved by the two implementations.

7.1. Device Utilization Summary

Table 7.8 shows the comparison between bus based and NoC based MP3 decoder.

The results were calculated after synthesis of the design using Xilinx Synthesis Technology

(XST), mapping, placing and routing using Xilinx tools.

It was expected that NoC would use more resources than the bus, due to buffering

of packets between each router and the network interfaces. This was confirmed with more

slice LUTs being used for memory, and more of the Block RAM and FIFO resources were

used for the NoC based implementation.

Table 7.8. Device utilization summary for NoC and bus based MP3 decoder.

Slice Logic Utilization Bus NoC Available Bus % NoC o/o
Number of Slice Registers 5,748 10,419 28,800 19% 36%
Number of Slice LUTs 10,355 13,562 28,800 35% 47%
Number of Slice LUTs used as logic 10,05 l 12,439 28,800 34% 43%
Number of Slice LUTs used as Memory 233 830 7,680 3% 10%
Number of occupied Slices 3,785 5,382 7,200 52% 74%
Number of BlockRAM/FIFO 35 44 48 72% 91 %
Number of DSP48Es 42 42 48 87% 87%

7.2. Layout

XST synthesizes the design and Xilinx ISE maps, places and routes the design on to

the target FPGA architecture. Figures 7.29 and 7.30 shows the layout of the MP3 decoder

divided into PEs and the routers for the NoC based MP3 decoder. Some of the PEs are

placed in a scattered fashion. This can be explained by some PEs requirement to use the

DSP slices and RAM blocks in the targeted FPGA. Because DSP slices and RAM blocks

are limited, the design has to be placed and routed around the locations of the pre-placed

blocks. This which leads to the placement of the PEs in a scattered fashion. Scattered

56

placement of the PEs leads to heterogeneous placement of the routers as shown in Figure

7.30.

■ Getscale

Manager

■ Synthesis (AD 1981 B Driver)

■ Antial ias & Reorder

■ Communication Wrapper

■ sync

■ Dequantization

■ Stereo

■ Hybrid

■ Synthesis

■ Huffman

Figure 7.29. Layout of the NoC based MP3 decoder showing

the PEs.

Figures 7 .31 and 7 .32 illustrate the layout of the bus based MP3 decoder. It can be

observed that the bus has long nets which run along the whole FPGA chip.

7.3. Critical Path

Critical path dictates the maximum clock frequency for both of the designs. Critical

path of NoC and bus based MP3 decoder were determined after the design was placed and

routed into the FPGA architecture using Xilinx tools. Critical path over view for NoC is

shown in Figure 7 .33 and the data path of the critical path is shown in Figure 7 .34. Critical

57

Routers (x, y):

(0, 0)

■ (l , 0)

■ (2, 0)

■ (0, I)

■ (I , I)

■ (2, I)

■ (0, 2)

■ (I, 2)

■ (2, 2)

Figure 7.30. Layout of the NoC based MP3
decoder showing the Routers.

path over view for bus is shown in Figure 7.35 and the data path of the critical path is shown

in Figure 7 .36.

The best clock rate achievable by NoC based MP3 decoder is 91.7 MHz. The best

clock rate achievable by the bus based MP3 decoder is 80.45MHz.

7 .4. Performance

MP3 player requires for a frame to be decoded into PCM samples in less than 24 ms

in order to avoid gaps between frames and maintain real time performance. Each frame is

composed of two granules and each granule is composed of two channels if the MP3 file

supports stereo mode. Therefore, each channel needs to be decoded in less than 6ms. An

IO pin is toggled upon completion of a channel in a granule for each frame to ensure real

58

■ Getscale

Manager

■ Synthesis (AD1981 B Driver)

■ Antialias & Reorder

■ Communication Wrapper

■sync

■ Dequantization

■ Stereo

■Hybrid

Figure 7 .31. Layout of the bus based MP3 decoder showing the
PEs.

time performance for both NoC and bus based MP3 decoder. The test was performed using

the same MP3 file along with both cases settings described in Table 7.9. The dedicated IO

pin was sampled by Agilent Logic Analyzer 1681A at lO0ns sampling rate.

It is clear that NoC based MP3 decoder performs faster than the bus based MP3

decoder.

7.5. Power Consumption

Power estimation was done by Xilinx XPower Analyzer. Table 7.10 reports the power

estimation results for Bus and NoC based MP3 decoder. It was expected NoC to consume

more power due to larger amount of resources used for NoC based MP3 decoder which is

59

Figure 7.32. Layout of the bus based
MP3 decoder showing the Bus.

distinguishable on Clocks, Logic and BRAMs section of Table 7.10.

7.6. Experimental Setup

Figure 7.37 shows the ML501 development board connected to the computer along

with speakers. The virtual communication port driver which is used to send data to the

FPGA is shown along with the Xilinx Platform Cable USB II used to send bitstream of

the design through the USB in order to configure the FPGA. Figure 7.38 shows a close

up of the ML501 and its external connections to the speakers, programmer and the serial

60

Figure 7.33. Critical Path shown in the Device for a NOC based
MP3 decoder.

communication.

7.7. Challenges Faced during Working on this Project

Some of the challenges that I faced during the project are:

I. Partitioning the MP3 decoder: In order to save resources and increase the perfor-

Delay Typo

EllBf.!Id<,g)_
net (fanout•lS)

LJ..!liIDal
net (fanout•!)
P5P48f Q:dsodo AP Ml
net (fanout• !)
PSPff rrd,;pdo cpcam
net (fanout• I)
PSP48f (rd,;pdo pc!l'f'l
net (fanout•.2)

EllBf..!Ilkkl
Tot6'

a.mualive Location Lc,oical Rescuce

0.450 0.450 !ID SLJCE_X11Y96 r--PDecoderVANTlALIASVsfb_O
o. 716 1, 166 ,. r--PDecoderVANTlALIAS\Jsfb[O]
0.094 1.260 !ID SLJCE_X10Y96 i r-"f'DecoderVANTlALIASvt,1rom_COl'0_4l9111

0.457 1.717 ,. r--PDecoderVANTlALIASvt,1rom_COl'0_4l91
3,646 5.363 Iii OSP48J(OY38 • r--PDecoderVANTIAL!ASl,M,ut_src_line_nul0002

0.741 6. 104 i. r--PDecoderVANTIALIAS\lsrc_line_nuto002[2J
2.277 8 ,381 ia] OSP48_XOY41 · r--PDecoderVANTIAL!AS~_old_des_line_425_addsoo00001
0.000 8. 381 ,. r--PDecoderVANTlALIAS~_old_des_line_ 425 _addsooOOOO l_PCOUT

1.816 10.197 Iii OSP48J(OY42 · r--PDecoderVANTlALIAS~_des_line_rrutoOOl
0.111 10.914 ,. r--PDecoderVANTIAL!ASV_old_des_lne_ 425(1]

-0.011 ~--'-'10~.90=3 @] SLICEJ(11Yl03 . r-"f'DecoderVANTIAL!ASVdes_line_l
10.903 1' 10.90~

Logic: 8.m j

Figure 7.34. Description of the critical path shown in the device for the NoC based

MP3 decoder.

61

Figure 7.35. Critical path shown in the device for the Bus based MP3 decoder.

Table 7.9. Performance results.

Communication Method clock frequency (MHz) Computation time for a channel (ms)
NoC 87.5 4.85
Bus 80 5.342

mance of the decoder, the MP3 algorithm must be well understood. It is necessary to

know that certain processes such as Reorder and Anti aliasing will not work together

in the same channel. They can be grouped into one block in order to use fewer

floating point arithmetic cores, RAM size, and other resources.

2. Differences between software and hardware implementations of the MP3 decoder:

besides limitations on available resources, some arithmetic operations require more

than a simple addition. When MP3 decoder performs IMDCT, buffer index values are

determined by division of values by numbers that are not power of two. The FPGA

offers core dividers with different settings that can be used to carry such divisions,

but they require resources and introduce a new delay to the system. However, if the

62

o.taPa

Delay Type

BlE..!raal.
net (fanout-6)

IJ.lli!Iig)_
net (fanout •!)

WI6.!IJDl
net (fanout• 195)

WIUIJg)_
net (fanout-6)

WI6.!IJDl
net (fanout•36)

WI6.!IJDl
net (fanout•3)

WI6.!IJDl
net (fanout• I)

WI6.!IJDl
net (fanout• I)
WIS..(Ilg)_
net (fanout•24)

WI6.!IJDl
net (fanout•3)

WI6.!IJDl
net (fanout•!)

EllE..Cr=kl.
Toul

Delay ClmJlative Location L(9Cal Resocrce

0.450 0.450 Ii] SLICE_XJ!m · MPDecoder~yl>ORT_Ad<

2,500 2.950 ~ MPDecoder~GERyl>ORT_Ad<

0.094 3.044 i§l SUCE_X24Y55 MPDecoder',1llJSVSwitche1'v"!xor _BUS_Control< I > _;«><0> _5W0
0,244 3,288 ~ Nl126

0.094 3,382 i§J SLICE_x24Y55 MPDecoder',1lUSV5witche1""1xor J1US _Control< I > _;«><0>
0.951 4,333 ~ MPDecoder',llUS_Control[I]

0.094 4,427 ja SUCE_X21Y55 MPDecoderVANTIALIASV<>ld_trome_298_and00011

0,439 4,866 lo MPDecoderVANTIALIASV<>ld_trame_298_andOool
0.094 4,960 I§] SLICE_X2 1Y55 MPDecoderVANTIAL!ASV_rruxOOOOII

0,919 5.879 ~ MPDecoderVANTIALIAS\,N4

0.094 5,973 I§] SUCE_X26Y54 MP:llecoderVANTIAL!ASV_rrux00031

1,084 7.057 lo MPDecoderVANTIALIASV_rrux0003

0.094 7,151 @l SLICE_X26Y52 MPDecoderVAN11AL!AS\fl"lrrux_COl'0_275_82

0,820 7,971 lo MPDecoderVANTIAL!AS\fl"lrrux_COl'0_275_82

0.094 8.065 I§] SLICE_X20Y50 MPDecoderVANTIAL!AS\fl"lrrux_COl'0_275_ 4

1.222 9,287 ~ MPDecoderVANTIALIAS\fl"lrrux_COl'0_275_ 4

0.094 9.381 I§] SLICE_X9Y50 MPDecoderVANTIAL!AS\ol.ast_Nine_noto001112

1.593 10.974 ~ MPDecoderVANTIAL!AS\lreaclJo_RAM_Ada _andOO 11
0.094 I 1.068 00 SLICE_X4Y57 MPDecoderVANTIAL!AS\/Send_Hybridln_notoOO 121

0.7~ 11.817 ~ MPDecoderVANTIAL!ASl/-l3241

0.094 11.911 I§] SLICE_X5Y56 · MPDecoderVANTIAL!AS\lro_Data_Read_notoOOII

0,290 12.201 ~ MPDecoderVANTIAL!AS\lro.J)ata_Read_notoOOI
0.226 12.427 00 SLICE_X4Y55 • MPDecoderVANTIAL!AS\lro_Data_Read

12 427 12. 427
LOIJic: 1.616
Net: 10,811

Figure 7.36. Description of the critical path shown in the device for the Bus
based MP3 decoder.

pattern of the indices is carefully observed, it can be realized that the indices can be

determined by certain pattern operations based on the previous indices. Such patterns

can simplify the process further. However, certain processes cannot benefit from

such technique. During Dequantization, an integer number is raised to the power of

i, which require an IP core.

3. Proper coding: In order to use certain features of the FPGA chip, a certain style

to write verilog code must be used. For example, if an array is accessed in certain

format, it is then translated to a RAM when the design is synthesized using XST.

However, if the method of accessing the array was not carefully used, the code could

be translated to just sets of flip-flops for the array. This is not using the FPGA

resources properly.

4. Huffman table contents: During the initial stage of the MP3 decoder, the Huffman

table contents are requested from the Host, this method introduced a huge delay in

63

Xilinx Programmer Virtual COM Port Driver

Figure 7.37. MP3 decoder setup shown with a computer host and speakers.

Figure 7.38. ML501 development board shown with auxiliary connec­

tions.

64

Table 7 .10. Power estimation for NoC and bus based MP3 decoder.

On-Chip Power Bus (W) Power NoC (W)
Clocks 0.100 0.155
Logic 0.004 0.008
Signals 0.011 0.016
BRAMs 0.057 0.069
DSPs 0.001 0.001
PLLs 0.114 0.104
IOs 0 0
Leakage 0.423 0.424

Total 0.711 0.777

the decoder. A block RAM was instead implemented with its initial contents set as

the Huffman table contents as a result. This eliminated the need to retrieve the huge

amount of data for each frame.

5. Differences in PEs when using different communication: Besides differences in send­

ing and receiving data mechanisms when using different communication methods,

there are other differences that need to be addressed. For example, when the Huffman

has decoded a set of numbers, Huffman needs to send the data one byte at a time to

the Dequantization PE. In the NoC based decoder, the Huffman sends the data if the

wrapper is available, and the wrapper then forwards the data to the Dequantization.

In the bus based decoder, if the Huffman has data to send, Huffman has to wait to

get the control of the bus. Once Huffman has control of the bus, it tries to send

data to the Dequantization. However, if Dequantization is busy processing data, the

Huffman holds the bus until the Dequantization is ready to receive. While Huffman

is holding the bus, other data can be transferred. One solution to this problem was

to design a timeout scenario where the PE controlling the bus releases the bus if the

receiver is not responding.

65

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1. Conclusion

It was expected to achieve a faster clock frequency for the NoC based MP3 decoder

since the nets for the NoC are shorter compared to the bus based MP3 decoder. Also, it was

expected to achieve a real time operation of for both the NoC and bus based MP3 decoder.

The final design in the thesis demonstrated that the NoC based MP3 decoder achieves a

14% faster clock frequency. Both implementations achieve real time operation with the

NoC based design decode an MP3 frame on average in 10% less time that the bus based

MP3 decoder. Also, the design parameters achieved by Xilinx tools such as number of logic

blocks used to implement both NoC and bus based MP3 decoder verified the expectation

that the NoC based MP3 decoder requires more resources.

8.2. Future Work

Serial communication is a simple and easy communication protocol to implement,

but not the fastest. To improve the design, serial communication needs to be eliminated

and alternative methods to be considered such as Ethernet or USB.

PEs need to be optimized in order to increase the performance of the system. The

whole design uses a global clock signal, and if one of the PEs contains a path that forces

the clock signal to be slowed down, then the path must be eliminated by re-designing the

PE to achieve better performance.

To achieve a better understanding of differences between bus and NoC implementa-

tions a bigger or more complex application such as MPEG decoder should be implemented.

Dynamic and Partial Reconfiguration is an important design technique, which could

be utilized. By using partial reconfiguration, different audio decoders could be stored in a

memory and loaded on the FPGA platform depending on the audio decoder needed for the

file.

66

BIBLIOGRAPHY

[1] S. Brown and J. Rose, "FPGA and CPLD Architectures: A Tutorial," IEEE Design

and Test of Computers, vol. 13, no. 2, pp. 42-56, 1996.

[2] Xilinx inc. [Online]. Available: www.xilinx.com

[3] Altera. Altera Inc. [Online]. Available: www.altera.com

[4] K. Lahiri, S. Dey, and A. Raghunathan, "Evaluation of the Traffic-Performance

Characteristics of System-on-Chip Communication Architectures," Proceedings of

the 14th International Conference on VLS1 Design, 2001.

[5] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey, and

A. Sangiovanni-Vencentelli, "Addressing the System-on-a-Chip Interconnect Woes

Through Communication-Based Design," Proceedings of the 38th Annual Design

Automation Conference, 2001.

[6] L. Benini and G. D. Micheli , "Powering Networks on Chips: Energy-Efficient

and Reliable Interconnect Design for socs," Proceedings of the 14th International

Symposium on Systems Synthesis, 2001.

[7] S. Murali and G. D. Micheli , "An Application-Specific Design Methodology for

STbus Crossbar Generation," Proceedings of the Conference on Design, Automation

and Test in Europe, vol. 2, 2005.

[8) K. Lee, S.-J. Lee, and H.-J. Yoo, "Low-power Network-on-Chip for High­

Performance SoC Design," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 14, February 2006.

[9] J. Duato, S. Yalamanchili , and N. Lionel, Interconnection Networks, An Engineering

Approach. Morgan Kaufmann, 2002.

67

[10) L. Benini and G. D. Micheli , "Networks on Chips: a New SoC Paradigm," Computer,

vol. 35, January 2002.

[11) W. J. Dally, Principles and Practices of Interconnection Networks. Morgan Kauf­

mann, 2004.

[12) T. Bjerregaard and S. Mahadevan, "A Survey of Research and Practices of Network­

on-Chip," ACM Computing Surveys, vol. 38, 2006.

[13) I. Cidon and I. Keidar, "Zooming in on Network-on-Chip Architectures," Department

of Electrical Engineering, Technion, Israel Institute of Technology, Tech. Rep., 2005 .

[14) E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, "Cost Considerations in Network

on Chip," Integration, the VLSI Journal - Special Issue: Networks on chip and

reconfigurable f abrics, vol. 38, October 2004.

[15) CoreLink System IP & Design Tools for AMBA. ARM Ltd . [Online]. Available:

http://www.arm.com/products/system-ip/amba/index.php

[16) IBM CoreConnect Bus Cores. IBM .

[17) D. Wingard, "Micro-Network Based Integration for SOCs," Proceedings of the 38th

Annual Design Automation Conference, 200 l.

[18] w. J. Dally and B. Towles, "Route Packets, not Wires: On-Chip Interconnection

Networks," Proceedings of the 38th annual Design Automation Conference, 2001.

[19] A. Hemani , A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist,

"Network on Chip: An Architecture for Billion Transistor Era," Proceedings of the

IEEE NorChip Conference, 2000.

68

[20] T. Bartie, J.-Y. Minolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, and

R. Lauwereins, "Highly Scalable Network on Chip for Reconfigurable Systems,"

Proceedings of International Symposium System-on-Chip, November 2003.

[21] A. Sheibanyrad, I. M. Panades, and A. Greiner, "Systematic Comparison between the

Asynchronous and the Multi-Synchronous Implementations of a Network on Chip

Architecture," Proceedings of the Conference on Design, Automation and Test in

Europe, 2007.

[22] P. Guerrier and A. Greiner, "A Generic Architecture for on Chip Packet-Switched

Interconnections," Proceedings of the Conference on Design, Automation and Test in

Europe, 2000.

[23] A. Andriahantenaina and A. Greiner, "Micro-network for SoC: Implementation of a

32-port SPIN Network," Proceedings of the Conference on Design, Automation and

Test in Europe, vol. 1, 2003.

[24] K. Goossens, J. Dielissen, and A. Radulescu, "IE thereal Network on Chip: Concepts,

Architectures, and Implementations," IEEE Design and Test of Computers, vol. 22,

2005.

[25] M. Dall ' Osso, G. Biccari, L. Giovannini , D. Bertozzi, and L. Benini , "Xpipes: A La­

tency Insensitive Parameterized Network-on-Chip Architecture For Multi-Processor

SoCs," Proceedings of the 21st International Conference on Computer Design, 2003.

[26] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, "Guaranteed Bandwidth Using

Looped Containers in Temporally Disjoint Networks within the Nostrum Network

on Chip," Proceedings of the Conference on Design, Automation and Test in Europe,

vol. 2, 2004.

69

[27] "System drivers," International Technology Road map for Semiconductors, Tech.

Rep., 2007.

[28] J. Bainbridge and S. Furber, "Chain: A Delay-Insensitive Chip Area Interconnect,"

IEEE M, vol. 22, September 2002.

[29] T. Bjerregaard and J. Sparso, "A Router Architecture for Connection-Oriented Ser­

vice Guarantees in the MANGO Clock.less Network-on-Chip," Proceedings of the

Conference on Design, Au, vol. 2, 2005.

[30] D. Rostislav, V. Vishnyakov, E. Friedman, and R. Ginosar, "An Asynchronous Router

for Multiple Service Levels Networks on Chip," Proceedings of the 11th IEEE

International Symposium on Asynchronous Circuits and Systems, 2005.

[31] E. Beigne, F. Clermidy, P. Vi vet, A. Clouard, and M. Renaudin, "An Asynchronous

NOC Architecture Providing Low Latency Service and Its Multi-Level Design Frame­

work," Proceedings of the 11th IEEE International Symposium on Asynchronous

Circuits and Systems, 2005.

[32] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner, "Globally­

Asynchronous Locally-Synchronous Architectures to Simplify the Design of On-Chip

Systems," ASIC/SOC Conference, 1999.

[33] T. Bjerregaard, M. B. Stensgaard, and J. Sparso, "A Scalable, Timing-safe, Network­

on-Chip Architecture with an Integrated Clock Distribution Method," Proceedings of

the Conference on Design, Automation and Test in Europe, 2007.

[34] S. Kubisch, E. Heinrich, and D. Timmermann, "A Mesochronous Network-on-Chip

for an FPGA," University of Rostock, Department of CS and EE, Institute of Applied

Microelectronics and Computer Engineering, Rostock, Germany, Tech. Rep. , 2009.

70

[35] N. Genko, D. Atienza, G. D. Micheli, and L. Benini, "NoC Emulation: A Tool and

Design Flow for MPSoC," Circuits and Systems Magazine, IEEE, vol. 7, 2007.

[36] R. Gindin, I. Cidon, and I. Keidar, "NoC-Based FPGA: Architecture and Routing,"

Proceedings of the First International Symposium on Networks-on-Chip, 2007.

[37] V. Rana, D. Atienza, M. D. Santambrogio, D. Sciuto, and G. D. Micheli, "A Recon­

figurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Commu­

nication," Proceedings of the.first NASA/ESA conference on Adaptive Hardware and

Systems, 2006.

[38] B. Ahmad, A. T. Erdogan, and S. Khawam, "Architecture of a Dynamically Reconfig­

urable NoC for Adaptive Reconfigurable MPSoC," Proceedings of the first NASA/ESA

conference on Adaptive Hardware and Systems, 2006.

[39] A. Ehliar and J. Eilert, "A Hardware MP3 Decoder with Low Precision Floating Point

Intermediate Storage," Linoping University, Tech. Rep. , 2003.

[40] T. Marescaux, V. Nollet, J.-Y. Mignolet, A. Bartie, W. Moffat, P. Avasare, P. Coene,

D. Verkest, S. Vernalde, and R. Lauwereins, "Run-time Support for Heterogeneous

Multitasking on Reconfigurable SoCs," Integration, the VLSI Journal - Special Issue:

Networks on chip and reconfigurable fabrics, vol. 38, October 2004.

[41] M. Mirza-Aghatabar, S. Koohi , S. Hessabi, and M. Pedram, "An Empirical Investi­

gation of Mesh and Torus NoC Topologies Under Different Routing Algorithms and

Traffic Models," Proceedings of the 10th Euromicro Conference on Digital System

Design Architectures, Methods and Tools , 2007.

[42] "IEEE Standard for Binary Floating-Point Arithmetic," IEEE Standard Board, Tech.

Rep. , 1985.

71

[43] "LogiCORE IP Floating-Point Operator v5.0," Xilinx, Tech. Rep., March 2011.

[44] S. Manolache, P. Eles, and Z. Peng, "Task Mapping and Priority Assignment for Soft

Real-Time Applications under Deadline Miss Ratio Constraints," ACM Transactions

on Embedded Computing Systems, vol. 7, February 2008.

72

	BCS2_1601
	BCS2_1602
	BCS2_1603
	BCS2_1604
	BCS2_1605
	BCS2_1606
	BCS2_1607
	BCS2_1608
	BCS2_1609
	BCS2_1610
	BCS2_1611
	BCS2_1612
	BCS2_1613
	BCS2_1614
	BCS2_1615
	BCS2_1616
	BCS2_1617
	BCS2_1618
	BCS2_1619
	BCS2_1620
	BCS2_1621
	BCS2_1622
	BCS2_1623
	BCS2_1624
	BCS2_1625
	BCS2_1626
	BCS2_1627
	BCS2_1628
	BCS2_1629
	BCS2_1630
	BCS2_1631
	BCS2_1632
	BCS2_1633
	BCS2_1634
	BCS2_1635
	BCS2_1636
	BCS2_1637
	BCS2_1638
	BCS2_1639
	BCS2_1640
	BCS2_1641
	BCS2_1642
	BCS2_1643
	BCS2_1644
	BCS2_1645
	BCS2_1646
	BCS2_1647
	BCS2_1648
	BCS2_1649
	BCS2_1650
	BCS2_1651
	BCS2_1652
	BCS2_1653
	BCS2_1654
	BCS2_1655
	BCS2_1656
	BCS2_1657
	BCS2_1658
	BCS2_1659
	BCS2_1660
	BCS2_1661
	BCS2_1662
	BCS2_1663
	BCS2_1664
	BCS2_1665
	BCS2_1666
	BCS2_1667
	BCS2_1668
	BCS2_1669
	BCS2_1670
	BCS2_1671
	BCS2_1672
	BCS2_1673
	BCS2_1674
	BCS2_1675
	BCS2_1676
	BCS2_1677
	BCS2_1678
	BCS2_1679
	BCS2_1680
	BCS2_1681
	BCS2_1682
	BCS2_1683

