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ABSTRACT 

The naïve Bayes classifier is a simple form of Bayesian classifiers which assumes all 

the features are independent of each other. Despite this assumption, the naïve Bayes 

classifier’s accuracy is comparable to other sophisticated classifiers. 

In this paper we designed and developed a naïve Bayes classifier for a better 

understanding of the algorithm. The classifier is tested on two different data sets from the 

University of California at Irvine machine learning repository. Different cross validation 

methods are used to calculate the accuracy of the developed classifier. The different 

accuracies obtained are compared to get the best accuracy of the classifier. This value is also 

compared with accuracies obtained for the same data sets using different algorithms reported 

in other papers. It was observed from the comparisons that the naïve Bayes classifier’s results 

are very comparable to other algorithms. 
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1. INTRODUCTION 

Classification in data analysis is the task of assigning a class to instances of data 

described by a set of attributes. Classification or supervised classification includes the 

construction of a classifier which is trained on a set of training data that already has the 

correct class assigned to each data point. This builds a concise model of the distribution of 

class labels. It is then used to classify new data where the values of features are known but 

the class is unknown. 

  Many algorithms have been developed for supervised classification based on 

artificial intelligence (logical algorithms such as decision trees), perceptron-based techniques 

(single layered perceptron, multilayered perceptron), and statistical learning techniques 

(Bayesian networks, instance based techniques) [1] . 

Bayesian classification is based on Bayes theorem. Bayesian classifiers assign the 

most likely class to a given instance described by a set of attributes. The Naïve Bayes 

Classifier assumes that the effect of each attribute on a class is statistically independent of 

all other attributes [2]. This assumption, called class conditional independence, is made to 

simplify computation, and in this sense, is considered ‘naive’ [3]. Despite this assumption, 

the naïve Bayes classifier’s performance is competitive with other sophisticated techniques 

and has proven effective in many practical applications [4] [2] [5]. 

Naïve Bayes classifier works best in two cases: when the features are completely 

independent and secondly when the features are functionally dependent.  The worst 

performance is seen in between these two extremes [5]. Many extensions and optimizations 

have been put forth to improve the naïve Bayesian classifier’s performance. In [4], the 

authors suggest a Tree Augmented Naïve Bayes (TAN) classifier, which has significant 
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performance improvements over the naïve Bayesian classifier. The authors in [6] show that 

choosing structures by maximizing conditional likelihood while setting parameters by 

maximum likelihood also yields better results. 

The popularity of naïve Bayes classifier has increased and is being adopted by many 

because of its simplicity, computational efficiency, and it’s good performances for real-world 

problems. 

1.1. Objectives 

The objectives of this paper are: 

1. To design and develop a naïve Bayes classifier for better understanding of the 

algorithm. 

2. To test the performance of the classifier on the selected datasets. 

3. To use different cross validation methods to evaluate the performance of the 

algorithm. 

1.2. Document Outline 

Section 1 of this document gives a general introduction of the Naive Bayes Classifier, 

its advantages over other algorithms, and enhancements. It also includes the objectives of 

this paper. 

Section 2 gives a summary of where and how the Naïve Bayes algorithm is used for 

classification. It describes the process of supervised machine learning and the different cross 

validation methods. This section includes an explanation of the Bayes’ theorem on which the 

naïve Bayes classifier is based on, and it describes the algorithm for naïve Bayes classifier. 

Section 3 includes the design, development, and the testing of the classifier that was 

developed. It describes in detail the design of the system and its development. It includes a 
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description of the dataset that was used to test the algorithm and the results of those test. This 

section ends with the comparison of the performance using different cross validation 

methods 

Section 4 concludes this paper. It presents conclusions drawn from the experiments 

done using the algorithm on the selected datasets.  
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2. LITERATURE REVIEW 

2.1. Machine Learning 

“Machine learning is programming computers to optimize a performance criterion 

using example data or past experience” [7]. Learning is done by the execution of a computer 

program to optimize the parameters of a defined model, which can be predictive to make 

predictions in future or descriptive to gain knowledge from data or both. There are two things 

that need to be achieved in the learning process. First, the training needs to be done with an 

efficient algorithm to solve the optimized problem, and to store and process the data. Second, 

the trained model needs an efficient representation and algorithm for inference [7].  

2.1.1. Types of Machine Learning Algorithms 

As listed in [7], machine learning algorithms are organized in a taxonomy based on 

their desired outcomes. The common algorithm types are: 

 Supervised learning – These algorithms generate a function based on the training data 

set that maps inputs to predetermined labels or classes. 

 Unsupervised learning – These algorithms are not provided with classification. They 

seek out similarities between data points to form clusters. 

 Semi-supervised learning – The algorithms combine both labeled and unlabeled data 

to generate a classifier. 

 Reinforcement learning – These algorithms learn by interacting with an environment. 

Instead of being trained on an existing data, these algorithms learn from their actions 

which are selected based on past actions (exploitation) or by new choices 

(exploration). The algorithm receives a numeric reward from the environment for a 
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successful outcome of an action and it selects actions that maximize the accumulated 

reward over time [8]. 

 Transduction – These algorithms are similar to supervised algorithms but instead of 

explicitly specifying a function, they try to predict new outputs based on training 

inputs, training outputs, and testing inputs. 

 Learning to learn – These algorithms learn their own inductive bias based on previous 

experience. 

2.1.2. Supervised Machine Learning 

Supervised learning is common in classification problems where the goal is to have 

the computer learn a predefined classification. Supervised learning algorithms learn from 

externally supplied instances of data, represented by a set of features and a class, to create a 

function that makes predictions about the classification of future instances or new data. Table 

1 shows the structure of data used in supervised learning. Each instance of data is defined by 

a set of features and a class. 

Table 1: Instances with Known Classes in Supervised Machine Learning 

Data in standard format 

Case Feature 1 Feature 2 … Feature n Class 

1 XX X  XXX Yes 

2 XX X  XXX No 

3 XX X  XXX Yes 

…      
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2.1.2.1.  Process of Supervised Learning 

The process of supervised learning is described in the steps below. 

Step 1: The first step in supervised learning is the collection of dataset. If the 

expertise is available then data on the informative features can be collected. If not, then data 

is collected on all features in hopes that the relevant ones can be isolated. Data collected in 

such a way contains noise and missing values and needs intensive pre-processing [1]. 

Step 2: The data-preprocessing step involves reducing noise by instance selection. 

There are several methods available to handle missing data. Instance selection is also used 

to handle the infeasibility of learning from extremely large datasets. 

Step 3: The training set is defined by feature subset selection, in which the irrelevant 

and redundant features are removed. In cases where some features are dependent on each 

other, new features are constructed from the basic feature set. 

Step 4: Algorithm selection is a very important step. There are numerous algorithms 

available for machine learning.  

Step 5: The algorithm is trained using a training data set. 

Step 6: The algorithm is tested with a test data set. Once the evaluation from the 

preliminary testing is satisfactory, then the classifier can be used for predictions. The 

classifier is evaluated based on prediction accuracy (the percentage of correct predictions 

divided by the total number of predictions) [1]. The evaluation technique used is called cross 

validation which is described in section 2.2. 

Step 7: If the accuracy is not satisfactory then the process needs to return to a 

previous step to re-examine certain choices made. As listed in [1], some of the factors that 

need to be reexamined can be: 
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 Relevant features for the problem may be missing 

 Larger dataset may be needed 

 The dimensionality of the problem may be too high 

 The selected algorithm may be inappropriate 

 Parameter tuning may be needed  

2.2. Cross Validation 

Using the same set of data for the training and validation of an algorithm yields an 

overoptimistic result [9]. Cross Validation is based on the principle that testing the algorithm 

on a new set of data yields a better estimate of its performance [10].  

Most real applications have a limited amount of data. Because of this the dataset is 

split into the training sample and the validation sample. The training sample is used to train 

the algorithm and the validation sample is used as “new data” to evaluate the performance 

of the algorithm [11]. 

2.2.1. Holdout Method 

The holdout method is the simplest kind of cross validation in which the dataset is 

separated into two sets: the training set and the validation set. The algorithm is trained using 

the training set only. The algorithm is then used to evaluate the data in the validation set [11]. 

The errors it makes are accumulated to give the mean absolute test set error, which is used 

to evaluate the algorithm. However, since the evaluation may depend on which data is in the 

training set and in the validation set, its evaluation can have a high variance. 

2.2.2. K-Fold Cross Validation 

K-fold cross validation is an improvement of the holdout method. In the k-fold cross 

validation method the dataset is divided into k subsets and the holdout method is repeated k 
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times. In each run, one of the k sets is used as the validation set and the remaining k-1 sets 

are put together to form the training set.  Then the average error across all k trials is computed. 

This reduces the dependency of the evaluation on how the dataset is separated. Every data 

point is in the training set k times and in the validation set k-1 times. The variance in the 

result is reduced as k is increased. The disadvantage of this method is that it takes k times as 

much computation for an evaluation since the training algorithm has to be run k times [12]. 

2.2.3. Leave-One-Out Cross Validation 

Leave-one-out cross validation is a logical extreme of k-fold cross validation where 

k is equal to the number of data points. The training on the algorithm is done on all data 

points except for one. The evaluation given by the leave-one-out cross validation is good but 

computationally expensive [12]. 

2.3. Bayes’ Theorem 

Bayes’ Theorem is a statement from probability theory that allows for the calculation 

of certain conditional probabilities. Conditional probabilities are those probabilities that 

reflect the influence of one event on the probability of another event. The term generally 

used in Bayes’ theorem are prior probability and posterior probability. The prior probability 

of a hypothesis or event is the original probability obtained before any additional information 

is obtained. The posterior probability is the revised probability of the hypothesis using some 

additional information or evidence obtained. 

Bayes’ Theorem can be written as: 
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 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (Eq. 1) 

Where, 

P(A) is the prior probability of A 

P(B) is the prior probability of B 

P(A|B) is the posterior probability of A given B 

P(B|A) is the posterior probability of B given A 

Since the denominator P(B) in Eq. 1 is the probability of the evidence without any 

knowledge of the event A, and since the hypothesis A can be true or false, Bayes’ theorem 

can also be written as 

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴) × 𝑃(𝐴) + 𝑃(𝐵|¬𝐴) × 𝑃(¬𝐴)
 (Eq. 2) 

Where, 

P(¬A) is the probability of A being false 

P(B|¬A) is the probability of B given A is false 

2.4. Naïve Bayes Classifier 

A naïve Bayes classifier is a probabilistic classifier based on applying Bayes’ 

theorem with strong independence assumptions. The naïve Bayesian classifier was first 

described in [13] in 1973 and then in [2] in 1992. When represented as a Bayesian network, 

a naïve Bayes classifier has the structure depicted in Figure 1. It shows the independence 

assumption among all features in a data instance. 
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C

A1 A2 An  

Figure 1: The Structure of the Naive Bayesian Network (4) 

2.4.1. Algorithm 

As written in [5], a naïve Bayes classifier can be defined as below. Variables are 

denoted using capital letters such as Xi, and their values will be denoted by lower-case letters 

such as xi, and sets of variables are denoted by boldface letters such as X. 

Let 𝐗 =  {X1, … . , X𝑛} be a finite set of observed random variables, called features, 

where each feature takes values from its domain Di. The set of all feature sets is denoted by 

Ω =  D1  × … ×  D𝑛. Let C, such that 𝑐 ∈ {0, … , 𝑢 − 1}, be an unobserved random variable 

denoting the class of a set of features. 

A hypothesis ℎ ∶  Ω → {0, … , 𝑢 − 1}, that assigns a class to any given set of variables 

is defined as a classifier. Each class c is assigned a discriminant function 

 𝑓𝑐(𝒙), 𝑐 =  0, … , 𝑢 − 1. The classifier selects the class with the maximum discriminant 

function on a given set of variables, written as ℎ(𝒙) =  arg 𝑚𝑎𝑥𝑐 ∈ {0,…,𝑢−1}𝑓𝑐 (𝑥). 

The Bayes classifier ℎ∗(𝒙) uses the posterior probabilities given a set of variables as 

the discriminant function, i.e.  𝑓∗(𝒙) = 𝑃(𝐶 = 𝑐 |𝑋 = 𝑥). Applying Bayes’ theorem from  

Eq. 1 to this function gives 𝑃(𝐶 = 𝑐 | 𝑿 = 𝒙) =  
𝑃(𝑿=𝒙 |𝐶=𝑐) 𝑃(𝐶=𝑐)

𝑃(𝑿=𝒙)
. Since P(X = x) is the 

same for all classes it can be ignored. Hence, the Bayes’ discriminant function can be written 

as 𝑓∗(𝒙) =  𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐), where 𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐) is called the 
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class-conditional probability distribution (CPD) [5]. Thus the Bayes’ classifier written as in 

Eq. 3 finds the maximum posterior probability hypothesis given x. 

 ℎ∗(𝒙) = arg 𝑚𝑎𝑥𝑐 𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐) (Eq. 3) 

 

Applying the assumption that features are independent given the class on Eq. 3, we 

can get the naïve Bayes classifier. 

 𝑓𝑐
𝑁𝐵(𝒙) =  ∏ 𝑃(𝑋𝑗 = 𝑥𝑗  |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐)

𝑛

𝑗=1
 (Eq. 4) 

 

2.4.2. Zero-Frequency Problem 

When a feature value does not occur with every class value, a value 1 is added to the 

count of every feature value-class combination. 

2.4.3. Numerical Predictors 

When features have continuous data or numerical data, there are two ways to handle 

the data:  

1. The first option is to transform the numerical values to their categorical counterparts, 

called binning, before constructing their frequency tables. 

2. The second option is to use the distribution of the numerical values to guess the 

frequency. One of the common practices is to assume normal distribution for the 

numerical values, which is defined by two parameters: mean and standard deviation.  

 𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) =  
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  (Eq. 5) 

Where, 

Mean = 𝜇 =  
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1  
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Standard Deviation = 𝜎 =  [
1

𝑛−1
∑ (𝑥𝑗 − 𝑛)2𝑛

𝑗=1 ]0.5 

n = number of times the feature occurs with the given class 

2.4.4. Avoiding Floating Point Underflow 

Because of the floating point limitations during computation, when working with 

large data the Naïve Bayes Classifier needs to be optimized as below. Instead of storing the 

probabilities, the natural logarithm of those probabilities are stored. And instead of 

multiplying them, the numbers are added. 

 𝑓𝑐(𝑥) =  𝑙𝑜𝑔𝑒(𝑃(𝐶 = 𝑐)) + ∑ 𝑙𝑜𝑔𝑒(𝑃(𝑋𝑗 = 𝑥𝑗  |𝐶 = 𝑐))

𝑛

𝑗=1

 (Eq. 6) 
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3. NAÏVE BAYES CLASSIFIER 

3.1. Design 

This section describes the implementation choices and the design and development 

process of the Naïve Bayes classifier built. 

3.1.1. Implementation Choices 

The classifier was implemented in C# using Microsoft Visual Studio. The 

implementation choices have been described in this section. 

3.1.1.1.  Microsoft Visual Studio, C# and .NET Framework 

Microsoft Visual Studio (VS) is an Integrated Development Environment (IDE) that 

provides a set of development tools for developing .NET web applications, XML Web 

Services, desktop applications, and mobile applications. VS makes development easier 

through time-saving and convenient features such as intelliSense, designers, and debugging. 

The .NET framework is a software framework that provides a large library and 

language interoperability between several programming languages. The Base Class Library 

(BCL) includes a large number of common functions. Some of the namespaces from the BCL 

being used in the development of the naïve Bayes classifier include System.Collections, 

System.IO, System.Threading, System.Linq, and System.Windows.Forms. 

C# is an object oriented programming language designed to be fully compatible with 

the Microsoft .NET framework. 

The naïve Bayes classifier has been developed using Visual Studio 2012, .Net 

Framework 4.5, and C#. 
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3.1.1.2.  EPPlus 

EPPlus is a .net library that reads and writes Excel 2007/2010 files using the Open 

Office Xml format (.xlsx) [14]. The project is licensed under the GNU Library General 

Public License (LGPL). EEPlus version 3.1 is used in the development of the naïve Bayes 

classifier because of its complete and simple integration with .NET and its speed in loading 

excel files (50,000 cells in seconds [14]). 

3.1.2. System Design 

The naïve Bayes classifier is a desktop application developed using windows forms. 

The classifier is designed for categorical data for features and is generalized to read any 

dataset with categorical data. 

The following structure is required in the input file for the file to be read correctly: 

 The input file is a Microsoft Excel file. The file should be in .xlsx format. 

 The feature values are categorical and not numerical (continuous data) 

 The first column in the data is the class followed by the feature values 

 The first row in the data is the feature names 

The system is designed to run the algorithm using three cross validation methods: 

holdout method, k-fold cross validation, and leave-one-out cross validation. These cross 

validation methods are described in section 2.2. 

The system is designed to read an input file (.xlsx file) containing the data set selected 

by the user. Depending on the cross validation method selected by the user, the input data 

set is split into training set and test set. 

Using the training set, the prior probabilities of each class is calculated. Using a single 

instance from the test set, the conditional probabilities for each feature value is calculated. 
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These values are then used to calculate the posterior probabilities for each class. The class 

with the highest posterior probability is assigned as the class for that test instance. This 

process is done on each instance in the test set. 

By comparing these assigned class values to the actual class values of the test data, 

the number of correct classification is obtained which is then used to calculate the accuracy 

of the classifier. 

For k-fold classification, the dataset is split into the number k entered by the user. 

The entire process from creating training set and test set to calculating the accuracy is 

performed k times using each set as the test set in each iteration. The training set is formed 

by merging the remaining k-1 sets. The accuracies obtained from all iterations are averaged 

to get the accuracy of the classifier. 

The workflow of the system is shown in the flowchart below (Figure 2). 
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Figure 2: Flowchart for Naive Bayes Classifier 
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Figure 2: Flowchart for Naive Bayes Classifier (continued) 

  



18 

 

3.2. Development 

This section describes each step of the general workflow of the classifier using 

pseudo code. 

3.2.1. Read Input File 

The user is required to select the data file in .xlsx format using the UI. The input file 

selected by the user is read using EPPlus. The EPPlus library can be accessed by adding a 

reference to its dll and adding “OfficeOpenXml” to the list of included libraries. 

 

 

for (int rowNumber = 2; rowNumber <= currentWorksheet.Dimension.End.Row; 

rowNumber++) 

{ 

var instanceValues = new List<string>(); 

for (int colNumber = 1; colNumber <= 

currentWorksheet.Dimension.End.Column; colNumber++) 

{ 

string featureValue = currentWorksheet.Cells[rowNumber, 

colNumber].Value.ToString(); 

instanceValues.Add(featureValue); 

} 

 

var dataInstance = new DataInstance(); 

dataInstance.Features = instanceValues; 

dataSet.DataInstances.Add(dataInstance); 

} 

Figure 3: Pseudo Code: Read the Input File using EPPlus Library 
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Explanation: The rowNumber is started at 2 because the first row contains the feature 

names. Each row is added as an instance of the class DataInstance which is a list of feature 

values for one instance of the data. All the DataInstances are then added as an instance of the 

class DataSet which is a list of the object DataInstance, and represents our data set. 

3.2.2. Select Cross Validation Method  

Depending on the cross validation method selected by the user through the UI, the 

training set and the test set are created for training and validation of the classifier. 

Holdout Method: For the holdout method the dataset is split into half creating the 

training set and the test set (Figure 4).  

 

The algorithm is then applied to each instance in the test set to get the accuracy of 

the classifier (Figure 5). 

INPUT: DataSet 

OUTPUT: TrainingSet, TestSet 

1 BEGIN 

2 { 

3     SET trainingSetSize = DataSet.Count / 2 

4     SET testSetSize = DataSet.Count - trainingSetSize 

5     SET TrainingSet = DataSet.Take(trainingSetSize) 

6     SET TestSet = DataSet.Skip(trainingSetSize).Take(testSetSize) 

7 } 

8 END 

Figure 4: Pseudo Code: Creating Training Set and Test Set in Holdout Cross 

Validation 
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INPUT: TrainingSet, TestSet 

OUTPUT: Accuracy of Classifier 

1 BEGIN 

2 { 

3    Set correctClassificationCount to 0 

4    FOREACH TestInstance Ti in TestSet 

5      { 

6          CALL TrainClassifier with TrainingSet 

7          CALL ClassifyTestData with Ti 

8          IF classification = Ti.Class THEN 

9             INCREMENT  correctClassificationCount  

10        ENDIF 

11     } 

12   CALL CalculateAccuracy with correctClassificationCount and TestSet.Count        

RETURNING Accuracy 

13 } 

13 END 

Figure 5: Pseudo Code: Classifier Using Holdout Cross Validation 
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K-Fold Method: In the k-fold method the dataset is split into k different sets.  In the 

developed algorithm the value of k is entered by the user using the UI. For each of the k sets, 

that set is used as the test set and the remaining k-1 sets are combined to form the training 

set (Figure 6).  

INPUT: SplitLists 

   List of k sets created by splitting the DataSet 

OUTPUT: TrainingSet, TestSet 

1 BEGIN 

2 { 

3     FOREACH SplitSet Si in SplitLists 

4       { 

5           SET TestSet = Si 

6           SET TrainingSet = Remaining sets merged 

7        } 

8 } 

9 END 

Figure 6: Pseudo Code: Creating Training Set and Test Set in K-Fold Cross 

Validation 
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The algorithm for the classifier is then applied to each instance of the test set for each 

of the k iterations. The accuracy for each iteration is calculated which is then averaged out 

to get the classifiers accuracy (Figure 7).             

 

 

INPUT: SplitLists 

OUTPUT: Accuracy of Classifier 

1 BEGIN 

2 { 

3    SET noOfSplits = k 

4    FOR noOfSplits = 1 to k 

5      { 

6        Set correctClassificationCount to 0SplitLists 

7        Call SetTrainingSetAndTestSet with  

7        FOREACH TestInstance Ti in TestSet 

8          { 

9              CALL TrainClassifier with TrainingSet 

10              CALL ClassifyTestData with Ti 

11              IF classification = Ti.Class THEN 

12                 INCREMENT  correctClassificationCount  

13            ENDIF 

14         } 

15       CALL CalculateAccuracy with correctClassificationCount and TestSet.Count         

RETURNING Accuracy 

16     } 

17    Calculate average accuracy 

18 } 

19 END 

 

Figure 7: Pseudo Code: Classifier Using K-Fold Cross Validation 
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Leave-One-Out Method: In this cross validation method, the algorithm is carried 

out n  times where n is the number of instances in the data set. In each run, one of the instances 

is used as the test data and the remaining instances are used as the training set (Figure 8) 

INPUT: DataSet 

OUTPUT: Accuracy of Classifier 

1 BEGIN 

2 { 

3    Set correctClassificationCount to 0 

4    FOREACH DataInstance Di in DataSet 

5      { 

6.         SET TestData = Di 

7.         SET TrainingSet = DataSet.RemoveAt(i) 

6          CALL TrainClassifier with TrainingSet 

7          CALL ClassifyTestData with Ti 

8          IF classification = Ti.Class THEN 

9             INCREMENT  correctClassificationCount  

10        ENDIF 

11     } 

12   CALL CalculateAccuracy with correctClassificationCount and TestSet.Count        

RETURNING Accuracy 

13 } 

13 END 

Figure 8: Pseudo Code: Classifier Using Leave-One-Out Cross Validation 
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3.2.3. Calculations 

The calculations done for classification are described in this section. 

3.2.3.1.  Calculate Prior Probabilities of Each Class    

The prior probability of each class is calculated by dividng the number of data 

instances with that class in the training set by the total number of instances in the training set 

(Figure 9). 

 

3.2.3.2.  Calculate Conditional Probabilities 

The conditional probabilities for each feature value in the test data are calculated by 

getting the count of instances with that feature value in a particular class and dividing it by 

the count of instances with the same class in the training set. This is done for each class in 

the data set. 

INPUT: ClassCount, TotalCount 

   ClassCount is the count of instances with that class value in the training set 

   TotalCount is the count of all instances in the training set 

OUTPUT: Prior Probability of the class 

1 BEGIN 

2 { 

3     Compute PriorProbability as ClassCount / TotalCount 

4  } 

5 END 

Figure 9: Pseudo Code: Calculating Prior Probabilities 
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3.2.3.3.  Calculate Posterior Probabilities 

The posterior probability for each class given the feature values in the test data are 

calculated by using the naïve Bayes classifier formula in Eq. 4 on the prior probability and 

conditional probability values. 

 

 

INPUT: PriorProbabilityList, ConditionalProbabilityList 

   PriorProbabilityList contains the prior probabilities of all classes 

  ConditionalProbabilityList contains the list of conditional probabilities for all 

features in the test data for that class 

OUTPUT: PosteriorProbabilityList 

       List of posterior probabilities of each class 

1 BEGIN 

2 { 

3     FOREACH ClassProbability Pc in PriorProbabilityList 

4       { 

5           SET posteriorProbability = Pc 

6           FOREACH ConditionalProbability CPi in ConditionalProbabilityList 

7             { 

8                 Compute posteriorProbability as posteriorProbability * CPi 

9              } 

10          Add posteriorProbability to PosteriorProbabilityList 

11        } 

12 } 

13 END 

 

Figure 10: Pseudo Code: Calculation Posterior Probabilities  
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3.2.3.4.  Classification 

The class with the highest posterior probability is assigned as the class for the test 

data. 

3.2.3.5.  Calculate Accuracy 

The class assigned to the test data is compared with the actual class of the test data to 

get the count of correct classifications. The accuracy of the classifier is calculated by dividing 

the number of correct classifications by the total number of classifications. 

In case of k-fold cross validation, the accuracies obtained from all runs are averaged 

to get the average accuracy of the classifier. The standard deviation is also calculated to get 

the range of acceptable accuracy, and to see if any of the accuracies are too high or too low. 
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Figure 11: Screenshot: Naive Bayes Classifier Running with K-fold Cross Validation 
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3.3. Experimentation 

The Naïve Bayes classifier developed was tested using two of the datasets from the 

machine learning repository at the Center for Machine Learning and Intelligent Systems at 

the University of California, Irvine (UCI) [15] [16]. 

3.3.1. Data Sets 

Two different data sets from the UCI machine learning repository were used to test 

the developed classifier: Mushroom data set, and Iris data set. The data sets are described 

below.  

3.3.1.1.  Mushroom Data Set 

All information on the data set has been taken from the UCI website [15]. 

1. Title: Mushroom Data Set 

2. Source: 

 Mushroom records drawn from The Audubon Society Field Guide to North 

American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf 

 Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu) 

 Donated Date: 27 April 1987 

3. Data Set Information: 

This data set includes descriptions of hypothetical samples corresponding to 23 

species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each 

species is identified as definitely edible, definitely poisonous, or of unknown edibility 

and not recommended. This latter class was combined with the poisonous one. The 

Guide clearly states that there is no simple rule for determining the edibility of a 

mushroom; no rule like ``leaflets three, let it be'' for Poisonous Oak and Ivy. 
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4. Number of Instances: 8124 

5. Number of Attributes: 22 

6. Attribute Characteristics: Categorical 

7. Attribute Information: 

1) cap-shape: bell = b, conical = c, convex = x, flat = f, knobbed = k, sunken = s 

2) cap-surface: fibrous = f, grooves = g, scaly = y, smooth = s 

3) cap-color: brown = n, buff = b, cinnamon = c, gray = g, green = r, pink = p,  

purple = u, red = e, white = w, yellow = y 

4) bruises?: bruises = t, no = f 

5) odor: almond = a, anise = l, creosote = c, fishy = y, foul = f,  musty = m, none = 

n, pungent = p, spicy = s 

6) gill-attachment: attached = a, descending = d, free = f, notched = n 

7) gill-spacing: close = c, crowded = w, distant = d 

8) gill-size: broad = b, narrow = n 

9) gill-color: black = k, brown = n, buff = b, chocolate = h, gray = g,  green = r,  

orange = o, pink = p, purple = u, red = e, white = w, yellow = y 

10) stalk-shape: enlarging = e, tapering = t 

11) stalk-root: bulbous = b, club = c, cup = u, equal = e, rhizomorphs = z, rooted = r, 

missing = ? 

12) stalk-surface-above-ring: fibrous = f, scaly = y, silky = k, smooth = s 

13) stalk-surface-below-ring: fibrous = f, scaly = y, silky = k, smooth = s 

14) stalk-color-above-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o,  

pink = p,  red = e, white = w, yellow = y 
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15) stalk-color-below-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o,  

pink = p, red = e, white = w, yellow = y 

16) veil-type: partial = p, universal = u 

17) veil-color: brown = n, orange = o, white = w, yellow = y 

18) ring-number: none = n, one = o, two = t 

19) ring-type: cobwebby = c, evanescent = e, flaring = f, large = l, none = n,  

pendant = p, sheathing = s, zone = z 

20) spore-print-color: black = k, brown = n, buff = b, chocolate = h, green = r,   

orange = o, purple = u, white = w, yellow = y 

21) population: abundant = a, clustered = c, numerous = n, scattered = s, several = v, 

solitary = y 

22) habitat: grasses = g, leaves = l, meadows = m, paths = p, urban = u, waste = w,  

woods = d 

8. Missing Attribute Values:  

2480 of them (denoted by "?"), all for attribute number 11. 

9. Classes: 

 Edible = e 

 Poisonous = p 

10. Class Distribution 

 Edible: 4208 (51.8%) 

 Poisonous: 3916 (48.2%) 
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3.3.1.2.  Iris Data Set 

All information on the data set has been taken from the UCI website [16]. 

1. Title: Iris Plants Database 

2. Source: 

 Creator: R. A. Fisher 

 Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov) 

 Donated Date: July 1988 

3. Data Set Information: 

This data set is one of the post popular in pattern recognition literature. The data set 

contains 3 classes of 50 instances each, where each class refers to a type of iris plant.  

One class is linearly separable from the other two; the latter are not linearly separable 

from each other. The predicted attribute is the class of the iris plant. 

4. Number of Instances: 150 

5. Number of Attributes: 4 

6. Attribute Characteristics: Real 

7. Attribute Information: 

1) Sepal length in cm 

2) Sepal width in cm 

3) Petal length in cm 

4) Petal width in cm 

8. Missing Attribute Values: None 

9. Classes: 

 Iris Setosa 
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 Iris Versicolour 

 Iris Virginica 

10. Class Distribution: 

 Iris Setosa: 33.3% 

 Iris Versicolour 33.3% 

 Iris Virginica: 33.3% 

11. Summary Statistics:  

Table 2: Summary Statistics of Iris Data Set 

 Min Max Mean SD Class Correlation 

Sepal Length 4.3 7.9 5.84 0.83 0.7826 

Sepal Width 2.0 4.4 3.05 0.43 -0.4194 

Petal Length 1.0 6.9 3.76 1.76 0.9490 (high) 

Petal Width 0.1 2.5 1.20 0.76 0.9565 (high) 

 

3.3.2. Data Pre-Processing 

Some data pre-processing was required in both the data sets used. 

3.3.2.1.  Mushroom Data Set 

For the experiment, the data instances with missing values were removed. A subset 

of the remaining dataset containing 5000 data instances was used for testing the classifier. 

1. Number of Instances: 5000 

2. Class Distribution: 

 Edible: 3397 (67.94%) 

 Poisonous: 1603 (32.06%) 
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3.3.2.2.  Iris Data Set 

Since the classifier is built for categorical data, the real data in this data set has been 

integerized to fit the classifier design. 

3.3.3. Experiments 

Two different experiments were done using both the data sets to test the accuracy of 

the naïve Bayes classifier. 

3.3.3.1.  Experiment 1: Accuracy Using K = 50 in K-Fold Cross Validation 

In the first experiment, the classifier was tested using the k-fold cross validation 

method. The value of k was input as 50. For each of the 50 runs, the accuracy was calculated. 

Using all the accuracies obtained, the average accuracy and the standard deviation was 

calculated.  

For the mushroom data set, each run had 4900 data instances in the training set and 

100 instances in the test set.  

The iris data set had 147 instances in the training set and 3 instances in the training 

set for each of the runs. 

Table 3: Results of Experiment 1 for Both Data Sets 

 Accuracy Standard Deviation 

Mushroom Data Set 100% 0 

Iris Data Set 89.33% 22 
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Figure 12: Accuracy of Classifier Using K-Fold Cross Validation (Mushroom Data Set) 

 

 

Figure 13: Accuracy of Classifier Using K-Fold Cross Validation (Iris Data Set) 
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3.3.3.1.1. Results 

From the accuracies obtained from the classifier, listed in Table 3, it is seen that the 

accuracy for the mushroom data set is consistent at 100% for all 50 runs. On the other hand, 

for the iris data set the average accuracy is calculated at 89.33% with a standard deviation of 

22. The accuracies for this data set were varying from 0% to 100% with more than half of 

them above the 60% mark. It can be seen that the results of the mushroom data set are much 

better than that of the iris set. The better accuracy for the mushroom data set can be attributed 

to the following: 

1. A large data set: The mushroom data set had 5000 instances compared to 150 in the 

iris data set. 

2. Larger number of attributes: The mushroom data set had 22 attributes whereas the 

iris data set has 4. 

3.3.3.2.  Experiment 2: Accuracy for All Cross Validation Methods 

Both the data sets were run through the classifier using all three cross validation 

methods and the accuracies were calculated. The same number of instances as in Experiment 

1 were used for this experiment as well. 

Table 4: Results of Experiment 2 for Both Data Sets 

 Holdout K-Fold Leave-One-Out 

Mushroom Data Set 99.8% 100% 100% 

Iris Data Set 92% 89.33% 90% 
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Figure 14: Accuracy of Classifier Using Different Cross Validation Methods 
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The iris data set had 149 instances in the training set and 1 instance in the test set in each run. 

The accuracy of the classifier was 90%. 

3.3.3.2.1. Results 

1. Mushroom data set: The accuracies obtained for this data set using all three cross 

validation methods were all very good. The lowest was 99.8% using holdout method. 

This shows that a larger training set can give higher accuracy. 

2. Iris data set: The accuracies obtained using the three cross validation methods were 

around the 90% mark. The highest accuracy of 92% was obtained from the holdout 

method. This is contrary to other results where larger training sets generated higher 

accuracies. This behavior could have been caused by the distribution of classes in the 

training set and the test set. 

3. From the results obtained from the two data sets it can be observed that this naïve 

Bayes classifier has better accuracy with larger data sets and larger number of 

attributes. The accuracies on the mushroom data set averages close to 100% and that 

of the iris data set averages around 90%. 

3.4. Comparison with Other Algorithms 

The two data sets, mushroom data set and iris data set, used to test the classifier in 

this paper have been used in several other papers to test different classification algorithms. 

In this section we will compare our results with results from some of the other papers to 

compare the accuracy obtained. 

The accuracy of the developed naïve Bayes classifier was compared with the 

accuracies from the following algorithms: J48 unpruned tree algorithm [17], CBA [18], C4.5 

[19], DeEP [20], and multi layer feed forward neural network [21].  



38 

 

 

Table 5: Description of Algorithms Used in Comparison 

Algorithm Description 

C4.5 

An algorithm based on the ID3 algorithm that tries to 

find simple decision trees [19]. The algorithm is 

based on certain premises described below: 

 The tree is a leaf labelled with a class if all 

cases are that same class  

 For each attribute, the potential information 

and the gain are calculated from a test on the 

attribute. 

 Find the best attribute to branch on depending 

on the current selection. 

J48 unpruned tree algorithm A version of the C4.5 algorithm employing two 

pruning methods. 

 Subtree replacement – nodes in a decision tree 

may be replaced by a leaf reducing the number 

of tests along a certain path 

 Subtree raising – a node may be moved 

upwards towards the root of a decision tree 

replacing other nodes along the way 

Classification Based on 

Associations (CBA) 

An integration of classification rule mining and 

association rule mining. It consists of two parts: rule 

generator for finding association rules and the 

classifier builder. 

Decisions through Emerging 

Patterns (DeEP) 

An instance based classifier which makes decisions 

through emerging patters defined as itemsets whose 

frequencies change significantly from one class to 

another. [20] 

Multi layer feed forward neural 

network 

Feed forward neural network consisting of 

intermediary layers called hidden layers that perform 

intermediary computations before directing the input 

to the output layer. [21] 

 

The results of the comparisons are summarized in Table 6. For each of the algorithms 

the tables lists the maximum accuracies obtained from experiments. 
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Table 6: Comparison of Accuracies from Different Algorithms 

 C4.5 J48 CBA DeEP NN NB 

Mushroom Data set - 100% - 100% - 100% 

Iris Data Set 95.3% - 92.9% 96% 96.66% 92% 

 

From Table 6 it can be seen that for the mushroom data set the accuracies from 

different algorithms are all 100%. The iris data set showed satisfactory accuracy with all 

algorithms. It can be seen that the accuracies from C4.5, DeEP, and the multi layer feed 

forward neural network are higher than the accuracy from the naïve Bayes classifier 

developed in this paper. 

Table 6 also shows that the accuracy of the developed naïve Bayes classifier is very 

comparable to other sophisticated algorithms described in Table 5.  
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4. CONCLUSION 

In this paper, we designed and developed a naïve Bayes classifier that was 

generalized to read any data set with categorical data and a prescribed structure in the input 

excel file. The classifier was tested using two different data sets from the UCI machine 

learning repository. Two experiments were carried out using different cross validation 

methods to calculate the accuracy of the classifier. The results were used to make some 

observations about the classifier.  

For the mushroom data set, with 5000 data instances and 22 attributes, the accuracy 

obtained was close to 100% for all experiments performed. The iris data set, which has 150 

data instances and 4 attributes, had accuracies from all experiments closer to 90%. From 

the results obtained it was observed that the classifier performed better on the mushroom 

data set, which is a larger data set and has a larger number of attributes. The attributes in 

both the data sets were independent of each other. Since the accuracies for both data sets 

were above 90%, we can say that the naïve Bayes classifier has satisfactory results even 

with the independence assumption. 

From the comparisons in section 3.4, it can be seen that the accuracy of the 

mushroom data set is good for most algorithms. On the other hand, the iris data set had 

better accuracy from almost all other algorithms than the naïve Bayes classifier. The lower 

accuracy could be because of the fact that the values of the features in the iris data set were 

converted to integers to work with the built classifier.  

It can be observed from this paper, that the results of the naïve Bayes classifier 

closely competes with that of other sophisticated classifiers.  



41 

 

5. REFERENCES 

 

[1]  S. B. Kotsiantis, "Supervised Machine Learning: A Review of Classification," 2007.  

[2]  P. Langley, W. Iba and K. Thompson, "An analysis of Bayesian Classifiers.," in 

Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA, 

1992.  

[3]  S. M. Kamruzzaman, "Text Classification using Artificial Intelligence," Journal of 

Electrical Engineering, Vols. EE 33, No. I & II, December 2006.  

[4]  N. Friedman, D. Geiger and M. Goldszmidt, "Bayesian Network Classifiers.," Machine 

Learning, vol. 29, pp. 131-163, 1997.  

[5]  I. Rish, "An empirical study of the naive Bayes classifier," IJCAI 2001 Workshop on 

Empirical Methods in Artificial Intelligence, vol. 22, pp. 41-46, 2001.  

[6]  D. Grossman and P. Domingos, "Learning Bayesian network classifiers by maximizing 

conditional likelihood," in Proceedings of the twenty-first international conference on 

Machine learning, Banff, Cananda, 2004.  

[7]  T. O. Ayodele, "Types of Machine Learning Algorithms," in New Advances in Machine 

Learning, Y. Zhang, Ed., InTech, 2010.  

[8]  F. Woergoetter and B. Porr, "Reinforcement learning," Scholarpedia, vol. 3, p. 1448, 

2008.  

[9]  S. C. Larson, "The shrinkage of the coefficient of multiple correlation.," J. Edic. 

Psychol., pp. 45-55, 1931.  



42 

 

[10]  F. Mosteller and J. W. Tukey, "Data analysis, including statistics.," in Handbook of 

Social Psychology, Vol., Addison-Wesley, 1968.  

[11]  S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection," 

in Statistics Surveys, vol. 4, 2010, pp. 40-79. 

[12]  P. Rafaeilzadeh, L. Tang and H. Liu, "Cross Validation," Encyclopedia of Database 

Systems, 2009.  

[13]  R. O. Duda and P. E. Hart, Pattern classification and scene analysis, John Wiley and 

Sons, 1973.  

[14]  "EPPlus - Create Advanced Excel 2007 Spreadsheets on the Server," [Online]. 

Available: http://epplus.codeplex.com/. 

[15]  "UCI Machine Learning Repository: Mushroom dataset," [Online]. Available: 

http://archive.ics.uci.edu/ml/datasets/Mushroom. [Accessed 13 March 2013]. 

[16]  "UCI Machine Learning Repository: Iris Data Set," [Online]. Available: 

http://archive.ics.uci.edu/ml/datasets/Iris. [Accessed 16 April 2013]. 

[17]  C. Eusebi, C. Gliga, D. John and A. Maisonave, "Data Mining on a Mushroom 

Database," in Proceedings of Student-Faculty Research Day, CSIS, Pace University, 

2008.  

[18]  B. Liu, W. Hsu and Y. Ma, "Integrating classification and association rule mining," in 

Proceedings of the Fourth International Conference on Knowledge Discovery in 

Databases and Data Mining, New York, USA, 1998.  

[19]  J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann Publishers 

Inc., 1993.  



43 

 

[20]  J. Li, G. Dong and K. Ramamohanarao, "Instance-Based Classification by Emerging 

Patterns," in Proceedings of the Fourth European Conference on Principles and 

Practice of Knowledge Discovery in Databases, 2000.  

[21]  M. Swain, S. K. Dash, S. Dash and A. Mohapatra, "An Approach for Iris Plant 

Classification using Neural Network," International Journal on Soft Computing, vol. 

3, no. 1, February 2012.  

 

 

 

 

 


