

DESIGN AND DEVELOPMENT OF NAÏVE BAYES CLASSIFIER

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Bandana Garg

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Program:

Computer Science

June 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

DESIGN AND DEVELOPMENT OF NAÏVE BAYES CLASSIFIER

 By

Bandana Garg

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Kendall Nygard

 Chair

Brian Slator

Limin Zhang

 Approved:

 07/01/2013 Brian Slator

 Date Department Chair

iii

ABSTRACT

The naïve Bayes classifier is a simple form of Bayesian classifiers which assumes all

the features are independent of each other. Despite this assumption, the naïve Bayes

classifier’s accuracy is comparable to other sophisticated classifiers.

In this paper we designed and developed a naïve Bayes classifier for a better

understanding of the algorithm. The classifier is tested on two different data sets from the

University of California at Irvine machine learning repository. Different cross validation

methods are used to calculate the accuracy of the developed classifier. The different

accuracies obtained are compared to get the best accuracy of the classifier. This value is also

compared with accuracies obtained for the same data sets using different algorithms reported

in other papers. It was observed from the comparisons that the naïve Bayes classifier’s results

are very comparable to other algorithms.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Dr. Kendall Nygard for

his continuous guidance, support, patience, encouragement, and motivation. I would also like

to thank all my committee members for their support.

I also thank my family for their continuous support. Finally, I would like to thank all

my friends, especially Basudha Pradhan, Erin Mullen, and Sydney Addy, for their motivation

and for being there for me.

v

DEDICATION

I dedicate this paper to my father Dr. Govind Ram Agrawal and my mother Mrs.

Rama Agrawal for being the inspiration in my life.

vi

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENTS .. iv

DEDICATION ... v

LIST OF TABLES .. ix

LIST OF FIGURES ... x

1. INTRODUCTION ... 1

1.1. Objectives .. 2

1.2. Document Outline .. 2

2. LITERATURE REVIEW .. 4

2.1. Machine Learning .. 4

2.1.1. Types of Machine Learning Algorithms .. 4

2.1.2. Supervised Machine Learning ... 5

2.1.2.1. Process of Supervised Learning ... 6

2.2. Cross Validation .. 7

2.2.1. Holdout Method ... 7

2.2.2. K-Fold Cross Validation .. 7

2.2.3. Leave-One-Out Cross Validation .. 8

2.3. Bayes’ Theorem ... 8

2.4. Naïve Bayes Classifier ... 9

vii

2.4.1. Algorithm ... 10

2.4.2. Zero-Frequency Problem ... 11

2.4.3. Numerical Predictors ... 11

2.4.4. Avoiding Floating Point Underflow .. 12

3. NAÏVE BAYES CLASSIFIER ... 13

3.1. Design .. 13

3.1.1. Implementation Choices .. 13

3.1.1.1. Microsoft Visual Studio, C# and .NET Framework 13

3.1.1.2. EPPlus... 14

3.1.2. System Design ... 14

3.2. Development .. 18

3.2.1. Read Input File... 18

3.2.2. Select Cross Validation Method .. 19

3.2.3. Calculations ... 24

3.2.3.1. Calculate Prior Probabilities of Each Class .. 24

3.2.3.2. Calculate Conditional Probabilities .. 24

3.2.3.3. Calculate Posterior Probabilities ... 25

3.2.3.4. Classification .. 26

3.2.3.5. Calculate Accuracy ... 26

3.3. Experimentation ... 28

viii

3.3.1. Data Sets .. 28

3.3.1.1. Mushroom Data Set .. 28

3.3.1.2. Iris Data Set .. 31

3.3.2. Data Pre-Processing ... 32

3.3.2.1. Mushroom Data Set .. 32

3.3.2.2. Iris Data Set .. 33

3.3.3. Experiments ... 33

3.3.3.1. Experiment 1: Accuracy Using K = 50 in K-Fold Cross Validation 33

3.3.3.1.1. Results .. 35

3.3.3.2. Experiment 2: Accuracy for All Cross Validation Methods 35

3.3.3.2.1. Results .. 37

3.4. Comparison with Other Algorithms .. 37

4. CONCLUSION .. 40

5. REFERENCES .. 41

ix

LIST OF TABLES

Table Page

1. Instances with Known Classes in Supervised Machine Learning 5

2. Summary Statistics of Iris Data Set ... 32

3. Results of Experiment 1 for Both Data Sets .. 33

4. Results of Experiment 2 for Both Data Sets .. 35

5. Description of Algorithms Used in Comparison ... 38

6. Comparison of Accuracies from Different Algorithms ... 39

x

LIST OF FIGURES

Figure Page

1. The Structure of the Naive Bayesian Network (4) ... 10

2. Flowchart for Naive Bayes Classifier .. 16

3. Pseudo Code: Read the Input File using EPPlus Library .. 18

4. Pseudo Code: Creating Training Set and Test Set in Holdout Cross Validation 19

5. Pseudo Code: Classifier Using Holdout Cross Validation 20

6. Pseudo Code: Creating Training Set and Test Set in K-Fold Cross Validation 21

7. Pseudo Code: Classifier Using K-Fold Cross Validation .. 22

8. Pseudo Code: Classifier Using Leave-One-Out Cross Validation 23

9. Pseudo Code: Calculating Prior Probabilities .. 24

10. Pseudo Code: Calculation Posterior Probabilities ... 25

11. Screenshot: Naive Bayes Classifier Running with K-fold Cross Validation 27

12. Accuracy of Classifier Using K-Fold Cross Validation (Mushroom Data Set) 34

13. Accuracy of Classifier Using K-Fold Cross Validation (Iris Data Set) 34

14. Accuracy of Classifier Using Different Cross Validation Methods 36

file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681733
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681734
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681735
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681736
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681737
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681738
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681739
file:///C:/Users/Bandana/Desktop/My%20Paper/Grad%20school%207-15-2013.docx%23_Toc361681740

1

1. INTRODUCTION

Classification in data analysis is the task of assigning a class to instances of data

described by a set of attributes. Classification or supervised classification includes the

construction of a classifier which is trained on a set of training data that already has the

correct class assigned to each data point. This builds a concise model of the distribution of

class labels. It is then used to classify new data where the values of features are known but

the class is unknown.

 Many algorithms have been developed for supervised classification based on

artificial intelligence (logical algorithms such as decision trees), perceptron-based techniques

(single layered perceptron, multilayered perceptron), and statistical learning techniques

(Bayesian networks, instance based techniques) [1] .

Bayesian classification is based on Bayes theorem. Bayesian classifiers assign the

most likely class to a given instance described by a set of attributes. The Naïve Bayes

Classifier assumes that the effect of each attribute on a class is statistically independent of

all other attributes [2]. This assumption, called class conditional independence, is made to

simplify computation, and in this sense, is considered ‘naive’ [3]. Despite this assumption,

the naïve Bayes classifier’s performance is competitive with other sophisticated techniques

and has proven effective in many practical applications [4] [2] [5].

Naïve Bayes classifier works best in two cases: when the features are completely

independent and secondly when the features are functionally dependent. The worst

performance is seen in between these two extremes [5]. Many extensions and optimizations

have been put forth to improve the naïve Bayesian classifier’s performance. In [4], the

authors suggest a Tree Augmented Naïve Bayes (TAN) classifier, which has significant

2

performance improvements over the naïve Bayesian classifier. The authors in [6] show that

choosing structures by maximizing conditional likelihood while setting parameters by

maximum likelihood also yields better results.

The popularity of naïve Bayes classifier has increased and is being adopted by many

because of its simplicity, computational efficiency, and it’s good performances for real-world

problems.

1.1. Objectives

The objectives of this paper are:

1. To design and develop a naïve Bayes classifier for better understanding of the

algorithm.

2. To test the performance of the classifier on the selected datasets.

3. To use different cross validation methods to evaluate the performance of the

algorithm.

1.2. Document Outline

Section 1 of this document gives a general introduction of the Naive Bayes Classifier,

its advantages over other algorithms, and enhancements. It also includes the objectives of

this paper.

Section 2 gives a summary of where and how the Naïve Bayes algorithm is used for

classification. It describes the process of supervised machine learning and the different cross

validation methods. This section includes an explanation of the Bayes’ theorem on which the

naïve Bayes classifier is based on, and it describes the algorithm for naïve Bayes classifier.

Section 3 includes the design, development, and the testing of the classifier that was

developed. It describes in detail the design of the system and its development. It includes a

3

description of the dataset that was used to test the algorithm and the results of those test. This

section ends with the comparison of the performance using different cross validation

methods

Section 4 concludes this paper. It presents conclusions drawn from the experiments

done using the algorithm on the selected datasets.

4

2. LITERATURE REVIEW

2.1. Machine Learning

“Machine learning is programming computers to optimize a performance criterion

using example data or past experience” [7]. Learning is done by the execution of a computer

program to optimize the parameters of a defined model, which can be predictive to make

predictions in future or descriptive to gain knowledge from data or both. There are two things

that need to be achieved in the learning process. First, the training needs to be done with an

efficient algorithm to solve the optimized problem, and to store and process the data. Second,

the trained model needs an efficient representation and algorithm for inference [7].

2.1.1. Types of Machine Learning Algorithms

As listed in [7], machine learning algorithms are organized in a taxonomy based on

their desired outcomes. The common algorithm types are:

 Supervised learning – These algorithms generate a function based on the training data

set that maps inputs to predetermined labels or classes.

 Unsupervised learning – These algorithms are not provided with classification. They

seek out similarities between data points to form clusters.

 Semi-supervised learning – The algorithms combine both labeled and unlabeled data

to generate a classifier.

 Reinforcement learning – These algorithms learn by interacting with an environment.

Instead of being trained on an existing data, these algorithms learn from their actions

which are selected based on past actions (exploitation) or by new choices

(exploration). The algorithm receives a numeric reward from the environment for a

5

successful outcome of an action and it selects actions that maximize the accumulated

reward over time [8].

 Transduction – These algorithms are similar to supervised algorithms but instead of

explicitly specifying a function, they try to predict new outputs based on training

inputs, training outputs, and testing inputs.

 Learning to learn – These algorithms learn their own inductive bias based on previous

experience.

2.1.2. Supervised Machine Learning

Supervised learning is common in classification problems where the goal is to have

the computer learn a predefined classification. Supervised learning algorithms learn from

externally supplied instances of data, represented by a set of features and a class, to create a

function that makes predictions about the classification of future instances or new data. Table

1 shows the structure of data used in supervised learning. Each instance of data is defined by

a set of features and a class.

Table 1: Instances with Known Classes in Supervised Machine Learning

Data in standard format

Case Feature 1 Feature 2 … Feature n Class

1 XX X XXX Yes

2 XX X XXX No

3 XX X XXX Yes

…

6

2.1.2.1. Process of Supervised Learning

The process of supervised learning is described in the steps below.

Step 1: The first step in supervised learning is the collection of dataset. If the

expertise is available then data on the informative features can be collected. If not, then data

is collected on all features in hopes that the relevant ones can be isolated. Data collected in

such a way contains noise and missing values and needs intensive pre-processing [1].

Step 2: The data-preprocessing step involves reducing noise by instance selection.

There are several methods available to handle missing data. Instance selection is also used

to handle the infeasibility of learning from extremely large datasets.

Step 3: The training set is defined by feature subset selection, in which the irrelevant

and redundant features are removed. In cases where some features are dependent on each

other, new features are constructed from the basic feature set.

Step 4: Algorithm selection is a very important step. There are numerous algorithms

available for machine learning.

Step 5: The algorithm is trained using a training data set.

Step 6: The algorithm is tested with a test data set. Once the evaluation from the

preliminary testing is satisfactory, then the classifier can be used for predictions. The

classifier is evaluated based on prediction accuracy (the percentage of correct predictions

divided by the total number of predictions) [1]. The evaluation technique used is called cross

validation which is described in section 2.2.

Step 7: If the accuracy is not satisfactory then the process needs to return to a

previous step to re-examine certain choices made. As listed in [1], some of the factors that

need to be reexamined can be:

7

 Relevant features for the problem may be missing

 Larger dataset may be needed

 The dimensionality of the problem may be too high

 The selected algorithm may be inappropriate

 Parameter tuning may be needed

2.2. Cross Validation

Using the same set of data for the training and validation of an algorithm yields an

overoptimistic result [9]. Cross Validation is based on the principle that testing the algorithm

on a new set of data yields a better estimate of its performance [10].

Most real applications have a limited amount of data. Because of this the dataset is

split into the training sample and the validation sample. The training sample is used to train

the algorithm and the validation sample is used as “new data” to evaluate the performance

of the algorithm [11].

2.2.1. Holdout Method

The holdout method is the simplest kind of cross validation in which the dataset is

separated into two sets: the training set and the validation set. The algorithm is trained using

the training set only. The algorithm is then used to evaluate the data in the validation set [11].

The errors it makes are accumulated to give the mean absolute test set error, which is used

to evaluate the algorithm. However, since the evaluation may depend on which data is in the

training set and in the validation set, its evaluation can have a high variance.

2.2.2. K-Fold Cross Validation

K-fold cross validation is an improvement of the holdout method. In the k-fold cross

validation method the dataset is divided into k subsets and the holdout method is repeated k

8

times. In each run, one of the k sets is used as the validation set and the remaining k-1 sets

are put together to form the training set. Then the average error across all k trials is computed.

This reduces the dependency of the evaluation on how the dataset is separated. Every data

point is in the training set k times and in the validation set k-1 times. The variance in the

result is reduced as k is increased. The disadvantage of this method is that it takes k times as

much computation for an evaluation since the training algorithm has to be run k times [12].

2.2.3. Leave-One-Out Cross Validation

Leave-one-out cross validation is a logical extreme of k-fold cross validation where

k is equal to the number of data points. The training on the algorithm is done on all data

points except for one. The evaluation given by the leave-one-out cross validation is good but

computationally expensive [12].

2.3. Bayes’ Theorem

Bayes’ Theorem is a statement from probability theory that allows for the calculation

of certain conditional probabilities. Conditional probabilities are those probabilities that

reflect the influence of one event on the probability of another event. The term generally

used in Bayes’ theorem are prior probability and posterior probability. The prior probability

of a hypothesis or event is the original probability obtained before any additional information

is obtained. The posterior probability is the revised probability of the hypothesis using some

additional information or evidence obtained.

Bayes’ Theorem can be written as:

9

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (Eq. 1)

Where,

P(A) is the prior probability of A

P(B) is the prior probability of B

P(A|B) is the posterior probability of A given B

P(B|A) is the posterior probability of B given A

Since the denominator P(B) in Eq. 1 is the probability of the evidence without any

knowledge of the event A, and since the hypothesis A can be true or false, Bayes’ theorem

can also be written as

 𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵|𝐴) × 𝑃(𝐴) + 𝑃(𝐵|¬𝐴) × 𝑃(¬𝐴)
 (Eq. 2)

Where,

P(¬A) is the probability of A being false

P(B|¬A) is the probability of B given A is false

2.4. Naïve Bayes Classifier

A naïve Bayes classifier is a probabilistic classifier based on applying Bayes’

theorem with strong independence assumptions. The naïve Bayesian classifier was first

described in [13] in 1973 and then in [2] in 1992. When represented as a Bayesian network,

a naïve Bayes classifier has the structure depicted in Figure 1. It shows the independence

assumption among all features in a data instance.

10

C

A1 A2 An

Figure 1: The Structure of the Naive Bayesian Network (4)

2.4.1. Algorithm

As written in [5], a naïve Bayes classifier can be defined as below. Variables are

denoted using capital letters such as Xi, and their values will be denoted by lower-case letters

such as xi, and sets of variables are denoted by boldface letters such as X.

Let 𝐗 = {X1, … . , X𝑛} be a finite set of observed random variables, called features,

where each feature takes values from its domain Di. The set of all feature sets is denoted by

Ω = D1 × … × D𝑛. Let C, such that 𝑐 ∈ {0, … , 𝑢 − 1}, be an unobserved random variable

denoting the class of a set of features.

A hypothesis ℎ ∶ Ω → {0, … , 𝑢 − 1}, that assigns a class to any given set of variables

is defined as a classifier. Each class c is assigned a discriminant function

 𝑓𝑐(𝒙), 𝑐 = 0, … , 𝑢 − 1. The classifier selects the class with the maximum discriminant

function on a given set of variables, written as ℎ(𝒙) = arg 𝑚𝑎𝑥𝑐 ∈ {0,…,𝑢−1}𝑓𝑐 (𝑥).

The Bayes classifier ℎ∗(𝒙) uses the posterior probabilities given a set of variables as

the discriminant function, i.e. 𝑓∗(𝒙) = 𝑃(𝐶 = 𝑐 |𝑋 = 𝑥). Applying Bayes’ theorem from

Eq. 1 to this function gives 𝑃(𝐶 = 𝑐 | 𝑿 = 𝒙) =
𝑃(𝑿=𝒙 |𝐶=𝑐) 𝑃(𝐶=𝑐)

𝑃(𝑿=𝒙)
. Since P(X = x) is the

same for all classes it can be ignored. Hence, the Bayes’ discriminant function can be written

as 𝑓∗(𝒙) = 𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐), where 𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐) is called the

11

class-conditional probability distribution (CPD) [5]. Thus the Bayes’ classifier written as in

Eq. 3 finds the maximum posterior probability hypothesis given x.

 ℎ∗(𝒙) = arg 𝑚𝑎𝑥𝑐 𝑃(𝑿 = 𝒙 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐) (Eq. 3)

Applying the assumption that features are independent given the class on Eq. 3, we

can get the naïve Bayes classifier.

 𝑓𝑐
𝑁𝐵(𝒙) = ∏ 𝑃(𝑋𝑗 = 𝑥𝑗 |𝐶 = 𝑐) 𝑃(𝐶 = 𝑐)

𝑛

𝑗=1
 (Eq. 4)

2.4.2. Zero-Frequency Problem

When a feature value does not occur with every class value, a value 1 is added to the

count of every feature value-class combination.

2.4.3. Numerical Predictors

When features have continuous data or numerical data, there are two ways to handle

the data:

1. The first option is to transform the numerical values to their categorical counterparts,

called binning, before constructing their frequency tables.

2. The second option is to use the distribution of the numerical values to guess the

frequency. One of the common practices is to assume normal distribution for the

numerical values, which is defined by two parameters: mean and standard deviation.

 𝑃(𝑋 = 𝑥 |𝐶 = 𝑐) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2 (Eq. 5)

Where,

Mean = 𝜇 =
1

𝑛
∑ 𝑥𝑗

𝑛
𝑗=1

12

Standard Deviation = 𝜎 = [
1

𝑛−1
∑ (𝑥𝑗 − 𝑛)2𝑛

𝑗=1]0.5

n = number of times the feature occurs with the given class

2.4.4. Avoiding Floating Point Underflow

Because of the floating point limitations during computation, when working with

large data the Naïve Bayes Classifier needs to be optimized as below. Instead of storing the

probabilities, the natural logarithm of those probabilities are stored. And instead of

multiplying them, the numbers are added.

 𝑓𝑐(𝑥) = 𝑙𝑜𝑔𝑒(𝑃(𝐶 = 𝑐)) + ∑ 𝑙𝑜𝑔𝑒(𝑃(𝑋𝑗 = 𝑥𝑗 |𝐶 = 𝑐))

𝑛

𝑗=1

 (Eq. 6)

13

3. NAÏVE BAYES CLASSIFIER

3.1. Design

This section describes the implementation choices and the design and development

process of the Naïve Bayes classifier built.

3.1.1. Implementation Choices

The classifier was implemented in C# using Microsoft Visual Studio. The

implementation choices have been described in this section.

3.1.1.1. Microsoft Visual Studio, C# and .NET Framework

Microsoft Visual Studio (VS) is an Integrated Development Environment (IDE) that

provides a set of development tools for developing .NET web applications, XML Web

Services, desktop applications, and mobile applications. VS makes development easier

through time-saving and convenient features such as intelliSense, designers, and debugging.

The .NET framework is a software framework that provides a large library and

language interoperability between several programming languages. The Base Class Library

(BCL) includes a large number of common functions. Some of the namespaces from the BCL

being used in the development of the naïve Bayes classifier include System.Collections,

System.IO, System.Threading, System.Linq, and System.Windows.Forms.

C# is an object oriented programming language designed to be fully compatible with

the Microsoft .NET framework.

The naïve Bayes classifier has been developed using Visual Studio 2012, .Net

Framework 4.5, and C#.

14

3.1.1.2. EPPlus

EPPlus is a .net library that reads and writes Excel 2007/2010 files using the Open

Office Xml format (.xlsx) [14]. The project is licensed under the GNU Library General

Public License (LGPL). EEPlus version 3.1 is used in the development of the naïve Bayes

classifier because of its complete and simple integration with .NET and its speed in loading

excel files (50,000 cells in seconds [14]).

3.1.2. System Design

The naïve Bayes classifier is a desktop application developed using windows forms.

The classifier is designed for categorical data for features and is generalized to read any

dataset with categorical data.

The following structure is required in the input file for the file to be read correctly:

 The input file is a Microsoft Excel file. The file should be in .xlsx format.

 The feature values are categorical and not numerical (continuous data)

 The first column in the data is the class followed by the feature values

 The first row in the data is the feature names

The system is designed to run the algorithm using three cross validation methods:

holdout method, k-fold cross validation, and leave-one-out cross validation. These cross

validation methods are described in section 2.2.

The system is designed to read an input file (.xlsx file) containing the data set selected

by the user. Depending on the cross validation method selected by the user, the input data

set is split into training set and test set.

Using the training set, the prior probabilities of each class is calculated. Using a single

instance from the test set, the conditional probabilities for each feature value is calculated.

15

These values are then used to calculate the posterior probabilities for each class. The class

with the highest posterior probability is assigned as the class for that test instance. This

process is done on each instance in the test set.

By comparing these assigned class values to the actual class values of the test data,

the number of correct classification is obtained which is then used to calculate the accuracy

of the classifier.

For k-fold classification, the dataset is split into the number k entered by the user.

The entire process from creating training set and test set to calculating the accuracy is

performed k times using each set as the test set in each iteration. The training set is formed

by merging the remaining k-1 sets. The accuracies obtained from all iterations are averaged

to get the accuracy of the classifier.

The workflow of the system is shown in the flowchart below (Figure 2).

16

Start

Select Cross

Validation Method

Select Input File

Success?
Throw Error

Message

Create Training Set

and Test Set

Calculate Prior Probabilities

for Training Set

Read Input File

Calculate Conditional Probabilities

for Feature Values in Test Data

Calculate Posterior

Probabilities for Each Class

Is K-fold

Cross

Validation?

Divide Data

Set into k

sets

Yes

No

Yes

No

B

C

A

Figure 2: Flowchart for Naive Bayes Classifier

17

Classify

Display Classification

Result

Is End of

Test Set?

Is K-fold Cross

Validation?
Is last set?

Calculate Accuracy

Display Accuracy

End

Yes

No

Yes

No

A

C

B

Yes

No

Figure 2: Flowchart for Naive Bayes Classifier (continued)

18

3.2. Development

This section describes each step of the general workflow of the classifier using

pseudo code.

3.2.1. Read Input File

The user is required to select the data file in .xlsx format using the UI. The input file

selected by the user is read using EPPlus. The EPPlus library can be accessed by adding a

reference to its dll and adding “OfficeOpenXml” to the list of included libraries.

for (int rowNumber = 2; rowNumber <= currentWorksheet.Dimension.End.Row;

rowNumber++)

{

var instanceValues = new List<string>();

for (int colNumber = 1; colNumber <=

currentWorksheet.Dimension.End.Column; colNumber++)

{

string featureValue = currentWorksheet.Cells[rowNumber,

colNumber].Value.ToString();

instanceValues.Add(featureValue);

}

var dataInstance = new DataInstance();

dataInstance.Features = instanceValues;

dataSet.DataInstances.Add(dataInstance);

}

Figure 3: Pseudo Code: Read the Input File using EPPlus Library

19

Explanation: The rowNumber is started at 2 because the first row contains the feature

names. Each row is added as an instance of the class DataInstance which is a list of feature

values for one instance of the data. All the DataInstances are then added as an instance of the

class DataSet which is a list of the object DataInstance, and represents our data set.

3.2.2. Select Cross Validation Method

Depending on the cross validation method selected by the user through the UI, the

training set and the test set are created for training and validation of the classifier.

Holdout Method: For the holdout method the dataset is split into half creating the

training set and the test set (Figure 4).

The algorithm is then applied to each instance in the test set to get the accuracy of

the classifier (Figure 5).

INPUT: DataSet

OUTPUT: TrainingSet, TestSet

1 BEGIN

2 {

3 SET trainingSetSize = DataSet.Count / 2

4 SET testSetSize = DataSet.Count - trainingSetSize

5 SET TrainingSet = DataSet.Take(trainingSetSize)

6 SET TestSet = DataSet.Skip(trainingSetSize).Take(testSetSize)

7 }

8 END

Figure 4: Pseudo Code: Creating Training Set and Test Set in Holdout Cross

Validation

20

INPUT: TrainingSet, TestSet

OUTPUT: Accuracy of Classifier

1 BEGIN

2 {

3 Set correctClassificationCount to 0

4 FOREACH TestInstance Ti in TestSet

5 {

6 CALL TrainClassifier with TrainingSet

7 CALL ClassifyTestData with Ti

8 IF classification = Ti.Class THEN

9 INCREMENT correctClassificationCount

10 ENDIF

11 }

12 CALL CalculateAccuracy with correctClassificationCount and TestSet.Count

RETURNING Accuracy

13 }

13 END

Figure 5: Pseudo Code: Classifier Using Holdout Cross Validation

21

K-Fold Method: In the k-fold method the dataset is split into k different sets. In the

developed algorithm the value of k is entered by the user using the UI. For each of the k sets,

that set is used as the test set and the remaining k-1 sets are combined to form the training

set (Figure 6).

INPUT: SplitLists

 List of k sets created by splitting the DataSet

OUTPUT: TrainingSet, TestSet

1 BEGIN

2 {

3 FOREACH SplitSet Si in SplitLists

4 {

5 SET TestSet = Si

6 SET TrainingSet = Remaining sets merged

7 }

8 }

9 END

Figure 6: Pseudo Code: Creating Training Set and Test Set in K-Fold Cross

Validation

22

The algorithm for the classifier is then applied to each instance of the test set for each

of the k iterations. The accuracy for each iteration is calculated which is then averaged out

to get the classifiers accuracy (Figure 7).

INPUT: SplitLists

OUTPUT: Accuracy of Classifier

1 BEGIN

2 {

3 SET noOfSplits = k

4 FOR noOfSplits = 1 to k

5 {

6 Set correctClassificationCount to 0SplitLists

7 Call SetTrainingSetAndTestSet with

7 FOREACH TestInstance Ti in TestSet

8 {

9 CALL TrainClassifier with TrainingSet

10 CALL ClassifyTestData with Ti

11 IF classification = Ti.Class THEN

12 INCREMENT correctClassificationCount

13 ENDIF

14 }

15 CALL CalculateAccuracy with correctClassificationCount and TestSet.Count

RETURNING Accuracy

16 }

17 Calculate average accuracy

18 }

19 END

Figure 7: Pseudo Code: Classifier Using K-Fold Cross Validation

23

Leave-One-Out Method: In this cross validation method, the algorithm is carried

out n times where n is the number of instances in the data set. In each run, one of the instances

is used as the test data and the remaining instances are used as the training set (Figure 8)

INPUT: DataSet

OUTPUT: Accuracy of Classifier

1 BEGIN

2 {

3 Set correctClassificationCount to 0

4 FOREACH DataInstance Di in DataSet

5 {

6. SET TestData = Di

7. SET TrainingSet = DataSet.RemoveAt(i)

6 CALL TrainClassifier with TrainingSet

7 CALL ClassifyTestData with Ti

8 IF classification = Ti.Class THEN

9 INCREMENT correctClassificationCount

10 ENDIF

11 }

12 CALL CalculateAccuracy with correctClassificationCount and TestSet.Count

RETURNING Accuracy

13 }

13 END

Figure 8: Pseudo Code: Classifier Using Leave-One-Out Cross Validation

24

3.2.3. Calculations

The calculations done for classification are described in this section.

3.2.3.1. Calculate Prior Probabilities of Each Class

The prior probability of each class is calculated by dividng the number of data

instances with that class in the training set by the total number of instances in the training set

(Figure 9).

3.2.3.2. Calculate Conditional Probabilities

The conditional probabilities for each feature value in the test data are calculated by

getting the count of instances with that feature value in a particular class and dividing it by

the count of instances with the same class in the training set. This is done for each class in

the data set.

INPUT: ClassCount, TotalCount

 ClassCount is the count of instances with that class value in the training set

 TotalCount is the count of all instances in the training set

OUTPUT: Prior Probability of the class

1 BEGIN

2 {

3 Compute PriorProbability as ClassCount / TotalCount

4 }

5 END

Figure 9: Pseudo Code: Calculating Prior Probabilities

25

3.2.3.3. Calculate Posterior Probabilities

The posterior probability for each class given the feature values in the test data are

calculated by using the naïve Bayes classifier formula in Eq. 4 on the prior probability and

conditional probability values.

INPUT: PriorProbabilityList, ConditionalProbabilityList

 PriorProbabilityList contains the prior probabilities of all classes

 ConditionalProbabilityList contains the list of conditional probabilities for all

features in the test data for that class

OUTPUT: PosteriorProbabilityList

 List of posterior probabilities of each class

1 BEGIN

2 {

3 FOREACH ClassProbability Pc in PriorProbabilityList

4 {

5 SET posteriorProbability = Pc

6 FOREACH ConditionalProbability CPi in ConditionalProbabilityList

7 {

8 Compute posteriorProbability as posteriorProbability * CPi

9 }

10 Add posteriorProbability to PosteriorProbabilityList

11 }

12 }

13 END

Figure 10: Pseudo Code: Calculation Posterior Probabilities

26

3.2.3.4. Classification

The class with the highest posterior probability is assigned as the class for the test

data.

3.2.3.5. Calculate Accuracy

The class assigned to the test data is compared with the actual class of the test data to

get the count of correct classifications. The accuracy of the classifier is calculated by dividing

the number of correct classifications by the total number of classifications.

In case of k-fold cross validation, the accuracies obtained from all runs are averaged

to get the average accuracy of the classifier. The standard deviation is also calculated to get

the range of acceptable accuracy, and to see if any of the accuracies are too high or too low.

27

Figure 11: Screenshot: Naive Bayes Classifier Running with K-fold Cross Validation

28

3.3. Experimentation

The Naïve Bayes classifier developed was tested using two of the datasets from the

machine learning repository at the Center for Machine Learning and Intelligent Systems at

the University of California, Irvine (UCI) [15] [16].

3.3.1. Data Sets

Two different data sets from the UCI machine learning repository were used to test

the developed classifier: Mushroom data set, and Iris data set. The data sets are described

below.

3.3.1.1. Mushroom Data Set

All information on the data set has been taken from the UCI website [15].

1. Title: Mushroom Data Set

2. Source:

 Mushroom records drawn from The Audubon Society Field Guide to North

American Mushrooms (1981). G. H. Lincoff (Pres.), New York: Alfred A. Knopf

 Donor: Jeff Schlimmer (Jeffrey.Schlimmer@a.gp.cs.cmu.edu)

 Donated Date: 27 April 1987

3. Data Set Information:

This data set includes descriptions of hypothetical samples corresponding to 23

species of gilled mushrooms in the Agaricus and Lepiota Family (pp. 500-525). Each

species is identified as definitely edible, definitely poisonous, or of unknown edibility

and not recommended. This latter class was combined with the poisonous one. The

Guide clearly states that there is no simple rule for determining the edibility of a

mushroom; no rule like ``leaflets three, let it be'' for Poisonous Oak and Ivy.

29

4. Number of Instances: 8124

5. Number of Attributes: 22

6. Attribute Characteristics: Categorical

7. Attribute Information:

1) cap-shape: bell = b, conical = c, convex = x, flat = f, knobbed = k, sunken = s

2) cap-surface: fibrous = f, grooves = g, scaly = y, smooth = s

3) cap-color: brown = n, buff = b, cinnamon = c, gray = g, green = r, pink = p,

purple = u, red = e, white = w, yellow = y

4) bruises?: bruises = t, no = f

5) odor: almond = a, anise = l, creosote = c, fishy = y, foul = f, musty = m, none =

n, pungent = p, spicy = s

6) gill-attachment: attached = a, descending = d, free = f, notched = n

7) gill-spacing: close = c, crowded = w, distant = d

8) gill-size: broad = b, narrow = n

9) gill-color: black = k, brown = n, buff = b, chocolate = h, gray = g, green = r,

orange = o, pink = p, purple = u, red = e, white = w, yellow = y

10) stalk-shape: enlarging = e, tapering = t

11) stalk-root: bulbous = b, club = c, cup = u, equal = e, rhizomorphs = z, rooted = r,

missing = ?

12) stalk-surface-above-ring: fibrous = f, scaly = y, silky = k, smooth = s

13) stalk-surface-below-ring: fibrous = f, scaly = y, silky = k, smooth = s

14) stalk-color-above-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o,

pink = p, red = e, white = w, yellow = y

30

15) stalk-color-below-ring: brown = n, buff = b, cinnamon = c, gray = g, orange = o,

pink = p, red = e, white = w, yellow = y

16) veil-type: partial = p, universal = u

17) veil-color: brown = n, orange = o, white = w, yellow = y

18) ring-number: none = n, one = o, two = t

19) ring-type: cobwebby = c, evanescent = e, flaring = f, large = l, none = n,

pendant = p, sheathing = s, zone = z

20) spore-print-color: black = k, brown = n, buff = b, chocolate = h, green = r,

orange = o, purple = u, white = w, yellow = y

21) population: abundant = a, clustered = c, numerous = n, scattered = s, several = v,

solitary = y

22) habitat: grasses = g, leaves = l, meadows = m, paths = p, urban = u, waste = w,

woods = d

8. Missing Attribute Values:

2480 of them (denoted by "?"), all for attribute number 11.

9. Classes:

 Edible = e

 Poisonous = p

10. Class Distribution

 Edible: 4208 (51.8%)

 Poisonous: 3916 (48.2%)

31

3.3.1.2. Iris Data Set

All information on the data set has been taken from the UCI website [16].

1. Title: Iris Plants Database

2. Source:

 Creator: R. A. Fisher

 Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)

 Donated Date: July 1988

3. Data Set Information:

This data set is one of the post popular in pattern recognition literature. The data set

contains 3 classes of 50 instances each, where each class refers to a type of iris plant.

One class is linearly separable from the other two; the latter are not linearly separable

from each other. The predicted attribute is the class of the iris plant.

4. Number of Instances: 150

5. Number of Attributes: 4

6. Attribute Characteristics: Real

7. Attribute Information:

1) Sepal length in cm

2) Sepal width in cm

3) Petal length in cm

4) Petal width in cm

8. Missing Attribute Values: None

9. Classes:

 Iris Setosa

32

 Iris Versicolour

 Iris Virginica

10. Class Distribution:

 Iris Setosa: 33.3%

 Iris Versicolour 33.3%

 Iris Virginica: 33.3%

11. Summary Statistics:

Table 2: Summary Statistics of Iris Data Set

 Min Max Mean SD Class Correlation

Sepal Length 4.3 7.9 5.84 0.83 0.7826

Sepal Width 2.0 4.4 3.05 0.43 -0.4194

Petal Length 1.0 6.9 3.76 1.76 0.9490 (high)

Petal Width 0.1 2.5 1.20 0.76 0.9565 (high)

3.3.2. Data Pre-Processing

Some data pre-processing was required in both the data sets used.

3.3.2.1. Mushroom Data Set

For the experiment, the data instances with missing values were removed. A subset

of the remaining dataset containing 5000 data instances was used for testing the classifier.

1. Number of Instances: 5000

2. Class Distribution:

 Edible: 3397 (67.94%)

 Poisonous: 1603 (32.06%)

33

3.3.2.2. Iris Data Set

Since the classifier is built for categorical data, the real data in this data set has been

integerized to fit the classifier design.

3.3.3. Experiments

Two different experiments were done using both the data sets to test the accuracy of

the naïve Bayes classifier.

3.3.3.1. Experiment 1: Accuracy Using K = 50 in K-Fold Cross Validation

In the first experiment, the classifier was tested using the k-fold cross validation

method. The value of k was input as 50. For each of the 50 runs, the accuracy was calculated.

Using all the accuracies obtained, the average accuracy and the standard deviation was

calculated.

For the mushroom data set, each run had 4900 data instances in the training set and

100 instances in the test set.

The iris data set had 147 instances in the training set and 3 instances in the training

set for each of the runs.

Table 3: Results of Experiment 1 for Both Data Sets

 Accuracy Standard Deviation

Mushroom Data Set 100% 0

Iris Data Set 89.33% 22

34

Figure 12: Accuracy of Classifier Using K-Fold Cross Validation (Mushroom Data Set)

Figure 13: Accuracy of Classifier Using K-Fold Cross Validation (Iris Data Set)

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 21 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Mushroom Data Set

Mushroom Data Set

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 21 33 35 37 39 41 43 45 47 49

A
cc

u
ra

cy

Iris Data Set

Iris Data Set

35

3.3.3.1.1. Results

From the accuracies obtained from the classifier, listed in Table 3, it is seen that the

accuracy for the mushroom data set is consistent at 100% for all 50 runs. On the other hand,

for the iris data set the average accuracy is calculated at 89.33% with a standard deviation of

22. The accuracies for this data set were varying from 0% to 100% with more than half of

them above the 60% mark. It can be seen that the results of the mushroom data set are much

better than that of the iris set. The better accuracy for the mushroom data set can be attributed

to the following:

1. A large data set: The mushroom data set had 5000 instances compared to 150 in the

iris data set.

2. Larger number of attributes: The mushroom data set had 22 attributes whereas the

iris data set has 4.

3.3.3.2. Experiment 2: Accuracy for All Cross Validation Methods

Both the data sets were run through the classifier using all three cross validation

methods and the accuracies were calculated. The same number of instances as in Experiment

1 were used for this experiment as well.

Table 4: Results of Experiment 2 for Both Data Sets

 Holdout K-Fold Leave-One-Out

Mushroom Data Set 99.8% 100% 100%

Iris Data Set 92% 89.33% 90%

36

Figure 14: Accuracy of Classifier Using Different Cross Validation Methods

Holdout Cross Validation: The mushroom data set had 2500 instances in the

training set and 2500 instances in the test set. The accuracy obtained was 99.8%. The iris

data set had 75 instances in the training set and 75 instances in the test set. The accuracy

obtained was 92%.

K-Fold Cross Validation: This is the same as Experiment 1 where the accuracy of

the mushroom data set was 100% and that of the iris data set was 89.33%. For the mushroom

data set, each run had 4900 data instances in the training set and 100 instances in the test set.

The iris data set had 147 instances in the training set and 3 instances in the training set for

each of the runs.

Leave-One-Out Cross Validation: In each run, the mushroom data set had 4900

instances in the training set and 1 instance in the test set. The accuracy obtained was 100%.

82

84

86

88

90

92

94

96

98

100

102

Holdout K-Fold Leave-One-Out

A
cc

u
ra

cy

Accuracy of Classifier using Different Cross Validation
Methods

Mushroom Data Set Iris Data Set

37

The iris data set had 149 instances in the training set and 1 instance in the test set in each run.

The accuracy of the classifier was 90%.

3.3.3.2.1. Results

1. Mushroom data set: The accuracies obtained for this data set using all three cross

validation methods were all very good. The lowest was 99.8% using holdout method.

This shows that a larger training set can give higher accuracy.

2. Iris data set: The accuracies obtained using the three cross validation methods were

around the 90% mark. The highest accuracy of 92% was obtained from the holdout

method. This is contrary to other results where larger training sets generated higher

accuracies. This behavior could have been caused by the distribution of classes in the

training set and the test set.

3. From the results obtained from the two data sets it can be observed that this naïve

Bayes classifier has better accuracy with larger data sets and larger number of

attributes. The accuracies on the mushroom data set averages close to 100% and that

of the iris data set averages around 90%.

3.4. Comparison with Other Algorithms

The two data sets, mushroom data set and iris data set, used to test the classifier in

this paper have been used in several other papers to test different classification algorithms.

In this section we will compare our results with results from some of the other papers to

compare the accuracy obtained.

The accuracy of the developed naïve Bayes classifier was compared with the

accuracies from the following algorithms: J48 unpruned tree algorithm [17], CBA [18], C4.5

[19], DeEP [20], and multi layer feed forward neural network [21].

38

Table 5: Description of Algorithms Used in Comparison

Algorithm Description

C4.5

An algorithm based on the ID3 algorithm that tries to

find simple decision trees [19]. The algorithm is

based on certain premises described below:

 The tree is a leaf labelled with a class if all

cases are that same class

 For each attribute, the potential information

and the gain are calculated from a test on the

attribute.

 Find the best attribute to branch on depending

on the current selection.

J48 unpruned tree algorithm A version of the C4.5 algorithm employing two

pruning methods.

 Subtree replacement – nodes in a decision tree

may be replaced by a leaf reducing the number

of tests along a certain path

 Subtree raising – a node may be moved

upwards towards the root of a decision tree

replacing other nodes along the way

Classification Based on

Associations (CBA)

An integration of classification rule mining and

association rule mining. It consists of two parts: rule

generator for finding association rules and the

classifier builder.

Decisions through Emerging

Patterns (DeEP)

An instance based classifier which makes decisions

through emerging patters defined as itemsets whose

frequencies change significantly from one class to

another. [20]

Multi layer feed forward neural

network

Feed forward neural network consisting of

intermediary layers called hidden layers that perform

intermediary computations before directing the input

to the output layer. [21]

The results of the comparisons are summarized in Table 6. For each of the algorithms

the tables lists the maximum accuracies obtained from experiments.

39

Table 6: Comparison of Accuracies from Different Algorithms

 C4.5 J48 CBA DeEP NN NB

Mushroom Data set - 100% - 100% - 100%

Iris Data Set 95.3% - 92.9% 96% 96.66% 92%

From Table 6 it can be seen that for the mushroom data set the accuracies from

different algorithms are all 100%. The iris data set showed satisfactory accuracy with all

algorithms. It can be seen that the accuracies from C4.5, DeEP, and the multi layer feed

forward neural network are higher than the accuracy from the naïve Bayes classifier

developed in this paper.

Table 6 also shows that the accuracy of the developed naïve Bayes classifier is very

comparable to other sophisticated algorithms described in Table 5.

40

4. CONCLUSION

In this paper, we designed and developed a naïve Bayes classifier that was

generalized to read any data set with categorical data and a prescribed structure in the input

excel file. The classifier was tested using two different data sets from the UCI machine

learning repository. Two experiments were carried out using different cross validation

methods to calculate the accuracy of the classifier. The results were used to make some

observations about the classifier.

For the mushroom data set, with 5000 data instances and 22 attributes, the accuracy

obtained was close to 100% for all experiments performed. The iris data set, which has 150

data instances and 4 attributes, had accuracies from all experiments closer to 90%. From

the results obtained it was observed that the classifier performed better on the mushroom

data set, which is a larger data set and has a larger number of attributes. The attributes in

both the data sets were independent of each other. Since the accuracies for both data sets

were above 90%, we can say that the naïve Bayes classifier has satisfactory results even

with the independence assumption.

From the comparisons in section 3.4, it can be seen that the accuracy of the

mushroom data set is good for most algorithms. On the other hand, the iris data set had

better accuracy from almost all other algorithms than the naïve Bayes classifier. The lower

accuracy could be because of the fact that the values of the features in the iris data set were

converted to integers to work with the built classifier.

It can be observed from this paper, that the results of the naïve Bayes classifier

closely competes with that of other sophisticated classifiers.

41

5. REFERENCES

[1] S. B. Kotsiantis, "Supervised Machine Learning: A Review of Classification," 2007.

[2] P. Langley, W. Iba and K. Thompson, "An analysis of Bayesian Classifiers.," in

Proceedings of the Tenth National Conference on Artificial Intelligence, San Jose, CA,

1992.

[3] S. M. Kamruzzaman, "Text Classification using Artificial Intelligence," Journal of

Electrical Engineering, Vols. EE 33, No. I & II, December 2006.

[4] N. Friedman, D. Geiger and M. Goldszmidt, "Bayesian Network Classifiers.," Machine

Learning, vol. 29, pp. 131-163, 1997.

[5] I. Rish, "An empirical study of the naive Bayes classifier," IJCAI 2001 Workshop on

Empirical Methods in Artificial Intelligence, vol. 22, pp. 41-46, 2001.

[6] D. Grossman and P. Domingos, "Learning Bayesian network classifiers by maximizing

conditional likelihood," in Proceedings of the twenty-first international conference on

Machine learning, Banff, Cananda, 2004.

[7] T. O. Ayodele, "Types of Machine Learning Algorithms," in New Advances in Machine

Learning, Y. Zhang, Ed., InTech, 2010.

[8] F. Woergoetter and B. Porr, "Reinforcement learning," Scholarpedia, vol. 3, p. 1448,

2008.

[9] S. C. Larson, "The shrinkage of the coefficient of multiple correlation.," J. Edic.

Psychol., pp. 45-55, 1931.

42

[10] F. Mosteller and J. W. Tukey, "Data analysis, including statistics.," in Handbook of

Social Psychology, Vol., Addison-Wesley, 1968.

[11] S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection,"

in Statistics Surveys, vol. 4, 2010, pp. 40-79.

[12] P. Rafaeilzadeh, L. Tang and H. Liu, "Cross Validation," Encyclopedia of Database

Systems, 2009.

[13] R. O. Duda and P. E. Hart, Pattern classification and scene analysis, John Wiley and

Sons, 1973.

[14] "EPPlus - Create Advanced Excel 2007 Spreadsheets on the Server," [Online].

Available: http://epplus.codeplex.com/.

[15] "UCI Machine Learning Repository: Mushroom dataset," [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Mushroom. [Accessed 13 March 2013].

[16] "UCI Machine Learning Repository: Iris Data Set," [Online]. Available:

http://archive.ics.uci.edu/ml/datasets/Iris. [Accessed 16 April 2013].

[17] C. Eusebi, C. Gliga, D. John and A. Maisonave, "Data Mining on a Mushroom

Database," in Proceedings of Student-Faculty Research Day, CSIS, Pace University,

2008.

[18] B. Liu, W. Hsu and Y. Ma, "Integrating classification and association rule mining," in

Proceedings of the Fourth International Conference on Knowledge Discovery in

Databases and Data Mining, New York, USA, 1998.

[19] J. R. Quinlan, C4.5: Programs for machine learning, Morgan Kaufmann Publishers

Inc., 1993.

43

[20] J. Li, G. Dong and K. Ramamohanarao, "Instance-Based Classification by Emerging

Patterns," in Proceedings of the Fourth European Conference on Principles and

Practice of Knowledge Discovery in Databases, 2000.

[21] M. Swain, S. K. Dash, S. Dash and A. Mohapatra, "An Approach for Iris Plant

Classification using Neural Network," International Journal on Soft Computing, vol.

3, no. 1, February 2012.

