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ABSTRACT 

 

Spatial data, including image data, are typically downloaded into GIS systems for 

processing purposes. The GIS data are optimized for establishing spatial relationships among 

objects. Spatial data can be produced rapidly from a variety of sources and the use of spatial data 

to improve agricultural management has become common [1]. However, most GIS systems are 

limited in their data mining capabilities. Data mining software provides advanced prediction 

capabilities for record-based data. The research goal of this project is to create a tool that would 

allow input of images and metadata, then process them using geospatial software to convert it to 

a record format such that data mining can be performed. This process opens the possibility of 

applying data mining techniques to agricultural data, for which such techniques are not yet in 

common usage. This paper proposes one such tool for classification of spatial data sets using J48 

and Random Forest techniques.
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1. INTRODUCTION 

 

Precision agriculture is a term that characterizes the use of detailed spatial information in 

the direct management of modern agriculture [2]. A branch of precision agriculture involves 

studying images of fields obtained from remote sensing. Remotely sensed image collection 

results in large data sets that can be analyzed [3]. If this data is grouped and classified according 

to patterns with a reasonable accuracy it could help optimize field practices. These practices 

could include directing fertilizer application rates, reducing farmer input costs, and losses of 

excessive nitrogen due to leaching or nitrous oxide emissions of.  

Agriculture has a major role to play in the economy. “The value of global agricultural 

products (excluding animal products) grew by 5.9% since 2010 to a value of $1.7 trillion. In 

2015, the global agricultural products are forecast to have a value of $2.3 trillion; an increase of 

34.1% since 2010 [4].” Information technology has established itself as a significant part of all 

industries, and the agricultural industry is no different. Together with satellite imagery and 

geospatial tools, it has proven to be a boon to farmers and many consider it indispensable in 

modern agriculture.  

The input data used in this project consist of images obtained from Landsat satellites, 

called Landsat images. Yield information is available independently through growers in the same 

fields as the images were obtained. These images have the geometric quality to ensure that geo-

location (identification of the real-world geographic location of an object) is sufficiently 

accurate. The images used here are from satellite, Landsat 5 that was launched on March 1, 1984. 

Landsat 6 failed to reach orbit, and Landsat 7 images have a faulty scan line corrector. The 

images used in this research have been produced using the Thematic Mapper (TM) sensor, which 
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is an upgrade on the previously used Multispectral Scanner (MSS) sensor. The TM sensor 

records seven bands, each of which has a distinct agricultural significance such as detecting 

chlorophyll absorption, differentiating soil-vegetation, and other useful features [5]. Figure 1 

shows a Band 1 Thematic Mapper image in gray scale format. 

 

  Figure 1. A Landsat 5 gray scale image. 

This project shows how data mining can be interfaced with geo-spatial data, and 

demonstrates the construction of a mathematical model from Landsat images and selected known 

yield data from the same fields. Yield prediction, which is discussed later in the paper, can be 

helpful for farming. The prediction models used in this paper are available as part of data mining 

frameworks. “Data Mining is the computational process of discovering patterns in large data sets 

involving methods at the intersection of artificial intelligence, machine learning, statistics, and 

database systems [6].” Data mining includes clustering, in which clusters (groups) of data are 

formed that are more similar to each other than to those in other clusters. Data mining also 

includes classification, which generalizes the structure of attributes based on a known class label. 

http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Database_system
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The resulting classification model can be applied to new data collected in a similar format. This 

paper will demonstrate two classification techniques for yield prediction. Yield will be used as 

the class label, or in other words, the attribute that is being predicted.  

1.1. Motivation 

The goal of precision farming is partly to provide tools and methods to manage farming 

practices spatially according to crop needs, and in doing so, protect the environment from 

contaminants resulting from over-application of fertilizer and chemical inputs, while increasing 

farmer efficiency for their economic improvement. It also helps farmers to maintain farming 

records, make better informed decisions, be able to back track and to improve quality of their 

products [2]. These are the reasons that inspire studies on yield prediction. 

1.2. Problem Statement 

What is desired in this project is an ability to apply data mining algorithms on data as 

incorporated into a Geographic Information system (GIS). The long-term goal of this project 

would be to utilize a data mining framework alongside GIS framework, or to have the ability to 

use data mining framework alongside a GIS framework. An alternative to this might be to use a 

subset of GIS functionality that simulates GIS behavior and merge it with the data mining 

framework to produce the desired result. It is also needed that some measures be output from the 

application of data mining tools to check whether a model is suitable for prediction. To 

understand how agricultural data varies when image attributes vary, plots of relationships 

between agricultural spatial data and attribute configurations are required. 

1.3. Research Strategy 

Each band within a Landsat 5 image data set has certain agricultural significance; it is 

conceivable that certain combinations of the seven band values at a given point can predict the 
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yield at that point. This paper proposes to create a mathematical model with the seven band 

values and yield value as attributes. The idea then is straight forward; to obtain band values at 

points on the image whose yields are known, map band values to yield values, and build a model 

using data mining techniques. However, there is a challenge in the first step itself. The band 

values of points on an image can be obtained at the pixel level whereas the yield data is obtained 

based on latitudes and longitudes. The first goal then is to approximate the latitudes and 

longitudes to the closest pixel, which is 30 meters by 30 meters in size. The geospatial 

coordinates (longitudes/latitudes) have to be converted to pixel/line coordinates with respect to 

the image itself. This is aided by the geographical metadata that accompanies a Landsat image. 

After that the data mining step will follow. The system therefore interfaces the data mining 

infrastructure with GIS (Geographic Information systems) infrastructure. Figure 2 shows a block 

diagram that gives an overall view of the system. Each curved box represents data and each 

square box represents a function. 

 

  Figure 2. Block diagram showing the functionality and data input of the system. 
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1.4. Outline of the paper 

This paper consists of six chapters. The first chapter gives the introduction to the 

problem, the motivation and goals that are targeted. It also briefly discusses data mining which is 

a key aspect in this research. The second chapter discusses the high-level approach that is used 

for achieving the target along with the various steps involved. The third chapter shows the class 

design, sequence diagram, flowcharts, Graphical User Interface (GUI), and the resulting 

performance of the system. The results obtained from the system are discussed in chapter 4. 

Chapter 5 presents about other related works that address similar problems and chapter 6 gives 

the final conclusions inferred from the research. The program output for a test data set is 

provided in the appendix.  
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2. APPROACH 

 

Based on the discussion under research strategy, the project has been divided into four 

steps which are georeferencing the Landsat image (any band), using its metadata, converting 

latitudes and longitudes of points with known agricultural yield to corresponding pixel/line 

coordinates using the geo-referenced information, exporting yield values along with band values 

of the pixel/line coordinates obtained for each band from their respective images in a record 

based file, and subjecting the exported file to data mining algorithms available from Weka 

(software developed by the University of Waikato), a collection of machine learning algorithms 

which can either be applied directly to a data set or called from Java code to obtain results. 

The required inputs to the system are: 

1. Seven images of the same location, each representing seven different bands that can 

be downloaded from http://landsat.usgs.gov. From the download options, the level 1 

product has to be chosen. These images are grayscale or black-and-white images.  

2. Metadata that has the georeferencing information in it. This data has the latitudes and 

longitudes of the four corners of the image, the length and the width of the image and 

is available in the “‘scene ID’_MTL.txt” file that is included in the level 1 product 

that was downloaded. The scene ID is specific to the downloaded file. Example, 

LT50290272010217EDC00. 

3. Known data containing coordinates of points and their corresponding yields. This 

comes from a record-based file obtained from American Crystal Sugar Company. The 

unit of yield is tons per acre. This file is in .dbf format which can be read by GIS 

software. 
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It is important that the images downloaded were captured about the same time as the 

date the yield was measured. It is also required that the images include the coordinates given 

in the known data file. The coordinates and the time of capture can be specified on the 

download web site. 

2.1. Georeferencing 

Georeferencing is locating a position in physical space [7]. This project requires us to 

map latitude/longitude to pixel, line, or X, Y coordinates with the origin being the top left corner 

of the image, so that the X, Y values of points with known yields can be computed. These are 

needed in order to calculate the band values, the points’ coordinates relative to the image or 

image space coordinates are needed.  

“Ground Control Points (GCPs) are points on the earth’s surface with a known location 

which can be used to geo reference image data sources for remotely sensed images [8].” These 

are points of which geo-spatial coordinates and image space coordinates are known. A set of 

GCPs can be used to create a transformation matrix of a polynomial nature. This matrix can be 

used for converting coordinates from one system to another. The more the GCPs are available, 

the higher the precision of the transformation matrix. The scene_id_MTL.txt file that comes as a 

part of the downloaded level 1 product includes the latitudes and longitudes of four corners of 

the image and also includes its length and width. The four corners have been used as GCPs with 

their X, Y coordinates calculated from the length and width are: 

Upper Left corner (origin): (0, 0) 

Lower Left corner: (0, length) 

Upper Right corner: (width, 0) 

Lower Right corner: (width, length) 
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This coordinate system is understood by Java which is the platform used for developing 

this project. 

2.2. Conversion 

From the transformation matrix created, coordinates can be transformed from one 

coordinate system to another using polynomial, spline, or adjust transformation. Polynomial 

transformation has been used in this project. It uses a polynomial that is generated from GCPs 

and the least squares fitting (LSF) algorithm. This algorithm is used where the number of 

equations is more than the number of unknowns [9]. The LSF algorithm aims at creating a 

generalized formula that can be applied to any point while adjusting the position of some GCPs. 

The minimum number of GCPs required is three for first order polynomial and six for the 

second. Since there are four GCPs available from metadata, a first order polynomial will be the 

obvious choice. The following equations can be used for converting coordinates using first order 

or affine polynomials.  

x’ = Ax + By + C 

y’ = Dx + Ey + F 

Where 

x is the column count in image space 

y is the row count in image space  

x’ is the horizontal value in coordinate space (longitude) 

y’ is the vertical value in coordinate space (latitude) 

A is the width of cell in map units 

B and D are rotation terms 

C is the x’ value of the center of upper-right cell. 
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E is negative of height of cell in map units 

F is y’ value of the center of upper right cell [10]. 

Image space coordinates are calculated from latitudes and longitudes of points with 

known yield values. 

2.3. Export 

Having the image space coordinates available, the seven band values are computed for 

them from seven different images each one representing one of the seven bands. These images 

are also included in the level 1 product and have the naming convention as 

“‘scene_id’_B‘x’.TIF” where x is the band number ranging from 1 to 7. The band value of a 

point is the red, green or blue value at its location (X, Y) because the three are the same for a 

grayscale image at a given point. These band values range from 0 to 255. The yield values 

obtained from the known data file are real numbers with units of tons per acre. Since, data 

mining classification tools available from Weka cannot operate upon real numbered classes, the 

yield values are assigned yield categories based upon the following scheme in Table 1. This 

scheme has been framed considering that the usual yield values lie between 20-30 tons per acre 

and few others between 30-53 tons per acre. Since, data mining has to be done on band values 

and yield categories, coordinates are omitted and the seven band values and yield categories are 

exported to a record based file. 
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Table 1 

Key of Classes or Yield Categories and the Range of Yield Values Covered by Them. 

YIELD VALUE YIELD CATEGORY 

<20 A 

20-22 B 

23-25 C 

26-28 D 

29-31 E 

32-34 F 

35-37 G 

38-40 H 

41-43 I 

44-46 J 

47-49 K 

50-52 L 

>=53 M 

 

2.4. Data-Mining 

At this point, the data is ready to be mined upon with band 1, band 2, band 3, band 4, 

band 5, band 6, band 7 values and yield (which is the class) attributes. The first step for 

classification is to choose the test data set. This project discusses calculating the classification 

error on the training data set and cross-validation. Leave-one-out cross-validation is a technique 

for evaluating classification accuracy by dividing the training data set into k partitions, using one 

partition as test data and the other k-1 partitions as training data. This process is repeated k times 

such that every partition is used as test data once with others as training data. The final result is 

the average of the k results. For classification, there are many techniques available in Weka. This 

project makes use of two classification techniques, J48 Tree and Random Forest.  
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2.4.1. J48 Tree 

The J48 tree is the java implementation of C4.5 algorithm [11]. This method builds a 

decision tree based on the available data and is used to predict a target value (dependent variable) 

based on different attributes (independent variables). Information gains are computed for all 

attributes at every split value (or threshold value) and the combination with the highest 

informational gain is chosen [12]. It then partitions the data set into subsets according to the 

value of the chosen attribute. The steps are repeated for each of the smaller data sets. The 

processing stops for a data set when all instances from that data set belong to a common class in 

which case, a tree leaf labeled with that class is returned or when there are no more instances 

remaining, or there are no more attributes left (leaf labeled with the most frequent class or the 

disjunction of all the classes is returned). The information gain for an attribute can be calculated 

using the following formulas: 

Entropy, E(S) = ∑i=1 to n –Pr(Ci) * log2 Pr(Ci) 

Gain, G(S, A) = E(S) – ∑j=1 to m Pr(Aj)E(SAj) 

Here, S is the total data set, E(S) is the information entropy of S, A is the attribute whose 

information gain is being calculated, G(S, A) is the gain of S after a split on attribute A, n is the 

number of classes in S (in this paper n will be 13), Pr(Ci) is the probability of class Ci in S, m is 

the number of different values of attribute A in S, Pr(Aj) is the probability of instances that have 

Aj value in S and E(SAj) is the information entropy of subset of S that have Aj value [13]. 

The advantages of using a J48 tree are: 

1. For problems where attribute importance is key, it is more accurate than other 

classifiers like the Naïve Bayes classifier, Neural Network, and Support Vector 

Machine Classifier. 
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2. The tree can be built quite quickly for a small data set.  

3. Builds models that can be easily interpreted 

4. It is easy to implement. 

The disadvantages are: 

1. Small variation in data can lead to different decision trees especially when the 

variables are close to each other in value. 

2. Does not work very well on a small training set. 

It is suitable for real world problems as it deals with numeric attributes and missing 

values. The algorithm can be used for building smaller or larger, more accurate decision trees, 

and the algorithm is quite time efficient. 

The J48 tree (a portion) built using Weka looks like the tree shown in Figure 3. Here, the 

attribute with the highest information gain for the overall tree is band3 with a threshold value of 

144. The nodes with an alphabet represent a leaf node with the alphabet being the class of the 

leaf. The class names are followed by brackets containing the total number of instances assigned 

to that node and how many of those instances were incorrectly classified. If an attribute vector 

has a band3 value greater than 144, it will be assigned the class C otherwise, it will traverse 

through the other branch and will check if its band1 value is less than or equal to 155. This will 

continue until a leaf node is reached and its corresponding class will be assigned to the attribute 

vector. 
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    Figure 3. A portion of a J48 tree output from Weka tools. 

2.4.2. Random Forest 

Random Forest machine learner consists of many individual learners or decision trees 

who vote their classifications to conclude an overall classification. These trees grow in a well-

defined fashion.  

For every tree, a portion of the training data (usually one third) is sampled with 

replacement and the modified data set, called in-bag data, is used for training, and the original 

data portion, called out-of-bag data, is used to get a true evaluation of classification error with 

the addition of trees. Also, at each step a small number of attributes are chosen at random (for 

each node) which determine decisions on their respective nodes. The best attribute and split 

value is picked by finding the combination (attribute and its value) with the highest information 

gain. Hence, it also evaluates the importance of all variables or attributes in the data and 

optimizes (rearranges attributes) accordingly [14]. The forest is thus optimized before the testing 

data set is supplied to it. 

In Weka, the number of trees and the number of attributes (or features) at a node can be 

set by the programmer. In this research default values of 10 trees and 4 features has been used. 

Each tree has a different selection of features (chosen randomly) and a different training data set 
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(due to different sampling). Upon creating a model the Random Forest algorithm also computes 

the overall out-of-bag error which is the proportion of incorrectly classified instances from the 

out-of-bag data. 

The advantages of using Random Forest are: 

1. It runs efficiently on large data sets. 

2. It can evaluate the importance of each attribute and produce results accordingly. 

3. It evaluates itself as it is built. 

4. Research shows that, Random Forest Classification is one of the most accurate 

methods available today [15]. 
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3. DESIGN AND EXECUTION 

 

3.1. Design 

The classes have been designed such that each one covers a certain independent 

functionality hence, ensuring high cohesion. LandsatMining is the class with the main method or 

the entry point of the application. The Transform class is an abstract class as it would never have 

an object of its own and its constructor parses GCP data from the meta data file and points with 

known yield values from yield report file. Class AffineTransform extends from Transform and it 

contains the method to convert longitudes and latitudes to image space coordinates X and Y. If 

this project is required to include other transformation methods like Spline Transform, etc. in the 

future, they may be implemented in their respective classes that extend from Transform since 

any method would need the same parsing steps that are defined in the Transform() constructor. 

They would also need to implement the method LatLontoXY() as it is declared as an abstract 

method in Transform. Hence, the system is extensible and easy to maintain. Classes 

KnownYieldXY and KnownYieldLatLong are included to create objects that hold yield values 

along with the coordinates they pertain to, in pixel/line and latitude/longitude coordinate systems 

respectively. These classes also aid in interfacing functions in different classes, so that changing 

a function doesn’t affect the other. This makes the system loosely coupled. The ExportBands 

class is responsible for getting seven band values for the converted coordinates and exporting 

them (along with their yield categories) to a record-based file. Class Classifiers’ constructor 

implements reading the exported file and preparing the data based upon the type of testing data 

set chosen by the user while its derived classes, ClassifierJ48 and ClassifierRandForest have 

functions to perform their respective classification techniques on them. Figure 4 shows the 

different classes, their data members, methods, associations and inheritance. 
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                       Figure 4. UML class diagram showing the classes and how they 

                       relate to each other.  
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3.2. Sequence of Events 

Figure 5 shows a sequence diagram of the system. As stated earlier, the entry point of the 

application is in the LandsatMining class, the system execution starts with the LandsatMining 

method creating an object of AffineTransform. While doing so, paths to the meta data file and 

the known yield data file are supplied as required by its constructor. Then a call is made to the 

function LatLontoXY function which georeferences using data parsed in the constructor and 

converts latitudes and longitudes of points of known yield to pixel and line coordinates. These 

are collected in an array list together with yield categories and are returned to LandsatMining 

method.  

 

     Figure 5. UML sequence diagram showing function calls and the flow of data. 
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It then calls exportBands method in ExportBands class with the array list as an argument 

to calculate band values and export these values along with yield categories to an arff (format 

understandable to Weka) file. Depending on the algorithm chosen by the user, a call is made to 

the appropriate class to perform data mining upon the exported data and the results are sent back. 

3.3. Execution 

The project is implemented in Java using Eclipse IDE, which makes use of some external 

libraries. It uses GDAL for georeferencing and converting geospatial coordinates to image space 

coordinates. For reading TIFF images (images with .TIF extension), which is the format the 

grayscale landsat TM images are available in, it requires jai_codec-1.1.3-alpha, imageio-ext-

utilities-1.1.7, jai_imageio-1.1-alpha and jai_core-1.1.3 libraries. The default imageio library that 

comes as part of java installation does not support TIFF images. Finally, it uses the Weka library 

for performing data mining. All these libraries can be freely downloaded. 

As stated earlier, the file with coordinates of known yield values is input to the system. 

This file as obtained from American Crystal Sugar Company is in .dbf format which cannot be 

read by this system because of encoding incompatibility. Hence, it is important that the file 

format be changed to .txt before it is input to the system. This can be done by opening the .dbf 

file in Microsoft Excel and saving it as tab delimited .txt file. In the export step, the record file 

that is generated has an .arff format, which is the format that can be read by the Weka tools. This 

file is generated in the location specified by the user. The same file location is supplied to the 

classification algorithms.  

The different programs in the project have been developed with storage and speed 

efficiency in mind. Flowcharts to the individual project files are shown in Figures 6, 7, 8, 9 and 

10. 
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               Figure 6. LandsatMining.LandsatMining() flowchart. 
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                                      Figure 7. Transform.Transform() flowchart. 

In the metadata file, the four corner GCPs are situated in lines that abide by the format, 

‘PRODUCT_’xx‘_CORNER_’LAT/LON, where xx denotes one of the possible corners, UL, 

UR, LL and LR, which stand for Upper Left, Upper Right, Lower Left and Lower Right, 

respectively. In some files, the format is ‘CORNER_’xx‘_’LAT/LON‘_PRODUCT.’ The length 

of the image is contained in the line that starts with either “REFLECTIVE_LINES” or 

“PRODUCT_LINES_REF” while the width is contained in the line starting with 

“REFLECTIVE_SAMPLES” or “PRODUCT_SAMPLES_REF.” All possibilities are taken care 

of by the parser in Transform constructor. In the yield data file, the yield, latitude and longitude 

values are situated in the 13
th

, 23
rd

 and 22
nd

 columns, in parallel order. 
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                          Figure 8. AffineTransform.LatLontoXY() flowchart. 
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                                      Figure 9. ExportBands.exportBands() flowchart. 

The exportBands function described in Figure 9 exports seven band values and yield 

categories in a file that has an .arff extension. The reason behind choosing this format is that .arff 

is the only file format that can be read by the data mining tool, Weka. This format has some 

specifications that have been complied with. The file starts with the keyword “@relation” 

followed by the name of the relationship. After a line break, it must have all attributes listed in 

separate lines prefixed by “@attribute” and suffixed by the data type of the attribute. For the first 

seven attributes, band1, band2, band3, band4, band5, band6 and band7, the data types are real 

numbers and are specified by the word “real.” The last attribute yield which is also the class 

label, the data type is an enumeration with alphabetic A to M as possibilities and is described as 

(A, B, C, D, E, F, G, H, I, J, K, L, M) in the file. After another line break, the file should have 

“@data” written followed by the actual data with each record separated by a line and each 

attribute value separated by a comma (,). 
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Figure 10. a) Classifiers.Classifiers() flowchart; b) Classifiers.Classify() flowchart. 
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After the .arff file is exported, it undergoes classification using the J48 or Random Forest 

classification techniques. This choice is given in LandsatMining.LandsatMining() function as a 

user input. Figure 10 a) shows the constructor of the base class Classifiers that reads the data file 

and prepares it for classification, depending upon whether the user wants to use the training data 

set as the testing data set, or use cross-validation. If the user chooses the former, the Classifier 

object is created with 0 as the ‘folds’ argument. The Classifiers class and its derived classes 

understand that if the value of folds is 0, the training data set is to be used as a testing data set; 

otherwise it uses cross-validation with the value of folds as the number of folds. Figure 10 b) 

shows a general flowchart for method Classify either called upon the ClassifierJ48 object, or the 

ClassifierRandForest object. 

3.4. Graphical User Interface 

The GUI for this project is built using Java Swing. When the program is run, a window 

appears (Figure 11 a)) which is divided into three sections. From the first section, the user is able 

to select locations to the metadata file, the yield data file, and the folder containing the seven 

band images. The user also chooses a file name for the file that will contain the exported record 

data and the location where the file will be saved. In the second section, algorithm and test data 

sections set are made. The plots between different band values and yield values (shown in 4.1) 

can be seen by clicking on the ‘Visualize’ button. Clicking the ‘Build and Evaluate’ button gets 

the model (tree) and its evaluation in an output window situated in the third section. The GUI 

also gives constructive feedback in case of errors. For example, if the number of folds is set to 1 

which is not accepted by either algorithm when cross-validating, a message is displayed to the 

user in red as shown in Figure 11 b). The clear button allows the user to clear all the fields in the 

interface. 
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     Figure 11 a). GUI showing J48 algorithm being run with training  

     data set as test data set. 

 

 

     Figure 11 b). GUI showing error message on an attempt to run the  

     program with folds = 1. 
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3.5. Performance 

The run time complexities of data parsing, converting coordinates, and exporting are 

linearly dependent on the number of records and can be described as O (n). The complexity of 

the J48 algorithm is O (n * log(n)) for training and O (m * log(m)) for testing where n is the 

number of records in the training data set, and m is the number of records in the testing data set 

[16]. When using the training data set as the testing data set, the values of m and n will be the 

same, bringing the overall complexity to O (n * log(n)). During cross-validation, both training 

and testing algorithms will run k times on data sets k times smaller than the original data set 

where k is the number of folds. That means, the complexity will be O (k*(n/k)*log(n/k)). Since, 

k is a constant, the overall complexity for J48 algorithm will be O (n * log(n)). Similarly, the 

overall complexity of Random Forest Algorithm is O (t*Sqrt((log t)+1)* n * log n) for both 

kinds of testing data sets where t is the number of trees and n is the number of records [17]. 
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4. RESULTS 

 

4.1. Visualization 

The data that was mined upon in this project (see the appendix for details) had 1326 

instances which had seven band values and yield values that were grouped into 13 categories A, 

B, C, D, E, F, G, H, I, J, K, L, M each (see Table 1 for details). To visualize, or to check for 

visible patterns in the data, yield categories were plotted against band values for all seven bands. 

Figures 12 a), 12 b), 12 c), 12 d), 12 e), 12 f), 12 g) show these plots for band 1, band 2, band 3, 

band 4, band 5, band 6 and band 7, respectively. A class color key is provided on each page to 

map colors to the class (yield category). Since most of the values lie between 20-30 tons per 

acre, we are most interested in classes B, C, D and E. 

 

 

Figure 12 a). Yield categories plotted against band 1 values. 
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Yield categories plotted against band 1 in Figure 12 a) do not show any particularly 

prominent pattern except that there are some class C points (23-25 tons per acre) against band 

values of around 170 while other classes are sparse in that region. 

 

 
 

 

Figure 12 b). Yield categories plotted against band 2 values. 

Graphs plotted against bands 2, 3 and 4 (Figures 12 b), 12 c), 12 d)) do not have any 

notably visible patterns. That is not to say that yield is not dependent on them, the dependence 

just cannot be seen in the visualization. This is why we need computerized mathematical models 

that extract information. Graphs for bands 5, 6 and 7 (Figures 12 e), 12 f), 12 g))  show that class 

B (20-22 tons per acre) and class C (23-25 tons per acre) have a narrower range of band values 

as compared to class D (26-28 tons per acre), class E (29-31 tons per acre) and class F (32-24 

tons per acre). Band 7 (Figure 12 g)) plot shows a very narrow range of 70-115 for class B. 
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                Figure 12 c). Yield categories plotted against band 3 values. 

 

 

 

Figure 12 d). Yield categories plotted against band 4 values. 
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                Figure 12 e). Yield categories plotted against band 5 values. 

 

 
 

 

Figure 12 f). Yield categories plotted against band 6 values. 
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Figure 12 g). Yield categories plotted against band 7 values. 

4.2. Classification 

As seen in the previous section, visualization does indicate a hint of patterns between 

yield and band values reflected in the image. However, that information is only one way to 

understand the dependence. It is not very helpful in making yield predictions. To make yield 

predictions, mathematical models are needed, which can be accomplished by classification. 

When the exported .arff file is supplied to the classification algorithm, a summary of results is 

output to the user. These results contain the number of correctly classified instances, the 

corresponding percentage, number of incorrectly classified instances and the corresponding 

percentage, kappa statistic, mean absolute error, root mean squared error, relative absolute error, 

root relative squared error. and the total number of instances. The output of this application for 

scene id ‘LT50290272010217EDC00’ is given in the appendix. Figure 13 shows the plot of 
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percentages of correctly classified instances for three test data sets which are training data set, 5-

fold cross-validation and 10-fold cross-validation for J48 and Random Forest methods. 

 

                     Figure 13. Correctly classified instances (%) by J48 and Random  

                     Forest algorithms using different data sets for testing. 

 

Another significant parameter that is obtained from the output is the root mean squared 

error because it reflects the average magnitude of error and gives higher weightage to large 

errors. Figure 14 shows the plot of root mean squared error using both algorithms on three kinds 

of testing data sets. 

        

                   Figure 14. Root mean squared error by J48 and Random Forest  

                   algorithms using different data sets for testing  
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5. RELATED WORK 

 

There has been research on using different types of data in order to predict yield. One 

such research project
 
[18] was based on soil and property data along with topographical data for 

three fields located near Centralia in Central Missouri. The topographic data was obtained for 

each field using a Nikon Topgun A200LG total station surveying instrument. This data was then 

processed using a series of methods including block kriging and terrain model analysis. It mainly 

focused on two objectives—to evaluate and compare the predictive accuracies of various 

function approximation techniques, including supervised feed—forward neural networks (NN), 

projection pursuit regression (PPR), and stepwise multiple linear regression (SMLR), in relating 

crop yields to topography, and soil parameters and yield estimation. 

NN methods produced the minimal standard error of prediction (SEP) results of all the 

methods in every site-year. The rprop NN technique was consistently superior to the other 

techniques, producing minimal SEP results in 6 out of the 10 site-years. Nonlinear techniques, 

both NN and PPR, showed only small gains over SMLR in site-years with small data sets and in 

site-years when water stress was minimal.  

Another interesting research project
 
[19] involves developing highly flexible models to 

estimate various soil and crop parameters based on data obtained from airborne hyperspectral 

imagery. These images of corn in eastern Canada (under different fertilization rates and various 

weed management protocols) were obtained from a compact airborne spectral imager. These 

images were used to estimate spectral reflectance values (for wavelengths, 408 to 947 nms) for 

each pixel with the help of ENVI software. Statistical and artificial neural networks were used to 

develop the yield prediction models. Principal component analysis was used to reduce the 
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number of input variables. Greater accuracy (about 20% validation RMSE) was obtained with 

ANN as compared to any of the three empirical methods based on normalized difference 

vegetation index, simple ratio or photochemical reflectance index. No clear difference was 

observed between SMLR and ANN methods.  
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6. CONCLUSION AND FUTURE WORK 

 

As shown in chapters 2 and 3, the goal of using data mining framework alongside spatial 

data with the help of Geospatial Data Abstraction Library (GDAL) has been achieved. GIS 

(simulated by GDAL library) was extended to have data mining functionality. This involved 

obtaining georeferencing information from the GIS for converting longitudes and latitudes of 

points with known agricultural values into pixel level coordinates, exporting those values and 

band values at the converted coordinates, and applying data mining models on them for 

classification. From the visualization in chapter 4, it can be speculated that band values do 

impact the yield at a given point. The software was also able to produce measures that reflect the 

accuracy of the prediction model. Hence, this paper presents a prototype of a system that allows 

data mining to interface with geo-spatial information.  

In terms of what can be done next, the project can incorporate pattern mining which 

would help find association rules among band configurations. Using regression techniques for 

data mining would yield a model with low root mean squared error. Lessening the number of 

yield categories/classes along with using more GCPs should make the system more accurate. 

Another promising improvement would be achieved by using images obtained from 

hyperspectral sensors such as AVIRIS, HyMap, Hyperion, etc. These sensors measure 

reflectance in more bands that have narrower bandwidths [20].
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APPENDIX. PROGRAM OUTPUT 

          The table below shows the output from the program when a scene downloaded from 

http://landsat.usgs.gov and file containing points with known yield data (obtained from 

American Crystal Sugar Cooperative) was supplied to the built tool. The yield data and the 

landsat image were recorded/captured at the same time. 

Scene ID LT50290272010217EDC00 

Date Acquired 5
th

 August, 2010 

Date of Yield Recording August, 2010 

Image width 8281 

Image Height 7491 

Number of bands 7 

Crop Sugar beet 

Number of Instances 1326 

Program Output 

(Random Forest,10-fold 

cross-validation) 

Random forest of 10 trees, each constructed while considering 4 

random features. Out of bag error: 0.8015 

Correctly Classified Instances         332               25.0377 % 

Incorrectly Classified Instances       994               74.9623 % 

Kappa statistic                               0.0231 

Mean absolute error                      0.1193 

Root mean squared error               0.2674 

Program Output 

(J48,10-fold cross-

validation) 

Correctly Classified Instances         319               24.0573 % 

Incorrectly Classified Instances      1007             75.9427 % 

Kappa statistic                              0.0169 

Mean absolute error                     0.1192 

Root mean squared error              0.3018 
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Scene ID LT50290272010217EDC00 

Program Output 

(Random Forest, training 

data set) 

Random forest of 10 trees, each constructed while considering 4 

random features. Out of bag error: 0.7873 

Correctly Classified Instances        1307               98.5671 % 

Incorrectly Classified Instances        19                1.4329 % 

Kappa statistic                             0.9816 

Mean absolute error                    0.0303 

Root mean squared error             0.0849 

Program Output 

(J48, training data set) 

Correctly Classified Instances         957               72.1719 % 

Incorrectly Classified Instances       369               27.8281 % 

Kappa statistic                              0.6378 

Mean absolute error                     0.0575 

Root mean squared error              0.1695 

Kappa statistic A measure that takes into account the agreement occurring by 

chance 

Mean Absolute error Average of the absolute errors 

Root mean squared error Average of squares of differences between actual and predicted 

values 

 


