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ABSTRACT 

Many people are dependent on artificial pacemakers to have a normal cardiac function. 

Due to this it is important to study the effects of pacing on cardiac function, as well as, to 

determine the best site to pace with an artificial pacemaker that yields the best cardiac 

performance. Tau (τ), the time constant of left ventricular relaxation, has been studied as one 

measure of effective cardiac function, where high τ has been associated with myocardial 

ischemia and hence a low τ is desirable. The objective of the current study was to create a 

program in MATLAB™ that estimates τ from left ventricular pressure (LVP) data, verify this 

program using synthesized data and calculate τ for physiological data. LVP data was collected 

from five canines under four pacing modes: left ventricular (LV), bi-ventricular (BV), right atrial 

(RA) and right ventricular (RV) at rates of 90 or 100 and 160 bpm.  Four models of τ were used: 

1. A semi-logarithmic, zero asymptote model (τ L), 2. A semi-logarithmic model using data from 

the first 40ms of the isovolumic relation (τ 40), 3. Exponential model with non-zero asymptote of 

left ventricular pressure (τ E) and 4. A derivative model with non-zero asymptote of left 

ventricular pressure (τ D). The program successfully loaded all data files and computed τ for all 

dogs, all pacing sites and all heart rates. 
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INTRODUCTION 

Many people suffer from various cardiovascular diseases and sometimes it results in 

alterations of the natural pace maker functions of the heart. When this happens, artificial 

pacemakers are used to pace the heart at sites like the left ventricle or bi- or right atrial or right 

ventricle.  Due to this, it is important to study the effects of pacing on cardiac function to 

determine the best pacing site that yields better cardiac function. Different physiological 

mechanisms have been investigated to determine the state of the heart under various conditions. 

It was observed that prolongation of myocardial relaxation was an early sign of acute myocardial 

ischemia. [1] [2] This could be used as one diagnostic measure to determine the effects that 

various pacing sites have on the cardiac functionality. This rate of myocardial relaxation has 

been described by different mathematical models. One of them is the time constant of relaxation, 

Tau. Tau (τ) was first described by Frederiksen et al. as a time constant during the exponential 

fall of the isovolumic left ventricular pressure, after the peak negative pressure differentiated 

with respect to time [3].  τ was derived by Weiss et al. as the negative inverse of the slope of the 

plot of the natural logarithm of left ventricular pressure against time [4]. Rousseau et al. came up 

with a new model where they divided the isovolumic relaxation period into two 40 sec segments 

and treated each segment as an exponential function. They observed that the impaired isovolumic 

relaxation was mainly during the first 40 msec after peak (negative) dP/dt.  Hence the model of τ 

proposed by them analyses the isovolumic relaxation in the first 40 ms after peak negative dP/dt 

as an exponential function similar to that proposed by Weiss et al. [5] These two models, 

however, did not take in to account the pressure changes from changing pericardial or pleural 

pressures. They assumed that the left ventricular pressure in the ventricular cavity would simply 

decline to zero asymptotically. To take in to account non-zero asymptote decline of the left 
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ventricular pressure, Raff et al. proposed a model which relates the left ventricular pressure to 

the first derivative of pressure with respect to time (dP/dt). In this model τ is derived by taking 

the negative inverse of the slope of the regression line of left ventricular pressure against left 

ventricular dP/dt. [6] Thompson et al. also proposed a non-asymptote model of τ. [7] They used 

an exponential method to calculate τ by considering three points equally spaced in time at 20 ms 

intervals during the fall of the left ventricular pressure between the peak negative dP/dt and the 

pressure corresponding to the end-diastolic pressure of the previous beat and then iteratively 

calculating τ. These models have been used by others to assess the different states of heart. The 

model proposed by Weiss et al was used to determine the myocardial stiffness during pacing 

induced angina. [8] All the other models of τ were used to evaluate the left ventricular 

performance during transluminal angioplasty. [9] These models were also used to determine the 

load independence of rate of isovolumic relaxation. [10] Though τ has been used to evaluate 

various mechanisms of the heart, not much work has been done to use T as a measure in 

determining the effects of artificial pacing through various sites. [11] [12] 

The objective of the current study was to create a program in MATLAB™ that estimates 

τ from left ventricular pressure (LVP) waveforms, verify this program using synthesized data 

and calculate τ for LVP obtained from five dogs, paced at four pacing sites during vena caval 

occlusion by using the four methods discussed above to calculate τ. 
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METHODS 

SURGICAL PROCEDURE:  

This study was approved by the Medtronic Institutional Animal Care and Use Committee 

(Study S1288). The surgical procedure, instrumentation methods and experimental protocol have 

already been documented elsewhere [13], but will be briefly reiterated here for the benefit of this 

study. Five dogs, weighing at least 24 kgs and of both sexes were used in this study. 30 min 

before surgery, they were given an antibiotic, an analgesic and a sedative in the form of 

Cefazolin (700mg IV), morphine (1mg/kg IM) and Propofol (120 mg IV) respectively. 2% 

isoflurane was used to maintain anesthesia followed by an injection of succinylcholine (20mg 

IV). Then, under sterile conditions, a left thoracotomy was performed through either the fourth 

or fifth intercostal space to place an epicardial lead on the left ventricular free wall. Through a 

left jugular venotomy under fluoroscopic guidance, a lead was placed in the right ventricular 

apex and in the right atrial appendage. The chest was then closed and the leads were connected to 

a biventricular implantable pulse generator (Model 8042 Insync III, Medtronic, USA). 

INSTRUMENTATION: 

The animals were given a period of at least 2 weeks to recover.  In preparation for 

measurement of pressure-volume (PV) data, they were given an antibiotic, Cefazolin( 700 mg 

IV). During positioning of the instrumentation, Isoflurane (1.5-2%) was used to maintain the 

animal at an appropriate plane of anesthesia. A conductance catheter (CD Leycom, Netherlands) 

was introduced in to the left ventricle through a right femoral arteriotomy. The catheter (7 Fr, 

CA-72103-PNA), which operated in dual-frequency mode, was connected to a Sigma-5 DF (CD 

Leycom, Netherlands) control box to obtain the analog volume signal. The analog pressure 

output was acquired by connecting the pressure sensor to a Sentron Pressure Interface (Model 
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SPI-110, CD Leycom, Netherlands). A Fogarty occlusion catheter (62080814F, Edwards 

Lifesciences, USA) was introduced in to the vena cava via a right femoral venotomy. The PV 

data was collected with fenantyl (5 µg/kg IV) infused at a rate of 2-5 ml/h with a CRI drug pump 

and isoflurane maintained at a low level (1%). While pacing atrium at a rate of 120bpm, the 

conductance-derived ventricular volume was calibrated by scaling and shifting the conductance 

signal to match ventricular volumes estimated by triplane echocardiography. This rate was 

selected for calibration because it was faster than the natural heart rate in all five dogs, and was 

also between the upper and lower limits of pacing rates used in this study. The monitoring of 

heart rate and capture verification was done through standard ECG limb leads. Black et al stated 

that “Left Ventricular pressure(LVP), volume(LVV), Marker Channel
TM

, ECG limb leads one, 

two and three were digitized at 1,000 Hz with 12 bit analog to digital resolution using IOX 

software version 1.8.11(EMKA Technologies, France). Data was stored on a computer and then 

exported to text files for analysis.” [13] 

EXPERIMENTAL PROTOCOL: 

The canine hearts were paced at rates of 90 or 100 and 160 beats per minute using a 

Medtronic Model 2090 programmer. Biventricular pacing (BV), left ventricular free-wall lead 

(LV), RA pacing and AV sequential pacing to the RV apex lead (RV) were performed in this 

study.  The order of the pacing methods used was random. An AV delay of 30 ms was 

programmed. After at least 1 minute of pacing, steady state conditions were achieved, during 

which, 10 seconds of data were collected at each heart rate and pacing site. Then the inferior 

vena-cava was occluded for 10-12 seconds and data were collected at varying levels of preload 

(EDV) as well. “During RA pacing, if AV block was encountered, boluses of Glycopyrolate 

(.01-.04 mg IV) were administered until the block subsided.” [13] After all the data was 
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collected, the animals were allowed to recover for additional study which is outside the scope of 

this report. 

DATA ANALYSIS: 

Tau (τ) was estimated from the data obtained by using the previously discussed four 

methods. Data were analyzed by a program written using MATLAB™ (Appendix I). The left 

ventricular pressure LVP was filtered using a fourth-order 50 Hz Butterworth filter. The filter 

was selected because it has low ripple factor and a high attenuation to filter out the high 

frequency noise while maintaining the useful pressure signal. The LVP was filtered both causally 

and then anti-causally to prevent the phase shifts that results from filtering. The filtered data was 

then differentiated with respect to time (dP/dt) and the peak negative dP/dt was recorded along 

with the corresponding left ventricular pressure P0.  A five-point derivative algorithm was used 

to calculate the derivative. [14] The end diastolic pressure (EDP) of each beat was selected by 

first finding the indices in the waveform where the dP/dt of the LVP was maximum (Pmax), then 

40% of the Pmax was found. EDP was found by finding the pressure at the time index 40 ms 

prior to the index where the pressure was 40% of Pmax. Nonlinearities at the end beats occur 

from complexities of performing a VCO in vivo. [15] Due to this, the last 6 beats were excluded 

for Dog 2 at VCO at pacing site RA with heart rate of 160 as shown in Fig. 3 in Results section. 

Any incomplete beats at the beginning of the LVP waveform were also excluded for calculation 

of Tau.  

The semi logarithmic model of Tau(τ L) or τ1 for the purpose of this study) with zero 

asymptote of left ventricular pressure is defined as the negative inverse of the slope of the plot of 

the natural logarithm of left ventricular pressure versus time. This method assumes that the 

decline of the left ventricular pressure is zero. Therefore pressure waveform, P, is defined as ln 
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P= At+B, where A represents the slope of the line in sec
-1

 and B is the natural log (ln) of left 

ventricular pressure at P0. [4] By solving this equation at P0, τ1 is estimated to be equal to -1/A.  

The portion of the curve  between P0 and 5mm Hg above the EDP of the previous beat was 

analyzed by taking the natural log of all the points in the curve and then calculating the slope to 

find A.  τ1(τ L) was calculated with by finding the negative inverse of A.  

The semilogarithmic model using the initial 40ms of isovolumic relaxation, τ2 or (τ 40) 

was calculated using the same equation except that the portion of the curve analyzed included 

data points within the first 40ms from P0.  [5] 

The exponential model with non-zero asymptote of left ventricular pressure (τ E) or τ3, 

does not assume that the fall of the left ventricular pressure is zero. Hence the equation of the 

pressure is P (t) = ae
bt
 + c  where a, b, c are determined iteratively by considering three points 

P(0), P(m), P(2m) which are equally spaced in time at 20ms intervals between P0 and EDP of the 

previous beat using the following equations.  [7] 

b = -1/20 ms * ln[(P(2m) – P(m))/(P(m) – P(0))]                                                               (1) 

c = P(0) – a                                                                                                                    (2) 

a = [(P (m) – P (0))/ (e
-b*(20ms) 

-1)]                                                                                   (3) 

τ E = -1/b                                                                                                                      (4) 

In this study P(0) was first assumed to be P0 and P(m) was equal to P0 +10ms and P (2m) was 

equal to P0 +20ms. Then the next set of pressures was analyzed by adding 1ms to the times 0, m 

and 2m of the first set of pressures that were taken.  These equations were applied successively 

until all the points in a relaxation event were used. The values for τ E for each beat were 

determined as the mean of the τ values of all the segments that were calculated. 
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The derivative model with non-zero asymptote of left ventricular pressure (τ D), τ4, also 

does not assume a zero asymptote of left ventricular pressure decline. Raff and Glantz described 

the ventricular pressure decline by the equation P = P0e
-t/ τ 

+ PB, where PB is the additive baseline 

shift due to pleural or pericardial pressure of measurement errors. [6] Differentiating this 

equation with respect to time t and then using the equation for P to eliminate e
-t/ τ

 the equation 

dP/dt = 1/ τ (P–PB) was obtained. This shows that dP/dt is a linear function of P with a slope of -

1/ τ. Thus τ D is calculated by taking the negative inverse of the linear regression of dP/dt against 

P using all the points between P0 and EDP of the previous beat. 
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RESULTS AND DISCUSSIONS 

A program was written in Matlab™ in two parts and can be found in Appendix 1. Fig. 1 

represents the flow chart of the program. The first part named importer2.m loads the original 

waveform data from Excel™ sheets in to Matlab™ and the second part titled dpdtmin.m 

analyses the data to calculate τ.  

 Load Raw Data 

in to Matlab 

from Excel 

sheets. 

 Filter the data using 

Butterworth filter  

 Find peak negative 

dP/dt for each beat 

 Find EDP for each 

beat 

 Filter the data points 

to analyze for each 

beat for each method 

 Calculate T for each 

beat for each method. 

 
End Program 

For each beat is there a 

corresponding EDP for peak negative 

dP/dt and vice-versa?

Yes

No

Discard beat

 

Fig.1. Flow-diagram of the algorithm of the program used. 
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Next, physiological waveform data from 80 Excel® sheets were loaded into the program 

successfully. The data was filtered and shifted to positive quadrant to address negative pressures. 

This did not affect the calculation of the time constant, τ. 

A sample waveform of an unfiltered LVP is shown in Fig. 2. It can be seen from this 

figure that the LVP waveform is noisy.  To remove this noise, a 50 Hz Butterworth filter was 

implemented. Note also, the declining LVP due to the vena caval occlusion. 

 

Fig.3 shows the waveform after a Butterworth filter was applied to it. This figure shows 

how the filter has removed the noise to output a better signal.  The filtered waveform was also 

shifted to the positive quadrant since in VCO, negative pressures can be encountered. Negative 

pressures affect the calculation of τ especially in the exponential model where the difference of 

pressures is used in calculations. 
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Fig.2. Sample waveform of unfiltered LVP. 
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The peak negative dp/dt was calculated for each beat as was the EDP. Some beats were 

incomplete and an EDP for the previous beat could not be calculated. These beats were left out 

of the analysis in the program. Similarly, some beats had EDP which did not have a 

corresponding peak negative dP/dt. These beats were left out of the program as well. In Dog 2, at 

pacing site R.A. with a heart rate of 160 bpm (see Fig. 4), the last 6 beats were erratic and an 

EDP was difficult to quantify. Hence these beats were also removed from the analysis.  This 

waveform quality check was important to ensure that the data analyzed was comprised of 

complete beats in a normal VCO state. 
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Fig.3. Plot of LVP Vs filtered and offset LVP. 
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To validate the algorithm used, data was synthesized with τ and other constants set to a 

known value and then the program was used to calculate τ from the synthesized data. Table 1 

shows the results of the validation.  

Table.1. Validation of the algorithm used. 

Method  Equation used
 

τset τobtained Other variables set 

1 lnP= At + b
 

.434 s .434 s b = 4.62 

A = -2.3 

2 lnP= At + b .074 s .073 s b = 4.62 

A = -13.54 

3 P(t) = ae
bt
 + c. 

 

.0076 s .0075 s a = 0.2170 

b = -0.131 

c = 6.83 

4 dP/dt = -(P0/T)*e
-t/T 

0.022s .022 s P0 = 55.98 

0 2000 4000 6000 8000 10000 12000 
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Fig.4. The LVP waveform of Dog 2 at VCO at pacing site R.A. with heart rate of 160 bpm 

with EDP and negative peak dP/dt marked. 
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The equation constants and τ were set to random values. For each method, synthesized 

data was obtained using known values of τ and other constants. The synthesized data was then 

analyzed and the τ calculated was compared with the known τ. As seen in Table 1, for each 

model, the τ calculated was approximately equal to the τ set to a known value to synthesize the 

data indicating that the program was accurate in calculating τ. Fig. 5 confirms this with the plot 

of the curve fit of the synthesized data.  In all cases the program’s τ was the same as the 

synthesized τ.  The maximum error in estimating τ from synthesized data was not greater than 

0.1% 
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Fig.5. Plot of synthesized data. 
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Once the program was validated, it was used on physiological data. Fig.6 shows a single 

heart beat with different portions marked for analysis of τ using different methods. The data 

points between peak negative dP /dt and the point corresponding to EDP +5mm Hg in 

isovolumic relaxation were used for calculating τ using semi logarithmic method. The data 

points for 40 ms after peak negative dP/dt were used to calculate τ using method 2.   For the 

exponential and derivative models of τ, the data points between peak negative dP/dt and the 

point corresponding to the EDP in isovolumic relaxation were analyzed.  
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Fig.7 shows the τ that was calculated using the four methods for a representative VCO 

data set of heart beats. 

 

τ calculated using the semi logarthmic models are identical as seen in this figure. It is also 

relatively smaller in value compared to τ calculated using exponential and differential model. 

This is probably due to the assumption of zero asymptote of fall of left ventricular pressure 

inherent in these semi logarithmic models. τ calculated using the exponential model is seen to be 

the greater than τ calculated using other models across the beats during VCO. This indicates that 

there is difference in τ calculated using different models.   

Fig.8 shows the curve fits for the LVP analyzed, using the four methods.  
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Fig.7. Comparison of τ calculated by four methods for Dog 1 at pacing site 

BV at a rate of 90 BPM during VCO. 
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Fig.8. Curve fits for the LVP analyzed, using the four methods. 

The curve represented by P is the portion of the isovolumic relaxation that was analyzed. 

P1 represents the curve fit of P using the model proposed by Weiss et al. [4] P2 represents the 

curve fit of P using the model proposed by Rousseau et al. [5] P3 represents the curve fit of P 

using the model proposed by Thompson et al. [7] P4 represents the curve fit of P using the model 

proposed by Raff and Glantz. [6] This figure shows how the different models vary in fitting the 

curve of LVP that is analyzed. The curve fits using the semi-logarithmic models are very similar 

0 

10 

20 

30 

40 

50 

60 

70 

1 11 21 31 41 51 

P
re

ss
u
re

  (
m

m
 H

g
) 

Time (milliseconds) 

P 

P1 

P2 

P3 

P4 



16 
 

since these models use the same equation to calculate τ. From this figure, curve fit using the semi 

logarithmic models seems to mimic the LVP curve the best.  

The τ calculated using this program was compared with that found by Raff and Glantz in 

their paper, "Volume loading slows left ventricular isovolumic relaxation rate. Evidence of load-

dependent relaxation in the intact dog heart." Circulation Research, 1981: 48:813-824. The range 

of τ observed in this study was around 24 msec to 44.5 msec. The range of τ as seen in Fig.7 is 

from 23 msec to 36 msec. The similarity in the results of these two studies indicate that the τ 

estimated was in the appropriate range for the animal and hence successfully estimated. 

This program calculates the τ for 5 dogs at 4 pacing sites, and at two heart rates during 

VCO. The program is flexible and τ can be calculated using different permutations and 

combinations. This analysis is useful in determining if τ can be used as a diagnostic to estimate 

the optimal site to pace the heart. Also the effect of heart rate on τ can be determined. Hence this 

program is an effective tool in the analysis of T from the raw LVP data derived. 
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CONCLUSION 

A program was developed that calculates LVP relaxation time constant, τ, from 

physiological data. The code was verified over synthesized data.  This program calculates the τ 

for 5 dogs at 4 pacing sites, and at two heart rates during VCO. Using this program, τ for 

different dogs at different pacing sites while pacing at different heart rates can be calculated and 

analyzed. τ can be found for all the beats in a Dog or for each beat. The program is flexible and τ 

can be calculated using different permutations and combinations. This analysis is useful in 

determining if τ can be used as a diagnostic to estimate the optimal site to pace the heart. Also 

the effect of heart rate on τ can be determined. Hence this program is an effective tool in the 

analysis of τ from the raw LVP data derived.  
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APPENDIX I  

Program in MATLAB™: 

%”importer.m” 

global animal; 

%change to the correct directory 

dogs = {'329938','329951','329948','330644','330634'}; 

loads = {'SS','VCO'}; 

sites = {'BV','LV','RA','RV'}; 

rates = {'90','160'}; 

for dog=1:length(dogs) 

for load=1:length(loads) 

for site=1:length(sites)     

for rate=1:length(rates) 

filename = strcat(dogs(dog),'_',sites(site),rates(rate),'_',loads(load));  

filename = char(filename);   

matrix.(['m',filename]) = xlsread(filename); 

animal(dog,load,site,rate).time=matrix.(['m',filename])(:,1); 

animal(dog,load,site,rate).LVP=matrix.(['m',filename])(:,2); 

animal(dog,load,site,rate).Vtot=matrix.(['m',filename])(:,3); 

animal(dog,load,site,rate).V1=matrix.(['m',filename])(:,4); 

animal(dog,load,site,rate).V2=matrix.(['m',filename])(:,5); 

animal(dog,load,site,rate).V3=matrix.(['m',filename])(:,6); 

animal(dog,load,site,rate).V4=matrix.(['m',filename])(:,7); 

animal(dog,load,site,rate).V5=matrix.(['m',filename])(:,8); 

animal(dog,load,site,rate).EGMPV=matrix.(['m',filename])(:,9); 
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animal(dog,load,site,rate).ECG1=matrix.(['m',filename])(:,10); 

animal(dog,load,site,rate).EGMRV=matrix.(['m',filename])(:,11); 

animal(dog,load,site,rate).EGMLV=matrix.(['m',filename])(:,12); 

animal(dog,load,site,rate).Marker=matrix.(['m',filename])(:,13); 

 animal(dog,load,site,rate).AoP=matrix.(['m',filename])(:,14); 

if (dog>=4) 

animal(dog,load,site,rate).ECG2=matrix.(['m',filename])(:,15); 

animal(dog,load,site,rate).ECG3=matrix.(['m',filename])(:,16); 

else 

animal(dog,load,site,rate).CF=matrix.(['m',filename])(:,15); 

animal(dog,load,site,rate).ECG2=matrix.(['m',filename])(:,16); 

animal(dog,load,site,rate).ECG3=matrix.(['m',filename])(:,17); 

end 

end 

end 

end 

end 

 %“dpdt.min” 

load globalanimal2009.mat 

fs = 1000; 

[b,a] = butter(4,40/(1000/2));  % Create a butterworth filter  

for j1= 6:10:76 

for i = j1:j1+4 

animal(i).LVP_Filt = filtfilt(b,a,animal(i).LVP); % Apply Butterworth filter to the LVP 

waveform 
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animal(i).q=min(animal(i).LVP_Filt);% Shifting the waveform in to the positive quadrant. 

since VCO is used and some of the waveforms can run in to negative pressures. 

if animal(i).q<0 

animal(i).LVP_Filt1=animal(i).LVP_Filt+abs(animal(i).q); 

else 

animal(i).LVP_Filt1=animal(i).LVP_Filt; 

end 

animal(i).DLVP_Filt = diff(animal(i).LVP_Filt1).*fs;% Differentiating the filtered LVP 

animal(i).DLVP_Filt1 = diff(animal(i).LVP_Filt).*fs;% Differentiating the normalised 

filtered LVP 

animal(i).DLVP_Filt2 = diff(animal(i).DLVP_Filt1).*fs;% Double differentiating the 

normalised  filtered LVP 

animal(i).DLVP = diff(animal(i).LVP).*fs;% Differentiating the LVP. 

animal(i).maxvector=0; % Initialising maxvector 

animal(i).minvector=0; % Initialising minvector. 

animal(i).LVP_Filtminindices=0;% Initialising LVP_Filtminindices 

clf 

animal(i).maxpoints = find(animal(i).DLVP_Filt>=.4*max(animal(i).DLVP_Filt)); % Finding 

all point greater than midway point in the differentiated LVP waveform to find the dp/dt max 

point. 

animal(i).maxjump =  find(diff(animal(i).maxpoints)~=1); % Finds points in the positive 

part of the waveform. 

animal(i).maxindices = animal(i).maxpoints(animal(i).maxjump); % Finds the indices of 

the points. 

animal(i).minpoints =  find(animal(i).DLVP_Filt<=.5*max(animal(i).DLVP_Filt)); % 

Finding all point lower than midway point in the differentiated LVP waveform to find the 

dp/dt min point. 

animal(i).minjump =  find(diff(animal(i).minpoints)~=1); % Finds points in the negative 

part of the waveform 
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animal(i).minindices = animal(i).minpoints(animal(i).minjump);% Finds the indices of 

the points. 

% find dpdt max indices 

for r=1:length(animal(i).maxindices)+1 

if r <=length(animal(i).maxindices)-1  

[animal(i).dpdtmax,animal(i).dpdtmaxindex]=max(animal(i).DLVP_Filt(animal(i).maxi

ndices(r):animal(i).maxindices(r+1)));% Finds the maximum value of dp/dt of LVP and 

the index at which it occurs between the two points. 

animal(i).dpdtmaxindex=animal(i).dpdtmaxindex+animal(i).maxindices(r)-1; 

elseif r==length(animal(i).maxindices)+1 

[animal(i).dpdtmax,animal(i).dpdtmaxindex]=max(animal(i).DLVP_Filt(1:animal(i).ma

xindices(1))); 

else 

[animal(i).dpdtmax,animal(i).dpdtmaxindex]=max(animal(i).DLVP_Filt(animal(i).maxin

dices(r):(length(animal(i).DLVP_Filt)))); 

animal(i).dpdtmaxindex=animal(i).dpdtmaxindex+animal(i).maxindices(r)-1; 

end 

animal(i).maxvector(r,1)= animal(i).dpdtmax; % Contains the max value of dP/dt 

animal(i).maxvector(r,2)= animal(i).dpdtmaxindex;% Contains the index at which max 

dP/dt occurs. 

end 

animal(i).maxvector = sort(animal(i).maxvector,1,'ascend'); 

if i==67 

for r=1:length(animal(i).maxvector)-6 

animal(i).maxvector2(r,2)=animal(i).maxvector(r,2); % Removing the last 6 beats since 

they are unstable. 

end 

elseif (animal(i).maxvector(1,2)<100) % Removing incomplete beats where edp of previous 

cannot be measured. 
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for r=1:(length(animal(i).maxvector)-1) 

animal(i).maxvector2(r,1)=animal(i).maxvector(r+1,1); 

animal(i).maxvector2(r,2)=animal(i).maxvector(r+1,2); 

end 

else  

for r=1:(length(animal(i).maxvector)) 

animal(i).maxvector2(r,2)=animal(i).maxvector(r,2); 

end 

end 

% Find dpdt min indices 

for u=1:length(animal(i).minindices)+1 

if u<=length(animal(i).minindices)-1 

[animal(i).dpdtmin,animal(i).dpdtminindex]=min(animal(i).DLVP_Filt(animal(i).minin

dices(u):animal(i).minindices(u+1))); 

animal(i).dpdtminindex=animal(i).dpdtminindex+animal(i).minindices(u)-1; 

elseif u==length(animal(i).minindices)+1 

[animal(i).dpdtmin,animal(i).dpdtminindex]=min(animal(i).DLVP_Filt(1:animal(i).min

indices(1))); 

else 

[animal(i).dpdtmin,animal(i).dpdtminindex]=min(animal(i).DLVP_Filt(animal(i).minin

dices(u):(length(animal(i).DLVP_Filt)))); 

animal(i).dpdtminindex=animal(i).dpdtminindex+animal(i).minindices(u)-1; 

end 

animal(i).minvector(u,1)=animal(i).dpdtmin; % Contains the min value of dP/dt 

 animal(i).minvector(u,2)=animal(i).dpdtminindex;% Contains the index at which it 

occurs. 

end 
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animal(i).minvector = sort(animal(i).minvector,1,'ascend'); 

if i==67 

for r=1:length(animal(i).maxvector)-6 

animal(i).minvector1(r,2)=animal(i).minvector(r,2); % Removing the last 6 beats due 

to instability. 

end 

elseif animal(i).maxvector2(1,2)>animal(i).minvector(1,2) 

 % Removing incomplete beats where edp of previous cannot be measured. 

for r=1:length(animal(i).minvector)-1 

animal(i).minvector1(r,2)=animal(i).minvector(r+1,2); 

end 

else 

for r=1:length(animal(i).minvector) 

animal(i).minvector1(r,2)=animal(i).minvector(r,2); 

end 

end 

if length(animal(i).maxvector2)>length(animal(i).minvector1)% To ensure complete beats. 

for r= 1:length(animal(i).minvector1) 

animal(i).maxvector1(r,2)=animal(i).maxvector2(r,2); 

end 

else 

for r= 1:length(animal(i).minvector1) 

animal(i).maxvector1(r,2)=animal(i).maxvector2(r,2); 

end 

end 



26 
 

 

%Find edp indices 

for r=1:length(animal(i).maxvector1) 

animal(i).Pdmax(r,1)= animal(i).LVP_Filt1(animal(i).maxvector1(r,2)); 

animal(i).edpm(r,1) =(.4*(animal(i).Pdmax(r,1))); 

e=animal(i).edpm(r,1); 

f=animal(i).maxvector1(r,2); 

difference= (animal(i).LVP_Filt1(f)-e); 

while (difference>0 ) 

f=f-1; 

difference = (animal(i).LVP_Filt1(f)-e); 

end 

animal(i).edpindices(r,1) = f-40; 

animal(i).edpf(r,1)=animal(i).LVP_Filt1(animal(i).edpindices(r,1)); % End Diastolic 

pressure 

animal(i).edpf1(r,1)=((animal(i).LVP_Filt1(animal(i).edpindices(r,1)))+5); 

end 

animal(i).edpindices(r,1)=sort(animal(i).edpindices(r,1),1,'ascend'); %  

 

Indices of the EDP of all the beats. 

animal(i).edpf(r,1)=sort(animal(i).edpf(r,1),1,'ascend'); % EDP of beats 

animal(i).edpf1(r,1)=sort(animal(i).edpf1(r,1),1,'ascend');% EDP +5 mm Hg 

animal(i).Pdmax(r,1)=sort(animal(i).Pdmax(r,1),1,'ascend'); 

% Semilogarithmic model with zero asymptode of left ventricular pressure  

for k=1:length(animal(i).minvector1(:,2)) 
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l=((animal(i).LVP_Filt1(animal(i).minvector1(k,2)))-animal(i).edpf1(k,1));   % finding 

all the data points between P0 and 5 mm Hg above EDP of the previous beat. 

f=animal(i).minvector1(k,2); 

while (l>0) && (f<length(animal(i).LVP_Filt1)) 

f=f+1; 

l = (animal(i).LVP_Filt1(f)-animal(i).edpf1(k,1));  

end 

animal(i).edpindices(k,2) = f; 

end 

p=find(animal(i).edpindices(:,2)); 

p1 =length(p); 

animal(i).edpindices1(:,2)=(animal(i).edpindices(1:p1,2)); 

for k=1:length(animal(i).minvector1(:,2)) 

l=((animal(i).LVP_Filt1(animal(i).minvector1(k,2)))-animal(i).edpf(k,1));    

f=animal(i).minvector1(k,2); 

while (l>0) && (f<length(animal(i).LVP_Filt1)) 

f=f+1; 

l = (animal(i).LVP_Filt1(f)-animal(i).edpf(k,1));  

end 

animal(i).edpindices(k,3) = f; 

end 

p=find(animal(i).edpindices(:,3)); 

p1 =length(p); 

animal(i).edpindices1(:,3)=(animal(i).edpindices(1:p1,3)); 

%   
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for u=1:length(animal(i).minvector1(:,2)) 

j=1; 

animal(i).ppoints(j,u)=(animal(i).minvector1(u,2)); 

animal(i).logpoints(j,u)= log(animal(i).LVP_Filt1(animal(i).ppoints(j,u))); 

l=(animal(i).minvector1(u,2)); 

for q=((animal(i).minvector1(u,2)):(animal(i).edpindices1(u,2))) 

j=j+1;  

animal(i).ppoints(j,u)= (animal(i).ppoints(j-1,u))+1; 

animal(i).logpoints(j,u)= log(animal(i). LVP_Filt1(animal(i).ppoints(j,u))); 

end 

animal(i).k1=find(animal(i).ppoints(:,u)); 

k=length(animal(i).k1); 

animal(i).fitvalues(u,1:2)=polyfit((animal(i).ppoints(1:k,u)*(1/fs)),(animal(i).logpoints(1:k,u)

),1); 

animal(i).tauvalues1(u,1)= (-1)*(1/(animal(i).fitvalues(u,1))); 

end 

 

%semilogarithmic model using initial 40ms of isovolumic relaxation(T40) 

for u=1:length(animal(i).minvector1(:,2)) 

j=1; 

animal(i).ppoints1(j,u)=(animal(i).minvector1(u,2)); 

animal(i).logpoints(j,u)= log(animal(i).LVP_Filt1(animal(i).ppoints(j,u))); 

l=(animal(i).minvector1(u,2)); 

for q=((animal(i).minvector1(u,2)):(animal(i).minvector1(u,2)+40)) 

j=j+1;  
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animal(i).ppoints(j,u)= (animal(i).ppoints(j-1,u))+1; 

animal(i).logpoints(j,u)= log(animal(i). LVP_Filt1(animal(i).ppoints(j,u))); 

end 

k1=find(animal(i).ppoints(:,u)); 

k=length(k1); 

animal(i).fitvalues2(u,1:2)=polyfit((animal(i).ppoints(1:k,u)*(1/fs))',(animal(i).logpoints(1:k,u

))',1); 

animal(i).tauvalues2(u,1)= (-1)*(1/(animal(i).fitvalues2(u,1))); 

end 

% EXPONENTIAL MODEL WITH NON-ZERO ASYMPTOTE OF LEFT VENTRICULAR 

PRESSURE 

s=1; 

for u=1:length(animal(i).minvector1(:,2)) 

animal(i).epoints1=animal(i).minvector1(u,2); 

animal(i).epoints2=animal(i).minvector1(u,2)+10; 

animal(i).epoints3=animal(i).minvector1(u,2)+20; 

animal(i).P1=animal(i).LVP_Filt1(animal(i).epoints1); 

animal(i).P2=animal(i).LVP_Filt1(animal(i).epoints2); 

animal(i).P3=animal(i).LVP_Filt1(animal(i).epoints3); 

for k=1:(animal(i).edpindices(u,3)-animal(i).epoints3) 

animal(i).bvalue =((-1/10)*log((animal(i).P1-animal(i).P2)/(animal(i).P2-animal(i).P3))); 

animal(i).tauvaluem(k,1)=(-1/animal(i).bvalue); 

animal(i).epoints1=(animal(i).epoints1)+1; 

animal(i).epoints2=(animal(i).epoints2)+1; 

animal(i).epoints3=(animal(i).epoints3)+1; 

animal(i).P1=animal(i).LVP_Filt1(animal(i).epoints1); 
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animal(i).P2=animal(i).LVP_Filt1(animal(i).epoints2); 

animal(i).P3=animal(i).LVP_Filt1(animal(i).epoints3); 

end 

animal(i).tauvalues3(u,1)=mean(animal(i).tauvaluem(:,1)); 

end 

 

%Derivative model with non-zero asymptote of left ventricular pressure (Td) 

for u=1:length(animal(i).minvector1(:,2)) 

j=1; 

animal(i).ppoints4(j,u)=(animal(i).minvector1(u,2)); 

animal(i).orgp(j,u)= (animal(i).LVP_Filt1(animal(i).ppoints4(j,u))); 

for q=((animal(i).minvector1(u,2)):(animal(i).edpindices(u,3)-1)) 

j=j+1;  

animal(i).ppoints4(j,u)= (animal(i).ppoints4(j-1,u))+1; 

animal(i).orgp(j,u)= (animal(i).LVP_Filt1(animal(i).ppoints4(j,u))); 

end 

animal(i).dpdtp=diff(animal(i).orgp(:,u)).*fs; 

k=length(animal(i).orgp(:,u)); 

animal(i).fitvalues(u,1:2)=polyfit((animal(i).orgp(1:(k-1),u)),(animal(i).dpdtp),1); 

animal(i).tauvalues4(u,1)= (-1)*(1/(animal(i).fitvalues(u,1))); 

end 

end 

end 


