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ABSTRACT 

The field of nature inspired computing and optimization techniques have evolved to solve 

the difficult optimization problems in diverse fields of engineering, science and technology. The 

Firefly algorithm is one of the several nature inspired algorithms that have been developed in the 

recent past and is inspired from the flashing behavior of the fireflies. The flashing behavior of 

the fireflies is to attract other fireflies in the group for mating. The less bright firefly will be 

attracted by the brighter one. As all the fireflies are assumed to be unisexual, each firefly is 

attracted to the other. This process is mimicked in the algorithm to find the solution to objective 

function. In this paper, we evaluate the algorithm using few multi-dimensional benchmark 

functions. The results of the simulation are satisfactory showing the algorithm to have good 

performance abilities.  
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1. INTRODUCTION 

Interest in optimization has grown after the invention of the digital computers in the late 

fifties. Formally, optimization or mathematical optimization is the process of formulation and 

finding the solution to a problem based on some constraints. The problem may be to either 

minimize or maximize the solution to constrained optimization problems. The problem or the 

function under consideration is either maximized or minimized by methodically selecting inputs 

from a set of allowed values [1]. Thus, the word optimum can mean either ‘maximum’ or 

‘minimum’ based on the circumstances. 

Optimization problems are a part of a wide range of fields, to name a few Engineering, 

Mathematics, Political sciences, Social sciences, Commerce, Economics etc. [2].  In most real 

life cases solving a problem may lead to innumerable solutions, optimization leads to the best 

solution of all based on some criterion.  

1.1. Formulation 

The formulation of the optimization problem is an important part of solving the problem 

itself. The basic parameters of an optimization problem include the objective function, 

constraints that pose limits to the objective function and the optimization variables: 

Minimize f(x) subject to gi(x) ≤ bi where i = 1,….n. 

In the equation, f(x) is the objective function (fitness function) under consideration that is 

being minimized, in this case subject to the constraints gi(x) where, bi is a constant and the letter i 

represents the number of constraints on the objective function.  The optimization variables or the 

decision variables are an important part of the optimization process. There are broadly two 

categories of optimization problems based on the type of decision variables: 
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i) Continuous optimization: The decision variables are continuous represented by real 

numbers [3]. 

ii) Integer optimization: The decision variables are discrete represented by integer 

numbers [3]. 

Optimization problems can be as simple as minimizing the area of a rectangle based on 

one constraint, to as complex as optimizing the air traffic at a busy airport like Chicago. The 

complexity of an optimization changes with adding more than one objective or fitness function 

and the number of decision variables. Optimization problems may be both unimodal and multi-

modal. Unimodal optimization problems possess one good solution to the function and multi-

modal problems imply that they have more than one good solution to the function under 

consideration; they could all be global maxima, minima or local in many cases too. Most of the 

real life situations involving optimization are multimodal. 

1.2. Examples 

Optimization is an indispensable part of many fields. Listed are some of the classic 

optimization problems. Travelling salesman is perhaps the most known and discussed 

optimization problem. The goal is to calculate the shortest path between a list of given cities and 

the distances between those cities. 

Bin packing problem is a multi-disciplinary classic combinational optimization problem. 

It is computationally non-deterministic polynomial-time (NP) hard. In a bin packing problem 

objects of different volumes must be packed into finite number of bins of same volume. 

In electronics, very large scale integrated (VLSI) layout/circuit design is a combinational 

optimization problem, in which the space on the VLSI chip is optimally used to placed 

transistors, capacitors etc. to increase the possibility to fabricate a smaller physical structure [4]. 
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The channel assignment problem in wireless communication is a combinatorial 

optimization problem that is NP hard. The problem can be defined as assigning the least number 

of radio channels to a set of transceivers to avoid interference between any two given channels. 

Many approaches have been proposed to solve this problem like graph coloring, genetic 

algorithms and local search, etc. [5]. 

Optimization of benchmark functions using nature inspired genetic algorithms is an 

application in computational optimization. Benchmark functions are used to control and review 

the performance of the algorithms. The standard benchmark functions used to review the 

performance of algorithms are unimodal or multimodal with low and high dimensionality. The 

complexity of solving a NP-hard combinational problem is higher than any other optimization 

problems with no guarantee of reaching a global optimum.  

1.3. Nature-inspired optimization algorithms 

Nature provides some of the most efficient ways to solve problems. Algorithms that are 

inspired by nature and imitate a certain process from nature are nature inspired algorithms. 

Several nature inspired algorithms have been proposed to solve NP hard optimization problems, 

for example, nature inspired algorithms for mobile ad hoc routing [6], biologically inspired 

algorithms for financial modeling, etc [7].  

Ant colony optimization, particle swarm optimization, bee algorithm and firefly 

algorithm are a few examples of nature inspired algorithms.  

The firefly algorithm is a meta-heuristic optimization algorithm that follows the flashing 

behavior of fireflies. The brightness of the fireflies is affiliated with the objective function under 

consideration. The algorithm has been formulated with three main assumptions [8]: 
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i) All fireflies are unisexual, eliminating the possibility of attraction based on gender 

that is, each firefly will be attracted by all other fireflies. 

ii) Attraction is dependent on the amount of brightness that is a less brighter firefly is 

attracted to a brighter one. 

iii) The brightness of the firefly is equivalent to the objective function. 

In this paper, we are evaluating the firefly algorithm in terms of objective value with 

regards to the number of generations, and increasing dimensions using five benchmark functions. 

The arrangement of the chapters is as follows: Chapter 2 discusses related research. 

Chapter 3 describes the firefly algorithm and the approach that has been followed. Chapter 4 

discusses the results that have been obtained using the evaluation procedure implemented. 

Chapter 5 concludes this study with ideas for future work. 

 

 

 

 



5 
 

2. LITERATURE REVIEW 

The field of nature inspired computing has produced some ground breaking research 

results in the past few decades, and is expected to do so in the coming years too. Nature inspired 

computing mimics the patterns of living phenomena in nature to solve complex problems. The 

idea of nature inspired computing was set forth in the early 60’s and has created a new era of 

algorithms that solve the most complex problems. Nature inspired algorithms can be broadly 

classified into two classes namely: 

i) Evolutionary algorithms 

a) Genetic algorithm 

b) Memetic algorithm 

c) Neuroevolution  

ii) Swarm intelligence 

a) Particle swarm optimization 

b) Ant colony optimization 

c) Firefly algorithm 

2.1. Evolutionary algorithms 

Evolutionary algorithms are a subset of nature inspired algorithms that apply mechanisms 

that closely mimic biological evolution. Evolutionary algorithms follow the precept of natural 

selection given a population of individuals, based on the survival rule “survival of the fittest”.  

The basic steps in the algorithm are selection and mutation to generate candidates for the next 

generation. For any function to be maximized or minimized a set of candidate solutions in the 

function domain are generated and a fitness measure based on the function is applied to the 

candidate solutions to select the fittest of the generation. The fittest in the present generation are 
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then used to seed the next generation. The basic ways of generating offspring from the current 

generation is either by recombination or by mutation. This process is repeated for numerous 

generations until a good candidate solution with sufficient quality or until an agreed limit, i.e., a 

specific number of generations is reached [9]. 

2.1.1. Genetic algorithm 

Perhaps the most referenced of the evolutionary algorithms is the genetic algorithm. The 

Algorithms mimics the natural evolution proposed by Charles Darwin. The basic steps of 

operation in a genetic algorithm are initialization, selection, crossover and mutation, termination. 

The algorithm is initiated by generating a random population of chromosomes, in the next step 

the fitness is evaluated for each of the chromosomes based on the function under evaluation. 

Based on the fitness value the best chromosomes are selected to reproduce the next generation of 

chromosomes by the crossover and mutation process. The current population is then replaced by 

the new population that is generated in the previous steps and the process of calculating the 

fitness function for the new population is repeated. The algorithm is iterated until a 

predetermined fitness value is reached or for prefixed number of generations or iterations has 

been reached [10]. The following image depicts the genetic algorithm cycle [11].  

 

Figure 1: Genetic algorithm cycle [11] 
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Repeated calculation of the fitness function over many generations make genetic 

algorithms a costly way of answering real world problems. 

Few of the prominent applications of genetic algorithms in real world problems are: 

i) In automotive design for optimum design of vehicle suspensions and performance 

optimization of high end sport cars [12]. 

ii) For optimizing the telecommunications routing, which is still under development. 

iii) For optimizing traffic and shipment routing to reduce congestions on roads [13]. 

2.1.2. Neural networks 

Neural networks are a part of Neuroevolution that mimics the pattern of communication 

in the nervous system of the body. They are also referred to as artificial neural networks or 

neural nets [14]. The nervous system and its communication process is mimicked by using 

directed graphs in artificial neural networks, in which the directed connectors show the flow 

from input to the output performing function evaluations at different stages. The directed graphs 

usually consist of one input layer, one or more hidden layers and an output layer. Each node in 

the directed graph performs a simple computation and the connectors convey the signal from one 

node to the other. Each connector is assigned a weight and the weight is the amplification factor 

of the signal that is being propagated through. The weights are at first chosen randomly and are 

updated by a learning process given that the task to be accomplished by the neural network is 

known. Neural networks are constrained to only a few applications as of now and are to be 

researched much further to make it more diverse. The following figure depicts “neural networks” 

[15]. 
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Figure 2: Example neural networks [15] 

Artificial neural networks are mostly used in the fields of: 

i) Robotics 

ii) Control engineering 

iii) Data processing 

2.2. Swarm intelligence 

Swarm intelligence is a collated behavior of disintegrated systems. The term was coined 

in 1989 by Beni and Wang. Swarm intelligence is mostly motivated from insects, birds and fish 

that follow a certain pattern when moving around in swarms or flocks. The members of the 

swarm must be able to communicate with each other about the environmental surroundings, for 

example, ants leave a trail of a certain chemical when going in search of food. Increase in the 

intensity of the chemical tells the ants on the trail that the food is closer. The swarms are also 

expected to acclimate to the conditions of the surroundings and vary decisions accordingly. A 

tight coupling exists between the swarm and its members. The members collectively control the 

behavior of the swarm. The members of the swarm interact with others in the swarm to solve a 

global problem. 
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2.2.1. Particle swarm optimization 

Particle Swarm optimization is a stochastic optimization algorithm introduced in the first 

half of 90’s by Eberhart and Kennedy. PSO is inspired by birds flocking. The intent of the 

development was to simulate graphically the pattern of a flock of birds flying in tandem and 

execute swift direction changes.  The initialization in PSO is similar to that of genetic algorithm; 

a random population is generated to represent the members of the swarm. The search for 

optimum goes on for generations by updating the swarm throughout the generations [16]. The 

particles fly through the solution based on their own best value and the swarm’s best value.  

PSO has been applied to a wide variety of problems including multi-objective problems 

in which more than one objective function is optimized simultaneously. 

2.2.2. Ant colony optimization 

Another famous member of the swarm intelligence algorithms family is the Ant colony 

optimization algorithm. Ant colony optimization is a population based algorithm developed for 

combinatorial problems. It is inspired from the trail setting technique used by the ants when 

moving around in the search for food. The chemical deposit increases as the distance to the food 

decreases. This is mimicked by using weights in computational environment. Software agents 

called artificial ants search for optimal solutions in a weighted graph. Local minimums are also 

avoided as the chemical left by the ants on their trail tend to evaporate quickly [16].  

Ant colony optimization applications include scheduling, assignment and routing 

problems, thus, making it more specific to routing and scheduling problems. 

2.3. Firefly algorithm 

Most of the nature inspired algorithms are metaheuristic. Heuristics are problem specific 

and are not efficient at solving others, whereas metaheuristics are indented to solve a wide range 
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of problems. Meta heuristics might not be as efficient as problem specific heuristics; they can 

easily replace heuristics when they are not readily available. 

Every algorithm defined thus far has its own way of working out solutions to diverse 

problems. There might be some performance differences but all algorithms work towards 

establishing the goal. Every algorithm specializes at solving a certain issue, for example Ant 

Colony Optimization specializes at scheduling, assignment and routing problems and may lack 

the performance advantage when applied to solving multi-objective function, which is Particle 

Swarm Optimizations forte.  

The firefly algorithm is a metaheuristic algorithm, which is inspired by the flashing 

behavior used by fireflies to attract each other in the mating process. It has been first proposed 

Yang in 2007 [8]. The brightness of the firefly is the key point of the algorithm, and is equivalent 

to the objective function under consideration. Three main assumptions were made when 

proposing the algorithm: 

i) All fireflies are unisexual that is one firefly will be attracted by all others. 

ii) Attraction is dependent on the amount of brightness, that is a less brighter firefly 

is attracted to a brighter one. 

iii) The brightness of the firefly is equivalent to the objective function. 

The attractiveness is dependent on the distance between the two fireflies as the intensity 

of light decreases as the distance between the two fireflies increases. Therefore, the closer the 

fireflies the more attractive they seem to each other. Multiple variants of firefly algorithm are 

being developed. 

The firefly algorithm has been proved to be efficient at solving optimization tasks and 

can be more efficient than other meta-heuristic algorithms when applied to continuous 
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constrained optimization tasks [17], stochastic functions [18], multi-modal functions and even in 

the field of digital image processing. Given the wide range of applications, less complexity and 

more efficiency than other meta-heuristic make the firefly algorithm a good subject for 

continuing research.  
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3. FIREFLY ALGORITHM 

Flashing behavior of the fireflies is unique to the kind of species they belong to and 

varies from one type of species to the other. The aim of such flashing behavior can be either of 

attracting mates or for attracting prey. The flashing light can be formulated to mimic the 

objective function under consideration and formulate a new optimization algorithm. 

3.1. Formulation  

The attractiveness of different fireflies leads to the movement of firefly towards the other. 

This is the basic idea of the formulation of the algorithm. Luminescence or light intensity is 

defined as the amount of light energy transmitted and it varies with the distance. The 

attractiveness of the fireflies varies with the brightness which is in turn related to the objective 

function in the mathematical domain. The intensity decreases with the increase in distance, and 

hence, a given firefly will be attracted to a firefly that is close to it even though it is less bright 

than a farther but brighter firefly. The intensity of light is known to vary inversely with the 

square of increasing distance or radius given by [18]: 

 ( )  
 

  
 

Where I(r) represent the light intensity as a function of distance and r is the radius. This 

can be converted to equality by adding a constant I(s), which is intensity at the source. In real life 

conditions, every different form of energy is affected by atmospheric components, for example, 

sound traveling in a medium can be affected by the direction of wind and the amount of natural 

noise generated in the surrounding environment. Light is no exception to that and hence the 

intensity of light can also decrease depending on several environmental constraints. The intensity 

of light in real situations also depends on a factor called the absorption coefficient, and therefore, 

the inclusion of the absorption coefficient (γ) changes the equation to: 
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 ( )      
     

Attractiveness of the firefly is dependent and is directly proportional to the intensity of 

light. Hence the intensity equation can be transformed to represent the attractiveness as follows: 

  
  

     
 

Here β represents the attractiveness of the firefly and β0 is the attractiveness at a radius 0; 

for practicality of implementation the attractiveness can vary as any power of radius rather than 

the square root [18]. The mapping of the parameters and corresponding notation used in the 

algorithm is shown in Table 1. 

Table 1: Parameters and definitions 

Parameter Notation in Algorithm 

Brightness Objective function 

Beta (β) Attractiveness 

Alpha (α) Randomization parameter 

Gamma (γ) Absorption coefficient 

Number of generations Iterations 

Number of fireflies Population 

Dimension Problem dimension 

R Radius, time interval etc. (depends on 

application 
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3.2. Algorithm 

In the firefly algorithm, the optimization process depends on the brightness of the fireflies 

and the movement of fireflies towards their brighter counterparts. Every firefly is attracted to the 

other depending on brightness because the fireflies are all unisexual according to the first 

assumption about artificial fireflies. The following section describes the pseudo code [21]. 

Define an initialize benchmark function f(x), x = (x1, ..., xd) 

Generate initial population of fireflies xi (i = 1, 2, ..., n) 

Determine light intensity for xi by calculating f(xi) 

Define light absorption coefficient γ 

While t < MaximumGeneration 

 Make a copy of the generated firefly population for move function 

For i = 1 : n all n fireflies 

For j = 1 : i all n fireflies 

If (Ij > Ii ),  

 Move fireflies i  and j according to attractiveness   

  Evaluating new solutions and updating light intensity for  

  next iteration 

End if 

End for j 

End for i 

Sorting the fireflies to find the present best 

End while 

Begin post process on best results obtained 
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The firefly algorithm starts by initializing a population of fireflies and each firefly is 

different from the other in the swarm. The differentiation is based on the brightness of the firefly. 

The brightness of the firefly is what determines the internal movement of the fireflies. 

 During the iterative process, the brightness of one firefly is compared with the others in 

the swarm and the difference in the brightness triggers the movement. The distance travelled 

depends on the attractiveness between the fireflies. During the iterative process the best solution 

thus far is continuously updated and the process goes on until certain stopping conditions are 

satisfied. After the iterative process comes to a halt the best solution of the evaluation is 

determined and the post process is initiated to obtain the results. The flowchart diagram is shown 

in Figure 3. 

We modified an already existing Firefly algorithm code [19] to evaluate the performance 

of the algorithm by varying the input parameters like the number of iterations and the problem 

dimension. The measurement metrics added to the code allows to automatically generate the 

best, worst, average and standard deviation over several runs. The estimated running time for 

each run was also kept track of. The code was also automated to write the generated results to an 

excel file. The results obtained are discussed in detail in the next session.  
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Figure 3: Flowchart illustrating the algorithm 

START 

Call objective 

function 
 

Initialize Parameters 

Initialize firefly 

procedure 

Initialize firefly 

population 

Make a copy of firefly 

population 

Rank fireflies according to 

attractiveness 

Sort the fireflies 

accordingly 

Stopping 

criteria 

reached 

Obtain global minimum 

END 

No 



17 
 

4. EXPERIMENTAL SETUP AND RESULTS 

4.1. Introduction 

Global optimization techniques are required to be validated by a published set of 

benchmark problems. Benchmark functions are a way to test the optimization techniques. 

4.2. Benchmark functions 

There are four different types of benchmark functions designed for testing the global 

optimization problem [20]. All the classes discussed below are continuous: 

a) Unimodal, convex, multidimensional: The set of functions designed for this class 

are easier to solve and have one global optimum. These functions can result in 

poor convergence to global optimum. 

b) Multimodal and two dimensional functions with a few local optima: The set of 

functions under this class are of medium complexity and are serviceable to 

functions that have a few local optima and one global optimum.  

c) Multimodal and two dimensional with many local optima: The set of functions 

under this class are more complex than the previous one as they are applicable to 

functions with large number of local optima.  

d) Multimodal and multidimensional with many local optima: The functions under 

this set are more complex compared to the previous ones and are applied to 

intelligent optimization algorithms in combination with the previous class. Two 

dimensional problems are very rare in real world situations and hence 

multidimensional multimodal benchmark problems are prevalent in such 

situations. 
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Simple introductions to the functions that have been used to test the firefly algorithm 

have been defined below with their mathematical definition listed. 

a) De Jong function: It is a simple and a continuous benchmark problem and belongs 

to the first class defined above. It is mathematically defined as: 

 ( )   ∑  
 

 

   

 

 

b) Michalewicz function: Michalewicz function is a mutimodal test function with n! 

local optima and the parameter m defines the difficulty of the functions, as the m 

goes higher the difficulty of the search increases. It is defined mathematically as: 

 ( )   ∑    (  ) [    (
   
 

 
)]

   

   

 

c) Rosenbrock function: It is a unimodal function and is also known as the second 

function of De Jong. It is defined as follows: 

 ( )   [   (       
 )  (    )

 ] 

d) Schwefel function: Schwefel function is a multimodal separable function. Global 

optimum for the function is distant from the next best local optima and hence the 

function is tricky and can drive the algorithm in a different search direction. It is 

defined as: 

 ( )   ∑[      (√|  |)]

 

   

 

e) Ackley function: Ackley is a multimodal non-separable function. It is widely used 

for validation and testing purposes of algorithms. It is mathematically defined as, 
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 ( )        (   √
∑   

  
   

 
)     (

∑    (   )
 
   

 
)       ( ) 

Table 2: Benchmark problems 

Function Name Search Space 

De Jong -5.12 to +5.12 

Michalewicz 0 to PI 

Rosenbrock -2.048 to +2.048 

Schwefel -500 to +500 

Ackley -32.768 to +32.768 

 

4.3. Experimental setup 

The benchmark functions used for running the simulations have been defined in the 

previous section. The simulations have been made with the following parameter setup for all 

functions. 

1. Population = 80 

2. Number of dimensions = 6 

The number of iterations has been kept constant at 8,000 unless stated otherwise.  The 

parameters alpha, beta, gamma and epsilon have been set at 0.25, 0.20, 1.0 and 0.001 

respectively. The values of all the parameters remain constant unless stated otherwise. 

Independent simulations have been run for each of the five functions defined in the 

previous section and the following results have been collected. 

The outputs for 25 independent runs are: 

1. Best value  



20 
 

2. Worst value 

3. Mean Value 

4. Standard deviation of mean value 

5. Time elapsed 

4.4. Results 

The firefly algorithm has been tested using five different benchmark functions via 4 

different test cases. In the first test case, the best objective value has been calculated for all 

functions over a fixed number of iterations. The second test case is used to evaluate the variation 

of the mean of 30 independent runs versus varying dimensions. The third test case is used to 

evaluate the variation of the mean of 30 independent runs versus varying iterations. The fourth 

test case is used to evaluate the variation of the best objective value versus varying iterations. 

4.4.1. Test case 1: Best objective value versus fixed number of iterations 

 Table 3 shows the results of 25 independent runs on the benchmark function Ackley. The 

table includes all results discussed in the Section 4.3.1. The best objective value was found at 

0.00072, while the worst was 9.35 and the mean of the 25 independent runs was 2.25507. The 

time elapsed for performing 25 independent runs and to collect the results was 470 seconds.   

Table 3: Ackley benchmark function outputs 

Best Worst Mean Standard 

Deviation 

Time (in sec.) 

0.00072 9.35306 2.25507 2.27691 470 

 

Table 4 shows the results of 25 independent runs on the benchmark function De Jong. 

The table includes all the results discussed in the Section 4.3.1. The best objective value was 

found at 0, while the worst was 0.00004 and the mean of the 25 independent runs was 0.00001. 

The variation between the best and the worst value indicates that the standard deviation of the 
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function is very low. The time elapsed for performing 25 independent runs and to collect the 

results was 178 seconds.  

Table 4: De Jong benchmark function outputs 

Best Worst Mean Standard 

Deviation 

Time (in sec.) 

0 0.00004 0.00001 0.00001 178 

 

Table 5 shows the results of 25 independent runs on the benchmark function 

Michalewicz. The table includes all the results discussed in the Section 4.3.1. The best objective 

value was found at -2.65692, while the worst was -4.68698 and the mean of the 25 independent 

runs was -4.10826. The time elapsed for performing 25 independent runs and to collect the 

results was 186 seconds.  

Table 5: Michalewicz benchmark function results 

Best Worst Mean Standard 

Deviation 

Time (in sec.) 

-2.65692 -4.68698 -4.10826 0.55496 186 

 

Table 6 shows the results of 25 independent runs on the benchmark function Rosenbrock. 

The table includes all the results discussed in the Section 4.3.1. The best objective value was 

found at 0.00774, while the worst was 3.99466 and the mean of the 25 independent runs was 

0.18517. The time elapsed for performing 25 independent runs and to collect the results was 180 

seconds.  

Table 6: Rosenbrock benchmark function results 

Best Worst Mean Standard 

Deviation 

Time (in sec.) 

0.00774 3.99466 0.18517 0.77768 180 

 



22 
 

Table 7 shows the results of 25 independent runs on the benchmark function Schwefel. 

The table includes all the results discussed in the Section 4.3.1. The best objective value was 

found at 0.00003, while the worst was 217.1397 and the mean of the 25 independent runs was 

91.69742. The time elapsed for performing 25 independent runs and to collect the results was 

102 seconds.  

Table 7: Schwefel benchmark function results 

Best Worst Mean Standard 

Deviation 

Time 

0.00003 217.1397 91.69742 69.49743 102 

 

On evaluating the results, De Jong performed well in terms of standard deviation with a 

very low value of 1.0 E-05, and the performance of Schwefel was poor in terms of standard 

deviation with a very high value of 69.49743. Schwefel took the least time of 102 sec. to 

evaluate all the results. The rest of the functions performed moderately in terms of time 

complexity. 

4.4.2. Test case 2: Simulations performed by varying the problem dimension 

The following section discusses the results obtained by varying the problem dimension 

over a constant number of iterations. 30 independent repetitions have been performed for five 

functions and the mean of all the thirty independent runs has been calculated. Table 8 shows the 

collected results. 

Presented below the table are the individual graphs for each function displaying the 

variation of mean value over 30 independent runs with increase in problem dimension. 
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Table 8: Average results for function on varying dimension 

Function 

Name 

Average Result 

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10 

Ackley 10.82313 13.29198 16.17964 17.8368 18.63649 

Dejong 4.84E-07 5.38E-06 1.95E-05 4.04E-05 7.36E-05 

Michalewicz 0.801303 2.527208 4.287659 6.095856 7.941764 

Rosenbrock 5.63E-05 0.149998 0.164495 0.174542 0.343287 

Schwefel 51.99992 735.7153 1360.356 1890.222 2630.118 

 

  

Figure 4: Mean values for Ackley against dimension 

The variation of the mean versus augmenting dimension value for Ackley is shown in 

Figure 4. The lowest mean value 10.823 was for dimension 2, and the highest mean value 18.636 

was obtained for dimension 10. 

0

2

4

6

8

10

12

14

16

18

20

Dim = 2 Dim = 4 Dim = 6 Dim = 8 Dim = 10

A
v
er

a
g
e 

v
a
lu

e 

Dimension 

Ackley 



24 
 

 

Figure 5: Mean values for De Jong against dimension 

The variation of the mean versus augmenting dimension value for De Jong is shown in 

Figure 5. The lowest mean value 4.84E-07 was achieved for dimension 2, and the highest mean 

value 7.36E-05 was obtained for dimension 10. 

 

Figure 6: Mean values for Michalewicz against dimension 
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The variation of the mean versus augmenting dimension value for Michalewicz is shown 

in Figure 6. The lowest mean value 0.8013 was achieved for dimension 2, and the highest mean 

value 7.941 was obtained for dimension 10. 

 

Figure 7: Mean values for Rosenbrock against dimension 

The variation of the mean versus augmenting dimension value for Rosenbrock is shown 

in Figure 7. The lowest mean value 5.63E-05 was achieved for dimension 2, and the highest 

mean value 3.43E-01 was obtained for dimension 10. 
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Figure 8: Mean values for Schwefel against dimension 

The variation of the mean versus augmenting dimension value for Schwefel is shown in 

Figure 8. The lowest mean value 51.999 was achieved for dimension 2, and the highest mean 

value 2630.118 was obtained for dimension 10. 

Tabular values and the graphs presented illustrate that the lower the dimension, the better 

the performance of the algorithm. This is a well-known behavior of optimization algorithms in 

general.  

4.4.3. Test case 3: Simulations performed by varying number of generations 

The following section describes the results obtained by varying the number of iterations 

and recording the best value for one single independent run. The simulations have been 

performed on five different functions and the results obtained are illustrated in the figures below. 
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Figure 9: Variation of best value with number of generations for De Jong 

The variation of best objective value versus number of iterations for De Jong function is 

illustrated in Figure 9. The number of iterations has been varied between 100 and 4,000. The best 

objective value varied from 4.1E-04 to 2.28E-05. 

 

Figure 10: Variation of best value against number of generations for Michalewicz 
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The variation of best objective value versus number of iterations for Michalewicz 

function is illustrated in Figure 10. The number of iterations has been varied between 100 and 

4,000. The best objective value varied from -2.756 to -2.7604. 

 

Figure 11: Variation of best value with number of generations for Ackley 

The variation of best objective value versus number of iterations for Ackley function is 

illustrated in Figure 11. The number of iterations has been varied between 100 and 7,000. The 

best objective value varied from 15.9379 to 0.01741. 
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Figure 12: Variation of best value with number of generations for Schwefel 

The variation of best objective value versus number of iterations for Schwefel function is 

illustrated in Figure 12. The number of iterations has been varied between 100 and 7,000. The 

best objective value varied from 704.3218 to 305.9326. 

 

Figure 13: Variation of best value with number of generations for Rosenbrock 
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The variation of best objective value versus number of iterations for Rosenbrock function 

is illustrated in Figure 13. The number of iterations has been varied between 100 and 7,000. The 

best objective value varied from 1.56967 to 0.21194. 

The plots clearly show that the best value decreases, that is, the performance of the 

algorithm increases with increasing number of iterations. 

4.4.4. Test case 4: Simulations performed by varying number of generations against the 

average value 

Five functions were evaluated by the firefly algorithm on a constant number of 

dimensions, by varying the number of iterations. Thirty independent runs for each function have 

been made, the average over the 30 runs has been calculated and the results have been tabulated. 

Table 9: Varying number of iterations and calculating average value 

Function 

Name 

Average Result 

Generations 

=1,000 

Generations 

=10,000 

Generations 

=100,000 

Generations 

=1,000,000 

Ackley 5.090657 4.266571 4.096618 4.055079 

Rosenbrock 0.726725 0.420028 0.330758 0.238947 

Michalewicz -2.73496 -2.74938 -2.73324 -2.73326 

Dejong 0.000163 4.91E-05 1.68E-05 4.69E-06 

Schwefel 724.5558 560.4997 339.9028 183.3132 

 

The results tabulated have been plotted and have shown the following behavior: 
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Figure 14: Variation of mean value for Ackley against increasing iterations 

The variation of mean value versus the number of iterations for Ackley function is 

illustrated in Figure 14. The mean value has varied between 5.09 and 4.05; it has almost 

remained constant for 100,000 and 1,000,000 iterations. 

 

Figure 15: Variation of mean value for Rosenbrock against increasing iterations 
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The variation of mean value versus the number of iterations for Rosenbrock function is 

illustrated in Figure 15. The mean value has been calculated at 4 different points between 1,000 

and 1,000,000. The mean value has varied between 0.7267 and 0.2389. 

 

Figure 16: Variation of mean value for Michalewicz against increasing iterations 

The variation of mean value versus the number of iterations for Michalewicz function is 

illustrated in Figure 16. The mean value has been calculated at 4 different points between 1,000 

and 1,000,000. The mean value has varied between -2.7349 and -2.7332. 
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Figure 17: Variation of mean value for De Jong against increasing iterations 

The variation of mean value versus the number of iterations for De Jong function is 

illustrated in Figure 17. The mean value has been calculated at 4 different points between 1,000 

and 1,000,000. The mean value has varied between 1.6E-04 and 4.96E-06. 

 

Figure 18: Variation of mean value for Schwefel against increasing iterations 
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The variation of mean value versus the number of iterations for Schwefel function is 

illustrated in Figure 18. The mean value has been calculated at 4 different points between 1,000 

and 1,000,000. The mean value has varied between 724.5558 and 183.3132. 

There is an improvement in performance of the algorithm with the increase in the number 

of iterations. The increased performance is larger in some functions than in other functions. 
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5. CONCLUSIONS AND FUTURE WORK 

The firefly algorithm uses the process of attraction based on the brightness in fireflies to 

optimize an objective function. Prior research has shown that the algorithm can solve both 

continuous and discrete optimization problems [22]. Given the algorithms capability to be useful 

in both continuous and discrete domain it can be extended to solve real world optimization 

problems. 

In this paper, the firefly algorithm has been tested using five different benchmark 

functions both unimodal and multimodal in class. Three different test cases have been designed 

to test the algorithm using the functions. 

In test case 1, the problem dimension has been varied and the average of the best values 

over 25 independent runs has been calculated. The variation of the mean value over varying 

dimension has also been calculated. It was observed that the algorithm performed better at lower 

dimension than higher dimension. 

In test case 2, the number of iterations have been varied and the best value for one single 

independent run have been noted and it was observed that the algorithm performed better with 

increasing iterations.  

In test case 3, the number of iterations has been varied and the mean of best values over 

30 independent runs was calculated. The algorithm performed better with increasing number of 

iterations, which is the expected behavior. 

The results obtained from the evaluation of the algorithm insinuated that the algorithm is 

not as efficient as opposed to particle swarm optimization. 

In the future, we plan to incorporate the functionality of other algorithms to generate a 

hybrid firefly algorithm to improve the performance, as well as test the hybrid by changing 
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various input parameters and also extend its application to various real world optimization 

problems. 
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