

AN AUTOMATED TESTING FRAMEWORK FOR THE VIRTUAL CELL GAME

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Santosh Raj Dandey

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

August 2013

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 An Automated Testing Tool For The Virtual Cell Game

 By

Santosh Raj Dandey

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Brian Slator

 Chair

Dr. Simon Ludwig

Dr. Limin Zhang

 Approved:

 09/18/2013 Dr. Kenneth Magel

 Date Department Chair

iii

ABSTRACT

The NDSU Virtual Cell game is a role-based, multi-user computer game developed

to aid in learning cellular concepts in biology. It is developed using client/server

architecture with Lambda-Moo as a server and web-based Java swing applet as a client.

The Lambda-Moo (Legacy) Virtual Cell has several limitations, including

development environment, performance, and maintenance. Therefore, a new virtual-cell

system was developed using the Java-Moo framework to overcome the limitations of the

legacy systems.

The focus of this paper is to propose, design, and implement two strategies to

perform functional conformance testing between the legacy and new Virtual Cell gaming

system. The Automated Testing Strategy performs simulation-based testing by automating

the game play using XML test cases as an input. The Record and Replay Test strategy

captures the test cases of the Virtual Cell (Lambda-Moo) in an XML document and

executes them in the newer version (Java Moo).

iv

ACKNOWLEDGEMENTS

I would like to acknowledge the help of many people who made this paper possible.

I would like to thank my adviser, Dr. Brian Slator, for his continuous support, help, and

direction. My sincere thanks to Dr. Simon Ludwig and Dr. Limin Zhang for serving on the

committee. I would like to thank my sister Supriya Ambati and brother-in-law Venkat

Ambati, my parents and my wife Mirunalini who encouraged me to complete my paper.

v

TABLE OF CONTENTS

ABSTRACT.. iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. viii

LIST OF FIGURES .. ix

1. VIRTUAL CELL INTRODUCTION .. 1

1.1. Background ... 1

1.1.1. Virtual Cell (VCell) ... 1

1.1.2. Problems with the Lambda-Moo VCell System (Legacy VCell) 3

1.1.3. New Virtual Cell System (Java-Moo Version) .. 4

1.2. Problem Definition ... 4

1.3. Objective and Technical Approach .. 6

1.4. Structure of the Paper ... 6

2. LITERATURE REVIEW .. 8

2.1. A Systematic Capture and Replay Strategy for Testing Complex GUI Based Java

 Applications .. 8

2.2. Our Approach ... 8

2.3. Introduction to the Method ... 9

2.4. Related Work .. 9

2.6. Case Study Outlined ... 11

2.7. An XML-Based Approach to Automated Software Testing 12

3. FUNCTIONAL SPECIFICATION FOR VIRTUAL CELL ... 15

3.1. Introduction ... 15

3.2. VCell Functional Categorization .. 16

3.2.1. Utility Functionality ... 16

vi

3.2.2. Common Functionality .. 16

3.2.3. Experiment Functionality .. 18

3.3. Deriving Functional Trees for VCell Functions ... 19

3.4. Derive Decision Trees from Functional Trees .. 22

4. VIRTUAL CELL AUTOMATED TESTING FRAMEWORK 24

4.1. Introduction ... 24

4.2. Our Approach for Designing an Automated Testing Framework 24

4.3. Derive XML Input Data for Each Goal .. 25

4.4. Derive the Test-Case Template for Each Goal ... 28

4.5. Writing the JFCUNIT Test Program for Each Goal ... 31

4.5.1. JFCUNIT Introduction ... 31

4.5.2. Advantages of JFCUNIT Testing .. 32

4.5.3. Limitations of JFCUNIT Testing ... 33

4.5.4. Design of JFCUNIT Test Programs for VCell game ... 33

4.5.5. Interface for the JFCUNIT Program .. 35

4.5.6. JFCUNIT Program for FindOrganelle ... 37

5. RECORD-AND-REPLAY TECHNIQUE FOR THE VCELL GAME 45

5.1. Overview ... 45

5.2. JFCUNIT Record-Replay API .. 47

5.2.1. Recording the XML Test Case .. 47

5.2.2. Replay Recorded XML Test Case ... 48

5.3. Virtual Cell JFCUNIT Customization .. 49

5.3.1. Limitations of the JFCUNIT .. 49

5.3.2. JFCUNIT Tag Handlers ... 49

5.3.3. Custom Tag Handlers for the VCell .. 52

vii

5.3.4. Code Customization to Add Custom Events to the XML Recorder 59

6. TEST RESULTS.. 63

6.1. Test Results ... 63

6.1.1. Interpretation of Test Results ... 64

7. CONCLUSION AND FUTURE WORK .. 66

7.1. Conclusion .. 66

7.2. Future Work .. 69

REFERENCES .. 70

viii

LIST OF TABLES

Table Page

1. JFCUNIT Test Programs for VCell .. 35

2. JFCUNIT Supported Tag Handlers ... 51

3. JFCUNIT Custom Tag Handlers for VCell ... 53

4. Summary of the Capture and Replay Results .. 64

5. Summary of the Total Number of Tested Functions ... 65

ix

LIST OF FIGURES

Figure Page

1. Virtual Cell Game Showing the Laboratory Scene ... 2

2. Conformance Testing Functional Flow Diagram for Record-Replay of VCell 7

3. NAVCOMM Button Options for the VCell Experiment Goal Find a Damaged Cell 17

4. NAVCOMM Button Options for the VCell Experiment Goal ETC Level 0 17

5. Photosynthesis Level 1 Experiment ... 18

6. Functional Tree Showing the Experiment Goals for Each Module in VCell Game........ 20

7. Information Menu Help Topics for Organelle Identification Module 21

8. Function tree for VCell Experiment Goal Find Defective Item 23

9. Automated Testing Framework Design ... 25

10. Sample Design of XML Input Data ... 26

11. XML Data for the Goal Identify Organelle in the VCell Game 27

12. Test Case Template for Organelle Identification Experiment Goal 29

13. Test Cases for Identify Organelle Component .. 31

14. Sequence Diagram for Find Organelle Goal JFCUNIT Program 37

15. VCell Applet Showing Goal Information Dialog .. 50

16. Photosynthesis Module Level 1 Unidentified Components .. 59

1

1. VIRTUAL CELL INTRODUCTION

1.1. Background

1.1.1. Virtual Cell (VCell)

VCell is an online-based gaming system that was developed by NDSU World Wide

Web Instructional Committee (WWWIC) members. Virtual Cell a goal-based and rule-

based system with a 3D environment that allows students to learn about the structure and

function of a cell. The Virtual Reality Modeling Language (VRML) based laboratory is

the entry point for the Virtual Cell. The Virtual Cell has sub-cellular components (nucleus,

endoplasmic reticulum, Golgi apparatus, mitochondria, chloroplast, and vacuoles) that are

rendered as 3D objects using VRML.

The game was designed to motivate the learn-by-doing concept, and the learner

received a specific assignment from the lab assistant. Initially, the learner was given small

assignments to learn the basic concepts. As the students progress, they come back to the

laboratory and get new assignments on different cellular components, conducting assays

and experiments to learn more about these cellular components. The game has three main

modules: Organelle Identification, Electron Transport Chain, and Photosynthesis. The

player starts the game by exploring the Organelle Identification Module first and then does

the Electron Transport Chain or Photosynthesis that he chooses. Students can get help

solving assays or experiments by navigating through the Information Menu. The

Information Menu provides the module-related help topics; as the player switches modules,

the Information Menu options change.

2

Figure 1 shows the VCell application client’s Laboratory screen. The lab guy is the

virtual instructor who guides and assigns new goals to the players. The pop-up window’s

Goal Information shows the player’s current experimental tasks.

Figure 1. Virtual Cell Game Showing the Laboratory Scene

The early version of Virtual Cell (the LambdaMoo) was developed based on client-

server architecture. A Lambda Moo multi-user environment server acts as a central point

for the environment and performs process requests for any simulation associated with the

environment. In addition, it uses an HTTP server to load graphics and model information

to the Java-Swing Client and VRML2.0 to display the environments’ 3D content.

Students use a standard WWW browser to launch the applet. The applet provides a

connection to an object-oriented, multi-user domain where cellular processes are simulated

3

and multi-user viewpoints are synchronized. Virtual Cell uses an incremental scene-

loading algorithm to simulate the cellular process based on node-stub and VRML scene

framework.

1.1.2. Problems with the Lambda-Moo VCell System (Legacy VCell)

The Legacy Virtual Cell system was developed using Lambda-Moo; a network-

based, dynamic, real-time simulation environment developed using an Object-Oriented

database. It has several drawbacks and limitations in terms of performance, extensibility,

and maintenance.

Unlike a modern gaming environment, such as Smalltalk and Java, Lambda-Moo is

a byte-code interpreter without any support for just-in-time compilation. Because the

Lambda-Moo development community is very small in size, the program did not see any

major and new features added after its initial release in 1998. It’s no more competitive to

the other popular interpretive languages.

Lambda-Moo lacks support for code-version control and change conflict. It does

not provide a way to maintain code in version control on a central repository and couldn’t

support version control’s common functionalities like check-in, check-out, and commit

from a central repository. The only way to make code changes is by using cumbersome

command-line editor tools to make updates.

Lambda-MOO is not a developer friendly environment. Unlike the modern

languages, it lacks support for rich graphical user interface (GUI) editors and debugging

tools for easy programming. In addition, it does not provide any mechanism to protect

code and data from server crashes and network outages.

4

1.1.3. New Virtual Cell System (Java-Moo Version)

Due to the limitations of the Lambda-Moo environment, the WWWIC community

at North Dakota State University came up with new ideas to restructure the Virtual Cell

game. Committee members decided to implement advanced technologies that measurably

improve software speed, efficiency, and the failure rate.

The new Virtual Cell system was re-engineered to use the J2EE’s client-server

architecture by entirely re-writing the legacy Lambda-Moo server code in Java language.

The new system uses open-source Apache Tomcat as a web server, and at the client side, it

uses the same legacy java swing client used in legacy Lambda-Moo Virtual Cell. The

client uses Remote Method Invocation (RMI) methodology for client-server

communication through Java Moo objects which are stores in Derby database.

The JavaMoo server is a robust environment with many outgoing features, such as

platform independence, portability, multi-threading, and security. Also, it has open-source

GUI tools, such as eclipse, that provide the latest features and an easy-coding environment

for the programmer.

Although there are considerable changes when implementing the new virtual-cell

system, its working functionalities and the user interface remain same. The system’s

performance, reliability, and ease-of-maintenance should be significantly improved.

1.2. Problem Definition

The aim of converting LambaMOO to JavaMOO architecture is to VCell beyond

the laboratory and into the realm of serious games and system for real-world deployment.

To make these improvements, the existing system has to be moved on to more advance

5

learning technologies. This means moving beyond LambdaMOO implementation and onto

next generation of learning system.

The goal is to measurably improve software speed, efficiency, and failure rate. As

per considering this migration, the research and development for this migration projects

was organized around the following five milestones [1] and metrics that we need to reach

in completely converting the architecture to the Java-Moo architecture.

1. Convert LambdaMOO object memory to a JavaMOO relational database. Metric:

100% conversion of objects necessary for the VCell game

2. Convert VCell modules from LambdaMOO to JavaMOO. Metric: improve the

mean time to failure by 50%.

3. Implement client-side simulations in Java, for each of the levels in the Electron

Transport Chain and Photosynthesis modules.

4. Functional conformance between Lambda-Moo and Java-MOO and it should have

90% more conformance.

5. Conduct a system-performance experiment on the legacy LambdaMOO and the

new JavaMOO and compare the run-time performance results of the two systems in

terms of response times, connections times, and failure rates under a range of

conditions (e.g. fast vs. client machines; fast vs. slow internet connections)..

Our goal for this paper is to implement a software testing methodology to reach

milestones 4 and 5. Performing functional conformance testing between these two

architectures is a challenge. The VCell game has a complex GUI structure. The user can

interact with the game by utilizing a wide range of GUI interactions that range from a

6

simple GUI-clicking event to a complex, goal-driven sequence of interactions that involves

events generated from Java GUI components and VRML window components.

1.3. Objective and Technical Approach

In this paper, we propose a methodology to test functional conformance between

LambdaMOO and JavaMOO versions and to perform experiments on both of these

architectures. We accomplish this goal by introducing two testing methodologies with

Record-Replay technique and building an Automated Testing framework for VCell.

With Record-Replay testing technique the idea behind it is to play the VCell game

in Legacy LambdaMOO system with recording mode enabled, Capture all the GUI and

VRML-3D window component events and save them on a machine readable format and

replay the saved events by applying these events sequentially to the new JavaMOO system.

Figure.2 shows how conformance testing is done between the legacy and new systems.

The Automated Testing methodology does the tests by simulating game play.

Because VCell is a goal-oriented system, a test program is returned for every goal. Each

program reads the test cases defined in an XML document and simulates the game play for

the goal.

 1.4. Structure of the Paper

The paper is organized as follows. The first chapter gives the introduction,

definition of the problem, and research objective. The second chapter explains the

literature overview. The third chapter discusses about functional specification. The fourth

and fifth chapter discusses about design and implementation of the Automated Testing and

Record-Replay of test cases technique. The sixth and seventh chapter illustrates discusses

the Test Results, Conclusion and Future work.

7

Figure 2. Conformance Testing Functional Flow Diagram for Record-Replay of VCell

8

2. LITERATURE REVIEW

2.1. A Systematic Capture and Replay Strategy for Testing Complex GUI Based Java

Applications

There are several sources consulted to investigate this. The first piece of literature

to review is a pdf file by the name, “A Systematic Capture and Replay Strategy for Testing

Complex GUI based Java applications” by Omar El Ariss, Dianxiang Xu, Santosh Dandey,

Brad Vender, Phil McClean, and Brian Slator. The authors are teaching staff at the North

Dakota State University (Department of Computer Science), the National Center for

Protection of the Financial Infrastructure and Department of Plant Science. The paper says

that a capture and replay testing methodology are useful in catering for the different testing

purposes such as regression testing, GUI convergence and functional testing.

2.2. Our Approach

The capture and replay methodology, or strategy, causes a dramatic improvement

for replay tools and standard capture, depending on numerous aspects. The author do this

by combining two main methods: utilizing the various automated test oracles and bridging

a model-based testing approach by means of a capture-and-relay approach. From the

literature, one discovers that tests from this model are essential in “exercising” the system

in order to ensure correct behavior in terms of function. The key words “decision trees,”

“capture and replay,” “GUI-based testing,” “function trees,” and “model-based testing”

help one understand the fundamental topics under discussion. In order to institute a

successful testing strategy that can target certain applications, it is necessary that the people

involved in the process implement different oracles. These oracles include the system

model’s behavior based on the functional specifications or the use of trusted existing

9

systems to ensure that the tests derived from the model in order to exercise the system

create a situation of correct functional behavior and address goal-oriented interactions.

This case study applies a test strategy on a multi-user application with role-based

characteristics.

2.3. Introduction to the Method

According to Paiva and Tillman [2], the introduction goes into detail about the

various aspects of the graphical user interface (GUI) that includes how the users interact

and manipulate the various components of the GUI and introduces the paper’s main thesis.

As a result of increased GUI use, its structure’s applicability and complexity consequently

improve. From this part, one discovers that, while the length of the event sequence goes

up, the growth in the number of sequences the GUI carries out is significant. The

introduction also reinforces the fact that, in order to ensure GUI’s correct functions, the

researcher has to use a testing strategy that employs a capture-and-replay testing approach.

This part of the paper gives a preview of one test on the Virtual Cell. This testing strategy

refers to the use of varied oracles for each phase, therefore leading to an improvement in

the test-case evaluation. The introduction states that multiple oracles are a requirement

because of the nature of the test cases which are from the decision and function trees. The

introduction explains one reason why people have to test the various dynamics involved as

well as the results or benefits that they expect.

2.4. Related Work

In this section, one finds that there are two methodologies for creating System

under Test (SUT) test cases. These methodologies entail the specification-based approach

as well as the capture-and-relay approach. The section goes on to postulate that capture-

10

and-replay tools form the main means to test an application’s GUI and gives examples of

these tools, such as CAPBAK, Rational Robot, and HP Quick Test Professional software.

It also outlines the way the specification-based approach works to derive the system

behavior by constructing a model for the GUI and then using the model to obtain test cases.

The Finite State Machine (FSM) and Hierarchical Finite State Machines (HFSM),

according to the literature, generate test cases and reduce the states in a FSM, respectively.

The authors Paiva et al. and Memon [2]

backed this argument. The literature says that the

authors used planning techniques before embarking on graph modeling for the derivation of

test cases. It also says that the authors represented the GUI as a remarkable graph known

as an Event Flow Graph (EFG) before upgrading the work into Event Interaction Graphs

(EIG). The use of an integration tree was vital in representing the interaction of

components in the GUI according to their hierarchy (Memon and Pollack [3]).

Additionally, in third part of the same paper, there is an introductory statement that

explains the issues, goals, and complexities of the testing strategy. The paper says that, in

cases such as basic capture-and-replay tools, one captures events at certain component

levels (e.g., the buttons and the mouse) due to the low level of abstraction. The section,

however, says that goal-oriented event sequences are not fundamental to the two

approaches in use. Thus, not only will the consideration of goals increase the number of

GUI permutations a large margin tests, but it will also lead to complications regarding the

GUI model’s structure. Without a doubt, this test strategy will result in an infeasible model-

based approach. The literature is clear that, in virtual environments, the user’s view of the

application changes depending on the number of actual users who log into the application.

As a result, for both the specification and capture-and-replay based approaches, the

11

automated test replay must avoid reliance on the selected components and makes a good

testing strategy for the limitations of both the capture-and-replay and specification-based

approaches, saying that none of them supports persistent states.

Therefore, the testing strategy that the authors employ must assume the availability

of a trusted system in order to derive an advantage from automating the test cases. It may

also opt for modification in order to achieve accurate results.

2.6. Case Study Outlined

This section sheds light on the execution of the VCell, its modules, the relationship

to derivation of the function tree, and how the various trees function. Two schematics

detail the functions of the Find Defective Component (FDC) goal via the function and

decision tree, and the pictures are remarkably easy to understand because of the flow

diagram’s nature. A case in point is the function tree for the FDC goal which clearly

outlines the way the FDC component influences the navigation button or the perform

assay. From the schematic, one can clearly see the link and influence exerted by the

perform assay on the DNA synthesis, glycosyl transferase, phospholipid biosynthesis, and

succinate dehydrogenase. This, of course, is in relation to a given biological process. The

same thing applies in relation to the decision tree for the FDC goal. In this decision tree,

the reader can see and learn how to handle a correct or incorrect experiment using a

Boolean equation. For example, in the case of an incorrect experiment, the result will be a

number of variables under “Transport me to Cell A.” These variables are “go to cell,”

“perform assay,” or “I want to file my report.” In short, the paper explains the goals of the

“trees” as identifying mismatches, checking for successful goal completion, and detecting

12

the functional error [1]. This section gives a summary of the capture-and-replay results

based on modules/goals, interface mismatches, errors, and functional errors.

2.7. An XML-Based Approach to Automated Software Testing

The second piece of literature under review is a PDF document from AGM

SIGSOFT with the title “An XML-Based Approach to Automated Software Testing’’
[6]

.

The paper consists of an introduction, two headings, a conclusion, acknowledgments, and

references. In the introduction, the paper brings out the main idea, or thesis, that automates

the functional testing of application software along with its challenges. However, certain

tests, such as those in a driver tool, simulate the responses of a human being and check the

application software output while giving advantages. The paper introduces a certain

software called XML (Extensible Markup Language) which has applications in the testing

process. According to the literature, XML undergoes easy translation into both a readable

statement and driver-tool test script. It also undergoes automated tests to check the output

from the application software. This is because one can check an XML document using

resources such as Xeena (a validating editor).

In the next section, titled “Wired for Learning,” of the same cited paper (“An XML-

Based Approach to Automated Software Testing” [6]) the literature [6] spells out the

benefits of a driver tool that is useful in automated testing based on XML. This driver

testing tool is extremely beneficial because it shows how the tool allows the creation of

home pages. It does this by teaching easy dissemination of information; enhancing

communication among parents, teachers, and students; and enabling them to plan for

lessons and activities linked to national standards.

13

In the same section the authors also gives the technical definition of the application,

explains its capabilities, and also introduces another tool called SET developed internally

by IBM. This tool is useful in monitoring the operations of an independent workstation

running the “Wired for Learning Application” [8]. The section also explains how the XML

scripts undergo modification prior to incorporating them in the “Wired for Learning

Application.” This modification took place by putting them into an HTML configuration

and then converting them to run tests on selected program scripts. The third section of this

article deals with an example of an XML script, complete with the basic elements: the

“epilog” element, verifying elements, and Document Type Declaration (DTD).

The authors of this paper described extremely informative information in stating

how the various elements contribute in ensuring a successful testing process. If one takes

the verifying element, for example, according to the literature, this element provides

customization to the SET driver tool. It does this customization in order to permit

verification of a certain area of the display. The content of this element has an output

which reproduces to both the log file and the SET console. In the Prolog element, the

literature reveals that this element and its set of sub elements are responsible for defining

the test parameters.

The sig file attribute provides the name of the signature-holding files for each

display buffer segment in order to carry out verification. Each element undergoes

examination in this literature along with its necessary parameters, role, and the way the

XML program manipulates it. In one part of this paper, HTML samples showing the

various processes are available. The authors include verify, checking the beginning point;

comment, moving with five tabs and then pressing Enter, checking that the resulting screen

14

is correct. The literature concludes by outlining how one can use XML to describe a

functional test with regard to a certain application. As stated earlier, there are references

and acknowledgements. The references are in the form of web pages from three different

websites along with the necessary links. After the references, there is a full XML script

which reveals the coding for the basic elements, such as <verify num + “ 2” >check

resulting screen is correct</verify>.

For the test results, conclusion, and future work, the literature used “Conformance

Testing for Re-Engineering the VCELL Game” [1] and “A Systematic Capture and Replay

Strategy for Testing Complex GUI Based Java Applications” [8]

15

3. FUNCTIONAL SPECIFICATION FOR VIRTUAL CELL

3.1. Introduction

A functional specification document, in general, describes the product capabilities,

appearance, and its interactions with the users. As per the testing perspective, the

functional specification document allows a tester to understand the available functionality

in the application and write test cases that covers all their functional areas.

The main consideration for this paper is to verify the functional behavior and the

graphical user interface (GUI) structure of the new VCell system to conform to the legacy

VCell. This functional conformance is a challenge because the client has a complicated

GUI structure and event interactions, and also, the VCell application is left with just the

source code that did not have any functional and technical documentation. Although the

new and legacy VCell client has the same GUI structure, its internal workings are different

due to changes in the server’s architecture. For example, LambdaMOO and JavaMOO

provide different mechanisms for client-server interactions. The JavaMOO client uses

Remote Method Invocation (RMI) to request a proxy to an object that exists on the server

object as if that object were local to the client by calling methods in the object, whereas

LambdaMOO uses a text-based communication.

The Automated Testing framework is structured to execute test cases for both the

legacy and new systems. First, the test suite is derived from our trusted system, legacy

VCell. The same test suite is applied to the new system to assure its functional

conformance with the legacy VCell.

16

 3.2. VCell Functional Categorization

The System under test (SUT) for VCell is derived by categorizing the VCell

functionalities. Functional Categorization helps in accentuating and defining the coverage

criteria for the testing process. By categorizing the functionalities, we define whether we

need to apply the Automated-Testing or Record-Replay strategy to achieve the testing

goals. VCell functionalities are categorized as utilities, varying, and experiment

functionality.

3.2.1. Utility Functionality

The utility functions are independent with respect to the goals and modules. This

function does not have any dependency and can be tested with any user accounts that have

varying current goals and modules; it is available for the users at all times and its behavior

remains constant for all the user goals and modules in the VCell. The Create and Save

Notes, User-User Communication, Utility Tools, and Help-Menu button functionalities

come under this category. These functionalities can be tested using the Record-Replay

strategy.

3.2.2. Common Functionality

The common functions are available for all users regardless of the goal and the

module the user is playing and its behavior change as the user explores different goals and

modules. All these functionalities have dependency towards the module and goal names in

VCell. VRML window/3D components, Navigational Communication (NAVCOM)

button, Tool-Panel, and Information-Menu are a few functions that come under this

category. For example, the Navigation Communication (NAVCOMMN) button options

are different for each goal. The NAVCOMMN options for the goal Find Damaged Cell in

17

Organelle Identification module (Figure 3) are different from the ETC Level 0 goal in the

Electron Transport Chain Module (Figure 4). Each experiment utilizes these components

to complete a goal.

Testing the functionalities under this category is done by using either of the two

strategies: Record-Replay or Automated Testing. Automated testing provides flexibility to

check these components by executing multiple test cases at the same time.

Figure 3. NAVCOMM Button Options for the VCell Experiment Goal Find a Damaged

Cell

Figure 4. NAVCOMM Button Options for the VCell Experiment Goal ETC Level 0

Navigation
Communicatio

n Button

Return
me to the

Lab

Clear
text from

the lab
guy

Transport
me to cell a

Transport
me to cell b

Where
am I

I want to
file my
report

Topic

Navigation
Communication

Button

Return
me to

the Lab

What
should

I do
next?

Whe
re

am I

Clear
text in

this
window

Switch to
a

different
module

Show
the

ETC/
ATP

Picture

Watch
the

ETC/
ATP

Demo

Move
me to

the ETC
Level 0

Topic

18

3.2.3. Experiment Functionality

VCell is a goal-oriented game. Each goal and sub-goal in a module contains an

experiment that the user does to complete a goal. The game logic gives importance to the

order of events. The same events provide different results when executed in a different

order. For example, in the Photosynthesis Level 1 experiment (Figure 5), clicking the Stop

button after clicking the Start button has a different result compared to clicking the Start

button after clicking the Stop button.

Figure 5. Photosynthesis Level 1 Experiment

To perform an experiment, the user utilizes varying functionality components and

performs the experiment on the VRML components. For example, in the Photosynthesis

Level 1 goal (Figure 5), the user does experiments on the VRML components,

Photosystem1, Photosystem2, Cytb6-f, and NADP reductase, by placing the different

19

components on the slots using the tool-panel buttons (i.e., Set Components, Reset

Components, Run, Stop, and Reset Experiment buttons).

3.3. Deriving Functional Trees for VCell Functions

Because there is no written documentation describing the VCell available

functionalities and components, it was necessary for us to create functional diagrams to

learn each goal’s functionality and the components that are involved. To derive functional

trees, we first played the game and wrote the user stories document capturing the

components and functionalities involved for a goal, and the game-play logic to successfully

complete the experiment goal. Using these captured user stories, functional models are

built. VCell has a total of 22 goals. Figure 6 shows all the available goals available for the

three modules Organelle Identification, Electron Transport Chain and Photosynthesis

modules in VCell. For each goal, we constructed functional models. Through the

functional trees, all the goal functionalities are depicted. The derived functional tree

portrays the GUI interface components and all the events/actions that the user can apply for

each goal. With this functional tree for each goal, we also constructed the user transfers

from goal to goal. Figure 7 describes the functional tree and its NAVCOMM button

options for the experiment Find Defective Item in Organelle Identification module.

This functional tree lists the functionalities and the components that are involved

when playing this goal. The goal involves users interacting with the NAVCOMM button;

Tool-Panel’s components; and clicking VRML 3D components, such as Mitochondria,

Endoplasmic Reticulum, Golgi apparatus, and Nucleus. In addition to it, the interactions

also involves common operations such as clicking on Menu Items (in particular,

Information menu option to read help tips about the cell’s working) and VRML-3D

20

window navigation buttons, such as clicking FLY, PAN, TILT, WALK and LOOK button

(as shown in Figure 5).

Figure 6. Functional Tree Showing the Experiment Goals for Each Module in VCell Game

V
ir

tu
al

 C
el

l

Organelle
Identification

Find Organelle

Find Defective
Component

Synthesis Defective
Identification

Electron Transport
Chain

Find Mitochondria

Display ETC
Animation

Display ATP
Synthesis
Animation

ETC/ATP Picture

ETC Level 0

ATP Pump
Demonstration

Interactive ETC
Demonostration

Experiment Level

Damaged ETC System 1

Damaged ETC System 2

Damaged ETC System 3

Damaged ETC System 4

Photosynthesis

Find Chloroplast

Phososynthesis
Demo

Photosynthesis
Diagram

Photosynthesis
Level One

Photosynthesis
Level Two

Produce One
NADH

Produce Two
NADH yourself

21

Also, functional trees are constructed for Information menu help topics. These help

topics are reference materials that the user can access throughout the module by utilizing

the Information menu option. Each module has its own set of help topics. For example,

Figure 7 describes the Information-Menu help topics that are available for organelle

identification module. Similarly, Information menu help topics functional trees are created

for each module.

Figure 7. Information Menu Help Topics for Organelle Identification Module

Information
Menu

Structures

Chloroplast
Endoplasmic

Reticulum
Golgi

apparatus
Mitochondria Nucleus

Functions

Chloroplast
Endoplasmic

Reticulum
Golgi

apparatus
Mitochondria Nucleus

Experiments

Identify
Organelle

Assays

Chlorophyll
DNA

Synthesis
Glycosyl

Transferase
Phospholipid
Biosynthesis

Succinate
Dehydrogenas

e

Current Goal

22

Additionally, we constructed functional trees for the VCell operations that are

common to all the three modules, and NAVCOMM button option for all the goals (as the

button options changes for each goal).

3.4. Derive Decision Trees from Functional Trees

The functional tree to find defective component goal (Figure 8) provides a brief

overview of the VCell interface components and the events that are involved with each

goal. Tests should be directly derived from these function trees to ensure that all the

Software under Test (SUT) interface components have been covered. The function tree

model doesn’t provide the event sequences that need to be performed for a successful or

unsuccessful experiment. Similarly we derived functional trees for each goal in all VCell

modules.

23

Figure 8. Function tree for VCell Experiment Goal Find Defective Item

F
in

d
 D

ef
ec

ti
ve

 I
te

m

Assay Slot
Options

DNA Synthesis

Glycosyl
Transferase

Phospholipid
Biosynthesis

Succinate
Dehydrogenase

Assay Slot
Options

Perform Assay

NAVCOMM
Button Options

Transport me to cell
A

Transport me to cell
B

I want to file my
report

Endoplasmic
Reticulum from Cell

A

Endoplasmic
Reticulum from Cell

B

Golgi Apparatus
from Cell A

Golgi Apparatus
from Cell B

Mitochondria from
Cell A

Mitochondria from
Cell B

Nucleus from Cell A

Nucleus from Cell B

VRML 3D
Components

Mitochondria

Nucleus

Glycosyl
Transferase

Endoplasmic
Reticulum

24

4. VIRTUAL CELL AUTOMATED TESTING FRAMEWORK

4.1. Introduction

The VCell client is event-driven, and its test automation is complicated compared to

data-driven applications. GUI based testing needs the combination of event and data

stimuli. Events are triggered when a user interacts with the GUI interface. Typical GUI

interactions in VCell include clicking on GUI components (i.e., buttons and VRML-3D

window components), selecting options, performing experiments, etc.

The Virtual Cell SUT components are limited to experiment functionality. A

separate test program was coded for each goal, simulating the game play by executing the

sequence of events described in the XML test case. (We will discuss how to include a test

case in the XML document in a separate section.)

4.2. Our Approach for Designing an Automated Testing Framework

As VCell didn’t have functional and technical documentation, we have to reverse

engineer the existing application to extract the functionality by building functional trees for

each goal in VCell. We followed the similar approach described in Figure 9 to develop the

Automated Testing Framework for the VCell game using JFCUNIT. We divide the

process of writing JFCUNIT test programs for each goal into four phases. The goal for

Phase 1 is to play the VCell game and prepare goal-based user stories for each experiment.

Phase 2 goal is to derive functional and decision trees from the user stories (we covered the

Phase 1 and Phase 2 topics in Chapter 3 on how we derived functional and decision trees

for each experiment goal in VCell). The rest of this chapter discusses the remaining

modules (Phase 3 and Phase 4). Section 4.2.1 explains how we derived functional trees for

each goal. Section 4.2.2 is about designing an XML test-case template for each goal.

25

Section 4.2.3 illustrates code design and implementation of the JFCUNIT test program for

each goal to simulate the experiment by using XML data as the input and the XML test-

case template as the test suite. Finally, Section 4.2.4 provides Java code that simulates the

find mitochondria goal.

Figure 9. Automated Testing Framework Design

4.3. Derive XML Input Data for Each Goal

The data portion of a test case includes simulated input data, live input data, and

predicted output data. Simulated input data are prepared beforehand to exercise the system

during a given test. These data can be prepared either by an automated test-data generation

tool or manually. For the VCell, the input data are derived manually using the functional

trees. These input data are categorized by VCell’s ModuleName and sub-categorized by

GoalName. The XML input data for each goal define all the components with which the

player interacts to complete the goal. The JFCUNIT test program developed for each

VCell goal reads the component definitions for a goal and applies this definition to run the

test cases. Figure 10 shows the high-level design of the VCell’s XML input data. Each

Phase 1

Play VCEll goal and
build User-Stories for

the goal

Phase 2

Derive Functional
Trees for the Goal

Derive Decision Trees
from Functional

Trees

Phase 3

Derive XML Input
Data for each Goal

Derive XML Test Case
Template for each

Goal

Phase 4

Design and Develop
JFCUNIT Test-

Program for a goal
to simulate the Goal
by Taking XML Input

Data as Input and
parse XML Test Case

Template Data to
apply the Test Case

to VCell.

26

component/sub-component has property attributes defined (i.e., Prop1, Prop2, etc.). The

property attributes differ for each component/sub-component. For example Figure 11

shows the sub-components of object selection and organelle components have different

attributes.

Figure 10. Sample Design of XML Input Data

Figure 11 represents the XML input data to perform the Identify Organelle

experiment in the Organelle Identification Module. The Identify Organelle goal has four

main components with which the user interacts (Communication Button options, Organelle

Action drop-down box, Object Selection drop-down box, and VRML Components). The

JFCUNIT test program designed for each goal runs the test cases by applying the below

input data as component definitions and executing them. Similar to the Identify Organelle

goal, the XML input data have to be created for all goals in the VCell game.

27

Figure 11. XML Data for the Goal Identify Organelle in the VCell Game

28

4.4. Derive the Test-Case Template for Each Goal

The VCell is an event-driven game with common user interactions that include

moving or clicking the mouse, selecting a graphic object, typing into a text field, or closing

a window. A simple test-case template is designed for each VCell experiment so that

testers can include the test cases for the experiments. This template is built to adhere to the

principles of being easy to write, easy to understand, and easy to automate. Although

certain restrictions in the naming conventions and the creation order of GUI components

are imposed by the developer, the test-case writer should be aware of these restrictions. In

case if the testers failed to practice the restrictions will result into an unspecified behavior

that cannot be triggered by a test execution. In such a situation, the application may enter

an unspecified state where the automated test contains no user action that will cause a

transition. Say for e.g., using the XML input data of Find Defective Item goal in Organelle

Identification will result in an unspecified behavior and eventually the test-case will fail.

This human error is a common problem in the GUI testing environment. One main

restriction applied to the test-case template (VCell Automated Testing Framework) design

is to separate the test cases in a goal-by-goal fashion. Therefore, test cases are separated by

module category and by sub-category goals. Also, the Automated Test Program that runs

the test cases is designed to have separate programs for each goal to run the test cases. To

avoid this unspecified behavior, the tester needs a continuous collaboration with a

developer when writing test cases using the test-case templates.

29

Figure 12. Test Case Template for Organelle Identification Experiment Goal

The human interaction logic to simulate the mouse/click operation on components

is handled by the JFCUNIT test program. The test program runs the VCell game and

applies the test cases in a sequential manner. Figure 12 shows the test-cases for organelle

identification goal in VCell game using the XML test-case template. The test-case

template provides a way for testers to write test-cases on the XML document. Each test

case in the XML document is represented with a <Combs> XML tag. Each test-case has

Order and Type attributes. Order defines comma-delimited game actions that can be

applicable to the goal (e.g., COMP:ChloroBackRight in the Combs Order means to click

the VRML component that has the name ChloroBackRight). The Type attribute defines the

valid/invalid test-case scenarios that can be applied to the VCell game to complete the goal.

30

<Combs> represents comma delimited actions that needs to be sequentially applied

to the VCell client to complete the experiment goal and the XML type attribute says

whether it’s a valid or invalid test-case, valid test-case represents the goal has been

successfully completed and validates that the screen pop-up has appeared after finished

applying the events in the XML order attribute. The invalid test-case represents the

experiment is not successful finished and the experiment got aborted before completing the

goal. The JFCUNIT test program provides flexibility for testers to write multiple test-cases

using the <Combs> XML attribute. For example, Figure 13 shows 3 test-cases written for

Identify Organelle Component. Also, the JFCUNIT test program provides options to run

all test-cases at same time or pick a random test-case and run by setting the test-case

configuration options.

The JFCUNIT Test program is designed based on the XML test-case template. The

program reads the <Combs Order> comma-delimited game actions and applies the mouse-

click or component-click events one-by-one in a sequential manner to the VCell

application. Figure 13 shows the test-cases that were written using the test-case template

shown in Figure 12.

31

Figure 13. Test Cases for Identify Organelle Component

4.5. Writing the JFCUNIT Test Program for Each Goal

4.5.1. JFCUNIT Introduction

JFCUNIT is an extension of the JUNIT testing framework that provides a reach

Application Program Interface (API) to write test cases for Java swing-based applications

at the user interface layer. JFCUNIT provides support to write GUI tests that mimic a

user’s interaction with the User Interface (UI). JFCUNIT provides the following

functionalities:

1. Obtaining handles on the windows/dialogs opened by the Java code.

32

2. Locating components within a component hierarchy that occur within the

containers found.

3. Raising events on the found components, e.g., clicking a button or typing text in a

Text Component, or selecting a value in a combo-box.

4. Handling testing of components in a thread safe manner.

4.5.2. Advantages of JFCUNIT Testing

There are many advantages of JFCUNIT Testing, or Test Driven Development

(TDD), namely early detection of problems, the facilitation of change, documentation, and

the simplification of integration to name a few. When TDD is useful in the context of an

automatic-testing framework, a number of things occur. The unit tests are created before

the actual code is typed out, and when the tests are positive (showing no errors), the code is

complete. Those same tests are then frequently run against the function as the large code

foundation is developed and the code changes. If there is a failure of the unit test, the

developer can conclude that a bug exists in the actual tests or the changed code. Through

the unit tests, the fault location is traceable at a remarkably early stage. Testing

frameworks and unit tests allow developers or programmers to refactor code at a later

period and to employ regression testing to make sure the module works correctly. The

basic procedure for testing the framework is to write test cases for all the necessary

functions so that anything that causes a fault can be detected and rectified as soon as

possible. In short, readily available tests and testing frameworks allow a programmer to

see whether a piece of code is working correctly and provide sustained maintenance for the

executable code in addition to foster code accuracy.

33

4.5.3. Limitations of JFCUNIT Testing

The very first limitation we experienced with JFCUNIT Testing while using it for

VCell game is its inability or partial support for identifying Java’s Abstract Windows

Toolkit’s (AWT) components. The built-in JFC Unit’s API Finder and

NamedComponentFinder class methods could not find the AWT component while

searching for it using the name. We discovered this issue only while doing code

development. This limitation is not mentioned explicitly in the API documentation or on

the site. The VCell game developers have extensively used both Java Swing and AWT

components for game development.

Another known limitation of the JFCUNIT is its incompatibility with VRML

component detection. The JFCUUNIT does not have an API to support the detection of

VRML components. Due to these limitations, we could not use the JFCUNIT’s built-in

Component Finder functionality to perform select or click operations on Java AWT

components and in VRML windows. To overcome this limitation, we wrote a custom tag

handler for each AWT component for every experiment window. We discussed more

about custom tag handlers in detail in Chapter 5 about the record-replay technique.

4.5.4. Design of JFCUNIT Test Programs for VCell game

Because VCell is a goal-oriented game, the player starts with a simple goal and

unlocks the next level after finishing a goal. Each game level has different goals, different

experimental components (VRML, Swing, and AWT components), and different

interaction sequences between the components to complete a goal. The design is to write

separate JUNIT testing programs for each goal, automating the user play of each goal.

34

The Java program is designed using the XML input data and XML test case that we

derived from Functional and Decision Trees (as described in Figure 9 from chapter 4). The

program extracts the sequences of events in the order defined using the tag <Combs

order=”{}”/> and applies it to the game (for example, the Test Program reads the Test

Cases defined in XML file as described in Figure 13). The Order has the sequence of

abbreviated events. The program reads the meaning for each of the XML test-case

abbreviated component events, reads the configuration for the detected component from the

XML data (as defined in Figure 12), and performs action on that component.

Consider the XML test case <Combs Order= "{OA:Identify, OS:0,

COMP:ChloroBackRight}”/>. When the JFCUNIT program reads this test-case order, it

interprets the order to perform the following actions in sequence.

1. OA:Identify – interprets to select the value Action on the drop-down combo-

box list item.

2. OS:0 – interprets to select button to “Identify” and the Object Selection drop-

down button to “Identify Chloroplast,” and then the program performs a click

operation on the “ChloroBackRight” VRML component. The Java program

reading this order sequence gets the configurations of each component from the

<OrganelleAction>, <ObjectSelection>, and <OrganelleComponents> XML

data and applies the configurations appropriately.

Table 1 shows test programs we developed for each goal in VCell game. Each

program provides options either to run all test cases defined in the XML document or to

run a randomly selected test case. The following sections shows the skeleton for a typical

35

JFCUNIT test program; all the JUNIT programs described in Table 1 follow the same

interface shown in the next section.

Table 1. JFCUNIT Test Programs for VCell

Module Name
Goal Name Java Class

Organelle

Identification

Identify Organelle TestModule1_FindOrganelle.java

Find Defective Item TestModule1_FDI.java

Synthesis Defective

Identification
TestModule1_SDI.java

Electron

Transport

Chain

Find Mitochondria TestModule2_FindMitochondria.java

Move to ETC Level 0 TestModule2_ETC0.java

Move to the ATP Pump

Demo

TestModule2_ATPPump.java

Interactive ETC Demo TestModule2_InteractiveETC.java

Identifying a Defective ETC

System

TestModule2_ETCDamagedCell.java

Photosynthesis Find Chloroplast TestModule3_FindChloroplast.java

First Photosynthesis Level TestModule3_PSLevel1.java

Second Photosynthesis Level

[Task1 and Task2]

TestModule3_PSLev2Task1.java

TestModule3_PSLev2Task2.java

4.5.5. Interface for the JFCUNIT Program

The JFCUNIT programs (described in the Figure14) follows a similar pattern when

writing the JFCUNIT test programs for VCell. The below java interface shows java

methods signature that each program needs to implement in order to develop the actual

implementation of the JFCUNIT program.

public interface <ModuleName>_<GoalName> extends JFCTestCase implements

VCELLUIConstants {

 public <ModuleName>_<GoalName>(String name) {}

 protected void setUp() throws Exception {}

 protected void tearDown() throws Exception {}

36

 public void testGoalName() {}

 public void parse<GoalName>(String xmlURL, String miniMeExp, String

goalNameCombsOrder) {}

 public void <goalName>TestCases(org.jdom.Element nodeOrganelleCombs,

org.jdom.Element nodeMiniMe) {}

 public void randomCombs(org.jdom.Element nodeOrganelleCombs, org.jdom.Element

nodeMiniMe) {}

 public void iterativeCombs(org.jdom.Element nodeOrganelleCombs, org.jdom.Element

nodeMiniMe) {}

 private void clickMiniMeOptionByName(org.jdom.Element nodeMiniMe,String option) {

 }

 private void findFrame(String title) {}

 private void bypassInformationDialog(int waitTime) {}

 private void clickJButtonComponent(String buttonText) {}

 private void clickCommandDialogActionButton(boolean ActionButton) {}

 private void clickNamedComponentFinder(String text, Container cont, String

errorMessage, int index) {}

 private static void waitfor(long duration) {}

}

37

Figure 14. Sequence Diagram for Find Organelle Goal JFCUNIT Program

4.5.6. JFCUNIT Program for FindOrganelle

The below java program shows the complete implementation of JFCUNIT program

for VCell goal Find Organelle in module Organelle Identification. Executing this java

program will perform experiment based on the test case defined in the XML document.

Figure 14 sequence diagram shows the sequence of operations or methods that gets

executed and, the interactions in between different java components of VCell. (This

sequence diagram is generated using the tool Altova UModel tool with the maximum

invocation depth value 3).

package edu.nodak.ndsu.games.test;

import java.awt.Container;

38

import java.io.File;

import java.io.IOException;

import java.util.List;

import javax.swing.JButton;

import javax.swing.JComponent;

import org.jdom.Element;

import org.jdom.JDOMException;

import org.jdom.input.SAXBuilder;

import edu.nodak.ndsu.games.util.CommunicatorBar;

import edu.nodak.ndsu.games.vcell.CommandDialog;

import edu.nodak.ndsu.games.vcell.NodeStub;

import junit.extensions.jfcunit.JFCTestCase;

import junit.extensions.jfcunit.JFCTestHelper;

import junit.extensions.jfcunit.TestHelper;

import junit.extensions.jfcunit.eventdata.MouseEventData;

import junit.extensions.jfcunit.finder.AbstractButtonFinder;

import junit.extensions.jfcunit.finder.FrameFinder;

import junit.extensions.jfcunit.finder.NamedComponentFinder;

import junit.framework.AssertionFailedError;

import junit.framework.TestCase;

public class TestModule1_FindOrganelle extends JFCTestCase implements

VCELLUIConstants {

private VCellTestPackage vcelltestpackage = null;

private TestHelper helper = null;

public TestModule1_FindOrganelle(String name) {

 super(name); }

protected void setUp() throws Exception {

 super.setUp();

 helper = new JFCTestHelper();

 vcelltestpackage = new VCellTestPackage();

 vcelltestpackage.vcellsetup("santest11", "santest11");

 bypassInformationDialog(5000);

}

protected void tearDown() throws Exception {

 super.tearDown();

}

public void testFindOrganelles() {

 String XMLUrl = UISPECURL;

39

 String miniMeExp = EXP_MINIME_MOD1_IO;

 String organelleCombsExp = EXP_COMBS_ORGANELLE_IO;

 parseFindOrganelles(XMLUrl, miniMeExp, organelleCombsExp);

}

private void parseFindOrganelles(String XMLUrl, String miniMeExp, String

organelleCombsExp) {

org.jdom.Document XMLDocument;

 SAXBuilder saxbuilder = new SAXBuilder();

try {

 File xmlFile = new File(XMLUrl);

 XMLDocument = saxbuilder.build(xmlFile);

org.jdom.Element nodeMiniMe = (org.jdom.Element)

org.jdom.xpath.XPath.selectSingleNode(XMLDocument, miniMeExp);

assertNotNull("Error in reading MiniMe Options from XML Document",

 nodeMiniMe);

org.jdom.Element nodeOrganelleCombs = (org.jdom.Element)

org.jdom.xpath.XPath.selectSingleNode(XMLDocument, organelleCombsExp);

assertNotNull("Error in reading Organelle Combination elements from XML

Document", nodeOrganelleCombs);

 vcelltestpackage.clickLabGuy();

 waitfor(1500);

 clickMiniMeOptionByName(nodeMiniMe, "Transport me to the cell");

 organelleTestCases(nodeOrganelleCombs, nodeMiniMe);

} catch (JDOMException e) {

 e.printStackTrace();

} catch (IOException e) {

 e.printStackTrace();

}

}

/** this method performs three types of test, Randomized Valid Test Case, Randomized

Invalid Test Case and Iterative test-case.

@param nodeOrganelleCombs Organelle Combinations node from XML Specification

Document

@param nodeMiniMe miniMe node from XML Specification Document */

private void organelleTestCases(org.jdom.Element nodeOrganelleCombs,

org.jdom.Element nodeMiniMe) {

// get a random combination that has the type Invalid and perform assays and identification

randomCombs(nodeOrganelleCombs, false);

// get a random combinaton that has the type valid and perform assays and identification

40

randomCombs(nodeOrganelleCombs, true);

//iterative testcases

iterativeCombs(nodeOrganelleCombs, nodeMiniMe);

 }

/** This method iteratively performs the click operation by selecting each combination

present in OrganelleCombs node

* @param nodeOrganelleCombs

* @param nodeMiniMe

*/

private void iterativeCombs(org.jdom.Element nodeOrganelleCombs,

org.jdom.Element nodeMiniMe) {

List OrganelleCombsList = nodeOrganelleCombs.getChildren();

org.jdom.Element elmtCombs;

String goalName;

for (int combsIndex = 0; combsIndex < OrganelleCombsList.size(); combsIndex++) {

elmtCombs = (org.jdom.Element) OrganelleCombsList.get(combsIndex);

goalName = elmtCombs.getParentElement().getAttributeValue(GOAL);

assertNotNull("Error in Reading Goal Information", goalName);

System.out.println("Testing.....Goal Name we retrieved:" + goalName);

vcelltestpackage.clickOrganelleComp(elmtCombs, goalName);

if (elmtCombs.getAttributeValue(TYPE).equals(VALID)) {

System.out.println(" Testing....Successfully Completed the Find Organelle Goal and

exiting....");

 return;

 }

 }

}

/** This Method Randomly Selects a Combination from OrganelleCombs Node and

iteratively performs click operations on the components. each combination will have an

attribute type VALID/INVALID. VALID represents, the combination can successfully

completes the goal and vice-versa is the INVALID

 * @param nodeOrganelleCombs

 * @param ISVALID

 * true->VALID, false->INVALID

 */

@SuppressWarnings({ "static-access", "static-access" })

41

private void randomCombs(org.jdom.Element nodeOrganelleCombs,

 boolean ISVALID) {

org.jdom.Element elmtRandomCombs = vcelltestpackage.getRandomElement(

nodeOrganelleCombs, ISVALID);

assertNotNull("Random Element not found", elmtRandomCombs);

String goalName = elmtRandomCombs.getParentElement(). getAttributeValue(GOAL);

System.out.println("Testing.....Goal Name we retrieved:" + goalName);

System.out.println("Testing....element in randomCombs has the following order:"

 +

elmtRandomCombs.getAttributeValue(ORDER));

vcelltestpackage.clickOrganelleComp(elmtRandomCombs, goalName);

 }

/**

* Performs a click operation on the DoIt Button of Communication Button by using the

given OptionName

* @param nodeMiniMe

* Element Node for the MiniMe

* @param option

* Option Name to Click

 */

private void clickMiniMeOptionByName(Element nodeMiniMe, String option) {

int index = vcelltestpackage.findMiniMeOptions(nodeMiniMe, option);

if (!(index == -1)) {

 clickMiniMeButton(index);

System.out.println("Testing...Clicked Mini Me Option:" + option);

 }

else
throw new AssertionFailedError("Error in reading Mini-me Option for goal " +

nodeMiniMe.getAttributeValue(GOAL));

}

/** This method will perform a click operation on MiniMe button, select the given index

value and performs a click operation on do button

* @param index index of the miniMeOption to be selected

*/

private void clickMiniMeButton(int index) {

String errmsg = "Communication Button Not found";

clickNamedComponentFinder(CommunicatorBar.COMMBUTTON,

vcelltestpackage.getVCellApplet().getcontrolsPanel().getcommButton(), errmsg, 0);

 findFrame("Tell Lab Guy");

 vcelltestpackage.clickCommandDialogButton(index);

42

 waitfor(1000);

 clickCommandDialogActionButton(true);

}

/**

* this method will look for the frame with the given title

* @param title

* title of the frame

*/

private void findFrame(String title) {

 FrameFinder finder = new FrameFinder(title, true);

 finder.find();

 assertNotNull(title + " frame not found", finder);

 System.out.println("Testing.....found frame:"

 + finder.getTitle().toString());

}

private void bypassInformationDialog(int waitTime) {

waitfor(waitTime);

 clickJButtonComponent(CLOSE);

}

/** finds and click the Button Component that has the label name buttonText

 @param buttonText

* label name for the button

*/

private void clickJButtonComponent(String buttonText) {

AbstractButtonFinder finder = new AbstractButtonFinder(buttonText, true);

JButton compButton = (JButton) finder.find();

assertNotNull("Couldn't find the " + buttonText, compButton);

try {

helper.enterClickAndLeave(new MouseEventData(this, compButton));

 System.out.println("Testing....Clicked ||" + buttonText

 + "|| Button");

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 waitfor(1000);

}

/**

 * @param ActionButton

 * true/false ==> click on DOButton/Click on CANCELButton

 */

43

private void clickCommandDialogActionButton(boolean ActionButton) {

waitfor(500);

String errmsg = "Command Dialog's DO Button Not FOund";

if (ActionButton) {

 clickNamedComponentFinder(CommandDialog.CMDDIALOG_DOBUTTON,

 vcelltestpackage.getVCellApplet().getcommandDialog(),

 errmsg, 0);

 System.out.println("Testing....Clicked Command Dialog Do

Button");

 }

else {

clickNamedComponentFinder(CommandDialog.CMDDIALOG_CANCELBUTTON

,vcelltestpackage.getVCellApplet().getcommandDialog(),

 errmsg, 0);

 System.out.println("Testing....Clicked Command Dialog Cancel Button");

}

 waitfor(2000);

}

/**

* perform a click operation on the given component

* @param text component name

* @param cont container to search

* @param errormessage assert error message to display

* @param index index of the component to be clicked if multiple components present on

the same name

*/

private void clickNamedComponentFinder(String text, Container cont, String

errormessage, int index) {

NamedComponentFinder finder = new NamedComponentFinder(

JComponent.class, text);

JButton commButton = (JButton) finder.find(cont, index);

assertNotNull(errormessage, commButton);

try {

helper.enterClickAndLeave(new MouseEventData(this, commButton));

} catch (Exception ex) {

 ex.printStackTrace();

}

waitfor(1000);

}

private static void waitfor(long duration) {

44

try {

 Thread.sleep(duration);

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

}

}

45

5. RECORD-AND-REPLAY TECHNIQUE FOR THE VCELL GAME

5.1. Overview

The record-and-replay program replicates test cases for the user playing the VCell

game. This technique allows the user to play the game, and the program automatically

generates a test case that is an exact match for the actions taken by the user on the VCell

GUI. This test case can then be executed to repeat the user’s game playing. This testing

technique reduces the difficulties in testing the VCell GUI by significantly reducing the

process of writing test cases. One benefit of using this technique is that the method allows

testers to play the game simultaneously on different VCell goals and capture all the events

from the game’s start until completing a goal and store them in a flat file, and simulate the

game play when needed using the test cases stored in a flat file.

The record-and-replay technique is implemented using Java, the JFCUNIT, and the

JFCEventManager API to help record and replay the GUI events. The record-and-replay

program is composed of two parts:

1. Record part: This part is the automated test-generation process. It is responsible for

monitoring the user’s actions on the GUI and recording all the actions, such as

name of the clicked component, mouse click and position change events, and the

proprietary VRML window’s object-click events. These sequences of captured

actions are then transformed to an XML file with each action stored as an XML tag

with the JFCUNIT’s event name as an XML tag name. The set of events in the

stored XML file form a test case.

46

2. Replay part: This part is the automated test-executing process. It is responsible for

executing the recorded.xml test cases by reading the JFCUNIT events sequentially

from the XML file and applying them with a configurable, delayed time.

An advantage of the existing capture-and-replay tools is that the capture part

records GUI events without having to deal with low-level GUI interactions such as mouse

positions and button-click events. Rather than capturing the position of the clicked

component, we capture the component name. Then, the replay program only needs the

component name to activate the event. In addition, clicked mouse positions are still

recorded and used to simulate the mouse movement while the script is being replayed.

Another advantage of capture-and-replay tools is that the record part of the program

can be run on two different systems, the legacy and the new VCell. Recording test cases

from the legacy system is very useful for the functional conformance between the legacy

VCell and the SUT.

Also, recording test cases from the SUT side simplifies the process of creating

automated test cases for the new system. The test cases are intended to derive tests from

functional trees by exercising all the GUI components. For each goal, the same test cases

are recorded on both the legacy and the new client side; then, the cases are compared to

find any functional or GUI mismatches. Examples of mismatches that we find in these

processes are missing or additional buttons; a different goal order; inconsistency between

the information dialogs being displayed, such as different instructions and messages; and a

different task order.

47

5.2. JFCUNIT Record-Replay API

The JFCUNIT API provides built-in support for recording and replaying Java

Swing applets. A separate program is written to record and replay XML test cases in the

VCell applet. The following two sections describe how we accomplished the two events.

5.2.1. Recording the XML Test Case

A separate Java program, with recording enabled, is written to run the VCell applet.

The following code snippet shows how to start the VCell applet with recording enabled and

to store the recorded events in a saved.xml file.

public TestXMLRecording() {

 super("xmlrecordingtemplate.xml",

 XMLUtil.readFileFromClassContext(

 TestXMLRecording.class,

 "xmlrecordingtemplate.xml"));

 vcellWebStart = new VCellWebStart();

 vcellapplet= vcellWebStart.getVCellApplet();

 vcellWebStart.startVCell();

 vcellapplet.getSocketReaderThread().ISRECORDING = true;

 vcellapplet.waitForStartup();

 //VCellWebStart.main(new String[] {});

 try {

 Thread.currentThread().sleep(3000);

 } catch (InterruptedException ex) {

 } }

48

The above program captures all the low-level component events such as mouse-

clicks, button-click events, and drop-down events without any customization to the VCell

applet. The vcellapplet.getSocketReaderThread().ISRECORDING = true assignment

operation in the above code allows the recording of custom events that we developed for

the VCell game due to the limitations of the JFCUNIT (as discussed in section 4.5.3) for

not supporting AWT and VRML window components . We discuss this code

customization in detail on a separate section in Section 5.3 (Virtual Cell JFCUNIT

Customization).

5.2.2. Replay Recorded XML Test Case

The TestXMLReplay.java program is written to replay the saved XML test-case file

to the VCell applet. The following code snippet takes care of replaying the XML test case

to the VCell applet. The program initially reads the events in the saved.xml, and the

JFCUNIT library applies the events one-by-one after starting the VCell applet.

public TestXMLReplay() {

 super("saved.xml", openFile("saved.xml"));

 XMLRecorder.setReplay(true);

 repvcellWebStart = new VCellWebStart();

 repvcellapplet= repvcellWebStart.getVCellApplet();

 repvcellWebStart.startVCell();

 repvcellapplet.waitForStartup();

 try {

 Thread.currentThread().sleep(3000);

49

 } catch (Exception e) {

 // Ignore

 }

 }

5.3. Virtual Cell JFCUNIT Customization

5.3.1. Limitations of the JFCUNIT

Capturing all the events in the VCell user-interface interactions create some

challenges. As mentioned in the JFCUNIT API Limitations section of Chapter 4, the

JFCEventManager does not handle the interactive 3D components of the VRML window

and the GUI components that are built using the Java AWT toolkit.

5.3.2. JFCUNIT Tag Handlers

To overcome the limitations, we have extended the JFCUNIT’s tag handler

functionality to support VRML window components and Java AWT components. The

JFCUNIT recording template program in the background uses tag handlers to record and

store the events in an XML file. For example, clicking the close button (as shown in

Figure 15) in the Goal Information dialog creates two events, <find> and <click>, in an

XML file (as shown below) while running the JFCUNIT recording template program.

<find class="javax.swing.JButton" container="JFrame4"

finder="NamedComponentFinder" id="Component5" index="0"

name="TEST_INFORMATIONDIALOG_CLOSEBUTTON"

operation="equals"/>

50

<click position="custom" reference="144,8" refid="Component5"

type="MouseEventData"/>

Figure 15. VCell Applet Showing Goal Information Dialog

The replay JFCUNIT program loads the XML test case and reads the events one-

by-one, and the program calls the corresponding tag handlers and executes the operation.

For example, the replay program calls the FindTagHandler.java class for the <find> tag and

the ClickTagHandler.java program for the <click> tag. Table 2 shows a list of built-in

event and tag handlers support for JFCUNIT. The JFCUNIT record program keeps

listening to the Java applet’s component events and activates the appropriate tag handler in

the run-time to record that event and save the event in an XML file. The replay program

51

then reads the events in the XML file and executes the associated tag handlers for the event

in a sequential manner to simulate the recorded play.

Table 2. JFCUNIT Supported Tag Handlers

Event Name Tag Handler Class

Topwatch StopWatchTagHandler

assertequals AssertEqualsTagHandler

assertnotequals AssertNotEqualsTagHandler

assertnotsame AssertNotSameTagHandler

assertsame AssertSameTagHandler

assertnull AssertNullTagHandler

assertnotnull AssertNotNullTagHandler

fail FailTagHandler

assertenabled AssertEnabledTagHandler

asserthasfocus AssertHasFocusTagHandler

asserttextfieldcontains AssertTextFieldContainsTagHandler

asserttablecontains AssertTableContainsTagHandler

noop NoOpTagHandler

evaluate EvaluateTagHandler

echo EchoTagHandler

suite SuiteTagHandler

test TestTagHandler

test TestTagHandler

property PropertyTagHandler

taghandlers TagHandlersTagHandler

awteventqueue AWTEventQueueTagHandler

find FindTagHandler

key KeyTagHandler

manager JFCEventManagerTagHandler

wheel MouseWheelEventDataTagHandler

click ClickTagHandler

drag DragTagHandler

sleep SleepTagHandler

record XMLRecorder

save SaveTagHandler

file FileTagHandler

dump DumpTagHandler

for-each ForeachTagHandler

choose ChooseTagHandler

indexof IndexOfTagHandler

procedure ProcedureTagHandler

while WhileTagHandler

getparent ParentInstanceTagHandler

52

Table 2. JFCUNIT Supported Tag Handlers (continued)

Event Name Tag Handler Class

pathdata PathTagHandler

tokenize TokenizeTagHandler

JComboBoxMouseEventData JComboBoxMouseEventDataTagHandler

JListMouseEventData JListMouseEventDataTagHandler

JSpinnerMouseEventData JSpinnerMouseEventDataTagHandler

JTabbedPaneMouseEventData JTabbedPaneMouseEventDataTagHandler

JTableHeaderMouseEventData JTableHeaderMouseEventDataTagHandler

JTableMouseEventData JTableMouseEventDataTagHandler

JTextComponentMouseEventData JTextComponentMouseEventDataTagHandler

JTreeMouseEventData JTreeMouseEventDataTagHandler

JMenuMouseEventData JMenuMouseEventDataTagHandler

MouseEventData MouseEventDataTagHandler

AbstractButtonFinder AbstractButtonFinderTagHandler

ComponentFinder ComponentFinder

JLabelFinder JLabelFinderTagHandler

JMenuItemFinder JMenuItemFinderTagHandler

NamedComponentFinder NamedComponentFinderTagHandler

DialogFinder DialogFinderTagHandler

FrameFinder FrameFinderTagHandler

JWindowFinder JWindowFinderTagHandler

LabeledComponentFinder LabeledComponentFinderTagHandler

JInternalFrameFinder JInternalFrameFinderTagHandler

JPopupMenuFinder JPopupMenuFinderTagHandler

5.3.3. Custom Tag Handlers for the VCell

The JFCUNIT provides easy extensibility for developers to capture and replay a

user’s custom events. We utilized this feature for VCell to recognize unidentified events

by writing tag handlers for each custom event. First, we played the games with the

recording mode enabled to identify events that were unrecognized by JFCUNIT. After

reviewing the recorded XML test cases, we found that the following components were not

recognized

1. AWT buttons and drop-down (combo-box) components on tool panel window

in the Electron Transport Chain module’s did not recognize for button click and

53

drop-down change events for the experiment goals ATP Pump Demonstration,

Move to ETC Level 0, and Identify ETC Damaged Cell.

2. AWT buttons and drop-down components didn’t recognize on tool panel

window of photosynthesis level 1 and photosynthesis level 2 experiments from

Photosynthesis module.

3. VRML click, rotation, and orientation events inside the VRML game window

were not recognized.

For these un-recognized components, we made a solution to create custom

JFCUNIT events for each of the experiment’s unidentified components. A separate event

is created for button clicks and for select items in the combo box of each experiment in

module2 and module3. Table 3 shows the list of events we created for the experiments

along with the associated tag handlers we constructed to handle the event.

Table 3. JFCUNIT Custom Tag Handlers for VCell

Event Name Java Class

ATPPUMP ATPPumpButtonTagHandler.java

ETCBUTTONCLICK ETCButtonTagHandler.java

ETCDMGDCLICK ETCDamagedCellButtonTagHandler.java

ETCDMGDSUBSTRATES ETCDamagedCellSelectTagHandler.java

PSLEV1CLICK PSLev1ButtonTagHandler.java

PSLEV1 PSLev1SelectTagHandler.java

PSLEV2CLICK PSLev2ButtonTagHandler.java

SIBSTRATEHANDLER SetSubstrateTagHandler.java

ETCSUBSTRATES SubstrateButtonTagHandler.java

VRMLCLICK VRMLButtonTagHandler.java

VRMLORIENTATION VRMLOrientationTagHandler.java

VRMLPOSITION VRMLPositionTagHandler.java

54

Section 5.3.4 explains the code customization for the VCell game modules to

support JFCUNIT XML recording and how we added additional code to the VCell Java

project to support JFCUNIT recording for unidentified events in each experiment while

running the TestXMLRecording.java program. Section 5.3.3.1 shows a sample, recorded

XML test case that was generated while running the TestXMLRecording.java program on

an experiment in the Electron Transport Chain (ETC) module with the following custom

events: <VRML POSITION>, <PUMPHANDLER>, and <ETCBUTTONCLICK>. The

TestXMLReplay.java program takes the Section 5.3.3.1 content as input, reads the events

in sequence, and calls subsequent tag handlers for each event by looking into the

TagMapping.properties file of the JFCUNIT which maintains the list of Java tag-handler

classes associated with each event.

(Note: All the custom JFCUNIT tag handlers for the VCell game that are defined in

Table 3 are defined in the TagMapping.properties file). For example, the <find> event will

execute FindTagHandler.java class to process the <find> element event, and the

<VRMLPOSITION> event will execute the Java class VRMLPositionTagHandler.java.

Each custom tag handler processes the event by reading the XML event value and

executes the code inside the processElement() method of the tag-handler Java class to

apply the event in run time on the VCell applet. The following java program shows the

code that is executed for the <ETCBUTTONCLICK> event (as shown in Section 5.3.3.1).

ETCButtonTagHandler.java

package edu.nodak.ndsu.games.taghandlers;

import junit.extensions.xml.IXMLTestCase;

import junit.extensions.xml.XMLException;

import junit.extensions.xml.elements.AbstractTagHandler;

import org.w3c.dom.Element;

55

import edu.nodak.ndsu.games.test.TestXMLReplay;

import edu.nodak.ndsu.games.vcell.ETC_0;

public class ETCButtonTagHandler extends AbstractTagHandler {

 public ETCButtonTagHandler(Element element, IXMLTestCase testCase) {

 super(element, testCase);

 }

 public String getButtonText(){

 return getString(BUTTONTEXT);

 }

 public void processElement() throws XMLException {

 validateElement();

ETC_0 etc =

TestXMLReplay.repvcellapplet.getExperimentWindow().getETC_0();

 etc.setButtonListeners();

 String buttonText = getButtonText();

 if (buttonText.equalsIgnoreCase(etc.ETC0_SETCOMPS))

 etc.setlistener.setComponentAction();

 else if (buttonText.equalsIgnoreCase(etc.ETC0_RUN))

 etc.runexperimentlistener.setRunAction();

 else if (buttonText.equalsIgnoreCase(etc.ETC0_RESETEXPERIMENT))

 etc.resetexperimentlistener.setResetExperimentAction();

 else if (buttonText.equalsIgnoreCase(etc.ETC0_STOP))

 etc.stopexperimentlistener.setStopAction();

 getXMLTestCase().addProperty(buttonText, BUTTONTEXT);

 }

 public void validateElement(){

 checkElementTagName(ETCBUTTONCLICK);

 checkRequiredAttribute(BUTTONTEXT);

 }

}

5.3.3.1. Sample, Recorded XML Test Case

The below XML document shows the auto-generated XML file (saved.xml) while

playing the VCell game with the recording mode enabled. These auto-generated XML file

56

can be executed to simulate the game play to mimic the interactions of the player again on

legacy or new VCell system by running the TestXMLReplay.java program with input as

the saved.xml file.

<?xml version="1.0" encoding="UTF-8"?>

<suite name="Recording test suite">

<test debug="true" name="Recording test" robot="true">

<find finder="FrameFinder" id="JFrame1" index="0" operation="equals" title="Connect to

Virtual Cell"/>

<find class="javax.swing.JTextField" container="JFrame1" finder="ComponentFinder"

id="Component2" index="0" operation="equals"/>

<click index="0" refid="Component2" type="JTextComponentMouseEventData"/>

<sleep duration="300"/> <key refid="Component2" string="santest"/>

<sleep duration="300"/> <key refid="Component2" string="1"/>

<sleep duration="300"/> <key refid="Component2" string="0"/>

<sleep duration="300"/> <key code="9" refid="Component2"/>

<sleep duration="300"/>

<find class="javax.swing.JPasswordField" container="JFrame1"

finder="ComponentFinder" id="Component3" index="0" operation="equals"/>

<key refid="Component3" string="santest11"/>

<sleep duration="300"/> <key code="8" refid="Component3"/>

<sleep duration="300"/> <key refid="Component3" string="0"/>

<sleep duration="300"/> <key code="10" refid="Component3"/>

<sleep duration="300"/> <VRMLPOSITION value="0.0,1.81,3.515255"/>

57

<sleep duration="300"/> <VRMLPOSITION value="0.0,1.81,3.515255"/>

<sleep duration="300"/> <find finder="FrameFinder" id="JFrame4" index="0"

operation="equals" title="Goal Information"/>

<find class="javax.swing.JButton" container="JFrame4"

finder="NamedComponentFinder" id="Component5" index="0"

name="TEST_INFORMATIONDIALOG_CLOSEBUTTON" operation="equals"/>

<click position="custom" reference="144,8" refid="Component5"

type="MouseEventData"/> <sleep duration="300"/>

<find finder="FrameFinder" id="JFrame6" index="0" operation="equals" title="Virtual

Cell Applet"/>

<find class="javax.swing.JButton" container="JFrame6"

finder="NamedComponentFinder" id="Component7" index="0"

name="TEST_COMMBUTTON" operation="equals"/>

<click position="custom" reference="30,51" refid="Component7"

type="MouseEventData"/> <sleep duration="300"/>

<find finder="FrameFinder" id="JFrame8" index="0" operation="equals" title="Tell Lab

Guy ..."/>

<find class="javax.swing.JList" container="JFrame8" finder="ComponentFinder"

id="Component9" index="0" operation="equals"/>

<click index="8" refid="Component9" type="JListMouseEventData"/>

<sleep duration="300"/>

<find class="javax.swing.JButton" container="JFrame8"

finder="NamedComponentFinder" id="Component10" index="0"

58

name="TEST_CMDDLG_DOBUTTON" operation="equals"/>

<click position="custom" reference="19,16" refid="Component10"

type="MouseEventData"/>

<sleep duration="300"/>

<VRMLPOSITION value="4.2536144,-7.814967,11.999736"/>

<sleep duration="300"/>

<PUMPHANDLER PUMPHANDLERTYPE="NADHPumpHandler" index="1"/>

<PUMPHANDLER PUMPHANDLERTYPE="WaterPumpHandler" index="1"/>

<sleep duration="1500"/>

<PUMPHANDLER PUMPHANDLERTYPE="WaterPumpHandler" index="2"/>

<sleep duration="1500"/>

<ETCBUTTONCLICK BUTTONTEXT="Run"/>

<sleep duration="60000"/>

<ETCBUTTONCLICK BUTTONTEXT="Stop"/>

<sleep duration="2500"/>

<ETCBUTTONCLICK BUTTONTEXT="Reset Experiment"/>

<sleep duration="2500"/>

<record encoding="UTF-8" file="saved.xml"/>

</test>

</suite>

59

Figure 16. Photosynthesis Module Level 1 Unidentified Components

5.3.4. Code Customization to Add Custom Events to the XML Recorder

For all the unrecognized events in the VCell applet (as shown in Table 3), a process

has to be followed to add each event to the XML recording template and to write a tag

handler for the replay program to emulate this event. Below we explain the steps for how

we processed the button-click event and the combo-box select event for the Photosynthesis

Level 1 experiment in the Photosynthesis module, i.e., the PSLEV1CLICK (for the button)

and PSLEV1 (for the combo-box) events as shown in the tool-panel components of Figure

16. We followed similar steps to develop a custom JFCUNIT recording customization for

each unrecognized component event of every experiment in Electron Transport Chain and

Photosynthesis module.

60

1. Identify the Java class that is invoked for the Photosynthesis Module level 1

experiment tool panel: We identified that the Photosynthesis_1_1.java program is

invoked for both buttons and the combo-box Java AWT components (i.e., Set

Components, Reset Components, Run, Stop, and Reset Experiment buttons in the

panel and the four combo-boxes) to set the components for the experiment as

shown in Figure 16.

2. Identify the events and tag handlers created for the experiment: This experiment has

five buttons and four combo-boxes. We created two custom events, the

“PSLEV1CLICK” and “PSLEV1” events, to handle button clicks and combo-box

item-change events.

3. Add the identified events to the XMLRecorder.java (of the JFCUNIT API): the

XMLRecorder.java provides code logic to add the event to the XML file while

running the record program. In this case, we need to include methods to add the

“PSLEV1CLICK” and “PSLEV1” events to the XML file. The following code

includes a method to generate an XML tag and to insert it into an XML file for the

“PSLEVEL1CLICK” and “PSLEV1” events.

public static void generatePSLevel1Select(String SlotIndex, String SlotType){

 Element e = m_doc.createElement(PSLEV1);

 e.setAttribute(SLOT, SlotType);

 e.setAttribute(INDEX, SlotIndex);

 insertNode(e);

 }

 public static void generatePSLevel1Click(String ButtonText){

 Element e = m_doc.createElement(PSLEV1CLICK);

 e.setAttribute(BUTTONTEXT, ButtonText);

 insertNode(e);

}

61

4. Identify the listener classes for each of the button and combo-box items in the

experiment: We identified nine listener classes inside the Photosynthesis_1_1.java

program: “PS1Handler,” “PS2Handler,” “NADPHandler,” and “CytHandler” for

the combo-boxes and “setListener,” “resetListener,” “runExperimentListener,”

“resetExperimentListener,” and “stopExperimentListener” for the buttons.

5. Modify the identified listener classes’ set methods to include logic to add the event

in the XML file if recording is enabled: For example, the following code shows the

modification we did for the setPS1Handler() method of the PS1Handler listener.

public void setPS2Handler(){

 int n = PS2.getSelectedIndex();

 if(SocketReaderThread.ISRECORDING){

 XMLRecorder.generatePSLevel1Select(String.valueOf(n),

PS1_PHOTOSYSTEM2);

 XMLRecorder.generateSleep("1500");

 }

 nPS2 = n + 1;

 MyParent.writeLn(

 ";player.location:set(\"PS2Selection" + "\"," + nPS2 + ")\n");

}

6. Similarly, follow step 5 to include the generatePSLev1Select or

generatePSLev1Button events to the set methods of the identified listener classes:

“setNADPHandler(),” “setPS1Handler(),” “setCytHandler(),”

62

“setRunExperiment(),” “setResetExperiment(),” “setListener(),” and

“setStopExperiment().”

7. Run TestXMLRecording.java on the Photosynthesis Module Level 1 experiment

program to test the functionality by checking the recorded XML file to see that all

the buttons and combo-box items are added in the XML file: The following

example shows the events that are added to the XML file when you click the Set

Component button and select the SLOT photosystem1 with item “1.”

 <PSLEV1CLICK BUTTONTEXT="Set Components"/>

<PSLEV1SELECT slot="PHOTOSYSTEM1" index="1"/>

8. The TextXMLReplay.java program reads the above-generated XML test-case

events and applies the events one-by-one to the VCell applet by executing the

corresponding tag handlers: For example, the PSLEV1CLICK event will execute

the PSLev1ButtonTagHandler.java class that has logic to call the set listener classes

to perform a click or item-select operation based on the BUTTONTEXT for button

click events and with SLOT and INDEX for combo-box item select events.

63

6. TEST RESULTS

6.1. Test Results

Table 4 shows the summary of the capture and replay results and Table 5 shows the

total number of tested functions. The “operations common to all modules” had 10 interface

mismatches, 1 functional error, and 11 errors. The Find Organelle had 9 interface

mismatches, 0 functional errors, and 9 errors while the find defective component had 2

interface mismatches, 0 functional errors, and 3 errors. On the other hand, the Synthesis

Defective Identification had 2 mismatches, 0 functional errors, and 3 errors. The ETC/ATP

animation and ETC level 0 had 0, 1, and 1 interface mismatches, functional errors, and

errors for the former 3, 1, and 4 interface mismatches, functional errors and 4 errors for the

latter. The ATC pump demonstration and damaged ETC system had 4, 0, and 4 interface

mismatches, functional errors, and errors in the former as well as 2 interface mismatches, 0

functional errors, and 2 errors in the latter. The total figure for the capture-and-replay

results was 39 total interface mismatches, 7 functional errors, and 46 other errors. These

results were for 3 modules and only included the goals that had detectable errors. From the

test results, it is possible to form an opinion concerning the usefulness of automated testing.

For example, the conformance of the SUT is measured by considering how to pass many

functions without detecting errors in them.

From the literature, the conformance percentage is by an equation: the conformance

percentage is the number of conformed functions divided by the total number of tested

functions. This function refers to the total sum of all the interface components which

undergo testing and the sum of all game logic. The number of conformed is the total

number of the tested functions subtracted from the total number of errors that constitute the

64

total sum of errors found by the test programs, capture and replay. Again, Table 6.2 shows

the total tested functions, tested game logic, and the number of tested interface functions

obtained from the decision and function trees.

Table 4. Summary of the Capture and Replay Results

Module/Goal Interface

mismatches

Functional

errors

Errors

Operations common to all modules 10 1 11

Find Organelle 9 0 9

Find Defected Component 2 0 2

Synthesis Defected Identification

ETC/ATP Animation

ETC Level 0

ATP Pump Demonstration

Damaged ETC system

Photosynthesis Demo

Photosynthesis Level One

Photosynthesis Level Two

2

0

3

4

2

0

1

6

0

1

1

0

0

1

0

3

2

1

4

4

2

1

1

9

Total 39 7 46

6.1.1. Interpretation of Test Results

The data shows (as shown in Table 5) that the total number of tested functions for

the entire system stands at 327. On the other hand, the testing methodology’s errors before

corrective activity stand at 59. From these results, it is possible for one to calculate the

initial conformance percentage as 81.9%. That is, (327-59) divided by 327. It is

imperative to run the tests again after performing the right actions to prevent them from

reducing. This is possible by calculating the functional conformance percentage as

follows: (327-13) divided by 327, giving 96%
[1]

.

Table 5 implies that there are advantages to systematic testing because the

functional conformance of the SUT rose from 81.9% to 96%. Another thing that is worth

noting is that modifying the interactive ETC demonstration goal resulted in the re-run ofthe

test cases for the second module. Three errors in the Damaged ETC system, in which

65

Table 5. Summary of the Total Number of Tested Functions

Module/Goal

of interface

functions

of game

logic

of tested

functions

All Modules 19 24 43

Find Organelle 8 14 22

Find Defected Component 6 14 20

Synthesis Defect Identification 6 14 20

Find Mitochondria 3 6 9

ETC/ATP Animation 1 3 4

ETC Level 0 8 10 18

ATP Pump Demonstration 6 11 17

Interactive ETC Demonstration 6 40 46

Damaged ETC system 36 20 56

Find Chloroplast 3 7 10

Photosynthesis Demo 1 2 3

Photosynthesis Level One 9 10 19

Photosynthesis Level Two 22 18 40

Total 134 193 327

one of them was a game logic error, were detected by the recorded test cases. The results

of the process highlighted the importance of being conversant with threats to validity. In

this experimental process, these threats allowed to deal with the unexpected impact (such

as biased results) of the independent variables on the dependent variables. The threat of

biased results is the reason why the process used two techniques: capture and replay as well

as the model-based technique. From the testing process, it is clear that the major threats to

validity came from implementing the testing techniques and using Java programs. Thus,

although the strategy aimed at dealing with complicated event sequences of the VCell, the

modifications, or customizations, were independent of the system. The strategy also

widened the adaptability of this approach to other varying complex systems.

66

7. CONCLUSION AND FUTURE WORK

7.1. Conclusion

Testing is an important process by which one can improve software quality by

collecting information about the software’s performance. Through the JFCUNIT’s virtual

testing frameworks, the software reliability can significantly improve without resorting to

inflexible tools or drivers with high overheads. Scalability and flexibility are, thus,

possible using JFCUNIT testing for the desired results. The specification language used in

the testing process underscores a number of testing items, namely user-defined testing,

structural testing, code testing, and data-flow testing. The specification language has both

textual and visual forms to allow it carry out its duties. The graphical tool, for instance,

can collect the test results and present them to the end user with a test analyzer, which

highlights, or marks, the parts that need rectification. The basic components of a testing

framework such as this one include attest analyzers, test planners, test virtual machines,

and test specifies.

When testing software, a developer can apply a multitude of different tests to

various code regions. The basic application specifies the tests to apply and the appropriate

conditions. The test-specification language represents the desired test process and consists

of a “Body” and “Definitions.” Definitions, as the name suggests, describe the regions of

code to undergo testing by declaring code regions for referencing in the Body section. The

Definitions has the test specifications, such as the conditions to meet before the test goes

through successfully. In the JFCUNIT method, the test planner is invoked or consulted

every time the compiler loads a method in order to execute and employ it. The planner is

67

also responsible for retrieving, from a Java file, the source code to byte code line-number

mapping.

Mapping is a strategy employed during the testing process that involves mapping

the GUI component names in the database to the GUI component names in the SUT. This

mapping of the domain names’ logic structure to a database containing test data improves

testability. It also demands, in order to facilitate testability, that the graphical user interface

components have a given internal name for the JFCUNIT to find them easily. In

conclusion, this unit framework provides the developer with a simple set of classes that are

suitable for unit testing. The main class of the JUNIT is the virtual framework through

which unit tests are run and the results stored. Through a test case, there is implementing

for the defined interface, providing methodologies to set up the test conditions, running the

desired tests, collecting the results, and then discarding the tests once they are complete. It

is important to note that the JUNIT also provides elements such as the GUI class and the

command-line class. An example of the command-line class is junit.textui.TestRunner.

The actual tests in JUnit, by definition, are {testConcat()}, {testSubString ()}, and

{testLength ()}. The test verifies if the conditions of the software’s assertion are true, and

if so, the JUnit marks the test as positive, or “pass.” The JFCUNIT is one that often causes

problems for developers who are not keen, for example running the JUnit on the same

thread as the application. Therefore, one should always run JUNIT on a separate thread to

prevent the tests from running before the Java Swing application commences. If a

developer started the Swing application and then started running the test methods, the result

would be a complete failure. In addition, a developer cannot locate and manipulate Swing

components from outside the desired application although Java automatically enters mouse

68

events and key strokes. The creation of an additional API, however, can enable locating

the components required for the test. JFCUNIT provides an extension to the test case that

makes the unit test work efficiently with the AWT thread of the Swing application.

JFCUNIT also listens to events happening on the AWT thread while keeping track of all

created components and handles any component through the finder methods. Finally, the

JFCUNIT has two methods that it employs to enable the AWT process events: awtSleep

and awtSleep long time. It is possible to conclude that the JFCUNIT is very dynamic as

can be seen from the previous explanations. The testing techniques in use underwent

modification and adaption to handle various issues that arose when testing the VCell. The

strategy involved the reimplementation of an already functional multi-user computer game

that tests the functional conformity of software re-engineering. Three different automated

oracles and two different testing techniques were necessary for the process to be successful.

It is clear that, as the model’s behavior and GUI structures increase in complexity, there is

no adverse effect on the decision tree. In fact, one could still use decision tree without

additional and unmanageable complexities. This process led to the conclusion that any

modifications geared towards the GUI structure or system behavior would not affect

derived test cases, decision trees, and function trees.

Researchers [5] are currently looking into the issue of dependency on persistent

states as in the case of replaying the test, capture, and relay techniques. One should set the

goal and module manually to see to the replay stage success. Although the paper looked

into manual setting and automated test programs, it did not cover the capture-and-replay

technique due to the requirement to capture and trade information as it entailed modifying

the customer and server codes.

69

7.2. Future Work

In the future, it will be necessary to employ the function and decision trees in the

generation of automated tests. It is also possible that people will employ test cases for

performance testing and need to run parallel. In the future, test overheads on benchmark

parts of the virtualization will be extremely low while the framework, tools, and drivers

will be extended to support other test types, such as def-use coverage and statement

coverage. Optimized Java code and the latest in this code will also be tested in the future

as technology knowhow increases [1]

70

REFERENCES

[1] El Ariss, Omar, Xu, Dianxiang, Dandey, Santosh, Vender, Bradley, Mcclean, Phillip &

Slator, Brian: Conformance Testing for Reengineering the VCell Game. Submitted

journal for review IEEE Transactions on Systems, Man and Cybernatics Part C:

[2] Memon, Anthony & Pollack, Mike. Using a Goal Driven Approach to Generate Test

Cases for GUI’s. Proceedings of the 21st International Conference on Software

Engineering. New York: ACM Press, 2009. Print.

[3] Paiva, Antoine & Tillman, Nicholas. Towards the Integration of Visual and Formula

Models for GUI Testing. Electrical Engineering Theory Notes

[4] Quan, Xie & Memon, Antoine. Using a Pilot Study to Derive a GUI Model for

Automated Testing ACM Trans on Software Engineering and Methodology. New

York: Phalanx Press, 2008. Print.

[5] Sara Sprenkle, Emily Gibson, Sreedevi Sampath, and Lori Pollock. Automated Replay

and Failure Detection for Web Applications. Automated Software Engineering

(ACE)’05 Proceedings of the 20th IEEE/ACM international Conference on Automated

software engineering

[6] Colin Bird, Andrew Sermon: An XML-based approach to automated software testing.

ACM SIGSOFT Software Engineering Notes 26(2): 64-65 (2001)

[7] Xeena XML editor, http://www.alphaworks.ibm.cem/tech/xeena

[8] Reinventing Education, Wired for Learning,

http://www.ibm.comlibmlibmg;lveslgrantleducationlprogramslreinventing/wfl.html

71

[9] Omar el Ariss, Dianxiang Xu, Santosh Dandey, Bradley Vender, Philip E. McClean,

Brian M. Slator: A Systematic Capture and Replay Strategy for Testing Complex GUI

Based Java Applications. ITNG 2010: 1038-1043

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. VIRTUAL CELL INTRODUCTION
	1.1. Background
	1.1.1. Virtual Cell (VCell)
	1.1.2. Problems with the Lambda-Moo VCell System (Legacy VCell)
	1.1.3. New Virtual Cell System (Java-Moo Version)

	1.2. Problem Definition
	1.3. Objective and Technical Approach
	1.4. Structure of the Paper

	2. LITERATURE REVIEW
	2.1. A Systematic Capture and Replay Strategy for Testing Complex GUI Based Java Applications
	2.2. Our Approach
	2.3. Introduction to the Method
	2.4. Related Work
	2.6. Case Study Outlined
	2.7. An XML-Based Approach to Automated Software Testing

	3. FUNCTIONAL SPECIFICATION FOR VIRTUAL CELL
	3.1. Introduction
	3.2. VCell Functional Categorization
	3.2.1. Utility Functionality
	3.2.2. Common Functionality
	3.2.3. Experiment Functionality

	3.3. Deriving Functional Trees for VCell Functions
	3.4. Derive Decision Trees from Functional Trees

	4. VIRTUAL CELL AUTOMATED TESTING FRAMEWORK
	4.1. Introduction
	4.2. Our Approach for Designing an Automated Testing Framework
	4.3. Derive XML Input Data for Each Goal
	4.4. Derive the Test-Case Template for Each Goal
	4.5. Writing the JFCUNIT Test Program for Each Goal
	4.5.1. JFCUNIT Introduction
	4.5.2. Advantages of JFCUNIT Testing
	4.5.3. Limitations of JFCUNIT Testing
	4.5.4. Design of JFCUNIT Test Programs for VCell game
	4.5.5. Interface for the JFCUNIT Program
	4.5.6. JFCUNIT Program for FindOrganelle
	/** This Method Randomly Selects a Combination from OrganelleCombs Node and iteratively performs click operations on the components. each combination will have an attribute type VALID/INVALID. VALID represents, the combination can successfully complet...

	5. RECORD-AND-REPLAY TECHNIQUE FOR THE VCELL GAME
	5.1. Overview
	5.2. JFCUNIT Record-Replay API
	5.2.1. Recording the XML Test Case
	5.2.2. Replay Recorded XML Test Case

	5.3. Virtual Cell JFCUNIT Customization
	5.3.1. Limitations of the JFCUNIT
	5.3.2. JFCUNIT Tag Handlers
	5.3.3. Custom Tag Handlers for the VCell
	5.3.3.1. Sample, Recorded XML Test Case

	5.3.4. Code Customization to Add Custom Events to the XML Recorder

	6. TEST RESULTS
	6.1. Test Results
	6.1.1. Interpretation of Test Results

	7. CONCLUSION AND FUTURE WORK
	7.1. Conclusion
	7.2. Future Work

	REFERENCES

