

AUTOMATIC METHOD FOR TESTING STRUTS-BASED APPLICATION

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Shweta Tiwari

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

March 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Automatic Method For Testing Strut Based Application

 By

Shweta Tiwari

 The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted standards

for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Kendall Nygard

 Chair

Kenneth Magel

Fred Riggins

 Approved:

 4/4/2013 Brian Slator

 Date Department Chair

iii

ABSTRACT

 Model based testing is a very popular and widely used in industry and academia. There

are many tools developed to support model based development and testing, however, the benefits

of model based testing requires tools that can automate the testing process. The paper propose an

automatic method for model-based testing to test the web application created using Strut based

frameworks and an effort to further reduce the level of human intervention require to create a

state based model and test the application taking into account that all the test coverage criteria

are met. A methodology is implemented to test applications developed with strut based

framework by creating a real-time online shopping web application and using the test coverage

criteria along with automated testing tool. This implementation will demonstrate feasibility of

the proposed method.

iv

ACKNOWLEDGEMENTS

 I would like to sincerely thank Dr. Kendall Nygard, Dr. Tariq M. King for the support

and direction. I would like to thank Stephanie Sculthorp (Administrative Secretary) of the

Computer Science department for helping me to complete my paper on time. I would also like to

thank my husband Abhishek Misra and my parents who gave me encouragement to complete the

paper.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

LIST OF ABBREVIATIONS .. ix

1. INTRODUCTION ... 1

1.1. Overview of Testing Approach .. 3

2. BACKGROUND ... 7

2.1. Struts-Based Frameworks .. 7

2.2. Page Flows ... 8

2.3. Unified Modeling Language .. 9

2.4. Model-Based Testing ... 11

3. ONLINE SHOPPING WEB APPLICATION BASED ON JAVA PAGE FLOW 12

3.1. Environment Used to Built the Online Shopping Web Application 15

3.2. Modules Designed in the Online Shopping Web Application 15

3.2.1. Controller Class .. 16

3.2.1.1. Controller.java ... 16

3.2.2. Search.jsp .. 17

vi

3.2.3. SearchResult.jsp .. 19

3.2.4. Confirm.jsp ... 20

3.2.5. Complete.jsp ... 22

3.3. Nested Page Flow ... 23

3.3.1. RecommendController.java .. 24

3.3.2. Index.jsp .. 24

3.3.3. Confirm.jsp ... 26

3.3.4. Complete Order.jsp ... 28

4. STATE MACHINE REPRESENTATION USING SCXML FOR AUTOMATED

 TESTING .. 31

5. TESTING METHODOLOGY TO TEST STRUT BASED APPLICATION 37

5.1. Testing Approach for Online Shopping Page Flow Application 37

5.2. Modeling Inputs ... 38

5.3. Generation and Execution of Test Script Using Selenium ... 39

5.4. Output ... 42

6. CONCLUSION AND FUTURE WORK .. 47

REFERENCES ... 49

vii

LIST OF FIGURES

Figure Page

 1.1. Overview of the Testing Approach Based on Page Flows ... 4

 3.1. Screenshot of Page Flow Overview for Illustrative Example[1] .. 12

 3.2. Screenshot of Page Flow Overview (Vertical Layout) ... 14

 3.3. Screenshot of Index Page .. 17

 3.4. Screenshot of Product Search Page... 18

 3.5. Screenshot of Product Search Page with Product Name .. 19

 3.6. Screenshot of Search Result Page ... 20

 3.7. Code Snippet to Get Data Form and Send Information to "Confirm.jsp" Page 20

 3.8. Screenshot of Confirm Page ... 21

 3.9. Code Snippet to Get Data and Forward Information to "Complete.Jsp" Page 21

 3.10. Screenshot of Complete.jsp Page .. 22

 3.11. Code Snippet to Go Back to "search.jsp" Page ... 23

 3.12. Code Snippet "RecommendController.java", the Nested Page Flow 24

 3.13. Code Snippet for "index.jsp" Page .. 25

 3.14. Code Snippet for Retrieve Records from Database .. 25

 3.15. Screenshot of Index.jsp Page .. 26

 3.16. Code Snippet for "Confirm.jsp" Page ... 26

 3.17. Screenshot of Confirm.jsp Page .. 27

 3.18. Code Snippet to Forward Information to "Complete.jsp" Page .. 27

viii

 3.19. Screenshot of Complete Order.jsp Page ... 28

 3.20. Code Snippet for "CompleteOrder.jsp" Page .. 29

 3.21. Code Snippet to Return a New Forward "success" Along with the

 String Message .. 29

 3.22. Code Snippet to Return to Main Controller "Controller.java".. 30

 4.1. Screenshot of Online Shopping Page Flow Application Overview

 (Horizontal Layout) ... 32

 4.2. State Diagram of Online Shopping Page Flow Application ... 35

 4.3. Code Snippet to Create State Diagram of Online Shopping

 Page Flow Application .. 36

 5.2. Screenshot of Selenium Test Script's Output for Online Shopping Application 42

 5.3. Selenium Test Script for Online Shopping Application ... 43

ix

LIST OF ABBREVIATIONS

MVC………………… Model View Controller

SBFs............................ Strut Based Frameworks

MBTs...........................Model Based Testing

SCXML...................... State Chart Extensible Mark Up Language

JSPs............................. Java Server Pages

UML............................ Unified Modeling Language

1

1. INTRODUCTION

 Web application has become the most important and the first choice for business

application development which is leading to advancement in the automation of web application

development and testing. Andrews et al. [11] lists several of the pieces that are connected

together during the development of a Web application including: static links, dynamic links,

dynamically created HTML pages, user/time specific GUIs, operational transitions, software

connections and dynamic connections. To validate, test and support model based testing, the web

applications graphical user testing and testing using Finite State Machine(FSMs) has been

merged[10]. Frameworks such as Struts[3] are widely used and available and are continually

used for faster and easier development. The application architecture created using Struts-Based-

Framework uses Model-View-Controller(MVC) designs.

 In this paper, Net UI Page flow(or Java Page Flows) is used for implementation. Network

User Interface Page Flows or Java Page Flows is a technology that provides a flow-control

programming model and framework, called Page Flow, which is based on Apache Struts [1][3].

The Net UI Page Flow is an annotated driven web application framework that uses struts based

framework [1][4]. Strut based frameworks aids in design of web application by using graphical

representation for the application flow and the graphical representation is called as Page Flow

View in Oracle workshop for web logic [7]. This Page Flow view helps us to choose test

information useful for the methodology.

The objective of this paper is to implement a methodology to support model based testing

by automating the testing process for strut based applications which helps to reduce the level of

human intervention. To implement the methodology, a real time online shopping application is

2

developed using Java Page Flow and JSPs, and tested taking into account that all the test

coverage criteria has been covered in conjunction with the automated testing tool.

This paper implements an automatic method for validating java page flows by creating

state charts to support model based testing. Alva, King and Clark[1] transformed the page flow

model into typed attributed directed graphs and the graphs helped to identify the important

elements which can be useful to analyze the test coverage criteria defined which included All

Pages, All Actions, All Links and All Forwards. I have used the same test criteria- All actions,

All pages, All Links and All Events described by Alva, King and Clark[1] approach to test my

page flow application.

 In Alva, King and Clark[1] and Andrews et al[11] approach they have constructed

hierarchical finite state machine(FSMs) to support model based testing. The authors used

hierarchical decomposition of the Web applications into clusters, each composed of Web pages

and other clusters to construct the FSMs. This hierarchical FSMs model subsystem of the web

applications are used to generate random test cases along with the textual input from predefined

data pool [1]. In Ricca and Tonella [13][2] approach, they have propose an approach to analyze

and test a Web application based on a high level UML model of the Web application. The UML

model for each Web application being analyzed is an instance of a meta model the authors

developed for a generic web application. The testing approach used by Ricca and Tonella [13][2]

is also based on the traditional structural testing criteria.

 For my approach to support model based testing, I have created a state chart for the

application with the help of SCXML [12]. The SCXML document will describe the behavior of

my online shopping page flow application in terms of states, transition and events. This state

3

chart will also cover the test criteria defined. The elements associated from this state chart

representation will be used as an input to the automated testing tool and test the navigational

flow of the application and the test criteria defined.

 SCXML is an XML based markup language which provides a generic state machine

based execution environment and is used to define states and behavior of the objects[12]. The

state chart defines all actions, all events and all paths for the online shopping web application.

The creation of the state chart for the entire web application facilitates the generation of test

scripts and supports automation. Generating test scripts using a state chart involves traversing

through various combinations of conditions described in the state chart document.

 For testing, an automated testing tool is used in conjunction with the state chart to

generate test scripts and apply them to system under test. I am using Selenium 2.0 [6] automation

testing tool for automated testing and have written a program which will invoke the application,

perform actions and relay the user initiated events to the Commons SCXML[5] driven online

shopping instance which serves as an intermediary between the UI and application behavior. In

state chart the paths are mapped into events that translate into navigation interaction. The

successful execution of all pages, all events and all paths results in coverage criteria satisfied

1.1. Overview of Testing Approach

 Struts based framework(SBFs) have an underlying navigational model and it aids in the

design of web application by using graphical representation for this navigation model .The

testing approach I have used in this paper will use the elements from this navigational model.

This graphical representation will automatically generated during application development.

4

Figure 1.1 shows the diagrammatic representation of the testing method I have used to test the

SBF application.

Figure 1.1. Overview of the Testing Approach Based on Page Flows

 The steps of the testing methodology are as follows:

1. The page flow navigational model is generated through application development.

2. The navigational flow of the application is analyzed to produce states for physical

web pages, events for actions and the transitions for the links and forwards.

3. Using the states, transitions and the events in step 2, I have created a state machine

and is represented in a State Chart XML. A state chart document is also generated

automatically in XML dialect which used as an input for testing.

2. Analyze navigational

model to identify states,

events and transitions

1. Generate Page Flow

navigational model through

application development

3. Create

annotated State

Chart through

SCXML

States, transition and

events

Annotated state chart

4. Generate test info using test

criteria all-action, all-pages, all

links and all forwards

Format test criteria for testing

tool

6. Generate automated test

scripts with automated test tool

and run application

Continue if the coverage

criteria is not satisfied

5

4. I have written a program which will traverse through various conditions and

combinations present in the state model. The program will invoke the application,

perform actions and relay the user initiated events(like button click or clicking on

hyper link) and serves as an intermediary between the UI and application behavior.

5. With the help of testing tool Selenium2.0[6] , I have also created a test scripts which

will validate the navigational flow of the page flow application.

6. The successful execution of test criteria- all pages, all actions, all links and all paths

results in test coverage criteria satisfied

 The methodology I have presented is limited to strut based framework applications,

which follows model-view-controller architecture and have navigational model generated in

terms of pages, action, links and forwards during page flow application development.

 To illustrate how the testing approach in figure 1.1 is applied to the navigational flow, I

have created an online shopping page flow application and have used the application as sample

in my paper. The program which I have written (as explained in step 4 and 5) of the testing

methodology is specific to the online shopping page flow application.

 The paper is organized as follows: The second chapter discusses about the background of

page flows, strut based applications, unified modeling language and model based testing. The

third chapter describes my online shopping web application based on Java page flows and nested

page flows built in Oracle workshop for web logic [7]. The fourth chapter discusses about the

background of SCXML, implementation of my online shopping application to construct a state

chart using SCXML and the test coverage criteria defined for the page flow application. Chapter

five illustrates the generation of test scripts with help of automated testing tool Selenium 2.0[6]

6

and successful execution of all the test coverage criteria defined in the SCXML. Chapter 6

presents concluding remarks.

7

2. BACKGROUND

 This section discusses about background information on Struts based frameworks, Net

UI page flows and model based testing. Section 2.1 discusses about the Struts based frameworks

and section 2.2 discusses about the Net UI page flows, section 2.3 discusses about modeling the

software application before coding with the help of Unified Modeling Language(UML) and

section 2.4 discusses about the model based testing approach.

2.1. Struts-Based Frameworks

 A framework is "a reusable, 'semi-complete' application that can be specialized to

produce custom applications" (Fayad and Schmidt, 1997)[15]. Frameworks provide a skeletal

support structure made of software components upon which new software applications can be

quickly built and organized. Reusability, whereby generic components can be used in new

applications, is a key characteristic[15].

Struts based frameworks(SBF) follows Model-View-Controller(MVC) architecture

pattern based on different technologies and the basic construct of SBFs includes Actions,

Presentations and a Controller that defines navigation through the system [2] . The MVC pattern

has three main components in an application:

1. Model - contains the core of the application functionality and domain knowledge

which is defined in the configuration file and provides information to the

controller to manipulate the business logic [14].

2. View- responsible for the presentation of the model to the users , and

8

3. Controller- reacts to the user input by accepting the request from the user,

depending on the request and the current state of the model, decides which

business logic function to invoke and produce the next view requested to the users

[14].

Struts based framework(SBFs) have an underlying navigational model and it aids in the

design of web application by using graphical representation for this navigation model. Web

application using SBFs will have sets of pages and navigation will occur between the pages. The

graphical representation of navigational model will have four main element types:

• Actions- maps an incoming HTTP request to the corresponding method needs to

be executed[1][2]

• Forwards- represent a destination to which the controller might be directed

to[1][2].

• Link- Logical artifacts that represent the HTTP request from the JSP pages to the

Actions[1][2].

• Physical Pages- JSP Pages that handles the User Interface[1][2].

2.2. Page Flows

Network User Interface(NetUI) is a technology that provides an MVC pattern framework

built on Apache Struts[3][4] called page flow. Net UI Page flow is a flow-control programming

model and is useful to build a well structured Java web application. It also helps to create single

web application which can have multiple page flows in it called as modular page flow. This

modular page flows can be inserted and reused inside the other flows. The page flows separates

9

the presentation logic through Java Server Pages(JSP) , data processing logic through controls

and actions as data are made available through controls and decision logic are accessible through

actions[1][4].

 The main features of page flows include[1][4]: (1) stateful- the state of the application is

stored inside an instance of the controller, (2) modular- a single web application can have

multiple page flows within it,(3) nested- A complete page flow can be inserted inside another

page flow also called as "nested" page flow. The current page flow can pass the control to the

nested page flow and still can retain the state of original page flow or come back to the original

page flow when required.

Page flows are built on Apache Struts, as a result many elements found in struts such as

Actions, Forwards can be re-used by page flow framework. The four main components of page

flows are Action, Forward, Link and Pages. We can also describe page flows as graph

representing these four components.

2.3. Unified Modeling Language

 Modeling is the designing of the software application before coding. Model driven

development helps to simplify the process of designing the components of the system and the

relations between the different modules. The model is then converted into code manually or

automatically, using tools designed for conversion.

 Unified modeling language (UML)[18] is a general purpose modeling language widely

used in software development[19] and is evolving under the auspices of the Object Management

10

Group(OMG)[18] version2.3 . UML helps to specify, visualize and document models of

software system which includes structure and design to meet the requirements.

 The paper focuses on state machine also known as state chart. The most used formalism

is UML state chart initially defined by D. Harel. The Goal of UML state chart is to overcome the

limitations of traditional finite state machines while retaining the main benefits. With state chart

diagrams behavior of the system can be described in a simple and easy to understand graphic

formalism. The UML state chart diagrams are directed graphs in which nodes denote the state

and connector denotes the transitions. These transitions are labeled by triggering events and

optionally by list of executed actions. Events in most general term can be described as the type of

occurrences that affects the system. These events are responsible for state changes. Each state on

a state chart diagram can contain multiple internal actions. An action is best described as a task

that takes place within a state. Action depends on both state of the system and triggering events.

UML state chart has also introduce the new concepts of hierarchical nested states and orthogonal

regions and extend the notion of actions.

 In my paper, I have used State Chart XML (SCXML)[12] which provide rules to describe

state chart model in XML dialect. SCXML is not yet standard but it is a work in progress. It

provides general purpose execution environment based on Harel's state chart. SCXML is used to

describe the behavior of complex state machines in terms of events, states and transitions and can

describe notation such as sub-states, parallel states, synchronization and concurrency in SCXML.

11

2.4. Model-Based Testing

 EL-Far and Whittaker [8][1][2] defines model based testing as an approach in which

common testing tasks such as test case generation and evaluation of test results are based on a

model of the application under test. A model of software depicts its behavior. Behavior can be

described in terms of the input sequences accepted by the system, the actions, conditions, and

output logic, or the flow of data through the application’s modules and routines [8]. The models

used in the model based testing can be divided into two main categories- structural(Static) and

behavior(dynamic) and two main levels of abstraction- Platform Independent Models(PIM) and

Platform Specific Models(PSM)[1][8][15]. The structural models include control flow graphs,

dependency graphs and data flow graphs and represents its source code structure and the

behavioral models include state machines, state charts and decision table which describes

external or black box behavior [1][2][8] required.

 In my paper, I have use one model from both structural and behavioral categories. The

application which I have designed is based on page flow model which presents the logical flow

of the navigation and has a control within the application through controller. Hence, the page

flow model can be categorized as a control flow model and comes under the structural category

of model based testing. For behavioral model, I have used state charts and have created the state

charts using SCXML to model the behavior of the system. The state chart is further used by the

automate tool during testing.

12

3. ONLINE SHOPPING WEB APPLICATION BASED ON JAVA PAGE

FLOW

 The third chapter describes my online shopping web application based on Java page flows

and nested page flows built in Oracle workshop for web logic [7]. In my paper I will present a

methodology to test the online shopping page flow web application using SCXML to create a

state chart and Selenium 2.0 for automation testing. During the development of the application a

page flow overview will be created which shows the graphical summary of the web application.

This page flow overview will show all the pages and actions and the relationship between them

through links and forwards. Figure 3.1 shows a generalized page flow overview for illustration.

Figure 3.1. Screenshot of Page Flow Overview for Illustrative Example[1]

13

 The page flow application consists of two main types of nodes: Pages and Actions.

Navigation between pages are done with help of Actions. Forward and Link transitions are used

as a connector between Actions and Pages. Pages, Actions, Forwards and Links are labeled with

unique identifiers. The page icon is represented as Pages and has jsp extension. Actions are

represented in the circular icon with block arrows. There are four kinds of Actions shown in

figure 3.1: (1) Begin Action: Labeled as begin (2) Clean Actions: user defined actions e.g.

actionOne (3) Nested flow actions- user defined labels with nested flow one/begin (4) Form

Actions: with form icon on circular the circular icon[1]. Links always connect page to an action

and are unlabeled transition. Forwards comes out of an Action and are labeled transition.

 Figure 3.2 shows the screenshot of my online shopping page flow application which

consist of pages, actions, forwards and links. This online shopping application is an e-commerce

application that enables customer to purchase goods on the web. The online shopping application

consists of navigational flow model shown below in figure 3.2. The elements of this navigational

flow model consist of 5 pages, 6forwards, 9 actions and the rest are links with no labels. The

Pages include index.jsp, search.jsp, searchResult.jsp, confirm.jsp, complete.jsp. The actions

include two simple actions: begin action which is required and search action, six form actions

with a form icon: processData, selectItem, confirm, completeOrder, getItem, orderComplete and

one nested flow action items/recommendation.jpf. The forwards are the edges exiting the actions:

serachResult, confirm, complete, two labeled with "success", and getItemFlow. The links are the

edges exiting the pages with no labels which are four in count. One edge from index.jsp, second

from search.jsp, third from confirm.jsp and fourth from complete.jsp.

14

Figure 3.2. Screenshot of Page Flow Overview (Vertical Layout)

15

3.1. Environment Used to Built the Online Shopping Web Application

The online shopping web based application is designed using java page flow control

feature using oracle workshop for web logic [7] where user can search products and place order

for the items. Oracle workshop for web logic version 10.3 [7] supports Java enterprise edition 5

and is built on eclipse platform which is an open source framework used for Java development.

Below are the software and hardware used to build the online shopping web application:

• IDE Tool – Oracle Workshop for web logic developer version which supports multiple

web application framework in one integrated development environment: struts,

beehive[3][4].

• SERVER – Oracle web logic sever 10.3 developer version

• DATABASE – Point base database (demo version with the server)

• LANGUAGE/TECHNOLOGY – JAVA Page Flow. Page flow is supported by Oracle

10.3 because the Beehive NetUI [3][4] that comes with the server.

3.2. Modules Designed in the Online Shopping Web Application

 Page flow is based on strut based framework and follows model view controller user

interface design pattern. Web application development using page flow and Java Server Pages

(JSPs) helps to separate user interface code, business logic implementation and navigational

control. The user interface code can be placed in the JSP files and the implementation of

navigational control can be done by page flow's controller file. A controller file is a special java

file that uses JPF file extension and is the nerve center of the web application [7].Below is the

explanation of different modules designed for online shopping web application using page flow.

16

3.2.1. Controller Class

 A page flow is the Java class called the "controller" class, that controls the behavior of

the web application through the use of annotations and methods[7]. These annotation and

methods inside the controller class is also known as Actions. Each page flow is a group of files

that contains one java controller class and many JSP pages. The users navigate from one page to

another with the help of the annotations and methods defined in the controller class. The method

and annotations also take care of handling user requests and helps in access of back end resource.

3.2.1.1. Controller.java

 In terms of model-view-controller user interface design pattern, the controller.java file is

a controller and the JSPs are the view. In every page flow application the begin action must be

defined first by the controller class as it is the entry point for the page flow.

 The online shopping page flow application contains two controller class called as

Controller.java and RecommendController.java and many number of pages. As mentioned above

the controller class will help to navigate from one page to another. Each controller class will

have its own form bean. A page flow uses form beans to elicit information from user through

form. It is used to encapsulate the data and is defined as a inner class inside the page flow class.

 The annotations looks like @annotation-name (parameters) and begins with @. In the

annotation @Jpf.controller the navigation of the page is defined. The @Jpf.controller annotation

is used for any page flow controller class. This @Jpf.controller annotation alerts the compiler

that Controller.java class is the special page flow class instead of typical java class. When a

request is received for a page flow controller (controller.java), an action(begin) or a

page(index.jsp), an instance of the controller class becomes the current page flow.

17

 The online shopping application starts from controller class "controller.java" where

action begin is called first and "index.jsp" page is displayed with a link to search page as shown

in figure 3.3.

 The "@Jpf.SimpleAction" is used when an action only needs to navigate to a different

page without using complex logic. A simple action is implemented to handle navigation, form

submission and form validation, it cannot handle decision logic.

@Jpf.Controller(simpleActions =

{

@Jpf.SimpleAction(name = "begin", path = "index.jsp"),

@Jpf.SimpleAction(name="toPage2", path="search.jsp")

}

Figure 3.3. Screenshot of Index Page

3.2.2. Search.jsp

 When "Link to search .jsp" is clicked in the above figure 3.3, action "toPage2" is called

and will navigate to "Search.jsp" page as shown in above code and "Product Search Page" will

be displayed. The below figure 3.4 shows the "Product Search Page".

18

Figure 3.4. Screenshot of Product Search Page

As we can see in the above figure 3.4, Product Search Page has two options

• Recommend Product (nested page flow)

• Submit

 We can enter valid information in "Product Name" and hit "Submit" option or we can hit

"Recommend Product" option to view recommendations. When "Submit" button is clicked the

control is still with "Controller.java" class and a Form Bean is created. When the form data is

submitted, the java class will be instantiated and the form data will be loaded into the Java Bean

properties of the new instance. In the code below, when Action is created through method, the

method will return "forward" and will be annotated through @Jpf.Action. If action needs to

make a decision and conditionally execute code based on that decision, an action method is

implemented as shown below in the code.

 Jpf.Action (

 useFormBean="profileForm",

 forwards={

 @Jpf.Forward(name="searchResult", path="searchResult.jsp")

 },

 doValidation=false

19

 In the above code, the action here is "searchResult" and after the processData function is

called the action will navigate to "searchResult.jsp" page. The search can be done in two ways

• By selecting only Department and keeping the Product Name empty as shown in the

figure 3.4

• By select Department, enter Product Name and hit “Submit” button as shown in the

screenshot below in the figure 3.5

 Figure 3.5. Screenshot of Product Search Page with Product Name

3.2.3. SearchResult.jsp

 As shown in the above figure 3.4 and figure 3.5, when we enter the valid information in

the "Product Search Page" and hit submit button, this page accepts the data send to function

"processData" and will display the search results (shown in below screenshot figure 3.6) as per

the search information entered. User can select the item to purchase and click on “selectItem”

button to proceed further as shown in the figure 3.6 below.

20

Figure 3.6. Screenshot of Search Result Page

 When the user selects the item and hit "selectItem" button, the current information is

forwarded to a new page "Confirm.jsp" as shown in figure 3.8 below.

Figure 3.7. Code Snippet to Get Data Form and Send Information to "Confirm.jsp" Page

3.2.4. Confirm.jsp

 The code snippet above will navigate to "Confirm.jsp" page, once valid information is

entered in the "Search Result" page. In the figure 3.8 below, user is required to fill necessary

details, review selected items to process the order and hit the "Confirm" button to process the

order.

@Jpf.Action(

 useFormBean="itemform",

 forwards = {@Jpf.Forward(name="confirm",

path="confirm.jsp")

 },

 doValidation=false

)

 public Forward selectItem(ItemForm form) {

 itemName = form.getItem();

 unitPrice= form.getPrice();

 itemCode = form.getCode();

 return new Forward("confirm");

21

Figure 3.8. Screenshot of Confirm Page

 The "Confirm" button when clicked, calls the function "confirm" to get data from the

form, calculate the total price and forward it to "Complete.jsp" page as shown in the figure 3.10.

Below is the code snippet shown in the figure 3.9

Figure 3.9. Code Snippet to Get Data and Forward Information to "Complete.Jsp" Page

@Jpf.Action(

 useFormBean="confirmform",

 forwards = {

 @Jpf.Forward(name="complete", path="complete.jsp")

 }

)

public Forward confirm(confirmForm form){

 itemName = form.getItem();

 unitPrice= form.getPrice();

 itemCode = form.getCode();

 itemQuantity = form.getQuantity();

 cardType=form.getCardtype();

 expDate= form.getDate();

22

Figure 3.9. Code Snippet to Get Data and Forward Information to "Complete.Jsp" Page

(Continued)

3.2.5. Complete.jsp

 In the "Complete.jsp" page, user is required to review order and click on "Complete

Order" button to confirm and process the order. When "Complete Order” button is clicked,

“Complete Order” action is called to insert record into the database, send a successful string

message and again forward control to “Search.jsp” page for any new search as shown in figure

3.4. The figure 3.10 below shows the screenshot for “Complete.jsp" page.

Figure 3.10. Screenshot of Complete.jsp Page

 cardNo=form.getCardno();

 custName=form.getName();

 custAddress=form.getAddress();

 custCity=form.getCity();

 custPhone=form.getPhone();

 custState=form.getState();

 zipCode=form.getZip();

 totalprice= unitPrice * itemQuantity;

 return new Forward("complete");

 }

23

 The code snippet below in the figure 3.11 describes when the order is reviewed and

complete, the forward action is explicitly defined to go back to the search page again.

Figure 3.11. Code Snippet to Go Back to "search.jsp" Page

3.3. Nested Page Flow

 As mentioned above in section 3.2.1.1, the online shopping page flow application

contains two controller classes called as Controller.java and RecommendController.java. When

the user hits on the Submit button on "Product Search Page" as shown in the figure 3.4 ,the

control is with controller class controller .java till the order is complete . If the user hits on

"Recommend Product" button, controller class "RecommendController.java", defined as "nested

page flow" takes the control. The nesting features of page flow helps to enforce modular design

and break up a large project into smaller functionalities. With the help of the nesting we can

create separate controllers for different section of the project and can temporarily transfer the

control to another page flow and can return back to original one when required.

@Jpf.Action(useFormBean="completeform",

 forwards = {

 @Jpf.Forward(

 name="success",path="search.jsp")

 }

24

3.3.1. RecommendController.java

 Going back to "Product Search Page" in figure 3.4, if we click on "Recommend Product"

button, the function "getItem" which is defined in the controller class "Controller.java" is

invoked which return new forward "getItemFlow" and initiate the action to pass control to the

new controller class "RecommendController.java". The code snippet below in figure 3.11

describes the nested controller class "RecommendController.java", in which the nested page flow

takes the control. The @Jpf.controller annotation is used for any page flow controller class, in

the below code snippet it is used for nested controller class.

Figure 3.12. Code Snippet "RecommendController.java", the Nested Page Flow

3.3.2. Index.jsp

 The nested controller class "RecommendController.java" controller has its own class,

actions, form beans and java pages like the main controller class "Controller.java". When the

control is passed to this nested page flow controller class "RecommendController.java" an action

"begin "is is performed first and navigate to "index.jsp" page. Below is the code snippet for

"index.jsp" page in figure 3.13

@Jpf.Action(

 useFormBean="profileForm",

 forwards={

 @Jpf.Forward(name="getItemFlow", path="items/RecommendController.jpf")

 },

 doValidation=false

)

 protected Forward getItem(SearchProduct form) {

 return new Forward("getItemFlow");

 }

25

Figure 3.13. Code Snippet for "index.jsp" Page

 When program executes first function “getItems” defined in “RecommendController”

class above in the code snippet figure 3.12, it retrieves record from the database using defined

JDBC control and displays data back to “index.jsp” as shown in the figure below 3.15. Below is

the code snippet for retrieving records from database.

Figure 3.14. Code Snippet for Retrieve Records from Database

 In the "index.jsp" page the user selects to purchase and click on “Select Item” button.

When clicked on “SelectItem” button, function “selectItem” defined in

“RecommedController.java” class controller is called. This function takes data from the form and

forward information to next page “confirm.jsp” . Figure 3.15 and 3.16 below shows the

screenshot of "index.jsp" page and the code snippet to forward to "confirm.jsp" page.

public Product getItems() throws SQLException{

 String[]prodCode=jdbcCtrl.getProductCode();

 Product items=jdbcCtrl.getProductDetails(prodCode[1]);

 return items;

 }

@Jpf.Controller(

 nested = true,

 simpleActions = {

 @Jpf.SimpleAction(name="begin",

path="index.jsp")

 }

26

Figure 3.15. Screenshot of Index.jsp Page

Figure 3.16. Code Snippet for "Confirm.jsp" Page

3.3.3. Confirm.jsp

 Confirm.jsp takes data from the index page, displays it and wait for user to fill in

additional details in order to complete transaction. Figure 3.17 below is the screenshot for

"Confirm.jsp" page.

@Jpf.Action(

 forwards = {

 @Jpf.Forward(name="confirm", path="confirm.jsp")

 }

)

 public Forward selectItem(ItemForm form) {

 itemName = form.getItem();

 unitPrice= form.getPrice();

 itemCode = form.getCode();

 return new Forward("confirm");

 }

27

Figure 3.17. Screenshot of Confirm.jsp Page

 When the user clicks on “Confirm” button as shown in above screenshot figure 3.17,

“confirm” function is invoked. This function takes data from the form, calculates total price for

the order and forward information to “Complete.jsp” page to display the data entered by the user

for review.

Figure 3.18. Code Snippet to Forward Information to "Complete.jsp" Page

@Jpf.Action(

 forwards = {

 @Jpf.Forward(name="complete", path="complete.jsp")

 }

)

 public Forward confirm(confirmForm form){

 itemName = form.getItem();

 unitPrice= form.getPrice();

 itemCode = form.getCode();

 itemQuantity = form.getQuantity();

 cardType=form.getCardtype();

 expDate= form.getDate();

 cardNo=form.getCardno();

 custName=form.getName();

 custAddress=form.getAddress();

28

Figure 3.18. Code Snippet to Forward Information to "Complete.jsp" Page (Continued)

3.3.4. Complete Order.jsp

 In “complete.jsp” user is required to review order and click on “complete order” button to

process order. When clicked on “complete order” button “completeOrder” action is called to

insert record into the database, send a successful string message and return back to “search.jsp”

page. Figure 3.19 below is the screenshot for "CompleteOrder.jsp" page, Figure 3.20 is the code

snippet for "Complete Order.jsp" page and Figure 3.21 is the code snippet which insert record

into database and return a new forward "success" along with the string message.

Figure 3.19. Screenshot of Complete Order.jsp Page

 custCity=form.getCity();

 custPhone=form.getPhone();

 custState=form.getState();

 zipCode=form.getZip();

 totalprice= unitPrice * itemQuantity;

 return new Forward("complete");

 }

29

Figure 3.20. Code Snippet for "CompleteOrder.jsp" Page

Figure 3.21. Code Snippet to Return a New Forward "success" Along with the String Message

@Jpf.Action(

 forwards = {

 @Jpf.Forward(

 name="success",

 returnAction="orderComplete",

 outputFormBeanType=String.class)

 }

)

public Forward completeOrder(completeForm form) throws

SQLException {

 itemName = form.getItem();

 unitPrice= form.getPrice();

 itemCode = form.getCode();

 itemQuantity = form.getQuantity();

 cardType=form.getCardtype();

 expDate= form.getDate();

 cardNo=form.getCardno();

 custName=form.getName();

 custAddress=form.getAddress();

 custCity=form.getCity();

 custPhone=form.getPhone();

 custState=form.getState();

 totalprice=form.getTotal();

 zipCode=form.getZip();

jdbcCtrl.insertOrder(itemCode,itemQuantity,totalprice,

custName,cardType,cardNo,expDate,custAddress,custCity,custPh

one, custState,zipCode,unitPrice);

 String message = "Order Submitted Successfully";

 return new Forward("success", message);

}

30

 New forward "success" is defined with return action "orderComplete" as shown in the

code snippet below in figure 3.22. After order is processed with success, control is returned back

to main controller class "Controller.java" where return action "orderComplete" is defined. This

action takes the string returned from the nested page flow and updates the field in the form and

returns to the original Product Search page shown in figure 3.4. Figure 3.22 below is the code

snippet to return to main controller "Controller.java".

Figure 3.22. Code Snippet to Return to Main Controller "Controller.java"

@Jpf.Action(

 forwards={

 @Jpf.Forward(name="success",

navigateTo=Jpf.NavigateTo.currentPage)

 }

)

 protected Forward orderComplete(String m) {

 profileForm.setMsg(m);

 Forward success = new Forward("success", profileForm);

 return success;

 }

31

4. STATE MACHINE REPRESENTATION USING SCXML FOR

AUTOMATED TESTING

 This chapter discusses about the state-based model of my online shopping application

which will represent the behavior of the system under test which can be later used for automated

testing. As discussed in chapter 2, the behavioral model used in model based testing includes

state machines, sequence diagrams and decision tables. In order to create a state-based model,

the tester should have a good knowledge about the components needs to be tested, proper count

of inputs and outputs and the target areas needs to be explored.

 In my approach, the online shopping web application which consist of actions, pages

,links and forwards is analyzed and using this information states, transitions and events are

identified. A state chart is created using state chart xml (SCXML). This state chart will define

all-actions, all-pages, all-forwards and all links in which pages will be represented as states,

actions as events and forwards and links as transitions. The state chart will also help to generate

test information based on the test coverage criteria all-actions, all-pages, all-forwards and all

links which is later utilized to test the navigational flow of the online shopping web application

and to generate test scripts.

 State Chart XML(SCXML) [12] is currently a working draft published by the World

Wide Web Consortium(W3C)[12]. SCXML is not yet a standard but it is a work in progress. The

latest working draft is dated December 2012 [12]. It provides rules to describe state chart model

in a XML dialect. SCXML provides a generic state-machine based execution environment. State

in SCXML can be defined as a behavior of the object and transition allows changing the state

when events are triggered. Each state contains a set of transition that defines how it reacts with

32

events[12]. The state machine is always in the single state called as "Active State". When an

event is triggered, the state machine checks for the transitions defined in the active state and

moves to the state specified by the transition, which is also called as "target state". The target

state now becomes the active state. The <state> element may also have a "nested" <state>

elements and such a state will be called as "Compound State" or "Parent State" and the nested

elements as "Child State".

 The page flow based online shopping web application is analyzed to produce states for the

physical web pages and transition for forwards and links. With the help of page flow overview

described in chapter 3 in figure 3.1 (shown below), a state chart is created using SCXMLGUI [9]

tool, which is a graphical editor for SCXML[9].

Figure 4.1. Screenshot of Online Shopping Page Flow Application Overview (Horizontal

 Layout)

 The State chart diagram below in figure 4.2 is created and will help to generate test

information and help further in analyzing test coverage criteria all-actions, all-pages, all-

forwards, all links and the navigational flow of online shopping application.

33

 In the figure 4.2 below, rectangles with the smoothed corners are represented as states and

arrows are represented by transition events. As explained in chapter 3, the online shopping

application has two controller class- "Controller.java", which is the main controller and

"RecommendController.java" , nested page flow takes the control. In the state diagram below in

figure 4.2, The Parent <state> element is active and the control is with "Controller.java", the

main controller class. The initial state is "index" and the transition event "shopping. search"

triggers and allows to move it to the target state "search". The "search" is now the active state

and there are two transition events-"shopping.processData", "shopping.getItem". If the transition

event "shopping.processData" triggers, the control of the application is still with

"controller.java", the main controller class and the parent state elements are active and it allows

to move to the target state "search result" which becomes the active state. If the transition event

"shopping.getItem" triggers, the child state element becomes active and the control of the

application is passed to the nested page flow controller class "RecommendController.java" and

the "getItemFlow" becomes the target state. When the parent state elements are active, the

"search result" is the active state, transition event "shopping.selectItem" triggers and allows

moving to the target state "confirm" and similarly "shopping.confirm" transition event triggers

and target state "complete" is achieved. Once the order is successfully completed, transition

event "shopping.complete" order triggers and move back to the "search" state as a target state,

which becomes the active state again.

 When "getItemFlow" becomes the target state and therefore the active state and the

control of the application is with the nested page flow controller class

"RecommendController.java", the child state elements are active and transaction event"

34

shopping.begin" triggers and "index1" becomes the target state, henceforth as shown in the

figure 4.2 with the series of transition events , we achieve target state "confirm1" and

"complete1" and at the end "complete1" becomes the active state and when the transition event

"shopping.completeOrder" triggers, the dotted lines in grey color with transition event

"shopping.completeOrder" indicates the nesting feature of the online shopping page flow

application and the control passes from the nested controller to the main controller. When

"complete" becomes the active state and the final state, parent state elements gets active, the

control of the application goes to the main controller.

 This state chart XML below in figure 4.2 covers all pages, all action ,all forwards and all

links testing criteria and the complete navigational flow of the online shopping application. The

test information extracted from the state diagram will be later useful for automated testing by

traversing the entire path which defines the testing coverage criteria and generating test scripts.

35

Figure 4.2. State Diagram of Online Shopping Page Flow Application

 Figure 4.3 below is the code snippet to create the state diagram of the online shopping

page flow application.

36

Figure 4.3. Code Snippet to Create State Diagram of Online Shopping Page Flow Application

<scxml initial="index" version="0.9"

xmlns="http://www.w3.org/2005/07/scxml">

<state id="index">

 <transition event="shopping.search" target="search"></transition>

</state>

<state id="search">

 <transition event="shopping.processData"

target="searchResult"></transition>

 <transition event="shopping.getItem"

target="getItemFlow"></transition>

 </state>

 <state id="searchResult">

 <transition event="shopping.selectItem"

target="confirm"></transition>

 </state>

 <state id="getItemFlow" initial="index1">

 <state id="index1">

 <transition event="shopping.selectItem"

target="confirm1"></transition>

 </state>

 <state id="confirm1">

 <transition event="shopping.confirm"

target="complete1"></transition>

 </state>

 <state id="complete1">

 <transition event="shopping.completeOrder"></transition>

 </state>

 </state>

 <state id="confirm">

 <transition event="shopping.confirm"

target="complete"></transition>

 </state>

 <state id="complete">

 <transition event="shopping.completeOrder"

target="search"></transition>

 </state>

</scxml>

37

5. TESTING METHODOLOGY TO TEST STRUT BASED APPLICATION

 The previous chapter 4 discusses about the modeling the strut based application by

building a state based model so that it can be further used for automated testing and generating

test scripts. Information was extracted from the navigational flow of the online shopping web

application and state chart was created to produce model of the application which was utilized

for model based testing. An automated testing tool Selenium 2.0 [6] is used in conjunction with

the model to generate test scripts and apply them to system under test. Selenium allows to

interact with the web browser and almost all the software application are written as a web based

applications so that it can run in an internet browser. The main advantage of using Selenium is it

supports execution of one's test on multiple browser platforms.

5.1. Testing Approach for Online Shopping Page Flow Application

 The steps below describes the testing approach I have used to test the online shopping

web application based on strut based framework(SBF).

1. Based on the test criteria all pages, all actions ,all links and all forwards, the navigational

flow of the application is analyzed to produce states for physical web pages, events for

actions and the transitions for the links and forwards.

2. For state machine representation, I have created a state chart using State Chart

XML(SCXML) and is annotated with events on the transitions.

3. I have used automated testing tool Selenium 2.0[6] to write a program which will

traverse through various conditions and combinations present in the state model. This

testing tool, Selenium, will invoke the application, perform actions and relay the user

38

initiated events(like button click or clicking on hyper link) to the commons SCXML

driven online shopping instance by serving as an intermediary between the UI and

application behavior. The program written is limited to my online shopping page flow

application and the UI elements needs to be changed for other page flow applications.

4. Finally, automated test case will be generated and this automated test cases will be the

selenium test scripts that will validate the navigational flow of my online shopping web

application.

5. The successful execution of test criteria- all pages, all actions, all links and all paths

results in test coverage criteria satisfied.

5.2. Modeling Inputs

 Struts based framework navigational model provides useful information for modeling

inputs of a web application. In general, modeling the inputs of an application requires inspection

of the GUI to discover the domain of inputs, along with the applicability and behavior constraints

on those inputs [10]. For the online shopping web application which is based on strut based

framework, the GUI is a set of java server pages that are connected within the navigational flow.

This java server pages source code have the information about the components in the GUI like

the buttons, text boxes, hyperlinks and it also provides information about nature and type of the

possible input values that are valid and can be used. The source code of the actions uses certain

inputs and describes the behavior of the application.

39

5.3. Generation and Execution of Test Script Using Selenium

 State chart XML(SCXML) is used to describe the stateful behavior of an objects. The

Apache Foundation is supporting SCXML through the Apache Commons project. Commons

SCXML[12] is an implementation of a Java SCXML engine capable of executing a state

machine defined using a SCXML document as shown in figure 4.3, while abstracting out the

environment interfaces[12]. The latest implementation of Commons SCXML is v.0.9.

Developers can use the SCXML state model directly in the corresponding code artifacts with the

help of Commons SCXML[5].

 For the online shopping application I have used Selenium 2(aka Selenium Web driver)[6]

which is the newest addition in selenium toolkit and useful for automating web application

testing. The figure 5.1 below is the code snippet in which the class

"OnlineShoppingSelenium.java" relays user initiated events to the commons SCXML driven

"shopping" object which encapsulates the behavior of the online shopping application.

.

Figure 5.1. Code Snippet To Relay User Initiated Events

public class OnlineShoppingSelenium {

 private Shopping shopping;

 public OnlineShoppingSelenium(){

 super();

 shopping= new Shopping();

 startApplication();

 shopping.stopAppliction();

 }

 }

public void startApplication(){

 shopping.fireEvent(Shopping.EVENT_SEARCH);

 testSearchFlow();

40

Figure 5.1. Code Snippet to Relay User Initiated Events (Continued)

 The Class "Shopping.java" is the selenium test script shown in figure 5.3 and implements

the online shopping application behavior which is based on the strut based framework. In the

code snippet below the class "Shopping.java" extends "AbstractStateMachine" which provides

the base functionality needed by the classes representing stateful entities, whose behaviors are

defined via SCXML documents shown in figure 4.2 [12]. The events which needs to be

processed are also shown below in the code snippet.

public static final String

EVENT_SEARCH = "shopping.search",

EVENT_PROCESS = "shopping.processData",

testNestedFlow();

 }

 public void testNestedFlow(){

 shopping.fireEvent(Shopping.EVENT_GETITEM);

 shopping.fireEvent(Shopping.EVENT_SELECTITEM);

 shopping.fireEvent(Shopping.EVENT_CONFIRM);

 shopping.fireEvent(Shopping.EVENT_COMPLETEORDER);

 }

public void testSearchFlow(){

 shopping.fireEvent(Shopping.EVENT_PROCESS);

 shopping.fireEvent(Shopping.EVENT_SELECTITEM);

 shopping.fireEvent(Shopping.EVENT_CONFIRM);

 shopping.fireEvent(Shopping.EVENT_COMPLETEORDER);

 }

 public static void main(String[] args) {

 OnlineShoppingSelenium onlineShoppingSelenium = new

OnlineShoppingSelenium();

 }

 }

41

EVENT_GETITEM = "shopping.getItem",

EVENT_SELECTITEM = "shopping.selectItem",

EVENT_CONFIRM = "shopping.confirm",

EVENT_COMPLETEORDER = "shopping.completeOrder";

 In the code snippet below, the information is pulled directly from the behavioral model

of the online shopping application which is encapsulated in the SCXML document

"OnlineShoppingStateChart.scxml" shown in figure 4.2.

super(Shopping.class.getClassLoader().getResource("OnlineShoppingStateChart.scxml"

));

 For my application the browser and test both runs on the same machine, I am using web

driver API and not the selenium server. The test will use the web driver API and web driver will

run the browser directly. For my application I am using Internet Explorer to run the test and new

instance of internet explorer is created in the test script and the get method will help the web

driver to navigate to the JSP page shown in the code snippet below.

driver = new InternetExplorerDriver();

driver.get("http://localhost:7001/OnlineShopping/myflow/Controller.jpf");

 Selenium uses Locators to find and match the elements of the page which it interacts

with. Locating elements in Web Driver can be done on the Web Driver instance itself or on a

Web Element[6]. Each of the language bindings expose a “Find Element” and “Find Elements”

method[6]. In the selenium test script for my online shopping application, shown below in figure

5.3, "by link text" ,"by id" and by "x-path" locators are used for locating UI elements or web

elements.

 Each methods in the test script below index(), index1(), search(), getItemflow(),

confirm(), complete()) is the activity corresponding to the states in the SCXML document.

42

5.4. Output

 Once we run the selenium test script shown in figure 5.3 , the output displayed in the

console conforming the validation of the online shopping web application navigational flow as

shown in screenshot figure 5.2. and the test criteria, all pages which was represented as states, all

forwards/ links represented by transitions and actions performed as events in the SCXML

diagram was covered successfully.

Figure 5.2. Screenshot of Selenium Test Script's Output for Online Shopping Application

43

Figure 5.3. Selenium Test Script for Online Shopping Application

import org.apache.commons.scxml.env.AbstractStateMachine;

import org.openqa.selenium.By;

import org.openqa.selenium.WebDriver;

import org.openqa.selenium.WebElement;

import org.openqa.selenium.ie.*;

import org.openqa.selenium.support.ui.ExpectedCondition;

import org.openqa.selenium.support.ui.ExpectedConditions;

import org.openqa.selenium.support.ui.Select;

import org.openqa.selenium.support.ui.WebDriverWait;

public class Shopping extends AbstractStateMachine{

 public static final String EVENT_SEARCH = "shopping.search",

 EVENT_PROCESS = "shopping.processData", EVENT_GETITEM = "shopping.getItem",

 EVENT_SELECTITEM = "shopping.selectItem", EVENT_CONFIRM =

"shopping.confirm", EVENT_COMPLETEORDER = "shopping.completeOrder";

 public WebDriver driver;

 public WebElement element;

 private String itemName;

 private Float unitPrice;

 private String itemCode;

 private Integer itemQuantity;

 private String cardType;

 private String expDate;

 private String cardNo;

 private String custName;

 private String custAddress;

 private String custCity;

 private String custPhone;

 private String custState;

 private Float totalprice;

 private String zipCode;

 public Shopping() {

 super(Shopping.class.getClassLoader().getResource("OnlineShoppingStateChart.

scxml"));

 }

 public void index(){

 itemName=itemCode=cardType=expDate=cardNo=custName=custAddress=custCity=cust

Phone=custState=zipCode="";

 totalprice=unitPrice=(float) 0.0;

 itemQuantity=0;

 driver = new InternetExplorerDriver();

 driver.get("http://localhost:7001/OnlineShopping/myflow/Controller.jpf");

 listStates();

 }

44

Figure 5.3. Selenium Test Script for Online Shopping Application (Continued)

 }

 public void getItemFlow(){

 System.out.println();

 listStates();

 element=driver.findElement(By.xpath("//input[@id='rcmnd' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_GETITEM);

 }

 public void confirm1(){

 listStates();

 element=driver.findElement(By.xpath("//input[@value='A002']"));

 element.click();

 element=driver.findElement(By.xpath("//input[@id='selitem' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_SELECTITEM);

 }

 public void complete1(){

 if (driver.getTitle().equals("Confirm")){

 listStates();

 element=driver.findElement(By.id("qty"));

 element.sendKeys("1");

 element=driver.findElement(By.id("crdno"));

 element.sendKeys("6781083905756242");

 element=driver.findElement(By.id("date"));

 element.clear();

 element.sendKeys("03/02/2012");

 element=driver.findElement(By.id("name"));

 element.sendKeys("abhishek misra");

 element=driver.findElement(By.id("addr"));

 element.sendKeys("12055 bedford plz");

 element=driver.findElement(By.id("city"));

 element.sendKeys("omaha");

 element=driver.findElement(By.id("zip"));

 element.sendKeys("68164");

 element=driver.findElement(By.id("phno"));

 element.sendKeys("9528319693");

 element=driver.findElement(By.id("state"));

 element.sendKeys("nebraska");

 element=driver.findElement(By.xpath("//input[@id='cnfrm' and

not(@disabled)]"));

 listEvents(EVENT_CONFIRM);

 }

45

Figure 5.3. Selenium Test Script for Online Shopping Application (Continued)

if (driver.getTitle().equals("Complete")){

 listStates();

 element=driver.findElement(By.xpath("//input[@id='cmplt' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_COMPLETEORDER);

 listStates();

 }

 }

 public void searchResult(){

 listStates();

 element=driver.findElement(By.xpath("//input[@id='sbmt' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_PROCESS);

 }

 public void confirm (){

 listStates();

 element=driver.findElement(By.xpath("//input[@value='A004']"));

 element.click();

 element=driver.findElement(By.xpath("//input[@id='selitem' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_SELECTITEM);

 }

 public void complete(){

 listStates();

 element=driver.findElement(By.id("qty"));

 element.sendKeys("2");

 element=driver.findElement(By.id("crdno"));

 element.sendKeys("6781083905756242");

 element=driver.findElement(By.id("date"));

 element.clear();

 element.sendKeys("03/02/2012");

 element=driver.findElement(By.id("name"));

 element.sendKeys("shweta tiwari");

 element=driver.findElement(By.id("addr"));

 element.sendKeys("12055 bedford plz");

 element=driver.findElement(By.id("city"));

 element.sendKeys("omaha");

 element=driver.findElement(By.id("zip"));

 element.sendKeys("68164");

46

Figure 5.3. Selenium Test Script for Online Shopping Application (Continued)

element=driver.findElement(By.id("phno"));

 element.sendKeys("9528319693");

 element=driver.findElement(By.id("state"));

 element.sendKeys("nebraska");

}

element=driver.findElement(By.xpath("//input[@id='cnfrm' and

not(@disabled)]"));

 element.click();

 listEvents(EVENT_CONFIRM);

 }

 public void stopAppliction(){

 driver.close();

 }

 public void listStates(){

 String State= driver.getTitle();

 System.out.print(State);

 }

 public void listEvents(String Event){

 System.out.print("-->"+Event +"-->");

 }

}

47

6. CONCLUSION AND FUTURE WORK

 In this paper I have extend an approach to reduce the manual effort by creation of state-

based model and usage of automated testing method for model based testing which describes the

behavior of the application based on strut based framework taking into account that It also covers

all the test criteria defined which are extracted from the navigational flow of the application. I

am also using an existing automated tool Selenium[2] in my example, which is widely used now-

a-days for testing web based application in a much simpler way and support multiple platform

and operating system. It supports successful execution of test on multiple browser platforms like

Internet Explorer, Safari, Firefox, Opera and many more. Selenium also supports object oriented

programming language and it allows user to use a wide range and variety of programming

language like Java, C#, Ruby, Python, pearl & IDEs like Eclipse, Net beans, Visual Studio etc.

 The proposed methodology is implemented on a real time application as an example to

show the feasibility of my approach .I have used automated testing method and with the help of

automated testing tool Selenium, test scripts are generated which covers all the test criteria

defined. Based on this online shopping application, I have also build a state model using

SCXML- which is all about state chart and is a powerful extension of finite state machines which

describes the flow of the complex web based application in an easy way. It is a general-purpose

event-based state machine language and is widely used. SCXML can describe any complex state

machine using XML based markup language. It describes the behavior of the application under

test in terms of states, events and transition. The automated tool selenium takes the input in terms

of elements associated from this state model to test the navigational flow of the application and

the test criteria defined.

48

 Future work includes investigation of alternative test case generation technique and

investigation of ways to further reduce manual effort required to create state based model for

complex web based application. A generic program, software or interpreter can be built which

can automatically represent any page flow application in terms of states, transition and events

and can create a state based model for the application.

49

REFERENCES

1. Alava, J., King, T.M., Clarke, P.J. ,Automatic validation of java page flows using model-

based coverage criteria, In: Proceedings of the 30th Annual International Computer

Software and Applications Conference

2. Alava, J. ,Software-practice and expirence.2000, An automatic method for validating

strut based applications, Copyright c 2000 John Wiley & Sons, Ltd.

3. The apache software foundation :http://www.apache.org/Retrieved on 03-04-2013.

4. The apache beehive project: http://beehive.apache.org/docs/1.0.2/netui/overview.html,

 Retrieved on 03-04-2013

5. The apache commons SCXML. State chart XML(SCXML) 2010:

http://commons.apache.org/scxml/ ,Retrieved on 03-04-2013

6. Selenium HQ 2.0, web application testing system: http://seleniumhq.org/ ,Retrieved on

03-04-2013

7. Oracle workshop for web logic 10.3:http://docs.oracle.com/cd/E13224_01/wlw/docs103/

, Retrieved on 03-04-2013

8. Far, I. K. El. and Whittaker, J. A. , Model-based software testing. Encyclopedia of

Software Engineering,2001. ed. John J. Marciniak.

9. SCXML GUI editor for SCXML: http://code.google.com/p/scxmlgui/ ,

Retrieved on 03-04-2013

10. Whittaker, J.A. , Stochastic software testing , Annals of Software Engineering 4 (1997)

115–131

50

11. Andrews, A.A., Offutt J., and Alexander R. T. Testing web applications by modeling

with fsms, Software and Systems Modeling, 4(3):326–345, July 2005.

12. State Chart XML(SCXML): State Machine Notation for Control Abstraction

13. W3C Working Draft 6 December 2012: http://www.w3.org/TR/scxml, Retrieved on

 03-04-2013

14. Ricca, F. and Tonella, P. , Analysis and testing of web applications, In Proceedings of

the 23rd International Conference on Software Engineering, IEEE, May 2001.

15. Davis, M.: Struts, an open-source MVC implementation (2001), http://www-

128.ibm.com/developerworks/ibm/library/j-struts/, Retrieved on 03-04-2013

16. Casal, D.P. , Advanced software development for web applications. Technical Report

TSW0505: http://www.jisc.ac.uk/uploaded_documents/jisctsw_05_03pdf.pdf, Retrieved

on 03-04-2013

17. Mens, T., Czarnecki, K., Gorp, P.V. , 04101 discussion – a taxonomy of model

transformation

18. Object Management Group (2010), http://www.omg.org/spec/UML/2.3/ , Retrieved on

03-29-2013

19. Migliorini, N. ,Comparing UML, SCXML and the Apache implementation of SCXML

engine

