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ABSTRACT

In toxicology studies, dose response functions with a downturn at higher doses

are often observed. For such response functions, researchers often want to see if

the downturn of the response is significant. A probit model with a quadratic term

is adopted to demonstrate the dose response with a downturn. Under the probit

model, we obtain optimal designs to study the significance of the downturn and their

efficiencies are compared. Our approach identifies the upper bound of the number of

optimal design points and searches for the optimal design numerically based on the

upper bound.
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CHAPTER 1. INTRODUCTION

Dose-response functions with a downturn are observed in many toxicology stud-

ies (see Margolin et al., 1981; Welshons et al., 2003; Bhatti et al., 2010). When the

dose-response function has a downturn at higher dose levels, researcher often want

to study whether or not the downturn of the response is significant. In this paper,

optimal designs to study the downturn at higher dosage levels are obtained.

Optimal design is a class of experimental design. It provides precise parameter

estimates by specifying design points to be used and identifying the distribution of

samples over these selected design points. Also, it is an efficient way to estimate

appropriate parameters while lowering the cost. Optimal design uses different opti-

mality criterion based on the goal of experiment. The goal in this paper is to study

the downturn of dose-response effectively. Ting (2006) states that adding a quadratic

term of the dose can describe the downturn well. The downturn of dose-response can

be studied by discriminating between two rival nonlinear models: one contains the

quadratic term and the other one does not. Many studies on the optimal design have

been done on discriminating among the competing models (Waterhouse et al., 2008;

Atkinson and Fedorov, 1975; Atkinson et al., 2008; Dette et al., 2010; O’Brein, 2005).

Dette (1994) found the optimal designs for model discrimination in the polynomial

regression model. Also, optimal discrimination designs for trigonometric and Fourier

regression models were found (see Dette and Melas, 2005; Dette and Roeder, 1997).

The two rival models considered here are nested model. In this case, Ds-optimality

can be used to find the optimal design for discriminating between the two models. Ds-

optimal design provides accurate estimation of the quadratic term that distinguishes

between the two models.

In this paper, a probit model with a quadratic term is adopted to demonstrate

the dose response with a downturn at higher dose levels. A probit model is often used
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in toxicology study and the probit model with a quadratic term provides a good fit

to the dose response functions with a downturn at high doses (see Hyun, 2013). The

probit model can be adopted when the response takes any values between 0 and 1.

For the example of such responses, DNA (mcg/well) for log concentration of estradiol

in Welshons et al. (2003) have responses between 0 and 1. Under the probit model,

Ds-optimal design for discriminating the two models is obtained. We also want to see

what other designs work well for the model discrimination. The uniform design and

D-optimal design are considered. The uniform design is a traditional design that can

be used without any previous knowledge. D-optimal design is one of the most widely

used optimal designs. In order to find the optimal designs, we first find the upper

bounds of optimal designs using theorems from Hyun et al. (2013). Then Ds- and

D-optimal designs are searched for using a numerical algorithm called V-algorithm

(Fedorov, 1972). To see the performances of designs or the model discrimination,

their efficiencies are obtained and compared.

Chapter 2 presents background theory about this study. Chapter 3 introduces

the dose response functions that have a downturn at higher doses. In Chapter 4

the uniform design is presented, and Ds- and D-optimal designs are obtained using

the V-algorithm. Chapter 5 presents the efficiencies of all the obtained designs and

compares their efficiencies to evaluate the performances of the designs. Finally, a

conclusion is presented based on the results along with a plan for future studies.
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CHAPTER 2. BACKGROUND

Many researchers are focused on the toxicity studies which are related to en-

vironmental concerns and health issues. In toxicology, the dose-response can be

characterized as bell-shaped or S-shaped distribution curves. To find the distribution

curves, we need to estimate model parameters as precise as possible. Minimizing

the variances of model parameter estimates leads us to estimating the parameters

accurately and ensuring unbiased valid results. Here, optimal design is used to

minimize the variances.

Optimal design is widely applied in many areas of statistics. It is a very flexible,

and powerful experimental design. Optimal design specifies the dose levels we should

use and how to assign the subjects on these levels in the most efficient manner. It

provides unbiased parameter estimates with valid results while lowering cost. There

are several criteria that are used to identify optimal designs. Optimality criterion is

denoted by Ψ which is a convex function of the Fisher information matrix in general.

Because the Fisher information matrix truly depends on unknown values of the model

parameters, the parameter values must be specified to obtain optimal designs. So the

optimal designs provide the best design that minimizes or maximizes the optimality

criterion for the given values of the parameters. Here, we present two optimality

criterion used to search for optimal designs.

2.1. Optimality Criteria

We considered a situation with the regression model in which observations are

given by

yij = µ(Θ, xi) + εij (i = 1, 2, . . . , k; j = 1, 2, . . . , ni)

3



—µ(Θ, xi): mean response functions of Θ and xi,

—xi : the ith log dose,

—Θ : the vector of the model parameters,

—ni : number of subjects allocated to xi,

k∑
i=1

ni = N

—εij are independently normally distributed with mean of zero and unknown constant

variance of σ2.

A design is represented by the measure ξ over xi,

ξ =

x1 x2 . . . xk

ω1 ω2 . . . ωk

 ,

where the first line gives the value of the design points and ωi represents the design

weight corresponding to design point xi, where ωi = ni

N
. By Taylor series expansion,

the Fisher information matrix for Θ :

M(ξ; Θ) =
k∑
i=1

ωif(x)fT (x),

where f(x) = (∂µ(θ,x)
∂θ1

, ∂µ(θ,x)
∂θ2

, . . . , ∂µ(θ,x)
∂θk

)T , fT (x) is a transpose of f(x).

To ensure minimum-variance, optimal design maximizes its criterion Ψ{M(ξ,Θ)}.

Now the problem becomes to obtain the design ξ that maximize Ψ{M(ξ,Θ)}.

2.2. D-optimality

D-optimal design works well when the interest is in estimating parameters in

the model. It maximizes the determinant of the Fisher information matrix, which

means minimizing the joint confident region of estimating parameters. D-optimal

4



design criterion is

Ψ = |M(ξ; Θ)|.

2.3. Ds-optimality

Ds-optimal design is applied when the goal of research is estimating a subset of

the parameters precisely. For a nonlinear response, E(yij) = µ(Θ, xi), the parameter

vector Θ is of dimension p× 1, it can be partitioned into two sections

Θ1

Θ2

. Θ1 is

of dimension p1×1 and Θ2 is of dimension (p−p1)×1. Then, the Fisher information

matrix can be partitioned as

M(ξ; Θ) =

M11(ξ; Θ) M12(ξ; Θ)

M21(ξ; Θ) M22(ξ; Θ)

 ,

where

Mst(ξ; Θ) =
k∑
i=1

ωifs(xi)
Tft(xi), (s, t = 1, 2)

here

f1(x) =
∂µ(Θ, x)

∂Θ1

, f2(x) =
∂µ(Θ, x)

∂Θ2

.

Suppose we are interested in estimating Θ2. The covariance matrix for Θ2 is

[M22(ξ; Θ)−M21(ξ; Θ)M−1
11 (ξ; Θ)M12(ξ; Θ)]−1,

where M−1
11 (ξ; Θ) is the inverse of M11(ξ; Θ).

Ds-optimal design for estimating Θ2 maximizes the determinant of the informa-

tion matrix of Θ2 (Atkinson and Donev, 1992),

Ψ = |M22(ξ; Θ)−M21(ξ; Θ)M−1
11 (ξ; Θ)M12(ξ; Θ)| = M(ξ,Θ)

M11(ξ; Θ)
.
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2.4. The General Equivalence Theorem

The General Equivalence Theorem (Kiefer, 1958; cf. Pukelsheim, 2006) provides

methods for identifying optimal designs and verifying it. For a nonlinear model when

researcher only consider locally optimal design, equivalence theorems are formulated

in respect to a compact and convex set of matrices. The General Equivalence The-

orem can be viewed as an application of the result that derivatives are zero at the

minimum of an objective function over region. Here, the objective function depends

on the design ξ through the information matrix M(ξ; Θ). The following is General

Equivalence Theorem stated in Atkinson et al. (2007). Let the measure ξ̄ put unit

mass at the point x and let the measure ξ
′

be given by

ξ′ = (1− α)ξ + αξ̄.

Then,

M(ξ′; Θ) = (1− α)M(ξ; Θ) + αM(ξ̄; Θ)

Accordingly, the derivative of Ψ in the direction ξ̄ is

φ(x, ξ) = lim
α→0+

1

α
[Ψ{(1− α)M(ξ; Θ) + αM(ξ̄; Θ)} −Ψ{M(ξ; Θ)}].

The necessary and sufficient conditions for ξ∗ to be optimal design are fulfillment of

following inequalities:

1. the design ξ∗ minimizes Ψ{M(ξ; Θ)};

2. ξ∗ maximizes the minimum over design space of φ(x, ξ∗) ;

3. The minimum over design space φ(x, ξ∗) = 0 at the points which support our

design ξ∗ .

White (1973) extended the General Equivalence Theorem to nonlinear model.

Thus, we will use this method to verify D and Ds-optimal design which we will discuss

6



in Chapter 4.

2.5. The V-algorithm

V-algorithm (Fedorov, 1972) is a numerical algorithm to search optimal designs

based on the General Equivalence Theorem. It is an efficient and popular method to

obtain optimal designs. The details of this algorithm will be given later in section 4.
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CHAPTER 3. MODEL

In this chapter, we will introduce the model that demonstrates dose-response

functions with a downturn. Then, we find the Fisher information matrix which is

used to search D- and Ds-optimal designs.

We define Θ = (θ1, θ2, θ3), suppose a response yij is continuous, it follows

yij = µ(Θ, xi) + εij; εij ∼ N(0, σ2), (1)

where xi is the ith log dose, µ(Θ, xi) = Φ(−(θ1 + θ2xi + θ3x
2
i )), Φ is the cumulative

distribution function of standard normal distribution; and σ2 is unknown. To obtain

optimal design, we need construct the Fisher information matrix for Θ.

By Taylor expansion, an approximate Fisher information matrix for Θ can be

written as

M(ξ; Θ) =
1

σ2

k∑
i=1

ωif(xi)f
T (xi),

where f(x) can be expressed as

f(x) = exp(−(θ1 + θ2x+ θ3x
2)2

2
)(1 x x2)T .

The goal of research is to find Ds- and D-optimal designs for given model

parameters. As mentioned earlier, the values of model parameters need to be specified

in order to obtain optimal designs. Here we consider four different sets of values

of parameters to study Ds- and D-optimal designs (see Table 1). They provide

four different shapes of dose-response function. We classify these four sets of the

parameters into two categories. Each category has two sets of the parameters. One

category (Θ1 and Θ2) shows dose-response curves with a strong downturn at high

dose levels for the probit model (see Figure 1 (a)), and the other one (Θ3 and Θ4)

8



has a weak downturn at high dose levels (see Figure 1 (b)).

Table 1: Four sets of parameters values

Θ Parameter values

Θ1 {4.63, 1,23, 0.07}

Θ2 {1.72, 0.80, 0.05}

Θ3 {0.175, 0.277, 0.024}

Θ4 {-6.69, -0.60, 0.01}

−14 −12 −10 −8 −6 −4
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6
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8
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0
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(a) A strong downturn

−14 −12 −10 −8 −6 −4

0.
0

0.
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0.
6

0.
8

1.
0

x

y

Θ3

Θ4

(b) A weak downturn

Figure 1: Four different shapes of probit model with a quadratic term: Θ
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CHAPTER 4. OPTIMAL DESIGNS

In this chapter, we will discuss Ds- and D-optimal designs under the probit

model. Here, we consider four sets of the values of the parameters as mentioned in

the previous section. First, the upper bounds of the optimal designs are obtained

using next theorem.

4.1. The Upper Bounds on Design Points

Theorem. Under the probit model, regardless of the values of the model

parameters, the upper bound of design points that maximize Ds-optimality criterion

is 4.

Proof. The proof of follows directly from Hyun et al. (2013). The paper

identify the upper bound of optimal design points based on the number of taking

derivatives to the objective function from General Equivalence Theorem to reach a

quadratic form. Under Ds-optimality criterion, the differentiable function F (x) comes

from General Equivalence Theorem is:

f(x)[M(ξ∗; Θ)]−1f(x)T − f1(x)[M11(ξ
∗; Θ)]−1f1(x)T ,

Where

f(x) = exp(−(θ1 + θ2x+ θ3x
2)2

2
)(1 x x2)T .

f1(x) = exp(−(θ1 + θ2x+ θ3x
2)2

2
)(1 x)T .

Here, [M(ξ∗; Θ)]−1 and [M11(ξ
∗; Θ)]−1 are constants since ξ∗ is Ds-optimal design. So

the F (x) becomes:

F (x) = f(x)


c11 c12 c13

c21 c22 c23

c31 c32 c33

 f(x)T − f1(x)

c11 c12

c21 c22

 f1(x)T

10



= exp{−(θ1 + θ2x+ θ3x
2)2}{(c33x4 + 2c23x

3 + (2c13 + c22)x
2 + 2c12x+ c11)

− (c22x
2 + 2c12x+ c11)}

= exp{−(θ1 + θ2x+ θ3x
2)2}{c33x4 + 2c23x

3 + 2c13x
2} (2)

The derivative of F
′
(x) = G1(x) = P1(x)F1(x), here P1(x) = exp{−(θ1 + θ2x+

θ3x
2)2} is a positive, we ignore this positive factor. Continue to take derivative of

F1(x), the sixth derivative becomes the equation in quadratic form with respect to x:

G6(x)

P6(x)
= −210θ23c33x

2 − (90θ2θ3c33 + 120θ23c23)x

− 10θ1θ3c33 − 5θ22c33 − 6θ2θ3c13 − 20θ23c13

where c33 is positive since it is a diagonal element of the covariance matrix. So, the

sign of coefficient for x2 is negative. Based on Theorem 2 in Hyun et al. (2013), we

have no more than 6
2

+ 1 = 4 upper bounds.

In the case of D-optimality, Hyun et al. (2013) show that the upper bound of

D-optimal design point under the probit model is 4.

4.2. Uniform Design

Welshons et al. (2003) considered a uniform design for studying dose-response

function with a downturn. In general, the uniform design is used as a traditional

design when there is no information available for the study. The uniform design has

11 equally spaced design points scattered in the design space [-14,-4], with 9% of the

subjects assigned to each point. The uniform design is:

ξu =

 −14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

1
11

 .
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4.3. Ds-optimal Design

Ds-optimal criteria is applied when a researcher want to estimate a particular

subset of the parameters of a given model. When response functions have a downturn

at high doses, the downturn can be described by adding the quadratic term to the

model. The significance of the downturn can be studied by discriminating between

nested models. In order to study the nested models effectively, we need to minimize

the variance of estimating the coefficient of the quadratic term. So, Ds-optimal design

is appropriate in this case, because we are only interested in estimating θ3 precisely.

The Fisher information matrix for Θ can be partitioned as:

M(ξ; Θ) =

M11(ξ; Θ) M12(ξ; Θ)

M21(ξ; Θ) M22(ξ; Θ)

 ,

where

Mst(ξ; Θ) =
k∑
i=1

ωifs(xi)ft(xi)
T , (s, t = 1, 2)

here

f1(x) = exp(−(θ1 + θ2x+ θ3x
2)2

2
)(1 x)T ,

f2(x) = exp(−(θ1 + θ2x+ θ3x
2)2

2
)x2.

To find Ds-optimal design, we use V-algorithm. First, set the values of param-

eters and the initial design ξ0 based on the upper bound of Ds-optimal design from

Theorem. For the initial design, 4 design points in the design space [−14,−4] with

equal weights are used:

ξ0 =

−14 −10 −8 −4

1
4

1
4

1
4

1
4

 .
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Initial information matrices M(ξ0; Θ) and M11(ξ0; Θ) are evaluated using the initial

design ξ0. Based on the General Equivalence Theorem, a next design point xn+1 is

obtained by:

d̄sn = max
x∈[−14,−4]

(f(x)[M(ξn; Θ)]−1f(x)T − f1(x)[M11(ξn; Θ)]−1f1(x)T )

= f(xn+1)[M(ξn; Θ)]−1f(xn+1)
T − f1(xn+1)[M11(ξn; Θ)]−1f1(xn+1)

T

For each step, M(ξn+1; Θ), M11(ξn+1; Θ) are updated by following equations;

M(ξn+1; Θ) = (1− αn+1)M(ξn; Θ) + αn+1f(xn+1)f(xn+1)
T ,

M11(ξn+1; Θ) = (1− αn+1)M11(ξn; Θ) + αn+1f1(xn+1)f1(xn+1)
T .

where αn+1 can be set as 1
n+1

. The algorithm is stopped when dsn is close to p− p1,

here p and p1 are corresponding to the dimension of the M(ξ; Θ) and M11(ξ; Θ). In

our case, p− p1 = 1.

dsn = f(x)[M(ξ∗; Θ)]−1f(x)T − f1(x)[M11(ξ
∗; Θ)]−1f1(x)T ≤ 1 (3)

When ξ∗ is Ds-optimal design, (3) is satisfied and the equality holds if x is one of

Ds-optimal design points.

V-algorithm is used to obtain Ds-optimal designs under the probit model with

the four sets of the values of the parameters (see Table 2). For example, Ds-optimal

design under the probit model with Θ = Θ1 allocates 28.5% of subjects at x1 =

−13.84, 46.7% at x2 = −8.84 and 24.8% at x3 = −4. This design minimizes V ar(θ̂3)

under the probit model with the given parameter values. Figure 2 shows that the

plot of standardized variances over design space hits the maximum 1 when design

points are Ds-optimal design points. It verifies the Ds-optimal design using General

13



Equivalence Theorem. As you can see in Table 2, Ds-optimal designs vary with the

different values of the parameters.

Table 2: Ds-optimal designs under the different values of the parameters

Θ Ds-optimal design

Θ1 = {4.63, 1.23, 0.07}
(
−13.84 −8.84 −4
0.285 0.467 0.248

)
Θ2 = {1.72, 0.80, 0.05}

(
−14 −11.02 −4
0.264 0.249 0.134

)
Θ3 = {0.175, 0.277, 0.024}

(
−14 −9.06 −4
0.337 0.431 0.232

)
Θ4 = {−6.69,−0.60, 0.01}

(
−11.54 −9.57 −7.49
0.381 0.217 0.402

)
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(d) Θ = Θ4

Figure 2: Verifying Ds-optimal design using G.E.T

4.4. D-optimal Design

D-optimal design is used when the goal is to estimate parameters in the mod-

el. D-optimal design maximizes the determinant of the Fisher information matrix

M(ξ; Θ).

Ψ = |M(ξ; Θ)| (4)
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To obtain D-optimal design, V-algorithm based on the General Equivalence

Theorem is used. First, we set the values of the parameters and initial design ξ0

based on the upper bound of D-optimal design from Hyun et al.(2013):

ξ0 =

−14 −10 −8 −4

1
4

1
4

1
4

1
4

 .

The initial information matrix M(ξ0; Θ) is evaluated using the initial design. Then

the next design point xn+1 among the candidate points is obtained by the equation

below:

d̄n = max
x∈[−14,−4]

(f(x)[M(ξn; Θ)]−1f(x)T )

= f(xn+1)[M(ξn; Θ)]−1f(xn+1)
T

The Fisher information matrix which is correspond to the new design point xn+1 is

replaced by:

M(ξn+1; θ) = (1− αn+1)M(ξn, θ) + αn+1f(xn+1)f(xn+1)
T ,

where

αn+1 =
d̄n − 3

3(d̄n − 1)
.

V-algorithm continue updating the design points xn+1 and αn+1 until the difference

of function:

f(xn+1)[M(ξn+1; θ)]
−1f(xn+1)

T − 3 (5)

is close to 0. When the difference (5) is close to 0, the design ξn+1 becomes D-optimal

design that maximize the D-optimality criterion (4). The optimal design under D-

optimal criteria is comprised of the design points when the design points and weights
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satisfy the condition above.

We obtain the D-optimal designs under the probit model with the four sets of

the parameters in Table 3. For example, the D-optimal design under the values of

the parameters Θ1 is to assign 32.3% of the subjects to the design points -13.21 and

-4.36, and 17.7% of subjects to each of the design point -10.34 and -7.24. This design

maximizes |M(ξ; Θ)| under the probit model with the given values of the parameters.

We also verify the D-optimal designs using General Equivalence Theorem, plot a

standardized variance of predicted response over design space [-14, -4] (Figure 3).

The plot hits the maximum 3 when the points are D-optimal design points.

Table 3: D-optimal design under the different values of the parameters

Θ D-optimal design

Θ1 = {4.63, 1.23, 0.07}
(
−13.22 −10.34 −7.23 −4.35
0.323 0.177 0.177 0.323

)
Θ2 = {1.72, 0.80, 0.05}

(
−14 −11.66 −4

1
3

1
3

1
3

)
Θ3 = {0.175, 0.277, 0.024}

(
−13.71 −9.47 −4

1
3

1
3

1
3

)
Θ4 = {−6.69,−0.60, 0.01}

(
−11.09 −9.57 −7.99

1
3

1
3

1
3

)
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−14 −12 −10 −8 −6 −4

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

xi

S
ta

nd
ar

di
ze

d 
V

ar
ia

nc
e

(d) Θ = Θ4

Figure 3: Verifying D-optimal design using G.E.T
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CHAPTER 5. EFFICIENCY

In the previous section, we discussed the uniform design, the Ds-optimal design

and the D-optimal design under the probit model. In this section, we will discuss the

efficiencies of the optimal designs. Design efficiency is a measure which compares any

design to the optimal design. For example, the efficiency of design ξ is `, the design ξ

would need 100(1
`
−1)% more subjects than the optimal design to achieve as accurate

of estimates. Since our goal in this paper is to estimate θ3 accurately, Ds-efficiency is

considered here.

As mentioned earlier, we are interested in estimating θ3 precisely. Thus, we

check the ratio of variance of estimating θ3 based on design ξ to the minimum variance

of estimating θ3. Let ξ∗Ds and ξ∗D denote the Ds-optimal design and D-optimal design

under the probit model respectively, ξu is the uniform design, A = (0 0 1), the

variance of estimating parameter θ3 can be approximated by ATM−1(ξ; Θ)A. Ds-

efficiency is the ratio of the variance of θ̂3 under the Ds-optimal design ξ∗Ds to the

variance of θ̂3 under any design. It is calculated by the equation below:

EffDs(ξ) =
ATM−1(ξ∗Ds; Θ)A

ATM−1(ξ; Θ)A
.

where ξ∗Ds is the Ds-optimal design under the model with different parameters.

Uniform design is the traditional design and D-optimal design works well for

estimating model parameters. So we want to know how they works for estimating

θ3. Based on the Ds-efficiency (see Table 4), uniform design performs poorly for the

all sets of the parameters. The uniform design requires at least 70% more subjects

to provide the same accuracy as the Ds-optimal design does for estimating θ3. For

example, the uniform design under the probit model with true values of the parameters

Θ = Θ2 needs 101% more subjects to achieve as accurate estimates as Ds-optimal
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design dose. D-optimal design performs better than uniform design for estimating θ3.

However, it still provides lower efficiency than Ds-optimal design.

Table 4: Ds-efficiencies under the different values of the parameters

Designs ξ∗Ds ξ∗D ξu

Θ = Θ1 1 (0%) 0.673 (48.6%) 0.570 (75.4%)

Θ = Θ2 1 (0%) 0.722 (38.5%) 0.540 (85.2%)

Θ = Θ3 1 (0%) 0.860 (16.3%) 0.497 (101%)

Θ = Θ4 1 (0%) 0.746 (34.0%) 0.330 (203%)
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CHAPTER 6. CONCLUSIONS

Optimal design is applied in many research areas. It specifies design points

and design weights to minimize the variance of estimating interesting features in

the most efficient manner. In toxicology, dose-response functions with a downturn

are often observed. For such response functions, researchers often want to study

the significance of the downturn of dose-response. In order to study the downturn

effectively, model discrimination between nested model is used. The quadratic term

of the dose distinguishes the nested models. In this paper, a probit model is adopted

to study dose-response functions. Under the probit model, optimal designs for the

model discrimination are studied.

Ds-optimal works well for the model discrimination because Ds-optimal design

provides minimum variance for estimating the coefficient of the quadratic term. We

also checked how the traditional uniform design and D-optimal design works for the

model discrimination. As shown in the efficiency, the traditional uniform design

performs poorly for the model discrimination. D-optimal design works better than

the uniform design but dose not provide as good efficiency as Ds-optimal design.

In the future, we want to study T-optimal design for the model discrimination

between the nested models. Waterhouse et al.(2008) mentioned that T-optimal design

works better than Ds-optimal design for studying effectively a subset of parameters.

Studying the significance of the downturn can be expressed as model discrimination

between two models. One describes the response with a downturn and the other

one describe the response without the downturn. So optimal designs for model

discrimination between other possible models can be considered. As we discussed

earlier, optimal designs truly depend on the values of parameters. Therefore, optimal

designs which are less sensitive to the value of unknown parameters can be included

for my future work.
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APPENDIX A. R-CODE FOR DS-OPTIMAL DESIGN

UNDER MODEL WITH Θ = Θ1

Note: For other sets of parameters, only the values of parameters in the code

are changed.

#number of parameter

k=3

#value of parameter

alpha=4.63

beta=1.23

gamma=0.07

#Initial value

x0=c(-14,-10,-8,-4)

n0=length(x0)

w=rep(1/n0,n0)

D=rbind(x0,w)

#Initial Information matrix

A1<-rep(0,n0)

A2<-rep(0,n0)

A3<-rep(0,n0)

A6<-rep(0,n0)

A9<-rep(0,n0)

for (i in 1:n0)

{

A1[i]=w[i]*exp(-(alpha+(beta*x0[i])+(gamma*x0[i]^2))^2)

A2[i]=x0[i]*A1[i]

A3[i]=x0[i]^2*A1[i]
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A6[i]=x0[i]^3*A1[i]

A9[i]=x0[i]^4*A1[i]

}

M0=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),sum(A6),

sum(A3),sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IM0=solve(M0)

M1=matrix(c(sum(A1),sum(A2),sum(A2),sum(A3)),nrow=2,ncol=2,byrow=F)

IM1=solve(M1)

#Find ds

f0<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*(alpha+

beta*x+gamma*x^2)^2),x^2*exp(-0.5*(alpha+beta*x+gamma*x^2)^2)),

nrow=3,ncol=1,byrow=F)}

f1<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*(alpha+

beta*x+gamma*x^2)^2)),nrow=2,ncol=1,byrow=F)}

p=1

while(p>.001){

x1=seq(-14,-4,.01)

n1=length(x1)

ds=rep(0,n1)

for (j in 1:n1)

{ds[j]=t(f0(x1[j]))%*%solve(M0)%*%f0(x1[j])

-t(f1(x1[j]))%*%solve(M1)%*%f1(x1[j])}

for (j in 1:n1)

{if(max(ds)==ds[j])x1[j]=x1[j] else x1[j]=NA}
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newX=na.omit(x1)

newds=max(ds)

#Find alpha(n+1)

an=1/(n1+1)

p<-newds-1

#Get M(n+1)

newM0=(1-an)*M0+an*f0(newX)%*%t(f0(newX))

newM1=(1-an)*M1+an*f1(newX)%*%t(f1(newX))

M0<-newM0

M1<-newM1

newW=(1-an)*D[2,]

W=c(newW,an)

X=c(D[1,],newX)

newD=rbind(X,W)

D=newD

dsoptimal<-by(D[2,], D[1,],FUN=sum)}

dsoptimal

#Verify Ds-optimal design

#number of parameter

k=3

#value of parameter

alpha=4.63

beta=1.23

gamma=0.07

#Ds-optimal design

x=c(-13.84,-8.84,-4)
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n=length(x)

w=c(0.285,0.467,0.248)

Ds=rbind(x,w)

#information matrix for Ds-optimal design

A1<-rep(0,n)

A2<-rep(0,n)

A3<-rep(0,n)

A6<-rep(0,n)

A9<-rep(0,n)

for (i in 1:n)

{

A1[i]=w[i]*exp(-(alpha+(beta*x[i])+(gamma*x[i]^2))^2)

A2[i]=x[i]*A1[i]

A3[i]=x[i]^2*A1[i]

A6[i]=x[i]^3*A1[i]

A9[i]=x[i]^4*A1[i]

}

M=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),sum(A6),sum(A3),

sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IM=solve(M)

M2=matrix(c(sum(A1),sum(A2),sum(A2),sum(A3)),nrow=2,ncol=2,byrow=F)

IM2=solve(M2)

#Find ds

f0<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*(alpha+

beta*x+gamma*x^2)^2),x^2*exp(-0.5*(alpha+beta*x+gamma*x^2)^2)),

27



nrow=3,ncol=1,byrow=F)}

f1<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*(alpha+

beta*x+gamma*x^2)^2)),nrow=2,ncol=1,byrow=F)}

p=1

x1=seq(-14,-4,.01)

n1=length(x1)

ds=rep(0,n1)

for (j in 1:n1)

{ds[j]=t(f0(x1[j]))%*%solve(M)%*%f0(x1[j])

-t(f1(x1[j]))%*%solve(M2)%*%f1(x1[j])}

plot(x1,ds, type="l", xlab=quote(x [i]), ylab="Standardized Variance" )

ds=rep(1, n1)

lines(x1, ds, type="l")

#D-optimal design

x1=c(-13.22,-10.34,-7.23,-4.35)

n=length(x1)

w1=c(0.323,0.177,0.177,0.323)

D=rbind(x1,w1)

#information matrix for D-optimal design

A1<-rep(0,n)

A2<-rep(0,n)

A3<-rep(0,n)

A6<-rep(0,n)

A9<-rep(0,n)

for (i in 1:n)
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{

A1[i]=w1[i]*exp(-(alpha+(beta*x1[i])+(gamma*x1[i]^2))^2)

A2[i]=x1[i]*A1[i]

A3[i]=x1[i]^2*A1[i]

A6[i]=x1[i]^3*A1[i]

A9[i]=x1[i]^4*A1[i]

}

M=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),

sum(A6),sum(A3),sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IMd=solve(M)

#Uniform design

x2=c(-14.00,-13.00,-12.00,-11.00,-10.00,-9.00,-8.00,

-7.00,-6.00,-5.00,-4.00)

n=length(x2)

w2=rep(1/11,11)

U=rbind(x2,w2)

#information matrix for Ds-optimal design

A1<-rep(0,n)

A2<-rep(0,n)

A3<-rep(0,n)

A6<-rep(0,n)

A9<-rep(0,n)

for (i in 1:n)

{

A1[i]=w2[i]*exp(-(alpha+(beta*x2[i])+(gamma*x2[i]^2))^2)

A2[i]=x2[i]*A1[i]
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A3[i]=x2[i]^2*A1[i]

A6[i]=x2[i]^3*A1[i]

A9[i]=x2[i]^4*A1[i]

}

Mu=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),

sum(A6),sum(A3),sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IMu=solve(Mu)

A=c(0,0,1)

var_ds=t(A)%*%IM%*%A

var_d=t(A)%*%IMd%*%A

var_u=t(A)%*%IMu%*%A

effds_d=var_ds/var_d

effds_d

effds_u=var_ds/var_u

effds_u

effd_u=var_d/var_u

effd_u
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APPENDIX B. R-CODE FOR D-OPTIMAL DESIGN

UNDER MODEL WITH Θ = Θ1

Note: For other sets of parameters, only the values of parameters in the code

are changed.

#number of parameter

k=3

#value of parameter

alpha=4.63

beta=1.23

gamma=0.07

#Initial value

x0=c(-14,-10,-8,-4)

n0=length(x0)

w=rep(1/n0,n0)

D=rbind(x0,w)

#Initial Information matrix

A1<-rep(0,n0)

A2<-rep(0,n0)

A3<-rep(0,n0)

A6<-rep(0,n0)

A9<-rep(0,n0)

for (i in 1:n0)

{

A1[i]=w[i]*exp(-(alpha+(beta*x0[i])+(gamma*x0[i]^2))^2)

A2[i]=x0[i]*A1[i]

A3[i]=x0[i]^2*A1[i]
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A6[i]=x0[i]^3*A1[i]

A9[i]=x0[i]^4*A1[i]

}

M0=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),sum(A6),sum(A3),

sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IM0=solve(M0)

#Find d

f<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*(alpha+beta*x

+gamma*x^2)^2),x^2*exp(-0.5*(alpha+beta*x+gamma*x^2)^2)),nrow=3,ncol=1,

byrow=F)}

p=1

while(p>.001){

x1=seq(-14,-4,.01)

n1=length(x1)

dn=rep(0,n1)

for (j in 1:n1)

{dn[j]=t(f(x1[j]))%*%solve(M0)%*%f(x1[j])}

for (j in 1:n1)

{if(max(dn)==dn[j])x1[j]=x1[j] else x1[j]=NA}

newX=na.omit(x1)

newdn=max(dn)

#Find alpha(n+1)

an=(newdn-k)/(k*(newdn-1))

p<-newdn-k

#Get M(n+1)
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newM=(1-an)*M0+an*f(newX)%*%t(f(newX))

M0<-newM

newW=(1-an)*D[2,]

W=c(newW,an)

X=c(D[1,],newX)

newD=rbind(X,W)

D=newD

doptimal<-by(D[2,], D[1,],FUN=sum)}

doptimal

#Verify D-optimal design

#number of parameter

k=3

#value of parameter

alpha=4.63

beta=1.23

gamma=0.07

#D-optimal design

x=c(-13.22,-10.34,-7.23,-4.35)

n=length(x)

w=c(0.323,0.177,0.177,0.323)

D=rbind(x,w)

#information matrix for D-optimal design

A1<-rep(0,n)

A2<-rep(0,n)

A3<-rep(0,n)

A6<-rep(0,n)
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A9<-rep(0,n)

for (i in 1:n)

{

A1[i]=w[i]*exp(-(alpha+(beta*x[i])+(gamma*x[i]^2))^2)

A2[i]=x[i]*A1[i]

A3[i]=x[i]^2*A1[i]

A6[i]=x[i]^3*A1[i]

A9[i]=x[i]^4*A1[i]

}

M=matrix(c(sum(A1),sum(A2),sum(A3),sum(A2),sum(A3),sum(A6),

sum(A3),sum(A6),sum(A9)),nrow=3,ncol=3,byrow=F)

IM=solve(M)

#Find dn

f<-function(x)

{matrix(c(exp(-0.5*(alpha+beta*x+gamma*x^2)^2),x*exp(-0.5*

(alpha+beta*x+gamma*x^2)^2),x^2*exp(-0.5*(alpha+beta*x+

gamma*x^2)^2)),nrow=3,ncol=1,byrow=F)}

p=1

x1=seq(-14,-4,.05)

n1=length(x1)

dn=rep(0,n1)

for (j in 1:n1)

{dn[j]=t(f(x1[j]))%*%solve(M)%*%f(x1[j])}

plot(x1,dn,type="l",ylab="Standardized Variance", xlab=quote(x [i]))

dn=rep(3, n1)

lines(x1, dn, type="l")
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