
	

RED RIVER FLOOD MONITOR iOS APPLICATION

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Saumya Singh

In Partial Fulfillment
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

May 2013

Fargo, North Dakota

	

North Dakota State University
Graduate School

Title

Red River Flood Monitor iOS Application

 By

Saumya Singh

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Anne Denton

 Chair

Dr. Kendall E. Nygard

Dr. Wei Jin

Dr. Jagdish Singh

 Approved:

 07/02/2013 Dr. Brain M. Slator
 Date Department Chair

	

	

iii
	

	

ABSTRACT

The Flood Monitor system is designed to help people share photos and information in

case of a flood in the basin of the Red River. This work is part of the redesign of an application

that has the goal of enabling mobile and web-based interactions. My contribution to this project

is to develop the iOS interface of the flood monitor system.

 The main components of the iOS application consist of an interface to view existing data

and another interface to upload new markers. The information exchange between the server and

application happens via XML communication. The paper discusses features of application,

problems encountered while developing and their solutions. It also presents the user interface

design and software design/development procedures.

	

	

iv
	

	

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Dr. Anne Denton. I appreciate that she gave me

the valuable opportunity to work with her on the Red River Flood Monitor Project. She always

encouraged and helped me to do my best. I really thank her for her support and advice from my

heart. Secondly, I would like to express my sincere gratitude to my committee members Dr.

Kendall Nygard, Dr. Wei Jin and Dr. Jagdish Singh (Chair and professor at Department of

Pharmaceutical Sciences at North Dakota State University) for their guidance. Thirdly, I would

like to thank my team members Cesar Ramirez and Justin Anderson for helping me out with my

paper.

Huge thanks for my sister Neha and my family for their constant support and

encouragement throughout my graduate studies.

	

	

v
	
 	

	

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ..1

1.1. Overview ...1

1.2. iOS Application .. 3

1.3. Problem Statement and Requirment Analysis .. 5

1.4. Application ..7

1.4.1. Overview ..7

1.4.2. Logic ..10

1.5. Organization of the Paper ...12

CHAPTER 2. BACKGROUND ..13

2.1. Overview ...13

2.2. Existing and Ongoing Work ...15

CHAPTER 3. APPLICATION DESIGN ..17

3.1. Overview ...17

3.2. Challenges in Mobile UI Design ...17

3.3. Wireframes ..20

3.4. UML 2 Use Case Diagrams ..25

CHAPTER 4. IMPLEMENTATION/DEVELOPMENT ..28

	

	

vi
	

	

4.1. Development Overview ..28

4.2. XML Communication ...28

4.3. Data (Response) Parsing ...38

CHAPTER 5. APP PERFORMANCE ANALYSIS ..40

5.1. Loading Time ..40

5.2. Testing ...41

5.2.1. Unit Testing ... 41

5.2.2. Integration Testing .. 42

CHAPTER 6. CONCLUSION ..43

6.1. Conclusion ..43

6.2. Future Work ..44

REFRENCES ...46

	

	

vii
	

	

LIST OF TABLES

Table Page

1. Main problem areas in mobile designing [11] ...19

	

	

viii
	

	

LIST OF FIGURES

Figure Page

1. Working of a web application ..2

2. iOS Storyboard...9

3. XML communication ...10

4. Example XML commands ...11

5. One region and two boundaries ...13

6. Bounds from map points ..14

7. General architecture of Flood Monitor project ..15

8. Wireframe 1: Screen showing a tab–based structure ...20

9. Wireframe 2: Initial view and generated response to user query ...21

10. Wireframe 3: Screen showing markers with different severity levels22

11. Wireframe 4: Marker detail view ...23

12. Wireframe 5: Marker submission action initiated by the user ...24

13. Wireframe 6: Marker submission form ..25

14. Use Case Diagram 1: Interaction between user and server ..26

15. Use Case Diagram 2: Detail diagram view markers action ...26

16. Use Case Diagram 3: Detail diagram generating and receiving XML response27

17. GetRegions XML format ...32

18. GetEvents XML format ...33

19. UITableView showing events for Fargo boundary ..33

20. GetMarker XML format ..34

21. KML file format ...36

	

	

ix
	

	

22. SubmitMarker XML format ...37

23. Loading time comparison ..41

	

	

	

1
	
 	

	

CHAPTER 1. INTRODUCTION

1.1. Overview

 The World Wide Web (www), as we know it today, serves myriads of global users via an

array of different web applications. What makes the implementation of these applications quick

and easy is the highly programmable nature of the www. The modern website consists of two

modules: flexible web browsers and web applications. [1]

 A web browser is a software application allowing users to access data located on web

servers through websites and interact with it. Today’s web is not just a collection of static pages

but of documents generated on the go as a response to client’s request. Web applications present

a person surfing website with dynamically generated webpages via interaction and querying of

the content server/content repository database. The documents generated have a standard format

(language) that is supported by all browsers (e.g., Hyper Text Markup Language (HTML) or

Extensible Hyper Text Markup Language (XHTML)). The task of the web browser is to interpret

and run all the scripts along with displaying the requested pages and content. The figure 1 below

shows the three-layered web application model. The first layer is the one presented to the user,

typically a web browser or the user interface; the second layer is responsible for generating the

content dynamically using technology such as Java servlets (JSP) or Active Server Pages (ASP),

and the third layer is that of the database [1].

The native application for mobile platforms, in this case for iPhone, follow the same

principle but website functionality (webserver communication) is implemented in the code. This

	

	

2
	
 	

	

lets the developer choose any means of displaying the front-end to the user, not necessarily a

web browser. The data entered by the user is collected in the same fashion as it would have been

collected when the front-end would is a website. The rest is the same as shown in the below

figure.

Figure 1. Working of a web application

 This project helps people share information, regarding floods and spread awareness

benefitting others. The project aims at providing an interface for an easy, hassle-free and

efficient way to share this information. The project has been implemented for three platforms:

• Web – User Interface/front end is a website. The user interacts with the system via browser.

	

	

3
	
 	

	

• Android – The user here is using an Android phone and has installed our application as a

native application. This implementation utilizes the native aspects of Android OS to render

the front-end to the user and interacts with the webserver programmatically.

• iOS – The user is on an iPhone, and has natively installed the application from the app store.

The front-end is comprised of the native elements of iOS and interaction with the webserver

is done programmatically.

 This paper consists of an explanation of the functionality of the implementation for iOS.

The project under consideration involves building a native application for the Red River Flood

Monitoring System. It is intended for use by iPhone/iPad users to see and share flood

information.

1.2. iOS Application

 iOS is a mobile operating system developed and distributed by Apple Inc. for use with its

products (iPhone/iPad/iPod). The user interface in iOS uses multi-touch gestures to implement

the concept of direct manipulation. The direct manipulation is a human computer interaction

concept allowing the users to directly manipulate the objects in view via gestures/actions that

would correspond, at least loosely, to how they manipulate things in real world. Multi-touch

gestures are standardized motions used to interact with multi touch devices [2]. In iOS, there are

four abstraction layers:

1. Core OS layer – This layer implements the low-level features of the iOS. The user does not

normally interact with this layer but other frameworks may use it. This may be used directly

when interacting with other external devices (eg. Bluetooth).	

	

	

4
	
 	

	

2. Core Services layer – This layer implements the most fundamental system services used by

all the iOS applications. If not used directly then other frameworks (utilized in the

application) use them.	

3. Media layer – This layer implements graphics, audio, and video technologies that are used to

create best multimedia experience on a mobile device.	

4. Cocoa Touch layer – This layer implements the basic application infrastructure and support

for key technologies such as multitasking, touch-based input, push notifications, and many

high-level system services.

The iOS SDK delivers the means to create a native iOS app. It is comprised of tools and

interfaces essential for developing, installing, running and testing native applications [3]. To

develop iOS apps, one uses Xcode, Apple’s integrated development environment (IDE). Xcode

provides all the tools needed to design an app’s user interface and write the code that implements

it. In earlier versions of iOS (and < 5), for making a functional or even an accurate looking

prototype, some coding was required. This is because Apple’s engineers adhere very closely to

the Model-View-Controller (MVC) design paradigm. UIViews that represent a view (having a

physical representation on screen) really just provide visual information. In iOS (and < 5) to

navigate across various views one had to write a controller [4]. But with the introduction of iOS

5 (and > 5), the need for coding, to even accomplish little tasks, has been eliminated to some

extent. In particular, the code for navigation is auto generated and the developers just have to

make connections in the Storyboards.

	

	

5
	
 	

	

The Xcode interface is a seamless integration of a code editor, user interface (UI) design

with Storyboards, testing, and debugging, all within a single platform. The embedded Apple

LLVM compiler underlines coding mistakes as we type, and fixes the problems automatically

[5]. Objective-C is a general-purpose, high-level, object-oriented programming language that

adds Smalltalk-style messaging to the C programming language. It is the main programming

language used by Apple for all its operating systems (the OS X and iOS). The iOS SDK was

used in the Xcode IDE, to create this native application. The language used is Objective C.

1.3. Problem Statement and Requirement Analysis

 With the increase in hand-held media, addressing Internet users is not limited to web

front ends (browser dependent). When considering a project that involves the web audience

(interacting with the system using a browser), it is necessary to think about other media through

which the data could be accessible. The most important consideration in developing a user

interface is that how beneficial it could be for the end user. iOS is one of the major mobile

operating system used by a wide variety of people throughout the world. Developing a native app

for the Red River Flood Monitor system had the intention of allowing users to interact with the

system easily on their iOS devices. Particularly, in our case it facilitate uploading markers on the

go using mobile devices and not waiting until users get a chance to use their desktop. The

inclusion of mobile interface in the project serves mainly three purposes:

1. The wait time between event observed and data uploaded is minimized. The user has the

option of uploading the data from point of observation. As stated earlier the user does not

have to wait until he gets a chance to use his/her desktop.

	

	

6
	
 	

	

2. Developing an array of interfaces that allow users to interact with would address a larger

number of audiences, thereby increasing the user base of the project.

3. The above two factors help increase accuracy of the data displayed within the application.

Since, the user can now upload the data from his mobile (in this case an iOS device), the

probability that the uploaded data is more accurate, compared to the scenario where the user

waits to reach his desktop, increases. Elaborating on the previous statement, all mobile

devices have an inbuilt GPS location tracker system, which captures the user’s exact

location; this is the default location the application uses for the uploaded data, unless

otherwise stated by the user. Desktop don’t have this feature, so in case the user uploads a

marker from web interface without specifying his/her location, the location grabbed by the

system may not be the exact one. Also, since the application would be available to a larger

audience the amount of marker uploads would also be high. The larger the amount of data,

the more accurate is the reflection of flood situation.

The main issues considered were user wait time and interoperability of heterogeneous

platforms. Caching was introduced to address the issue of user wait time. When the user requests

flood data for a region more than once, he/she is presented with a cached version, reducing his

wait time considerably. The cache is updated regularly so that the user sees up-to-date

information. XML communication solves the latter problem. Since communication with the

server is central to the application, XML is used as a single unified data representation that is

transferred from the server to the clients, irrespective of their platform. All the mobile devices

have the capability to parse XML easily.

	

	

7
	
 	

	

The objective for the user interface was to present to the user a map with region overlays

for which the flood data is available. Each overlay represents a collection of structures (regions,

events, markers). The user is then free to select the region for which he wants to view the data.

The information exchange happens through a KML file. This file holds all the relevant data that

is to be presented to a user. The file gets its data from a centralized database and is updated in

regular intervals. Any user interface (view) that presents the flood data interacts with its

controller that reads the data from the file and presents it to the view in a humanly readable form.

The iOS frontend shows the points for which the data is available as an annotated point. When

the user taps on the marker, information related to that marker is presented to him or her. A PHP

script updates the database in case of a new submission. The key is the XML Communication

between the user’s device (in this case an iOS device) and the server. The data returned by the

server for various queries is an XML response, which is parsed at the user’s end and displayed in

a readable format.

1.4. Application

1.4.1. Overview

In [6], a three-component archetype is presented for mobile applications. It includes

cloud computing, a RESTful Web Service and the smart phone. This allows extensive

information be presented to the user within the context of his/her activity. In our Flood Monitor

Application, we exploit a similar scenario, where the database is stored remotely and the

handheld smart phone device interacts with it through an XML interface, representing the

RESTful web service of the above case. The advantages of using RESTful web services are that

	

	

8
	
 	

	

it is easy to invoke, produces a discretely formatted response and is easily parsed using event-

driven XML parsing. Using this archetype in the application makes sense as both J2ME and

Cocoa Touch are C language based derivatives having a large developer community; provide for

a high-level approach to TCP/IP connectivity, streaming XML Parser with a rich framework for

user interface development [6].

Technical specification of the iOS app: The native app in consideration is targeted for

Apple’s handheld devices (iPhone/iPad/iPod). The base SDK targeted was iOS 4 (the devices

that implement iOS 4 or versions above are able to run this program). As is typical with all iOS

applications, the delivery method is via the iTunes App Store. The application currently supports

portrait orientation only. The application was built using Xcode 4 IDE. The graphics used in the

application were built using Adobe Photoshop CS5. The application requires Internet

connectivity to function properly. All iPhone applications are developed using Objective C as

their primary language. Objective C is a variant of ANSI C with OO extensions based on

Smalltalk syntax. It is an easy to learn language as some problematic C constructs (arrays, string

and pointers) replaced by fully object-oriented types NSArrays and NSString. Pointers are only

required to declare objects and are never explicitly dereferenced. The parameter call is different

in the parameters being labeled and object messaging uses square brackets rather than dots. [4]

In Objective C classes are divided in interface and implementation, .h and .m files

respectively. The variables are declared inside curly braces in the interface section, followed by

constructor, methods and properties definition. The compiler directive @interface and @end

mark the start and end of interface file and similarly @implementation and @end contain the

	

	

9
	
 	

	

implementation file. The user interface of the application is implemented in Xcode’s Storyboard.

Memory management is manual, and memory leaks have been tested using Instruments v4.5.

The current app does not utilize Automatic Reference Counting (ARC).

Figure 2 below shows a screen capture of the application’s storyboard from Xcode.

Arrows depict the flow of the navigation across the UIViewControllers. As explained earlier,

UIViewControllers act as the controller in the MVC design paradigm. The implementation of

code to make the application function is written in the UIViewController. The UIViewController

contain the UIView, as is visible in the figure. UIViews are the collection of all the user interface

elements (like the buttons, textfields, labels etc.).

Figure 2. iOS Storyboard

	

	

10
	

	

A third party library ASIHTTPRequest has been used to send HTTP post request to the

server. The data returned by the server is XML Response, which is parsed using built-in

NSXMLParser.

1.4.2. Logic

The app’s core functionality and responses to user interaction depend heavily on user

selection and XML communication with the server. All requests of the device are posted over

HTTP Post to the following URL:

http://flood.cs.ndsu.nodak.edu/index.php

Figure 3, shows that all the interaction between the server and the device is done via the

XML Communication. The mobile device sends in a HTTP Post request in XML to which the

server sends a valid response, also in XML.

	

Figure 3. XML communication

	

	

11
	

	

There are several sets of phone XML request commands and server XML response

commands. It is essential to have a method to quickly parse this data into user readable format.

The built-in NSXMLParser Class in iOS SDK accomplishes this. The XML documents along

with DTD declarations are parsed in an event-driven manner by the NSXMLParser Class

instance. The delegate is notified about the encountered items (elements, attributes, CDATA

blocks, etc.) during the processing of an XML document. It only reports the elements (does not

modify them) and also reports any parsing error that may have occurred. [7]

The figure 4 gives example formats of an XML request send by phone over HTTP. The

second following image is a format for the server’s response to this request.

	

Figure 4. Example XML commands	

	

	

12
	

	

1.5. Organization of the Paper

The remainder of the paper is as follows: Chapter 2 provides a literature review of the

existing work and also the other platforms on which the project has been implemented. Chapter 3

explains details of application design by documenting various diagrams. Chapter 4 gives an

overview of implementation of the developed application and its functionalities. Chapter 5 shows

results of various tests performed to analyze app’s performance on a user’s device. Chapter 6

summarizes the work done, and documents conclusions, limitations of the current system and

suggestions for future work.

	

	

	

	

	

	

13
	

	

CHAPTER 2. BACKGROUND

2.1. Overview

In many years the Red River floods and each flooding event should be uniquely identified

in the system. One way of partitioning the data in small chunks and also keeping it unique is to

divide it based on time interval. That is why each unique event has it own start date and end date.

Hence, we can say an event is an instance of flooding dictated by a start date, an end date, a

region and a type.

A region in this system could be thought of as a collection of one or more boundaries. A

boundary is a geographical area having a rectangular shape. The concept of boundary is used to

increase the granularity of the data. The figure 5 below shows North Dakota region and the

highlighted rectangular areas show the two boundaries of Fargo and Minot.

Figure 5. One region and two boundaries

Each event is constrained by a boundary. In case a marker does not belong to any of the

pre-defined boundaries, it belongs to “un-clustered”.

	

	

14
	

	

As mentioned earlier, a boundary depicts a geographical rectangle. It is defined by two

points on a map, the north-west and south-east coordinates. Each map point is an ordered pair of

latitude and longitude value. For example, map point = (latitude value, longitude value). Given

these two points, we can construct a boundary as shown in the following figure 6:

Figure 6. Bound from map points

An event type is depended on the severity level of markers inside the event. Severity is an

integer that shows the impact of flood in an area. The user who uploaded the marker gives it a

severity level.

The core component of the system is the KML file. This file holds all the relevant data

that is to be presented to a user. This file is recreated periodically from a centralized database and

updated in shorter intervals. Any user interface would read its data from the file and present it in

an appropriate form. A php script would update the database in case of a new submission. The

structure at a coarse level is shown in figure 7.

	

	

15
	

	

Figure 7. General architecture of Flood Monitor project

	

2.2. Existing and Ongoing Work

The current website for the project is hosted on http://flood.cs.ndsu.nodak.edu/index.php.

The concept came out of a course project in North Dakota State University’s course CSCi 372 –

Comparative Programming Languages. As a part of extending the project, the website has been

remodeled and functionalities revisited and made more efficient and the project has been

extended to the Android and iOS platforms. Although, all the frontends differ a lot in

presentation and interfaces, the core functionality and basic application elements across each has

been kept almost similar.

Related work in the field includes [8], research done by Simon R., & Fröhlich P.. In the

paper they have presented an application framework that displays geospatial content on the

WWW by enabling new methods of interaction and different types of user interfaces on

advanced mobile phones and PDAs. It allows developers to create innovative geospatial

applications on high-end devices maintaining interoperability with more conventional devices.

	

	

16
	

	

They also have implemented an XML data exchange format for the query result returned by the

server.

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

17
	

	

CHAPTER 3. APPLICATION DESIGN

3.1. Overview

There are many types of application design paradigms that help in understanding the

overall guidelines of a project, its functionality, data involved and logic. They help us envision

the form of the final deliverable, logic for achieving that and hence identify the areas that pose

potential problem.

For example, the flowcharts and activity diagrams act as a storyboard for the entire

application. They determine the navigational flow of the application. The wireframes define the

‘rough look’ of an application, placing main emphasis on user interaction and the data presented

as a result of that interaction. Unified Modeling Language (UML) as the name suggests, is a

modeling language, very popular in the field of object-oriented software engineering. It includes

a set of graphic notation techniques to create visual models of the software system. It is used to

specify, visualize, modify, construct and document the concepts of an object-oriented software

system under development [9].

Because of the limited resources, the user experience is critical and there is a greater need

to create design prototypes, mockups [10]. With the limited screen space, wireframes and other

design paradigms have high importance in mobile UI design process.

3.2. Challenges in Mobile UI Design

Unlike designing for PC users or static traditional platforms, designing UIs for mobile

platforms can pose some challenges. The difference appears due to screen sizes and computing

	

	

18
	

	

capabilities of both the platforms. As pointed in [11], major areas that need special attention

while designing for mobile devices are:

1. Optimal use of screen space.

2. User Interaction mechanism.

3. Design at large.

While designing a user interface for mobile devices, uniformity with other application

running on the system must be maintained. All mobile platforms have their own UI libraries, so

that the native application for the platform would have a common “look and feel” [10]. User

wait time is a key concern in all consumer applications [6]. It is defined as the time a user has to

wait until he sees a valid response of his query on screen or an error message if that request

failed. These common elements are part of the user interface guidelines published by the

company.

The below table from [11] summarizes the problem areas encountered in mobile

designing.

While presenting the wireframe design in next section, the major design concerns and

their solutions will be discussed.

	

	

19
	

	

T

Ta
bl

e
1.

 M
ai

n
pr

ob
le

m
 a

re
as

 in
 m

ob
ile

 d
es

ig
ni

ng
 [1

1]

	
 	
 	

	

	

20
	

	

3.3. Wireframes

A design wireframe is a basic visual diagram depicting interface structure and the

relationships between its pages. They are blue prints that define each screen’s structure, content

and functionality. They are usually defined before any design work starts so that the focus is on

layout, functionality and navigation without the detailing of finer elements. [12]

Functional wireframes are used in building web/mobile applications. It shows structuring

of each screen, information about each widget, button, field, each piece of content, and the

navigational flow. [12]

Figures 8 through 13 show the functional wireframes of the application along with an

explanation of the design.

Figure 8. Wireframe 1: Screen showing a tab–based structure

	

	

21
	

	

Figure 9. Wireframe 2: Initial view and generated response to user query

	

	

22
	

	

Figure 10. Wireframe 3: Screen showing markers with different severity levels

	

This operation of showing the markers involves reading and displaying large amount of

data, depending on user’s choice. The delay here must be handled carefully as to avoid user

dissatisfaction. Either a good feedback mechanism or no delay in providing information is a

plausible solution. In [8], researches have considered thematic consistency in accordance with

Mobile Web Best Practices (MWBP) guidelines, under which the designed framework provided

a single unified data output format that is suitable for all mobile devices. In the same sense our

server sends geo data and other information in form of KML and XML that are platform

independent languages and easily interpreted for both Android and iPhone.

	

	

23
	

	

In this case the solution was to use caches. In the event where there is a need to transfer

large amounts of data in response to user action, caching the data is a possible solution [11].

When the user access an event, data from his cache is read and is very much faster than

downloading the marker file each time.

Figure 11. Wireframe 4: Marker detail view

We are trying to display a large amount of marker-related data. Very often this data is

larger than what can be effectively presented on the iPhone screen. A design concern could be

how to display this information with two options being, vertical scroll or horizontal scroll.

Vertical scroll is always preferred to horizontal scroll. The reason being that when scrolling

horizontally, it is easier to lose the information context than when scrolling vertically.

	

	

24
	

	

Information on the same line is viewed as more closely related compared to information on

different lines [11].

Figure 12. Wireframe 5: Marker submission action initiated by the user

While filling out the form shown in figure 13, a software keyboard is present on the

screen at all times. That obscures the information on the screen. Vertical scroll bar is added to

prevent this problem [11]. When the user taps on a field that needs input, a scroll bar appears so

that, he can scroll and see al the information on the screen.

	

	

25
	

	

Figure 13. Wireframe 6: Marker submission form

	

3.4. UML 2 Use Case Diagrams

The best way to describe the functionality of a software-intensive system in a horizontal

way is to use a UML Use Case Diagrams [13]. Use Case Diagrams (UCDs) represent the details

of individual features of a system and all of its available functionality. The UCDs are essentially

different from sequence diagrams or flow charts as they do not specify the order or number of

times that the systems actions and sub-actions are to be executed [13]. Figures 14 through 16

show the UCDs of the application along with an explanation of the design.

In Figure 14, a very high level design at an initial stage shows the basic interaction

between user and the server via the application. 	

	

	

26
	

	

	

Figure 14. Use Case Diagram 1: Interaction between user and server

	

Figure 15. Use Case Diagram 2: Detail diagram view markers action

	

	

	

27
	

	

In Figure 15, detailed design for explaining the view markers action is shown. It

incorporates 5 new actions. A very high level design at an initial stage shows the basic

interaction between user and the server via the application. The view markers has to be done

after the regions are displayed and the user has chosen an event to view, that is why the uses

edge from view markers to choosing event and displaying regions. Currently we take example

regions as Minot and Fargo. The user has to choose either Minot or Fargo event. When the user

chooses an event the markers belonging to that event is displayed to him/her.

The figure 16 below shows a detail diagram for generating and receiving XML response

from the server. The server generates the send response action when an HTTP Post request is

received from the iOS device. This request can be generated as a result of user queries. Once the

server has the request it generates a valid XML response and sends it to the phone.	

Figure 16. Use Case Diagram 3: Detail diagram generating and receiving XML response

	

	

28
	

	

CHAPTER 4. IMPLEMENTATION/DEVELOPMENT

4.1. Development Overview

Before diving into the development on any mobile platform, one should be aware that the

limited resources like available screen size and various forms of user interaction impact the

design and are also major influences on application development. As stated in [10], mobile user

interface design process is centered on widgets, touch, physical motion, and keyboards and is not

the same as the “window, icon, menu, pointing device” WIMP interface style of popular desktop

systems.

A developer has to consider various tradeoff scenarios and decide the optimal path. For

example, which processes should be done on the client (mobile, in this case iPhone)? Once that

incur greater processing are delegated to the server. Other possible questions such as to maintain

a cache or depend on network communication all the time and the frequency of cache updates,

need to be addressed.

4.2. XML Communication

As stated in [14], one of the problem areas while addressing the development of a single

application in a distributed manner is that the parts that run independently on different devices

have to be identified. The parts that require heavy processing are delegated to a proxy. Usually it

is a stationary host, running without user interaction. The clients access the proxy via a proxy

interface [14]. In this application iPhone is taken to be the client and our server plays the part of

the proxy with XML communication protocols as the interface between the two.

	

	

29
	

	

Extensible Markup Language (XML) is a markup language that encodes a document

based on a certain set of rules understandable by both human and machine. The design goals of

XML stress simplicity, generality, and usability over the Internet [15]. It was designed to store

and communicate data, without modifying it. It is now widely implemented to accomplish above

process and aid the communication between all sorts of applications [16]. XML is described as a

semi-human readable stream of tagged data items. It has a schema describing the format of the

message and name of the tags. Multiple schemas can describe one document; the tags have their

own namespaces removing the ambiguity as to what tags belong to what schema. The result is

self-descriptive structured document. XML is extensible, allowing addition of new tags and

schemas without changing the meaning of the older ones. This makes XML favorable for use on

multiple platforms. [17]

In [17] researchers have explored the possibility of using XML as the language of

embedded systems communication over a heterogeneous network. They have argued that if

multiple devices could interact with each other using the same language, it could allow for easy

creation of seamless applications. This interoperation adds value to the whole system. In [18]

researchers have pointed out advantages of using XML as communication language in

heterogeneous systems:

• XML has the ability to be efficiently and easily generated, parsed, edited and translated,

compared to other encoding formats like Lisp and plain ASCII. XML has a strict and

extremely consistent syntax and a large number of XML tools available for all the above

functions.

	

	

30
	

	

• XML has a schema that describes the information contained within the document giving

developers the flexibility over modification of the document structure and vocabularies to

specify different information. Hence, it is easily modifiable.

• The parsing standards of XML document and the document itself is open. This openness

makes it interchangeable, satisfying the interoperability criteria present in most

heterogeneous systems. Information can be transmitted from a source capable of generating

XML and received by the system that is capable of parsing it. (This can be clearly seen in

this paper).

• XML’s hierarchical structure provides for representing various sorts of information in the

real world, such as documents, databases and objects. This allows it to form a uniform

information base. This information base is easily manageable in files/databases and is

programmable.

• Most importantly, XML is platform independent making it very suitable for heterogeneous

environment.

 In our flood monitor system, as pointed out earlier there are three interfaces: Web,

Android and iPhone. All these platforms have there own languages of implementation. For these

platforms to interact with one single server that provides data, it would be inefficient to create an

interface in three languages suited to each one. This also constitutes a scenario similar to a

heterogeneous network. Hence, a preferred way to communicate was through XML. The

backbone of the app is the XML communication between the device and the server. The

	

	

31
	

	

application talks with the server through the XML communication API. Commands should be

sent via a HTTP POST and device will receive the response as an XML string.

When the app launches, the home screen shows two boundaries, each for Fargo and

Minot. The class responsible for implementing the home screen uses MapKit framework and

implements the MKMapViewDelegate. The MKMapViewDelegate protocol specifies methods

that are available to developers to be used to receive map-related update messages. Many times

as performance criteria, applications require the MKMapView class to load data asynchronously.

Its methods then come handy in notifying the application when specific operations are completed

[19]. These methods are responsible for generating annotation and overlay views and also

provide for interaction management with those views [19]. The figure 17 shows the HTTP Post

request sent to the server and response received for loading the boundaries when the application

launches.

When the user interacts with any of the overlays and fires the

UILongPressGestureRecognizer event. UILongPressGestureRecognizer is a concrete subclass of

UIGestureRecognizer that is invoked after a long-press gesture. The user must press one or more

fingers on the view for at least a specified period of time for the recognizer to be invoked [20].

The region being pressed is recognized and other HTTP Post request sent to the server. The

request includes the ID of the boundary that was interacted with.

	

	

	

32
	

	

Figure 17. GetRegions XML format

	

As the response in figure 18 shows that the XML is a list of events (events are clustered

using a start date and an end date) that belong to the boundary whose ID was sent in the request.

The event object includes the event ID, name, start date, end date and other details of the event.

When this data is parsed, it is showed to the user in a UITableView as shown in figure 19.

	

	

	

33
	

	

Figure 18. GetEvents XML format

Figure 19. UITableView showing events for Fargo boundary

	

	

34
	

	

The user is allowed to dismiss the table view by clicking on the black translucent overlay

or he selects an event. Once the user selects an event, another post request is sent to the user with

the event ID selected. The boundary ID to which the event belongs is also sent.

Figure 20. GetMarker XML format

The response shown in figure 20 contains the URL to the relevant KML file that has the

marker data. The file data is retrieved from the specified URL. The file and the ID number are

both cached, to hasten any subsequent access to the same data. KML stands for Keyhole markup

Language and is used to display geographic data on an Earth browser such as Google Earth,

Google Maps, and Google Maps for mobile [21]. KML is based on XML standards and has a

	

	

35
	

	

tagged set of data items having nested elements and attributes. The KML reference contains all

the knowledge on what tags to display, if they are optional or required, and what is the order of

their appearance. The tags, in the document, are case-sensitive and must be appear exactly as

specified in the KML Reference. The Reference indicates which tags are optional. Within a

given element, tags must appear in the order shown in the Reference [21].

Scientists, researchers and KML developers have been utilizing the KML format to

display scientific data and explain scientific phenomenon. When considering possible KML

creation methods, a developer must be familiar with data set attributes, data volume and styling

requirements and intended audience [22]. There are two ways to go about creation of a KML file.

1. Script to generate the KML file – This method involves manually writing the opening

section, KML block for each data element followed by a closing section [22]. The advantages

include easy modification to suit one’s need offering complete control over functionality and

styling. The term “styling” is generally used for coloring and classification that differentiates

an area visually.

2. Using open source geospatial software to generate KML. They offer flexibility in terms of

use and can easily be incorporated into various computing scenarios. The downside can be

the high learning curve [22].

We have adopted the first approach using a php random access file writer. With that our

team member was able to set the writer at a location near the end and then append data to the

file. The format for the KML file is shown in the below figure 21:

	

	

36
	

	

Figure 21. KML file format

	

	

37
	

	

The KML file is parsed to get an array of MKAnnotation objects. These are displayed on

the map as markers. This file is cached in the device to accelerate any subsequent access of the

same data. When the user tries to access the KML file for an event that has already been cached a

different request is sent to the server and in case the file is not having the latest data, only the

data that is not present in the file, is returned by the server.

The next main function is that of uploading the marker data. Once the user has filled in

all the data for an upload, the data is formatted in an XML and in case there is an image, it is

processed to byte code. This data is now sent to the server via an HTTP post request as shown in

figure 22:

Figure 22. SubmitMarker XML format

	

	

	

38
	

	

Depending upon the response format for which is shown figure 22, corresponding user

message is displayed on the device. The message either conforms a successful upload or asks the

user to try again, in case the upload failed.

4.3. Data (Response) Parsing

Since all the data we receive from the server is in XML format, we cannot present it as to

the user as it is. Hence, we need to parse the data and categorize it into unique objects. Each

object has its own set of identifying data and is presented as and when required.

As explained earlier, the built-in class NSXMLParser is used for parsing an XML

document including DTD declarations in an event-driven manner. Again, an NSXMLParser calls

its delegate methods about the items (elements, attributes, CDATA etc.) that it encounters as it

parsers the document. It just reports the found elements and does nothing with those parsed items

[7]. The classes that are used to parse the data implement the NSXMLParserDelegate protocol.

The NSXMLParserDelegate protocol defines the optional methods implemented by delegates of

NSXMLParser objects [10]. The three main methods of NSXMLParserDelegate implemented

and utilized in the project are:

• parser:didStartElement:namespaceURI:qualifiedName:attributes: -- The parser object

notifies its delegate that it has encountered a start tag for a given element [23].

• parser:didEndElement:namespaceURI:qualifiedName: -- The parser object notifies its

delegate that it has encountered an end tag for a given element [23].

	

	

39
	

	

• parser:foundCharacters: -- The parser object to gives its delegate a string representing

all/part of the characters of the current element [23].

As the characters are found, the data inside the opening and closing tags is stored

corresponding to the object to which it belongs. The KML parser treats each marker as a unique

object. So, when the user clicks on a specific marker, only the data related to that maker is

accessed.

As pointed out in [6], out of the two available approaches to parse an XML document:

• Using a Document Object Model that creates a memory based tree structure and loads entire

document in the memory.

• Event-driven model; generates events as the document streams through memory.

The latter is a better approach. In parsing of the XML and KML documents we follow the

latter approach, where events are generated when a tag of application’s interest is encountered

(parser:foundCharacters). To this method we pass the tag name that is of interest and it

generates events when that tag is encountered.

	

	

40
	

	

CHAPTER 5. APP PERFORMANCE ANALYSIS

All the Software Development Kits (SDKs) for mobile development provide an

emulator/simulator on which the developer can test their application without needing to actually

test it on a device. The Apple family of mobile devices is small and hence a simulator testing

usually suffices for most applications but testing becomes quite challenging for larger product

families, such as Android devices. It’s insufficient to test an Android application just on an

emulator; it has to be tested across many different Android devices running various versions of

Android OS [10]. In this case we are dealing with an iPhone scenario so the major issues are

memory leaks and loading time since the application gets its information from a server.

5.1. Loading Time

As discussed above, the user wait time or loading time is a very important criterion in

measuring an app’s performance, especially for mobile devices. In our application, we have used

cache as an effective solution to improve the loading time of large amount of data sets. The

cache is implemented in SQL Lite. The user wait time is negligible since the data is read from

cache buffer that does not require parsing of the KML file; those overheads are handled in the

background. The KML file is downloaded, parsed and stored in the database, when required,

without the user noticing any delay in information presented to him. Hence the application’s

performance in this regard is acceptable. Figure 23 shows the loading time comparison, with and

without, caching. The time may be dependent on the actual speed of Internet connection at the

time of recording test data. But, the chart is a good approximation to see the staggering

difference between the load time when the caching is implemented to when its not.

	

	

41
	

	

Figure 23. Loading time comparison

5.2. Testing

Two types of testing were performed on the application: Unit testing and Integration

testing.

5.2.1. Unit Testing

This testing was conducted at completion of every single feature of the application. It is

conducted by testing each module/functional unit independent of the system. The advantage of

this sort of testing is that bugs are revealed at a very early stage in development. Some unit test

case scenarios are:

5	

6.02	

2.01	

7	

4.2	

0.06	
 0.065	
 0.001	

1	

0.03	
 0	

1	

2	

3	

4	

5	

6	

7	

8	

Fargo	
 2011	
 Fargo	
 2012	
 Fargo	
 2013	
 Minot	
 2011	
 Unclustered	

Ti
m
e	

in
	
 S
ec
on

ds
	

Loading	
 /me	
 Comparison	

Time	
 Without	
 Cache	

Time	
 With	
 Cache	

	

	

42
	

	

• Testing the navigation between views: the most general cause of an application crash during

navigation is due to mismanagement in memory; i.e. releasing the view from the memory

before it is removed from view hierarchy.

• The data being displayed is correct: The parsing of the data is done correctly and is displayed

appropriately.

5.2.1. Integration Testing

It involves testing the whole application as a single unit working cohesively to produce

the desired result. This is done after unit testing phase, and hence most functionality bugs are

fixed. This is done at the end of development phase. Some integration test case scenarios are:

1. Whole application is working correctly, without any crashes.

2. Data synchronized between client and server; no data losses

	

	

	

	

	

	

43
	

	

CHAPTER 6. CONCLUSION

6.1. Conclusion

Natural disaster such as floods cause heavy disruption in day-to-day life. Awareness

about flood and areas influenced by flood is both necessary for people living in that area and

others, in order to be informed, protect and prepare themselves for any emergency situations.

The Red River floods in many years and disrupt life in the neighboring regions. This project is

designed to make information sharing regarding flood events easy and efficient. The flood

monitor system is designed to help people keep themselves and others updated in case of a flood

in the Red River basin. The project is designed with the purpose of letting people see the details

of an existing or a previous flooded area and submit new or update existing information.

Nowadays, many people have an iOS device at their disposal. Hence, sharing this data is

easier, with the project available natively on the device. Keeping this idea in mind, we have

developed this application that cab be downloaded from iTunes app store and installed natively

on user’s device. With this app, users can share the data on the go. Thereby, the wait time

between the observation of the event and submission of its marker data is reduced. The above

factor also improves the accuracy of an uploaded event, as the user can (in most of the cases)

upload an image or a piece of data within a very short span of time form when it was first

observed.

The design of the application has been kept simple. There are only two views

implemented: one showing the relevant markers based on user choice and the other shows a

	

	

44
	

	

form, which is used to submit marker data. This makes the application easy to comprehend and

use.

The problem of user wait time was solved with the introduction of caching. The data is

cached on the user device making the next access to this information faster. The issue of

interoperability of heterogeneous systems was solved by XML communication. The devices

(each interface) interact with the server using XML communication. This makes the

communication uniform irrespective of the platform.

Hence, with this application, people living in Red River basin can easily share

information and be alerted for any emergency situation.

6.2. Future Work

In any application, there is always a scope of further improvement. Since floods are

events that have a social impact and this project is designed to spread as much awareness as

possible, integration of social networking can be explored. The application can have a new

section that is dedicated to the purpose of displaying this data. For example, considering

Facebook integration, to access this part of the app, the user is prompted to enter their FB

username and password. Once they are logged in, through a query to FB the data regarding the

flood monitor could be gathered and presented to the user in a fashion similar to timeline. This

could be a more user-friendly way to see the data and also since almost everyone is on one or the

other social networking site, they are easily able to access this.

	

	

45
	

	

Another important integration could be to use push notification available on iOS devices.

The user could opt for being notified via pushed notification whenever a new marker is placed or

an existing marker is updated within a certain radius of his current location. These notifications

would be generated via the push notification feature available on the iOS and the user could

always come back and disable it. Explaining on a very coarse level, the application would read

the KML file at certain intervals and whenever the KML file is updated, it would fire a

notification invocation method in the application.

With these features implemented, the iOS application would be more powerful than the

current one in terms of its additional features of social networking and push notification.

	

	

	

46
	

	

REFRENCES

[1] Web Applications: What are They? What of Them?,
http://www.acunetix.com/websitesecurity/web-applications/
(Last accessed on 15 March 2013)

[2] Touch Topics: Touch Terminology: What is Multi-touch?,
http://solutions.3m.com/wps/portal/3M/en_US/TouchTopics/Home/Terminology/WhatIsMul
titouch/
(Last accessed on 16 March 2013)

[3] iOS Technology Overview: About the iOS Technologies,

http://developer.apple.com/library/ios/#documentati
on/Miscellaneous/Conceptual/iPhoneOSTechOverview/Introduction/Introduction.html

 (Last accessed on 15 March 2013)

[4] Rogers M. P., Wrong Number: Avoiding the hidden perils in iPhone development, Journal of
Computing Sciences in Colleges, 2010;25(5):300-305

[5] Xcode 4 Downloads & Resources – Apple Developer, https://developer.apple.com/xcode/

(Last accessed on 16 March 2013)

[6] Christensen J. H., Using RESTful web-services and cloud computing to create next

generation mobile applications, Proceedings of the 24th ACM SIGPLAN conference
companion on Object oriented programming systems languages and applications, 2009:627-
634

[7] NSXMLParser Class Reference,

https://developer.apple.com/library/mac/#documentation/Cocoa/Reference/Foundation/Class
es/NSXMLParser_Class/Reference/Reference.html
(Last accessed on 17 March 2013)

[8] Simon, R., & Fröhlich, P., A mobile application framework for the geospatial web,

Proceedings of the 16th international conference on World Wide Web, 2007:381-390

[9] Unified Modeling Language from FOLDOC, http://foldoc.org/Unified+Modeling+Language

(Last accessed on 1 January 2013)

	

	

47
	

	

[10] Wasserman A. I., Software engineering issues for mobile application development,
Proceedings of the FSE/SDP workshop on Future of software engineering research - FoSER
’10, 2010:397-400

[11] Nilsson E. G., Design patterns for user interface for mobile applications, Advances in

Engineering Software, 2009;40(12):1318-1328

[12] Wireframes, http://www.usability.gov/templates/wireframes.pdf
 (Last accessed on 12 February 2013)

[13] UML Use Case Diagrams: Tips, http://www.andrew.cmu.edu/course/90-754/umlucdfaq.html
 (Last accessed on 12 February 2013)

[14] Roth, J., Patterns of mobile interaction, Personal and Ubiquitous Computing, 2002:6(4);282-
289

[15] XML 1.0 Origin and Goals, http://www.w3.org/TR/REC-xml/#sec-origin-goals

(Last accessed on 12 February 2013)

[16] XML Introduction – What is XML?, http://www.w3schools.com/xml/xml_whatis.asp
(Last accessed on 12 March 2013)

[17] Helander J., Deeply embedded XML communication: towards an interoperable and seamless

world, Proceedings of the 5th ACM international conference on Embedded software,
2005:62-67

[18] Chen B., Linz D. D., Cheng H. H., XML-based agent communication, migration and

computation in mobile agent systems, Journal of Systems and Software, 2008:81(8);1364-
1376

[19] MKMapViewDelegate Protocol Reference,

http://developer.apple.com/library/ios/#documentation/MapKit/Reference/MKMapViewDele
gate_Protocol/MKMapViewDelegate/MKMapViewDelegate.html
(Last accessed on 16 March 2013)

[20] UILongPressGestureRecognizer Class Reference,

http://developer.apple.com/library/ios/#documentation/uikit/reference/UILongPressGestureR
ecognizer_Class/Reference/Reference.html (Last accessed on 12 March 2013)

	

	

48
	

	

[21] KML Tutorial – Keyhole Markup Language – Google Developer,
https://developers.google.com/kml/documentation/kml_tut
(Last accessed on 17 March 2013)

[22] Ballagh, L.M., Raup, B.H., Duerr, R.E., Khalsa, S.J.S., Helm, C., Fowler, D., Gupte, A.,

Representing scientific data sets in KML: Methods and challenges, Computers &
Geosciences, 2011;37(1):57-64

[23] NSXMLParserDelegate Protocol Reference,

http://developer.apple.com/library/ios/#documentation/cocoa/reference/NSXMLParserDeleg
ate_Protocol/Reference/Reference.html (Last accessed on 17 March 2013)

[24] Wireframes and Activity Diagrams are drawn using, https://moqups.com
 (Last accessed on 10 June 2013)

[25] UML 2 Diagrams Tutorial, http://ima.udg.edu/~sellares/EINF-ES2/uml2_diagrams.pdf
(Last accessed on 12 February 2013)

[26] Introduction to UML 2 Use Case Diagrams,
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
(Last accessed on 12 February 2013)

[27] Application Design Process,

http://www.columbia.edu/itc/visualarts/r4110/f2000/week09/09_02_Application_Design.pdf
(Last accessed on 16 March 2013)

[28] Static Maps API V2 Developer Guide – Google Maps Image APIs – Google Developer,

https://developers.google.com/maps/documentation/staticmaps/index
(Last accessed on 17 March 2013)

