
WHERE’S THE REVOLUTION? FROM “CODE YEAR” TO THE CONTINUUM OF

PROCEDURACY

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Christopher Aaron Lindgren

In Partial Fulfillment
for the Degree of

MASTER OF ARTS

Major Department: English
Program Name: Composition

June 2012

Fargo, North Dakota

North Dakota State University
 Graduate School

Title

Where’s the Revolution? From “Code Year” to the Continuum of Proceduracy

By

Christopher Aaron Lindgren

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

MASTER OF ARTS

SUPERVISORY COMMITTEE:

Dr. Kevin Brooks

Chair

Dr. Andrew Mara

Dr. Kelly Sassi

Dr. Brian Slator

Approved by Department Chair: Dr. Kevin Brooks

Date

Signature

06/18/2012 Kevin Brooks

iii

ABSTRACT

As the calendar turned over to 2012, an online learning initiative, Codecademy, declared

it “Code Year”—the year “for everyone” to learn code. Within six months, this call has received

much attention from the public and scholars in the university. Yet, this history and theory paper

more deeply investigates this call for a new mass literacy, which was actually proposed back in

the 1960s as procedural literacy, i.e., proceduracy. Accordingly, a history is told about how

Computer Science ignored Alan Perlis’ call for procedural literacy and Rhetoric and

Composition has just recently begun to address Marshall McLuhan’s media turn. From there, this

paper connects new scholarship and applications surrounding the unexamined persuasive and

expressive faculties of processes to literacy scholar Annette Vee’s levels of proceduracy. Finally,

conclusions and implications of Rhetoric and Composition’s involvement in the deeper

engagement with the writing of code are discussed.

iv

ACKNOWLEDGEMENTS

I have many people to thank for their help during the development of this thesis. First and

foremost, I am thankful for my mentor Kevin Brooks, who has always challenged my

scholarship both theoretically and more importantly how such ideas live beyond the printed page

or networked screen. I am thoroughly indebted to his invitations for research, which, perhaps, he

may be just as thankful that I replied, “Yes” to take on such large, but important outreach,

research and development projects. Thank you!

My time at NDSU has been a time of tremendous growth and experience of great support

from the faculty, staff, and colleagues in the English department. Andrew “Doc” Mara has the

amazing ability to push and challenge ideas in the classroom or over a quick conversation in the

hallway, coupled with the knowledge on how to launch such ideas into projects beyond the class.

Kelly Sassi has provided some of the most thoughtful and constructive feedback on my projects,

and has taught me vital scholarly skills, methods, and organization via her own research and

teaching. Betsy Birmingham inspired me with her amazing course in Language Bias, which also

provided me with the opportunity to take on my first IRB-approved research project. Amy

Rupiper Taggart always challenged my ideas and pedagogy, while simultaneously remained in

full support of the trajectory of my work in and out of classroom. Thank you to my outside

committee member, Brian Slator, who provided some valuable insights at the final leg of this

project.

Thank you to my colleagues and friends, Steven Hammer and Becca Hayes, who heard

more about proceduracy than they bargained for during the final stretch of this project. I would

also like to extend a special thanks to Steven for supplying the much-needed support with our

v

sound-based projects; these things kept me motivated and energized throughout this journey. I’m

looking forward to seeing all of our careers unfold in the coming years.

vi

DEDICATION

This work is dedicated to Laura. You are my friend, unwavering support and companion, who

inspires all that I do in my work. Thank you for everything.

vii

TABLE OF CONTENTS

ABSTRACT... iii 

ACKNOWLEDGEMENTS... iv 

DEDICATION... vi 

LIST OF FIGURES ... ix 

CHAPTER 1. INTRODUCTION ... 1 

Learning How to Code is Not the Revolution .. 1 

Code Year’s Discourse of Proceduracy Crisis.. 2 

CHAPTER 2. THE MISSING HISTORY OF PROCEDURACY... 7 

Computer Science Overlooks Procedural Literacy... 7 

Rhetoric and Composition Overlooks the “Message” of Media....................................... 15 

What Happened Instead of the Revolution in Rhetoric and Composition? 17 

Conclusion: Positioning Proceduracy... 23 

CHAPTER 3: PROCEDURACY ACROSS THE DISCIPLINES ... 24 

Writing Connections with the Metamedium... 24 

The Continuum of Proceduracy: Writing Procedures... 24 

The Levels of Proceduracy ... 28 

Low Levels of Proceduracy .. 29 

Medium Levels of Proceduracy.. 33 

High Levels of Proceduracy ... 37 

CHAPTER 4. CONCLUSION ... 45 

Theoretical Connections ... 47 

Resources for a Proceduracy-Informed Curriculum... 48 

viii

Proceduracy Before the University... 50 

The Evolution of Writing Technologies ... 51 

WORKS CITED ... 53 

ix

LIST OF FIGURES

Figure Page

1. Screen capture of “Walker, Wisconsin Ranger.” Jim Brown’s Courses, 2012………35

1

CHAPTER 1. INTRODUCTION

"What then is computer literacy? It is not learning to manipulate a word

processor, a spreadsheet or a modern user interface; those are paper-and-

pencil skills. Computer literacy is not even learning to program. That can

always be learned, in ways no more uplifting than learning grammar instead

of writing." (Alan Kay, “Computer Software” 59)

Learning How to Code is Not the Revolution

Since the 1960s, Rhetoric and Composition has struggled to incorporate the visual,

digital, and networked turns, which have been called revolutionary in their respective

times, in both the theory and praxis of rhetoric and writing (Crowley; Sirc Composition as

a Happening, “Resisting Entropy;” Rice; Hawk). Specifically, Jeff Rice argues that our

field missed Marshall McLuhan’s challenge for us to consider how writing will change in

the emerging electronic age. Since this challenge, and the many social, cultural, and

educational turns within our field, we are confronted with yet another call by Codecademy

to make 2012 “Code Year.”

In this thesis paper, I will neither adopt the essentialist and revolutionary driven

rhetoric of the Code Year movement that seems to have pushed beyond the scope of

Codecademy itself, nor stand by in this moment and ignore this call to code in our field

either. Instead, I will investigate the history of proceduracy, which Literacy scholar

Annette Vee defines as the ability to break down a complex problem or situation and

subsequently write an algorithm out of smaller procedures to be written as code to be

compiled and performed by a computer (“Proceduracy” 3). Furthermore, I will discuss its

relationship to literacy, so I can provide a vision on how to position proceduracy in a way

2

that makes sense to both fields: Computer Science and Computers and

Composition/Writing – a position that will hopefully begin to encourage collaboration and

mutual respect of the ways proceduracy manifests in various cultural contexts across the

university.

This journey to position “Code Year” as a key moment for new inquiries into

proceduracy and the nature of writing code begins with an analysis of the present day call

to code by the online educational initiative, Codecademy. Through John Trimbur’s

“Literacy and the Discourse of Crisis,” which defines every call for a new literacy as an

ideological event, I will argue how the goals of the “Code Year” call are rather stagnant

and in opposition to becoming a useful educational model for the academy and public writ

large. Ultimately, this thesis will consider how proceduracy has the potential to create the

conditions for learning to code across the curriculum, enacting new identities and cultures

surrounding computation and writing code.

Code Year’s Discourse of Proceduracy Crisis

Trimbur argues that “literacy crises are always strategic” (286). Such educational

initiatives are typically framed through fears of downward mobility, which has repeatedly

“led the middle classes to identify their private interests with an increasingly stratified and

meritocratic order in education” (293). He states that any “literacy crises take place when a

cultural lag occurs, when literacy practices and literacy education have not quite caught up

to increased expectations and heightened demand” (284). Trimbur argues that this “cultural

lag” is an “ideological event” (281), which occurs when the culture in power either frames

the crises experience as a noticeable decline in ability or as a result of “heightened

expectations and increased social and economic demand” of the literate skill (284). To

3

locate the most recent “cultural lag,” I look to Codecademy’s “Code Year” campaign as the

emblematic articulation of the present discourse of crisis that claims to “make it easy for

everyone to love and learn how to code” (“About” 2012).

As the calendar turned over to 2012, Codecademy launched their “Code Year”

campaign for people to learn “how to code this year” by supplying “interactive

programming lessons” in JavaScript via email every Monday throughout the year (“Code

Year”). On Codeyear’s landing page, numerous technological entrepreneurs and some

scholars are cited to support their initiative, such as a Partner at Union Square Ventures,

who is quoted as saying, “A young man asked for advice for ‘those who aren’t technical.’ I

said he should try to get technical” (“Code Year”). Tim O’Reilly, CEO and Founder of

O’Reilly Media, is quoted as saying, “I wish I'd thought of [this]...The need for computer

literacy has never been greater. This is a fabulous product at the right time” (“Code Year”).

Additionally, Douglas Rushkoff’s tagline driving this cultural zeitgeist, “program or be

programmed,” can be seen throughout the site. What you will not find are references to

proceduracy and more critical and robust ways of engaging the rationale to learn how to

code in 2012. Instead, the major cultural message coming out of the “Code Year” program

connects back to Trimbur’s discourse of crisis, which I would update from traditional

literacy crises to the crisis to code that has been developing since the 1960s.

In just six months, the “Code Year” program currently has over 450,000 subscribers

and has been circulating in the public sphere via academic blogs (Salter; Dwarok; Talbert)

and the national press, most notably, a story about New York City Mayor Michael

Bloomberg’s vow to learn how to code via a twitter message to highlight the impo (“NYC

Mayor”). Over the past few years, there has also been an increase in other movements that

4

maintain the position that more coding and/or technological gains must be made in

education, (e.g., Google’s “Code Camp” and “Computational Thinking” programs,

emerging STEM schools, President Obama’s Race to the Top program, etc.). Furthermore,

the call to code in 2012 could be characterized by technopragmatist and HASTAC co-

founder Cathy Davidson’s call for our educational system to take up a fourth “R” in the

standard Reading, wRiting, and aRithmetic to now include algoRithm to prepare the new

generations for the 21st century. Yet, this idea to “get more technical” and coordinate a

mass educational reform around coding has happened before.

What makes “Code Year” an updated case of Trimbur’s discourse of crisis into a

proceduracy crisis is how it demarcates the skill through the middle/upper classes call to

maintain the goal toward economic security by simply “getting technical.” Presently,

discourse surrounding “Code Year,” as well as the activities provided on the website, fail to

acknowledge such work to see how learning to code is more than a professional skill rooted

in a particular grammar and style. While many of these examples remain outside of the

university, they emphasize the discursive loop that our culture seems to find ourselves in:

Johnny can’t write, and now he can’t code. Here, as Trimbur’s claims are validated once

again, I suggest that simply learning how to code is not the revolution, because, as I will

discuss in this thesis, this “Code Year” movement should have more critical goals beyond

simply getting the code to compile. Instead, proceduracy folds in more of the robust

rhetorical traditions that our field can offer to the writing of code. Furthermore, I will

provide a history surrounding past calls to code in both Computer Science and Rhetoric and

Composition that have always stressed To begin this journey toward a more critical

engagement with Code Year, I submit that a good place to prime the conversation is via the

5

“Program or be programmed” town hall meeting at the 2012 Computers and Writing

conference, which also recognized this zeitgeist surrounding Codecademy’s “Code Year”

campaign.

As Computers and Writing entered the discourse of this coding crisis, many of the

town hall’s panelists pushed for many in this subfield to learn how to write code. Rhetoric

and Digital Media scholar David Reider stressed that learning how to write algorithmically

will enable us to see how words come alive via code or we risk falling behind the curve.

Literacy scholar Annette Vee discussed the values behind coding practices and how groups

define what “good” code is to emphasize that “there is no good code” without the

recognition of its source social context (“Coding Values”). Literary and Media Studies

scholar Mark Sample cautioned the field to not use the word “literacy,” as it enacts this

“program or be programmed” rhetoric. He instead suggested using the term competency to

emphasize the “highly contextualized, situated, and fluid” nature behind learning a literate

skill.” Karl Stolley, a digital rhetoric and writing scholar who is also a web developer,

“crafted” his vision toward “source literacy” that stresses the work to become more

comfortable at the keyboard to foster a “command-line literacy.” Out of each of these

panelists, I am most closely aligned with Vee, whose work I will come back to in Chapter

3.

Rather than simply urge our field to take up programming, I will first go back to the

early 1960s in chapter 2, to provide a parallel history between the newly formed disciplines

of Computer Science and Rhetoric and Composition to show how both disciplines

overlooked the initial calls to the revolutionary proposition for procedural literacy by

Computer Scientist Alan Perlis and media scholar Marshall McLuhan’s challenge of the

6

university to engage the emerging electric age. The goals for this history will not be to

draw lines in the proverbial sand between who needs to address what aspect of

proceduracy, but instead I hope it will elicit a mutual respect for each others roles in the re-

call for proceduracy across the disciplines, where I submit that those who are committed in

our field of Rhetoric and Composition will use Code Year as a means to research and

develop scholarship surrounding the rhetorical faculties of code. In chapter 3, I review the

contemporary calls and theories on proceduracy, which I will extend with the examples

from interdisciplinary ideas and goals from fields such as videogame theory, media theory,

and software studies. Finally, in chapter 4, I will provide some of the implications of these

ideas on distributing proceduracy across the disciplines, and, more specifically, how

Rhetoric and Composition should pursue this line of work.

7

CHAPTER 2. THE MISSING HISTORY OF PROCEDURACY

In this chapter, I will focus on converging the histories of both Computer Science

and Rhetoric and Composition as newly formed disciplines in the early 1960s to highlight

their shared experiences in missing the calls to learn from the critique and writing of

models throughout the university. Rhetoric and Composition could have taken up

McLuhan’s call to explore and teach networked thinking in the electric age, but instead

taught composition via the rearview rhetorical tradition. Interestingly, McLuhan’s

challenge to Rhetoric and Composition on the effects of the electric age on writing has had

a strong influence on one of the key figures in Computer Science, Alan Kay, but, as this

history reveals, even Kay is still telling us all that “The revolution hasn’t happened yet.”

I will make no attempt to provide a full historical account of either discipline’s

relationship with software development and use or situate each account intellectually.

Instead, I chose to understand the effects of missing the opportunity to engage with

computers and software in more diverse and critical ways via procedural literacy;

particularly in relation to the ongoing research and praxis of what writing is and how it

operates in the world.

Computer Science Overlooks Procedural Literacy

Back in 1961, at a symposium during the 100th anniversary celebration of M.I.T.,

software engineer Alan Perlis proposed that computer programming embodied a variety of

skills that are relevant and useful to numerous disciplines in the university. In “Procedural

Literacy,” new media scholar Michael Mateas describes Perlis’ call as a revolutionary idea

that sought to teach computation and complex processes across the disciplines by starting

an introductory course to the university for every incoming student. Perlis’ response drew

8

from his observations that recognized the patterns of typical exigencies on how and why

people interacted with computers and the learning of a specific programming languages

(Mateas 103). He observed that:

most students learn to use computers in relatively haphazard ways, either

driven by the need of some particular application, or in the context of a

numerical analysis course that is primarily focused on teaching numerical

methods, or on their own, or in a course that teaches some particular

programming language. None of these approaches focus on the teaching of

computation. (103)

As aforementioned, Perlis attempted to move away from the model of teaching a

specific language, and, instead, desired to teach computation to all incoming first-year

students and beyond at the university. Teaching computation, to Perlis, is how students are

able “to construct complex processes out of simple ones—what would become labeled as

procedural literacy (qtd. in Mateas 105). To approach computational thinking, he outlined

the goals for a set of courses across the disciplines that would teach programming as a

medium designed for the ability to describe and write processes, which, according to Perlis,

aligned with the ultimate goals of any university. Mateas summarizes these goals for

students to be taught the following principles:

1. A cultural grounding for knowledge: “sensitivity… a feeling for the

meaning and relevance of facts” (Perlis qtd. in Mateas 103-104)

2. To teach students how to think about and communicate models, structures

and ideas: “…fluency in the definition, manipulation, and communication of

convenient structures, experience and ability in choosing representations for

9

the study of models, and self-assurance in the ability to work with large

systems…” (104)

3. To teach students how to educate themselves by tapping the huge cultural

reserves of knowledge: “…gaining access to a catalog of facts and problems

that give meaning and physical reference to each man’s [sic] concept of, and

role in, society.” (104)

Considering his emphasis on cultural and communication fluencies, Perlis’ goals

align with the goals of most Rhetoric and Composition educators and are arguably more

ambitious than the goals of most writing or computer science programs presently. Based on

these goals, Perlis desired to create the conditions for students to enter the university to

“develop an intuition for which problems and ideas are important or relevant” (Mateas

103). As a result, students must both engage with technology more critically, while also

emphasizing the social nature of learning. Mateas interprets these guidelines and sees the

“procedurally literate practitioner” as a person who is “aware of the constraints of specific

tools, [and] will be capable of considering a space of computational possibility larger than

any specific tool” (105).

Despite Perlis’s suggestion for a move toward procedural literacy at this forum,

other software engineers—notably, Peter Elias—opposed this piloting of a program plotted

toward a general education outcome that foretold computation enacted across the

disciplines. In response to Perlis, Elias posed an antithetical direction that would ultimately

become the model to situate the teaching of specific programming languages within the

domain of Computer Science alone. Elias’s vision desired to develop and “train” their

undergraduates in specific programming languages. This goal, argued Elias, would

10

“generate enough worthwhile languages for [Computer Science] to be able to stop,”

meaning stop the research and development of new programming languages (qtd. in

Mateas 104). Nowhere is this more evident in his description of the coming “natural”

abilities of future engineers and scientists, who, in Elias’ words, “will face the console with

such a natural keyboard and such a natural language that there will be very little left, if

anything, to the teaching of programming” (qtd. in Mateas 104). In direct opposition to

procedural literacy, Elias concludes to the council that if they will do anything different as

an emerging science and discipline, they will have “failed” (qtd. in Mateas 104).

Elias’ vision won out, but it has not gone unquestioned or challenged. Literacy

scholar Annette Vee writes that “human conversational fluency has been a holy grail for

language design; all languages still require processes to be broken down, made explicit

and then expressed in ways the computer can understand” (Proceduracy 44). Lead

programmer at IBM in the 1960s Frederick Brooks wrote an influential essay, arguing that

there is “no silver bullet” programming language to address every problem (Brooks qtd. in

Vee 43). Mateas also questions Elias’s vision for students to learn how to “speak to

machines” as a natural ability by interrogating such naturalness as being synonymous with

a state of becoming “frictionless” (105). He refutes Elias’s modernist notion of “stopping”

the evolution of programming languages, which, as history has proven, software engineers

have developed thousands of programming languages and will continue to develop even

more over time (105). This shortsighted goal of Computer Science negated the critical

insight of how the computer was and is the new medium that is “about describing processes

… [and] complex flows of cause and effect,” which, as Mateas explains, “will always

involve work, never achieving this frictionless ideal” (105). Ultimately, Elias’ vision failed

11

to acknowledge the semiotic domain of programming, suggesting that there will (and

should) be only a few languages to develop and use, which established a trajectory for the

field to disciplinize itself as a Science, focusing its efforts on language development and

efficiencies, rather than understanding the complexities of proceduracy development and

how it informs its instruction.

Of course, these pursuits are necessary for the advancement of computing and

software design, but computer science’s shouldering of the burden as the sole entity in the

university to teach programming since the 1960s has beset unrealistic expectations on its

departments, instructors, and students. To convey the magnitude of the issues created by

keeping the role of teaching programming confined to computer science departments: since

their inception in the 1960s, between 30% and 60% of every university’s … intake fail the

first programming course” (Dehnadi and Bornat 1). Researchers Saeed Dehnadi and

Richard Bornat (Middlesex University) contextualize these statistics by indicating that

“many of the [students]” who fail these courses “are mistakenly … ‘progressed’ into

following courses” (n1, 1). They connect these procedures of the department to the

“misguided Quality Assurance procedures and the efforts of colleagues who doggedly

believe in the normal curve” (n1, 1). Ultimately, the introductory level courses in computer

science serve as a gatekeeper to the one mode of learning how to program, which has also

served as a deeply entrenched dichotomy between learning how to program across the

disciplines.

Yet, instead of a “revolution” in computer use and programming, influential

computer scientist and software engineer Alan Kay argues that the current model curricula

in the university could not keep up with the quick developments of the technology, and the

12

academy compounded this problem through the blackboxing of such developments in

software from the rest of the institution and culture writ large. Consequently, Computer

Science shouldered the entire responsibility to teach programming and the affordances of

this new medium, which, as Kay argued, led to its overemphasis on professionalization. In

an interview with ACM Queue, Kay elaborates on the aforementioned flawed state of

learning how to program, stating “that most undergraduate degrees in computer science

these days are basically Java vocational training,” which alludes to the stronger cultural

causes, i.e., procedures, driving these non-revolutionary uses of computers (qtd. in

Feldman). He criticizes the capabilities of software and the far from revolutionary use of

the networked information systems prevalent in our culture. In similar fashion to Perlis’

call for procedural literacy, Kay desired that the future of educational environments and

their research, development, and use of software “are not going to retrieve facts but points

of view” (qtd. in Kasch, emphasis added).

Throughout the 1970s, Kay and many others (Dan Ingalls, Adele Goldberg, Diana

Merry, etc.) developed the core essence of the personal computer of today at the influential

Xerox PARC (Palo Alto Research Center), including the graphical user interface (GUI).

Kay and Goldberg developed the first object-oriented language environment, Smalltalk,

which was designed for anyone to be able to program their own tools and simulations

(“Personal Dynamic Media”). Kay describes his vision for computers and education, akin

to Perlis’ goals with computation with procedural literacy, stating that:

The weakness of databases is that they let you retrieve facts, while the

strength of our culture over the past several hundred years has been our

ability to take on multiple points of view. It should be possible for every kid

13

everywhere to test what he or she is being told either against arguments of

others or by appeal to computer simulation. The question is: will society

nurture that potential or suppress it? (qtd. in Kasch)

Despite the seriousness of Kay’s tone and point, at the start of this particular

excerpt, Kay, in McLuhanesque fashion, says more than what he means at face value, when

he states that “The weakness of databases is that they let you retrieve facts.” In this 1991

interview, Kay understands that the purpose of databases are to retrieve facts, but by

reframing it as a weakness, he highlights Computer Science and our culture’s overemphasis

on the computer as a tool, rather than a medium. Kay’s question of the nurturing or

suppression of this vision connects back to the misprision of computer science, where he

argues the field has largely neglected the architecture of programming, and instead focused

on the materials (data structures). Kay, among numerous other computer scientists, since

the 1960s, has taken on this challenge to not only develop more advanced programming

languages, but also expose students to the potential power of computers and computational

thinking as a way toward seeing, mapping, and navigating the numerous cultural systems,

(more resemblances of proceduracy), which have yet to become adopted practices and

philosophies within American educational institutions.

In numerous interviews and speeches, Kay references McLuhan as one of his

primary influential thinkers who has informed his outlook on computing and its role in

education akin to proceduracy. More recently, in 2007, he addressed the University of Pisa

in Italy about the still forestalled revolution in computing by explaining the reigning

influence of the 15th century invention of the printing press, which is discussed at length in

McLuhan’s The Gutenberg Galaxy. Kay cites McLuhan’s work, stating that “when a new

14

medium comes along it is first rejected on the grounds of ‘too strange and different,’ but

then is often gradually accepted if it can take on old familiar content” (Viewpoints

Research Institute 3). He notes how many of the major software engineers in the 1960s,

who went on to develop personal computers, bit-mapped screens, overlapping windows, …

the Ethernet, and the Internet, were motivated by the highest transformational

achievements of the printing press” (Viewpoints Research Institute 1). Essentially, Kay

maintains that the computer is the first medium that could remediate all of our sound and

visual senses into “yes” or “no” binary numbers. He draws repeatedly from McLuhan’s

argument that "the electric age brings number back into unity with visual and auditory

experience, for good or ill" (Understanding Media 109).

The computer is the medium best suited for people “to explore the universe of

knowledge,” argues Kay (59). Since he recognized that print, as a medium, gives shape to

our ephemeral thoughts, while software, as another medium, gives shape to our ways of

doing and interacting with systems. He foresaw the computers ability to able to give new

agency to the written word, because “the computer could carry out the implications of the

claims to provide a better sense of whether the claims constituted a worthwhile model of

reality” (Kay, Viewpoint Research Institute 2). In a 1984 article in Scientific American,

Kay describes the computer as the next wave in literacy and expression, stating that:

The protean nature of the computer is such that it can act like a machine or

like a language to be shaped and exploited. It is a medium that can

dynamically simulate the details of any other medium, including media that

cannot exist physically. ... It is the first metamedium, and as such it has

degrees of freedom for representation and expression never before

15

encountered and as yet barely investigated. (emphasis added, “Computer

Software” 59)

In 1997, Kay delivered a widely cited keynote address, “The Computer Revolution

Hasn’t Happened Yet,” that challenged the field of computer science to consider how

“there has [yet] to be an exquisite blend between beauty and practicality” in the production

of programming languages and consequently software. He laments how the field and

professional industry has failed to understand how “[a]rchitecture is always going to

dominate material,” and more specifically how, according to Kay, it took the advent of the

Internet to even spark an interest in the architecture of Object-Oriented Programming.

Even though Elias’s vision became the model enacted in the academy, suppressing

Perlis’ call for a truly revolutionary model of procedural literacy and Kay’s vision to

decentralize computing across the educational sphere, Kay still continues to promote his

vision. Now, during the cultural zeitgeist of Code Year, perhaps, this opens the potential to

finally explore the ability and art of writing code to be explored in both theory and praxis

across the disciplines; specifically in Rhetoric and Composition. Here, at this moment, we

can begin making more connections between the potential repurposing and fusion of our

work.

Rhetoric and Composition Overlooks the “Message” of Media

While Kay understood the revolutionary implications of the work of literary and

media scholar McLuhan, the disciplines of English and Rhetoric, unfortunately, did not.

Jeff Rice expanded on the effects of the electric age on Composition Studies by calling

back to 1963 as a “’watershed’ moment in the history of writing, … [where] various writers

simultaneously explored, … the connection between writing and culture (56). In this, yet

16

another, call back to the 1960s, Rice emphasizes the exclusion of McLuhan’s (The

Gutenberg Galaxy 1962; Understanding Media 1964) challenge to “print-based thinking”

in the overarching discussion during the formation and evolution of Composition Studies

(56). Specifically, Rice argues that Composition has failed to consider how McLuhan’s call

to recognize how the “‘new configurations of mechanisms and of literacy’” disrupts print-

based “‘forms of perception and judgment’” of what writing is and how it functions in a

digital culture (McLuhan qtd. in Rice 56). Rice concludes by calling into question

Composition’s history, which is grounded in “a print model,” and calls for a revolution in

how media theory and production should inform Composition’s theory and pedagogy.

This media-driven revolution is not too far removed from the dispersed models of

computational/procedural literacy proposed by Perlis and practiced by Kay to write

mediums with an emphasis on cultures. Rice proposes a Composition theory and pedagogy

where “dominant ideologies become subjected to newly created writerly control,” blurring

the lines of power in such discourse practices, “between those who create discourse and

those who receive it” (70). This media-focused method is an attempt to see information not

as something that is delivered, rather as something that teachers and learners traverse with

and manipulate—it is a call to see and code the environments in which we inhabit and

produce discourses.

At first glance, Rice’s argument for a media-based model of composition positions

the field to simply “teach HTML, weblogs, or other new media-based assignments,” but he

emphasizes his concern “about the much larger issues of curriculum and pedagogical

practice… [that calls] for a closer correlation between writing and media in our pedagogy

and in our theorizing” (70). Considering Rice’s call back to 1963, around the same moment

17

when Computer Science neglected to take up Perlis’ revolutionary proceduracy-informed

curriculum, Rhetoric and Composition chose to continue its long tradition and print-based

thinking over the challenges presented by the new metamedium, which would come to

produce a new model of networked thinking.

What Happened Instead of the Revolution in Rhetoric and Composition?

Just as Computer Science missed the revolutionary power of computing by

sidestepping the recognition of computers as environments, so, too, did the germinal

scholars and educators in Computers and Writing field miss the revolution. The initial era

of Computers and Writing ushered in a series of homegrown software programs that served

the individual writer. In the early 1980s, Computers and Writing scholar Lisa Gerrard notes

that many composition instructors were developing software, such as word processors,

invention aids, and style checkers (282). Yet, the logic driving the use of the computer to

guide an individual writer through the invention process, at its core, draws from the

processes instantiated by the rhetorical revival era: the desire to use classic rhetoric to

create the conditions for a “systematized guidance at every step in the writing process,” and

this is exactly what the first era of Computers and Writing achieved (Corbett qtd. in Rice

58). These programs and breadth of scholarship from the emerging subfield of Computers

and Composition emphasized the use of the computer as a personal device, which

foregrounds larger issues related to not envisioning the computer as a networked, social

machine—an issue of inattention to the architecture that has intersections with Kay’s grief

with Computer Science.

The programs created by Computers and Writing scholars, such as Hugh Burns’

TOPOI, Helen Schwartz’s SEEN and Prewrite, Donald Ross and Lillian Bridewell’s

18

ACCESS, Gerrard and Ruth Von Blum’s WANDAH, and James Strickland’s FREE were

designed to instruct a well-defined, user-friendly path through the writing process. Since

these programs drew from more traditional theories of rhetoric, Gerrard wrote in her review

of the first decade of the Computers and Writing conference, “Computer literacy--whether

applied to student or instructor, and whether it meant the ability to use a keyboard, to

program, to analyze the social consequences of computers, or a combination of these—was

always defined as a personal, rather than social, skill” (283). Afterall, the first computers in

the homes of non-specialists were not networked machines. Throughout the 1980s, they

were marketed as the next household appliance and sold as personal devices that could do

what machines do best: crunch numbers. While this is, of course, true, computers have

proven to contain far more potential beyond this hindsight, but as Kay notes, our

educational and political institutions could not keep up with the scalability of this new

medium. Consequently, however active the scholars and practitioners were in either

Computer Science or Computers and Writing, the computer became the personal computer,

(the PC), and in conjunction with the rise of commercial software, Gerrard notes, almost in

passing, that “the days of working with a programmer or writing our own code [were]

largely over” for scholars and practitioners in the Computers and Writing field (282).

Ironically, just as Computer and Writing/Composition’s role turned away from

developing software, Paul Leblanc published Writing Teachers Writing Software (1993).

While our field has largely overlooked Leblanc’s work (even within Computers and

Composition), his book catalogs the experiences of the first wave of Composition scholars

involved in various methods of program development for the field of writing instruction.

Referring back to Gerrard’s indication of the shift away from software development,

19

Leblanc argues that this redirection originated mainly from the difficulty for tenure-track

scholars to develop software, which, at the time, did not include the writing of writing tools

on the computer. Procedurally, scholars in Computers and Composition understood this

institutional restraint, leading to a shift toward the adoption of proprietary software in the

classroom and scholarship. Consequently, as Cynthia Selfe and Dickie Selfe claimed, most

composition scholars and educators, “deal[t] with technology not as critics but as users”

(496), so, throughout the mid-to-late 1990s, the rise of proprietary software packages in

Computers and Composition begot a new series of influential scholarship centered around

“the politics” of the interface, code, and overall nature of writing on the surfaces provided

to us on the web (Bolter 1991; Selfe and Selfe 1994; Johnson-Eilola 1993; Selber 1997).

Bill Hart-Davidson describes his own experience during this time period, realizing

that “the tools and environments in which [he] was writing, and those in which [he] was

encouraging [his] students to write, were built out of the very stuff that [he] was supposed

to be in command of as the teacher: assumptions, theories, principles, and pedagogies of

writing” (qtd. in Inman 200, 95). Due to this problem, the subsequent praxis and

scholarship of Computers and Composition scholars called for more critical use of the

technology used in both the classroom and workforce, paving the way for future scholars to

cross the form/content divide.

The Computers and Composition/Writing community crossed this divide by first

critiquing and writing on the surfaces of the web via hypertext, the occasional writing of

script-based code (Bolter; Johnson-Eilola; Selber), and analyzing the designs of interfaces

(Selfe and Selfe). Yet, this new wave of scholarship rarely pushed for writing instruction

that incorporated structured programming languages in the classroom. Instead, it called for

20

users to become better readers of interfaces, delineating an agency in digital mediums

through the creation of new interfaces via more visual-based methods outside of code, e.g.

drawing and writing with either on paper or proprietary software (Selfe and Selfe).

Although, in 1999, one issue of Computers and Composition dedicated itself to position

some Rhetoric and Composition scholars to research and praxis surrounding code.

Most applicable to my arguments here, Joel Haefner’s arguments in “Politics of

Code” represents the perpetuation of code as a limited language that remain prevalent in

contemporary scholarship, when compared to the performativity of human language in

discourses. He argued that “the language of coding is much more limited in the kinds of

actions it can perform than the language we use for communication every day, and in

writing classes (emphasis added 326). He compares code to Michel Foucault’s argument

that, after the Renaissance, “[l]anguage became self-referential, rule-governed, and

hierarchical,” implying that Modernity’s “manifestation of ‘the will to truth’” is embodied

in the “Boolean logic” of “the electrobinary world of the computer itself” (qtd. in Haefner

328).

Haefner elaborates on this connection to Foucault’s Archaeology of Discourse with

an iteration of Shakespeare’s “famous conditional statement” (“To be, or not to be?”)

written in the C programming language (328). His comparison is, as he concedes,

“contrived,” but he continues to analyze the binary, using it to contend that code is the

construction of nothing but literal imperative statements—extreme binaries—with not

nearly the personal and cultural fluxus, state of limbo, and/or interplay as the original

Shakespearian version. In the end, Haefner privileges Shakespeare’s version over the

imperative performance of the code, stating that “[a]s the code performs in the computer,

21

bursts of electricity trip circuits; as Hamlet speaks on the stage, words flow, complicate and

negate themselves, but no action takes place. Structured programming always chooses ‘to

be’; Hamlet dangles between the two” (329).

Haefner’s analysis is incorrect and is also unfortunately indicative of the type of

analysis that computer scientists might find all too humorous.1 Haefner is correct to

indicate that his example fails to capture the “dangling between the two” scope of

Shakespeare’s construction of Hamlet in this moment, but I argue that such a “dangling”

experience can be expressed procedurally in code, emulating such processes written into

the “code” of the performance of Hamlet. Furthermore, his own procedure could become

much more complex with additional source work to make it a much more dialogic and

interactive environment. By writing a program that manages input/output from the users,

orchestrating more complex procedures, recursion and networks, users could experience a

re-enactment of Hamlet’s disposition of uncertainty, rather than simply remediating

Shakespeare’s original soliloquy verbatim as a text.

Literacy scholar Annette Vee also makes this claim to code’s dialogic nature and

closer relations to oral communication. She argues that “Code can result in more dynamic

and interactive compositions than traditional text—for instance, games and interactive

fiction—because of this ability to change paths based on input" (22). Conversely,

Haefner’s analysis of code keeps code within a dichotomy, not only separate from the

discourse of language as experienced out of code, but also out of its evolving role(s) in the

age of the Internet, because, as this thesis will continue to argue, whether one is in or out of

the code, these networked streams of processes create a much more dynamic, social

1 As I have learned in regular conversations with those in the field of computer science.

22

environment than Haefner’s constrained analysis with an example that partitions the

individual off from the social experience of the networked environment. Unfortunately,

Haefner’s critique of code still remains emblematic of both the field and public’s

perception of code as a tamable, less complex thing to be learned and written. Many

writing teachers understand that teaching grammar does not produce good writing, and Kay

has been arguing since his the 1970s that the same principle can be applied to

programming.

More recently, Bradley Dilger, in “Beyond Star Flashes,” discusses how writers (of

traditional texts) in a networked culture, simply by becoming more critical of the spaces

they use, “can engage the same manipulations and produce the same results as those who

are fluent users of code—and if they choose, leverage these affordances into learning” (21).

He argues that there is a reciprocal relationship between how “[c]ode begets function and

vice versa,” where both influence each other (21). He contends that many people choose to

ignore how to learn code, creating the conditions necessary for technical communication,

which “often involves writers doing the work of coding on behalf of readers, thereby

facilitating the establishment of relationships between writers through intermediary

readers” (emphasis added, 21). At this point, our field comes full circle back to the

proposed trajectories by influential scholars in the early 1990s (Selfe and Selfe; Hawisher),

where we remain writers writing on the surface of the interfaces that we may aptly read as

problematic—even colonizing. Rhetoric and Composition is still restricted in our

computer-mediated scholarship and praxis, because we failed to develop a more

comprehensive outlook on the new inscriptive capabilities of the networked computer. In

the end, we are restricted to one form of writing, caught within the linguistic discourses,

23

since we overlooked the call to recognize, as McLuhan and Kay did, the new potential for

procedural-based forms of persuasion and expression.

Conclusion: Positioning Proceduracy

In the early 1960s, Perlis envisioned “procedural literacy” to teach computation as

it could have been enacted across the university just as rhetoric and composition emerged

as a field with ties to both computer literacy and writing across the disciplines. Since the

first generation of Computers and Writing, Rhetoric and Composition has turned away

from the computer’s processing power, writing upon the surfaces of proprietary programs,

while Computer Science has neglected to address the technocultural implications of writing

code. Now, in 2012, Rhetoric and Composition, and particularly the subfield of Computers

and Writing, sees an opportunity to re-engage with Computer Science, to take up coding

not simply to code, but to extend the rhetorical power of our students and ourselves as a

field via “proceduracy.” This concept, re-introduced in a significant way by literacy

scholar Vee (2010) will be explored and explained at length in the next chapter.

24

CHAPTER 3: PROCEDURACY ACROSS THE DISCIPLINES

Writing Connections with the Metamedium

In 1960, in the introduction to Explorations in Communication: An Anthology,

McLuhan wrote, “Today we’re beginning to realize that the new media aren’t just

mechanical gimmicks for creating worlds of illusion, but new languages with new and

unique powers of expression” (2). A new medium gives rise to new capabilities for modes

of learning and the construction of persuasive and expressive elements. While the Code

Year movement in 2012 attempts to motivate people to learn how to code, it’s educational

mission is still informed by the old rhetoric of crisis. More over, the parallel histories of

Computer Science and Rhetoric and Composition indicate that a wider perspective on the

computation and the computer as a metamedium has yet to be fully explored by

rhetoricians and compositionists.

Accordingly, in this chapter, I submit that new work toward a procedurally

informed curriculum is made in Rhetoric and Composition. Starting with Vee’s work in

proceduracy as framework, I will explain how proceduracy differs, but is connected to

traditional modes of literacy. Finally, I will provide some examples that fall across Vee’s

proposed levels of proceduracy (low, medium, and high) to hint at the possibilities for a

curriculum that moves toward the making and theorizing of persuasive and expressive

elements in code.

The Continuum of Proceduracy: Writing Procedures

To arrive at a clearer definition of proceduracy, I will begin with the recent call by

contemporary scholars. Vee extends Perlis’ call for “procedural literacy,” re-naming it as

25

proceduracy2, because “Like literacy, proceduracy is a human facility with an expressive

technology that is affected by intersecting social, cognitive and technological factors and

can be used for creative and rhetorical purposes” (14-15). According to Vee, for people to

become procedurally literate, they draw from their own exigencies, envisioning a process

that they “want the computer to enact, then [they] break that process down into hyper-

explicit procedures and encode them in a grammar and syntax the computer can

understand” (16). She connects proceduracy with some of Perlis’ original ideas on how it

works across the curriculum, drawing intersections between it and multimodal writing,

stating “Procedural compositions are often a combination of code and text, along with

audio, visual and kinetic expression"—a constitution of the senses (80). Considering how

code is the driving force behind these semiotics3, Vee submits that the “symbolic task” of

proceduracy takes on some of the following goals that are different from, but connected to,

the epistemic work in traditional literacies:

… procedural expression can be a more efficient way of encoding and

decoding complex processes or handling vast quantities of information in

non-linear ways, and can allow people to offload some of the information-

processing onto machines. In the hands of a highly procedurally literate

person, the computer can create worlds, support interaction, and manage

2 From this point forward, I will refer to procedural literacy as proceduracy, but note that
the two are the same idea.
3 Semiotics, of course, refers to the study of signs and their many relationships with the
social and cognitive structures, but there is also a branch of semiotics, Computational
Semitoics, which typically studies artificial intelligence and knowledge representation
within the subfield of Human-Computer Interaction. (See Tanaka-Ishii’s Semiotics of
Programming for more details.)

26

information on a scale far greater than linear composition tools such as text.

(4)

To ground these claims for code’s ability to “scale” all of these literate, discursive

practices through the practice of writing code, she draws from Heidegger’s Being in Time,

contending that “computers are not objectively removed from human context; especially

since they are constituted in human language [via the thousands of different programming

languages], they are fully embedded in the world” (20). In code’s simplest sense,

programmers know code as “source” or “binary”—binary being the core of any program

software that is then produced by compiling the source code. Vee notes how computer

science often portrays computers as objective information-process machines. Yet, she

highlights how “the subjective cannot be fully separated from the objective,” since code

derives from human language (20).

Vee makes some important distinctions between speech, writing, and code,

claiming that, “Like writing over speech, there are tradeoffs to programming over writing

as a method of expression: richer context and nuance is sacrificed for scalability, longevity

and efficiency of dissemination” (11). She draws connections between writing and

programming, indicating that both are technologies “that allow thoughts to travel beyond

their thinker”—think of it as the scaling of our ideas (11). Logically, then, code also

circulates and performs in the world on a far greater scale than either speech or writing has

done before. While the scholarship in Rhetoric and Composition has made strides in

theorizing the effects of the writer writing in digital, networked spaces, it, as a field has yet

to explicitly explore the actual writing and contextualizing of computer code.

To open up the field to the complexities of code, tearing down the prevalent

27

dichotomy typified by Haefner’s conception of code, Vee elaborates on this new form of

procedural expression, saying that proceduracy “emphasizes the knowledge of procedures

(action) over description [(text)] in code…” (20). In Persuasive Games, videogame

researcher, designer and critic (with a Ph.D. in comparative literature) Ian Bogost argues

that computers, as a “flexible inscription medium,” enable us to write and “define the way

things work: the methods, techniques, and logics that drive the operation of systems, from

mechanical systems like engines to organizational systems like high schools to conceptual

systems like religious faith” which simulate such systems and highlight Kay’s recognition

that the computer is, indeed, the first metamedium (Kindle Locations 176-178).

Recalling the history of Rhetoric and Composition, even Computers and

Writing/Composition, we have yet to explore the writing of the rhetorical and expressive

power of processes and computation and its connection to the multimodal forms of writing

we theorize and practice on the surface-level screens. Our history indicates that we have

yet to play a role in the shaping of the procedurist, who has an evolving set of skills that

explore, as Vee writes, “the range of process-knowledge a person can draw on in the

particular domain of computers” (46). Through the scope of programming languages, Vee

posits a “multivalent continuum” (47) of proceduracy that explores how, “[a]t each ‘level,’

a person’s knowledge of how data and processes can interact increases” (46).

Before she proposes such a continuum, she recognizes that, like any other form of

literacy, proceduracy is subject to “issues of measurement,” standardization, and what it

means to be procedurally literate (45). She acknowledges Harvey Graff’s arguments in

Labyrinths of Literacy on perceiving “literacy in terms of its spread amongst the masses of

people and what the ideological impetus behind the spread was, rather than on levels of

28

literacy in particular people, or how useful those skills were for individuals” (2010, 45).

Yet, she “refus[es] to be backed into a corner” by calling upon literacy historian David

Vincent’s contentions in The Rise of Mass Literacy that to be literate “is a different

experience than [being illiterate]” (46). Vee, like Vincent and myself, “find the value in

trudging on regardless” of Graff’s justifiable concerns (46). Considering these concerns, I

will now provide an overview of Vee’s continuum of proceduracy to then use it as a

method to locate the position, (i.e., level), of both Rhetoric and Composition and Computer

Science on the continuum, so I can provide a clearer vision as to how and why we must

begin to enact proceduracy across the disciplines in the university.

The Levels of Proceduracy

Responding to the two histories that provide a picture of the stalled revolutions

around proceduracy in both Computer Science and Rhetoric and Composition, I will now

build on the calls for a proceduracy-informed path that has been around since the 1960s,

but has largely failed to scale in the educational system. This call to code across the

disciplines is more than Code Year’s call to code, because it will fold in the recognition of

the rhetorical and expressive nature of code that, arguably, has been around since the

conception of proceduracy. What I hope to provide in this chapter is a vision to do more of

this kind of work in Rhetoric and Composition to increase our rhetorical faculties and

incorporate a far more robust sense of multimodality than any type of Code Year

movement or lone Computer Science model could provide on its own accord.

I readily accept the reality to the slow building of the infrastructure required of this

vision of proceduracy across the disciplines in the university, but I will note that I cannot

cover the more bureaucratic/political details due to the goals indicated in this thesis.

29

Instead, this chapter reviews some of the smaller installments of proceduracy that I argue

must happen more often and more widely dispersed across the university to stimulate the

conversation on learning how to code beyond the currently dominant paradigm shouldered

by Computer Science and the movements, such as Code Year that respond too quickly to

the looping discourse of crisis and ultimately re-enact the current programming paradigm

in Computer Science. Now, instead of simply writing or remediating curricula, as

Codecademy does with learning how to code, I will use Code Year as a kairotic moment to

stimulate the greater potential behind proceduracy and the persuasive and expressive nature

of code.

Vee begins the discursive process to define some metrics on measuring proceduracy

“in terms of programming, which indexes a fluency with process-knowledge” with the

following three main levels: 1) Low: Navigation and Customization, 2) Medium:

Modification, and 3) High: Writing code that generates materials, tools, and/or simulations

for users (47-48). Please note that I have ascribed the low, medium, and high levels in a

more explicit way than Vee, as she described both low and high levels in a much more

subtle way in her dissertation. Furthermore, I attached the term “medium” to the skill of

modification, as listed above; more generally, Vee did not define modification as a medium

level, as this is my language.

Low Levels of Proceduracy

In the low level of proceduracy, Vee argues that navigation, the ability to use

menus and “successfully navigate the options in a program,” is the lowest form of

proceduracy (47). She notes how navigation is not traditionally included within the

continuum of learning how to code, but contends that it belongs on the “proceduracy scale

30

because it draws on an understanding of a task as broken down into explicit procedures,

which can be standardized and provided as options on menus” (47). Next highest in the

low-level range is customization, which is “the ability to change options on a computer to

fit personal needs” (47). She writes that this skill “indicates a deep understanding of the

interactive and malleable nature of the computer, and a knowledge about what nodes can

be changed” (47).

I argue that these capabilities to navigate and even customize the interfaces and

environments that we inhabit implies and/or equates with the reading and critical analysis

of such coded spaces. As discussed in the history of Computers and Writing, many in this

field are critically engaged in the spaces that we write (Dilger, Hawisher, Johnson-Eilola,

Rice, Selber, Selfe, Sirc, and more), but not all have claimed that some of us should

actually write the code that produces these spaces. Unfortunately, the argument to leave

coding to other disciplines implicitly suggests that we, as a field dedicated to writing,

remain readers. Computers and Writing, for the most part, has not even been reading the

actual text that is code. Instead, most in our field are solely readers of the production of

such processes undergirding the networked environments.

Yet, in the year of code of 2012, Rhetoric and Composition scholar James Brown,

Jr. designed and taught a “Digital Rhetorics” course that took up Code Year’s call and also

extended it to incorporate Bogost’s call to consider the persuasiveness of games, asking

students to both read, analyze and eventually construct their own procedural arguments

(“Political Procedures”). Although, before discussing Brown’s curriculum in more detail, it

is first important to define Bogost’s “procedural rhetoric” to provide some context for

Brown’s call to code in a Rhetoric and Composition class.

31

In Persuasive Games, Bogost states that “[J]ust as verbal rhetoric is the practice of

using oratory persuasively and visual rhetoric is the practice of using images

persuasively… [procedural rhetoric is] the method of using processes persuasively”

(Kindle Locations 707-708). He elaborates on this theory of rhetoric, saying that procedural

“arguments are made not through the construction of words or images, but through the

authorship of rules of behavior, [and] the construction of dynamic models (Kindle Location

711).

To make this case for procedural rhetoric, Bogost reviews new media, hypertext,

and digital rhetoricians, such as Lev Manovich, Laura Gurak, Barbara Warnick, and

Richard Lanham. Each of these theorists, as Bogost discusses, call for educators “to

provide stylistic training in increasingly indispensable digital forms like email and the

web” (Kindle Locations 650-651). He positions procedural rhetoric beyond the scope of

digital rhetoric, arguing that, “procedural representation can muster moving images and

sound, and software” (Kindle Locations 824-825). He develops procedural rhetoric further

via video games because they “are capable of generating moving images in accordance

with complex rules that simulate real or imagined physical and cultural processes” (Kindle

Location 826). “Furthermore,” writes Bogost, “procedural representations are often (but

not always…) interactive; they rely on user interaction as a mediator, something static and

moving images cannot claim to do” (Kindle Location 827).

In Brown’s class, his students both rhetorically analyzed and produced videogames

with the main goal to produce an “effective procedural argument” (“Group Project:

Videogame”). On his syllabus and introduction to the course, he notes that “No specific

32

technical expertise is required for this course,” indicating that a person on any level of

Vee’s continuum could benefit and produce content for the course.

Recalling Vee’s continuum of proceduracy, this type of class is able to

accommodate the low to medium levels of proceduracy, asking students to read and

navigate the procedural arguments of video games, then collaboratively design and build a

game with procedural arguments. Reminiscent of Selfe and Selfe’s “Politics of the

Interface,” Brown’s class conducted a close reading of the video game called Braid, writing

a rhetorical analysis paper in response to enacting Bogost’s challenge to play/read games

critically. Arguably, assignments to critically read, analyze, and write about the digital or

new media spaces are relatively commonplace in Rhetoric and Composition, but Brown

also asked the students to build their own games. Based on his primary goal to take up

Bogost’s challenge, he has deepened the scope of Code Year by both critiquing and writing

procedural arguments being made about the culture in which our students are situated.

Upon reflection, Codecademy’s “Code Year” movement is a reaction to the

teaching methods of Computer Science and the university writ large on how to code. Yet,

their initiative simply takes up coding in its more baseline, grammar/syntax sense, which

Vee locates on the medium range on the continuum of proceduracy. Yet, I argue that the

ability to critique and respond to the procedural connections between the computational

platform and society, beyond just the digital rhetoric expressed epistemically on the surface

of the medium, reveals the gap in Codecademy’s learning initiative, but also the

university’s own system to provide more diverse ways to gain new levels of insight into

what Bogost calls the “assemblages of procedural forms” (Kindle Locations 398-399). I

submit that we can add new levels of sophistication to Vee’s “multivalent continuum” by

33

addressing the technocultural, rhetorical, and expressive qualities associated to the writing

of code. In this moment, scholars who are interested in taking up this call in both Computer

Science and Rhetoric and Composition can use this moment to help develop, to draw from

Aristotle, new any means available for persuasion and expression.

At the low levels of proceduracy, it is vital for procedurists to develop an

understanding of how the computer is much more than its pre-packaged or proprietary

software. Instead, with a focus of it as a metamedium, new exigencies will be found to

motivate learners to traverse beyond the provided spaces of software and begin exploring

and modifying such “soft” spaces. While the subfield of Computers and

Writing/Composition have been making strides in the lower levels of proceduracy, reading

the politics of the interfaces and exploring the persuasive and expressive capabilities

writing in the spaces of proprietary software, now its important for us to begin critiquing

and writing our own procedural forms, which begins in the medium levels of proceduracy.

Medium Levels of Proceduracy

Vee argues that modification marks the moment, where users begin to conduct the

more “traditional… work with code” (47). As such, the user modifies “small bits of code,

even if only changing variables or simple properties,” which Vee suggests “indicates a

deeper understanding of how data and processes interact in the code” (47). Yet, what can

now be added to Vee’s levels at the medium level of proceduracy is the writing of

procedural arguments, thanks in part to the variety of programming languages available to

begin traversing this continuum of proceduracy.

During the four-week duration of the game-building phase of Brown’s class,

students used the programming language and environment called Scratch. Scratch is a

34

higher level programming language that is also a visual, tile-based language that was

designed to enable beginning programmers (notably children) the ability to construct the

processes of programming without having to worry about learning the syntax/grammar of

code.4 According to Brown’s class schedule, he provided students a Scratch workshop in

every weekly class period throughout the series of three phases for each group’s

development of their game.

One of the completed group projects, available on Brown’s website, is called

“Walker, Wisconsin Ranger,” which responds to Wisconsin’s controversial 2011 Budget

Repair Bill enacted by Wisconsin governor Scott Walker. The students stage the social

context for the game, writing “The Bill had severe consequences for the collective

bargaining rights of state workers,” and as the students also indicate, Walker “has cut

millions from government spending, including education, healthcare, government jobs,

local government aid, Planned Parenthood and more” (“Walker, Wisconsin Ranger”).

The game’s procedural arguments attempt to illustrate the difficult nature behind

keeping Walker’s constituents at no less than a 25% approval rating, while balancing a

budget, which in this case, is over three billion dollars in debt. To balance the budget, of

course, requires making cuts to it, and the students reveal how the game represents the act

of making budget cuts in the following three ways:

First, it tracks the amount of money left needed to balance the budget.

Second, Walker's approval rating fluctuates in proportion to his cuts. Third,

4 Scratch also derives from Alan Kay and Alene Goldberg’s original object-oriented
programming language, Smalltalk, which also finds its roots in Seymour Papert’s Logo,
which both became the initial programming languages to be introduced to children for
educational purposes. (For more information, see Kay and Goldberg’s “Dynamic Personal
Media” 1977.)

35

the cuts affect the population of badgers protesting Walker in the final scene

of the game. (“Walker, Wisconsin Ranger”)

When playing the game, I could see these particular arguments as I chopped away

at the budget. To some extent, I immediately understood what cuts I could make, since the

trees each bear a symbol on it to indicate the type of cut Walker can make, whether

medical, educational, state/city government, or workers union. After making a cut, two

word bubbles would appear to indicate both the program and amount cut from the program,

which I could then see how much the constituent approval went down, as seen in Figure 1.

Fig 1. Screen capture of “Walker, Wisconsin Ranger.” Jim Brown’s Courses, 2012.

I thought one of the more interesting arguments made in this game was rooted in

what was left out of the more explicit instructions and even the description of the game.

After playing the game a few times, I realized that it wasn’t just the dollar amounts that

36

mattered, but moreover the particular nature of the government program. For example, it is

far more advantageous to cut the city government’s sanitary management services, which

equates to a $20,000 budget cut with a decrease in 5 constituent points, versus taking union

workers’ rights away at minus $10,000 with a decrease in 15 constituent points. As I

played the game further I was then able to recall which programs embodied what set of

values held by the constituents, as indicated by the ratio between the budget cut to its point

decrease. To win the game, you must figure out what are the most advantageous ratios that

represent the values of Walker’s constituents. Essentially, the students developed a series

of procedural arguments that represented how a politician must successfully appeal to the

people who have a direct affect on their career: the constituents.

Bogost refers to this moment in critical gameplay as the “simulation gap”

(Persuasive Games, Kindle Location 4300). He writes “The player’s evaluation of [the]

claims as depicted in the game’s rules opens a simulation gap, a space of crisis in which the

persuasion game plays out” (Kindle Locations 4300-4301). Now, I do not know what the

prior programming skills were of this particular group of students, nor how the group

dynamic functioned, but this game embodied the rules that the developers of this game

think politicians abide by, i.e., politicians stay in office by pleasing their constituents. In

this particular game, the procedures driving the experience of the game effectively argues

the constraints of the situation by which these students see Walker bound by. In so doing,

these students began to take some strides toward how Bogost constructs procedural rhetoric

not simply as an extension of digital rhetoric, but as the underlying force driving such

epistemic work with text and images, which is the primary concern for Rhetoric and

Composition.

37

Furthermore, Bogost argues that the scope of digital rhetoric usually focuses on

“the presentation of traditional materials—especially text and images—without accounting

for the computational underpinnings of that presentation” (Kindle Locations 696-697). He

reviews various digital rhetoricians, and contends that their strategies ultimately leave the

properties of computation “black-boxed” and procedural rhetoric “is a digital rhetoric that

addresses the unique properties of computation … to found a new rhetorical practice”—a

practice that Brown has begun to take up, yet still needs to be fully explored in Computers

and Writing/Composition (Kindle Locations 654-655). These students not only understood

the political situation, but also understood it well enough to create an environment for other

people to experience their position on the subject.

High Levels of Proceduracy

At the high level of proceduracy, a level that I would characterize as becoming a

type of procedurist, Vee argues that, while she considers it the “final” part on her levels of

proceduracy, it is not meant to place a “finite limit on [it],” rather, as she suggests,

“proceduracy becomes impossible to pin down after [this stage]” (48). This stage includes

“a more sophisticated awareness of expression of processes through the computer,” as well

as the implication for “a greater rhetorical sophistication”—a goal deeply connected to the

field of Rhetoric and Composition, yet left relatively unexamined thus far. Although, as

indicated in the prior medium level, procedural arguments can be written in the earlier

levels of proceduracy as well, so how can the even “greater rhetorical sophistication” be

characterized at higher levels of proceduracy?

Vee defines this higher level of proceduracy with the ability to write “behaviors that

can be coded through recursion, or by nesting functions, or by creating classes,” all of

38

which, she suggests, “become complex and impossible to enumerate” (48). Vee emphasizes

that proceduracy is not only the skills learned to simply write software, but also how it

serves a way of understanding the pliability of the general computer. She expands on this

function of proceduracy, saying that “Because we are forced to make the process or how-to

knowledge highly explicit through code in order to communicate with the computer, this

knowledge, which was present but tacit in many human activities prior to the computer, is

laid bare at levels of high proceduracy" (49-50). In the following excerpt, she draws from

Kay’s widely cited “User Interface” to demarcate the difference between reading and

writing in a medium, both print and computer:

The ability to ‘read’ a medium means you can access materials and tools for others.

The ability to ‘write’ in a medium means you can generate materials and tools for

others. You must have both to be literate. In print writing, the tools you generate are

rhetorical; they demonstrate and convince. In computer writing, the tools you

generate are process; they simulate and decide. (Kay qtd. in Vee 48).

Kay likens proceduracy to the construction of environments, and Vee’s high levels

of proceduracy, regardless of the difficulty and issues derived from its measurement, signal

a moment to reframe the writing of code as more than the ability to write software that

compiles and is used to achieve a low level function, e.g., office suites that eliminate the

drudgeries of writing and information management. It becomes more than writing source

code and even more than Perlis’ vision for thinking in computational models, which has the

goal to think beyond programming languages.

At higher levels of proceduracy, I argue that the performativity and circulatory

skills of software and networks become particularly powerful forms of persuasion and

39

expressiveness. Recall: Vee argues that the scalability of code as a type of writing has

capabilities beyond the scope of speech and print in a networked culture. McLuhan’s claim

that the medium is the massage begins to take shape as writing environments via the

writing of code in the metamedium of the computer shows us that we, as users, must

perform certain operations that are coded into the computer environments that we inhabit.

Drawing from Gender and Identity scholar Judith Butler (Excitable Speech 1997),

scholar Adrian MacKenzie, who studies the cultural trajectories of code, argues that

programs, written in code, can become “code-objects” that effectively drive culture to

perform certain ways, because it repeats and circulates the “authorizing context” (Butler

qtd. in MacKenzie 81-82). This “authorizing context,” as Butler contends, constitutes a

“prior and authoritative set of practices” (qtd. in MacKenzie 82). As MacKenzie indicates,

“The agential effect of performativity arises first of all… through the repetition and

citation,” which computers are the perfect medium, since the can repeat such performatives

at a greater scale than speech or writing (81). MacKenzie adds that “Performatives also

‘succeed’ not only by citing, or enacting through describing, but by ‘covering over’” the

“‘authoritative set of practices’ which lend force to the enacting” (82). Code is persuasive,

not only in its ability to cite, repeat and circulate its performative processes at intense

speeds, but, perhaps, is “successful” due to its ability to efface its processes from the

WYSIWIG surfaces—similar to the ways performativity becomes effaced within cultures

outside and apart from code. As code multifariously and repeatedly cites/is cited, enacts/is

enacted, circulates/is circulated within a networked, situated culture, it simultaneously

produces and, as Butler argues of culture prior to the electric age, “echoes prior actions,

and accumulates the force of authority” (qtd. in MacKenzie 77).

40

Here, I submit that procedurists, at this higher level of understanding of what code

can accomplish rhetorically, can do far more than write standardized letters to the editor, or

circulate petitions across the web with ready-made and/or pre-existing platforms to

promote awareness or instigate a change politically. Now, beyond these means of

persuasion and modes of discourses, they can pool together the people, data, and resources

to draw from or write code libraries to create interactive applications that respond to

rhetorical situations. In so doing, they can create multiple channels and access points for

people to become involved and/or organize both on/offline to spark change in the

sociopolitical sphere. One such group that I submit embodies these procedurate qualities is

Queer Technologies.

Queer Technologies, established by media scholar and artist Zach Blas, is “an

organization that produces products and situations for queer technological agency,

interventions, and social formation” (Queer Technologies, “About”). I argue that this group

embodies a core set of higher-level procedurist skills that have yet to be realized on the

continuum of proceduracy. To fill the critical gap in the existing model where Computer

Science shoulders the burden to learn how to code, I suggest that we draw from their goals

and capabilities in and out of code, which also aligns with the socio-cultural work in

Rhetoric and Composition.

This organization shows us some of the complexities of code and its relationship

with culture that, as I submit, can be critiqued and analyzed in some fashion at any of the

levels on the continuum of proceduracy, but also written in the code itself. In Programmed

Visions, Software Studies scholar Wendy Chun discusses the emergence of programming

languages and their performative role in software and cultural production, which

41

characterizes the scope of Queer Technologies’ goals. She reveals how the claim that “code

is law—something [that] legal scholar Lawrence Lessig emphasizes—is hardly profound”

(27). Instead, she argues that software code is “executable,” and begins to illustrate how, at

any given moment, no one truly understands how a computer performs its operations—

even the most skilled programmers (27). She adds that “this executability makes code not

law, but rather every lawyer’s dream of what law should be: automatically enabling and

disabling certain actions, functioning at the level of everyday practice” (27). Such power,

originally designated to “the provenance of government,” is enacted via code as well,

“embod[ying] the power of the executive,” which now performs both in and out of code

(27).

Chun explains that complex code “is both specific and nebulous, both defined and

undefinable,” re-presenting programmers (and users) across the continuum of proceduracy

“the fact that we cannot know software” in the singular sense that was once coded into the

disciplines, as remains evident in the two forestalled revolutions. Instead, Chun calls for

everyone to embrace this paradoxical nature of code, as “an enabling condition: a way for

us to engage the surprises generated by programmability that, try as it might, cannot

entirely prepare us for the future” (54). While Chun reveals how programming languages

are socially-situated constructions that also give rise to unexpected outcomes, Vee

articulates “that code comprises virtually all of our current and "new media" compositional

environments, and that the literacy connected with this writing—proceduracy—embodies a

new, very powerful and highly rewarded means of expression, makes it critical for us to

study” (5).

Drawing from Chun, Queer Technologies connect code and the ideologies of

42

culture within the scope of Chun’s advice to not tame the procedural claims of code, but,

instead, learn from them and enable such theories, ideologies, and/or subjectivities to be

more fully conceptualized and experienced through this reading and writing process. Blas

writes about some of these goals in his M.F.A. thesis for his “transCoder” project:

Specifically, as a queer software application, transCoder is devoted to

rupturing the heteronormative superstructure that has infiltrated coding and

software historically, discursively, and culturally. transCoder strives for a

complete shattering of code’s ontology. Viewing transCoder as a “language”

battle between seemingly disjunctive fields of discourse (computing and

queer theory), the application wants to sever ontological and

epistemological ties to dominant technologies, to interrupt a flow of

circulation between heteronormative culture, coding, and visual interface.

transCoder stretches out to the sublime of destruction—a desired ontological

rupture of functionality, designed to initiate a conceptual reassessment

beyond the technical.

Essentially, I argue that Queer Technologies is one example of a group of highly

procedurate people, who have a nuanced rhetorical-scape, (i.e., both epistemological,

utilizing traditional forms of writing, and ontological, writing code in response to other

forms of procedural claims in the sociopolitical sphere), from which to review and draw

from as a mode for new ideas for a proceduracy-informed educational system. Coupled

with their call to code against the “dominant technologies,” Queer Technologies also aids

in their performative and circulatory power by supplementing their software and

programming projects with more traditional print materials such as manifestos and

43

websites explaining their actions and art installations in public spaces. Scholars,

practitioners, and students in both Rhetoric and Composition and Computer Science can

benefit from their procedural claims and discursive efforts to provide alternative and more

robust enactments of the procedurate identity. They also provide their code libraries to the

public for free, serving as a rich source for scholars and practitioners to examine and build

on their procedural forms and claims.

Connecting even closer still to Rhetoric and Composition, the first wave of

Computers and Writing wrote their own homegrown software, but, as discussed in chapter

2, proprietary software soon attenuated such efforts throughout the 1990s. Yet, some

scholars and educators in the field are still pushing forward in this domain of higher levels

of proceduracy, where writing teachers are writing software once again to help our students

become even better writers in the traditional literacies of print culture.

Bill Hart-Davidson, Jeffrey Grabill and Mike McLeod at Michigan State

University’s WIDE (Writing in the Digital Environments) research center have recently

developed and implemented a process-intensive, peer review software program, ELI, that

enables students to improve writing and teachers improve methods of instruction. ELI

incorporates the use of real-time, user-defined data and concurrent folksonomic analysis to

provide teachers and students with the immediacy of data-driven moments of learning in

peer review workshops. Drawing from Lev Vygotsky’s theories of learning, ELI’s software

creates an environment where and when student and teachers can take advantage of the

affordances of learning from “a more capable peer” as everyone is writing feedback on

other people’s writing (Hart-Davidson and Grabill, “Learning Theory and Writing”). ELI’s

real-time results, thanks in part to the process-intensive environment that organizes and

44

displays such results for everyone to see, enables students to immediately diagnose their

writing issues, (which are also pre-defined by the teacher-user), as they are in the act of

writing. Hart-Davidson equates ELI’s effectiveness to the comparison of watching a person

learn how to dance with a group of people. If one person forgets or misses a few steps, they

simply look over at the group to quickly fall back into the rhythm. The same approach can

be applied to learning how to write, argues Hart-Davidson and Grabill, with the excellent,

process-intensive designs.

I suggest that there are even more possibilities for ELI, such as having students

analyze the performativity of ELI’s procedural methods to improve their own writing and

critiquing of other peoples’ writing. Akin to Seymour Papert’s constructionist principles of

learning in Mindstorms, while avoiding the issues that Bogost argues surrounds Papert’s

philosophy’s dismissal of the importance and benefits of social-contextual learning (Kindle

Locations 4345-4439), proceduracy can help students learn how to write better by also

critiquing the very technologies that attempt to make them better writers. By offering

students the opportunity to read and develop better procedures, writing pseudocode at first,

then with students who are higher on the continuum actually help to write and document

the new code, better writers can emerge from the construction of their own processes of

learning. With these examples in mind, the call for writing teachers to take up writing

software again seems like the next logical step in creating the most effective environments

to not only develop higher procedurate skills, but also teach and learn literate-writing skills

as well.

.

45

CHAPTER 4. CONCLUSION

“The best way to predict the future is to invent it.” (Alan Kay)

Now, arriving at the conclusion of this thesis, this chapter has two goals. The first is

to summarize the some of the conclusions about proceduracy that are a result of this history

and theory paper. The other goal is to cover some of the implications of proceduracy and

Rhetoric and Composition’s role in building its infrastructure, which includes my position

that our field should consider becoming involved in the following three research and

development areas: 1) theoretical connections to rhetoric, media and writing, 2) a

proceduracy-informed curriculum, and 3) proceduracy prior to the university.

My main goal with this thesis was to not only show some of the early good work

that has already been accomplished along the peripherals of the main pipeline of learning

how to code by scholars in both Computer Science and Rhetoric and Composition, but also

that some of us in Rhetoric and Composition have a role to play in development of a more

nuanced sense of rhetoric and writing that folds in the reading, rhetoric and writing of code

and culture.

I hope it conveys that the goals of proceduracy are not just to arbitrarily learn how

to code in one year, nor, as the first generation of Computers and Writing/Composition

attempted to do, write software that sought to eliminate the drudgeries of grading, data

collection, assembly and analysis, as well as epistemic work towards the presentation of it.

Proceduracy is also not simply the continuation of Rhetoric and Composition’s critical

readings of how our culture is networked, producing and circulating information in an

information age. While I concede that this work should be pursued further by some of us in

Rhetoric and Composition, I hope that it is now clear that the work of those of us, who are

46

so inclined, must also include goals toward addressing the rhetorical faculties of the

thousands of available programming languages and their various hardware counterparts.

Due to the scope of this thesis, I was only able to address a select few of the major

issues surrounding the missed opportunities of proceduracy and the media turn as they

happened in the 1960s and into the more recent possible continuation of this missed

opportunity in 2012, “Code Year.” Additionally, I was unable to address a central work

that deals with processes, Noah Wardrip-Fruin’s Expressive Processing, which underscores

the essential role of interpreting processes in digital media and literature, but I chose to

omit this work only because I desired to focus on rhetoric’s role in the composition of

process-intensive works. In chapter 3, I extended and supplied more shape to Vee’s call to

begin building the infrastructure of proceduracy by defining the procedurist at three

different levels coupled with more recent theoretical developments surrounding the

rhetorical nature of code and the metamedium of the computer.

Now, before discussing some of the implications of this paper, here are the major

points that I trust this history and extension of proceduracy has made:

 A clearer sense of the problem driving the proceduracy crisis. Currently, I

suggest that the Code Year movement marks a new moment in the continuum of

literacy, when our culture is sensing another Trimburian “cultural lag,” where

coding is the new skill necessary to compete in the future local and global

markets. Yet, the methods to learn these skills have yet to be truly updated and

the discourse surrounding its importance keeps looping the same messages as the

previous discourse of literacy crisis.

47

 A better understanding of the history of programming and computers in the

university. Through the scope of two parallel histories in both Computer Science

and Rhetoric and Composition, the 1960s proves to be a remarkable time period

to reframe the so-called revolutionary uses of computers in educational contexts

and its deeper connection to rhetoric and writing.

 A more nuanced definition of proceduracy. By providing some examples of

proceduracy along its, as Vee calls them, “multivalent” levels, procedural skills

now fold in rhetorical capabilities, where the rhetor writes procedural forms that

create environments that express points of view and persuade its users to perform

a certain role in a situation, exploring McLuhan’s massage of the medium.

Using these major points as a guide, the remainder of this chapter will address the

implications of this reframing of Code Year to incorporate proceduracy into its goals in and

beyond the scope of 2012.

Theoretical Connections

At the 2012 Computers and Writing conference, Alex Reid’s keynote address,

“Composing Objects,” pressed the field (Computers and Composition) to consider the

potential for writing to live beyond linguistic discourse and, instead, begin to notice the

power behind the “realization that rhetoric was never and could never have been a solely

human province.” He desires to push the nature of rhetoric and writing beyond simply

being a hammer that sees a nail,” where the composition of objects and “rhetorics …

incorporate technoscientific objects and build a future that includes them [objects] rather

than divides them from us.” He emphasizes the hammer/nail reference as a means to draw

attention to our previously held Modern-informed theories and practices as a “minimal

48

rhetoric,” which, as he submits to the field, is by no means a “wholesale rejection of the

theories and philosophy that have shaped our field but rather a recognition of their limits in

addressing rhetorical challenges that we can no longer afford to imagine as simply

discursive.” In conclusion, he positions the field to implement digital rhetoric as a method

to investigate “the rhetorical operation of these objects so that,” as he continues, “we might

understand how our democratic, scientific, and cultural discourses develop with these

objects as participants.”

Here, I suggest that the digital rhetoric that Reid submits include the rhetoric of

procedures, which if coded into the computer medium, can simulate our theories on the

“rhetorical operation of these objects,” as Reid states. The real exciting nature behind the

pursuit of proceduracy in Rhetoric and Composition is the potential to explore Reid’s

claims, (which drew heavily from Bogost’s work), in the classroom through the creation of

persuasive simulations and environments. Accordingly, this call for proceduracy takes up a

combination of the media turn that Rice reminds our field to return to, as well as Perlis and

Kay’s call for a more culturally sensitive and expressive outlook of the computer as the

metamedium, not simply pre-packaged tools to consume.

Resources for a Proceduracy-Informed Curriculum

As reviewed in chapter 3, Brown extended the call to code in 2012 by also taking

on Bogost’s call to play and develop games more critically via procedural rhetoric. As to

what more is to come, I seek to provide some more resources for those interested in

developing their own curriculum. To cite Brown’s efforts once more, he is currently

involved in the development of a course akin to Perlis’ original call for a class that focuses

on computation for incoming first-year students to the university. In conjunction with the

49

Computer Science department, he is developing a series of courses for first-year students,

“Writing and Coding: Composition, Computation, and New Media Studies” that will be

interdisciplinary in scope, but will explore the relationships between writing, coding, and

media.5 In Spring 2012, Digital Media and Communications scholar Kevin Brock designed

an upper-level humanities, special topics course, “Code, Computation, and Rhetoric,” on

digital media and rhetoric for English and Communication undergraduates. This 16-week

course, which can be found in its entirety on GitHub.com, sought to explore the rhetorical

and persuasive capabilities of software code. On the expressive side of processes, Mateas

developed a course in Fall 2005, “Computation as an Expressive Medium,” that sought to

take a more critical, media-focused approach to teaching the widely learned Java

programming language (also available online). Each of these courses, including Brown’s

course, incorporate their readings discussed throughout the course to supplement more

critical discussions on the nature of writing code, which, on a personal note, I desired while

learning Java in an Intro to Computer Science course.

Furthermore, for more advanced courses, recall that Queer Technologies provides

numerous code libraries and a software development kit (SDK) available for download on

their “Projects” page. For those interested in exploring the processes behind the visual

rhetoric on the surfaces of our screens, the programming language Processing

(Processing.org) is based on Java and includes a good amount of code libraries for

beginners and a lively community and good amount of literature (“Processing: Learning”).

Regarding those interested in immersing themselves in the larger conversation, Vee

has recently published an annotated bibliography, “Computer Programming and Literacy,”

5 The hyperlinks to each of these resources can be found in the Works Cited.

50

of works related to computation and proceduracy, which is available to download on

Scribd.com.

Proceduracy Before the University

 If a more robust and multiple sense of the procedurist identity will be achieved,

beyond the professional programmer identity, the work to develop a proceduracy-informed

curriculum must be done prior to the university in K-12 setting. Since 2010, I have had the

opportunity to co-design and co-implement a proceduracy-informed after-school program

for 4th and 5th graders at a local school in Fargo, ND with Rhetoric and Composition

scholar Kevin Brooks. Over the course of these two years of experience, collaborating with

developers, educators and administrators from various disciplines, we have collected data

in the form of videos of the afterschool sessions, coupled with observational notes from the

researchers. While I am unable to report the extent of our findings, as we will be writing

about them in two future publications, our initial findings related to the students’

persistence and collaboration in response to the challenges of programming indicate a

reliance on trial-and-error learning, rather than procedural thinking, which we think

suggests that a longer-term, interdisciplinary approach is necessary to build the continuum

of proceduracy prior to the university. Additionally, we have also seen the validity behind

the power of the media ecology, i.e., the problems open-source projects, such as our own,

face against proprietary systems, such as Windows, Mac OS, and mobile devices. Simply

put, kids love to create, but more importantly, perhaps, they love to share their creations

with their friends. Consequently, if the file formats are not compatible with other systems,

the majority of children will not care to learn about the codecs (coder-decoders) necessary

to get their programs to run on other platforms.

51

Accordingly, we argue that the public work of writing and literacy scholars and

educators must engage and operate in contexts of literacy acquisition prior to the

university, bridging stronger connections to reduce digital divides and transform K-16

students from consumers to programmers. From there, this small-scale pedagogical project

gestures toward larger and longer-term vision to build a “smart computing culture” via

proceduracy, which opens up collaborations with computer science and education, calling

for us to begin teaching proceduracy across the disciplines to foster interdisciplinary

collaboration within the public sphere. Such a challenge, we argue, requires us to reframe

“code year” with a longer-term vision of “code decade,” which would also lend force to

new emerging procedurist practices to inform and shape the enactment of proceduracy in

the university in the future.

Furthermore, the involvement of the humanities is relatively thin in this latest push

for computational thinking. Upon closer inspection of Google’s “Exploring Computational

Thinking,” their own stake in this educational movement in K-12 educational contexts, a

search for English and Language Arts lesson plans currently yields only four results that

are designed to learn basic grammar/syntax and spelling in a rather formulaic manner—a

remediation of the old print-based worksheets. Unfortunately, this is reminiscent of the

writing software created by the first generation Computers and Writing scholars, which

puts a stark perspective on the real “cultural lag” surrounding proceduracy; especially, as it

includes or excludes the humanities.

The Evolution of Writing Technologies

To end on an anecdote, I find it particularly intriguing that history tends to efface

the original invention, abstraction, and intention of the traditional modes and technology of

52

writing that we employ today from the cultures that use such an ever-evolving technology.

In “Origins and Forms of Writing,” composition scholars Denise Schmandt-Besserat and

Michael Erard write about the earliest archaeological evidence of writing systems that can

be traced back to Neolithic sites in Syria and Iraq in 7,500 B.C.E., where the original

intention of writing was actually connected to the practice of accounting (9). Farmers

began to quantify their livestock, crops, and other possessions through the process of taking

tallies inscribed by lines on clay or other abstractions, such as the use of disks or other

items to represent a certain number of sheep or measure of grain. Now, we use counting

machines, computers with incredible processing power, to code and compile such

quantified abstractions of reality to accomplish far more than the original intentions of

computers to simply be counting machines that find the next number in pi, or complete the

human genome sequence. While, of course, these are amazing accomplishments made

possible by the computer, it is my hope that we use Code Year to recognize the fuller

breadth of rhetorical and expressive possibilities by helping to curate the procedurist

identity with programming languages just as writers have continued to push the boundaries

of the rhetorical and expressive power of writing in human languages.

I hope that my history and extension of proceduracy, while far from exhaustive,

performs as a springboard for other scholars interested in this line of scholarly work to join

in the research and development of the infrastructure necessary to enact a more critical

approach to the medium that is so intertwined in our daily lives—the computer—via

proceduracy.

53

WORKS CITED

Bogost, Ian. Persuasive Games: The Expressive Power of Videogames. Cambridge, MA:

MIT Press, 2007. Kindle Edition.

Blas, Zach. “About transCoder.” transCoder, 2010. Web. 12 May 2012.

Blas, Zach, Micha Cardenas, and Julie Russo. “Products: transCoder.” Queer Technologies.

2011. Web. 12 May 2012 <http://www.queertechnologies.info/products/

transcoder/>.

Brock, Kevin. Code, Computation, and Rhetoric. Course home page. April 2012.

Communication, Rhetoric, and Digital Media, North Carolina State University. 27

April 2012 <https://github.com/brocktopus/engcom395>.

Brown, James. Digital Rhetorics. Course home page. Spring 2012. English Department, U

of Wisconsin-Madison. 4 April 2012 <http://courses.jamesjbrownjr.net/

550_spring2012>.

___. “Walker, Wisconsin Ranger.” Jim Brown’s Courses, Spring 2012. Web.

___. Writing and Coding: Composition, Computation, and New Media Studies. Course

home page. Fall 2012. English Department and Computer Science, U of Wisconsin-

Madison. 4 April 2012 <http://courses.jamesjbrownjr.net/LS102_fall2012>.

Chun, Wendy. Programmed Visions: Software and Memory. Cambridge, Mass: MIT Press,

2011. Print.

“Codecademy.” Codecademy.com. Codecademy, 2012. Web.

“Code Year.” Codeyear.com. Codecademy, 2012. Web.

Crowley, Sharon, ed. Composition in the University: Historical and Polemical Essays, PA:

University of Pittsburgh Press, 1998. Print.

54

Davidson, Cathy. “Why We Need a 4th R: Reading, wRiting, aRithmetic, algoRithms.”

Digital Media and Learning Central, 25 Jan. 2012. Web. 15 May 2012.

Dilger, Bradley. “Beyond Star Flashes: The Elements of Web 2.0 Style.” Computers and

Composition, 27 (2010) 15-26.

Dilger, Bradley and Jeff Rice, eds. From A to <A>: Keywords of Markup. Minneapolis,

MN: Regents of the University of Minnesota, 2010. Print.

Dworak, Wendy. “10 New Year’s Resolutions for Budding Digital Humanists.”

HASTAC.com. Humanities, Arts, Sciences, and Technology Advanced

Collaboratory, 31 Dec. 2011. Web.

Feldman, Stuart. “A Conversation with Alan Kay.” ACM Queue, 1 Dec. 2004. Web. 1 May

2012.

Gasch, Scott. “Alan Kay.” Interactive Learning with a Digital Library in Computer

Science Project. Virginia Tech/Norfolk University, 1996. Web. 2 May 2012.

Gerrard, Lisa. “The Evolution of the Computers and Writing Conference.” Computers and

Composition, 12, (1995) 279-292.

Google, Inc. “Exploring Computational Thinking.” Google.com. 2012. Web. 3 Jun 2012

<http://www.google.com/edu/computational-thinking/lessons.html>.

Haas, Christina. Writing Technology: Studies on the Materiality of Literacy. Routledge,

1995. Print.

Haefner, Joel. “The Politics of Code.” Computers and Composition 16, 1999, 325–339.

Haraway, Donna. When Species Meet. Minneapolis: Minnesota University Press, 2007.

Hart-Davidson, William and Jeffrey Grabill. “Learning Theory and Writing.”

Elireview.com, 2012. Web.

55

Hawisher, Gail, Cynthia Selfe, Ahmed Shafinaz, and Gorjana Kisa. "Globalism And

Multimodality In A Digitized World: Computers And Composition Studies."

Pedagogy: Critical Approaches To Teaching Literature, Language, Composition,

And Culture 10.1 (2010): 55-68. MLA International Bibliography. Web. 20 Dec.

2011.

Hawk, Byron. A Counter-History of Composition: Toward Methodologies of Complexity.

Pittsburgh, PA: University of Pittsburgh Press, 2007. Kindle Edition.

___. "Toward a Rhetoric of Network (Media) Culture: Notes on Polarities and

Potentiality." JAC 24.4 (2004): 831-50.

Inman, James A. Computers And Writing : The Cyborg Era. Lawrence Erlbaum

Associates, Inc., 2004. eBook Collection (EBSCOhost). Web. 20 Dec. 2011.

Johndan Johnson-Eilola. “Control and the Cyborg: Writing and Being Written in

Hypertext.” Journal of Advanced Composition 13.2 (Fall 1993): 381-400.

Kay, Alan and Adele Goldberg. Personal Dynamic Media. IEEE Computer, (10)3, Mar.

1977.

Kay, Alan. “User Interface: A Personal View.” The Art of Human-Computer Interface

Design. Laurel, Brenda, ed. Reading, MA: Addison-Wesley, 1990, 191.

___. “The Revolution Hasn’t Happened Yet.” Keynote address. ACM SIGPLAN

Conference on Object Oriented Programming Systems, Languages, and

Applications, 1997. Web.

___. “Programming and Scaling.” Hasso Plattner Institute, 21 Jul. 2011. Web. 08 Aug.

2011.

___. “Computer Software.” Scientific American, 251(3), 1984, 41-47.

56

Kessler, Sarah. “NYC Mayor Bloomberg Vows to Learn Code in 2012.” Mashable

Business. Mashable.com, 05 Jan. 2012. Web.

Knuth, Donald E. Literate Programming. Center for the Study of Language and

Information, 1992.

Mateas, Michael. Computation as an Expressive Medium. Course home page. Fall 2005.

Literature, Communication, and Culture, Georgia Tech. 6 June 2012. <http://

www.lcc.gatech.edu/~mateas/courses/LCC6310-Fall2005/Syllabus2005.html>.

___. "Procedural Literacy: Educating the New Media Practitioner." On the Horizon, 13(2),

2005, 101-111.

Miller, John A. "Promoting Computer Literacy through Python Programming." University

of Michigan, 2004. Web. Python.org. 7 Sep 2007. <www.python.org/files/miller-

dissertation.pdf>.

McLuhan, Marshall. The Gutenberg Galaxy: The Making of Typographic Man. University

of Toronto Press, 1962. Print.

McLuhan, Marshall and Lewis Lapham. Understanding Media: The Extensions of Man.

University of Toronto Press: 2nd Edition, 1994. Print.

Papert, Seymour. Mindstorms: Children, Computers, and Powerful Ideas. New York:

Basic Books, 1980. Print.

President’s Council of Advisors on Science and Technology. “Designing a Digital Future:

Federally Funded Research and Development in Networking and Information

Technology.” Executive Office of the President, December 2010. Online PDF.

Raes, Cody and Ben Fry. “Processing: Learning.” Processing.org, 2011. Web. 6 Jun 2012

<http://processing.org/learning/books/>.

57

Reid, Alex. “Composing Objects” Keynote Address. Computers and Writing Conference,

University of North Carolina, 2012.

Reider, David. “Introduction.” Townhall II Speaker. Computers and Writing Conference.

University of North Carolina, 2012.

Rice, Jeff. “The 1963 Composition Revolution Will Not be Televised, Computed, or

Demonstrated by Any Other Means of Technology.” Composition Studies, 33.1,

(Spring 2005): 55–73.

Ryan, B., and D. Cutler. "Dynabook Revisited With Alan Kay." Byte.Com 16.2 (1991):

203. EBSCO MegaFILE. Web. 18 June 2012.

Salter, Anastasia. “New Year’s Resolutions: Learning to Program.” Chronicle of Higher

Education: Prof Hacker. Chronicle.com, 10 Jan. 2012. Web.

Sample, Mark. “5 BASIC Statements.” Townhall II Speaker. Computers and Writing

Conference. University of North Carolina, 2012.

Schmandt-Besserat, Denise and Michael Erard. “Origins and Forms of Writing.” Handbook

of Research on Writing: History, Society, School, Individual, Text. Charles

Bazerman, ed. New York: Taylor and Francis, 2008. 7-27. Print.

Selber, Stuart A. “The Politics and Practice of Media Design.” Foundations for Teaching

Technical Communication: Theory, Practice, and Program Design. Ed. Katherine

Staples and Cezar Ornatowski. Greenwich: Ablex Publishing, 1997. 193–208.

Selfe, Cynthia and Dickie Selfe. “The Politics of the Interface: Power and Its Exercise in

Electronic Contact Zones.” College Composition and Communication, 45(4), Dec.

1994, 480-504.

58

Stolley, Karl. “Source Literacy.” Townhall II Speaker. Computers and Writing Conference.

University of North Carolina, 2012. Web. 4 May 2012 <https://gist.github.com/

2491521>.

Talbert, Roger. “Programming for All?” Chronicle of Higher Education: Casting Out

Nines. Chronicle.com, 14 Jan. 2012. Web.

Trimbur, John. “Taking the Social Turn: Teaching Writing Post-Process.” CCC, Feb. 1994

Vee, Annette. Proceduracy: Computer Code Writing in the Continuum of Literacy.

University of Wisconsin-Madison, 2010. ScienceDirect. 06 Jun 2011.

___. “Computer Programming and Literacy: An Annotated Bibliography.” Scribd.com. Jun

2012. Web. 7 Jun 2012. <http://www.scribd.com/doc/96306140/Computer-

Programming-and-Literacy-An-Annotated-Bibliography>.

___. “Coding Values.” Townhall II Speaker. Computers and Writing Conference.

University of North Carolina, 2012.

Wysocki, Anne Frances, & Jasken, Julia I. “What Should be an Unforgettable Face.”

Computers and Composition, 21(1), 2004, 29–48.

Wysocki, Anne Frances, Johndan Johnson-Eilola, Cynthia Selfe, and Geoffrey Sirc.

Writing New Media: Theory and Applications for Expanding the Teaching of

Composition. Logan, Utah: Utah University Press, 2004.

