
IMAGE CORRECTION USING REED MULLER CODE

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Siva Krishna Ginjupalli

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

June 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Image Correction using Reed Muller Code

 By

Siva Krishna Ginjupalli

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Kendall Nygard

 Chair

Dr. Simone Ludwig

Dr. Luis Del Rio Mendoza

 Approved:

 7/1/2013 Dr. Brian Slator

 Date Department Chair

iii

ABSTRACT

Image signal processing is one of the important aspects while communicating from long

distances. Background noise of images is one of the primary concerns in obtaining clear accurate

images. This problem is further amplified if the spacecraft transmitting images are farther away

from the earth’s orbit. The larger the distance of the transmitter from the earth the greater is the

problem of background noise.

In order to overcome this problem, the image information obtained is reconstructed using

error-correcting codes. In my paper I have used the Hadamard matrices to generate a 32x32

matrix consisting of binary digits with each row representing a number between 0-31, the first

row represents the number 0 and the 32
nd

 row represents the number 31. The results proved that

the error correction approach employed in this paper is very accurate when the number of errors

in each row is less than 8.

iv

ACKNOWLEDGEMENTS

 I would take this opportunity to thank my advisor, Dr. Kendall Nygard, who has given

me valuable support, encouragement and advice without which this work would not have

been completed. I am thankful to the members of the committee, Dr. Simone Ludwig and

Dr. Luis del Rio for their support. I would also like to thank my parents for their valuable

support and constant encouragement.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

2. LITERATURE OVERVIEW .. 3

2.1. Error-correcting codes ... 3

2.2. Reed Muller error-correcting codes ... 3

2.3. Hadamard matrices .. 4

2.4. Optical communication over RM codes .. 5

2.5. Image construction using Reed Muller .. 6

2.6. Multiple bit error correction ... 6

3. METHODOLOGY ... 8

3.1. Solution proposed .. 8

3.2. Implementation .. 11

3.3. Coding platform and techniques used .. 14

3.4. Pseudo code for the function which is inducing the errors .. 15

3.5. Pseudo code for the entire application ... 16

vi

4. RESULTS ... 17

4.1. Experiment one .. 18

4.2. Experiment two .. 20

4.3. Experiment three .. 22

4.4. Experiment four ... 24

4.5. Experiment five .. 26

4.6. Experiment six ... 28

4.7. Experiment seven ... 31

4.8. Experiment eight .. 34

5. CONCLUSION AND FUTURE WORK ... 37

REFERENCES ... 38

vii

LIST OF TABLES

Table Page

1. Data transmitted and recovered for PIXEL 1 ... 18

2. Data transmitted and recovered for PIXEL 2 ... 19

3. Data transmitted and recovered for PIXEL 1 ... 20

4. Data transmitted and recovered for PIXEL 2 ... 21

5. Data transmitted and recovered for PIXEL 1 ... 22

6. Data transmitted and recovered for PIXEL 2 ... 23

7. Data transmitted and recovered for PIXEL 11 ... 24

8. Data transmitted and recovered for PIXEL 18 ... 25

9. Data transmitted and recovered for PIXEL 1 ... 27

10. Data transmitted and recovered for PIXEL 2 ... 28

11. Data transmitted and recovered for PIXEL 1 ... 30

12. Data transmitted and recovered for PIXEL 2 ... 31

13. Data transmitted and recovered for PIXEL 1 ... 33

14. Data transmitted and recovered for PIXEL 2 ... 34

15. Data transmitted and recovered for PIXEL 1 ... 35

16. Data transmitted and recovered for PIXEL 2 ... 36

viii

LIST OF FIGURES

Figure Page

1. Window for selecting the image ... 12

2. Flowchart explaining the application process ... 13

3. Image used for the experiments .. 17

4. Generated output image with 3 error bits ... 19

5. Generated output image with 5 error bits ... 21

6. Generated Output image with 7 error bits ... 23

7. Generated output image with 8 error bits ... 25

8. Original image used .. 26

9. Generated output image with 15 error bits ... 27

10. Original image used .. 29

11. Generated output image with 20 error bits ... 30

12. Original image used .. 32

13. Generated output image with 25 error bits ... 33

14. Generated output image with random error bits between 0-7 ... 35

file:///C:/Users/pavan.chevuri/Downloads/Image%20correction%20using%20Reed%20Muller%20Code_FirstReview.docx%23_Toc361928435

1

1. INTRODUCTION

Wireless data transmission has become an essential part of many applications. It can be

of any type for how we transmit using the devices available. Some of the communicating devices

are a wireless internet connection, cell phone conversation, radio broadcast, or some military

application. The need for data to be decoded error-free across a wireless medium is vital. The

maximum capacity of any given channel is determined by Shannon’s limit. This limit expresses

the error free transmission rate for any channel given a specific signal-to-noise ratio (SNR) and

channel bandwidth developed by Claude Shannon [1]. A communication between two channels

is to connect the geographical locations to transmit the data among these channels and to know

the locations of each state. The transmission of a signal can be varies based on each state of the

signal received and external factors can also affect the transmission of the signal based on the

noise that has been induced.

When a message is transmitted, it has the potential to get scrambled by noise. This is

certainly true in case of digital messages where the transmission is done through the sequence of

binary bits 0s and 1s. During transmission the signals get distorted resulting in a change in the

order the bits are transmitted or the bits could be replaced with newer ones at the receiving

station. The process of encoding the transmitted bits to get the original set of transmitted bits

based on the accuracy is called the error correction [10].

In this paper we discuss how Reed Muller error correcting codes can be used in

constructing an image when an image is transferred from one station to another. NASA has done

a lot of research to get information about the environment in surrounding planets and the

existence of livable conditions for the humans. In this paper the implementation of an error

2

correcting mechanism for data transmitted from the outer space is evaluated. In this paper I

worked on building a software application that will accept an image, I will add noise to a signal

by introducing some errors in that image’s digital representation and then recover the original

image from the bad data., So the main objective is to be able to recover that image from the bad

data and also make some observations like how much noise is acceptable. I also conducted some

experiments in which the correcting software was used to retrieve the same image after it was

altered by inserting varying number of errors.

When some data is transmitted to the Earth it is possible that the signal can get garbled.

When the data reaches its destination there is a good chance it could be confused with

background noise, resulting in an erroneous recording of the data observed in the space.

The Reed-Muller Error-Correcting Code is a technique used to remove errors that were induced

in the digital imaged while they were transmitted from the outer space. The experiments in this

paper consider that the data to be transmitted from the outer space is digital images.

 In this paper we explain the process of how the images are transmitted from the space

station to the earth receiving station. Different results were conducted for how the errors were

induced and for each case the program randomly induces the error in to the transmitting bits

which can be imagined as a scrambled image.

3

2. LITERATURE OVERVIEW

2.1. Error-correcting codes

In this paper [5] the author describes the use of different error correcting codes. Error

correcting codes are used to protect the digital data against the transmission of errors. Linear

codes, where a message can be transferred in the string format of bits 0s and 1s and due to noise

the probability(p) of receiving the error bit would be p=1/100 of that channel as explained by the

author. This is called a binary symmetric channel. Golay code can be used to construct non-

linear error correcting codes in the vector format. Some interesting properties of Golay Code are

Cyclic Invariance, Inversion, Minimum Hamming distance and Error Correction. The Golay

code [4] is obviously not able to encode a large amount of data in one code word as it needs to

transmit a large amount of check bits as data bits. It could be used in even the smallest

microcontrollers, such as the PIC series and 68HC05.

2.2. Reed Muller error-correcting codes

The author Ben Cooke [3] clearly describes the use of the Reed Muller codes. These are

some of the oldest error correcting codes. Error correcting codes are very useful in sending

information over long distances or through channels where errors might occur in the message.

This came in to popular by self- correcting the codes when a message is transmitted. Reed

Muller codes were invented in 1954 by D. E. Muller and I. S. Reed. In 1972, a Reed Muller code

was used by Mariner 9 to transmit black and white photographs of Mars. Reed Muller codes are

relatively easy to decode, and first-order codes are especially efficient. Encoding and Decoding

can be done for better transmission of the signal without the noise. Decoding Reed Muller

encoded messages is more complex than encoding them. Encoding and decoding of the messages

is based on the distance between vectors. The distance between any two vectors is the number of

4

places in the two vectors that have different values. The distance between any two codewords in

R(r, m) code is 2
m-r

 where m is any positive integer between {0, 1} and r is the r
th

 order of Reed

Muller Code.

In this paper [2] the author describes about some interesting properties and some among

them are; these codes form an infinite family of codes, and they can be constructed as larger

Reed-Muller codes from the smaller ones. This particular observation leads us to show that

Reed-Muller codes can be defined recursively. The drawback while constructing the larger ones

are they become weaker as their length increases. However, they are often used as building

blocks in other codes. One of the major advantages of Reed-Muller codes is their relative

simplicity to encode messages and decode received transmissions. We examine encoding using

generator matrices and decoding using one form of a process known as majority logic.

The r
th

 order Reed Muller code, denoted R(r, m), is the set of all polynomials of degree at

most r in the ring Rm. Different set of vectors can be used for the representation of the matrices.

Some of them can be constructed by the addition, complement or by multiplication of them.

Vectors can be associated with Boolean polynomials. A Boolean polynomial is a linear

combination of Boolean monomials with coefficients {0, 1}.

2.3. Hadamard matrices

A Hadamard matrix H of order n is an n × n matrix of 1s and -1s in which HH
T
 = nIn. (In

is the n×n identify matrix). In this paper [6] the author describes the concept of a Hadamard

matrix as a binary orthogonal matrix is extended to higher dimensions. An n-dimensional

Hadamard matrix [h_{ijk cdots n}] is defined as one in which all parallel (n - 1) dimensional

layers, in any axis-normal orientation, are uncorrelated. The n-dimensional Hadamard matrices

can be defined in a special way where above all two-dimensional layers, in all axis-normal

5

orientations, are Hadamard matrices, and as a consequence that all the intermediate-dimensional

layers can be the same Hadamard matrices. Different procedures are described for deriving three-

and four-dimensional Hadamard matrices of varying propriety from two-dimensional Hadamard

matrices. A formula is given for a fully proper n-dimensional matrix of order two, which can be

expanded by direct multiplication to yield proper(2^{t})^{n}Hadamard matrices. It is suggested

that proper higher dimensional Hadamard matrices may find application in error-correcting

cedes, where their hierarchy of orthogonalites permit a variety of checking procedures. Other

types of Hadamard matrices may be of use in security codes on the basis of their resemblance to

random binary matrices.

2.4. Optical communication over RM codes

The author [7] considers the GLDPC (Generalized low-density parity check) codes with

RM (Reed-Muller) and BCH (Bose-Chaudhuri-Hocquenghem) codes as the component codes

and he also said the combination of GLDPC codes with RM codes as component codes is the

best option for high speed optical transmission. The GLDPC codes gained high importance for

optical communication by improving the characteristics of LDPC codes by decreasing the

complexity of the decoder. Replacing the parity check equations in a parity-check matrix of

GLDPC code by a linear block code is achieved. Replacing this parity check is known as the

constituent code and this construction is proposed by Lentmaier and Zigangirov. An interesting

property of RM codes is that they can be defined recursively and if that can be applied

successively several times, then it can be decomposed in to several parity check codes. With all

these the complexity of GLDPC codes with RM component codes is of order N log2 n. The

author also provides the simulation results which prove the GLDPC codes along BCH and RM

component codes are possible options for high-speed optical transmission.

6

2.5. Image construction using Reed Muller

In this paper [8] the author explains how he utilized the use of Reed Muller Sequences for

reconstruction of the 1D image by compressing sensing and this way has the loss in speed and

accuracy when the degree of sparsity is not high. The solution that the author has proposed is

based on the knowledge of the Fourier analysis that the energy of the wavelet coefficients is

concentrated in the upper-left region to detect the large portions of locations in one step. The

results that were produces by doing this experiment were each image was sparsified by

computing to get the original image by taking 25% of the noiselet measurements of RM

measurements. A image reconstruction algorithm has been proposed for the compressing sensing

of the images where this algorithm provides improved construction in terms of error and

computational efficiency. An updated least squares method has been used to get the increase in

computational efficiency and stability.

2.6. Multiple bit error correction

In this paper [9], the author explores the use of Reed Muller codes in memory interface

applications to address the multiple-bit soft errors. The author also explains the construct and

decoding a simple RM code and these codes has multiple bit error correction capability with

relatively low latency and high performance. The paper also explains the design of the encoder

and decoder where the encoder takes a 16-bit message and encodes in to 32-bit code word based

on the RM code input matrix multiplication. In the error mode a bit was introduced for the

functionality and during this phase the bits were reversed where the 1 becomes 0 or vice versa.

The decoder has three stages where each stage can increase the performance. The major

components were orthogonal checksum Generator (OCG) and Majority Logic Decoder (MLD).

7

The codes can be concatenated to get the message width. For single-data rate or double-data rate

applications the external memory interface can be adjusted with the width of the message.

8

3. METHODOLOGY

In this chapter the approach employed to convert the image into an array of numbers,

inducing errors and then recovering the image from the bad data is explained. I included

screenshots for the user interface of the software application I built. I also explained about the

coding platforms and techniques I used to build this software application.

3.1. Solution proposed

The standard practice in computer graphics is to assume that each picture is composed of

pixels. In The Reed-Muller Error-Correcting technique I used the fact that each pixel can be

represented by 3 numbers, they are its R quotient, G quotient and B quotient. I used Bitmap class

from .net libraries to extract these numbers, the range for these RGB numbers is 0-255.

So when an individual pixel, encoded in a bit pattern of 0s and 1s reaches the receiving

station, its original form, say

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

It might have changed to

0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0

where in this illustration seven bit-change errors have occurred in the message. Since, 2**5 =

32, one might think that 5 bits of information would suffice to represent 32 numbers. Yet the

string displayed above has 32 bits, not 5. It is part of a code designed to make errors correctable.

The code used by Mariner spacecraft was essentially the (32, 5) Reed-Muller code,

defined in the following discussion.

Let the matrix H1 be given by

9

1 1

1 -1

And define Hn+1 = Hn ⊗ H1, where ⊗ denotes the Cartesian product of matrices in which we

replace each + 1 entry of Hn by H1 and each -1 entry by - H1. These equations define what are

called Hadamard matrices. The Mariner telemetry code consists of the rows of a matrix

M5 obtained by replacing 1 by 0 and -1 by 1 in Hn and turning the matrix on its side. The matrix

can then be displayed as a 32 X 32 square grid. The 32 X 32 matrix generated with 0s and1s is

shown below.

 [0, 0

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1

 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0

 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1

 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0

 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1

 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0

 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0

 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0

 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1

10

 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1

 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0

 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1

 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0

 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1

 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0

 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1

 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1

 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1

 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0

 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0

 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1]

The rows represent the 32 possible code words to be transmitted by the Mariner

spacecraft, and they have a very interesting property: any two of them differ in exactly 16

places. For example, if we compare the second and third rows, we find that in the following

positions one row has a 0 while the other has a 1, or vice versa.

2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31

11

When a new 32-bit code word is received, it is compared to the rows of the matrix and

the row it most closely resembles is selected as the word transmitted. For example, if there has

been only one error in a word, it will differ from one of the rows of M in only one digit and will

not be mistaken for any other row. If two errors have occurred, the same thing is still true. Up to

seven errors may occur with no danger of confusion about which word was transmitted by the

spacecraft.

But if eight errors have occurred, then the received word may differ as much from some

other row of the matrix as from the intended row. This is due to the fact that those two rows

differ in only 16 places, and the eight errors might have resulted in a word which is just as

"close" to an incorrect row as to the correct one.

The number of places in which two binary words or vectors differ is called the Hamming

distance between them (named for the famous scientist Richard Hamming, who was a founder of

the Association for Computing Machinery). In general, a set of code words which are all

mutually at Hamming distance d or more enables users to detect and correct up to (d - 1)/2

errors.

When the transmission of a pixel is done, the pattern for an entire row is transmitted to

represent one of the 32 possible levels of grayscale. At the ground station, each received word is

easily matched against the rows of the matrix and the row with the smallest Hamming distance

best match is selected.

3.2. Implementation

I created a WPF application and when we run this application it will open a window

which will let us choose an image, and then we can click on the "Generate Output Image" button

12

and then my application will go through each pixel and gets it RGB (RED, GREEN and BLUE)

values.

 Figure 1. Window for selecting the image

An image is just a collection of pixels grouped together, each pixel has a color and every

color can be represented using three numbers they are its RED quotient, GREEN quotient and

BLUE quotients. These RGB numbers vary from 0 - 255 so I extract these RGB values for each

pixel and put them in an array. Now since the 32 X 32 Hadamard matrix only has 32 rows we

can only transmit numbers from 0-31 whereas the numbers we have are in the range 0-255. So

for my experiments sake I took an image whose colors are limited so that its RGB numbers are

between 0-31. And then I extract all these RGB numbers from the image and load them into an

array. Let’s call this array as X; in real scenario (The image transmission from outer space) the

requirement is to transmit this array to the earth. I am then creating a new array Y and in this

array I am loading the rows of the Hadamard Matrix the numbers in array X represent.

13

Start

The user will run the application and clicks

on Generate Image

Extract RGB numbers from each pixel

Divide all those numbers by 8 to make

them fall between the range 0-31

Take the corresponding rows from 32 X 32

matrix those numbers

Induce errors into those rows (flip the bits

from 0 to 1 and 1 to 0’s)

Compare this bad data with the 32 X 32

Matrix and recover the numbers

C

Figure 2. Flowchart explaining the application process

14

Figure 2. Flowchart explaining the application process (continued)

So now I have array Y and each element in it contains 32 bits of 0s and 1s but at this

point the data is perfect and during its journey from outer space to earth some bits will be

corrupted. So in order to replicate this I am looping through each element of array Y and

inducing up to 7 errors to it and inserting the new bad data into a new array Z. Now in real

scenario the data in array Z is what the earth receives and we have to construct an image using it.

Now I am looping through each element of array Z (each element of array Z in turn contains 32

bits of 0s and 1s) and comparing it with each row in the 32 X 32 Hadamard matrix and

determining which row this element is closest to and I am inserting its row number into another

array P and from the resultant RGB values I am reconstructing the image. I also did different

experiments like inducing more than 8 errors and others which will be discussed in the results

section.

3.3. Coding platform and techniques used

 I used WPF windows forms to build the front end user interface which lets the user pick

the image he wants to test this Reed Mueller Error correction code technique, also allows the

Reconstruct the image from those numbers

C

Stop

15

user to select the number of errors. The back end code is done using the programming language

c#. So when the user selects and image and clicks on the button “Apply error correction” I am

creating an object for the bitmap class and then using that object to find out the RGB values at

each pixel and I am storing them in an array. I then load the rows from the 32 X 32 matrix these

numbers represent into a new array. At this point a function is called which will induce errors

into the data we have, this function will accept the array holding the 32 X 32 matrix rows and

number of errors we want to insert in each row, this function is also capable of choosing the

number of errors randomly. I then compare this bad data with the 32 X 32 matrix to determine

which row is closest to the bad data and load the row numbers into a new array and use the same

bitmap object to reconstruct the image from these numbers.

3.4. Pseudo code for the function which is inducing the errors

Call the function which induces the errors and pass it the array (let’s say A) holding the

32 bit elements and also feed it the number of errors X we want to introduce

Create a new array B and insert numbers 0 - 31 into it

For each row A

 Shuffle array B randomly

 Take first X elements from the array

 For i = 0 to X

 If A [B[X]] = 0 then A [B[X]] = 1 else A [B[X]] = 0

 End For

End For

16

3.5. Pseudo code for the entire application

Get the image from the user

Extract RGB values for each pixel and put them in an array A

Insert their corresponding 32 X 32 matrix rows into array B

Induce errors in each row

Go through each row, compare it with the 32 X 32 matrix calculate the hamming distances

Identify input data and insert it into array C

Reconstruct the image from the numbers in array C

17

4. RESULTS

I conducted different experiments by varying the number of errors induced into the

original data. Once the error bits are induced the application will compare the erroneous data

against the 32x32 Hadamard matrix to fix the bad data. The time taken to generate the output

image will vary on the image size and the pixel density, the more the number of pixels the more

time it requires to fix data. In all these experiments I included a table in which we can see the

good data and the data after errors are induced. All the experiments were conducted on a single

image and we recorded the bits that were changed during this process. The process works well

when the number of errors in each row is less than or equal to 7. We also ran some tests to see

what happens if the number of errors in each row is more than 7 and the output image that it

produced is blurry and the numbers recovered after the processing is done is not same as the

original and that is because this approach works well only when the number of errors in each row

is less than equal to 7. I’m using the Figure 3 for the experiments 1 to7.

Figure 3. Image used for the experiments

18

4.1. Experiment one

In this experiment, we induced 3 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 4 and the table showing the first few rows of good and bad data is shown in Table 1

and Table 2. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8. The output image and the values in the table

show that the image is accurate.

Table 1. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

00101111000001110000111100001110 -

01010110011001100110011001100100 -

00101000000100000000000000000000 -

Corrected Data Displayed -

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

19

Figure 4. Generated output image with 3 error bits

Table 2. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

00011100011111001100001011000011 -

01111010010110101010010110111101 -

01110101010101001010001010101010 -

Corrected Data Displayed -

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

20

4.2. Experiment two

In this experiment, we induced 5 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 5 and the table showing the first few rows of good and bad data is shown in Table 3

and Table 4. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8. The output image and the values in the table

show that the image is accurate.

Table 3. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

00001110000011100000101100011011 -

01000110011010100110010101100110 -

00000010000000100010010000100000 -

Corrected Data Displayed -

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

21

Figure 5. Generated output image with 5 error bits

Table 4. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

00111100001110001100101110001001 -

00011010010010101110010110000100 -

01010101011101000010101001101010 -

Corrected Data Displayed -

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

22

4.3. Experiment three

In this experiment, we induced 7 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 6 and the table showing the first few rows of good and bad data is shown in Table 5

and Table 6. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8. The output image and the values in the table

show that the image is accurate

Table 5. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

00101110000110111000011110001111 -

01101111001001100110011101010100 -

00100000000100100010100001010000 -

Corrected Data Displayed -

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

23

Figure 6. Generated Output image with 7 error bits

Table 6. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

00010001011111001100010111000011 -

01011010000010111010110100110001 -

00111100011001011010101010001010 -

Corrected Data Displayed -

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

24

4.4. Experiment four

In this experiment, we induced 8 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 7 and the table showing the first few rows of good and bad data is shown in Table 7

and Table 8. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8. The output image and the values in the table

show that the image is accurate.

Table 7. Data transmitted and recovered for PIXEL 11

Data Transmitted Row #

01011010101001010101101010100101 13

01100110011001101001100110011001 19

00110011001100111100110011001100 18

Data Received -

01011010011001010111000011001101 -

01100110100111100001010110011001 -

00111001001010111101100111001000 -

Corrected Data Displayed -

01011010101001010101101010100101 13

01100110100110010110011010011001 11

00110011001100111100110011001100 18

25

Figure 7. Generated output image with 8 error bits

Table 8. Data transmitted and recovered for PIXEL 18

Data Transmitted Row #

01010101101010101010101001010101 25

00111100001111001100001111000011 22

01011010010110101010010110100101 21

Data Received -

01010101001010111111100001110000 -

00111100101101001010100101000001 -

00000010011100101000100110100101 -

Corrected Data Displayed -

00001111000011111111000011110000 20

00111100001111001100001111000011 22

01011010010110101010010110100101 21

26

4.5. Experiment five

In this experiment, we induced 15 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the table showing the first few

rows of good and bad data is shown in Table 9 and Table 10. I am doing these experiments to

show that this approach is working perfectly when the number of errors in each row is less than 8

and when the number of errors in each row is more than 8 we are not able to recover every

number perfectly and hence the image is getting blurred. The output image and the values in the

table show that the image is not accurate. The number that recovered is not the actual number

that needs to be recovered. The original image and the recovered image are shown below and the

differences are highlighted in recovered image and compared in Figures 8 and Figure 9.

Figure 8. Original image used

27

Table 9. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

10101111000101100111110000110010 -

10001001001000001111000001100100 -

01100001100110000111100010110101 -

Corrected Data Displayed -

00111100001111000011110000111100 6

00000000000000000000000000000000 0

01101001100101100110100110010110 15

Figure 9. Generated output image with 15 error bits

28

Table 10. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

10101001001010100001010110001001 -

10110011111010111010100100010001 -

11100011010011110111101101100010 -

Corrected Data Displayed -

01010101101010100101010110101010 9

00110011001100110011001100110011 2

01100110011001100110011001100110 3

4.6. Experiment six

In this experiment, we induced 20 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 11 and the table showing the first few rows of good and bad data is shown in Table 11

and Table 12. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8 and when the number of errors in each row is

more than 8 we are not able to recover every number perfectly and hence the image is getting

29

blurred. The output image and the values in the table show that the image is not accurate. The

number that recovered is not the actual number that needs to be recovered. The original image

and the recovered image are shown below and the differences are highlighted in recovered image

and compared in Figures 10 and Figure 11.

Figure 10. Original image used

30

Figure 11. Generated output image with 20 error bits

Table 11. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

11110001011000110110110001110101 -

10011000101101001010101000011010 -

10111110000011111101101100110101 -

Corrected Data Displayed -

01101001011010010110100101101001 7

00001111111100001111000000001111 29

01011010101001011010010101011010 30

31

Table 12. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

11001011001001111111111011111001 -

10110100101110011000101010000010 -

11111000100000101101111111011011 -

Corrected Data Displayed -

00001111000011111111000011110000 20

00111100001111001100001111000011 22

00000000000000001111111111111111 16

4.7. Experiment seven

In this experiment, we induced 25 errors in each row of the input data and then the

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the

original data that was meant to be transmitted. In this scenario the reconstructed image is shown

in Figure 13 and the table showing the first few rows of good and bad data is shown in Table 13

and Table 14. I am doing these experiments to show that this approach is working perfectly when

the number of errors in each row is less than 8 and when the number of errors in each row is

more than 8 we are not able to recover every number perfectly and hence the image is getting

32

blurred. The output image and the values in the table show that the image is not accurate. The

number that recovered is not the actual number that needs to be recovered. The original image

and the recovered image are shown below and the differences are highlighted in recovered image

and compared in Figures 12 and Figure 13.

Figure 12. Original image used

33

Figure 13. Generated output image with 25 error bits

Table 13. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

11110000011010100110000001110000 -

00110011100110011001110110011100 -

11111111110111110000111011110111 -

Corrected Data Displayed -

01100110011001100110011001100110 3

00110011001100111100110011001100 18

00001111000011110000111100001111 4

34

Table 14. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

01000001110001010011010000001100 -

10101100000001010101101111011000 -

10111010101001100111100101010001 -

Corrected Data Displayed -

00000000000000000000000000000000 0

00000000000000001111111111111111 16

00110011001100110011001100110011 2

4.8. Experiment eight

In this experiment, I randomly induced between 0-7 errors in each row of the input data

and then the application will compare this erroneous data with the 32 X 32 Hadamard matrix to

determine the original data that was meant to be transmitted. In this scenario the reconstructed

image is shown in Figure 14 and the table showing the first few rows of good and bad data is

shown in Table 15 and Table 16. I am doing these experiments to show that this approach is

working perfectly when the number of errors in each row is less than 8. The output image and

35

the values in the table show that the image is accurate. The number that recovered is the actual

number of what it needs to be.

Figure 14. Generated output image with random error bits between 0-7

Table 15. Data transmitted and recovered for PIXEL 1

Data Transmitted Row #

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

Data Received -

00001011000011110100111100001111 -

01100100011001100111011101100111 -

00100000101000000000101000000000 -

Corrected Data Displayed -

00001111000011110000111100001111 4

01100110011001100110011001100110 3

00000000000000000000000000000000 0

36

Table 16. Data transmitted and recovered for PIXEL 2

Data Transmitted Row #

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

Data Received -

00101101001111001100011101000011 -

01011010000110101000010110110001 -

00010101010101111010101010101010 -

Corrected Data Displayed -

00111100001111001100001111000011 22

01011010010110101010010110100101 21

01010101010101011010101010101010 17

37

5. CONCLUSION AND FUTURE WORK

In this paper, based on the experiments the application works perfectly by comparing the

erroneous data with the 32x32 matrix in order to produce the desired output if the errors are in

between 0 and 7. And when the number of errors in each row is more than 8 the results that were

produced were not very accurate but the experiments show that the image recovered is still

identifiable, the more the number of errors in each row the more blurred the image gets.

 One thing that can be done and experimented is to increase the dimension of the

Hadamard matrix to 64x64 or 256x256, by doing so we will have more rows, which means more

numbers can be transmitted and even if the numbers of errors in each row increase the new

application may do a better job in reconstructing the image than my application. One

disadvantage though would be the increase in cost as we will have to transmit more bits for each

number.

38

REFERENCES

1. Mitchell, G., (2009). Investigation of Hamming, Reed-Solomon, and Turbo Forward

Error Correcting Codes: Adelphi, MD : Army Research Laboratory

2. Raaphorst, S., (2003). Reed-Muller Codes. Carleton University.

3. Cooke, B., (1999). Reed Muller Error Correcting Codes: MIT Undergraduate Journal of

Mathematics Volume 1, MIT Department of Mathematics

http://www-math.mit.edu/phase2/UJM/vol1/COOKE7FF.PDF

4. Wallace, H., (2003). Using the Golay Error Detection and Correction Code. Retrieved

from http://www.aqdi.com/golay.htm

5. MacWilliams, F.J., & Sloane, N.J.A. (1977). The Theory of Error-correcting Codes,

North-Holland, Amsterdam: North Holland Publishing Co.

6. Shlichta, P., (1979). Higher-dimensional Hadamard matrices. IEEE Transactions on

Information Theory, Vol. 25 Issue 5, 566-572. doi:10.1109/TIT.1979.1056083

7. Djordjevic, I.B., Lei, Xu., Ting, W., & Cvijetic, M. (2008). GLDPC Codes with Reed-

Muller component codes suitable for Optical Communications, Communications Letters,

IEEE, Vol. 12 Issue 9, 684-686. doi:10.1109/LCOMM.2008.080590

8. Kangyu N., Datta S., Mahanti P., Roudenko S., & Cochran D. (2010). Using Reed-Muller

sequences as deterministic compressed sensing matrices for image reconstruction,

Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference.

Dallas, TX.

9. Tam, S., (2004). Multiple Bit error Correction. Retrieved from

http://www.xilinx.com/support/documentation/application_notes/xapp715.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp715.pdf

39

10. Schwede, K., Error detecting and Error Correcting Codes [PDF document]. Retrieved

from Lecture Notes Online Web site:

http://www.personal.psu.edu/kes32/MichiganClasses/math217/Worksheets3/eccodes.pdf

http://www.personal.psu.edu/kes32/MichiganClasses/math217/Worksheets3/eccodes.pdf

