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ABSTRACT 

 

Optimal designs specify design points to use and how to distribute subjects over these 

design points in the most efficient manner. The Hill model with three parameters is often used to 

describe sigmoid dose response functions.  In our paper, we study optimal designs under the Hill 

model. The first is D-optimal design, which works best to study the model to fit the data.  Next is 

c-optimal design, which works best to study a target dose level, such as ED50 - the dose level 

with 50% maximum treatment effect. The third is a two-stage optimal design, which considers 

both D-optimality and c-optimality.  In order to compare the optimal designs, their design 

efficiencies are compared. 
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1. INTRODUCTION 

 Experimental design is one of the most important branches in Statistics.  Its applications 

for research are seen throughout the world.  Experimental design is useful because it can help 

experimenters minimize costs while still obtaining valid results.  Various forms of experiments 

exist for researchers to use in their studies.  Each type of experimental design has different 

assumptions and restrictions applied to it.  Hence, there is no single design that can be applied to 

every single experiment.  However, there are many specialized designs that can be used in 

various situations.  For example, if an experimenter is interested in testing the effects of a certain 

type of medicine, he may obtain a random sample of people and randomly apply each treatment 

to a set number of individuals.  Such an experiment is known as a randomized complete design, 

or RCD (Montgomery, 2009).  There are numerous other designs that can be used in any area of 

research. 

 There is one area of research that experimental design is frequently applied to:  

biostatistics.  Biostatistics is the branch of statistics that deals with data relating to living 

organisms.  Within this branch fall various topics, such as clinical trials and survival analysis.  

Pharmaceutical companies are especially interested in experimental design as it applies to 

biostatistics because they frequently conduct studies to assess and compare the efficacy and the 

toxicity of new drugs.  And since they are businesses, one of their main goals is to collect results 

that are valid while lowering costs as much as possible. 

 Dose response studies are used to study the efficacy and toxicity of drugs.  One purpose 

is to determine if there is some relationship between the dose level and the response.  A 

researcher or doctor may be interested in finding a pattern between dose level and response.  Or, 

a target dose level may be of interest.  For example, we may want to find the minimum effective 
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dose, or the smallest dose that produces a clinically important response and can be declared 

statistically significantly different compared to a placebo effect.  In dose response studies, the 

following questions are fundamental (Ruberg, 1995): 

 Does the drug have an evident effect? 

 Which doses produce significantly different responses from the control dose? 

 What is the nature of the dose-response relationship? 

 What dose level is optimal? 

To study these questions efficiently, we can use optimal designs (Bretz et al, 2009, Dette et al., 

2008, Dragalin et al, 2007, Miller et al, 2007, Leonov and Miller, 2009, Hyun et al, 2011). 

Optimal designs specify which treatments to use and how to distribute samples over the 

treatments to study the goal of the experiment in the most efficient manner.  These designs can 

be used in all areas of research, not just biostatistics.  There are different types of optimality 

criterion based on the goal of the experiment.  For example, D-optimality is applied when a 

researcher is interested in estimating the value of parameters for a model.  Overall, optimal 

designs allow a researcher to minimize the variance of estimating interesting features of the 

study.   

 In this paper, we examine two types of optimality criterion, and another type that is a 

hybrid of the two others.  The first type considered is D-optimality.  D-optimal criterion is 

focused on estimating the parameters of a model accurately, which will allow us to obtain the 

overall information about the dose response.  To find the D-optimal design, we look for a design 

that minimizes the determinant of the inverse of our information matrix.  The next type of design 

considered is a c-optimal design.  C-optimal criteria are used when a researcher wants to estimate 

an interesting particular dosage level efficiently, which will be denoted as EDp, where “p” gives 
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the 100*p% of the maximum response.  For example, a doctor may be interested in finding a 

treatment that gives ED50, which is the dose producing 50% of the maximum response.  In this 

case, a c-optimal design would be appropriate.  The criterion of a c-optimal design is to minimize 

the variance of estimating EDp.  The variance can be expressed as a function of model 

parameters in general.  The final design is a two-stage optimal design that is a hybrid of D- and 

c-optimality criteria.  First, the number of subjects is split in half, and each half is assigned to 

each stage.  In stage one, a D-optimal design is used to estimate model parameters using the first 

half of our sample.  Then, a c-optimal design is used to estimate a target dose level EDp using the 

second half of our sample in stage two.  This type of design will cover both types of criteria, 

which is a benefit.   

 For this paper, the Hill model is used as the model of interest.  The Hill model gives the 

average activity of an enzyme per catalytic site as a function of the total substrate concentration.  

Li et al (2004) adopted the hill model to study the effects of serine-13 phosphorylation on human 

systolic tymidine kinase.  The paper provides the design space and parameter values to study D-, 

c- and two-stage optimal designs.  To obtain our designs, a numerical approach is used.  The 

numerical algorithm used to obtain our designs is called the V-algorithm, which is a very popular 

algorithm for these types of problems.  Chapter 3 will discuss the model under consideration for 

our optimal designs and in chapter 4 we will find each type of design, including a traditional 

uniform design.  In chapter 5, we will discuss the efficiency of each optimal design and the 

uniform design with respect to D-optimality criteria and c-optimality criteria.  The next chapter 

will further explore the background of the different optimality criteria and the methods used to 

find optimal designs.  
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2. BACKGROUND 

 When a researcher is conducting an experiment, often the goal is to estimate parameters 

and then, using these estimates, to fit a model for prediction.  To help ensure valid results, one 

must minimize the variance of the parameters of these estimated parameters and the predicted 

values.  We can minimize these variances by determining what levels of treatments we should 

use and how our samples should be distributed over our treatments.  This information must be 

determined beforehand, and they depend on both the number of samples that are available and 

the range of our treatments.  To help us make our decisions on these issues, we can use optimal 

designs. 

 Optimal designs are used to specify how a researcher can distribute the resources for an 

experiment in the most efficient way.  These designs will also find the best locations to obtain 

our observations, given that we have a response surface.  Optimal designs are experimental 

designs that are powerful, flexible and efficient.  They can provide us with accurate statistical 

results while lowering research costs.  They can also be used to estimate unbiased parameters for 

a model that also have the smallest variance for almost any model.  Optimal designs have 

different criteria that can be used, depending on the goal of a particular experiment.  To find such 

optimal designs, we need to find a design that minimizes optimality criteria Ψ.   

2.1 Criteria of Optimal Design 

 For a given model, let Θ denote the vector of our parameters, xi will be the i
th
 dosage 

level, ni will be the number of subjects allocated to the i
th

 dosage level, and n will be the total 

number of subjects, where       
 
      Also, let M(ξ;Θ) denote the Fisher information matrix 

for each subject with our parameter vector θ and our design                      where 

   
  

 
 denotes the weights for our design points.  So, our problem now is to find ξ such that we 
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can minimize our optimality criteria             Next we shall define the criteria for A, D and 

c-optimality. 

2.1.1 A-Optimality 

 When our goal is to estimate linear combinations of model parameters, we use a design 

that is A-optimal.  A-optimality criterion is to minimize the sum of variances for the parameter 

estimates.  The criterion here is given below: 

                 

2.1.2 D-Optimality 

 D-optimal designs are used when our goal is to estimate parameters in the model.  In this 

design, the criterion is to minimize the determinant of the inverse of the Fisher information 

matrix.  The criterion for this design is 

              

2.1.3 c-Optimality 

 A c-optimal design is used when a researcher is interested in estimating a function of 

parameters in the model, and is a special case of A-optimality.  The c-optimal design minimizes 

the variance of the function of parameters, denoted as    , where c is a m x 1 vector of constants 

and m is the number of parameters in the model.  The criterion is 

               

2.2 Caratheodory’s Theorem 

 When we are finding a D-optimal design, Caratheodory’s Theorem gives us an upper 

bound on the number of dosage levels in our design.  According to this theorem, we will have no 

more than 
      

 
   dosage levels, where m is the number of parameters in our model. 
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2.3 The General Equivalence Theorem 

 The General Equivalence Theorem is essential to find and verify optimal designs (Kiefer, 

1958).  What it does is provides us with a method for constructing our optimal design and then 

checking to see if they are in fact optimal with respect to some criterion.  It can be viewed as a 

consequence of the result that derivatives are zero at the minimum of a continuous function.  

However, the function depends on the measure of our design ξ through the information matrix 

M(ξ; Θ).  Let the measure    put unit mass at the point x and let the measure put unit mass at the 

point x and let the measure ξ’ be given by 

                

Then, 

                              

Accordingly, the derivative of Ψ in the direction of    is 

           
      

 

 
                                     

The General Equivalence Theorem states that, for a given design ξ*, 

1. ξ* minimizes Ψ{M(ξ;Θ)} 

2. ξ* maximizes the minimum over our design space of        

3. The minimum over our design space          only when we have points that support 

our design ξ* (Atkinson, 2007). 

Thus, we can use this for each of our designs.  It has a generalized structure for any type of 

design.  Let ξ* be the optimal design under some ϕt-optimality criterion.  Suppose that the goal 

of our design ξ* is interested in finding s (s ≤ m) linear combinations of our parameters A
T
Θ, 

where A is an m by s matrix of rank s.  Then, our information matrix for A
T
Θ for our model, 

which will be discussed in chapter 3, is               , where         is the generalized 
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inverse for our information matrix M(ξ;Θ).  The Generalized Equivalence Theorem states that ξ* 

is the ϕt-optimal design for A
T
Θ if and only if there is a generalized inverse          of 

M(ξ*;Θ) such that  

                                                                               

where 

                                          
 
                               

If          is constructed from any ϕt-optimal design ξ* for A
T
Θ, then equality will be 

obtained in (1) whenever x is a support point for ξ* (Hyun et al, 2011).  When t = 0, ϕt-

optimality becomes D-optimality and when t = 1, it becomes A-optimality. 

2.4 The V-algorithm 

To search for our optimal designs for each criterion, the V-algorithm will be used.  The 

V-algorithm is a very popular tool for this purpose.  It is a quick, efficient algorithm that allows a 

researcher to obtain the design points for various optimal designs.  However, the V-algorithm 

does not work efficiently to find the weights for optimal designs points.  Because of this, we 

employ a Newton-Raphson algorithm to find the optimal weights for identified optimal design 

points from the V-algorithm. 

 The V-algorithm finds optimal design points based on the General Equivalence Theorem.  

We begin with some initial design ξ
0
 with associated information matrix M(ξ

0
;Θ).  Each point in 

ξ
0
 will have equal weight.   At each point in our design space, we calculate the standardized 

variance, which is given by the left side of (1) and is denoted as dn, where n denotes the n
th
 step 

of the V-algorithm: 
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where C is given by (2).  Then, we choose a point x from our design space that maximizes   , 

denoted as 

  
     

 
   

For each step, the Fisher information matrix is calculated as: 

                                      
   

where αn+1 is our optimum step length.  We calculate αn+1 by using the General Equivalence 

Theorem.  Define a function    
                   such that 

   
                                                    

 
 
Thus, we find αn+1 by setting  

   
                             

     
             

              

 and solving for αn+1.  Or, we can simply set      
 

   
   We continue in this stepwise fashion 

until     
                             

   is very close to 0.  When this stopping point is 

reached, we have our optimal design points (Federov and Hackl, 1997). 

2.5 Newton-Raphson Algorithm 

 To obtain our optimal weights, we must use the Newton-Raphson approach.  Before we 

introduce this approach, we must first discuss the 2
nd

 order Taylor approximation.  Let f(x) be a 

function that is at least twice differentiable on an open interval I.  For any two points x and x+h, 

the 2
nd

 order Taylor approximation of f at x is: 

                     
 

 
         

We can rewrite this as: 
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Here, a = f(x), b = f’(x) and c =       .  Thus, the 2
nd

 order Taylor approximation is a 2
nd

 order 

polynomial in h. 

 We are interested in maximizing this function with respect to x.  Based on the equation 

above, this implies 

             

Let    be the first condition for the value of h that maximizes f(x+h).  Then, 

         

and    
  

 
.  So, the value that maximizes the value of our 2

nd
 order Taylor approximation of f at 

x is: 

       
 

 
 

       
     

      
  

This is the Newton-Raphson algorithm (Quinn, 2001). 

Now, we can write this algorithm in terms of Ψ and w.   Ψis a function of weights given 

the design points and parameters and is at least twice differentiable.  Hyun, 2011 states that the 

nonnegative solutions of 
 

  
    are the optimal design weights.  Let Ψ = f(x),          , 

and          Then, by using the Newton-Raphson algorithm, we have:  
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3.  MODEL 

 In this section, we introduce the model under consideration for this paper.  We then find 

the Fisher information matrix that we will use to obtain D-, c- and two-stage optimal designs. 

3.1 The Hill Model 

 Before we begin discussing the types of optimal designs used in this paper, we shall give 

a brief background of the Hill model, the model selected for use in this paper.  The Hill model is 

used to give the average activity of an enzyme per catalytic site as a function of the total 

substrate concentration.  Below, we give the equation for our model: 

   
     

    
   

 
 

   
    
   

 
  

In the model above, k is our average enzyme activity, [ST] is the total substrate concentration,  

kmax is the maximum possible activity obtained for our substrate concentrations, S50 is the 

substrate concentration that gives half of the total activity, or ½*kmax, and h is known as the Hill 

coefficient.  If h is greater than 1, the model is said to exhibit positive Hill cooperativity.  

Adversely, if h is less than 1, the model exhibits negative Hill cooperativity. 

 For the purposes of simplicity, we decided to reparameterize our model in terms of alpha, 

beta and gamma.  Our reparameterized model is given below: 

         
  

  

  
 

   
  

  
                                                                          

For this model, xi is our i
th
 dose, μ is our mean response, α is an amplitude scale parameter, β is a 

concentration scale parameter and γ is a shape parameter (Radivoyevitch, 2009).  Figure 1 shows 
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the dose-response curve for the given values of the parameters.

 

Figure 1: The Hill Model when alpha = 4.7, beta = 0.525, gamma = 1.01 

3.2 Model for Observation 

 To perform our research, we shall consider a standard normal model with a continuous 

response variable.  Our model under consideration is given below: 

                                                                                    

0 1 2 3 4 5

1
2

3
4

Li 2004 Dose-Response Curve

x
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where     are iid        , j = 1, 2, …, ni, i = 1, 2, … k, and     is assumed to be unknown. 

Here, we denote Θ as the vector of our parameters α, β and γ.  That is, 

           

Also,         stands for the Hill model (3) discussed before.  In this paper, we are focusing on 

finding design points   ’s and associated weights   ’s. This implies that we are finding “locally” 

optimal designs for each criterion, i.e. we assume that the values of the parameters are known 

and focus only on finding optimal design points and weights.  One important note is that our 

results are not changed by the value of   .   

 For our research, we also need to construct the Fisher information matrix, which will be 

denoted as       , where ξ is used to denote a design.  To compute our information matrix, we 

use the following formula: 

        
 

  
        

      

 

   

 

Here,       is a vector of the first-order derivatives of our mean function        .  That is, 

      
       

  
 
       

  
 
       

  
 

 

 

            

 

 
  

 
  

 

   
 
  

  
    

 
  

 

     
 
  

 

 
  

  
 
  

 

  
 
 

    
 
  

 

 
 

 

 
 

 

 

             
 
 
  

 

   
 
  

   
   

     
 
 
 
 

 

   
 
 

    
 
 
 
 

 
 

 

  

Thus, the Fisher information matrix for our model is given below: 
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Now, this information matrix is used to obtain optimal designs.  As shown in the background 

theory, optimality criteria totally depend on the Fisher information matrix.  Thus, the Fisher 

information matrix is essential in order to obtain optimal designs. 
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4.  OPTIMAL DESIGNS 

 In this chapter, optimal designs are obtained under the model (4).  Here, we find D, c and 

two-stage optimal designs.  To find the design points, the V-algorithm will be used for all three 

designs.  To find the optimal weights, the Newton-Raphson algorithm will be used.  We use 

design space 0 ≤ xi ≤ 5 to obtain our optimal designs.  This interval is the same interval used by 

Li back in 2004.  As said before, the focus of this paper is to find locally optimal designs, which 

is the optimum for the given value of parameters, not to estimate the true values of our 

parameters.  The locally optimal designs are used as bench-markers for the given values of 

parameters, and all other designs can be compared to the locally optimal designs in order to see 

their performance.  For these designs, we assume the values of the parameters are:           

      and           The values of parameters are the same values used by Li, 2004. 

4.1 Uniform Design 

 A uniform design is a traditionally used design to study dose-response functions.  Here, a 

researcher may consider equally spaced design points, with equal weights assigned to each point.  

Since Li, 2004 used 14 design points in their study, we consider the following uniform design, 

denoted as ξ
U
: 

     
            
 

  

 

  

 

  

    
            
 

  

 

  

 

  

    
            
 

  

 

  

 

  

    
            
 

  

 

  

 

  

    
        
 

  

 

  

 

 

 

4.2 D-optimal Design 

 D-optimal design is used when the goal of an experiment is to estimate model 

parameters.  To obtain a locally D-optimal design, we obtain design points and associated 

weights that will minimize the determinant of the inverse of the Fisher information matrix 

         Thus, D-optimality is minimizing 
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 As mentioned before, the D-optimal design is obtained using numerical algorithms.  

Also, as proven by Hyun et. al, 2011, the weights for a D-optimal design are equal when the 

number of design points is equal to the number of parameters.  The obtained D-optimal design is 

verified by the General Equivalence Theorem.  According to the theorem, a design ξ* is a D-

optimal design if and only if 

     
                                                                                  

Here, m is the number of parameters in our model.  The left side of (6) is a standardized variance 

of predicted response.  In this case, the standardized variance for any xi will be less than or equal 

to 3, and equality will hold if and only if xi is a D-optimal design point.  Also,       is the vector 

of the first-order derivatives of our model.   

Based on Caratheodory’s theorem, the initial design used here is given below: 

    
    
 

 

  
   
 

 

   
 
 

 
   
   
 

 

   
   
 

 
   
 
 

 

  

Based on the numerical algorithms, the D-optimal design is obtained below: 

    
    
 

 

  
    
 

 

   
    
 

 

     

So, the D-optimal design is to assign about 33% of the subjects to each of 0.15, 0.95 and 4.95.  

This will minimize the criterion (5) under the given values of the parameters.  The D-optimal 

design is verified by the General Equivalence Theorem (the left side of (6) is plotted over the 

design space [0, 5]).  
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Figure 2:  D-optimal Design:  Plotting a standardized variance of predicted response over 

the design space [0, 5] 

As stated in the General Equivalence Theorem, the plot hits the maximum when the design 

points are D-optimal design points.  Otherwise, the plots are always less than the maximum. 

4.3 c-optimal Design 

The goal of a c-optimal design is to estimate a particular effective dose level, which can 

only be expressed as a function of parameters.  For instance, a researcher may be interested in 
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finding the dosage level that produces the 50% of the maximum response, denoted as ED50.  

Now we focus on finding a c-optimal design, which has design points and corresponding weights 

that estimate a particular dosage level EDp precisely. 

 To find a c-optimal design to estimate EDp, we must solve the following equation for x: 

  
         

     
 

Here, p is 100*p% of the maximum response, f(x; θ) is our mean function,    is a minimum 

effective dose response level and    is a maximum effective dose response level.  So, we replace 

the variables above with our information.  Here,               ,    will be assumed to be 

equal to 0, and     .  Hence, we have: 

  
       

 
 

  
 
  

  
 

   
  

  
  

Solving this equation with respect to xi yields the following formula for EDp: 

         
 

   
 

 
 
 

Then, we take the derivatives with respect to α, β and γ to obtain    
 , which will be used to 

calculate our standardized variance. 

   
  

 

 
 
        

 

   
 

 
 
       

   
 

    

 
 
  

 
   

  

 

 
 

 

 

To obtain our c-optimal design, we need to find a design that minimizes the variance of 

estimating EDp:   
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 To find the design points for this model, we use the V-algorithm.  Then, to find the 

optimal weights for our points, we use the Newton-Raphson algorithm.  After accomplishing 

this, we use the General Equivalence Theorem to verify that the points we find are indeed the 

correct c-optimal points.  In this case, a design ξ* is c-optimal if and only if: 

                       
  

 
   

                   
  

 
   

                               

Here,         is our mean function from the model (2).  The left side of this inequality is the 

standardized variance of our predicted response.  Again, we will only have equality if a point    

is a c-optimal point.  For this design, set p = 0.7,                 and          

Here, we can choose an arbitrary initial design.  Without loss of generality, we can 

assume that we have equal weights for our design.  The initial c-optimal design is given below: 

    
   
 

 

  
 
 

 
   
 
 

 

     

After using the V-algorithm to find our c-optimal points and the Newton-Rhapson algorithm to 

find the optimal weights, we obtain our c-optimal design for ED70: 

    
     
     

  
    
     

   
 

     
     

The c-optimal design is to assign 22.2% of the subjects to 0.075, 47.4% of the subjects to 0.92, 

and 30.4% of the subjects to 5.  This will minimize the criterion (7) under the given value of the 

parameters and the given value of p.  Thus, this is the best design to estimate ED70 under the 

given value of the parameters.  The c-optimal design is verified using the General Equivalence 

Theorem (the left side of (8) is plotted over the design space [0,5]).  
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Figure 3: c-optimal Design:  Plotting a standardized variance of an effective dosage level 

over the design space [0,5] 

As stated in the General Equivalence Theorem, the plot hits the maximum when the design 

points are c-optimal design points.  Otherwise, the plots are always less than the maximum. 

4.4 Two-Stage Design 

When conducting a dose-response study, researchers sometimes have multiple objectives, 

such as selecting a target dose, estimating dose-response, identifying clinical relevance, etc.  An 
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optimal design can be obtained for each of these goals individually.  As demonstrated earlier, we 

can find a D-optimal design to estimate the dose response, and a c-optimal design for estimating 

a particular effective dose level.  However, if we consider these designs for different objectives, 

they may be extremely inefficient.  Therefore, designs that can efficiently address several 

objectives are more advantageous.  With that in mind, we introduce a two-stage design. 

Here, we discuss a two-stage design that addresses both D-optimality and c-optimality 

criteria at the same time.  This type of design will allow researchers to study the shape of the 

dose response curve and study a particular dosage level.  The process of obtaining a two-stage 

optimal design is as follows.  In the first stage of the study, a D-optimal design is used to 

estimate the dose-response curve.  Then, after this has been established, the focus is shifted to 

finding a target dose level.  A question that arises with this type of design is the timing of the 

switch from D-optimality to c-optimality.  For simplicity, we use the first half of subjects and 

assign them to the D-optimal design to learn about the dose-response curve.  The second half of 

the subjects is assigned according to the c-optimal design to estimate our dosage level of interest.  

However, the c-optimal design obtained during the second stage must take the existing allocation 

of subjects at the first stage into account.  Because of this, the c-optimal design at the second 

stage is not a true optimal design but an augmented optimal design, taking into account the 

existing D-optimal design from the first stage (see Atkinson et al., 2007 and Padmanabhan and 

Dragalin, 2010).  Let ξ1 denote the D-optimal design from the first stage, and M(ξ1;Θ) is the 

Fisher information matrix for the first stage using ξ1.  Then, our augmented c-optimality criterion 

to be maximized is  

                        
  

 
   

                                              

where 
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                . 

A design ξ that minimizes (9) is the augmented c-optimal design that is needed for the second 

stage of the design. 

Next, we shall obtain a two-stage optimal design to study dose-response function and a 

target dose level effectively at the same time.  For the sake of comparison, we shall once again 

estimate ED70.  There is a slight difference in terms of starting our design.  Here, the points we 

found above in our D-optimal design will not change, and the weights will be halved.  So, we 

start out with an initial design for the second stage for finding an augmented c-optimal design.  

Like before, we specify an initial design ξ
0
, which is given below.  One can notice that the first 

three points are from our D-optimal design and the next three are random points. 

    
    
 

 

  
    
 

 

   
    
 

 

   
   
 

 

   
 
 

 
   
 
 

 

 

 

 

After using the V-algorithm and the Newton-Raphson algorithm, we obtain the following 

augmented c-optimal design: 

     
     
     

  
    
     

   
 

     
    

 
 

.  A design ξ* is an augmented c-optimal design if and only if: 

                      
  

 
   

                     
  

 
   

           
 
 

The equality will hold if a point xi is an augmented c-optimal design point.  The General 

Equivalence Theorem is used to verify the augmented c-optimal design.  As stated in the General 

Equivalence Theorem, the graph hits its maximum when the design points are augmented c-

optimal design points. 
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Figure 4: Two-Stage Design:  Plotting a standardized variance of the augmented c-optimal 

design over [0,5] 

Then, the two-stage optimal design uses ξ
D
 for the first half of the subjects and ξ

ac
 for the second 

half.  The two-stage optimal design is: 
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Our two-stage optimal design is to assign 6.4% of our subjects to 0.075, 16.7% of the subjects to 

0.15, 30.6% of the subjects to 0.92, 16.7% of the subjects to 0.95, 16.6% of the subjects to 4.95, 

and the remaining 13% of the subjects to 5.   
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5.  EFFICIENCY 

 In this section, we discuss the efficiencies of our optimal designs with respect to D and c-

optimality criteria.  Efficiency can tell us a performance of a design under a specific goal of an 

experiment.  For a design ξ, if an efficiency of ξ is  , the design ξ needs           % more 

subjects to provide the same accuracy for estimating interesting features as the optimal design 

provides.  We will find the relative efficiencies for our designs.  These will tell us how designs 

work with respect to some criteria.  Here, we discuss the criterion for D-efficiency and c-

efficiency.  Then, we compare the efficiencies of the designs obtained in chapter 4. 

5.1 D-Efficiency 

 To find the efficiency of a design with respect to D-optimality criterion, we compare the 

determinants of the inverses of the Fisher information matrix for D-optimal design ξ
D
 and 

another design ξ.  The criterion for D-efficiency is denoted as EffD and is given below: 

          
           

          
 

 
 

 

 

Here, m is the number of parameters in our model. 

5.2 c-Efficiency 

 To find the efficiency of a design with respect to c-optimality criterion, we compare the 

variance of some dosage level EDp for some design ξ to the variance of c-optimal design ξ
c
 for 

the same dosage level.  We use ED70 again to compute c-efficiency.  The criterion for c-

efficiency is denoted as Effc and is given as follows: 
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5.3 Efficiencies of Optimal Designs 

Using the results from chapter 4, we compare the efficiencies of the designs using c-

optimality criteria and D-optimality criteria.  We expect to see that the D-optimal design does not 

perform well under c-optimality criteria, and vice versa.  However, we expect to see that the two-

stage design performs well under both criteria.  The table below gives the values of these 

efficiencies for each of our designs: 

 D-optimality c-optimality (ED70) 

D-Optimal Design 1 0.8931948 

c-Optimal Design 0.7803313 1 

Two-Stage 0.9418978 0.9222931 

Uniform 0.01578803 0.4017052 

Table 1:  Efficiencies of Optimal Designs 

Clearly, we see that the D-optimal design works best for estimating model parameters, but does 

not hold up well under c-optimality criteria, and the c-optimal design works best for estimating 

ED70, but doesn’t perform very well under D-optimality criterion.  We also observe that the two-

stage design, while not performing as well as a single criterion design, still performs fairly well 

for both criteria.  The uniform design chosen performed very poorly with each criterion.  One 

note to make is that our D-optimal design did not have a very low efficiency for c-optimality 

criteria, and the same can be said for our c-optimal design under D-optimality criteria.  However, 

this is most likely due to the fact that each design had very similar design points. 
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6. CONCLUSION 

 Optimal designs can be used in all areas of statistics to help a researcher specify which 

treatments to use and how to distribute subjects in the most specific manner.  A D-optimal design 

to study a dose-response curve and a c-optimal design to estimate a target dose EDp are obtained.  

A two-stage design that combines the criteria for D- and c-optimality was also obtained, and the 

efficiencies of each design were compared to each other, and to a traditional uniform design.   

 After comparing the efficiencies, it was found that the D-optimal design to estimate 

model parameters does not perform well when looking at c-optimality criteria, and the c-optimal 

design to estimate the target dose ED70 does not work well under D-optimality criteria.  

However, the two-stage design performed fairly well under both criteria.  While not as efficient 

as the D-optimal design with D-optimality criteria or the c-optimal design with c-optimality 

criteria, it performed better than the D-optimal design under c-optimality criteria and the c-

optimal design under D-optimality criteria.  Also, as expected, the traditional uniform design 

performed poorly with respect to each optimality criteria.  Hence, a two-stage design combining 

D- and c-optimality could be a valid option for a researcher that is interested in studying both a 

dose-response curve and a target dose EDp at the same time.   

 The designs obtained in this paper were locally optimal designs.  As stated before, we 

assumed the values of the parameters to be true and focused on finding optimal design points and 

optimal weights for each design on the design space [0,5].  Future work for this study is to 

estimate the true values of the parameters for the Hill model using sequential updated optimal 

designs.  Also, different types of two-stage optimal designs can be considered with respect to 

different criteria.  There are many optimality criteria that can be considered, and finding different 

combinations can prove advantageous to researchers who are looking to conduct experiments 
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with varying research goals.  Also, future work could include finding optimal designs for  

models with 4 or more parameters. 
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APPENDIX A. R CODE FOR D-OPTIMAL DESIGN 

###D-optimal Design### 

 

#Number of Parameters 

k=3   

 

#Value of Parameters 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#Initial value 

x0=c(.05, .5, 1, 2.3, 4.2, 5) 

n0=length(x0) 

w=rep(1/n0,n0) 

D=rbind(x0,w) 

#Initial Information matrix 

A1<-rep(0,n0) 

A2<-rep(0,n0) 

A3<-rep(0,n0) 

A4<-rep(0,n0) 

A5<-rep(0,n0) 

A6<-rep(0,n0) 

for (i in 1:n0) 

{ 

A1[i]=w[i]*((x0[i]/beta)^gamma / (1+(x0[i]/beta)^gamma))^2 

A2[i]=w[i]*(-alpha)*gamma*(x0[i]/beta)^(2*gamma) / 

(beta*(1+(x0[i]/beta)^gamma)^3) 

A3[i]=w[i]*alpha*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

((1+(x0[i]/beta)^gamma)^3) 

A4[i]=w[i]*alpha^2*gamma^2*(x0[i]/beta)^(2*gamma) / 

(beta^2*(1+(x0[i]/beta)^gamma)^4) 

A5[i]=w[i]*(-alpha^2)*gamma*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

(beta*(1+(x0[i]/beta)^gamma)^4) 

A6[i]=w[i]*alpha^2*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta)^2 / 

(1+(x0[i]/beta)^gamma)^4 

} 

M0=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM0=solve(M0) 

 

 

#Find dn, 

 

f<-function(x) 

{matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -alpha*gamma*(x/beta)^gamma 

/ (beta*(1+(x/beta)^gamma)^2), alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F)} 

p=1 

while(p>.05){ 

x1=seq(0.05,5,.1) 

n1=length(x1) 
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dn=rep(0,n1) 

for (j in 1:n1) 

{dn[j]=t(f(x1[j]))%*%solve(M0)%*%f(x1[j])} 

for (j in 1:n1) 

{if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA} 

newX=na.omit(x1) 

newdn=max(dn) 

 

#Find alpha(n+1) 

an=(newdn-k)/(k*(newdn-1)) 

p<-newdn-k 

#Get M(n+1) 

newM=(1-an)*M0+an*f(newX)%*%t(f(newX)) 

M0<-newM 

newW=(1-an)*D[2,] 

W=c(newW,an) 

X=c(D[1,],newX) 

newD=rbind(X,W) 

D=newD 

print(p)} 

 

#Verify D-optimal design 

#number of parameter 

k=3 

#value of parameter 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#D-optimal design 

x=c(0.15, 0.95, 4.95) 

n=length(x) 

w=rep(1/3,n) 

D=rbind(x,w) 

#Information matrix 

A1<-rep(0,n) 

A2<-rep(0,n) 

A3<-rep(0,n) 

A4<-rep(0,n) 

A5<-rep(0,n) 

A6<-rep(0,n) 

for (i in 1:n) 

{ 

A1[i]=w[i]*((x[i]/beta)^gamma / (1+(x[i]/beta)^gamma))^2 

A2[i]=w[i]*(-alpha)*gamma*(x[i]/beta)^(2*gamma) / 

(beta*(1+(x[i]/beta)^gamma)^3) 

A3[i]=w[i]*alpha*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

((1+(x[i]/beta)^gamma)^3) 

A4[i]=w[i]*alpha^2*gamma^2*(x[i]/beta)^(2*gamma) / 

(beta^2*(1+(x[i]/beta)^gamma)^4) 

A5[i]=w[i]*(-alpha^2)*gamma*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

(beta*(1+(x[i]/beta)^gamma)^4) 

A6[i]=w[i]*alpha^2*(x[i]/beta)^(2*gamma)*log(x[i]/beta)^2 / 

(1+(x[i]/beta)^gamma)^4 
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} 

M=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM=solve(M) 

 

 

#Find dn 

 

f<-function(x) 

{matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -alpha*gamma*(x/beta)^gamma 

/ (beta*(1+(x/beta)^gamma)^2), alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F)} 

 

phi.1 <- function(x){ 

 matrix(c(0, (x/(1-x))^(1/gamma), -beta*(x/(1-x))^(1/gamma)*log(x/(1-

x))/gamma^2), nrow=3, ncol=1, byrow=F) 

} 

 

p1=0.7 

p=1 

x1=seq(0.05,5,.1) 

n1=length(x1) 

dn=rep(0,n1) 

for (j in 1:n1) 

{dn[j]=t(f(x1[j]))%*%solve(M0)%*%f(x1[j])} 

plot(x1,dn, ylim = c(0, 5), cex = 0.1, xlab = quote(x [i]), ylab = 

"Standardized Variance", main="D-Optimal Design") 

 

### Uniform Design 

#Initial value 

x0=c(0.05, 0.4, 0.75, 1.1, 1.45, 1.8, 2.15, 2.5, 2.85, 3.2, 3.55, 3.9, 

4.25, 4.6) 

n0=length(x0) 

w=rep(1/n0,n0) 

D=rbind(x0,w) 

#Initial Information matrix 

A1<-rep(0,n0) 

A2<-rep(0,n0) 

A3<-rep(0,n0) 

A4<-rep(0,n0) 

A5<-rep(0,n0) 

A6<-rep(0,n0) 

for (i in 1:n0) 

{ 

A1[i]=w[i]*((x0[i]/beta)^gamma / (1+(x0[i]/beta)^gamma))^2 

A2[i]=w[i]*(-alpha)*gamma*(x0[i]/beta)^(2*gamma) / 

(beta*(1+(x0[i]/beta)^gamma)^3) 

A3[i]=w[i]*alpha*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

((1+(x0[i]/beta)^gamma)^3) 

A4[i]=w[i]*alpha^2*gamma^2*(x0[i]/beta)^(2*gamma) / 

(beta^2*(1+(x0[i]/beta)^gamma)^4) 

A5[i]=w[i]*(-alpha^2)*gamma*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

(beta*(1+(x0[i]/beta)^gamma)^4) 
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A6[i]=w[i]*alpha^2*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta)^2 / 

(1+(x0[i]/beta)^gamma)^4 

} 

M0=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM0=solve(M0) 

 

# D-optimal efficiency calculations 

e.d1 <- det(M)^(1/3) 

e.d2 <- (t(phi.1(0.7)) %*% solve(M) %*% phi.1(0.7))  

 

# e.d1 <- 0.4731286 

# e.d2 <- 23.34466 

 

# Uniform efficiency calculations: 

e.u1 <- det(M0) ^ 1/3 

e.u2 <- (t(phi.1(0.7)) %*% solve(M0) %*% phi.1(0.7)) 

 

# e.u1 = 0.007469769 

# e.u2 = 45.34811 
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APPENDIX B. R CODE FOR C-OPTIMAL DESIGN 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

###c-optimality for research### 

library(matrixcalc) 

#Number of Parameters 

k=3   

 

#Value of Parameters 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#Initial value 

x0=c(.5,1,3) 

n0=length(x0) 

w=rep(1/n0,n0) 

D=rbind(x0,w) 

 

#Initial Information matrix 

A1<-rep(0,n0) 

A2<-rep(0,n0) 

A3<-rep(0,n0) 

A4<-rep(0,n0) 

A5<-rep(0,n0) 

A6<-rep(0,n0) 

for (i in 1:n0){ 

 A1[i]=w[i]*((x0[i]/beta)^gamma / (1+(x0[i]/beta)^gamma))^2 

 A2[i]=-w[i]*alpha*gamma*(x0[i]/beta)^(2*gamma) / 

(beta*(1+(x0[i]/beta)^gamma)^3) 

 A3[i]=w[i]*alpha*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

((1+(x0[i]/beta)^gamma)^3) 

 A4[i]=w[i]*alpha^2*gamma^2*(x0[i]/beta)^(2*gamma) / 

(beta^2*(1+(x0[i]/beta)^gamma)^4) 

 A5[i]=w[i]*(-alpha^2)*gamma*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

(beta*(1+(x0[i]/beta)^gamma)^4) 

 A6[i]=w[i]*alpha^2*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta)^2 / 

(1+(x0[i]/beta)^gamma)^4 

} 

 

M0=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 
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IM0=ginv(M0) 

 

 

#Find dn, 

 

f<-function(x){ 

 matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -

alpha*gamma*(x/beta)^gamma / (beta*(1+(x/beta)^gamma)^2), 

alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F) 

} 

 

phi.1 <- function(x){ 

 matrix(c(0, (x/(1-x))^(1/gamma), -beta*(x/(1-x))^(1/gamma)*log(x/(1-

x))/gamma^2), nrow=3, ncol=1, byrow=F) 

} 

 

p=1 

t=2 

 

while(p>.005){ 

 x1=seq(0.01,5,.005) 

 p1=0.7 

 n1=length(x1) 

 dn=rep(0,n1) 

 for (j in 1:n1) 

 {dn[j]=(t(f(x1[j]))%*%ginv(M0)%*%phi.1(p1))^2} 

 for (j in 1:n1) 

  {if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA} 

 newX=na.omit(x1) 

 newdn=max(dn) 

 k=t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1) 

 

#Find alpha(n+1) 

 #an=(newdn-k)/(k*(newdn-1)) 

 an=1/t 

 #p<-abs(newdn-k) 

f 

#Get M(n+1) 

 newM=c(1-an)*M0+c(an)*f(newX)%*%t(f(newX)) 

 M0<-newM 

 p=abs((t(f(newX))%*%ginv(M0)%*%phi.1(p1))^2-

(t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1))) 

 newW=(1-an)*D[2,] 

 W=c(newW,an) 

 X=c(D[1,],newX) 

 newD=rbind(X,W) 

 D=newD 

 print(p) 

 t=t+1 

} 

 

###ED70 points: 0.075, 0.92, 5) 
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#Verify c-optimal design 

 

#number of parameter 

k=3 

 

#value of parameter 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#c-optimal design 

x=c(0.075,.92, 5) 

n=length(x) 

w=c(.222,0.474, 0.304) 

D=rbind(x,w) 

 

#Information matrix 

A1<-rep(0,n) 

A2<-rep(0,n) 

A3<-rep(0,n) 

A4<-rep(0,n) 

A5<-rep(0,n) 

A6<-rep(0,n) 

for (i in 1:n){ 

 A1[i]=w[i]*((x[i]/beta)^gamma / (1+(x[i]/beta)^gamma))^2 

 A2[i]=w[i]*(-alpha)*gamma*(x[i]/beta)^(2*gamma) / 

(beta*(1+(x[i]/beta)^gamma)^3) 

 A3[i]=w[i]*alpha*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

((1+(x[i]/beta)^gamma)^3) 

 A4[i]=w[i]*alpha^2*gamma^2*(x[i]/beta)^(2*gamma) / 

(beta^2*(1+(x[i]/beta)^gamma)^4) 

 A5[i]=w[i]*(-alpha^2)*gamma*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

(beta*(1+(x[i]/beta)^gamma)^4) 

 A6[i]=w[i]*alpha^2*(x[i]/beta)^(2*gamma)*log(x[i]/beta)^2 / 

(1+(x[i]/beta)^gamma)^4 

} 

 

M=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM=solve(M) 

 

 

#Find dn 

 

f<-function(x){ 

 matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -

alpha*gamma*(x/beta)^gamma / (beta*(1+(x/beta)^gamma)^2), 

alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F) 

} 

 

phi.1 <- function(x){ 

 matrix(c(0, (x/(1-x))^(1/gamma), -beta*(x/(1-x))^(1/gamma)*log(x/(1-

x))/gamma^2), nrow=3, ncol=1, byrow=F) 
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} 

 

p1=0.7 

p=1 

x1=seq(0.05,5,.01) 

n1=length(x1) 

dn=rep(0,n1) 

 

for (j in 1:n1){ 

 dn[j]=(t(f(x1[j]))%*%ginv(M)%*%phi.1(p1))^2 

} 

 

plot(x1,dn, ylim = c(0, 20), cex = 0.1, xlab = quote(x [i]), ylab = 

"Standardized Variance", main="c-Optimal Design for ED70") 

 

# Efficiency for ED70 c-optimal design 

e.c2 <- (t(phi.1(0.7)) %*% solve(M) %*% phi.1(0.7)) 

e.c1 <- det(M)^(1/3) 

# e.c1 = 0.423596 

# e.c2 = 18.21657 
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APPENDIX C. R CODE FOR TWO-STAGE DESIGN 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

###2-stage optimality for research### 

library(matrixcalc) 

#Number of Parameters 

k=3   

 

#Value of Parameters 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#Initial value 

x0=c(.5,1,3) 

x2=c(0.15, 0.95, 4.95) 

n0=length(x0) 

n1=length(x2) 

w=rep(1/n0,n0) 

w1=rep(1/n1, n1) 

D=rbind(x0,w) 

 

#Initial Information matrix 

A1<-rep(0,n0) 

A2<-rep(0,n0) 

A3<-rep(0,n0) 

A4<-rep(0,n0) 

A5<-rep(0,n0) 

A6<-rep(0,n0) 

for (i in 1:n0){ 

 A1[i]=w[i]*((x0[i]/beta)^gamma / (1+(x0[i]/beta)^gamma))^2 

 A2[i]=-w[i]*alpha*gamma*(x0[i]/beta)^(2*gamma) / 

(beta*(1+(x0[i]/beta)^gamma)^3) 

 A3[i]=w[i]*alpha*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

((1+(x0[i]/beta)^gamma)^3) 

 A4[i]=w[i]*alpha^2*gamma^2*(x0[i]/beta)^(2*gamma) / 

(beta^2*(1+(x0[i]/beta)^gamma)^4) 

 A5[i]=w[i]*(-alpha^2)*gamma*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta) / 

(beta*(1+(x0[i]/beta)^gamma)^4) 

 A6[i]=w[i]*alpha^2*(x0[i]/beta)^(2*gamma)*log(x0[i]/beta)^2 / 

(1+(x0[i]/beta)^gamma)^4 

} 
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A1d<-rep(0,n1) 

A2d<-rep(0,n1) 

A3d<-rep(0,n1) 

A4d<-rep(0,n1) 

A5d<-rep(0,n1) 

A6d<-rep(0,n1) 

for (i in 1:n1){ 

 A1d[i]=w1[i]*((x2[i]/beta)^gamma / (1+(x2[i]/beta)^gamma))^2 

 A2d[i]=w1[i]*(-alpha)*gamma*(x2[i]/beta)^(2*gamma) / 

(beta*(1+(x2[i]/beta)^gamma)^3) 

 A3d[i]=w1[i]*alpha*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta) / 

((1+(x2[i]/beta)^gamma)^3) 

 A4d[i]=w1[i]*alpha^2*gamma^2*(x2[i]/beta)^(2*gamma) / 

(beta^2*(1+(x2[i]/beta)^gamma)^4) 

 A5d[i]=w1[i]*(-alpha^2)*gamma*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta) 

/ (beta*(1+(x2[i]/beta)^gamma)^4) 

 A6d[i]=w1[i]*alpha^2*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta)^2 / 

(1+(x2[i]/beta)^gamma)^4 

} 

 

M0=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM0=ginv(M0) 

#new information matrix 

#M1=information matrix evaluated using D-optimal design 

M1=matrix(c(sum(A1d), sum(A2d), sum(A3d), sum(A2d), sum(A4d), sum(A5d), 

sum(A3d), sum(A5d), sum(A6d)), nrow=3, ncol=3, byrow=F) 

 

M0=.5*M1+.5*M0 

IM0 = ginv(M0) 

#Find dn, 

 

f<-function(x){ 

 matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -

alpha*gamma*(x/beta)^gamma / (beta*(1+(x/beta)^gamma)^2), 

alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F) 

} 

 

phi.1 <- function(x){ 

 matrix(c(0, (x/(1-x))^(1/gamma), -beta*(x/(1-x))^(1/gamma)*log(x/(1-

x))/gamma^2), nrow=3, ncol=1, byrow=F) 

} 

 

p=1 

t=2 

 

while(p>.005){ 

 x1=seq(0.01,5,.005) 

 p1=0.7 

 n1=length(x1) 

 dn=rep(0,n1) 

 for (j in 1:n1) 
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 {dn[j]=(t(f(x1[j]))%*%ginv(M0)%*%phi.1(p1))^2} 

 for (j in 1:n1) 

  {if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA} 

 newX=na.omit(x1) 

 newdn=max(dn) 

 k=t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1) 

 

#Find alpha(n+1) 

 #an=(newdn-k)/(k*(newdn-1)) 

 an=1/t 

 #p<-abs(newdn-k) 

 

#Get M(n+1) 

 newM=c(1-an)*M0+c(an)*f(newX)%*%t(f(newX)) 

 M0<-newM 

 p=abs((t(f(newX))%*%ginv(M0)%*%phi.1(p1))^2-

(t(phi.1(p1))%*%ginv(M0)%*%phi.1(p1))) 

 newW=(1-an)*D[2,] 

 W=c(newW,an) 

 X=c(D[1,],newX) 

 newD=rbind(X,W) 

 D=newD 

 print(p) 

 t=t+1 

} 

 

###2-stage ED70 points: 0.075, 0.92, 5 

###2-stage ED70 weights:  0.127720, 0.611028, 0.2612521 

 

#Verify c-optimal design 

 

#number of parameter 

k=3 

 

#value of parameter 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#c-optimal design 

x=c(0.075,.92, 5) 

n=length(x) 

w=c(0.127720, 0.611028, 0.2612521) 

x2=c(0.15, 0.95, 4.95) 

n1=length(x2) 

w1=rep(1/3, length(x2)) 

D=rbind(x,w) 

 

#Information matrix 

A1<-rep(0,n) 

A2<-rep(0,n) 

A3<-rep(0,n) 

A4<-rep(0,n) 

A5<-rep(0,n) 
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A6<-rep(0,n) 

for (i in 1:n){ 

 A1[i]=w[i]*((x[i]/beta)^gamma / (1+(x[i]/beta)^gamma))^2 

 A2[i]=w[i]*(-alpha)*gamma*(x[i]/beta)^(2*gamma) / 

(beta*(1+(x[i]/beta)^gamma)^3) 

 A3[i]=w[i]*alpha*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

((1+(x[i]/beta)^gamma)^3) 

 A4[i]=w[i]*alpha^2*gamma^2*(x[i]/beta)^(2*gamma) / 

(beta^2*(1+(x[i]/beta)^gamma)^4) 

 A5[i]=w[i]*(-alpha^2)*gamma*(x[i]/beta)^(2*gamma)*log(x[i]/beta) / 

(beta*(1+(x[i]/beta)^gamma)^4) 

 A6[i]=w[i]*alpha^2*(x[i]/beta)^(2*gamma)*log(x[i]/beta)^2 / 

(1+(x[i]/beta)^gamma)^4 

} 

 

A1d<-rep(0,n1) 

A2d<-rep(0,n1) 

A3d<-rep(0,n1) 

A4d<-rep(0,n1) 

A5d<-rep(0,n1) 

A6d<-rep(0,n1) 

for (i in 1:n1){ 

 A1d[i]=w1[i]*((x2[i]/beta)^gamma / (1+(x2[i]/beta)^gamma))^2 

 A2d[i]=w1[i]*(-alpha)*gamma*(x2[i]/beta)^(2*gamma) / 

(beta*(1+(x2[i]/beta)^gamma)^3) 

 A3d[i]=w1[i]*alpha*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta) / 

((1+(x2[i]/beta)^gamma)^3) 

 A4d[i]=w1[i]*alpha^2*gamma^2*(x2[i]/beta)^(2*gamma) / 

(beta^2*(1+(x2[i]/beta)^gamma)^4) 

 A5d[i]=w1[i]*(-alpha^2)*gamma*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta) 

/ (beta*(1+(x2[i]/beta)^gamma)^4) 

 A6d[i]=w1[i]*alpha^2*(x2[i]/beta)^(2*gamma)*log(x2[i]/beta)^2 / 

(1+(x2[i]/beta)^gamma)^4 

} 

 

M=matrix(c(sum(A1), sum(A2), sum(A3), sum(A2), sum(A4), sum(A5), sum(A3), 

sum(A5), sum(A6)), nrow=3, ncol=3, byrow=F) 

IM=solve(M) 

#new information matrix 

#M0=information matrix evaluated using D-optimal design 

M1=matrix(c(sum(A1d), sum(A2d), sum(A3d), sum(A2d), sum(A4d), sum(A5d), 

sum(A3d), sum(A5d), sum(A6d)), nrow=3, ncol=3, byrow=F) 

 

M=.5*M+.5*M1 

 

#Find dn 

 

f<-function(x){ 

 matrix(c((x/beta)^gamma / (1+(x/beta)^gamma), -

alpha*gamma*(x/beta)^gamma / (beta*(1+(x/beta)^gamma)^2), 

alpha*(x/beta)^(gamma)*log(x/beta) / 

(1+(x/beta)^gamma)^2),nrow=3,ncol=1,byrow=F) 

} 

 



42 
 

phi.1 <- function(x){ 

 matrix(c(0, (x/(1-x))^(1/gamma), -beta*(x/(1-x))^(1/gamma)*log(x/(1-

x))/gamma^2), nrow=3, ncol=1, byrow=F) 

} 

 

p1=0.7 

p=1 

x1=seq(0.05,5,.01) 

n1=length(x1) 

dn=rep(0,n1) 

 

for (j in 1:n1){ 

 dn[j]=(t(f(x1[j]))%*%ginv(M)%*%phi.1(p1))^2 

} 

 

plot(x1,dn, ylim = c(0, 25), cex = 0.1, xlab = quote(x [i]), ylab = 

"Standardized Variance", main = "Two-Stage Optimal ED70") 

 

# Efficiency of 2-stage design 

e.21 <- det(M)^(1/3) 

e.22 <- (t(phi.1(0.7)) %*% solve(M) %*% phi.1(0.7)) 

 

# e.21 <- 0.4465388 

# e.22 <- 19.75139 

 

# Comparing efficiences of designs 

REdc <- 0.422596 / 0.4731286 

REcd <- 18.21657 / 23.34466 

RE2d <- 0.4456388 / 0.4731286 

RE2c <- 18.21657 / 19.75139 

REUd <- 0.007469769 / 0.4731286 

REUc <- 18.21657 / 45.34811 

 

 

# REdc = 0.8931948 

# REcd = 0.7803313 

# RE2d = 0.9418978 

# RE2c = 0.9222931 

# REUd = 0.01578803 

# REUc = 0.4017052 
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APPENDIX D. R CODE FOR C-OPTIMAL WEIGHTS 

#Parameter Values 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#Dosage level of interest 

D = 0.7 

 

#Derivatives for LD30 (wrt to phi function) 

palpha = 0 

pbeta = (D/(1-D))^(1/gamma) 

pgamma = -beta*(D/(1-D))^(1/gamma)*log(D/(1-D))/gamma^2 

 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

 

#Find Optimal Weights using Newton Raphson Algorithm for LD 30 

n=3 

D<-c(0.075,.92, 5) 

 

#Initial weights 

w_<-c(.1,.1) 

mu<-rep(0,n) 

A1<-rep(0,n) 

A2<-rep(0,n) 

A3<-rep(0,n) 

A4<-rep(0,n) 

A5<-rep(0,n) 

A6<-rep(0,n) 

 

for (i in 1:n){ 

 A1[i]=((D[i]/beta)^gamma / (1+(D[i]/beta)^gamma))^2 

 A2[i]=(-alpha)*gamma*(D[i]/beta)^(2*gamma) / 

(beta*(1+(D[i]/beta)^gamma)^3) 

 A3[i]=alpha*(D[i]/beta)^(2*gamma)*log(D[i]/beta) / 

((1+(D[i]/beta)^gamma)^3) 

 A4[i]=alpha^2*gamma^2*(D[i]/beta)^(2*gamma) / 

(beta^2*(1+(D[i]/beta)^gamma)^4) 

 A5[i]=(-alpha^2)*gamma*(D[i]/beta)^(2*gamma)*log(D[i]/beta) / 

(beta*(1+(D[i]/beta)^gamma)^4) 
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 A6[i]=alpha^2*(D[i]/beta)^(2*gamma)*log(D[i]/beta)^2 / 

(1+(D[i]/beta)^gamma)^4 

} 

 

A1L=A1[n] 

A2L=A2[n] 

A3L=A3[n] 

A4L=A4[n] 

A5L=A5[n] 

A6L=A6[n] 

Di<-c(palpha,pbeta,pgamma) 

 

# transpose of D' 

Di<-as.matrix(Di) 

V<-Di%*%t(Di) 

w=matrix(data=0,nrow=n-1,ncol=1,byrow=F) 

for(i in 1:(n-1)){ 

 w[i,1]=w_[i] 

} 

Dw<-rep(0,n) 

p<-1 

while(p>.000001){ 

 k=length(w) 

  

 A1=A1[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A1[i]=NA else A1[i]=A1[i] 

 } 

 A1=na.omit(A1) 

  

 A2=A2[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A2[i]=NA else A2[i]=A2[i] 

 } 

 A2=na.omit(A2) 

  

 A3=A3[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A3[i]=NA else A3[i]=A3[i] 

 } 

 A3=na.omit(A3) 

  

 A4=A4[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A4[i]=NA else A4[i]=A4[i] 

 } 

 A4=na.omit(A4) 

  

 A5=A5[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A5[i]=NA else A5[i]=A5[i] 

 } 

 A5=na.omit(A5) 
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 A6=A6[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A6[i]=NA else A6[i]=A6[i] 

 } 

 A6=na.omit(A6) 

  

 for(i in 1:k){ 

  if(w[i,1]==0) w[i,1]=NA 

 } 

 w=as.vector(w) 

 w=na.omit(w) 

 k=length(w) 

 w=as.matrix(w) 

  

 sw1=matrix(0,nrow=k,ncol=1) 

 sw2=matrix(0,nrow=k,ncol=1) 

 sw3=matrix(0,nrow=k,ncol=1) 

 sw4=matrix(0,nrow=k,ncol=1) 

 sw5=matrix(0,nrow=k,ncol=1) 

 sw6=matrix(0,nrow=k,ncol=1) 

  

 for ( i in 1:k){ 

  sw1[i,1]=w[i,1]*A1[i] 

  sw2[i,1]=w[i,1]*A2[i] 

  sw3[i,1]=w[i,1]*A3[i] 

  sw4[i,1]=w[i,1]*A4[i] 

  sw5[i,1]=w[i,1]*A5[i] 

  sw6[i,1]=w[i,1]*A6[i] 

 } 

  

 p1=sum(sw1)+((1-(sum(w)))*A1L) 

 p2=sum(sw2)+((1-(sum(w)))*A2L) 

 p3=sum(sw3)+((1-(sum(w)))*A3L) 

 p4=sum(sw4)+((1-(sum(w)))*A4L) 

 p5=sum(sw5)+((1-(sum(w)))*A5L) 

 p6=sum(sw6)+((1-(sum(w)))*A6L) 

  

 I=matrix(c(p1,p2,p3,p2,p4,p5,p3,p5,p6),nrow=3, 

 ncol=3,byrow=F) 

  

 IL=matrix(c(A1L,A2L,A3L,A2L,A4L,A5L,A3L,A5L,A6L), 

 nrow=3,ncol=3,byrow=F) 

 inverseI=ginv(I) 

  

 Min=sum(diag(inverseI%*%V)) 

 dI_<-array(c(0,0,0,0,0,0,0,0,0), c(3,3,k)) 

  

 f1<-matrix(data=0,nrow=k,ncol=1,byrow=F) 

  

 for (i in 1:k){ 

 

 dI_[,,i]=matrix(c(A1[i],A2[i],A3[i],A2[i],A4[i],A5[i],A3[i],A5[i],A6

[i]), 

  nrow=3,ncol=3,byrow=F) 
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  f1[i]=sum(diag(V%*%(-inverseI%*%(dI_[,,i]-IL)%*%inverseI))) 

 } 

#(w1&w2&w3) 

  

 f2<-matrix(data=0,nrow=k,ncol=k,byrow=F) 

 for (i in 1:k){ 

  for (j in 1:k){ 

   f2[i,j]=sum(diag(V%*%((inverseI%*%(dI_[,,j]-

IL)%*%inverseI)%*%(dI_[,,i]-IL)%*%inverseI+ 

   inverseI%*%(dI_[,,i]-IL)%*%(inverseI%*%(dI_[,,j]-

IL)%*%inverseI)))) 

  } 

 } 

  

 new.w=w-.01*(ginv(f2)%*%f1) 

 for (i in 1:k){ 

  if(new.w[i,1]<0) new.w[i,1]=0 

 } 

  

 p<-max(abs(new.w-w)) 

 w<-new.w 

 for (i in 1:k){ 

  if(w[i,1]==0){if(Dw[i]==1) Dw[i+1]=1 

 } 

 if(w[i,1]==0) Dw[i]=1} 

} 

w 

1-sum(w) 

Min 

 

###w1 = 0.6969446 

###w2 = 0.3030554 
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APPENDIX E. R CODE FOR TWO-STAGE WEIGHTS 

#Parameter Values 

alpha=4.7 

beta=0.525 

gamma=1.01 

 

#Dosage level of interest 

D = 0.7 

 

#Derivatives for LD30 (wrt to phi function) 

palpha = 0 

pbeta = (D/(1-D))^(1/gamma) 

pgamma = -beta*(D/(1-D))^(1/gamma)*log(D/(1-D))/gamma^2 

 

## Generalized Inverse of a Matrix 

ginv<-function(X, tol = sqrt(.Machine$double.eps)) 

{ 

 

  dnx <- dimnames(X) 

  if(is.null(dnx)) dnx <- vector("list", 2) 

  s <- svd(X) 

  nz <- s$d > tol * s$d[1] 

  structure( 

    if(any(nz)) s$v[, nz] %*% (t(s$u[, nz])/s$d[nz]) else X, 

    dimnames = dnx[2:1]) 

} 

 

#Find Optimal Weights using Newton Raphson Algorithm for LD 70 

n=3 

D<-c(0.075,.92, 5) 

D1 <- c(0.15, 0.95, 4.95) 

w1 <- rep(1/length(D1), length(D1)) 

 

#Initial weights 

w_<-c(.1,.1) 

mu<-rep(0,n) 

A1<-rep(0,n) 

A2<-rep(0,n) 

A3<-rep(0,n) 

A4<-rep(0,n) 

A5<-rep(0,n) 

A6<-rep(0,n) 

 

for (i in 1:n){ 

 A1[i]=((D[i]/beta)^gamma / (1+(D[i]/beta)^gamma))^2 

 A2[i]=(-alpha)*gamma*(D[i]/beta)^(2*gamma) / 

(beta*(1+(D[i]/beta)^gamma)^3) 

 A3[i]=alpha*(D[i]/beta)^(2*gamma)*log(D[i]/beta) / 

((1+(D[i]/beta)^gamma)^3) 

 A4[i]=alpha^2*gamma^2*(D[i]/beta)^(2*gamma) / 

(beta^2*(1+(D[i]/beta)^gamma)^4) 
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 A5[i]=(-alpha^2)*gamma*(D[i]/beta)^(2*gamma)*log(D[i]/beta) / 

(beta*(1+(D[i]/beta)^gamma)^4) 

 A6[i]=alpha^2*(D[i]/beta)^(2*gamma)*log(D[i]/beta)^2 / 

(1+(D[i]/beta)^gamma)^4 

} 

 

A1.d<-rep(0,n) 

A2.d<-rep(0,n) 

A3.d<-rep(0,n) 

A4.d<-rep(0,n) 

A5.d<-rep(0,n) 

A6.d<-rep(0,n) 

 

for (i in 1:n){ 

 A1.d[i]=w1[i]*((D1[i]/beta)^gamma / (1+(D1[i]/beta)^gamma))^2 

 A2.d[i]=w1[i]*(-alpha)*gamma*(D1[i]/beta)^(2*gamma) / 

(beta*(1+(D1[i]/beta)^gamma)^3) 

 A3.d[i]=w1[i]*alpha*(D1[i]/beta)^(2*gamma)*log(D1[i]/beta) / 

((1+(D1[i]/beta)^gamma)^3) 

 A4.d[i]=w1[i]*alpha^2*gamma^2*(D1[i]/beta)^(2*gamma) / 

(beta^2*(1+(D1[i]/beta)^gamma)^4) 

 A5.d[i]=w1[i]*(-

alpha^2)*gamma*(D1[i]/beta)^(2*gamma)*log(D1[i]/beta) / 

(beta*(1+(D1[i]/beta)^gamma)^4) 

 A6.d[i]=w1[i]*alpha^2*(D1[i]/beta)^(2*gamma)*log(D1[i]/beta)^2 / 

(1+(D1[i]/beta)^gamma)^4 

} 

 

 

 

A1L=A1[n] 

A2L=A2[n] 

A3L=A3[n] 

A4L=A4[n] 

A5L=A5[n] 

A6L=A6[n] 

 

A1LD=A1.d[n] 

A2LD=A2.d[n] 

A3LD=A3.d[n] 

A4LD=A4.d[n] 

A5LD=A5.d[n] 

A6LD=A6.d[n] 

 

Di<-c(palpha,pbeta,pgamma) 

 

# transpose of D' 

Di<-as.matrix(Di) 

V<-Di%*%t(Di) 

w=matrix(data=0,nrow=n-1,ncol=1,byrow=F) 

for(i in 1:(n-1)){ 

 w[i,1]=w_[i] 

} 

Dw<-rep(0,n) 
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p<-1 

while(p>.000001){ 

 k=length(w) 

  

 A1=A1[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A1[i]=NA else A1[i]=A1[i] 

 } 

 A1=na.omit(A1) 

  

 A2=A2[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A2[i]=NA else A2[i]=A2[i] 

 } 

 A2=na.omit(A2) 

  

 A3=A3[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A3[i]=NA else A3[i]=A3[i] 

 } 

 A3=na.omit(A3) 

  

 A4=A4[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A4[i]=NA else A4[i]=A4[i] 

 } 

 A4=na.omit(A4) 

  

 A5=A5[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A5[i]=NA else A5[i]=A5[i] 

 } 

 A5=na.omit(A5) 

  

 A6=A6[1:k] 

 for(i in 1:k){ 

  if(w[i,1]==0) A6[i]=NA else A6[i]=A6[i] 

 } 

 A6=na.omit(A6) 

  

 for(i in 1:k){ 

  if(w[i,1]==0) w[i,1]=NA 

 } 

 w=as.vector(w) 

 w=na.omit(w) 

 k=length(w) 

 w=as.matrix(w) 

  

 sw1=matrix(0,nrow=k,ncol=1) 

 sw2=matrix(0,nrow=k,ncol=1) 

 sw3=matrix(0,nrow=k,ncol=1) 

 sw4=matrix(0,nrow=k,ncol=1) 

 sw5=matrix(0,nrow=k,ncol=1) 

 sw6=matrix(0,nrow=k,ncol=1) 
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 for ( i in 1:k){ 

  sw1[i,1]=w[i,1]*A1[i] 

  sw2[i,1]=w[i,1]*A2[i] 

  sw3[i,1]=w[i,1]*A3[i] 

  sw4[i,1]=w[i,1]*A4[i] 

  sw5[i,1]=w[i,1]*A5[i] 

  sw6[i,1]=w[i,1]*A6[i] 

 } 

  

 p1=sum(sw1)+((1-(sum(w)))*A1L) 

 p2=sum(sw2)+((1-(sum(w)))*A2L) 

 p3=sum(sw3)+((1-(sum(w)))*A3L) 

 p4=sum(sw4)+((1-(sum(w)))*A4L) 

 p5=sum(sw5)+((1-(sum(w)))*A5L) 

 p6=sum(sw6)+((1-(sum(w)))*A6L) 

  

 I=matrix(c(p1,p2,p3,p2,p4,p5,p3,p5,p6),nrow=3,ncol=3,byrow=F) 

  

 I.d=matrix(c(sum(A1.d), sum(A2.d), sum(A3.d), sum(A2.d), sum(A4.d), 

sum(A5.d), sum(A3.d), sum(A5.d), sum(A6.d)), nrow=3, ncol=3, byrow=F) 

  

 I = 0.5*I + 0.5*I.d 

 

 IL=matrix(c(A1L,A2L,A3L,A2L,A4L,A5L,A3L,A5L,A6L),nrow=3,ncol=3,byrow

=F) 

 inverseI=ginv(I) 

  

 Min=sum(diag(inverseI%*%V)) 

 dI_<-array(c(0,0,0,0,0,0,0,0,0), c(3,3,k)) 

  

 f1<-matrix(data=0,nrow=k,ncol=1,byrow=F) 

  

 for (i in 1:k){ 

 

 dI_[,,i]=matrix(c(A1[i],A2[i],A3[i],A2[i],A4[i],A5[i],A3[i],A5[i],A6

[i]), 

  nrow=3,ncol=3,byrow=F) 

  f1[i]=sum(diag(-0.5*V%*%(-inverseI%*%(dI_[,,i]-

IL)%*%inverseI))) 

 } 

#(w1&w2&w3) 

  

 f2<-matrix(data=0,nrow=k,ncol=k,byrow=F) 

 for (i in 1:k){ 

  for (j in 1:k){ 

   f2[i,j]=-0.5*sum(diag(V%*%((inverseI%*%(dI_[,,j]-

IL)%*%inverseI)%*%(dI_[,,i]-IL)%*%inverseI+ 

   inverseI%*%(dI_[,,i]-IL)%*%(inverseI%*%(dI_[,,j]-

IL)%*%inverseI)))) 

  } 

 } 

  

 new.w=w-.01*(ginv(f2)%*%f1) 
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 for (i in 1:k){ 

  if(new.w[i,1]<0) new.w[i,1]=0 

 } 

  

 p<-max(abs(new.w-w)) 

 w<-new.w 

 for (i in 1:k){ 

  if(w[i,1]==0){if(Dw[i]==1) Dw[i+1]=1 

 } 

 if(w[i,1]==0) Dw[i]=1} 

} 

w 

1-sum(w) 

Min 

 

###Weights for 2-stage ED70:  0.127720, 0.611028, 0.2612521 

 

 

 

 

 


