

DEVELOPING A SOFTWARE TOOL TO ENHANCE THE CREATIVITY

DURING SOFTWARE DEVELOPMENT USING THE RESULTS FROM THE

LITERATURE REVIEW

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Reshma Hegde

In Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

July 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Developing a Software Tool to enhance the Creativity during Software

Development Using the Results from Systematic Literature Review

 By

Reshma Hegde

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Gursimran Walia

 Chair

Dr. Kendall E. Nygard

Dr. Simone Ludwig

Dr. Limin Zhang

 Approved:

 July 31, 2013 Dr. Brian Slator

 Date Department Chair

iii

ABSTRACT

Success during software development depends on the creativity of software engineers.

Knowledge plays a very important role in enhancing the creativity of software developers.

Knowledge is available in different forms like repository knowledge (experiences of past

projects) and community knowledge (gained through communication among software

engineers). I have developed a tool which could help software engineers be more creative and

successful. In order to develop this tool, a systematic literature review was undertaken to find

how knowledge influences creativity and the key features required in the tool. The systematic

literature review reports the various knowledge sources and how these can be accessed by

developers to be more creative, and the methods used to access the knowledge sources. This

paper describes the motivation for the tool, features of the tool and improvements for the next

version of the tool.

iv

ACKNOWLEDGEMENTS

I’m grateful to my adviser Dr. Gursimran Walia for his continuous help, support, patience

and guidance in the development and completion of this paper. He has been a helpful advisor

who has motivated me at every step and guided me during my master’s program.

I’m grateful to Dr. Kendall Nygard for always being helpful with various stages in the

progress of my Master’s program and for taking out the time to be a part of my supervisory

committee.

I’m grateful to Dr. Simone Ludwig for taking out the time to be a part of my supervisory

committee.

I’m grateful to Dr. Limin Zhang for taking out the time to be a part of my supervisory

committee.

I’m grateful to the Computer Science department faculty and staff in all the ways I could

use their help in the progress and completion of my Master’s program.

Finally, I’m grateful to my parents, sister and fiancé for being supportive all the way.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION ... 1

2. BACKGROUND AND RELATED WORK ... 5

2.1. Motivation .. 5

2.2. Related work on role of knowledge in creativity ... 6

3. SYSTEMATIC LITERATURE REVIEW .. 8

3.1. Research approach.. 8

3.2. Research questions ... 9

3.3. Source selection and search.. 10

3.4. Study inclusion and exclusion criteria ... 11

3.5. Data extraction and synthesis ... 12

4. REPORTING THE REVIEW .. 13

4.1. Question 1: Is there any evidence that knowledge influences creativity in software

engineering? ... 13

4.2. Question 2: Is there any evidence that the knowledge access methods identified in

literature enhances the creativity of software professionals? .. 18

4.3. Question 3: What are the ways to improve the current knowledge access methods so

that it can support the creative thinking process of software professional? 24

5. DISCUSSION OF FINDINGS FROM LITERATURE SURVEY 28

5.1. Principal findings ... 28

5.2. Strengths and weaknesses .. 30

5.3. Source selection.. 30

vi

5.4. Source quality ... 30

5.4.1. Validity of evidence ... 31

5.4.2. Threat to validity .. 31

6. RESEARCH TOOL – KNOWLEDGE REPOSITORY AND DISCUSSION FORUM

FOR CAPSTONE PROJECTS .. 32

6.1. Repository: Pre-knowledge reports from previous projects ... 33

6.1.1. Project type .. 33

6.1.2. Project team size .. 36

6.1.3. Project scale ... 39

6.1.4. Project grades ... 41

6.1.5. Project requirements .. 44

6.1.6. Project status .. 47

6.1.7. Estimate deviation .. 50

6.2. Discussion forum.. 52

7. CONCLUSION .. 54

8. REFERENCES .. 56

vii

LIST OF TABLES

Table Page

1. Research Questions and Motivation .. 9

2. Study Inclusion and Exclusion Criteria ... 11

3. Data Extraction Form ... 12

viii

LIST OF FIGURES

Figure Page

1. Project types ... 33

2. Good features from web projects ... 34

3. Bad features from web projects ... 34

4. Lessons learnt from web projects .. 35

5. Recommendations from web projects .. 35

6. Effort deviations and reasons for web projects .. 36

7. Project team sizes ... 36

8. Good features from the projects with a team size of four .. 37

9. Bad features from all the projects with a team size of four ... 37

10. Lessons learnt from the project teams with a team size of four ... 37

11. Recommendations from the projects with a team size of four... 38

12. Effort deviations and reasons from all projects with a team size of four 38

13. Project scales .. 39

14. Good features from medium scale projects ... 39

15. Bad features from medium scale projects .. 40

16. Lessons learnt from medium scale projects ... 40

17. Recommendations from medium scale projects .. 41

18. Effort deviations and reasons from medium scale projects ... 41

19. Project grades ... 42

20. Good features from projects with a grade .. 42

21. Bad features from projects with a grade .. 42

22. Lessons learnt from projects with a grade ... 43

23. Recommendations from projects with a grade... 43

ix

24. Effort deviation and reasons from projects with a grade ... 44

25. Project requirements .. 44

26. Good features from projects with well-defined requirements ... 45

27. Bad features from projects with well-defined requirements .. 45

28. Lessons learnt from projects with well-defined requirements ... 46

29. Recommendations from projects with well-defined requirements 46

30. Effort deviations and reasons from projects with well-defined requirements 47

31. Project status .. 47

32. Good features from complete projects ... 48

33. Bad features from complete projects ... 48

34. Lessons learnt from complete projects .. 48

35. Recommendations from complete projects .. 49

36. Effort deviations and reasons from complete projects ... 49

37. Estimated deviation .. 50

38. Good features of projects whose estimates were exceeded ... 50

39. Bad features of projects whose actuals exceeded estimates .. 51

40. Lessons learnt from projects whose actuals exceeded estimates ... 51

41. Recommendations from projects whose actuals exceeded estimates 52

42. Discussion forum ... 53

1

1. INTRODUCTION

Knowledge plays a significant role in the creativity of software engineers, and the

creativity of software engineers defines the success of projects. This paper presents the

development of a software tool which would promote the creative thinking process among

software engineers. To identify the list of creativity-enhancing features for this tool, it was

necessary for us to understand the way knowledge influences the creativity of software

engineers. To understand the influence of knowledge over creativity of software engineers, a

systematic literature review was conducted. The results of the systematic literature review are the

foundation for the tool development and are discussed in the later sections.

Creativity refers to “the ability to produce new and original ideas and things” [1].

Graham Wallas described the stages of the creative process as the preparation stage; where data

is collected and an attempt is made to solve a problem; the incubation stage; where the brain

works unconsciously on the problem with the knowledge of the individual; the illumination

stage; where ideas start emerging and links are established between known facts; and the

verification stage; where ideas are picked up individually and worked on so that it can be

communicated to others [8]. The creative process is described as rapid idea generation phase

followed by periods of incubation and reflection before these ideas are refined or new ideas are

created [16].

Software systems are developed by a team of people with complementary skills. Software

development is conceptually a complex, knowledge intensive and cognitive activity. Effective

software development relies on the knowledge collaboration and on the creativity of software

developers [9]. Creative thinking requires the ability to integrate internal (stored in head) and

external knowledge (stored across different artifacts and developers) for performing a task.

2

Creative thinkers search for new ideas by manipulating existing knowledge to see different

problems, opportunities and solutions [4]. On that end, previous researchers have conducted

studies to analyze the role of various forms of knowledge (prior knowledge, analogies etc.) on

the creativity during software development. This includes case studies [6, 13], experiments [12,

7], surveys and interviews [10] with students and professionals from various domains. Their

research has found that knowledge plays a positive role and helps professionals to be more

creative in their work. Knowledge in different forms helps software engineers to come up with as

many ideas as possible to solve a problem. The results show that prior knowledge helps

engineers see the previous solutions and get new ideas and inspiration for the current problem

[5].

Further, knowledge in the form of examples helps engineers with a thorough

understanding of the problem and the kinds of solutions that already exist in the market. This

helps engineers to add innovation to their solution [10]. Similarly, knowledge in the form of

analogies helps engineers to see the problem from different viewpoints. This helps the engineers

generate more ideas to solve their problem. An experiment was conducted to prove that

designers came up with more ideas with the help of analogies as compared to designers without

any help from analogies [7]. Similarly, sharing of knowledge among peer engineers makes the

engineers see a problem in different perspective thereby triggering creative ideas. An experiment

was conducted with 50 students of software engineering and social worker degree. In the

experiment students were asked to create an innovative product or service from an existing

object. Students were provided with tools to share their ideas and connect with other peers. The

results showed that students who shared their knowledge generated more ideas for the innovative

product [17].

3

While the above results provide evidence that using “knowledge” can improve creativity,

a subset of previous research [5,7,10,17] narrowed down the focus on different forms of

knowledge (e.g., prior knowledge or analogies) that had an impact on the creativity of software

engineers. It was found that information was scattered among different papers and each provided

detailed information on only one form of knowledge, how that knowledge type can be accessed

to enhance creativity, and what problems are faced when accessing that information [5]. Hence,

there was a necessity to collect all this scattered information and organize them in a single study

to be able to better understand the effect of knowledge (in different forms) on creativity of

software engineers. To realize this, a systematic literature review was conducted.

A systematic literature review is a formalized, repeatable process in which researchers

systematically search a body of literature to document the state of knowledge on a particular

subject. The benefit of performing a systematic review, as opposed to using the more common ad

hoc approach, is that it provides the researchers with more confidence that they have located as

much relevant information as possible. This approach is more commonly used in other fields

such as medicine to document high-level conclusions that can be drawn from a series of detailed

studies [3]. To be effective, a systematic review must be driven by an overall goal. The goal of

this research is to: Identify all the sources and forms of knowledge which helps improve

creativity among software engineers, the various ways that the knowledge is accessed, and the

limitations in the way that they are accessed.

The remainder of the paper is structured as follows: Chapter 2 presents related

background work and motivations for undertaking a systematic literature review. The methods of

the systematic literature review are detailed in Chapter 3. Chapter 4 reports all the findings of the

literature survey, and Chapter 5 discusses the results of the literature review in light of the

4

developing the software tool for enhancing the creativity of software engineers. Chapter 6

explains the tool and its features. Finally, Chapter 7 has the conclusion and future enhancements

to the tool.

5

2. BACKGROUND AND RELATED WORK

This section outlines the motivation for conducting a systematic literature review and

describes relevant background work to help provide context for the research presented in the

remaining sections of this document.

2.1. Motivation

Many software companies these days want their employees to be as creative as possible

and come up with new innovations. Creativity among software engineers has become very

important for the long-term success of the company. My Master’s paper in an effort to help

software engineers by providing them with a tool which could enhance their creativity and make

them more successful. In order to understand what triggers or enhances creativity among

software engineers, an ad hoc literature review was conducted. During the ad hoc literature

review, it was mentioned that among several factors (i.e., intellectual abilities, knowledge, styles

of thinking, personality, motivation and environment in which the engineer worked) that drove

creativity among software engineers, knowledge has the most impact [13].

Software engineering is a knowledge intensive and collaborative task. Its success depends

on the collaborative knowledge and skills of the software engineers involved in the process (as

opposed to their individual knowledge) [9]. Software engineering knowledge is scattered across

different resources (e.g., artifacts, code, documents, peers, lessons learned etc.) and continually

flows through the entire software development ecosystem. From this perspective, knowledge

plays an important role in triggering the creativity of software engineers. This paper reports the

results from the systematic literature review that was undertaken to better understand the

influence of knowledge on the creativity in software engineering and to use those insights during

the tool development. The main motivation was to help software engineers understand the

6

importance of knowledge and properly utilize the knowledge to have a creative edge. This work

also intended to help software engineers understand the benefits of different forms of knowledge

(e.g., prior knowledge, examples and analogies) and include them in their day to day software

development activities, and to help motivate the software developers to store and share their

experiences with others as it can help their peers generate creative ideas to solve their problems.

2.2. Related work on role of knowledge in creativity

The idea of examining knowledge to investigate its effect on the creativity of software

engineers is not new. I found various sources during the ad-hoc literature review that

concentrated on knowledge and creativity, but almost all the sources concentrated on a different

type of knowledge [5, 7, and 10]. A brief review of these different knowledge sources and its

impact on the creativity is discussed follows.

Prior knowledge is a collection of information about the previous solutions for a

problem. It can be sketches, diagrams, documents collected while working on a problem. Studies

have shown that prior design knowledge is highly valued and useful during early phases of

design. Generating new ideas requires background research and designers stated that they usually

look at other designers work on similar projects or their own previous work to get inspiration.

Designers used the artifacts from the previous projects, coupled with their previous experiences

for generating and evaluating solution possibilities. Despite knowing that prior knowledge helps

in generating new ideas, people are not able to use if effectively because they are not able to

access the prior knowledge. Searching is very cumbersome as the volume of data is very large.

Many things are missing in the prior knowledge, such as the reason for choosing one design over

another [5]. Our literature survey identified these limitations and provides suggestions to

overcome these limitations and allow knowledge access to be seamless and help creativity.

7

Another mechanism that can contribute to the emergence of new ideas is analogy

making. This means new ideas can be inspired by previous situations and objects which may or

may not belong to the same application domain. This was evaluated through an experiment that

had ten art designers design a new kind of chair, and they were given some sources to make

analogies. It was seen that the group which was guided with sources to make analogies came up

with more ideas than the unguided group. This study showcased that analogies helps in being

creative [7]. Another study showed that examples were very useful in the early design as they

help in the idea generation phase. They inspire new ideas and make the designer creative. The

example helps the designers understand what is already available in market and hence provides

them with an opportunity to add new features that do not already exist and be creative with their

design. Designers search for examples in magazines, books, and the internet. Examples are

stored in the form of photo copies, clippings of magazines, digital images, web blogs, etc. [10].

There are various tools like CAD which provide dynamic knowledge to engineers on the

fly and help them be more creative. Tools store knowledge within them and help users apply this

knowledge practically to solve problems. In this way, users will spend all their effort in solving

the problem as the tool takes care of providing the right information as needed. Analysis of the

studies of knowledge and creativity can help us understand the role played by knowledge in

triggering the creative ideas among software engineers.

8

3. SYSTEMATIC LITERATURE REVIEW

This section describes the process used for performing a systematic literature review of

the role played by knowledge in enhancing the creativity of software professionals. This includes

a description of the review protocol, which describes the high-level research questions, the

sources to be included in the literature review, various criteria used for conducting the study, and

the data that was extracted from each research paper included in the review.

3.1. Research approach

The systematic review is based on guidelines established by Kitchenham in “Procedures

for Undertaking Systematic Reviews” [2, 3]. The purpose of performing a systematic literature

review is similar to that of performing any scientific experiment. Procedures are established,

followed, and reported on so that other researchers are capable of replicating the work.

Following a systematic review process also provides a high degree of control over the type and

quality of reference works that will be included in the review, and helps to provide support for

the conclusions of the literature review.

In accordance with the guidelines for a systematic literature review established by

Kitchenham [2], the following steps were implemented:

1. Formulate a review protocol.

2. Execute the review based on the established protocol (identify the primary studies,

evaluate those studies, extract and synthesize data from those studies).

3. Analyze the results of the review.

4. Disseminate the results of the review.

5. Discuss the findings of the review.

9

The review protocol specifies the research questions to be addressed, establishes a list of

databases, conference proceedings, journals, etc. from which primary sources will be selected,

and establishes criteria for including sources and evaluating their quality. The subsequent steps

closely mirror those of any other experiment in that the protocol is executed, the results of the

review are analyzed to address the research questions, and the results are presented and

discussed.

3.2. Research questions

A high-level research question (“What is the role played by knowledge in creativity of

professionals in software development organization?”) was decomposed into three more specific

research questions and related sub-questions. A list of these research questions and the

motivation for those questions is available in Table 1.

Table 1. Research Questions and Motivation

Research Question Motivation

RQ1. Is there any evidence that knowledge influences

creativity in software engineering?

RQ1.1. If knowledge does influence creativity, in which

form does it influence?

Determine the extent to which the

knowledge influences creativity in

software engineering.

RQ2. Is there any evidence that the knowledge access

methods identified in literature enhances the

creativity of software professionals?

RQ2.1. Which are the knowledge access methods that

influence creativity in software engineering and

what are the limitations of these knowledge access

methods?

Determine if there are any evidences on

the knowledge access methods which

prove that they improve the creativity of

software professionals and also

determine the limitations of those

methods.

RQ3. What are the ways to improve the current

knowledge access methods so that it can support

the creative thinking process of software

professional?

Determine the ways to improve the

current knowledge access methods.

10

Research question 1 gathers and analyzes the evidence from the literature to investigate

the extent to which the knowledge has an effect on creativity.

Research question 2 gathers and analyzes different ways in which knowledge is accessed

and utilized to be creative. It also gathers all the shortcomings of the knowledge access methods.

Research question 3, a meta-question, gathers additional evidence along with the

information from question 1 and 2 to suggest improvements of the knowledge access methods to

support creativity in software development.

3.3. Source selection and search

Initially, an ad hoc review was performed in order to assist with the development of

search strings and to provide a list of potential conference proceedings and journals to be

manually searched. Using the results of the ad hoc review as a guideline, selection criteria were

developed to establish a list of initial databases to be searched and more relevant conference

proceedings or journals to be searched manually. References from primary sources were also

included if they were relevant.

Before conducting the search, all the databases and conference to be searched must be

listed to ensure that I find the most complete and relevant set of primary study materials. The

source list which were searched included these Databases: ACM Digital Library, IEEE Explorer,

APA PsycINFO, ScienceDirect

The master search string mentioned below was used to search the above databases. These

search strings were manipulated as required to suit the database to be searched.

((creative OR creativity OR imagination OR imaginative OR thought OR think OR

thinking cognitive OR intuition OR memory) AND (software OR web OR package OR computer

system OR product OR system OR software system) AND (design OR develop OR development

OR engineering OR engineer OR test OR testing OR plan OR planning OR originate OR

formulate OR technology))

11

3.4. Study inclusion and exclusion criteria

The database search resulted in an extensive list of papers, some of which were clearly

not related to the research questions. To narrow down the results from the search, a set of

inclusion and exclusion criteria were developed in order to assist the selection of appropriate

papers to be included in the literature review. These criteria were applied in multiple steps,

starting with using the title to exclude papers not related to our research focus, then proceeding

based on the papers' abstracts, and finally concluding with the papers' contents in their entirety.

A list of the criteria used can be found in Table 2 and is discussed in this section.

Table 2. Study Inclusion and Exclusion Criteria

Inclusion Criteria Exclusion Criteria
1. Publications that are related to knowledge and

creativity in software engineering.

Publications that are not in English.

2. Publications that reported the results on

creativity in Software Engineering.

Publications that were short or mini reports.

3. Publications that contained empirical results. Publications that were not related to any of

our research questions.

4. Publications that are related to creativity and

knowledge which were not software

engineering, but could be applied to software

engineering.

Publications that contain unclear or

ambiguous results.

This search resulted in a list of 6696 potential papers from which only most relevant had

to be chosen. A lot of papers were removed from the list based on irrelevant titles and abstracts.

After applying this process, 43 papers remained. Each of these 43 papers was read in entirety. A

set of inclusion /exclusion rules were created so that only the most relevant studies were

considered for the systematic review (as shown in Table 2).

By applying these rules on each of the 43 papers, only 16 remained. The included papers

were published in the proceedings of the ACM conferences of Creativity and Cognition, Human

12

Factors in Computing System, Foundations of software engineering, WikiSym, IEEE

international conference of Industrial engineering and engineering management, Technological

management for the global future conference, Science direct Design studies, ACM Computers

and Education and IEEE engineering management journals.

3.5. Data extraction and synthesis

Once all of the papers had undergone the filtering based on inclusion and exclusion

criteria, data extraction was performed on all papers. A data extraction form was developed to

ensure consistent extraction across all papers. Table 3 lists the fields of the data extraction form

as well as a description of each field.

Table 3. Data Extraction Form

Data Description

Reference information The complete title of the paper with authors.

Main research question The list of research question that the papers provide answers for.

Motivated by previous study The previous study from which the study was inspired, if any.

Type of study The type of study (e.g., survey, controlled experiment etc.).

Findings The main findings of the paper

Validity threats Threats in the findings or study techniques.

Why is the paper interesting? Highlights of the paper/most interesting finding or technique.

Knowledge management

technique

The knowledge management or access technique discussed in the

paper.

Improvement Improvements for the current study if applicable.

Empirical evidence The empirical evidence for the research question(s).

Relation between creativity and

knowledge

Any information that indicates that knowledge improves or

influences creativity.

13

4. REPORTING THE REVIEW

This section reports the results organized by each research question and sub questions

using the information extracted and synthesized from all the papers.

4.1. Question 1: Is there any evidence that knowledge influences creativity in

software engineering?

A review of the literature indicates that knowledge has an important relationship with the

creativity during software construction. Software engineering knowledge (available in various

forms) helps software engineers come up with larger number of solutions to their problems

(some of which may be original). While most of the empirical studies focused on the relationship

between design knowledge and the creativity, the relationship and the resulting effects can be

applied to any development stage since each stage involves knowledge transfer of some sort.

Furthermore, this section also includes the previous studies from Psychology and Human

Cognition, whose findings and results can be generalized to the software engineering domain.

The review identified many forms of knowledge that can influence the creativity of

software professionals. The main forms of knowledge that were reported in literature include:

1. Prior knowledge – Includes useful information (ideas that could be extracted from design

documents, magazines, sketches, notes, lessons learnt etc.) from previous projects. The

previous projects could be one’s own projects or other’s projects.

2. Analogies – The entities which look similar to the entity under construction. This could

belong from the same domain or other domains.

3. Dynamic knowledge in tools – Pertains to the knowledge that is embedded into the tool

and is available to the engineers at any time. The user need not spend time remembering

or searching for this knowledge. as it is already stored and available in the tools; he/she

14

can concentrate on the actual problem and get the information from the tool. This is

useful information about the current problem which is given when required to the user or

when user demands for it.

A brief discussion of these knowledge forms and their effect on individual developers’

creativity follows:

Cognitive Psychology has often cited the use of the prior knowledge as an important

ingredient to advance the human cognitive ability while trying to create novel solutions. Humans

are able to use the prior information (e.g., examples of other’s work) to learn and expand the

prior knowledge to produce new ideas and solutions. Likewise, prior knowledge is one of the

commonly reported forms of knowledge that helped software engineers to generate more new

ideas or be creative. Specifically, software engineers during the early phase of design heavily

depend on the prior knowledge (form their own and their peer’s prior work) in order to produce

new ideas. Prior knowledge represents conceptual ideas, lessons and representations captured or

collected when solving a problem Bailey et al., reported the results from interview with 14

design engineers and an online survey with 17 questions collecting responses from 28 additional

participants. Participants were from various expert domains like industrial graphics, interaction

design, and mechanical design. All the participants had at least five years of professional

experience. The results from interview and survey showed that the reuse of prior knowledge is

highly valued and the most important step during early phases of design.

In early phases, people are still looking for directions rather than actual solutions and

analysis of the prior work provides a starting point or direction for new solutions. They provide

inspiration to new and creative ideas. A few examples of prior knowledge can be well-defined

solutions to recurring problems, case-based solutions, design decisions and the reasons behind

15

those decisions, and the design history for a particular item. Results collected from the study

showed that designers want to use theirs and other designer’s artifacts and reflect on the lessons,

decisions, and overall process to generate new ideas. Generating new ideas to solve a particular

problem is an important step, and generating new ideas without any help is difficult and

designers tended to access previous work or project to get inspiration. The study also showed

that designers stored artifacts like notes and sketches from their current project, as they were sure

that they will need them in their future projects; however designers mostly prefer to analyze

other designer’s work more than their own past work to gain new ideas and inspiring solutions

[5].

Examples are another source of prior knowledge that is helpful in enhancing the

creativity of software engineers. Examples are any kind of material, product, prototype, or digital

artifact that contributes directly or indirectly to the design. Examples can come from the

designer’s own work or external sources like other designer’s work, web, blogs, magazines, etc.

Herring et al. conducted an interview with eleven designers to understand the use of examples in

creative design. The results from the interview pointed out that examples helped designers in the

idea generation phase. Examples also helped the designers to understand the problem better and

helped them compare similar products to see the novelty in their idea (so that it is not just an

extension of the previous work). During the evaluation phase, examples were used as references

to see how their design has evolved from where they started [10]. Based on these results, prior

knowledge plays a very important role in the initial phases of software designs. It provides a

starting point and inspiration for generating new ideas for a particular problem.

Analogies are another form of knowledge which helped designers to come up with

creative and innovative solutions by analyzing the design solution from a different domain.

16

Analogies help compare two similar entities, find similar feature and integrate them. This can

lead to creative solutions. As pointed out by Johan Hoorn, “Creativity is to put two familiar

entities in an unusual combination,” which explains that people come up with creative solutions

when they combine similar entities together, compare them, and look closely to their intersecting

features and integrate them. He explains the creative process as entities being associated,

selected, integrated and adapted until an optimal solution is found [11].

Nathalie Bonnard reported the results from two experiments that show that creativity

during the design phase can be improved with the help of analogies. In the first experiment,

designers were asked to design a chair for cyber café. This was conducted with 10 applied arts

students. Designers were provided with sources to make analogies. The two analogies provided

belonged to the same domain and were nomadic stool and rocking chair. The other two were

from a different domain and were canoe and logotype. The results showed that the group that

used analogies was able to draw features from many more analogies than the unguided group,

who did not have sources to make analogies. The guided group came up with 26 sources to make

analogies, whereas the unguided group came up with 6. The more number of sources they came

up with, the more ideas they were able to generate [7].

During the second experiment, professional designers and students were asked to design

a renewed torch. Out of six volunteers that participated in the experiment, two were professional

designers and four were design students of applied arts. They were asked to find a new gesture to

use the torch and move away from the traditional switch. Very minimal information about the

problem was given to the participants, but additional information or analogies were provided

upon request. The results showed that professional designers (and more experienced) asked more

questions to understand more details about the problem in hand compared to the students, and the

17

questions were targeting the audience who will be using the torch. This helped them understand

the problem better and visualize the problem from various perspectives. Professional designers

applied these various viewpoints into their problem solving at an early stage. If it was discovered

later, then it would be impossible to adapt into the design. Overall, these results showed that

analogies can help designers to extract more details about the problem in hand and in coming up

with more ideas to solve the given problem [7].

The engineer’s knowledge base consists mainly of scientific principles, formulae, and

rules. The scientific principles are linked to the real world, where creative products will be used.

This linking or applying the principles to the real world is done by the engineer. If we want to

enhance the creativity and creative output of an engineer, we should be able to build the

capability of applying the scientific principles to the real problems. The tool should be capable of

using the scientific rules to narrow down a search of problem space with well-defined reasoning.

The information technology (IT) tools can gather this knowledge and devise rules and make it

available to the engineers during their work of solving problems. This is called the dynamic

knowledge, which is available in the tool and can help designers concentrate completely on the

solution.

Thomas A. Kappel and Albert Rubenstein have given various examples to demonstrate

that IT helps in creativity. Example of tools like CAD helps designers analyze and design

solutions. It helps in rapid prototyping. This benefits not only engineers but even manufacturing

and sales. Simulation tools help engineers run their design in its environment and predict how it

behaves, identify any shortcomings and fix them. This helps the engineer in trying different

things and be creative. Expert systems are another tool that can interact with the engineer. It

encourages an engineer to come with alternative designs by making suggestion to his or her

18

existing design, providing some useful information from engineer’s previous designs or works,

evaluating the design against requirements etc. Tools with knowledge built into them can help

engineers be creative [14].

4.2. Question 2: Is there any evidence that the knowledge access methods

identified in literature enhances the creativity of software professionals?

The literature review provided evidence regarding the knowledge access methods that

provide the users with the knowledge they need and help them produce creative solutions to their

problems.

The review identified two major categories of knowledge access that can influence

creativity and are listed below.

1. Repository – Repository is a centralized place where all prior knowledge is stored. This

knowledge can be pulled by users as needed or can be provided to the users dynamically

with the help of tools, as they work on problems. In this category, searching relevant

information is very challenging as there is huge amount of data and search mechanisms

offered by repositories are not very efficient and is often the reason that users avoid using

repositories. The search mechanism used in the repository is usually a basic search

offered by the tool in which the knowledge is stored or provided by the operating system.

These simple search mechanisms are not efficient at finding the relevant information

thereby inhibiting the creativity of software engineers.

2. Collaboration – Software engineers exchange and share their ideas and information with

other engineers in an organization. Knowledge and idea sharing helps software engineers

to explore areas which they are otherwise unaware of, and helps them to see different

viewpoints, opens a new channel of thought, and provides feedback to improve on one’s

19

idea and knowledge. The main problem during the collaboration is finding the right

people and tools to collaborate and share knowledge with.

Knowledge sharing through collaboration was the most commonly reported method that

software engineers use to access the knowledge which in turn triggers creative ideas and their

development. Ardiaz et al. performed a study with students using the tools named Wiki ideas and

Creativity Connector for knowledge sharing and collaboration. Wiki ideas are a web based tool

where users can share ideas and conduct brain storm sessions. The tool stores the complete

history of how the idea has evolved. Creativity connector is a social networking tool which

allows people from same and different backgrounds and skill sets to participate in brain storm

sessions. These tools allow large number of users to participate in brainstorming sessions to

share their knowledge and provide feedback which can result in greater number of ideas. The

feedback that the users get when they share their thoughts with other users helps them refine

their ideas. The fifty participating subjects in the study were drawn from a public university of

Navarra and were enrolled in social worker and software engineering degrees. The students were

divided into two equal groups, one composed of people from similar backgrounds and the other

group had people from different backgrounds based on the degrees that students were enrolled

in. The goal for the groups was to create an innovative product or service from an existing

object. The preliminary results from the study showed that these tools helped users to generate a

large number of ideas by sharing knowledge and through the feedback provided by other users. It

also provided user interface to enable users to see the ideas online and provide feedback to them.

The results also showed that the heterogeneous group produced greater number of ideas as

compared to homogeneous group [17]. Based on these results, collaboration between peers

(irrespective of the peers’ background) can help software engineers to be more creative and

20

generate a larger number of ideas. Therefore, it is deemed important for software engineers to

collaborate with other knowledgeable peers and exchange feedback and suggestions.

YunWen Ye further explains that knowledge collaboration in software development

happens in two axes, namely the technological axis and the social axis. In the technological axis,

tools like books, manuals and repositories are used to enhance or add on to the insufficient

knowledge in the heads of software developers. In the social axis, collaboration happens with

other knowledgeable peers to share their proposed ideas and improve their solutions. Engineers

collaborate to solve a problem by filling in the missing knowledge in each other’s head. When

other knowledgeable peers review the ideas from different perspectives, multiple ideas can

emerge or the existing ideas could evolve.

Computers play two roles to support knowledge collaboration: a) they act like

repositories and provide useful information to the developers on their work, and b) they provide

a platform for software developers to share new ideas and solutions [9]. Kao et al. conducted an

experiment to show that people came up with new ideas and understood concepts better when

they share their ideas and concepts with others, as opposed to working alone. The experiment

was conducted with thirty two students of a computer hardware class. During the experiment,

students initially formed their concept maps (which consisted of the concepts and links between

different concepts that they had learnt in the class). The concept map represented how well they

understood the concepts in the class. Students exchanged these maps with other students,

reviewed them and noted down any information (or creative cross links) that was missing in their

maps. Next, the students reworked their concept maps by incorporating the information gained

from other concept maps. They either added or deleted some concepts in their maps. The results

from the experiment showed that the revised maps were better than the original ones in the sense

21

that individual students might aim only at certain points/details/areas to such an extent that they

might miss out few important details. Furthermore, when individuals reviewed and shared their

concepts and ideas with other students, it gave them a new perception to concepts and pushed

them beyond their traditional concept maps and helped them discover ideas which they could not

find on their own [12]. Based on these results, during collaboration software engineers explore

the unaware zone and generate more creative ideas compared to what they would have done

when working alone.

Tarik Baykara also reports that among several factors that can drive creativity among the

people in a software organization (e.g., intellectual abilities, knowledge, thinking styles,

personality, and motivation), the ability to provide a dynamic work environment for the

engineers to share their ideas and knowledge is most relevant factor. He came to this conclusion

by performing qualitative evaluation and through assessment of creativity observed during all the

project phases on ten completed research and development projects in Turkish’s scientific and

technological council. Through extensive interviews and questionnaires with project directors,

key researchers and managers, it was concluded that knowledge sharing drives creativity in three

types of software projects. Type A is idea driven which focuses on new idea creation. While, this

heavily depends on individual knowledge, the ability to generate new and more ideas are

important and require creative thinking. Type B is product driven that needs creative design and

prototyping and depends on the entire team pouring in creative ideas in timely fashion. Type C is

problem driven where creation of new ideas are needed to solve a problem in critical situation

and requires both individual and team effort. The results from the case study showed that there is

a strong correlation between knowledge sharing and the creativity in all three project types.

22

Based on these results, it is important for an organization to support and promote knowledge

sharing between their employees to allow them be more creative [13].

Searching and finding knowledge in repositories, tools, internet, books and magazines is

another way of accessing knowledge and being creative. Edmonds et. al., reports the results from

a retrospective study on Mike burrow’s bicycle design which showed that for a designer to be

creative, he should have access to diverse and dynamic knowledge. Mike Burrow followed a.

Design b. Make c Use and d. iterate approach. He designed the bicycle, built the model, used the

bicycle. He iterated through these steps till he got a perfect bicycle. Based on the results from the

study, it was concluded that dynamic knowledge should be made available to the designer

depending on the problem he/she is facing.

The authors proposed a system called KSS (Knowledge Support System) that provides

the knowledge or information to the designers during the design process and provides the ability

to the designer to be able to make changes or improvements to the knowledge as the design

progresses. The KSS also includes the design history in the form of predecessor designs, design

rules and knowledge editors, and provides access to all the information and expertise. This

system was proposed after concluding that embedding knowledge into the tools can provide

knowledge dynamically to the user [6].

Similar to the above study, Bales et al. conducted an observational study to see how

designers organize tangible information in their work space and how they utilize this information

in their work. The results from the study showed that the prior knowledge and the domain

knowledge are keys to creative and successful design. They also observed the designers

individual and collaborative work spaces and showed that the tangible information is moved

between these workspaces as design evolves and refines. Based on these results, the authors

23

concluded that, for any tool to support creativity, it has to provide multiple workspaces and

ability to move the information between these work spaces to share their ideas with others and

get feedback to refine their solutions [15].

On similar lines Joshua et al., conducted a study to see how software tools can help the

designers in being creative. The study was conducted with six groups of three designers each.

The participating subjects were drawn from UI design and architecture domain. The tool used in

the study provided personal and collaborative workspaces for sharing ideas and work. People

were asked to work on individual ideas, and then move it to the collaboration space and work

collaboratively on the idea. The tool also allowed them to work on multiple ideas in parallel by

providing multiple work spaces. The results of the study showed that the designers liked using

this tool as it helped them have multiple solutions for the problem and also work on them in

parallel. The tool also helped the teams share their ideas with others, get feedback and work in

collaboration which led to creative solutions [16].

Based on these results, there is ample evidence to show that the knowledge access and

sharing methods help improve the creativity of software engineers, especially during the

software design. However, there were few limitations with the knowledge access method that

inhibits the creative power of software engineers. For example, when using the repositories,

designers need to search for prior knowledge which was very cumbersome due to plethora of

information stored in them. It is challenging to finding the right information efficiently. Software

engineers also expect to have a visual search to help them locate the right information easily.

Knowledge users also felt that the information was stored in an inconsistent manner and wanted

some kind of consistency so that they can easily make their way to the right information they are

looking for [5]. Similarly, during the knowledge collaboration, the most difficult problem is to

24

find the right people to collaborate with. It is mostly seen that people are not always aware of

whom to contact to get help when they are in problem or get feedback from. At times when

people find the right people to collaborate with, others may be busy with their work and would

not completely participate in collaboration or they might also completely deny from participating

[9]. Therefore, it is important for an organization to create work environment for the engineers to

be able to share their ideas and knowledge and collaborate in order to support creative software

development. Searching seemed to be a big problem which could be preventing users from

accessing the repository. Hence in my tool I have tried to provide information in different views

and tried to reduce search to an extent. Data is provided to user in an easy way to avoid making

the user to search for it. Collaboration is also implemented in the tool to encourage knowledge

sharing among the users of the tool.

4.3. Question 3: What are the ways to improve the current knowledge access

methods so that it can support the creative thinking process of software

professional?

During the systematic review, I came across multiple studies to suggest that the

knowledge access methods need to be improved for supporting creativity [5, 4, 9, and 18].

Multiple studies reported knowledge stored in repositories as one of the main sources of

knowledge used by software engineers to solve problems. While prior knowledge gained from

repositories is very useful, it is not used effectively as searching is very difficult and in few

occasions important information from the data is missing from these repositories. The search

mechanisms used in existing repositories are not very powerful thereby making searching for the

right things extremely difficult. This is the reason why software engineers seldom use prior

knowledge stored in repositories.

25

One way to improve this could be to make search more powerful with introducing visual

search. In this kind of search, a user can visually see the data through which he is searching, can

modify the search based on his needs, and can see how the data is organized so that he/she can

search the data in an effective way. Once the search provides the right information in an efficient

manner, software engineers can start using the repositories to enhance their creative thought

process. Regarding the incompleteness of the information stored in the repositories, it is

important to collect the story behind the knowledge being stored. For example, when a design

was chosen over alternate designs, storing the reason as to why it was chosen over others is a

good approach. This would help the person looking at this knowledge better understand the

original thought behind the decision and help relate it to his or her current problem [5].

Based on the results reported in section 4.1, analogies are an important form of

knowledge which triggered creativity among software engineers. Maiden et al., [4] conducted a

workshop to show that using analogies during the requirements engineering generated more

creative ideas but had inherent limitations. The workshop targeted collecting requirements for a

future air traffic management system for managing departures from major European airports.

Twenty one professionals from the departure management and scheduling departments in the UK

and France attended the workshop. One of the main lessons learned from this workshop was the

realization that, in order to support the use of analogies during requirement stage, people need to

be trained on how to use analogies and to be able to extract useful information from analogies to

transfer knowledge from one domain to generate new ideas and use it in the targeted domain.

Therefore, usage of analogies should be supported by providing relevant trainings so that people

know how to extract knowledge from analogies and generate creative ideas. While this workshop

26

was focused on the requirements phase, the results are equally applicable at other phases of

software development.

I also came across a proposal for tool that can provide access to knowledge and help in

collaboration with knowledgeable peers. As the developer types the APIs, the tool would be able

to provide suggestions and comments for the method signature. When the developer hovered

over the method there would be information about what the method is used for and the purpose

of the arguments. For more understanding, the developer could click on the link which would

take him to the detailed explanation of the method with examples of code. If the developer

wanted deeper understanding of the method the page also contained discussion forums where

one could see what kind of problems people had and the answers to the questions. The developer

could also post questions and reply to questions posted by other users in the forum [9]. This tool,

if developed, would provide dynamic knowledge to software engineers on fly, help enhance their

knowledge and would help them become more creative and efficient in their work. The idea

behind the development of such tools is to be able to provide dynamic knowledge when needed

to the software engineers, so that they can concentrate on the real problems rather than expecting

them to remember all the pertinent information they would need to solve a particular problem.

Based on the results reported in section 4.2, sharing knowledge or collaboration is one of

the common ways to promotes creativity. Andrawina [18], reports the results from a survey that

organizational factors like top management support to knowledge sharing and technology factors

like computer network and electronic bulletin boards, discussion groups to collaborate and share

knowledge influence positively and encourage people to share knowledge and apply them to be

innovative. The survey recommended that organizations should have management who will

appreciate and reward knowledge sharing behaviors among their employees and provide

27

technology help required for knowledge collaboration. This would help organization and its

people be innovative and creative [18].

Additionally, the results in section 4.2 also reported that the two major knowledge access

methods were repository and collaboration. Both of these methods have their own advantages of

usage. Repository approach is completely at the control of the user. Knowledge users can use it

as and when they require it, whereas collaboration needs the other person’s time and readiness to

collaborate and share their knowledge. The data in the repository does not contain dynamic

contextual data whereas the collaboration gives access to dynamic and contextual knowledge.

The best approach would be to integrate both types of access methods into a single

system by providing access to both the repository knowledge and the contextual knowledge.

Software tools that can combine both these approaches would act as single point of contact for a

software developer to search for information when he/she wants feedback or help with his or her

problem. Such tools would increase the knowledge access and in turn help software engineers be

more creative [9]. I decided to use this tip and in the tool that I will be presenting in the coming

section, I have combined the repository approach and collaboration approach of knowledge

access to gain the benefits of both the access methods.

28

5. DISCUSSION OF FINDINGS FROM LITERATURE SURVEY

This section provides a summary of the principal findings of the systematic literature

review discusses the strengths and weaknesses of the gathered evidence and relates how this

information can be used by software professionals. These are the findings that helped me in

developing the tool that could help software engineers be more creative. I have utilized most of

the findings here to come up with the features of my tool.

5.1. Principal findings

The purpose of this literature review was to identify if knowledge improves the creativity

of software professionals. To ascertain this information, a systematic literature review was

designed and executed on popular publication databases, as well as a wide variety of journals and

conference proceedings related to the topic area. The identified data were analyzed and

categorized to explore trends in the data. The principal findings of this review are as follows:

I saw in the literature review that knowledge (available in different forms) helps software

professionals to become more creative. Additionally, the knowledge types reported in literature

that impacts the creativity of software engineers were broadly classified as: prior knowledge,

analogies, and knowledge available in tools. Prior knowledge provided useful information about

previous projects and helped software engineers in the initial stages of idea generation. They

provided a starting point or motivation to start with ideas to solve the problem. Analogies helped

software engineers link two objects from same or different domain and create new ideas. Tools

provided knowledge on the fly when required by the software engineer and help software

engineers concentrate on the original problem.

Knowledge is accessed using different ways and the most common knowledge access

techniques that I found during the review were searching for prior knowledge in repositories,

29

internet, wikis, books and magazines and the second technique was collaboration, where

software engineers shared theirs ideas and thoughts with others. They build on each other’s

ideas and provide constructive feedback. They covered each other’s knowledge gap as a group.

Knowledge is very useful for software engineers and it makes them more creative and

still I saw that not all software engineers were utilizing the available knowledge. The reasons for

this were that searching for the right information in large repositories was cumbersome and when

the information was found relevant information but would be missing in the repositories.

Searching huge database and finding the right information was difficult as the search techniques

were not very powerful. Gaining new knowledge via collaboration was difficult too, as finding

the right experts to share the ideas and get input was difficult and when the right people found

that they were busy in their work and had minimal or no time to collaborate.

There were few limitations in knowledge access methods, but I did see a few suggestions

to improve these shortcomings in the literature review. To improve searching and make it easier,

the knowledge should be stored in a consistent way, searching techniques should be improved,

and powerful visual techniques should be added. We should try to combine repository

knowledge with collaboration tools so that software engineers can find all the knowledge in one

location. Software engineers should be trained on analogy making and utilizing analogies to

extract useful information and come up with new ideas. Management of software industries

should support and enhance knowledge sharing behavior among employees.

This paper targets the tool for capstone projects and it can be adapted to any group easily.

In the development of the tool, the repository and collaboration approach has been combined.

The repository will contain all the data from previous capstone projects providing the prior

knowledge. The tool will have a discussion board which will provide a platform for capstone

30

projects to collaborate and share knowledge. The data will be organized in a specific order so

that it is easy to search.

5.2. Strengths and weaknesses

This section discusses the strengths and weaknesses of the evidence collected in the

literature review by examining the source selection, source quality, and validity of the evidence.

5.3. Source selection

A wide variety of sources were selected from in order to produce a large list of candidate

papers for inclusion in the literature review. Multiple literature databases covering relevant

journals, proceedings, and other publications were searched and a manual search of conference

proceedings and journals associated with the topic area was also conducted. Unfortunately, there

were not a large number of empirically validated sources restricted to the precise topic area of

this report. In order to increase the number of available sources and evidence of knowledge as a

factor to improve creativity, some constraints of the inclusion/exclusion criteria were relaxed.

Specifically, sources from the information technology and information systems fields were

considered, especially if they made some indication that the research was focused on knowledge

and creativity.

5.4. Source quality

To ensure that only quality evidence was included for consideration in this literature

review, I ensured that all sources considered had some kind of experiment, survey, case study to

claim what they state. In general all sources can be considered to have a quality, at least insofar

as the data in the sources is based on an empirical study. Due to the low number of sources

31

immediately related to the topic area, it was necessary to relax constraints to improve the overall

number of sources. But then I still ensured that they talk about creativity and knowledge.

5.4.1. Validity of evidence

Stringent inclusion and exclusion criteria were used to ensure that only appropriate

papers were included in this literature review. To reduce potential bias, data extraction forms

were used to ensure that the same information was extracted from each source. After extracting

relevant information from all sources, the researchers of this work compared a subset of selected

papers to ensure that the data being extracted was similar and consistent. When possible,

researchers attempted to apply the same extraction method (e.g. only extract results that were

reported as statistically significant.) across sources.

5.4.2. Threat to validity

One of the threats is that most of the sources found during the review focused on the

relationship between knowledge and creativity in the requirements and design stages of software

engineering. I did not find any source that focused on the creativity during the testing stage of

software development. I anticipate that this relationship (knowledge vs. creativity) would hold

true for other stages of software development, due to the nature of testing as a knowledge-

intensive activity. However, there is no empirical evidence that was reported in literature to

underscore this claim. Another validity threat is that the sources which reported the effect of

knowledge on the creativity during the design included designers that were not limited to

software engineering background. However, the results were consistent across different studies.

32

6. RESEARCH TOOL – KNOWLEDGE REPOSITORY AND

DISCUSSION FORUM FOR CAPSTONE PROJECTS

From the literature survey, it was revealed that knowledge does increase creativity of

software engineers. The results provided evidence regarding various forms of knowledge that

influences and increases the creativity of software engineers. The two primary ways knowledge

is accessed are repository and collaboration. Repositories are mostly used to access pre-

knowledge or information from past experiences or previous projects. Pre-knowledge was one of

the forms of knowledge identified in the literature review. Pre-knowledge is any kind of

information from the previous work of solving a problem. It could be sketches of design,

documents, clippings from magazines etc. Pre-knowledge gives a starting point to software

engineers to proceed towards the solution. It might also give information about the dos and

don’ts for certain design approaches. Pre-knowledge inspires new ideas to solve the current

problem in hand. Collaboration was the second approach where knowledge spreads and

develops. Collaboration or knowledge-sharing fills one another’s knowledge gaps, opens new

channels of thought, and improves one’s idea and helps him be creative. Collaboration gives

access to dynamic knowledge.

I decided to combine these two approaches into a single tool. I thought that combining

repository knowledge and collaboration into one tool will bring the benefits of both. This tool is

specific to capstone projects currently but is equally applicable to elsewhere. For the repository, I

used the data from previous capstone projects. The different information captured is explained in

detail in the later section. For collaboration, I plugged in a discussion board with the repository.

When the repository cannot provide the knowledge that the user is looking for, he or she can

utilize the discussion board to find the right information and fill in the knowledge gap. Searching

33

in huge repositories can be cumbersome, hence I have organized the data in particular structure

which will help the end users. I have provided various types of reports that the users can look

into and gain more knowledge and insights about the projects. I provide a discussion board

where the users can share their knowledge or post questions about their problems. This platform

will enable the students to share their knowledge and gain new knowledge.

6.1. Repository: Pre-knowledge reports from previous projects

I can generate multiple reports to pull information about previous projects. The reports

are classified into mainly seven buckets: 1) Project type; 2) Project team size; 3) Project status;

4) Project scale; 5) Project grade; and 6) Project effort deviation type.

The type of reports present in every bucket is as follows: 1) Good features; 2) Bad

features; 3) Lessons learnt; 4) Effort deviation reasons; and 5) Recommendations.

In this section I will discuss every bucket in detail.

6.1.1. Project type

The reports are divided based on the type of project. Figure 1 is a screenshot representing

the types of projects. The types of projects could be web, desktop, etc.

Figure 1. Project types

This report provides all the good features of a particular type of project with description.

This can help the current project teams to incorporate these features, if they are applicable to

their project. Figure 2 represents a screenshot of good features of all the web projects.

34

Figure 2. Good features from web projects

This report also provides all the bad features of a particular type of project. This can help

the current project teams to avoid such features in their team. Figure 3 represents a screenshot of

bad features of web projects.

Figure 3. Bad features from web projects

This report can provide the lessons learnt from a particular project type. This can help the

current project teams to avoid the learning curve and utilize the information without undergoing

the actual development cycle. They can utilize these lessons in their project. Figure 4 represents

a screenshot of lessons learnt from web projects.

35

Figure 4. Lessons learnt from web projects

This report provides all the recommendations from the previous teams belonging to a

particular project type. These are the collection of lessons that the teams would have done better

if they would do it better second time. This information can be helpful for the current project

teams to not make the same mistakes and improvise. Figure 5 represents a screenshot of

recommendations from web projects.

Figure 5. Recommendations from web projects

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 6 represents a screenshot of effort deviations and reasons from web projects.

36

Figure 6. Effort deviations and reasons for web projects

6.1.2. Project team size

The reports are divided based on the project team size. Figure 7 represents a screenshot of

project team sizes.

Figure 7. Project team sizes

This report provides all the good features of a particular team sized projects with

description. This can help the current project teams to incorporate these features, if they are

applicable to their project. Figure 8 represents a screenshot of good features from all the projects

with team size of four.

37

Figure 8. Good features from the projects with a team size of four

This report provides all the bad features of a particular team sized projects. This can help

the current project teams to avoid such features in their team. Figure 9 represents a screenshot of

bad features from all the projects with team size of four.

Figure 9. Bad features from all the projects with a team size of four

This report provides the lessons learnt from a particular team sized projects. This can

help the current project teams to avoid the learning curve and utilize the information without

undergoing the actual development cycle. They can utilize these lessons in their project. Figure

10 represents a screenshot of lessons learnt from all the projects with team size of four.

Figure 10. Lessons learnt from the project teams with a team size of four

38

This report provides all the recommendations from the previous teams with a particular

team size. These are the collection of lessons that the teams would have done better if they would

do it better second time. This information can be helpful for the current project teams to not

make the same mistakes and improvise. Figure 11 represents a screenshot of recommendations

from the projects with team size of four.

Figure 11. Recommendations from the projects with a team size of four

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 12 represents a screenshot of effort deviations and reasons from the projects

with team size of four.

Figure 12. Effort deviations and reasons from all projects with a team size of four

39

6.1.3. Project scale

Reports are divided based on the scale or the size of the project. Figure 13 represents the

screen shot of various project scales.

Figure 13. Project scales

This report provides all the good features from projects belonging to a particular scale

with description. This can help the current project teams to incorporate these features, if they are

applicable to their project. Figure 14 represents a screenshot of good features of all the medium

scale projects.

Figure 14. Good features from medium scale projects

This report provides all the bad features projects belonging to a particular scale. This can

help the current project teams to avoid such features in their team. Figure 15 represents a

screenshot of bad features of medium scale projects.

40

Figure 15. Bad features from medium scale projects

This report provides the lessons learnt from projects of a particular scale. This can help

the current project teams to avoid the learning curve and utilize the information without

undergoing the actual development cycle. They can utilize these lessons in their project. Figure

16 represents a screenshot of lessons learnt from medium scale projects.

Figure 16. Lessons learnt from medium scale projects

This report provides all the recommendations from the previous projects belonging to a

particular project scale. These are the collection of lessons that the teams would have done better

if they would do it better second time. This information can be helpful for the current project

teams to not make the same mistakes and improvise. Figure 17 represents a screenshot of

recommendations from medium scale projects.

41

Figure 17. Recommendations from medium scale projects

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 18 represents a screenshot of effort deviations and reasons from medium

scale projects

Figure 18. Effort deviations and reasons from medium scale projects

6.1.4. Project grades

Reports are divided on the grades that the project team obtained. Figure 19 represents a

screenshot of all the project grades.

42

Figure 19. Project grades

This report provides all the good features from projects with a particular grade. This can

help the current project teams to incorporate these features, if they are applicable to their project.

Figure 20 represents a screenshot of good features of all the projects with a grade.

Figure 20. Good features from projects with a grade

This report provides all the bad features from projects with a particular grade. This can

help the current project teams to avoid such features in their team. Figure 21 represents a

screenshot of bad features of all the projects with a grade.

Figure 21. Bad features from projects with a grade

43

This report provides the lessons learnt from a particular project type. This can help the

current project teams to avoid the learning curve and utilize the information without undergoing

the actual development cycle. They can utilize these lessons in their project. Figure 22 represents

a screenshot of lessons learnt from all the projects with a grade

Figure 22. Lessons learnt from projects with a grade

This report provides all the recommendations from the projects with a particular grade.

These are the collection of lessons that the teams would have done better if they would do it

better second time. This information can be helpful for the current project teams to not make the

same mistakes and improvise. Figure 23 represents a screenshot of recommendations from all the

projects with a grade.

Figure 23. Recommendations from projects with a grade

44

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 24 represents a screenshot of effort deviations and reasons from all the

projects with a grade.

Figure 24. Effort deviation and reasons from projects with a grade

6.1.5. Project requirements

Reports are divided based on the requirements. Figure 25 represents the type of

requirements.

Figure 25. Project requirements

This report provides all the good features of a particular type of project requirements.

This can help the current project teams to incorporate these features, if they are applicable to

45

their project. Figure 26 represents a screenshot of good features of all the projects with well-

defined requirements.

Figure 26. Good features from projects with well-defined requirements

This report provides all the bad features of a particular type of project. This can help the

current project teams to avoid such features in their team. Figure 27 represents a screenshot of

bad features of the projects with well-defined requirements.

Figure 27. Bad features from projects with well-defined requirements

This report provides the lessons learnt from a particular project type. This can help the

current project teams to avoid the learning curve and utilize the information without undergoing

the actual development cycle. They can utilize these lessons in their project. Figure 28 represents

a screenshot of lessons learnt from the projects with well-defined requirements.

46

Figure 28. Lessons learnt from projects with well-defined requirements

This report provides all the recommendations from the previous teams belonging to a

particular project type. These are the collection of lessons that the teams would have done better

if they would do it better second time. This information can be helpful for the current project

teams to not make the same mistakes and improvise. Figure 29 represents a screenshot of

recommendations from the projects with well-defined requirements.

Figure 29. Recommendations from projects with well-defined requirements

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 30 represents a screenshot of effort deviations and reasons from the projects

with well-defined requirements.

47

Figure 30. Effort deviations and reasons from projects with well-defined requirements

6.1.6. Project status

Reports are divided based on project status. Figure 31 represents a screenshot of various

project states.

Figure 31. Project status

This report provides all the good features from projects which belong to a particular state.

This can help the current project teams to incorporate these features, if they are applicable to

their project. Figure 32 represents a screenshot of good features of all the completed projects.

48

Figure 32. Good features from complete projects

This report provides all the bad features from projects which belong to a particular state.

This can help the current project teams to avoid such features in their team. Figure 33 represents

a screenshot of bad features of completed projects.

Figure 33. Bad features from complete projects

This report provides the lessons learnt from projects which belong to a particular state.

This can help the current project teams to avoid the learning curve and utilize the information

without undergoing the actual development cycle. They can utilize these lessons in their project.

Figure 34 represents a screenshot of lessons learnt from completed projects.

Figure 34. Lessons learnt from complete projects

49

This report provides all the recommendations from projects which belong to a particular

state. These are the collection of lessons that the teams would have done better if they would do

it better second time. This information can be helpful for the current project teams to not make

the same mistakes and improvise. Figure 35 represents a screenshot of recommendations from

completed projects.

Figure 35. Recommendations from complete projects

This report provides the effort deviation information and the reasons behind the

deviation. This information can help the current projects to be aware of the deviation reasons and

avoid them. Figure 36 represents a screenshot of effort deviations and reasons from completed

projects.

Figure 36. Effort deviations and reasons from complete projects

50

6.1.7. Estimate deviation

Reports are divided based on the estimate deviation types. Figure 37 represents a

screenshot of various estimate deviation types.

Figure 37. Estimated deviation

This report provides all the good features from projects with certain type of estimate

deviation. This can help the current project teams to incorporate these features, if they are

applicable to their project. Figure 38 represents a screenshot of good features of all the projects

with actuals exceeding the estimation.

Figure 38. Good features of projects whose estimates were exceeded

This report provides all the bad features from projects with certain type of estimate

deviation. This can help the current project teams to avoid such features in their team. Figure 39

represents a screenshot of bad features of projects with actuals exceeding the estimation.

51

Figure 39. Bad features of projects whose actuals exceeded estimates

This report provides the lessons learnt from projects with certain type of estimate

deviation. This can help the current project teams to avoid the learning curve and utilize the

information without undergoing the actual development cycle. They can utilize these lessons in

their project. Figure 40 represents a screenshot of lessons learnt from projects with actuals

exceeding the estimation.

Figure 40. Lessons learnt from projects whose actuals exceeded estimates

This report provides all the recommendations from projects with certain type of estimate

deviation. These are the collection of lessons that the teams would have done better if they would

do it better second time. This information can be helpful for the current project teams to not

make the same mistakes and improvise. Figure 41 represents a screenshot of recommendations

from projects with actuals exceeding the estimation.

52

Figure 41. Recommendations from projects whose actuals exceeded estimates

6.2. Discussion forum

The discussion forum (Figure 42) lets users log in and post new topics for discussions

and share the knowledge or initiate a good conversation which can pull out knowledge from

individuals. Students can also post the problems or road blocks that they are facing in the forum

and can get quick help. Students can help others in their problems by answering to others

question or problems.

During the literature survey, the results showed that it was very difficult to find a person

and his or her time to get their feedback. In this kind of setting it is easy to find answers for the

problem areas or unknown areas easily. This forum currently is available to just students of

capstone projects, but it can be exposed to all students or can be linked with other domain

discussion forum. This is because; I saw in the survey that people from other domain can give

good feedback as they see the idea with different viewpoint.

 The top section is where the user can post a fresh topic or his or her problem in their

current project. The second section is a list of all topics currently being discussed. The user can

click on any of the topic and the comments for that topic appear in the third section. The user can

reply to that topic on the fourth section.

53

Figure 42. Discussion forum

54

7. CONCLUSION

For future studies I can improve and update the repository knowledge, and provide

features so that the user can maintain the repository. This tool also can be utilized by capstone

projects in the future semesters and feedback can be collected from students to understand how

useful the tool was. We can also make changes based on the feedback or suggestions. I can also

add features to update and maintain the repository. I can make the collaboration more interactive

and try to involve people from various domains participate in the collaboration and sharing of

knowledge. Future research into this area would be necessary to find more details about the

testing stage of software engineering. I can also study the knowledge forms individually and

develop tools to improve the user experience with knowledge access.

This literature review reports the findings of an investigation of the influence of

knowledge on creativity of software engineers. The results of this review indicate that knowledge

influences creativity positively among software professionals. Knowledge is available in various

forms and is accessed by software professional in various ways. Knowledge in all forms helps

software engineers come up with more ideas to solve their problems. I also saw how different

forms of knowledge help or motivate software engineers during idea generation phase. Few of

the limitation in the literature review were that, I was not able to gather any results specific to

testing phase and not all the sources having information with respect to design were from

software engineering field. The literature had subjects from various backgrounds including

software engineering. The literature review helps software engineers and management of

software industries to support and motivate knowledge sharing and accessing techniques. The

literature review also points to all the ways knowledge can be accessed and about various forms

55

in which knowledge is available. This can help software engineers know where to find the

information that is lacking during their regular work to help their solutions be more creative.

56

8. REFERENCES

1. A. K. Aurum, F. Daneshgar and J. Ward, “Investigating Knowledge Management Practices

in Software Development Organizations – An Australian Experience. Information and

Software Technology”, Information and Software Technology, Vol. 50, Issue. 6, pp. 511–

533, May 2008.

2. B. A. Kitchenham, “Procedures for Undertaking Systematic Reviews”, Technical report,

Computer Science Department, Keele University, 2004.

3. B. A. Kitchenham and S. Charters, “Guidelines for Performing Systematic Literature

Reviews in Software Engineering.”, EBSE Technical Report, Keele University and Durham

University Joint Report, July 2007.

4. N. Maiden, S. Manning, S. Robertson and J. Greenwood, “Integrating Creativity Workshops

into Structured Requirements Processes”, Designing interactive systems, 2004.

5. M. Sharmin, B.P. Bailey, C. Coats and K. Hamilton. “Understanding Knowledge

Management Practices for Early Design Activity and Its Implications for Reuse”, Conference

on Human Factors in Computing Systems, pp. 2367-2376, 2009.

6. L. Candy and E. Edmonds, “Creative Design of the Lotus Bicycle: Implications for

Knowledge Support Systems Research”, Design Studies, Vol. 17, Issue, 1, pp. 71-90, 1996.

7. N. Bonnardel, “Creativity in Design Activities: The Role of Analogies in a Constrained

Cognitive Environment”, Creativity and Cognition conference, pp. 158-165, 1999.

8. L. Gabora, “Cognitive Mechanisms Underlying the Creative Process”, Creativity and

Cognition conference, pp. 126-133, 2002.

9. Y. Ye, “Supporting Software Development as Knowledge –Intensive and Collaborative

Activity”, Foundations of Software Engineering Conference, pp. 15-22, 2006.

http://dl.acm.org/event.cfm?id=RE151&CFID=199309092&CFTOKEN=72627738
http://dl.acm.org/event.cfm?id=RE151&CFID=199309092&CFTOKEN=72627738

57

10. S. Herring, C. Chang, J. Krantzler and B. Bailey, “Getting Inspired! Understanding How and

Why Examples are Used in Creative Design Practice”, Conference on Human Factors in

Computing Systems, pp. 87-96, 2009.

11. J.Hoorb, “A Model for Information Technologies that can be Creative”, Creativity and

Cognition conference, pp. 186-191, 2002.

12. G. Kao, S. Lin and C. Sun, “Breaking Concept Boundaries to Enhance Creative Potential:

Using Integrated Concept Maps for Conceptual Self-Awareness”, Computers & Education,

Vol. 51, Issue. 4, pp. 1718-1728, 2008.

13. T. Baykara, “Dynamics of ‘Technological Creativity’ as a Decision in Knowledge Creation

Process”, Technology Management for the Global Future, Vol. 2, pp. 951-956, July 2006.

14. T. Kappel, “Creativity in Design: The Contribution of Information Technology”, Engineering

Management, 1999.

15. C. J. Bales and E. Y. Do, “Managing Information in a Creative Environment”, Creativity and

Cognition conference, pp. 353-354, 2009.

16. J. Hailpern, E. Hinterbichler. C. Leppert, D. Cook and B. Bailey, “TEAM STORM:

Demonstrating an Interaction Model for Working with Multiple Ideas during Creative Group

Work”, Creativity and Cognition conference, pp. 193-202, 2007.

17. O. Ardaiz, M. L. Acedo and M. T. Acedo, “Wikiideas and Creativity Connector: Supporting

Group Ideational Creativity”, Article No. 31, WikiSym, 2008.

18. L. Andrawina, “Relationship between Knowledge Sharing and Absorptive Capacity

Moderated by Organizational and Technology Factors: A Conceptual Model”, IEEE

International Conference of Industrial Engineering and Engineering Management, pp. 1865-

1869, December 2009.

http://dl.acm.org/event.cfm?id=RE151&CFID=199309092&CFTOKEN=72627738
http://dl.acm.org/event.cfm?id=RE151&CFID=199309092&CFTOKEN=72627738

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	2. BACKGROUND AND RELATED WORK
	2.1. Motivation
	2.2. Related work on role of knowledge in creativity

	3. SYSTEMATIC LITERATURE REVIEW
	3.1. Research approach
	3.2. Research questions
	3.3. Source selection and search
	3.4. Study inclusion and exclusion criteria
	3.5. Data extraction and synthesis

	4. REPORTING THE REVIEW
	4.1. Question 1: Is there any evidence that knowledge influences creativity in software engineering?
	4.2. Question 2: Is there any evidence that the knowledge access methods identified in literature enhances the creativity of software professionals?
	4.3. Question 3: What are the ways to improve the current knowledge access methods so that it can support the creative thinking process of software professional?

	5. DISCUSSION OF FINDINGS FROM LITERATURE SURVEY
	5.1. Principal findings
	5.2. Strengths and weaknesses
	5.3. Source selection
	5.4. Source quality
	5.4.1. Validity of evidence
	5.4.2. Threat to validity

	6. RESEARCH TOOL – KNOWLEDGE REPOSITORY AND DISCUSSION FORUM FOR CAPSTONE PROJECTS
	6.1. Repository: Pre-knowledge reports from previous projects
	6.1.1. Project type
	6.1.2. Project team size
	6.1.3. Project scale
	6.1.4. Project grades
	6.1.5. Project requirements
	6.1.6. Project status
	6.1.7. Estimate deviation

	6.2. Discussion forum

	7. CONCLUSION
	8. REFERENCES

