The Horseshoe Park ELC takes form from the inspirational curves and lines of the mountain landscape as well as the vertical lines of the lodgepole pine. The objective was to create an interior space that connected with the exterior world and created the monumental feel of being in an old-growth forest. At the same time, creating a subdued form that would not take away from the natural environment was also important.

Spaces were designed by function and proximity to the entrance. Functions primarily break down between administration, support, public, and learning spaces and are located in the order of use. Heavily used spaces are primarily around the main atrium while the learning spaces exist beyond the core of the building. Its open learning area allows for flexibility to alter the exhibits and the experience of the Horseshoe Park ELC to the client's wishes.

Movement emerges from following the natural intersection of nearby trails focusing on the atrium as their junction. Spaces fall around this intersection of the exterior and interior environment and enhance them rather than obstruct them.

The center focuses on sustainability in a number of ways. Most of the building’s materials and structures are from the site and nearby locations. All of the wood components of the structure would be collected locally outside the park, using beetle-killed lodgepole pine that would otherwise rot or be burned. Much of the rammed earth structure would come directly from the site and its excavation during the building process, reusing resources. The center would also implement single stream recycling to reduce waste once the building is in use.

Water is a large concern in Colorado and the building seeks to mitigate its needs utilizing several strategies. The center has a rainwater collection system on much of its roof surface. The site is xeriscaped with native species to reduce water and eliminate water demands. Low flow toilets and faucets would reduce water demands even further.

The center utilizes both active and passive systems for its environmental systems. The solar orientation satisfies most of the building’s lighting needs and supplements its heating system. An open floor plan and windows offer ventilation throughout the structure. Active heating, ventilation, and air conditioning systems would run primarily through an addition heated better than much of the structure to existing locations along the exterior walls. These active systems would only be used as needed.

The structure is sustainable because its materials are from the site and its location along the exterior environment and reduce waste once the building is in use.

Movement emerges from following the natural intersection of nearby trails focusing on the atrium as their junction. Spaces fall around this intersection of the exterior and interior environment and enhance them rather than obstruct them.

The center focuses on sustainability in a number of ways. Most of the building’s materials and structures are from the site and nearby locations. All of the wood components of the structure would be collected locally outside the park, using beetle-killed lodgepole pine that would otherwise rot or be burned. Much of the rammed earth structure would come directly from the site and its excavation during the building process, reusing resources. The center would also implement single stream recycling to reduce waste once the building is in use.

Water is a large concern in Colorado and the building seeks to mitigate its needs utilizing several strategies. The center has a rainwater collection system on much of its roof surface. The site is xeriscaped with native species to reduce water and eliminate water demands. Low flow toilets and faucets would reduce water demands even further.

The center utilizes both active and passive systems for its environmental systems. The solar orientation satisfies most of the building’s lighting needs and supplements its heating system. An open floor plan and windows offer ventilation throughout the structure. Active heating, ventilation, and air conditioning systems would run primarily through an addition heated better than much of the structure to existing locations along the exterior walls. These active systems would only be used as needed.

The center utilizes both active and passive systems for its environmental systems. The solar orientation satisfies most of the building’s lighting needs and supplements its heating system. An open floor plan and windows offer ventilation throughout the structure. Active heating, ventilation, and air conditioning systems would run primarily through an addition heated better than much of the structure to existing locations along the exterior walls. These active systems would only be used as needed.

The center utilizes both active and passive systems for its environmental systems. The solar orientation satisfies most of the building’s lighting needs and supplements its heating system. An open floor plan and windows offer ventilation throughout the structure. Active heating, ventilation, and air conditioning systems would run primarily through an addition heated better than much of the structure to existing locations along the exterior walls. These active systems would only be used as needed.

The center utilizes both active and passive systems for its environmental systems. The solar orientation satisfies most of the building’s lighting needs and supplements its heating system. An open floor plan and windows offer ventilation throughout the structure. Active heating, ventilation, and air conditioning systems would run primarily through an addition heated better than much of the structure to existing locations along the exterior walls. These active systems would only be used as needed.