

EVALUATION OF FIREFLY ALGORITHM USING

BENCHMARK FUNCTIONS

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Anuroop Kundur

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

August 2013

Fargo, North Dakota

North Dakota State University

 Graduate School

 Title
EVALUATION OF FIREFLY ALGORITHM USING

BENCHMARK FUNCTIONS

 By

ANUROOP KUNDUR

The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

 Dr. Simone Ludwig

Chair (typed)

Dr. Jun Kong

Dr. Chao You

 Approved by Department Chair:

9-5-13

Dr. Brian Slator (Associate Head)

Date

Signature

iii

ABSTRACT

The field of nature inspired computing and optimization techniques have evolved to solve

the difficult optimization problems in diverse fields of engineering, science and technology. The

Firefly algorithm is one of the several nature inspired algorithms that have been developed in the

recent past and is inspired from the flashing behavior of the fireflies. The flashing behavior of

the fireflies is to attract other fireflies in the group for mating. The less bright firefly will be

attracted by the brighter one. As all the fireflies are assumed to be unisexual, each firefly is

attracted to the other. This process is mimicked in the algorithm to find the solution to objective

function. In this paper, we evaluate the algorithm using few multi-dimensional benchmark

functions. The results of the simulation are satisfactory showing the algorithm to have good

performance abilities.

iv

ACKNOWLEDGEMENTS

I would like to take the opportunity to thank my advisor Dr. Simone Ludwig for

unprecedented support, shrewd ideas and continuous mentoring throughout my research.

I would also like to thank Dr. Kendall Nygard for having that belief in me that I can do

well in computer science given my previous specialization in electronics and his continuous

support throughout my masters.

I would also like to thank my committee members for being a part of my research and for

their support throughout.

Finally I would like to thank my family members, friends and others who have been a

great support throughout my career and always had belief in me that I could do it.

v

DEDICATION

Dedicated to my parents and my brother

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

DEDICATION ..v

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

1. INTRODUCTION ...1

1.1. Formulation ..1

1.2. Examples ..2

1.3. Nature-inspired optimization algorithms ...3

2. LITERATURE REVIEW ...5

2.1. Evolutionary algorithms ...5

2.1.1. Genetic algorithm ...6

2.1.2. Neural networks ...7

2.2. Swarm intelligence ...8

2.2.1. Particle swarm optimization ...9

vii

2.2.2. Ant colony optimization ..9

2.3. Firefly algorithm ..9

3. FIREFLY ALGORITHM ...12

3.1. Formulation ..12

3.2. Algorithm ...14

4. EXPERIMENTAL SETUP AND RESULTS ..17

4.1. Introduction ..17

4.2. Benchmark functions..17

4.3. Experimental setup ...19

4.4. Results ..20

4.4.1. Test case 1: Best objective value versus fixed number of iterations20

4.4.2. Test case 2: Simulations performed by varying the problem dimension22

4.4.3. Test case 3: Simulations performed by varying number of generations26

4.4.4. Test case 4: Simulations performed by varying number of generations against the

average value ...30

5. CONCLUSIONS AND FUTURE WORK ...35

6. REFERENCES ...37

viii

LIST OF TABLES

Table Page

1: Parameters and definitions .. 13

2: Benchmark problems .. 19

3: Ackley benchmark function outputs ... 20

4: De Jong benchmark function outputs ... 21

5: Michalewicz benchmark function results ... 21

6: Rosenbrock benchmark function results ... 21

7: Schwefel benchmark function results ... 22

8: Average results for function on varying dimension.. 23

9: Varying number of iterations and calculating average value ... 30

ix

LIST OF FIGURES

Figure Page

1: Genetic algorithm cycle [11] ...6

2: Example neural networks [15] ...8

3: Flowchart illustrating the algorithm ..16

4: Mean values for Ackley against dimension ...23

5: Mean values for De Jong against dimension ...24

6: Mean values for Michalewicz against dimension ..24

7: Mean values for Rosenbrock against dimension ...25

8: Mean values for Schwefel against dimension..26

9: Variation of best value with number of generations for De Jong ..27

10: Variation of best value against number of generations for Michalewicz27

11: Variation of best value with number of generations for Ackley ..28

12: Variation of best value with number of generations for Schwefel ..29

13: Variation of best value with number of generations for Rosenbrock29

14: Variation of mean value for Ackley against increasing iterations ...31

15: Variation of mean value for Rosenbrock against increasing iterations31

16: Variation of mean value for Michalewicz against increasing iterations32

17: Variation of mean value for De Jong against increasing iterations ...33

18: Variation of mean value for Schwefel against increasing iterations33

x

1

1. INTRODUCTION

Interest in optimization has grown after the invention of the digital computers in the late

fifties. Formally, optimization or mathematical optimization is the process of formulation and

finding the solution to a problem based on some constraints. The problem may be to either

minimize or maximize the solution to constrained optimization problems. The problem or the

function under consideration is either maximized or minimized by methodically selecting inputs

from a set of allowed values [1]. Thus, the word optimum can mean either ‘maximum’ or

‘minimum’ based on the circumstances.

Optimization problems are a part of a wide range of fields, to name a few Engineering,

Mathematics, Political sciences, Social sciences, Commerce, Economics etc. [2]. In most real

life cases solving a problem may lead to innumerable solutions, optimization leads to the best

solution of all based on some criterion.

1.1. Formulation

The formulation of the optimization problem is an important part of solving the problem

itself. The basic parameters of an optimization problem include the objective function,

constraints that pose limits to the objective function and the optimization variables:

Minimize f(x) subject to gi(x) ≤ bi where i = 1,….n.

In the equation, f(x) is the objective function (fitness function) under consideration that is

being minimized, in this case subject to the constraints gi(x) where, bi is a constant and the letter i

represents the number of constraints on the objective function. The optimization variables or the

decision variables are an important part of the optimization process. There are broadly two

categories of optimization problems based on the type of decision variables:

2

i) Continuous optimization: The decision variables are continuous represented by real

numbers [3].

ii) Integer optimization: The decision variables are discrete represented by integer

numbers [3].

Optimization problems can be as simple as minimizing the area of a rectangle based on

one constraint, to as complex as optimizing the air traffic at a busy airport like Chicago. The

complexity of an optimization changes with adding more than one objective or fitness function

and the number of decision variables. Optimization problems may be both unimodal and multi-

modal. Unimodal optimization problems possess one good solution to the function and multi-

modal problems imply that they have more than one good solution to the function under

consideration; they could all be global maxima, minima or local in many cases too. Most of the

real life situations involving optimization are multimodal.

1.2. Examples

Optimization is an indispensable part of many fields. Listed are some of the classic

optimization problems. Travelling salesman is perhaps the most known and discussed

optimization problem. The goal is to calculate the shortest path between a list of given cities and

the distances between those cities.

Bin packing problem is a multi-disciplinary classic combinational optimization problem.

It is computationally non-deterministic polynomial-time (NP) hard. In a bin packing problem

objects of different volumes must be packed into finite number of bins of same volume.

In electronics, very large scale integrated (VLSI) layout/circuit design is a combinational

optimization problem, in which the space on the VLSI chip is optimally used to placed

transistors, capacitors etc. to increase the possibility to fabricate a smaller physical structure [4].

3

The channel assignment problem in wireless communication is a combinatorial

optimization problem that is NP hard. The problem can be defined as assigning the least number

of radio channels to a set of transceivers to avoid interference between any two given channels.

Many approaches have been proposed to solve this problem like graph coloring, genetic

algorithms and local search, etc. [5].

Optimization of benchmark functions using nature inspired genetic algorithms is an

application in computational optimization. Benchmark functions are used to control and review

the performance of the algorithms. The standard benchmark functions used to review the

performance of algorithms are unimodal or multimodal with low and high dimensionality. The

complexity of solving a NP-hard combinational problem is higher than any other optimization

problems with no guarantee of reaching a global optimum.

1.3. Nature-inspired optimization algorithms

Nature provides some of the most efficient ways to solve problems. Algorithms that are

inspired by nature and imitate a certain process from nature are nature inspired algorithms.

Several nature inspired algorithms have been proposed to solve NP hard optimization problems,

for example, nature inspired algorithms for mobile ad hoc routing [6], biologically inspired

algorithms for financial modeling, etc [7].

Ant colony optimization, particle swarm optimization, bee algorithm and firefly

algorithm are a few examples of nature inspired algorithms.

The firefly algorithm is a meta-heuristic optimization algorithm that follows the flashing

behavior of fireflies. The brightness of the fireflies is affiliated with the objective function under

consideration. The algorithm has been formulated with three main assumptions [8]:

4

i) All fireflies are unisexual, eliminating the possibility of attraction based on gender

that is, each firefly will be attracted by all other fireflies.

ii) Attraction is dependent on the amount of brightness that is a less brighter firefly is

attracted to a brighter one.

iii) The brightness of the firefly is equivalent to the objective function.

In this paper, we are evaluating the firefly algorithm in terms of objective value with

regards to the number of generations, and increasing dimensions using five benchmark functions.

The arrangement of the chapters is as follows: Chapter 2 discusses related research.

Chapter 3 describes the firefly algorithm and the approach that has been followed. Chapter 4

discusses the results that have been obtained using the evaluation procedure implemented.

Chapter 5 concludes this study with ideas for future work.

5

2. LITERATURE REVIEW

The field of nature inspired computing has produced some ground breaking research

results in the past few decades, and is expected to do so in the coming years too. Nature inspired

computing mimics the patterns of living phenomena in nature to solve complex problems. The

idea of nature inspired computing was set forth in the early 60’s and has created a new era of

algorithms that solve the most complex problems. Nature inspired algorithms can be broadly

classified into two classes namely:

i) Evolutionary algorithms

a) Genetic algorithm

b) Memetic algorithm

c) Neuroevolution

ii) Swarm intelligence

a) Particle swarm optimization

b) Ant colony optimization

c) Firefly algorithm

2.1. Evolutionary algorithms

Evolutionary algorithms are a subset of nature inspired algorithms that apply mechanisms

that closely mimic biological evolution. Evolutionary algorithms follow the precept of natural

selection given a population of individuals, based on the survival rule “survival of the fittest”.

The basic steps in the algorithm are selection and mutation to generate candidates for the next

generation. For any function to be maximized or minimized a set of candidate solutions in the

function domain are generated and a fitness measure based on the function is applied to the

candidate solutions to select the fittest of the generation. The fittest in the present generation are

6

then used to seed the next generation. The basic ways of generating offspring from the current

generation is either by recombination or by mutation. This process is repeated for numerous

generations until a good candidate solution with sufficient quality or until an agreed limit, i.e., a

specific number of generations is reached [9].

2.1.1. Genetic algorithm

Perhaps the most referenced of the evolutionary algorithms is the genetic algorithm. The

Algorithms mimics the natural evolution proposed by Charles Darwin. The basic steps of

operation in a genetic algorithm are initialization, selection, crossover and mutation, termination.

The algorithm is initiated by generating a random population of chromosomes, in the next step

the fitness is evaluated for each of the chromosomes based on the function under evaluation.

Based on the fitness value the best chromosomes are selected to reproduce the next generation of

chromosomes by the crossover and mutation process. The current population is then replaced by

the new population that is generated in the previous steps and the process of calculating the

fitness function for the new population is repeated. The algorithm is iterated until a

predetermined fitness value is reached or for prefixed number of generations or iterations has

been reached [10]. The following image depicts the genetic algorithm cycle [11].

Figure 1: Genetic algorithm cycle [11]

7

Repeated calculation of the fitness function over many generations make genetic

algorithms a costly way of answering real world problems.

Few of the prominent applications of genetic algorithms in real world problems are:

i) In automotive design for optimum design of vehicle suspensions and performance

optimization of high end sport cars [12].

ii) For optimizing the telecommunications routing, which is still under development.

iii) For optimizing traffic and shipment routing to reduce congestions on roads [13].

2.1.2. Neural networks

Neural networks are a part of Neuroevolution that mimics the pattern of communication

in the nervous system of the body. They are also referred to as artificial neural networks or

neural nets [14]. The nervous system and its communication process is mimicked by using

directed graphs in artificial neural networks, in which the directed connectors show the flow

from input to the output performing function evaluations at different stages. The directed graphs

usually consist of one input layer, one or more hidden layers and an output layer. Each node in

the directed graph performs a simple computation and the connectors convey the signal from one

node to the other. Each connector is assigned a weight and the weight is the amplification factor

of the signal that is being propagated through. The weights are at first chosen randomly and are

updated by a learning process given that the task to be accomplished by the neural network is

known. Neural networks are constrained to only a few applications as of now and are to be

researched much further to make it more diverse. The following figure depicts “neural networks”

[15].

8

Figure 2: Example neural networks [15]

Artificial neural networks are mostly used in the fields of:

i) Robotics

ii) Control engineering

iii) Data processing

2.2. Swarm intelligence

Swarm intelligence is a collated behavior of disintegrated systems. The term was coined

in 1989 by Beni and Wang. Swarm intelligence is mostly motivated from insects, birds and fish

that follow a certain pattern when moving around in swarms or flocks. The members of the

swarm must be able to communicate with each other about the environmental surroundings, for

example, ants leave a trail of a certain chemical when going in search of food. Increase in the

intensity of the chemical tells the ants on the trail that the food is closer. The swarms are also

expected to acclimate to the conditions of the surroundings and vary decisions accordingly. A

tight coupling exists between the swarm and its members. The members collectively control the

behavior of the swarm. The members of the swarm interact with others in the swarm to solve a

global problem.

9

2.2.1. Particle swarm optimization

Particle Swarm optimization is a stochastic optimization algorithm introduced in the first

half of 90’s by Eberhart and Kennedy. PSO is inspired by birds flocking. The intent of the

development was to simulate graphically the pattern of a flock of birds flying in tandem and

execute swift direction changes. The initialization in PSO is similar to that of genetic algorithm;

a random population is generated to represent the members of the swarm. The search for

optimum goes on for generations by updating the swarm throughout the generations [16]. The

particles fly through the solution based on their own best value and the swarm’s best value.

PSO has been applied to a wide variety of problems including multi-objective problems

in which more than one objective function is optimized simultaneously.

2.2.2. Ant colony optimization

Another famous member of the swarm intelligence algorithms family is the Ant colony

optimization algorithm. Ant colony optimization is a population based algorithm developed for

combinatorial problems. It is inspired from the trail setting technique used by the ants when

moving around in the search for food. The chemical deposit increases as the distance to the food

decreases. This is mimicked by using weights in computational environment. Software agents

called artificial ants search for optimal solutions in a weighted graph. Local minimums are also

avoided as the chemical left by the ants on their trail tend to evaporate quickly [16].

Ant colony optimization applications include scheduling, assignment and routing

problems, thus, making it more specific to routing and scheduling problems.

2.3. Firefly algorithm

Most of the nature inspired algorithms are metaheuristic. Heuristics are problem specific

and are not efficient at solving others, whereas metaheuristics are indented to solve a wide range

10

of problems. Meta heuristics might not be as efficient as problem specific heuristics; they can

easily replace heuristics when they are not readily available.

Every algorithm defined thus far has its own way of working out solutions to diverse

problems. There might be some performance differences but all algorithms work towards

establishing the goal. Every algorithm specializes at solving a certain issue, for example Ant

Colony Optimization specializes at scheduling, assignment and routing problems and may lack

the performance advantage when applied to solving multi-objective function, which is Particle

Swarm Optimizations forte.

The firefly algorithm is a metaheuristic algorithm, which is inspired by the flashing

behavior used by fireflies to attract each other in the mating process. It has been first proposed

Yang in 2007 [8]. The brightness of the firefly is the key point of the algorithm, and is equivalent

to the objective function under consideration. Three main assumptions were made when

proposing the algorithm:

i) All fireflies are unisexual that is one firefly will be attracted by all others.

ii) Attraction is dependent on the amount of brightness, that is a less brighter firefly

is attracted to a brighter one.

iii) The brightness of the firefly is equivalent to the objective function.

The attractiveness is dependent on the distance between the two fireflies as the intensity

of light decreases as the distance between the two fireflies increases. Therefore, the closer the

fireflies the more attractive they seem to each other. Multiple variants of firefly algorithm are

being developed.

The firefly algorithm has been proved to be efficient at solving optimization tasks and

can be more efficient than other meta-heuristic algorithms when applied to continuous

11

constrained optimization tasks [17], stochastic functions [18], multi-modal functions and even in

the field of digital image processing. Given the wide range of applications, less complexity and

more efficiency than other meta-heuristic make the firefly algorithm a good subject for

continuing research.

12

3. FIREFLY ALGORITHM

Flashing behavior of the fireflies is unique to the kind of species they belong to and

varies from one type of species to the other. The aim of such flashing behavior can be either of

attracting mates or for attracting prey. The flashing light can be formulated to mimic the

objective function under consideration and formulate a new optimization algorithm.

3.1. Formulation

The attractiveness of different fireflies leads to the movement of firefly towards the other.

This is the basic idea of the formulation of the algorithm. Luminescence or light intensity is

defined as the amount of light energy transmitted and it varies with the distance. The

attractiveness of the fireflies varies with the brightness which is in turn related to the objective

function in the mathematical domain. The intensity decreases with the increase in distance, and

hence, a given firefly will be attracted to a firefly that is close to it even though it is less bright

than a farther but brighter firefly. The intensity of light is known to vary inversely with the

square of increasing distance or radius given by [18]:

 ()

Where I(r) represent the light intensity as a function of distance and r is the radius. This

can be converted to equality by adding a constant I(s), which is intensity at the source. In real life

conditions, every different form of energy is affected by atmospheric components, for example,

sound traveling in a medium can be affected by the direction of wind and the amount of natural

noise generated in the surrounding environment. Light is no exception to that and hence the

intensity of light can also decrease depending on several environmental constraints. The intensity

of light in real situations also depends on a factor called the absorption coefficient, and therefore,

the inclusion of the absorption coefficient (γ) changes the equation to:

13

 ()

Attractiveness of the firefly is dependent and is directly proportional to the intensity of

light. Hence the intensity equation can be transformed to represent the attractiveness as follows:

Here β represents the attractiveness of the firefly and β0 is the attractiveness at a radius 0;

for practicality of implementation the attractiveness can vary as any power of radius rather than

the square root [18]. The mapping of the parameters and corresponding notation used in the

algorithm is shown in Table 1.

Table 1: Parameters and definitions

Parameter Notation in Algorithm

Brightness Objective function

Beta (β) Attractiveness

Alpha (α) Randomization parameter

Gamma (γ) Absorption coefficient

Number of generations Iterations

Number of fireflies Population

Dimension Problem dimension

R Radius, time interval etc. (depends on

application

14

3.2. Algorithm

In the firefly algorithm, the optimization process depends on the brightness of the fireflies

and the movement of fireflies towards their brighter counterparts. Every firefly is attracted to the

other depending on brightness because the fireflies are all unisexual according to the first

assumption about artificial fireflies. The following section describes the pseudo code [21].

Define an initialize benchmark function f(x), x = (x1, ..., xd)

Generate initial population of fireflies xi (i = 1, 2, ..., n)

Determine light intensity for xi by calculating f(xi)

Define light absorption coefficient γ

While t < MaximumGeneration

 Make a copy of the generated firefly population for move function

For i = 1 : n all n fireflies

For j = 1 : i all n fireflies

If (Ij > Ii),

 Move fireflies i and j according to attractiveness

 Evaluating new solutions and updating light intensity for

 next iteration

End if

End for j

End for i

Sorting the fireflies to find the present best

End while

Begin post process on best results obtained

15

The firefly algorithm starts by initializing a population of fireflies and each firefly is

different from the other in the swarm. The differentiation is based on the brightness of the firefly.

The brightness of the firefly is what determines the internal movement of the fireflies.

 During the iterative process, the brightness of one firefly is compared with the others in

the swarm and the difference in the brightness triggers the movement. The distance travelled

depends on the attractiveness between the fireflies. During the iterative process the best solution

thus far is continuously updated and the process goes on until certain stopping conditions are

satisfied. After the iterative process comes to a halt the best solution of the evaluation is

determined and the post process is initiated to obtain the results. The flowchart diagram is shown

in Figure 3.

We modified an already existing Firefly algorithm code [19] to evaluate the performance

of the algorithm by varying the input parameters like the number of iterations and the problem

dimension. The measurement metrics added to the code allows to automatically generate the

best, worst, average and standard deviation over several runs. The estimated running time for

each run was also kept track of. The code was also automated to write the generated results to an

excel file. The results obtained are discussed in detail in the next session.

16

Figure 3: Flowchart illustrating the algorithm

START

Call objective

function

Initialize Parameters

Initialize firefly

procedure

Initialize firefly

population

Make a copy of firefly

population

Rank fireflies according to

attractiveness

Sort the fireflies

accordingly

Stopping

criteria

reached

Obtain global minimum

END

No

17

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Introduction

Global optimization techniques are required to be validated by a published set of

benchmark problems. Benchmark functions are a way to test the optimization techniques.

4.2. Benchmark functions

There are four different types of benchmark functions designed for testing the global

optimization problem [20]. All the classes discussed below are continuous:

a) Unimodal, convex, multidimensional: The set of functions designed for this class

are easier to solve and have one global optimum. These functions can result in

poor convergence to global optimum.

b) Multimodal and two dimensional functions with a few local optima: The set of

functions under this class are of medium complexity and are serviceable to

functions that have a few local optima and one global optimum.

c) Multimodal and two dimensional with many local optima: The set of functions

under this class are more complex than the previous one as they are applicable to

functions with large number of local optima.

d) Multimodal and multidimensional with many local optima: The functions under

this set are more complex compared to the previous ones and are applied to

intelligent optimization algorithms in combination with the previous class. Two

dimensional problems are very rare in real world situations and hence

multidimensional multimodal benchmark problems are prevalent in such

situations.

18

Simple introductions to the functions that have been used to test the firefly algorithm

have been defined below with their mathematical definition listed.

a) De Jong function: It is a simple and a continuous benchmark problem and belongs

to the first class defined above. It is mathematically defined as:

 () ∑

b) Michalewicz function: Michalewicz function is a mutimodal test function with n!

local optima and the parameter m defines the difficulty of the functions, as the m

goes higher the difficulty of the search increases. It is defined mathematically as:

 () ∑ () [(

)]

c) Rosenbrock function: It is a unimodal function and is also known as the second

function of De Jong. It is defined as follows:

 () [(
) ()

]

d) Schwefel function: Schwefel function is a multimodal separable function. Global

optimum for the function is distant from the next best local optima and hence the

function is tricky and can drive the algorithm in a different search direction. It is

defined as:

 () ∑[(√| |)]

e) Ackley function: Ackley is a multimodal non-separable function. It is widely used

for validation and testing purposes of algorithms. It is mathematically defined as,

19

 () (√
∑

) (

∑ ()

) ()

Table 2: Benchmark problems

Function Name Search Space

De Jong -5.12 to +5.12

Michalewicz 0 to PI

Rosenbrock -2.048 to +2.048

Schwefel -500 to +500

Ackley -32.768 to +32.768

4.3. Experimental setup

The benchmark functions used for running the simulations have been defined in the

previous section. The simulations have been made with the following parameter setup for all

functions.

1. Population = 80

2. Number of dimensions = 6

The number of iterations has been kept constant at 8,000 unless stated otherwise. The

parameters alpha, beta, gamma and epsilon have been set at 0.25, 0.20, 1.0 and 0.001

respectively. The values of all the parameters remain constant unless stated otherwise.

Independent simulations have been run for each of the five functions defined in the

previous section and the following results have been collected.

The outputs for 25 independent runs are:

1. Best value

20

2. Worst value

3. Mean Value

4. Standard deviation of mean value

5. Time elapsed

4.4. Results

The firefly algorithm has been tested using five different benchmark functions via 4

different test cases. In the first test case, the best objective value has been calculated for all

functions over a fixed number of iterations. The second test case is used to evaluate the variation

of the mean of 30 independent runs versus varying dimensions. The third test case is used to

evaluate the variation of the mean of 30 independent runs versus varying iterations. The fourth

test case is used to evaluate the variation of the best objective value versus varying iterations.

4.4.1. Test case 1: Best objective value versus fixed number of iterations

 Table 3 shows the results of 25 independent runs on the benchmark function Ackley. The

table includes all results discussed in the Section 4.3.1. The best objective value was found at

0.00072, while the worst was 9.35 and the mean of the 25 independent runs was 2.25507. The

time elapsed for performing 25 independent runs and to collect the results was 470 seconds.

Table 3: Ackley benchmark function outputs

Best Worst Mean Standard

Deviation

Time (in sec.)

0.00072 9.35306 2.25507 2.27691 470

Table 4 shows the results of 25 independent runs on the benchmark function De Jong.

The table includes all the results discussed in the Section 4.3.1. The best objective value was

found at 0, while the worst was 0.00004 and the mean of the 25 independent runs was 0.00001.

The variation between the best and the worst value indicates that the standard deviation of the

21

function is very low. The time elapsed for performing 25 independent runs and to collect the

results was 178 seconds.

Table 4: De Jong benchmark function outputs

Best Worst Mean Standard

Deviation

Time (in sec.)

0 0.00004 0.00001 0.00001 178

Table 5 shows the results of 25 independent runs on the benchmark function

Michalewicz. The table includes all the results discussed in the Section 4.3.1. The best objective

value was found at -2.65692, while the worst was -4.68698 and the mean of the 25 independent

runs was -4.10826. The time elapsed for performing 25 independent runs and to collect the

results was 186 seconds.

Table 5: Michalewicz benchmark function results

Best Worst Mean Standard

Deviation

Time (in sec.)

-2.65692 -4.68698 -4.10826 0.55496 186

Table 6 shows the results of 25 independent runs on the benchmark function Rosenbrock.

The table includes all the results discussed in the Section 4.3.1. The best objective value was

found at 0.00774, while the worst was 3.99466 and the mean of the 25 independent runs was

0.18517. The time elapsed for performing 25 independent runs and to collect the results was 180

seconds.

Table 6: Rosenbrock benchmark function results

Best Worst Mean Standard

Deviation

Time (in sec.)

0.00774 3.99466 0.18517 0.77768 180

22

Table 7 shows the results of 25 independent runs on the benchmark function Schwefel.

The table includes all the results discussed in the Section 4.3.1. The best objective value was

found at 0.00003, while the worst was 217.1397 and the mean of the 25 independent runs was

91.69742. The time elapsed for performing 25 independent runs and to collect the results was

102 seconds.

Table 7: Schwefel benchmark function results

Best Worst Mean Standard

Deviation

Time

0.00003 217.1397 91.69742 69.49743 102

On evaluating the results, De Jong performed well in terms of standard deviation with a

very low value of 1.0 E-05, and the performance of Schwefel was poor in terms of standard

deviation with a very high value of 69.49743. Schwefel took the least time of 102 sec. to

evaluate all the results. The rest of the functions performed moderately in terms of time

complexity.

4.4.2. Test case 2: Simulations performed by varying the problem dimension

The following section discusses the results obtained by varying the problem dimension

over a constant number of iterations. 30 independent repetitions have been performed for five

functions and the mean of all the thirty independent runs has been calculated. Table 8 shows the

collected results.

Presented below the table are the individual graphs for each function displaying the

variation of mean value over 30 independent runs with increase in problem dimension.

23

Table 8: Average results for function on varying dimension

Function

Name

Average Result

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

Ackley 10.82313 13.29198 16.17964 17.8368 18.63649

Dejong 4.84E-07 5.38E-06 1.95E-05 4.04E-05 7.36E-05

Michalewicz 0.801303 2.527208 4.287659 6.095856 7.941764

Rosenbrock 5.63E-05 0.149998 0.164495 0.174542 0.343287

Schwefel 51.99992 735.7153 1360.356 1890.222 2630.118

Figure 4: Mean values for Ackley against dimension

The variation of the mean versus augmenting dimension value for Ackley is shown in

Figure 4. The lowest mean value 10.823 was for dimension 2, and the highest mean value 18.636

was obtained for dimension 10.

0

2

4

6

8

10

12

14

16

18

20

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e

v
a
lu

e

Dimension

Ackley

24

Figure 5: Mean values for De Jong against dimension

The variation of the mean versus augmenting dimension value for De Jong is shown in

Figure 5. The lowest mean value 4.84E-07 was achieved for dimension 2, and the highest mean

value 7.36E-05 was obtained for dimension 10.

Figure 6: Mean values for Michalewicz against dimension

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e

V
a
lu

e

Dimension

Dejong

0

1

2

3

4

5

6

7

8

9

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e

V
a
lu

e

Dimension

Michalewicz

25

The variation of the mean versus augmenting dimension value for Michalewicz is shown

in Figure 6. The lowest mean value 0.8013 was achieved for dimension 2, and the highest mean

value 7.941 was obtained for dimension 10.

Figure 7: Mean values for Rosenbrock against dimension

The variation of the mean versus augmenting dimension value for Rosenbrock is shown

in Figure 7. The lowest mean value 5.63E-05 was achieved for dimension 2, and the highest

mean value 3.43E-01 was obtained for dimension 10.

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

4.00E-01

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e

V
a
lu

e

Dimension

Rosenbrock

26

Figure 8: Mean values for Schwefel against dimension

The variation of the mean versus augmenting dimension value for Schwefel is shown in

Figure 8. The lowest mean value 51.999 was achieved for dimension 2, and the highest mean

value 2630.118 was obtained for dimension 10.

Tabular values and the graphs presented illustrate that the lower the dimension, the better

the performance of the algorithm. This is a well-known behavior of optimization algorithms in

general.

4.4.3. Test case 3: Simulations performed by varying number of generations

The following section describes the results obtained by varying the number of iterations

and recording the best value for one single independent run. The simulations have been

performed on five different functions and the results obtained are illustrated in the figures below.

0

500

1000

1500

2000

2500

3000

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e

V
a
lu

e

Dimension

Schwefel

27

Figure 9: Variation of best value with number of generations for De Jong

The variation of best objective value versus number of iterations for De Jong function is

illustrated in Figure 9. The number of iterations has been varied between 100 and 4,000. The best

objective value varied from 4.1E-04 to 2.28E-05.

Figure 10: Variation of best value against number of generations for Michalewicz

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

3.50E-04

4.00E-04

4.50E-04

100 500 1000 1500 2000 2500 3000 3500 4000

B
es

t
v
a
lu

e

Number of generations

Dejong

-2.761

-2.76

-2.759

-2.758

-2.757

-2.756

-2.755

-2.754

-2.753

100 500 1000 1500 2000 2500 3000 3500 4000

B
es

t
v
a
lu

e

Number of generations

Michalewicz

28

The variation of best objective value versus number of iterations for Michalewicz

function is illustrated in Figure 10. The number of iterations has been varied between 100 and

4,000. The best objective value varied from -2.756 to -2.7604.

Figure 11: Variation of best value with number of generations for Ackley

The variation of best objective value versus number of iterations for Ackley function is

illustrated in Figure 11. The number of iterations has been varied between 100 and 7,000. The

best objective value varied from 15.9379 to 0.01741.

0

2

4

6

8

10

12

14

16

18

100 500 1000 2000 3000 4000 5000 6000 7000

B
es

t
v
a
lu

e

Number of generations

Ackley

29

Figure 12: Variation of best value with number of generations for Schwefel

The variation of best objective value versus number of iterations for Schwefel function is

illustrated in Figure 12. The number of iterations has been varied between 100 and 7,000. The

best objective value varied from 704.3218 to 305.9326.

Figure 13: Variation of best value with number of generations for Rosenbrock

300

350

400

450

500

550

600

650

700

750

100 500 1000 2000 3000 4000 5000 6000 7000

B
es

t
v
a
lu

e

Number of generations

Schwefel

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

100 500 1000 2000 3000 4000 5000 6000 7000

B
es

t
v
a
lu

e

Number of generations

Rosenbrock

30

The variation of best objective value versus number of iterations for Rosenbrock function

is illustrated in Figure 13. The number of iterations has been varied between 100 and 7,000. The

best objective value varied from 1.56967 to 0.21194.

The plots clearly show that the best value decreases, that is, the performance of the

algorithm increases with increasing number of iterations.

4.4.4. Test case 4: Simulations performed by varying number of generations against the

average value

Five functions were evaluated by the firefly algorithm on a constant number of

dimensions, by varying the number of iterations. Thirty independent runs for each function have

been made, the average over the 30 runs has been calculated and the results have been tabulated.

Table 9: Varying number of iterations and calculating average value

Function

Name

Average Result

Generations

=1,000

Generations

=10,000

Generations

=100,000

Generations

=1,000,000

Ackley 5.090657 4.266571 4.096618 4.055079

Rosenbrock 0.726725 0.420028 0.330758 0.238947

Michalewicz -2.73496 -2.74938 -2.73324 -2.73326

Dejong 0.000163 4.91E-05 1.68E-05 4.69E-06

Schwefel 724.5558 560.4997 339.9028 183.3132

The results tabulated have been plotted and have shown the following behavior:

31

Figure 14: Variation of mean value for Ackley against increasing iterations

The variation of mean value versus the number of iterations for Ackley function is

illustrated in Figure 14. The mean value has varied between 5.09 and 4.05; it has almost

remained constant for 100,000 and 1,000,000 iterations.

Figure 15: Variation of mean value for Rosenbrock against increasing iterations

0

1

2

3

4

5

6

1000 10000 100000 1000000

M
ea

n
 V

a
lu

e

Number of Iterations

Ackley

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1000 10000 100000 1000000

M
ea

n
 V

a
lu

e

Number of Iterations

Rosenbrock

32

The variation of mean value versus the number of iterations for Rosenbrock function is

illustrated in Figure 15. The mean value has been calculated at 4 different points between 1,000

and 1,000,000. The mean value has varied between 0.7267 and 0.2389.

Figure 16: Variation of mean value for Michalewicz against increasing iterations

The variation of mean value versus the number of iterations for Michalewicz function is

illustrated in Figure 16. The mean value has been calculated at 4 different points between 1,000

and 1,000,000. The mean value has varied between -2.7349 and -2.7332.

-2.739

-2.738

-2.737

-2.736

-2.735

-2.734

-2.733

-2.732

-2.731

-2.73

1000 10000 100000 1000000

M
ea

n
 V

a
lu

e

Number of Iterations

Michalewicz

33

Figure 17: Variation of mean value for De Jong against increasing iterations

The variation of mean value versus the number of iterations for De Jong function is

illustrated in Figure 17. The mean value has been calculated at 4 different points between 1,000

and 1,000,000. The mean value has varied between 1.6E-04 and 4.96E-06.

Figure 18: Variation of mean value for Schwefel against increasing iterations

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

1.80E-04

1000 10000 100000 1000000

M
ea

n
 V

a
lu

e

Number of Iterations

Dejong

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000

M
ea

n
 V

a
lu

e

Number of iterations

Schwefel

34

The variation of mean value versus the number of iterations for Schwefel function is

illustrated in Figure 18. The mean value has been calculated at 4 different points between 1,000

and 1,000,000. The mean value has varied between 724.5558 and 183.3132.

There is an improvement in performance of the algorithm with the increase in the number

of iterations. The increased performance is larger in some functions than in other functions.

35

5. CONCLUSIONS AND FUTURE WORK

The firefly algorithm uses the process of attraction based on the brightness in fireflies to

optimize an objective function. Prior research has shown that the algorithm can solve both

continuous and discrete optimization problems [22]. Given the algorithms capability to be useful

in both continuous and discrete domain it can be extended to solve real world optimization

problems.

In this paper, the firefly algorithm has been tested using five different benchmark

functions both unimodal and multimodal in class. Three different test cases have been designed

to test the algorithm using the functions.

In test case 1, the problem dimension has been varied and the average of the best values

over 25 independent runs has been calculated. The variation of the mean value over varying

dimension has also been calculated. It was observed that the algorithm performed better at lower

dimension than higher dimension.

In test case 2, the number of iterations have been varied and the best value for one single

independent run have been noted and it was observed that the algorithm performed better with

increasing iterations.

In test case 3, the number of iterations has been varied and the mean of best values over

30 independent runs was calculated. The algorithm performed better with increasing number of

iterations, which is the expected behavior.

The results obtained from the evaluation of the algorithm insinuated that the algorithm is

not as efficient as opposed to particle swarm optimization.

In the future, we plan to incorporate the functionality of other algorithms to generate a

hybrid firefly algorithm to improve the performance, as well as test the hybrid by changing

36

various input parameters and also extend its application to various real world optimization

problems.

37

6. REFERENCES

[1] Dantzig, G. B. (1998). Linear programming and extensions. Princeton university press.

[2] Fletcher, R. (1987). Practical methods of optimization. John Wiley & Sons.

[3] Banga, J. R. (2008). Optimization in computational systems biology. BMC systems

biology, 2(1), 47.

[4] Held, S., Korte, B., Rautenbach, D., & Vygen, J. (2011). Combinatorial Optimization in

VLSI Design.

[5] Kendall, G., & Mohamad, M. (2004, November). Channel assignment in cellular

communication using a great deluge hyper-heuristic. In Networks, 2004.(ICON 2004).

Proceedings. 12th IEEE International Conference on (Vol. 2, pp. 769-773). IEEE.

[6] Di Caro, G., Ducatelle, F., & Gambardella, L. M. (2005). AntHocNet: an adaptive nature‐

inspired algorithm for routing in mobile ad hoc networks.European Transactions on

Telecommunications, 16(5), 443-455.

[7] Brabazon, A., & O'Neill, M. (2006). Biologically inspired algorithms for financial

modelling. Berlin: Springer.

[8] Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver Press.

[9] Eiben, A. E., & Smith, J. E. (2010). Introduction to evolutionary computing (Vol. 2).

Berlin: Springer.

[10] Mitchell, M. (1998). An introduction to genetic algorithms (complex adaptive systems).

[11] Oliveira, F. R., & Neto, F. B. L. (2010). Flexible Dialogues in Decision Support Systems.

[12] Wloch, K., & Bentley, P. J. (2004, January). Optimising the performance of a formula

one car using a genetic algorithm. In Parallel Problem Solving from Nature-PPSN

VIII (pp. 702-711). Springer Berlin Heidelberg.

http://www.cs.vu.nl/~gusz/

38

[13] Sadek, A. W., Smith, B. L., & Demetsky, M. J. (1997). Dynamic traffic assignment:

Genetic algorithms approach. Transportation Research Record: Journal of the

Transportation Research Board, 1588(1), 95-103.

[14] Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural networks.

the MIT Press.

[15] Fauske, K. (2006, December 7). Example: Neural network. Texample.net. Retrieved July

2013 from http://www.texample.net/tikz/examples/neural-network/.

[16] Sivanandam, S. N., Sumathi, S., & Deepa, S. N. (2007). Introduction to fuzzy logic using

MATLAB. Springer.

[17] Łukasik, S., & Żak, S. (2009). Firefly algorithm for continuous constrained optimization

tasks. In Computational Collective Intelligence. Semantic Web, Social Networks and

Multiagent Systems (pp. 97-106). Springer Berlin Heidelberg.

[18] Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In Stochastic

algorithms: foundations and applications (pp. 169-178). Springer Berlin Heidelberg.

[19] Mancuso, N. (2010, July 26). Hybrid firefly algorithm with simulated annealing schedule

for continuous optimization problems. Code.google.com. Retrieved July 2013, from

https://code.google.com/p/csc6810project/source/browse/#svn%2Ftrunk%2FFireFly.

[20] Molga, M., & Smutnicki, C. (2005). Test functions for optimization needs. Test functions

for optimization needs.

[21] Khadwilard, A., Chansombat, S., Thepphakorn, T., Chainate, W., & Pongcharoen, P.

(2012). Application of Firefly Algorithm and its parameter setting for job shop

scheduling. วา า ฯ, 8(1), 49-58.

http://www.texample.net/tikz/examples/neural-network/
https://code.google.com/p/csc6810project/source/browse/#svn%2Ftrunk%2FFireFly
https://code.google.com/p/csc6810project/
https://code.google.com/p/csc6810project/
https://code.google.com/p/csc6810project/source/browse/#svn%2Ftrunk%2FFireFly

39

[22] Sayadi, M. K., Hafezalkotob, A., & Naini, S. G. J. (2012). Firefly-inspired algorithm for

discrete optimization problems: an application to manufacturing cell formation. Journal

of Manufacturing Systems.

