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ABSTRACT 

Image signal processing is one of the important aspects while communicating from long 

distances. Background noise of images is one of the primary concerns in obtaining clear accurate 

images. This problem is further amplified if the spacecraft transmitting images are farther away 

from the earth’s orbit. The larger the distance of the transmitter from the earth the greater is the 

problem of background noise. 

In order to overcome this problem, the image information obtained is reconstructed using 

error-correcting codes. In my paper I have used the Hadamard matrices to generate a 32x32 

matrix consisting of binary digits with each row representing a number between 0-31, the first 

row represents the number 0 and the 32
nd

 row represents the number 31. The results proved that 

the error correction approach employed in this paper is very accurate when the number of errors 

in each row is less than 8. 
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1. INTRODUCTION 

Wireless data transmission has become an essential part of many applications. It can be 

of any type for how we transmit using the devices available. Some of the communicating devices 

are a wireless internet connection, cell phone conversation, radio broadcast, or some military 

application. The need for data to be decoded error-free across a wireless medium is vital. The 

maximum capacity of any given channel is determined by Shannon’s limit. This limit expresses 

the error free transmission rate for any channel given a specific signal-to-noise ratio (SNR) and 

channel bandwidth developed by Claude Shannon [1]. A communication between two channels 

is to connect the geographical locations to transmit the data among these channels and to know 

the locations of each state. The transmission of a signal can be varies based on each state of the 

signal received and external factors can also affect the transmission of the signal based on the 

noise that has been induced. 

When a message is transmitted, it has the potential to get scrambled by noise. This is 

certainly true in case of digital messages where the transmission is done through the sequence of 

binary bits 0s and 1s. During transmission the signals get distorted resulting in a change in the 

order the bits are transmitted or the bits could be replaced with newer ones at the receiving 

station. The process of encoding the transmitted bits to get the original set of transmitted bits 

based on the accuracy is called the error correction [10]. 

In this paper we discuss how Reed Muller error correcting codes can be used in 

constructing an image when an image is transferred from one station to another. NASA has done 

a lot of research to get information about the environment in surrounding planets and the 

existence of livable conditions for the humans. In this paper the implementation of an error 
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correcting mechanism for data transmitted from the outer space is evaluated. In this paper I 

worked on building a software application that will accept an image, I will add noise to a signal 

by introducing some errors in that image’s digital representation and then recover the original 

image from the bad data., So the main objective is to be able to recover that image from the bad 

data and also make some observations like how much noise is acceptable. I also conducted some 

experiments in which the correcting software was used to retrieve the same image after it was 

altered by inserting varying number of errors.  

When some data is transmitted to the Earth it is possible that the signal can get garbled. 

When the data reaches its destination there is a good chance it could be confused with 

background noise, resulting in an erroneous recording of the data observed in the space. 

The Reed-Muller Error-Correcting Code is a technique used to remove errors that were induced 

in the digital imaged while they were transmitted from the outer space. The experiments in this 

paper consider that the data to be transmitted from the outer space is digital images. 

 In this paper we explain the process of how the images are transmitted from the space 

station to the earth receiving station. Different results were conducted for how the errors were 

induced and for each case the program randomly induces the error in to the transmitting bits 

which can be imagined as a scrambled image.  
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2. LITERATURE OVERVIEW 

2.1. Error-correcting codes 

In this paper [5] the author describes the use of different error correcting codes. Error 

correcting codes are used to protect the digital data against the transmission of errors.  Linear 

codes, where a message can be transferred in the string format of bits  0s and 1s and due to noise 

the probability(p) of receiving the error bit would be p=1/100 of that channel as explained by the 

author. This is called a binary symmetric channel. Golay code can be used to construct non-

linear error correcting codes in the vector format. Some interesting properties of Golay Code are 

Cyclic Invariance, Inversion, Minimum Hamming distance and Error Correction. The Golay 

code [4] is obviously not able to encode a large amount of data in one code word as it needs to 

transmit a large amount of check bits as data bits. It could be used in even the smallest 

microcontrollers, such as the PIC series and 68HC05.  

2.2. Reed Muller error-correcting codes 

The author Ben Cooke [3] clearly describes the use of the Reed Muller codes. These are 

some of the oldest error correcting codes. Error correcting codes are very useful in sending 

information over long distances or through channels where errors might occur in the message. 

This came in to popular by self- correcting the codes when a message is transmitted. Reed 

Muller codes were invented in 1954 by D. E. Muller and I. S. Reed. In 1972, a Reed Muller code 

was used by Mariner 9 to transmit black and white photographs of Mars. Reed Muller codes are 

relatively easy to decode, and first-order codes are especially efficient. Encoding and Decoding 

can be done for better transmission of the signal without the noise. Decoding Reed Muller 

encoded messages is more complex than encoding them. Encoding and decoding of the messages 

is based on the distance between vectors. The distance between any two vectors is the number of 
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places in the two vectors that have different values. The distance between any two codewords in 

R(r, m) code is 2
m-r

 where m is any positive integer between {0, 1} and r is the r
th

 order of Reed 

Muller Code. 

In this paper [2] the author describes about some interesting properties and some among 

them are; these codes form an infinite family of codes, and they can be constructed as larger 

Reed-Muller codes from the smaller ones. This particular observation leads us to show that 

Reed-Muller codes can be defined recursively. The drawback while constructing the larger ones 

are they become weaker as their length increases. However, they are often used as building 

blocks in other codes. One of the major advantages of Reed-Muller codes is their relative 

simplicity to encode messages and decode received transmissions. We examine encoding using 

generator matrices and decoding using one form of a process known as majority logic.  

The r
th

 order Reed Muller code, denoted R(r, m), is the set of all polynomials of degree at 

most r in the ring Rm. Different set of vectors can be used for the representation of the matrices. 

Some of them can be constructed by the addition, complement or by multiplication of them. 

Vectors can be associated with Boolean polynomials. A Boolean polynomial is a linear 

combination of Boolean monomials with coefficients {0, 1}. 

2.3. Hadamard matrices 

A Hadamard matrix H of order n is an n × n matrix of 1s and -1s in which HH
T
 = nIn. (In 

is the n×n identify matrix). In this paper [6] the author describes the concept of a Hadamard 

matrix as a binary orthogonal matrix is extended to higher dimensions. An n-dimensional 

Hadamard matrix [h_{ijk cdots n}] is defined as one in which all parallel (n - 1) dimensional 

layers, in any axis-normal orientation, are uncorrelated.  The n-dimensional Hadamard matrices 

can be defined in a special way where above all two-dimensional layers, in all axis-normal 
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orientations, are Hadamard matrices, and as a consequence that all the  intermediate-dimensional 

layers can be the same Hadamard matrices. Different procedures are described for deriving three- 

and four-dimensional Hadamard matrices of varying propriety from two-dimensional Hadamard 

matrices. A formula is given for a fully proper n-dimensional matrix of order two, which can be 

expanded by direct multiplication to yield proper(2^{t})^{n}Hadamard matrices. It is suggested 

that proper higher dimensional Hadamard matrices may find application in error-correcting 

cedes, where their hierarchy of orthogonalites permit a variety of checking procedures. Other 

types of Hadamard matrices may be of use in security codes on the basis of their resemblance to 

random binary matrices. 

2.4. Optical communication over RM codes 

The author [7] considers the GLDPC (Generalized low-density parity check) codes with 

RM (Reed-Muller) and BCH (Bose-Chaudhuri-Hocquenghem) codes as the component codes 

and he also said the combination of GLDPC codes with RM codes as component codes is the 

best option for high speed optical transmission. The GLDPC codes gained high importance for 

optical communication by improving the characteristics of LDPC codes by decreasing the 

complexity of the decoder. Replacing the parity check equations in a parity-check matrix of 

GLDPC code by a linear block code is achieved.  Replacing this parity check is known as the 

constituent code and this construction is proposed by Lentmaier and Zigangirov. An interesting 

property of RM codes is that they can be defined recursively and if that can be applied 

successively several times, then it can be decomposed in to several parity check codes. With all 

these the complexity of GLDPC codes with RM component codes is of order N log2 n. The 

author also provides the simulation results which prove the GLDPC codes along BCH and RM 

component codes are possible options for high-speed optical transmission. 
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2.5. Image construction using Reed Muller 

In this paper [8] the author explains how he utilized the use of Reed Muller Sequences for 

reconstruction of the 1D image by compressing sensing and this way has the loss in speed and 

accuracy when the degree of sparsity is not high. The solution that the author has proposed is 

based on the knowledge of the Fourier analysis that the energy of the wavelet coefficients is 

concentrated in the upper-left region to detect the large portions of locations in one step. The 

results that were produces by doing this experiment were each image was sparsified by 

computing to get the original image by taking 25% of the noiselet measurements of RM 

measurements. A image reconstruction algorithm has been proposed for the compressing sensing 

of the images where this algorithm provides improved construction in terms of error and 

computational efficiency. An updated least squares method has been used to get the increase in 

computational efficiency and stability. 

2.6. Multiple bit error correction 

In this paper [9], the author explores the use of Reed Muller codes in memory interface 

applications to address the multiple-bit soft errors. The author also explains the construct and 

decoding a simple RM code and these codes has multiple bit error correction capability with 

relatively low latency and high performance. The paper also explains the design of the encoder 

and decoder where the encoder takes a 16-bit message and encodes in to 32-bit code word based 

on the RM code input matrix multiplication. In the error mode a bit was introduced for the 

functionality and during this phase the bits were reversed where the 1 becomes 0 or vice versa. 

The decoder has three stages where each stage can increase the performance. The major 

components were orthogonal checksum Generator (OCG) and Majority Logic Decoder (MLD). 
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The codes can be concatenated to get the message width. For single-data rate or double-data rate 

applications the external memory interface can be adjusted with the width of the message. 
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3. METHODOLOGY 

In this chapter the approach employed to convert the image into an array of numbers, 

inducing errors and then recovering the image from the bad data is explained. I included 

screenshots for the user interface of the software application I built. I also explained about the 

coding platforms and techniques I used to build this software application. 

3.1. Solution proposed 

The standard practice in computer graphics is to assume that each picture is composed of 

pixels.  In The Reed-Muller Error-Correcting technique I used the fact that each pixel can be 

represented by 3 numbers, they are its R quotient, G quotient and B quotient. I used Bitmap class 

from .net libraries to extract these numbers, the range for these RGB numbers is 0-255. 

So when an individual pixel, encoded in a bit pattern of 0s and 1s reaches the receiving 

station, its original form, say 

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0   

It might have changed to 

0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 0 1 0 

where in this illustration seven bit-change errors have occurred in the message.  Since, 2**5 = 

32, one might think that 5 bits of information would suffice to represent 32 numbers. Yet the 

string displayed above has 32 bits, not 5.  It is part of a code designed to make errors correctable. 

The code used by Mariner spacecraft was essentially the (32, 5) Reed-Muller code, 

defined in the following discussion. 

Let the matrix H1 be given by 
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1 1 

1 -1 

 

And define Hn+1  =  Hn ⊗ H1, where ⊗ denotes the Cartesian product of matrices in which we 

replace each + 1 entry of Hn  by H1 and each -1 entry by - H1.  These equations define what are 

called Hadamard matrices. The Mariner telemetry code consists of the rows of a matrix 

M5  obtained by replacing 1 by 0 and -1 by 1 in Hn and turning the matrix on its side. The matrix 

can then be displayed as a 32 X 32 square grid.  The 32 X 32 matrix generated with 0s and1s is 

shown below. 

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0  

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1  

 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1  

 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0  

 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1  

 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0  

 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0  

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1  

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1  

 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0  

 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0  

 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1  

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0  

 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1  
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 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1  

 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0  

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1  

 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0  

 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0  

 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1  

 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0  

 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1  

 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1  

 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0  

 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0  

 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1  

 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1  

 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0  

 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1  

 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0  

 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0  

 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 ] 

The rows represent the 32 possible code words to be transmitted by the Mariner 

spacecraft, and they have a very interesting property: any two of them differ in exactly 16 

places.  For example, if we compare the second and third rows, we find that in the following 

positions one row has a 0 while the other has a 1, or vice versa. 

2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 
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When a new 32-bit code word is received, it is compared to the rows of the matrix and 

the row it most closely resembles is selected as the word transmitted.  For example, if there has 

been only one error in a word, it will differ from one of the rows of M in only one digit and will 

not be mistaken for any other row.  If two errors have occurred, the same thing is still true.  Up to 

seven errors may occur with no danger of confusion about which word was transmitted by the 

spacecraft. 

But if eight errors have occurred, then the received word may differ as much from some 

other row of the matrix as from the intended row.  This is due to the fact that those two rows 

differ in only 16 places, and the eight errors might have resulted in a word which is just as 

"close" to an incorrect row as to the correct one.   

The number of places in which two binary words or vectors differ is called the Hamming 

distance between them (named for the famous scientist Richard Hamming, who was a founder of 

the Association for Computing Machinery).  In general, a set of code words which are all 

mutually at Hamming distance d or more enables users to detect and correct up to (d - 1)/2 

errors. 

When the transmission of a pixel is done, the pattern for an entire row is transmitted to 

represent one of the 32 possible levels of grayscale.  At the ground station, each received word is 

easily matched against the rows of the matrix and the row with the smallest Hamming distance 

best match is selected. 

3.2. Implementation  

I created a WPF application and when we run this application it will open a window 

which will let us choose an image, and then we can click on the "Generate Output Image" button 
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and then my application will go through each pixel and gets it RGB (RED, GREEN and BLUE) 

values.  

 

             Figure 1. Window for selecting the image 

An image is just a collection of pixels grouped together, each pixel has a color and every 

color can be represented using three numbers they are its RED quotient, GREEN quotient and 

BLUE quotients. These RGB numbers vary from 0 - 255 so I extract these RGB values for each 

pixel and put them in an array. Now since the 32 X 32 Hadamard matrix only has 32 rows we 

can only transmit numbers from 0-31 whereas the numbers we have are in the range 0-255. So 

for my experiments sake I took an image whose colors are limited so that its RGB numbers are 

between 0-31. And then I extract all these RGB numbers from the image and load them into an 

array. Let’s call this array as X; in real scenario (The image transmission from outer space) the 

requirement is to transmit this array to the earth. I am then creating a new array Y and in this 

array I am loading the rows of the Hadamard Matrix the numbers in array X represent.  
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Start 

The user will run the application and clicks 

on Generate Image 

Extract RGB numbers from each pixel 

Divide all those numbers by 8 to make 

them fall between the range 0-31 

Take the corresponding rows from 32 X 32 

matrix those numbers  

Induce errors into those rows (flip the bits 

from 0 to 1 and 1 to 0’s) 

Compare this bad data with the 32 X 32 

Matrix and recover the numbers 

C 

Figure 2. Flowchart explaining the application process  
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Figure 2. Flowchart explaining the application process (continued) 

 

So now I have array Y and each element in it contains 32 bits of 0s and 1s but at this 

point the data is perfect and during its journey from outer space to earth some bits will be 

corrupted. So in order to replicate this I am looping through each element of array Y and 

inducing up to 7 errors to it and inserting the new bad data into a new array Z. Now in real 

scenario the data in array Z is what the earth receives and we have to construct an image using it. 

Now I am looping through each element of array Z (each element of array Z in turn contains 32 

bits of 0s and 1s) and comparing it with each row in the 32 X 32 Hadamard matrix and 

determining which row this element is closest to and I am inserting its row number into another 

array P and from the resultant RGB values I am reconstructing the image. I also did different 

experiments like inducing more than 8 errors and others which will be discussed in the results 

section.  

3.3. Coding platform and techniques used 

 I used WPF windows forms to build the front end user interface which lets the user pick 

the image he wants to test this Reed Mueller Error correction code technique, also allows the 

Reconstruct the image from those numbers 

C 

Stop 
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user to select the number of errors. The back end code is done using the programming language 

c#. So when the user selects and image and clicks on the button “Apply error correction” I am 

creating an object for the bitmap class and then using that object to find out the RGB values at 

each pixel and I am storing them in an array. I then load the rows from the 32 X 32 matrix these 

numbers represent into a new array. At this point a function is called which will induce errors 

into the data we have, this function will accept the array holding the 32 X 32 matrix rows and 

number of errors we want to insert in each row, this function is also capable of choosing the 

number of errors randomly. I then compare this bad data with the 32 X 32 matrix to determine 

which row is closest to the bad data and load the row numbers into a new array and use the same 

bitmap object to reconstruct the image from these numbers. 

3.4. Pseudo code for the function which is inducing the errors 

Call the function which induces the errors and pass it the array (let’s say A) holding the 

32 bit elements and also feed it the number of errors X we want to introduce 

Create a new array B and insert numbers 0 - 31 into it 

For each row A 

      Shuffle array B randomly 

      Take first X elements from the array 

      For i = 0 to X 

            If A [B[X]] = 0 then A [B[X]] = 1 else A [B[X]] = 0 

      End For 

End For 
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3.5. Pseudo code for the entire application 

Get the image from the user 

Extract RGB values for each pixel and put them in an array A 

Insert their corresponding 32 X 32 matrix rows into array B 

Induce errors in each row 

Go through each row, compare it with the 32 X 32 matrix calculate the hamming distances 

Identify input data and insert it into array C 

Reconstruct the image from the numbers in array C 
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4. RESULTS 

I conducted different experiments by varying the number of errors induced into the 

original data. Once the error bits are induced the application will compare the erroneous data 

against the 32x32 Hadamard matrix to fix the bad data. The time taken to generate the output 

image will vary on the image size and the pixel density, the more the number of pixels the more 

time it requires to fix data. In all these experiments I included a table in which we can see the 

good data and the data after errors are induced. All the experiments were conducted on a single 

image and we recorded the bits that were changed during this process. The process works well 

when the number of errors in each row is less than or equal to 7. We also ran some tests to see 

what happens if the number of errors in each row is more than 7 and the output image that it 

produced is blurry and the numbers recovered after the processing is done is not same as the 

original and that is because this approach works well only when the number of errors in each row 

is less than equal to 7. I’m using the Figure 3 for the experiments 1 to7. 

 

 
 

Figure 3. Image used for the experiments 
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4.1. Experiment one 

In this experiment, we induced 3 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 4 and the table showing the first few rows of good and bad data is shown in Table 1 

and Table 2. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8. The output image and the values in the table 

show that the image is accurate.  

 

Table 1. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

00101111000001110000111100001110 - 

01010110011001100110011001100100 - 

00101000000100000000000000000000 - 

Corrected Data Displayed - 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 
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Figure 4. Generated output image with 3 error bits 

 

Table 2. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

00011100011111001100001011000011 - 

01111010010110101010010110111101 - 

01110101010101001010001010101010 - 

Corrected Data Displayed - 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 
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4.2. Experiment two 

In this experiment, we induced 5 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 5 and the table showing the first few rows of good and bad data is shown in Table 3 

and Table 4. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8. The output image and the values in the table 

show that the image is accurate. 

 

Table 3. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

00001110000011100000101100011011 - 

01000110011010100110010101100110 - 

00000010000000100010010000100000 - 

Corrected Data Displayed - 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 
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Figure 5. Generated output image with 5 error bits 

Table 4. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

00111100001110001100101110001001 - 

00011010010010101110010110000100 - 

01010101011101000010101001101010 - 

Corrected Data Displayed - 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 
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4.3. Experiment three 

In this experiment, we induced 7 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 6 and the table showing the first few rows of good and bad data is shown in Table 5 

and Table 6. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8. The output image and the values in the table 

show that the image is accurate 

 

Table 5. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

00101110000110111000011110001111 - 

01101111001001100110011101010100 - 

00100000000100100010100001010000 - 

Corrected Data Displayed - 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 
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Figure 6. Generated Output image with 7 error bits 

Table 6. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

00010001011111001100010111000011 - 

01011010000010111010110100110001 - 

00111100011001011010101010001010 - 

Corrected Data Displayed - 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 
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4.4. Experiment four 

In this experiment, we induced 8 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 7 and the table showing the first few rows of good and bad data is shown in Table 7 

and Table 8. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8. The output image and the values in the table 

show that the image is accurate. 

 

Table 7. Data transmitted and recovered for PIXEL 11 

Data Transmitted Row # 

01011010101001010101101010100101 13 

01100110011001101001100110011001 19 

00110011001100111100110011001100 18 

Data Received - 

01011010011001010111000011001101 - 

01100110100111100001010110011001 - 

00111001001010111101100111001000 - 

Corrected Data Displayed - 

01011010101001010101101010100101 13 

01100110100110010110011010011001 11 

00110011001100111100110011001100 18 
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Figure 7. Generated output image with 8 error bits 

 

Table 8. Data transmitted and recovered for PIXEL 18 

Data Transmitted Row # 

01010101101010101010101001010101 25 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

Data Received - 

01010101001010111111100001110000 - 

00111100101101001010100101000001 - 

00000010011100101000100110100101 - 

Corrected Data Displayed - 

00001111000011111111000011110000 20 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 
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4.5. Experiment five 

In this experiment, we induced 15 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the table showing the first few 

rows of good and bad data is shown in Table 9 and Table 10. I am doing these experiments to 

show that this approach is working perfectly when the number of errors in each row is less than 8 

and when the number of errors in each row is more than 8 we are not able to recover every 

number perfectly and hence the image is getting blurred. The output image and the values in the 

table show that the image is not accurate. The number that recovered is not the actual number 

that needs to be recovered. The original image and the recovered image are shown below and the 

differences are highlighted in recovered image and compared in Figures 8 and Figure 9.  

 

Figure 8. Original image used  
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Table 9. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

10101111000101100111110000110010 - 

10001001001000001111000001100100 - 

01100001100110000111100010110101 - 

Corrected Data Displayed - 

00111100001111000011110000111100 6 

00000000000000000000000000000000 0 

01101001100101100110100110010110 15 

 

 

Figure 9. Generated output image with 15 error bits 
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Table 10. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

10101001001010100001010110001001 - 

10110011111010111010100100010001 - 

11100011010011110111101101100010 - 

Corrected Data Displayed - 

01010101101010100101010110101010 9 

00110011001100110011001100110011 2 

01100110011001100110011001100110 3 

 

4.6. Experiment six 

In this experiment, we induced 20 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 11 and the table showing the first few rows of good and bad data is shown in Table 11 

and Table 12. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8 and when the number of errors in each row is 

more than 8 we are not able to recover every number perfectly and hence the image is getting 
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blurred. The output image and the values in the table show that the image is not accurate. The 

number that recovered is not the actual number that needs to be recovered. The original image 

and the recovered image are shown below and the differences are highlighted in recovered image 

and compared in Figures 10 and Figure 11.  

 

 

Figure 10. Original image used 



 

30 
 

 

Figure 11. Generated output image with 20 error bits 

Table 11. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

11110001011000110110110001110101 - 

10011000101101001010101000011010 - 

10111110000011111101101100110101 - 

Corrected Data Displayed - 

01101001011010010110100101101001 7 

00001111111100001111000000001111 29 

01011010101001011010010101011010 30 
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Table 12. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

11001011001001111111111011111001 - 

10110100101110011000101010000010 - 

11111000100000101101111111011011 - 

Corrected Data Displayed - 

00001111000011111111000011110000 20 

00111100001111001100001111000011 22 

00000000000000001111111111111111 16 

 

4.7. Experiment seven 

In this experiment, we induced 25 errors in each row of the input data and then the 

application will compare this erroneous data with the 32 X 32 Hadamard matrix to determine the 

original data that was meant to be transmitted. In this scenario the reconstructed image is shown 

in Figure 13 and the table showing the first few rows of good and bad data is shown in Table 13 

and Table 14. I am doing these experiments to show that this approach is working perfectly when 

the number of errors in each row is less than 8 and when the number of errors in each row is 

more than 8 we are not able to recover every number perfectly and hence the image is getting 
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blurred. The output image and the values in the table show that the image is not accurate. The 

number that recovered is not the actual number that needs to be recovered. The original image 

and the recovered image are shown below and the differences are highlighted in recovered image 

and compared in Figures 12 and Figure 13.  

 

 

 

Figure 12. Original image used 
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Figure 13. Generated output image with 25 error bits 

Table 13. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

11110000011010100110000001110000 - 

00110011100110011001110110011100 - 

11111111110111110000111011110111 - 

Corrected Data Displayed - 

01100110011001100110011001100110 3 

00110011001100111100110011001100 18 

00001111000011110000111100001111 4 
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Table 14. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

01000001110001010011010000001100 - 

10101100000001010101101111011000 - 

10111010101001100111100101010001 - 

Corrected Data Displayed - 

00000000000000000000000000000000 0 

00000000000000001111111111111111 16 

00110011001100110011001100110011 2 

 

4.8. Experiment eight 

In this experiment, I randomly induced between 0-7 errors in each row of the input data 

and then the application will compare this erroneous data with the 32 X 32 Hadamard matrix to 

determine the original data that was meant to be transmitted. In this scenario the reconstructed 

image is shown in Figure 14 and the table showing the first few rows of good and bad data is 

shown in Table 15 and Table 16. I am doing these experiments to show that this approach is 

working perfectly when the number of errors in each row is less than 8. The output image and 
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the values in the table show that the image is accurate. The number that recovered is the actual 

number of what it needs to be. 

 

 

Figure 14. Generated output image with random error bits between 0-7 

Table 15. Data transmitted and recovered for PIXEL 1 

Data Transmitted Row # 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 

Data Received - 

00001011000011110100111100001111 - 

01100100011001100111011101100111 - 

00100000101000000000101000000000 - 

Corrected Data Displayed - 

00001111000011110000111100001111 4 

01100110011001100110011001100110 3 

00000000000000000000000000000000 0 
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Table 16. Data transmitted and recovered for PIXEL 2 

Data Transmitted Row # 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 

Data Received - 

00101101001111001100011101000011 - 

01011010000110101000010110110001 - 

00010101010101111010101010101010 - 

Corrected Data Displayed - 

00111100001111001100001111000011 22 

01011010010110101010010110100101 21 

01010101010101011010101010101010 17 
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5. CONCLUSION AND FUTURE WORK 

In this paper, based on the experiments the application works perfectly by comparing the 

erroneous data with the 32x32 matrix in order to produce the desired output if the errors are in 

between 0 and 7. And when the number of errors in each row is more than 8 the results that were 

produced were not very accurate but the experiments show that the image recovered is still 

identifiable, the more the number of errors in each row the more blurred the image gets.  

 One thing that can be done and experimented is to increase the dimension of the 

Hadamard matrix to 64x64 or 256x256, by doing so we will have more rows, which means more 

numbers can be transmitted and even if the numbers of errors in each row increase the new 

application may do a better job in reconstructing the image than my application. One 

disadvantage though would be the increase in cost as we will have to transmit more bits for each 

number. 
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