
RESOLUTIONS AND SEMIDUALIZING MODULES

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Aaron James Feickert

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Mathematics

April 2014

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

RESOLUTIONS AND SEMIDUALIZING MODULES

By

Aaron James Feickert

The supervisory committee certifies that this paper complies with North Dakota State University’s regula-

tions and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Sean Sather-Wagstaff, Department of Mathematics (committee chair)

Friedrich Littmann, Department of Mathematics

Paul Homan, Department of Modern Languages

APPROVED:

1 April 2014 Benton Duncan, Chair, Department of Mathematics



ABSTRACT

Projective and injective modules are of key importance in algebra, in part because of their useful

homological properties. The notion of C-projective and C-injective modules generalizes these constructions.

In particular, these modules may be used to construct resolutions and define related homological dimensions

in a natural way. When C is a semidualizing module, the C-projective and C-injective modules have

particularly useful homological properties. Further, one may combine projective and C-projective resolutions

to construct complete PC-resolutions (and, dually, complete IC-resolutions) that yield other modules with

nice homological properties. This paper surveys some of the literature on these constructions.
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1. INTRODUCTION

Projective and injective modules play key roles in the study of rings. In particular, their homological

definitions have deep consequences that come into play when studying complexes of modules and associated

resolutions. Throughout our study, R is a commutative noetherian ring with identity. Recall that an R-

module P is projective if the functor HomR(P,−) is exact; that is, it respects exactness of sequences of

R-module homomorphisms. An R-module I is injective if the functor HomR(−, I) is exact.

Given any R-module M , we may construct resolutions using projective or injective modules that ter-

minate with M . An augmented projective resolution of M is an exact sequence of R-module homomorphisms

of the form

P+ := · · · → P1 → P0 →M → 0

where each Pi is projective. Dually, an augmented injective coresolution of M is an exact sequence of the form

+I := 0→M → I0 → I1 → · · ·

where each Ij is injective. It can be shown that every module admits both a projective resolution and an

injective coresolution.

We use these resolutions to define dimensions of modules. Informally, the projective dimension

pdR(M) of M is the length of the shortest possible projective resolution of M . The injective dimension

idR(M) of M is the length of the shortest possible injective coresolution of M . As an example, if P is

projective, we have pdR(P ) = 0 since 0→ P → P → 0 is an augmented projective resolution of P . Similarly,

if I is injective, we have idR(I) = 0 since 0→ I → I → 0 is an augmented injective coresolution of I.

We say a noetherian ring R is local if it has a unique maximal ideal, and that a local ring is regular if

every R-module has finite projective dimension. One of the first major applications of homological techniques

to commutative algebra is the following characterization of regular local rings by Auslander, Buchsbaum,

and Serre. There is also an identical version for modules of finite injective dimension.

Theorem 1.1 ([2, 1, 10]). Let R be a local noetherian ring with residue field k. The following conditions

are equivalent:

(i) R is regular;

(ii) pdR(M) <∞ for every finitely generated R-module M; and

(iii) pdR(k) <∞.
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A particularly useful characterization of modules of finite projective or injective dimension is the

following standard result.

Theorem 1.2. Let M be an R-module.

(a) We have pdR(M) ≤ n if and only if ExtiR(M,−) = 0 for all i > n.

(b) We have idR(M) ≤ n if and only if ExtiR(−,M) = 0 for all i > n.

Here ExtiR(M,N) is the cohomology module Hi(HomR(P,N)) ∼= Hi(HomR(M,J)), where P is any

truncated projective resolution of M and J is any truncated injective coresolution of N ; we may also use

the homological notation Hi ≡ H−i. Notice that the exactness of the functors HomR(P,−) (where P is

projective) and HomR(−, I) (where I is injective) follows immediately from this result.

There is a generalization of projective and injective modules that extends these homological con-

structions in a natural way. If C is a finitely generated R-module, a C-projective module is an R-module

isomorphic to a module of the form C ⊗R P , where P is projective. A C-injective module is isomorphic to a

module of the form HomR(C, I), where I is injective. These modules are particularly nice when C is a semid-

ualizing R-module: a finitely generated R-module C is semidualizing if the homothety map R→ HomR(C,C)

is an isomorphism and we have the vanishing ExtiR(C,C) = 0 for i > 0.

Given any R-module M and finitely generated R-module C, we may construct resolutions using

C-projective or C-injective modules that terminate with M , the so-called augmented proper PC-projective

resolutions and augmented proper IC-injective coresolutions; see Section 2 for definitions. In Proposition 3.4

below we show that every module admits both when C is semidualizing.

Such resolutions give rise to related dimensions. Informally, the PC-projective dimension of M ,

denoted PC -pdR(M), is the length of the shortest possible proper PC-projective resolution of M . The IC-

injective dimension IC -idR(M) of M is the length of the shortest possible proper IC-injective coresolution

of M . Similar to the projective and injective cases, we have PC -pdR(C ⊗R P ) = 0 if P is projective, and

IC -idR(HomR(C, I)) = 0 if I is injective.

If C is semidualizing, we obtain the following relationships between projective and PC-projective

dimensions and, dually, between injective and IC-injective dimensions of modules. See Theorem 3.15, which

is a main result of Section 3.

Theorem 1.3 ([11, Theorem 2.11]). Let C be a semidualizing R-module and M any R-module. The following

equalities hold:

(a) pdR(M) = PC -pdR(C ⊗RM);
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(b) IC -idR(M) = idR(C ⊗RM);

(c) PC -pdR(M) = pdR(HomR(C,M)); and

(d) idR(M) = IC -idR(HomR(C,M)).

The next result is a version of the Auslander-Buchsbaum-Serre theorem that uses finite PC-projective

dimension to detect the regularity of a local ring; it is Theorem 3.17.

Theorem 1.4 ([11, Proposition 5.1]). Let R be a local noetherian ring with residue field k, and C a semid-

ualizing R-module. The following conditions are equivalent:

(i) R is regular;

(ii) PC -pdR(M) <∞ for every finitely generated R-module M; and

(iii) PC -pdR(k) <∞.

Homological properties of projective and injective modules often extend to the C-projective and C-

injective settings. As a matter of notation, we denote Ext-modules constructed using proper PC-projective

resolutions by ExtPC
, and Ext-modules constructed using proper IC-injective coresolutions by ExtIC ; see

Definition 3.6. This yields a version of Theorem 1.2 that uses the C-projective and C-injective constructions;

see Theorem 4.3.

Theorem 1.5 ([11, Theorem 3.2]). Let C be a semidualizing R-module and M any R-module.

(a) We have PC -pdR(M) ≤ n if and only if ExtiPC
(M,−) = 0 for all i > n.

(b) We have IC -idR(M) ≤ n if and only if ExtiIC (−,M) = 0 for all i > n.

A useful application of these constructions is to relate ExtPC
- and ExtIC -modules to the standard

Ext-modules from Theorem 1.2. This uses the Foxby classes BC(R) and AC(R) from Definition 2.7; see

Theorem 4.11, a main result of Section 4.

Theorem 1.6 ([11, Corollary 4.2]). Let C be a semidualizing R-module.

(a) If M,N ∈ BC(R), then ExtiPC
(M,N) ∼= ExtiR(M,N) for all i ≥ 0.

(b) If M,N ∈ AC(R), then ExtiIC (M,N) ∼= ExtiR(M,N) for all i ≥ 0.

It is useful to combine projective and C-projective resolutions to form complete PC-resolutions

and, dually, to combine injective and C-injective resolutions to form complete IC-resolutions of modules;

modules admitting such resolutions are GC-projective or, dually, GC-injective. These resolutions have many
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properties in common with other constructions discussed above. For example, we introduce the notions of

resolving, quasi-resolving, coresolving, and quasi-coresolving classes of modules; see Definition 5.16. These

classes model the standard behavior of projective and injective modules in short exact sequences. The next

result is contained in Theorem 5.17 and Theorem 5.21, the main results of Section 5.

Theorem 1.7 ([12, Theorem 2.8]). Let C be a semidualizing R-module.

(a) The class of C-projective R-modules is quasi-resolving.

(b) The class of C-injective R-modules is quasi-coresolving.

(c) The class of GC-projective R-modules is resolving.

(d) The class of GC-injective R-modules is coresolving.
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2. SEMIDUALIZING MODULES AND FOXBY CLASSES

In this section we introduce several useful constructions and definitions.

Definition 2.1. An R-module C is semidualizing if it satisfies the following conditions:

1. C is finitely generated;

2. the homothety map χRC : R→ HomR(C,C) is an isomorphism, where χRC(r)(c) := rc; and

3. ExtiR(C,C) = 0 for i > 0.

In particular, R itself is semidualizing over R, so a semidualizing module over a noetherian ring

always exists. The following lemma says that the classes PC and IC from Definition 3.1 are “precovering”

and “preenveloping”, respectively.

Lemma 2.2 ([5, Proposition 5.10]). Let M be an R-module and C a semidualizing R-module.

(a) There exists a projective module P and a homomorphism φ : C⊗R P →M such that for every projective

module Q, the induced homomorphism

HomR(C ⊗R Q,C ⊗R P )
Hom(C⊗Q,φ)−−−−−−−−−→ HomR(C ⊗R Q,M)

is surjective.

(b) There exists an injective module I and a homomorphism ψ : M → HomR(C, I) such that for every

injective module J , the induced homomorphism

HomR(HomR(C, I),HomR(C, J))
Hom(ψ,Hom(C,J))−−−−−−−−−−−−→ HomR(M,HomR(C, J))

is surjective.

Definition 2.3. We say an injective R-module E is faithfully injective if for any sequence X of R-module

homomorphisms such that HomR(X,E) is exact, X is exact.

Remark 2.4 ([6, Corollary 3.2]). Every commutative ring admits a faithfully injective module. In particular,

let E :=
⊕

mER(R/m), where ER denotes the injective hull over R and the sum is taken over all maximal

ideals m of R; then E is faithfully injective.

Definition 2.5. We say a projective R-module Q is faithfully projective if for any sequence X of R-module

homomorphisms such that HomR(Q,X) is exact, X is exact.
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Remark 2.6. Every nonzero free module is faithfully projective, so every commutative ring admits a faith-

fully projective module.

The next two classes of R-modules are called the Foxby classes. We use them extensively.

Definition 2.7. Let C be a finitely generated R-module. The Bass class BC(R) (or simply BC if there is

no confusion) is the class of all R-modules M such that

1. the natural map ξCM : C ⊗R HomR(C,M)→M is an isomorphism, where ξCM (c⊗ φ) := φ(c); and

2. ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for i > 0.

The Auslander class AC(R) (or simply AC if there is no confusion) is the class of all R-modules M such that

1. the natural map γCM : M → HomR(C,C ⊗RM) is an isomorphism, where γCM (m)(c) := c⊗m; and

2. TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for i > 0.

Here TorRi (M,N) is the homology module Hi(P,N) ∼= Hi(M,Q), where P is any truncated pro-

jective resolution of M and Q is any truncated projective resolution of N . When C is semidualizing, the

Foxby classes have several nice properties, especially when we are dealing with modules of finite projective

or injective dimension.

Proposition 2.8 ([7, Propositions 3.1.7, 3.1.9, 3.1.10]). Let C be a semidualizing R-module.

(a) If any two modules in a short exact sequence are in AC , then so is the third.

(b) If M is an R-module of finite flat dimension, then M ∈ AC .

(c) If any two modules in a short exact sequence are in BC , then so is the third.

(d) If M is an R-module of finite injective dimension, then M ∈ BC .

The next theorem provides an elegant connection between the Foxby classes when C is semidualizing.

The proof is straightforward but quite involved, so we omit it here.

Theorem 2.9 (Foxby equivalence [7, Theorem 3.2.1]). Let C be a semidualizing R-module and M any

R-module.

(a) We have M ∈ BC if and only if HomR(C,M) ∈ AC .

(b) We have M ∈ AC if and only if C ⊗RM ∈ BC .

The previous two results immediately imply the following corollary.
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Corollary 2.10. Let C be a semidualizing R-module.

(a) If P is a projective R-module, then C ⊗R P ∈ BC .

(b) If I is an injective R-module, then HomR(C, I) ∈ AC .
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3. C-PROJECTIVE AND C-INJECTIVE RESOLUTIONS

We now construct our first generalization of projective and injective modules.

Definition 3.1. Let C be a finitely generated R-module. We say an R-module M is C-projective if it is

isomorphic to a module of the form C ⊗R P , where P is projective. The class of C-projective modules is

denoted PC . We say M is C-injective if it is isomorphic to a module of the form HomR(C, I), where I is

injective. The class of C-injective modules is denoted IC .

Proposition 3.2. The class of C-projective modules is closed under direct sums. The class of C-injective

modules is closed under direct products and sums.

Proof. If {C⊗RPλ} ⊂ PC , then
⊕

λ(C⊗RPλ) ∼= C⊗R (
⊕

λ Pλ) ∈ PC since the class of projective R-modules

is closed under direct sums. Similarly, if {HomR(C, Iλ)} ⊂ IC , then
∏
λ HomR(C, Iλ) ∼= HomR (C,

∏
λ Iλ) ∈

IC and
⊕

λ HomR(C, Iλ) ∼= HomR (C,
∏
λ Iλ) ∈ IC since the class of injective R-modules is closed under

direct products and sums and C is finitely generated over a noetherian ring. ý

Just as every module admits both a projective resolution and an injective coresolution, every module

admits an augmented proper PC-projective resolution and an augmented proper IC-injective coresolution,

defined next; see Proposition 3.4.

Definition 3.3. Let C be a finitely generated R-module and M any R-module.

(1) An augmented proper PC-projective resolution of M is an R-complex

X+ := · · · ∂2 // C ⊗R P1
∂1 // C ⊗R P0

τ // M // 0

of R-module homomorphisms such that each Pi is projective and the complex HomR(C ⊗R Q,X+) is

exact for every projective module Q. The truncated complex

X := · · · ∂2 // C ⊗R P1
∂1 // C ⊗R P0

// 0

is the proper PC-projective resolution of M corresponding to X+.

(2) An augmented coproper PC-projective coresolution of M is an R-complex

+X := 0 // M
ε // C ⊗R Q0 ∂0

// C ⊗R Q1 ∂1
// · · ·
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of R-module homomorphisms such that each Qi is projective and the complex HomR(+X,C ⊗R Q) is

exact for every projective module Q. The truncated complex

X := 0 // C ⊗R Q0 ∂0
// C ⊗R Q1 ∂1

// · · ·

is the coproper PC-projective coresolution of M corresponding to +X.

(3) An augmented proper IC-injective coresolution of M is an R-complex

+Y := 0 // M
ε // HomR(C, I0)

∂0
// HomR(C, I1)

∂1
// · · ·

of R-module homomorphisms such that each Ii is injective and the complex HomR(+Y ,HomR(C, J)) is

exact for every injective module J . The truncated complex

Y := 0 // HomR(C, I0)
∂0
// HomR(C, I1)

∂1
// · · ·

is the proper IC-injective coresolution of M corresponding to +Y .

(4) An augmented coproper IC-injective resolution of M is an R-complex

Y + := · · · ∂2
// HomR(C, I1)

∂1
// HomR(C, I0)

τ // M // 0

of R-module homomorphisms such that each Ii is injective and the complex HomR(HomR(C, J), Y +) is

exact for every injective module J . The truncated complex

Y := · · · ∂2
// HomR(C, I1)

∂1
// HomR(C, I0) // 0

is the coproper IC-injective resolution of M corresponding to Y +.

Proposition 3.4. Let M and C be R-modules.

(a) An augmented proper PC-projective resolution of M exists.

(b) An augmented proper IC-injective coresolution of M exists.

Proof. (a) Lemma 2.2(a) gives a projective module P0 and homomorphism τ : C ⊗R P0 → M such that

HomR(C⊗RQ, τ) is surjective for any projective module Q. Let K0 := ker τ . Applying Lemma 2.2(a) again,

we obtain a projective module P1 and homomorphism φ1 : C ⊗R P1 → K0 such that HomR(C ⊗R Q,φ1) is

9



surjective. Define the homomorphism ∂1 to make the following diagram commute:

C ⊗R P1
∂1 //

φ1 $$

C ⊗R P0
τ // M // 0

K0

, �

::

Continue inductively. For each i > 0, let Ki := ker ∂i and apply Lemma 2.2(a) to obtain the following

commutative diagram:

C ⊗R Pi+1

∂i+1 //

φi+1 %%

C ⊗R Pi

Ki

, �

::

Define the sequence

X+ := · · · ∂
2

−→ C ⊗R P1
∂1−→ C ⊗R P0

τ−→M → 0

using these maps. Note that by our construction, X is an R-complex. It remains to show that the complex

HomR(C ⊗R Q,X+) is exact for any projective module Q. For i ≥ 0, consider the sequence 0 → Ki →

C ⊗R Pi
φi−→ Ki−1, which is exact by construction if we define K−1 := M and φ0 := τ . Since the map

HomR(C ⊗R Q,φi) is surjective, the sequence

0→ HomR(C ⊗R Q,Ki)→ HomR(C ⊗R Q,C ⊗R Pi)→ HomR(C ⊗R Q,Ki−1)→ 0

is exact by left-exactness of the functor HomR(C ⊗R Q,−). A standard sequence-splicing argument implies

that HomR(C ⊗R Q,X+) is exact.

(b) Lemma 2.2(b) gives an injective module I0 and homomorphism ε : M → HomR(C, I0) such that

HomR(ε,HomR(C, J)) is surjective for any injective module J . Let L0 := coker ε. Applying Lemma 2.2(b)

again, we obtain an injective module I1 and homomorphism ψ0 : L0 → HomR(C, I1) such that the map

HomR(ψ0,HomR(C, J)) is surjective. Define the homomorphism ∂0 to make the following diagram commute:

0 // M
ε // HomR(C, I0)

∂0
//

%% %%

HomR(C, I1)

L0

ψ0

99

Continue inductively. For each i > 0, let Li := coker ∂i−1 and apply Lemma 2.2(b) to obtain the following

10



commutative diagram:

HomR(C, Ii)
∂i

//

%% %%

HomR(C, Ii+1)

Li
ψi

88

Define the sequence

+Y := 0→M
ε−→ HomR(C, I0)

∂0

−→ HomR(C, I1)
∂1

−→ · · ·

using these maps. Note that by our construction, Y is an R-complex. It remains to show that the complex

HomR(+Y ,HomR(C, J)) is exact for any injective module J . For i ≥ −1, consider the sequence Li
ψi

−→

HomR(C, Ii+1)→ Li+1 → 0, which is exact by construction if we define L−1 := M and ψ−1 := ε. Since the

map HomR(ψi,HomR(C, J)) is surjective, the sequence

0→ HomR(Li+1,HomR(C, J))→ HomR(HomR(C, Ii+1),HomR(C, J))→ HomR(Li,HomR(C, J))→ 0

is exact by left-exactness of the functor HomR(−,HomR(C, J)). A standard sequence-splicing argument

implies that HomR(+Y ,HomR(C, J)) is exact. ý

We use these resolutions to define associated homological dimensions.

Definition 3.5. If C is a finitely generated R-module, the PC-projective dimension of an R-module M is

PC -pd(M) := inf {sup{n : Xn 6= 0} : X is a proper PC-projective resolution of M}

and the IC-injective dimension of M is

IC -id(M) := inf {sup{n : Y n 6= 0} : Y is a proper IC-injective coresolution of M} .

Definition 3.6. Let M,N,C be R-modules and i ≥ 0.

(1) Let X be a proper PC-projective resolution of M . We define ExtiPC
(M,N) := Hi(HomR(X,N)).

(2) Let Y be a proper IC-injective coresolution of N . We define ExtiIC (M,N) := Hi(HomR(M,Y )).

Remark 3.7 ([9, Remark 1.12]). Both “relative Ext-modules” above are well-defined and independent of

the choice of resolution.

Notice that PC-projective resolutions and IC-injective coresolutions are not exact in general. How-

ever, the next few results establish Foxby class conditions under which they are exact.
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Lemma 3.8 ([11, Lemma 2.1]). Let C be a semidualizing R-module and M any R-module.

(a) If X+ is an augmented proper PC-projective resolution of M , then HomR(C,X+) is an augmented

projective resolution of HomR(C,M).

(b) If +Y is an augmented proper IC-injective coresolution of M , then C ⊗R +Y is an augmented injective

coresolution of C ⊗RM .

Proof. (a) Let

X+ := · · · → C ⊗R P1 → C ⊗R P0 →M → 0

be an augmented proper PC-projective resolution of M , and consider

HomR(C,X+) = · · · → HomR(C,C ⊗R P1)→ HomR(C,C ⊗R P0)→ HomR(C,M)→ 0

where, for each i ≥ 0, the module Pi is flat since it is projective, so it has finite flat dimension and thus

Pi ∈ AC by Proposition 2.8(b). Definition 2.7 implies HomR(C,C ⊗R Pi) ∼= Pi. Then

HomR(C,X+) ∼= · · · → P1 → P0 → HomR(C,M)→ 0

is exact by Definition 3.3(1) since C ∼= C ⊗R R is C-projective since R is projective as an R-module.

(b) Let

+Y := 0→M → HomR(C, I0)→ HomR(C, I1)→ · · ·

be an augmented proper IC-injective coresolution of M , and consider

C ⊗R +Y = 0→ C ⊗RM → C ⊗R HomR(C, I0)→ C ⊗R HomR(C, I1)→ · · ·

where, for each i ≥ 0, the module Ii has finite injective dimension and thus Ii ∈ BC by Proposition 2.8(d).

We have

C ⊗R +Y ∼= 0→ C ⊗RM → I0 → I1 → · · ·

since, by Definition 2.7, C ⊗R HomR(C, Ii) ∼= Ii for each i. To show this complex is exact, choose E

to be any faithfully injective R-module. Since +Y is an augmented proper IC-injective coresolution, by

Definition 3.3(3) the complex HomR(+Y ,HomR(C,E)) ∼= HomR(C⊗R +Y ,E) is exact. Since E is faithfully

injective, the complex C ⊗R +Y is exact. ý

12



Proposition 3.9 ([11, Proposition 2.2]). Let C be a semidualizing R-module, M any R-module, and n > 0

an integer.

(a) The following conditions are equivalent:

(i) There exists an augmented proper PC-projective resolution of M that is exact in homological degree

less than n.

(ii) Each augmented proper PC-projective resolution of M is exact in homological degree less than n.

(iii) The natural homomorphism ξCM : C ⊗R HomR(C,M) → M is an isomorphism and for 0 < i < n

we have TorRi (C,HomR(C,M)) = 0.

(b) The following conditions are equivalent:

(i) There exists an augmented proper IC-injective coresolution of M that is exact in cohomological

degree less than n.

(ii) Each augmented proper IC-injective coresolution of M is exact in cohomological degree less than n.

(iii) The natural homomorphism γCM : M → HomR(C,C ⊗R M) is an isomorphism and for 0 < i < n

we have ExtiR(C,C ⊗RM) = 0.

Proof. (a) (ii) ⇒ (i). This follows immediately from Proposition 3.4(a).

(i) ⇒ (iii). Let X+ be an augmented proper PC-projective resolution of M that is exact in degree

less than n. We have shown in Lemma 3.8(a) that HomR(C,X) is a projective resolution of HomR(C,M).

Since each Xi is in PC ⊂ BC by Corollary 2.10(a), we have C⊗RHomR(C,X) ∼= X, and this complex is exact

in positive homological degree less than n. This gives the desired vanishing since TorRi (C,HomR(C,M)) =

Hi(C ⊗R HomR(C,X)). To show the given isomorphism, consider the commutative diagram

C ⊗R HomR(C,X1) //

∼= ξCX1

��

C ⊗R HomR(C,X0) //

∼= ξCX0

��

C ⊗R HomR(C,M) //

ξCM
��

0 //

∼=
��

0

∼=
��

X1
// X0

// M // 0 // 0

where the bottom row is exact by assumption and the top row is exact by Lemma 3.8(a) and right-exactness

of the functor C ⊗R −. An application of the Five Lemma ensures that ξCM is an isomorphism.

(iii)⇒ (ii). Let X+ be an augmented PC-projective resolution of M . Since ξCM is an isomorphism and

each Xi ∈ BC by Corollary 2.10(a), we have X+ ∼= C ⊗R HomR(C,X+). Since TorRi (C,HomR(C,M)) = 0

for 0 < i < n and the associated tensor product is right-exact, the complex X+ is exact in homological

degree less than n.
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(b) (ii) ⇒ (i). This follows immediately from Proposition 3.4(a).

(i) ⇒ (iii). Let Y + be an augmented proper IC-injective coresolution of M that is exact in coho-

mological degree less than n. We have shown in Lemma 3.8(b) that C ⊗R Y is an injective coresolution

of C ⊗R M . Since each Y i is in IC ⊂ AC by Corollary 2.10(b), we have HomR(C,C ⊗R Y ) ∼= Y , and

this complex is exact in positive cohomological degree less than n. This gives the desired vanishing since

ExtiR(C,C ⊗R M) = Hi(HomR(C,C ⊗R Y )). To show the given isomorphism, let Y i := HomR(C, Ii) for

i ≥ 0 and consider the commutative diagram

0 //

∼=
��

0 //

∼=
��

M
ε //

γC
M

��

Y 0 //

∼= γC
Y 0

��

Y 1

∼= γC
Y 1

��
0 // 0 // HomR(C,C ⊗RM)

ε // HomR(C,C ⊗R Y 0) // HomR(C,C ⊗R Y 1)

where the top row is exact by assumption and the bottom row is exact by Lemma 3.8(b) and left-exactness

of the functor HomR(C,−). An application of the Five Lemma ensures that γCM is an isomorphism.

(iii) ⇒ (ii). Let +Y be an augmented proper IC-coinjective resolution of M . Since γCM is an

isomorphism and each Y i ∈ AC by Corollary 2.10(b), we have +Y ∼= HomR(C,C ⊗R +Y ). Since we have

ExtiR(C,C ⊗RM) = 0 for 0 < i < n and the associated Hom functor is left-exact, the complex +Y is exact

in cohomological degree less than n. ý

Remark 3.10. Note that the case n = 0 in the previous result is false. To see this, suppose by way of

contradiction that (b) ⇒ (c). Consider the case when R is a local ring with maximal ideal m and residue

field k := R/m. If we choose C 6∼= R, then C is not cyclic (as in [7, Corollary 2.1.14]), so Nakayama’s lemma

implies that HomR(C, k) ∼= kβ0 ∼= C ⊗R k for some integer β0 ≥ 2. Then

C ⊗R HomR(C, k) ∼= C ⊗R kβ0 ∼= (C ⊗R k)β0 ∼= (kβ0)β0 = kβ
2
0 .

Since C ⊗R k ∼= kβ0 and β0 6= 0, there is a surjection C ⊗R k � k. There is a surjection R � k, so

right-exactness of the tensor product implies that C ⊗R R � C ⊗R k � k. For any augmented proper

PC-projective resolution X+ of k we have the following commutative diagram by properness:

C ⊗R R

zz ����
X0 τ

// k

It follows that τ is a surjection, so every augmented proper PC-projective resolution of k is exact in homologi-
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cal degree −1. By assumption and our previous work, we have the isomorphism kβ
2
0 ∼= C⊗RHomR(C, k) ∼= k,

which is a contradiction since β0 ≥ 2.

Corollary 3.11 ([11, Corollary 2.4]). Let C be a semidualizing R-module and M an R–module.

(a) If M ∈ BC , then every augmented proper PC-projective resolution of M is exact.

(b) If M ∈ AC , then every augmented proper IC-injective coresolution of M is exact.

Proof. Both results follow immediately from Proposition 3.9 and Definition 2.7. ý

We can use Foxby equivalence to relate membership in the Foxby classes to PC-projective and

IC-injective dimensions.

Corollary 3.12 ([11, Corollary 2.9]). Let C be a semidualizing R-module and M an R-module.

(a) If PC -pdR(M) is finite, then M ∈ BC .

(b) If IC -idR(M) is finite, then M ∈ AC .

Proof. (a) Suppose PC -pdR(M) = n. By Definition 3.5, there exists an augmented proper PC-projective

resolution X+ such that Xi = 0 for all i > n. By Lemma 3.8(a), this means that HomR(C,X+) is a bounded

augmented projective resolution of HomR(C,M), so HomR(C,M) has finite flat dimension. It follows by

Proposition 2.8(b) that HomR(C,M) ∈ AC , and Theorem 2.9(a) implies that M ∈ BC .

(b) Suppose IC -idR(M) = n. By Definition 3.5, there exists an augmented proper IC-injective

coresolution +Y such that Y i = 0 for all i > n. By Lemma 3.8(b), this means that C ⊗R +Y is a bounded

augmented injective coresolution of C ⊗R M , so C ⊗R M has finite injective dimension. It follows by

Proposition 2.8(d) that C ⊗RM ∈ BC , and Theorem 2.9(b) implies that M ∈ AC . ý

Corollary 3.13 ([11, Corollary 2.10]). Let C be a semidualizing R-module and M any R-module.

(a) The inequality PC -pdR(M) ≤ n holds if and only if there is an exact sequence

0→ C ⊗R Pn → · · ·C ⊗R P0 →M → 0

with each Pi a projective R-module. If such a sequence exists, then it is proper and M ∈ BC .

(b) The inequality IC -idR(M) ≤ n holds if and only if there is an exact sequence

0→M → HomR(C, I0)→ · · · → HomR(C, In)→ 0

with each Ii an injective R-module. If such a sequence exists, then it is proper and M ∈ AC .
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Proof. (a) Suppose first that PC -pdR(M) ≤ n for some n. Then M ∈ BC by Corollary 3.12(a), so Corol-

lary 3.11(a) implies that every augmented proper PC-projective resolution of M is exact. Since M has an

augmented proper PC-projective resolution X+ such that Xi = 0 for i > n, we are done. To show the

converse, let

X+ := 0 // C ⊗R Pn
∂n // · · · ∂1 // C ⊗R P0

τ // M // 0

be exact, where each Pi is projective. Since each C ⊗R Pi ∈ BC by Corollary 2.10(a), we have that M ∈ BC

by Proposition 2.8(c). Consider the associated short exact sequences

0→ Ki → C ⊗R Pi → Ki−1 → 0

for Ki := Im ∂i+1, where K−1 := Im τ = M . We have the long exact sequence in ExtiR(C,−)

0→ HomR(C,Ki)→ HomR(C,C ⊗R Pi)→ HomR(C,Ki−1)→ Ext1R(C,Ki)→ · · ·

with Ext1R(C,Ki) = 0 since Ki ∈ BC by Proposition 2.8(c). A standard sequence-splicing argument im-

plies exactness of HomR(C,X+). If Q is any projective R-module, Hom-tensor adjointness implies that

HomR(C ⊗R Q,X+) ∼= HomR(Q,HomR(C,X+)) is exact, so X+ is proper and the desired inequality holds.

(b) Suppose first that IC -idR(M) ≤ n for some n. Then M ∈ AC by Corollary 2.8(b), so Corol-

lary 3.11(b) implies that every augmented proper IC-injective coresolution of M is exact. Since M has an

augmented proper IC-injective coresolution +Y such that Y i = 0 for i > n, we are done. To show the

converse, let

+Y := 0 // M
ε // HomR(C, I0)

∂0
// · · · ∂

n−1
// HomR(C, In) // 0

be exact, where each Ii is injective. Since each HomR(C, Ii) ∈ AC by Corollary 3.12(b), we have that

M ∈ BC by Proposition 2.8(a). Consider the associated short exact sequences

0→ Li−1 → HomR(C, Ii)→ Li → 0

for Li := Im ∂i ∼= M , where L−1 := Im ε. We have the long exact sequence in TorRi (C,−)

· · · → TorR1 (C,Li)→ C ⊗R Li−1 → C ⊗R HomR(C, Ii)→ C ⊗R Li → 0

with TorR1 (C,Li) = 0 since Li ∈ AC by Definition 2.7. A standard sequence-splicing argument implies
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exactness of C ⊗R +Y . If J is any injective R-module, Hom-tensor adjointness implies that the complex

HomR(+Y ⊗R C, J) ∼= HomR(+Y ,HomR(C, J)) is exact, so +Y is proper; hence the desired inequality. ý

The following corollary shows that modules of PC-projective dimension zero are in PC and, dually,

that modules of IC-injective dimension zero are in IC . Because augmented proper PC-projective resolutions

and IC-injective coresolutions are not exact in general, this result requires a proof.

Corollary 3.14. Let C be a semidualizing R-module and M an R-module.

(a) We have PC -pdR(M) = 0 if and only if M ∈ PC .

(b) We have IC -idR(M) = 0 if and only if M ∈ IC .

Proof. (a) Suppose first that M ∈ PC ⊂ BC . Then 0 → C ⊗R P
∼=−→ M → 0 is an augmented proper

PC-projective resolution of M , so PC -pdR(M) = 0. Conversely, if PC -pdR(M) = 0, then M ∈ BC by Corol-

lary 3.12(a). Corollary 3.11(a) implies that the augmented proper PC-projective resolution 0→ C ⊗R P →

M → 0 of M is exact, so M ∼= C ⊗R P and hence M ∈ PC .

(b) Suppose first that M ∈ IC ⊂ AC . Then 0 → M
∼=−→ HomR(C, I) → 0 is an augmented proper

IC-injective coresolution of M , so IC -idR(M) = 0. Conversely, if IC -idR(M) = 0, then M ∈ AC by

Corollary 3.12(b). Corollary 3.11(b) implies that the augmented proper IC-injective coresolution 0→M →

HomR(C, I)→ 0 of M is exact, so M ∼= HomR(C, I) and hence M ∈ IC . ý

The next result establishes a connection between projective and C-projective dimension, and between

injective and C-injective dimension, when C is semidualizing. It is Theorem 1.3 from the introduction.

Theorem 3.15 ([11, Theorem 2.11]). Let C be a semidualizing R-module and M any R-module. The

following equations hold:

(a) pdR(M) = PC -pdR(C ⊗RM);

(b) IC -idR(M) = idR(C ⊗RM);

(c) PC -pdR(M) = pdR(HomR(C,M)); and

(d) idR(M) = IC -idR(HomR(C,M)).

Proof. (a) Let pdR(M) = n < ∞, and consider an augmented projective resolution X+ of M of length n.

SinceM has finite flat dimension, M ∈ AC by Proposition 2.8(b) and by Definition 2.7 we have TorRi (C,M) =

0 for i ≥ 1. This and right-exactness of the tensor product imply the complex C ⊗R X+ is exact of

length n, and hence an augmented proper PC-projective resolution of C ⊗R M by Corollary 3.13(a). This
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implies the inequality PC -pdR(C ⊗R M) ≤ pdR(M). To show the reverse inequality, suppose we have

PC -pdR(C ⊗R M) = m < ∞. We have shown in Corollary 3.13(a) that there exists an exact augmented

proper PC-projective resolution Z+ of C ⊗RM of length m and C ⊗RM ∈ BC , so Theorem 2.9(b) implies

that M ∈ AC . Hence HomR(C,C ⊗R M) ∼= M . By Lemma 3.8(a), we have that HomR(C,Z+) is an

augmented projective resolution of HomR(C,C ⊗RM) ∼= M of length m, so pdR(M) ≤ PC -pdR(C ⊗RM)

and we are done.

(b) Let IC -idR(M) = n < ∞. We have shown in Corollary 3.13(b) that there exists an exact

augmented proper IC-injective coresolution +Y of M of length n and M ∈ AC . By Lemma 3.8(b), we have

that C⊗R+Y is an augmented injective coresolution of C⊗RM of length n, so idR(C⊗RM) ≤ IC -idR(M).

To show the reverse inequality, suppose we have idR(C⊗RM) = m <∞, and consider an augmented injective

coresolution +Z of C⊗RM of length m. Since C⊗RM has finite injective dimension, we have C⊗RM ∈ BC

by Proposition 2.8(d), and by Definition 2.7 we have ExtiR(C,C⊗RM) = 0 for i ≥ 1. This and left-exactness

of the Hom functor imply the complex HomR(C,+Z) is exact of length m, and hence an augmented proper

IC-injective coresolution of HomR(C,C ⊗RM) ∼= M since M ∈ AC , so IC -idR(M) ≤ idR(C ⊗RM) and we

are done.

(c) Let PC -pdR(M) = n <∞. We have shown in Corollary 3.13(a) that there exists an exact aug-

mented proper PC-projective resolution X+ of M of length n and M ∈ BC . By Lemma 3.8(a), we have that

HomR(C,X+) is an augmented projective resolution of HomR(C,M) of length n, so pdR(HomR(C,M)) ≤

PC -pdR(M). To show the reverse inequality, suppose we have pdR(HomR(C,M)) = m < ∞, and con-

sider an augmented projective resolution Z+ of HomR(C,M) of length m. Since HomR(C,M) has finite

projective dimension, we have HomR(C,M) ∈ AC by Proposition 2.8(b) and by Definition 2.7, we have

TorRi (C,HomR(C,M)) = 0 for i ≥ 1. This and right-exactness of the tensor product imply the com-

plex C ⊗R HomR(C,M) is exact of length m, and hence an augmented proper PC-projective resolution of

C ⊗R HomR(C,M) ∼= M since M ∈ BC , so PC -pdR(M) ≤ pdR(HomR(C,M)) and we are done.

(d) Let idR(M) = n < ∞, and consider an augmented injective coresolution +Y of M of length n.

Since M has finite injective dimension, M ∈ BC by Proposition 2.8(d) and by Definition 2.7 we have

ExtiR(C,M) = 0 for i ≥ 1. This and left-exactness of the Hom functor imply the complex HomR(C,+Y )

is exact of length n, and hence an augmented proper IC-injective coresolution of HomR(C,M) by Corol-

lary 3.13(b). This implies the inequality IC -idR(HomR(C,M)) ≤ idR(M). To show the reverse inequality,

suppose we have IC -idR(HomR(C,M)) = m <∞. We have shown in Corollary 3.13(b) that there exists an

exact augmented proper IC-injective coresolution +Z of HomR(C,M) of length m and HomR(C,M) ∈ AC ,

so Theorem 2.9(b) implies that M ∈ BC . Hence C ⊗R HomR(C,M) ∼= M . By Lemma 3.8(b), we

have that C ⊗R +Z is an augmented injective coresolution of C ⊗R HomR(C,M) ∼= M of length m, so
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idR(M) ≤ IC -idR(HomR(C,M)) and we are done. ý

Armed with these results, we can extend Foxby equivalence to include the modules of finite C-

projective and C-injective dimensions.

Theorem 3.16 (Extended Foxby equivalence [11, Theorem 2.12]). Let C be a semidualizing R-module, and

let n ≥ 0 be an integer. Let P̂C(R)≤n, P̂(R)≤n, ÎC(R)≤n, Î≤n be the classes of R-modules of C-projective,

projective, C-injective, and injective dimension of at most n, respectively. Let P(R) and I(R) be the classes

of projective and injective R-modules, respectively. We have the following equivalences of classes:

P(R)
C⊗R− //

� _

��

PC(R)
HomR(C,−)

oo � _

��
P̂(R)≤n

C⊗R− //
� _

��

P̂C(R)≤n
HomR(C,−)
oo � _

��
AC(R)

C⊗R− // BC(R)
HomR(C,−)

oo

ÎC(R)≤n
C⊗R− //?�

OO

Î(R)≤n
HomR(C,−)
oo

?�

OO

IC(R)
C⊗R− //?�

OO

I(R)
HomR(C,−)

oo
?�

OO

Proof. We prove the claim only for the top half of the diagram; the bottom half follows similarly. The

equivalences P(R)←→ PC(R) and P̂(R)≤n ←→ P̂C(R)≤n follow from Corollary 3.14 and Theorem 3.15(a).

The equivalence AC(R) ←→ BC(R) follows from Theorem 2.9. The inclusions P(R) ↪→ P̂(R)≤n and

PC(R) ↪→ P̂C(R)≤n are immediate. The inclusion P̂(R)≤n ↪→ AC(R) follows from Proposition 2.8(b), and

the inclusion P̂C(R)≤n ↪→ BC(R) follows from Corollary 3.12(a). ý

The next result is Theorem 1.4 from the introduction, and is a version of the Auslander-Buchsbaum-

Serre result in Theorem 1.1.

Theorem 3.17 ([11, Proposition 5.1]). Let R be a local noetherian ring with residue field k, and C a

semidualizing R-module. The following conditions are equivalent:

(i) R is regular;

(ii) PC -pdR(M) <∞ for every finitely generated R-module M; and

(iii) PC -pdR(k) <∞.

19



Proof. (ii) ⇒ (iii). This is immediate.

(iii)⇒ (i). Suppose that PC -pdR(k) is finite. By Theorem 3.15(c), pdR(HomR(C, k)) = PC -pdR(k)

is also finite. Since HomR(C, k) is a nonzero vector space over k by Nakayama’s lemma, we have that pdR(k)

is finite. Theorem 1.1 implies that R is regular.

(i) ⇒ (ii). Suppose that R is a regular local ring; then R is Gorenstein. It can be shown, as in [7,

Corollary 4.1.9], that in this case the only semidualizing R-module is R itself. Theorem 1.1 implies that

pdR(M) = PC -pdR(M) <∞ for any R-module M . ý
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4. RELATIVE COHOMOLOGY AND Ext-VANISHING

Recall that in Section 1 we characterized projective and injective modules by Ext-vanishing. When

we compute Ext-modules using PC-resolutions or IC-coresolutions, we obtain an analagous result.

Theorem 4.1 ([11, Theorem 3.1]). Let C be a semidualizing R-module and M any R-module.

(a) The following conditions are equivalent:

(i) Ext1PC
(M,−) = 0;

(ii) ExtiPC
(M,−) = 0 for i ≥ 1; and

(iii) M ∈ PC .

(b) The following conditions are equivalent:

(i) Ext1IC (−,M) = 0;

(ii) ExtiIC (−,M) = 0 for i ≥ 1; and

(iii) M ∈ IC .

Proof. (a) (iii) ⇒ (ii). Suppose that M ∈ PC ; then the complex · · · → 0 → M → M → 0 is an exact

augmented proper PC-projective resolution of M so we have the desired vanishing.

(ii) ⇒ (i). This is immediate.

(i) ⇒ (iii). Consider the commutative diagram

X+ := · · · // C ⊗R P2
∂2 // C ⊗R P1

∂1 //

α
$$

C ⊗R P0
τ // M // 0

K0

, �
β

::

where X+ is an augmented proper PC-projective resolution of M . Here β is the inclusion map and K0 :=

ker τ . Since X+ is an R-complex, we have βα∂2 = ∂1∂2 = 0; since β is injective, we have α∂2 = 0. Since

Ext1PC
(M,K0) = 0 by assumption, the sequence

HomR(C ⊗R P0,K0)
∂∗1 // HomR(C ⊗R P1,K0)

∂∗2 // HomR(C ⊗R P2,K0)

is exact. Since 0 = α∂2 ∈ HomR(C ⊗R P2,K0), we have ∂∗2(α) = 0, so α ∈ Im ∂∗1 . Hence there exists

γ ∈ HomR(C ⊗R P0,K0) such that α = ∂∗1(γ) = γ∂1 = γβα by commutativity of the diagram. The last
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equation implies that HomR(C,α) = HomR(C, γβα) = HomR(C, γ) HomR(C, β) HomR(C,α). Observe that

the sequence

0 // K1
// C ⊗R P1

α // K0
// 0

is Hom(C,−)-exact by properness, where K1 := ker ∂1. This means that HomR(C,α) is surjective, so we have

the composition HomR(C, γ) HomR(C, β) = 1Hom(C,K0). This and properness of X imply that the sequence

0 // HomR(C,K0)
Hom(C,β) ..

HomR(C,C ⊗R P0)
Hom(C,γ)

nn // HomR(C,M) // 0

is split exact. Now HomR(C,C ⊗R P0) ∼= P0 is projective, so HomR(C,M) is also projective and hence

PC -pdR(M) = pdR(HomR(C,M)) = 0 by Theorem 3.15(c). Corollary 3.13(a) implies that there is an exact

sequence 0→ C ⊗R Q0 →M → 0, so M ∼= C ⊗R Q0 for some projective Q0 and M ∈ PC .

(b) (iii) ⇒ (ii). Suppose that M ∈ IC ; then the complex 0 → M → M → 0 → · · · is an exact

augmented proper IC-injective coresolution of M so we have the desired vanishing.

(ii) ⇒ (i). This is immediate.

(i) ⇒ (iii). Consider the commutative diagram

+Y := 0 // M
ε // HomR(C, I0)

∂0
//

β %% %%

HomR(C, I1)
∂1
// HomR(C, I2) // · · ·

L0

α

99

where +Y is an augmented proper IC-injective coresolution of M . Here L0 := Im ∂0. Since +Y is an R-

complex, we have ∂1αβ = ∂1∂0 = 0; since β is surjective, we have ∂1α = 0. Since Ext1IC (L0,M) = 0 by

assumption, the sequence

HomR(L0,HomR(C, I0))
∂0
∗ // HomR(L0,HomR(C, I1))

∂1
∗ // HomR(L0,HomR(C, I2))

is exact. Since 0 = ∂1α ∈ HomR(L0,HomR(C, I2)), we have ∂1∗(α) = 0, so α ∈ Im ∂0∗ . Hence there exists

γ ∈ HomR(L0,HomR(C, I0)) such that α = ∂0∗(γ) = ∂0γ = αβγ by commutativity of the diagram. The last

equation implies that C ⊗ α = C ⊗ (γβα) = (C ⊗ γ)(C ⊗ β)(C ⊗ α). Observe that the sequence

0 // L0 α // HomR(C, I0) // L1 // 0

is (C ⊗R −)-exact, where L1 := Im ∂1. This means that C ⊗ α is injective, so we have the composition
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(C ⊗ γ)(C ⊗ β) = 1C⊗RHomR(C,I0). This and properness of Y imply that the sequence

0 // C ⊗RM // C ⊗R HomR(C, I0)
C⊗β

..
C ⊗R L0

C⊗γ
nn // 0

is split exact. Now C⊗RHomR(C, I0) ∼= I0 is injective, so C⊗RM is also injective and hence IC -idR(M) =

idR(C ⊗RM) = 0 by Theorem 3.15(b). Corollary 3.13(b) implies that there is an exact sequence 0→M →

HomR(C, J0)→ 0, so M ∼= HomR(C, J0) for some injective J0 and M ∈ IC . ý

The next lemma is sometimes called “dimension shifting” or “degree shifting”.

Lemma 4.2 ([11, 1.7]). Let M , N , and C be R-modules, and n ≥ 1.

(a) If X+ is an augmented proper PC-projective resolution of M with the usual notation, then there is an

isomorphism Extn+1
PC

(M,N) ∼= Ext1PC
(coker ∂n+1, N) for all n ≥ 0.

(b) If +Y is an augmented proper IC-injective coresolution of N with the usual notation, then there is an

isomorphism Extn+1
IC (M,N) ∼= Ext1IC (M, ker ∂n) for all n ≥ 0.

The next result extends Theorem 4.1 by dimension shifting to investigate modules of finite C-

projective and C-injective dimension. It contains Theorem 1.5 from the introduction.

Theorem 4.3 ([11, Theorem 3.2]). Let C be a semidualizing R-module, M any R-module, and n ≥ 0.

(a) The following conditions are equivalent:

(i) Extn+1
PC

(M,−) = 0;

(ii) Extn+iPC
(M,−) = 0 for i ≥ 1; and

(iii) PC -pdR(M) ≤ n.

(b) The following conditions are equivalent:

(i) Extn+1
IC (−,M) = 0;

(ii) Extn+iIC (−,M) = 0 for i ≥ 1; and

(iii) IC -idR(M) ≤ n.

Proof. (a) (iii) ⇒ (ii). This follows by definition.

(ii) ⇒ (i). This is immediate.

(i) ⇒ (iii). Let

X+ := · · · ∂n+1−−−→ C ⊗R Pn → C ⊗R Pn−1 → · · · →M → 0
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be an augmented proper PC-projective resolution of M . There is a corresponding sequence

(X+)′ := 0→ coker ∂n+1 → C ⊗R Pn−1 → · · · →M → 0

such that HomR(C ⊗R Q, (X+)′) is exact for every projective module Q. Lemma 4.2(a) implies that

Ext1PC
(coker ∂n+1,−) ∼= Extn+1

PC
(M,−) = 0 by assumption. By Theorem 4.1(a), we have that coker ∂n+1 ∈

PC , so (X+)′ is an augmented proper PC-projective resolution of M . The inequality PC -pdR(M) ≤ n

follows by definition.

(b) (iii) ⇒ (ii). This follows by definition.

(ii) ⇒ (i). This is immediate.

(i) ⇒ (iii). Let

+Y := 0→M → · · · → HomR(C, In−1)→ HomR(C, In)
∂n

−−→ · · ·

be an augmented proper IC-injective coresolution of M . There is a corresponding sequence

+Y ′ := 0→M → · · · → HomR(C, In−1)→ ker ∂n → 0

such that HomR(+Y ′,HomR(C, J)) is exact for every injective module J . Lemma 4.2(b) implies that

Ext1IC (−, ker ∂n) ∼= Extn+1
IC (−,M) = 0 by assumption. By Theorem 4.1(b), we have that ker ∂n ∈ IC ,

so +Y ′ is an augmented proper IC-injective coresolution of M . The inequality IC -idR(M) ≤ n follows

by definition. ý

Recall that modules of finite projective and injective dimensions satisfy the standard “two of three”

condition; that is, if any two modules in a short exact sequence have finite projective (resp. injective)

dimension, then so does the third module. The next result shows that modules of finite PC-projective

dimension and of finite IC-injective dimension satisfy an analagous condition.

Proposition 4.4 ([11, Proposition 3.4]). Let C be a semidualizing R-module. Consider an exact sequence

X = 0→M ′ →M →M ′′ → 0

of R-module homomorphisms.

(a) If any two of the modules have finite PC-projective dimension, then so does the third.

(b) If any two of the modules have finite IC-injective dimension, then so does the third.
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Proof. (a) Suppose that any two of the (possibly nonzero) modules in X have finite PC-projective dimen-

sion. Since Corollary 3.12(a) implies that these two modules are in BC , Proposition 2.8(c) implies that the

remaining module must also be in BC . Applying Definition 2.7, we have that Ext1R(C,M ′) = 0 and hence

the sequence

0→ HomR(C,M ′)→ HomR(C,M)→ HomR(C,M ′′)→ 0

is exact.

Since two of the (possible nonzero) modules in X have finite PC-projective dimension, the corre-

sponding Hom-modules have finite projective dimension by Theorem 3.15(c). It can be shown (as in [8],

Corollary VII.3.9) that this implies the remaining Hom-module must also have finite projective dimension,

so Theorem 3.15(c) ensures that its corresponding module in X has finite PC-projective dimension.

(b) Suppose that any two of the (possibly nonzero) modules in X have finite IC-injective dimension.

Since Corollary 3.12(b) implies that these two modules are in AC , Proposition 2.8(a) implies that the

remaining module must also be in AC . Applying Definition 2.7, we have that TorR1 (C,M ′′) = 0 and hence

the sequence

0→ C ⊗RM ′ → C ⊗RM → C ⊗RM ′′ → 0

is exact.

Since two of the (possible nonzero) modules in X have finite IC-injective dimension, the corre-

sponding tensor products have finite injective dimension by Theorem 3.15(b). It can be shown (as in [8],

Corollary VII.5.7) that this implies the remaining tensor product must also have finite injective dimension,

so Theorem 3.15(b) ensures that its corresponding module in X has finite IC-injective dimension. ý

Extended Foxby equivalence is used to prove the next result, which relates relative and absolute

Ext-modules.

Theorem 4.5 ([11, Theorem 4.1]). Let C be a semidualizing R-module, and let M and N be any R-modules.

Then for i ≥ 0 we have the following isomorphisms:

(a) ExtiPC
(M,N) ∼= ExtiR(HomR(C,M),HomR(C,N)); and

(b) ExtiIC (M,N) ∼= ExtiR(C ⊗RM,C ⊗R N).

Proof. (a) Let X+ be an augmented proper PC-projective resolution of M , and choose i ≥ 0. Lemma 3.8(a)
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implies that HomR(C,X) is a projective resolution of HomR(C,M). Hence, we have

ExtiPC
(M,N) = Hi(HomR(X,N))

∼= Hi(HomR(C ⊗R HomR(C,X), N))

∼= Hi(HomR(HomR(C,X),HomR(C,N)))

= ExtiR(HomR(C,M),HomR(C,N))

where the first isomorphism follows since PC ⊂ BC from Theorem 3.16 and each module in X is C-projective,

and the second follows from Hom-tensor adjointness.

(b) Let +Y be an augmented proper IC-injective coresolution of N , and choose i ≥ 0. Lemma 3.8(b)

implies that C ⊗R +Y is an injective coresolution of C ⊗R N . Hence, we have

ExtiIC (M,N) = Hi(HomR(M,Y ))

∼= Hi(HomR(M,HomR(C,C ⊗R Y )))

∼= Hi(HomR(C ⊗RM,C ⊗R Y ))

= ExtiR(C ⊗RM,C ⊗R N)

where the first isomorphism follows since IC ⊂ AC from Theorem 3.16 and each module in Y is C-injective,

and the second follows from Hom-tensor adjointness. ý

The next three definitions are for use in Lemma 4.10 and Theorem 4.11.

Definition 4.6. Let X and Y be R-complexes and f : X → Y a chain map. We say f is a quasiisomorphism

if the induced map Hi(f) : Hi(X)→ Hi(Y ) is an isomorphism for all i. In this case, we write f : X
'−→ Y .
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Definition 4.7. A double complex of R-module homomorphisms is a commutative diagram

...

��

...

��

...

��
· · · P0,2
oo

d0,2

��

P1,2

∂1,2oo

d1,2

��

P2,2

∂2,2oo

d2,2

��

· · ·oo

· · · P0,1
oo

d0,1

��

P1,1

∂1,1oo

d1,1

��

P2,1

∂2,1oo

d2,1

��

· · ·oo

· · · P0,0
oo

��

P1,0

∂1,0oo

��

P2,0

∂2,0oo

��

· · ·oo

...
...

...

where each row and column is an R-complex.

Definition 4.8. Let P be a double complex over R, with notation as above. Define Pm :=
⊕

i+j=m

Pi,j for

each m and the maps Dm : Pm → Pm−1 via Dm(ci,j) := ∂i,j(ci,j) + (−1)idi,j(ci,j). Then

· · · → P1
D1−−→ P0

D0−−→ P−1 → · · ·

is the total complex of P , denoted TotP .

Remark 4.9. If P is a double complex over R, then TotP is an R-complex.

Lemma 4.10 ([3, 6.14 and 6.12]). Let X
'−→ Y be a quasiisomorphism of R-complexes.

(a) If I is a bounded above complex of injective R-modules, then Tot HomR(X, I)
'←− Tot HomR(Y, I).

(b) If P is a bounded below complex of projective R-modules, then Tot HomR(P,X)
'−→ Tot HomR(P, Y ).

The following result is Theorem 1.6 from the introduction.

Theorem 4.11 ([11, Corollary 4.2]). Let C be a semidualizing R-module, and let M and N be any R-

modules.

(a) If M,N ∈ BC , then ExtiPC
(M,N) ∼= ExtiR(M,N) for i ≥ 0.

(b) If M,N ∈ AC , then ExtiIC (M,N) ∼= ExtiR(M,N) for i ≥ 0.

Proof. (a) Choose i ≥ 0. Let P+ be an augmented projective resolution of HomR(C,M) and +I an aug-

mented injective coresolution of N . Since M,N ∈ BC , the complexes C ⊗R P+ and HomR(C,+I) are exact;
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in particular, C ⊗R P
'−→ C ⊗R HomR(C,M) ∼= M and HomR(C, I)

'←− HomR(C,N). Lemma 4.10 gives the

quasiisomorphisms

Tot HomR(C ⊗R P, I)
'←− Tot HomR(M, I)

Tot HomR(P,HomR(C, I))
'←− Tot HomR(P,HomR(C,N))

that each give rise to isomorphisms of homology modules. Since there is an isomorphism

HomR(C ⊗R P, I) ∼= HomR(P,HomR(C, I))

of double complexes, we have

ExtiR(M,N) = Hi(HomR(M, I))

= Hi(Tot HomR(M, I))

∼= Hi(Tot HomR(C ⊗R P, I))

∼= Hi(Tot HomR(P,HomR(C, I)))

∼= Hi(Tot HomR(P,HomR(C,N)))

= Hi(HomR(P,HomR(C,N)))

= ExtiR(HomR(C,M),HomR(C,N))

∼= ExtiPC
(M,N)

where the last isomorphism is by Theorem 4.5(a).

(b) Choose i ≥ 0. Let P+ be an augmented projective resolution of M and +I an augmented

injective coresolution of C ⊗R N . Since M,N ∈ AC , the complexes C ⊗R P+ and HomR(C,+I) are exact;

in particular, HomR(C, I)
'←− HomR(C,C ⊗R N) ∼= N and C ⊗R P

'−→ C ⊗R M . Lemma 4.10 gives the

quasiisomorphisms

Tot HomR(P,HomR(C, I))
'←− Tot HomR(P,N)

Tot HomR(C ⊗R P, I)
'←− Tot HomR(C ⊗RM, I)

that each give rise to isomorphisms of homology modules. Since there is an isomorphism

HomR(P,HomR(C, I)) ∼= HomR(C ⊗R P, I)
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of double complexes, we have

ExtiR(M,N) = Hi(HomR(P,N))

= Hi(Tot HomR(P,N))

∼= Hi(Tot HomR(P,HomR(C, I)))

∼= Hi(Tot HomR(C ⊗R P, I))

∼= Hi(Tot HomR(C ⊗RM, I))

= Hi(HomR(C ⊗RM, I))

= ExtiR(C ⊗RM,C ⊗R N)

= ExtiIC (M,N)

where the last isomorphism is by Theorem 4.5(b). ý
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5. COMPLETE PC- AND IC-RESOLUTIONS

In this section we combine projective and C-projective resolutions and, dually, injective and C-

injective resolutions in a useful way.

Definition 5.1. Let C be an R-module. A complete PC-resolution is an exact sequence of R-module

homomorphisms

X := · · · ∂2−→ P1
∂1−→ P0

∂0−→ C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

such that each Pi and Qj is projective and the complex HomR(X,C ⊗R Q) is exact for every projective

module Q.

A complete IC-resolution is an exact sequence of R-module homomorphisms

Y := · · · ∂2−→ HomR(C, I1)
∂1−→ HomR(C, I0)

∂0−→ J0 ∂0

−→ J1 ∂1

−→ · · ·

such that each Ii and Jj is injective and the complex HomR(HomR(C, J), Y ) is exact for every injective

module J .

Definition 5.2. Let C be an R-module. An R-module M is said to be GC-projective if there exists a

complete PC-resolution (using the notation above) with M ∼= Im ∂0 = ker ∂0. The module M is said to be

GC-injective if there exists a complete IC-resolution (using the notation above) with M ∼= ker ∂0 = Im ∂0.

The next result shows that complete PC- and IC-resolutions are built from PC-projective resolutions

and IC-injective coresolutions, respectively.

Proposition 5.3 ([12, Proposition 2.2]). Let M and C be R-modules.

(a) The module M is GC-projective if and only if M admits an exact augmented coproper PC-projective

coresolution and ExtiR(M,C ⊗R Q) = 0 for i > 0 and for all projective modules Q.

(b) The module M is GC-injective if and only if M admits an exact augmented coproper IC-injective reso-

lution and ExtiR(HomR(C, J),M) = 0 for i > 0 and for all injective modules J .

Proof. (a) Suppose first that M is a GC-projective R-module. Then there exists a complete PC-resolution

X := · · · ∂2−→ P1
∂1−→ P0

∂0−→ C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

such that M ∼= Im ∂0 by Definition 5.2. Here we adopt the convention that Xi := Pi for i ≥ 0 and
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Xi := C ⊗R Q−i−1 otherwise. Form the augmented projective resolution

P+ := · · · ∂2−→ P1
∂1−→ P0

τ−→M → 0

of M by truncation of X. Since the complex HomR(X,C ⊗R Q) is exact for every projective module Q by

Definition 5.1 and the complexes P+ and X agree in positive degree, we obtain that

ExtiR(M,C ⊗R Q) = Hi(HomR(P,C ⊗R Q))

= Hi(HomR(X,C ⊗R Q))

= 0

for i > 0; exactness in degree i ∈ {−1, 0} follows from left-exactness of HomR(−, C ⊗R Q). Consider

the complex

+Y := 0→M
ε−→ C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

obtained by truncation, where ε is chosen such that ετ = ∂0. Since Yi = Xi−1 for i ≤ 0 and the maps ∂i

are equal, we obtain that Hi(HomR(+Y,C ⊗R Q)) = Hi+1(HomR(X,C ⊗R Q)) = 0 for i ≥ 1 by Definition

5.1 and exactness in degree i ∈ {−1, 0} follows from left-exactness of HomR(−, C ⊗R Q). Hence +Y is an

augmented coproper PC-projective coresolution of M .

To show the converse, let

P+ := · · · ∂2−→ P1
∂1−→ P0

τ−→M → 0

be an augmented projective resolution of M and

+Y := 0→M
ε−→ C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

an exact augmented coproper PC-projective coresolution of M . Form the complex

X := · · · ∂2 // P1
∂1 // P0

ετ // C ⊗R Q0 ∂0
// C ⊗R Q1 ∂1

// · · ·

that we claim is a complete PC-resolution of M . Here we adopt the same degree convention as above.

Since X is exact by construction, it suffices to show that HomR(X,C ⊗R Q) is exact for every projective

R-module Q.
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For i > 0, we have

Hi(HomR(X,C ⊗R Q)) = Hi(HomR(P,C ⊗R Q))

= ExtiR(M,C ⊗R Q)

= 0

by assumption. For i > 1, we have Hi(HomR(X,C⊗RQ)) = Hi−1(HomR(+Y,C⊗RQ)) = 0 by coproperness

of +Y . Left-exactness of the functor HomR(−, C ⊗R Q) gives exactness of HomR(X,C ⊗R Q) in degree

i ∈ {0, 1}. Hence HomR(X,C ⊗R Q) is exact and M is GC-projective by Definition 5.2.

(b) Suppose first that M is a GC-injective R-module. Then there exists a complete IC-resolution

Y := · · · ∂2−→ HomR(C, I1)
∂1−→ HomR(C, I0)

∂0−→ J0 ∂0

−→ J1 ∂1

−→ · · ·

such that M ∼= ker ∂0 by Definition 5.2. Here we adopt the convention that Yi := J−i for i ≤ 0 and

Yi := HomR(C, Ii−1) otherwise. Form the augmented injective coresolution

+J := 0→M
ε−→ J0 ∂0

−→ J1 ∂1

−→ · · ·

of M by truncation of Y . Since the complex HomR(HomR(C, I), Y ) is exact for every injective module I by

Definition 5.1 and the complexes +J and Y agree in negative degree, we obtain that

ExtiR(HomR(C, I),M) = Hi(HomR(HomR(C, I), J))

= Hi(HomR(HomR(C, I), Y ))

= 0

for i > 0; exactness in degree i ∈ {−1, 0} follows from left-exactness of HomR(HomR(C, I),−). Consider

the complex

Z+ := · · · ∂
2

−→ HomR(C, I1)
∂1

−→ HomR(C, I0)
τ−→M → 0

obtained by truncation, where τ is chosen such that ετ = ∂. Since Zi−1 = Yi for i ≥ 1, we obtain

that Hi(HomR(HomR(C, I), Z+)) = Hi+1(HomR(HomR(C, I), Y )) = 0 for i > 0 by Definition 5.1 and

exactness in degree i ∈ {−1, 0} follows from left-exactness. Hence Z+ is an augmented coproper IC-injective

resolution of M .
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To show the converse, let

+J := 0→M
ε−→ J0 ∂0

−→ J1 ∂1

−→ · · ·

be an augmented injective coresolution of M and

Z+ := · · · ∂2−→ HomR(C, I1)
∂1−→ HomR(C, I0)

τ−→M → 0

an exact augmented coproper IC-injective resolution of M . Form the complex

Y := · · · ∂2 // HomR(C, I1)
∂1 // HomR(C, I0)

ετ // J0 ∂0
// J1 ∂1

// · · ·

that we claim is a complete IC-resolution of M . Here we adopt the same degree convention as above. To

show this, it suffices to show that HomR(HomR(C, I), Y ) is exact for every injective module I.

For i > 0, we have

Hi(HomR(HomR(C, I), Y )) = Hi(HomR(HomR(C, I),+J))

= ExtiR(HomR(C, I),M)

= 0

by assumption. For i > 1, we have Hi(HomR(HomR(C, I), Y )) = Hi−1(HomR(HomR(C, I), Z+)) = 0 by

coproperness of Z+. Left-exactness of the functor HomR(HomR(C, I),−) gives exactness of the complex

HomR(HomR(C, I), Y ) in degree i ∈ {0, 1}. Hence HomR(HomR(C, I), Y ) is exact and M is GC-injective

by Definition 5.2. ý

Corollary 5.4 ([4, Proposition 2.4]). Let C be an R-module. If M is GC-projective, then M admits a

complete PC-resolution of the form

· · · → F1 → F0 → C ⊗R G0 → C ⊗R G1 → · · ·

where each Fi and Gj is free.

Proof. Let Q be a projective R-module. Since every R-module admits a free resolution, there exists an

augmented free resolution

· · · ∂2−→ F1
∂1−→ F0

τ−→M → 0
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of M that is HomR(−, C ⊗R Q)-exact by left-exactness. By Proposition 5.3(a), there is a complete PC-

resolution of M yielding the exact sequence

0→M
ε−→ C ⊗R Q0 β0

−→ C ⊗R Q1 β1

−→ · · ·

by truncation; this sequence is HomR(−, C ⊗R Q)-exact since it is an augmented coproper PC-projective

coresolution of M . Since each Qj is projective, it is the direct summand of a free module. Choose P 0 such

that G0 = Q0 ⊕ P 0 is free. For j > 0, inductively choose P j such that Gj = Qj ⊕ P j−1 ⊕ P j is free.

Define the sequence

X := · · · ∂2−→ F1
∂1−→ F0

∂0−→ C ⊗R G0 ∂0

−→ C ⊗R G1 ∂1

−→ · · ·

combining the above resolution and coresolution. Define the map ∂0 : C ⊗R G0 → C ⊗R G1 via ∂0(x, y) :=

(β0(x), y, 0). For j > 0, define the map ∂j : C ⊗R Gj → C ⊗R Gj+1 via ∂j(x, y, z) := (βj(x), z, 0).

Define the map ∂0 : F0 → C ⊗R G0 via ∂0(x) := (ετ(x), 0). Note that since X is constructed in negative

homological degree by summing the above PC-projective coresolution with exact sequences of the form

0→ C ⊗R P j → C ⊗R P j → 0, it is still HomR(−, C ⊗R Q)-exact in these degrees.

We show that X is exact. Exactness at Fi (for i > 0) follows immediately from the given free

resolution. To show exactness at F0, observe that ∂0∂1 = (ετ∂1, 0) = (0, 0) since the given free resolution is

an R-complex. Further, suppose y ∈ ker ∂0; then y ∈ ker(ετ) and τ(y) ∈ ker ε. Since ε is injective, we have

τ(y) = 0 and hence y ∈ ker τ = Im ∂1.

To show exactness at C ⊗R G0, observe that ∂0∂0 = (β0ετ, 0, 0) = (0, 0). Further, suppose (x, y) ∈

ker ∂0; then y = 0 and x ∈ kerβ0 = Im ε. Hence there is some m ∈M such that ε(m) = x. Surjectivity of τ

gives m′ ∈ F0 such that τ(m′) = m. It follows that

∂0(m′) = (ετ(m′), 0) = (ε(m), 0) = (x, 0) = (x, y)

as desired. To show exactness at C ⊗R Qi for i > 0, observe that ∂i∂i−1 = (βiβi−1, 0, 0) = (0, 0, 0).

Further, suppose (x, y, z) ∈ ker ∂i; then z = 0 and x ∈ kerβi = Imβi−1. Hence there is some x′ such that

βi−1(x′) = x. It follows that

∂i−1(x′, 0, y) = (βi−1(x′), y, 0) = (x, y, 0) = (x, y, z)

and hence X is exact. It can be shown that HomR(X,C ⊗R Q) is exact for every projective R-module Q.
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Hence X is a complete PC-resolution of M . ý

The next result shows that complete PC- and IC-injective resolutions play nicely with products

and coproducts.

Proposition 5.5 ([12, Proposition 2.4]). Let C be an R-module.

(a) If {Xλ} is a set of complete PC-resolutions, then the complex
∐
λXλ is a complete PC-resolution.

(b) If {Yλ} is a set of complete IC-resolutions, then the complex
∏
λ Yλ is a complete IC-resolution.

Proof. (a) Suppose that {Xλ} is such a set. Then Xλ and HomR(Xλ, C ⊗R Q) are exact for any projective

module Q; hence
∐
λXλ and

∏
λ HomR(Xλ, C ⊗R Q) are also exact. Recall that there is an isomorphism

∏
λ

HomR(Xλ, C ⊗R Q) ∼= HomR

(∐
λ

Xλ, C ⊗R Q

)

of R-modules. Thus HomR (
∐
λ, C ⊗R Q) is exact and

∐
λXλ is a complete PC-resolution.

(b) Suppose that {Yλ} is such a set. Then Yλ and HomR(HomR(C, J), Yλ) are exact for any injective

module J ; hence
∏
λ Yλ and

∏
λ HomR(HomR(C, J), Yλ) are also exact. Recall that there is an isomorphism

∏
λ

HomR(HomR(C, J), Yλ) ∼= HomR

(
HomR(C, J),

∏
λ

Yλ

)

of R-modules. Thus HomR (HomR(C, J),
∏
λ Yλ) is exact and

∏
λ Yλ is a complete IC-resolution. ý

Corollary 5.6. The class of GC-projective modules is closed under direct sums and the class of GC-injective

modules is closed under direct products.

Proof. Since taking cokernels commutes with coproducts and taking kernels commutes with products, the

results follows immediately from Proposition 5.5. ý

We use the following six lemmata below.

Lemma 5.7. Let F be a flat R-module and I an injective R-module. Then HomR(F, I) is also injective.

Proof. Let X be an exact sequence of R-module homomorphisms. By definition, X ⊗R F is exact since

F is flat. Since I injective, the sequence HomR(X ⊗R F, I) is exact by definition. Applying Hom-tensor

adjointness, we find that HomR(X⊗RF, I) ∼= HomR(X,HomR(F, I)) is exact, so HomR(F, I) is injective. ý

Lemma 5.8. Let P and Q be projective R-modules. Then P ⊗R Q is projective.
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Proof. Since P and Q are projective, the functors HomR(P,−) and HomR(Q,−) are exact. Hom-tensor

adjointness gives that HomR(P⊗RQ,−) ∼= HomR(P,HomR(Q,−)) is also exact, so P⊗RQ is projective. ý

Lemma 5.9 ([12, Lemma 2.5]). Let C be an R-module.

(a) Let P and Q be projective R-modules and X an R-complex. If HomR(X,C ⊗R Q) is exact, then the

complex HomR(P ⊗R X,C ⊗R Q) is exact. In particular, if X is a complete PC-resolution of a module

M , then P ⊗R X is a complete PC-resolution of P ⊗RM .

(b) Let P be a projective R-module, J an injective R-module, and Y an R-complex. If HomR(HomR(C, J), Y )

is exact, then the complex HomR(HomR(C, J),HomR(P, Y )) is exact. In particular, if Y is a complete

IC-resolution of a module N , then HomR(P, Y ) is a complete IC-resolution of HomR(P,N).

Proof. (a) Suppose that HomR(X,C⊗RQ) is exact, where Q is projective. Since P is projective, the complex

HomR(P ⊗R X,C ⊗R Q) ∼= HomR(P,HomR(X,C ⊗R Q))

is exact. Now suppose

X = · · · → P1 → P0 → C ⊗R Q0 → C ⊗R Q1 → · · ·

is a complete PC-resolution of M . Since P is projective and X is exact, the complex

P ⊗R X = · · · → P ⊗R P1 → P ⊗R P0 → P ⊗R (C ⊗R Q0)→ P ⊗R (C ⊗R Q1)→ · · ·

∼= · · · → P ⊗R P1 → P ⊗R P0 → C ⊗R (P ⊗R Q0)→ C ⊗R (P ⊗R Q1)→ · · ·

is exact; further, it is a complete PC-resolution of P ⊗R M since each P ⊗R Pi and P ⊗R Qj is projective

by Lemma 5.8 and since taking cokernels commutes with P ⊗R − by right-exactness.

(b) Suppose that HomR(HomR(C, J), Y ) is exact, where J is injective. The complex

HomR(HomR(C, J),HomR(P, Y )) ∼= HomR(P ⊗R HomR(C, J), Y )

∼= HomR(P,HomR(HomR(C, J), Y ))

is exact since P is projective. Now suppose

Y = · · · → HomR(C, I1)→ HomR(C, I0)→ J0 → J1 → · · ·
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is a complete IC-resolution of N . Since P is projective and X is exact, the complex

HomR(P, Y ) = · · · → HomR(P,HomR(C, I0))→ HomR(P, J0)→ · · ·

∼= · · · → HomR(C,HomR(P, I0))→ HomR(P, J0)→ · · ·

is exact; further, it is a complete IC-resolution of HomR(P,N) since each HomR(P, Ii) and HomR(P, Jj) is

injective by Lemma 5.7 and since taking kernels commutes with HomR(P,−) by left-exactness. ý

Lemma 5.10 ([7, Lemmata A.1.2, A.1.3]). Let L,M,N be R-modules.

(a) If L is finitely generated and N is flat, then HomR(L,M)⊗R N ∼= HomR(L,M ⊗R N).

(b) If L is finitely generated and N is injective, then L⊗R HomR(M,N) ∼= HomR(HomR(L,M), N).

Lemma 5.11 ([7, Proposition 5.4.1(a)]). Let C be a semidualizing R-module and M a finitely generated

R-module. If there is an isomorphism M ∼= HomR(HomR(M,C), C), then the natural biduality map M →

HomR(HomR(M,C), C) is an isomorphism.

Lemma 5.12. Let C be a semidualizing R-module and β a positive integer. The biduality maps Rβ →

HomR(HomR(Rβ , C), C) and Cβ → HomR(HomR(Cβ , C), C) are isomorphisms.

Proof. We have

HomR(HomR(Rβ , C), C) ∼= HomR(HomR(R,C)β , C)

∼= HomR(Cβ , C)

∼= HomR(C,C)β

∼= Rβ

where the last isomorphism follows since C is semidualizing. We have

HomR(HomR(Cβ , C), C) ∼= HomR(HomR(C,C)β , C)

∼= HomR(Rβ , C)

∼= HomR(R,C)β

∼= Cβ

similarly. By Lemma 5.11, the corresponding biduality maps are isomorphisms. ý
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The next proposition shows how the construction of GC-projective modules generalizes that of

projective and C-projective modules. The construction of GC-injective modules similarly generalizes that of

injective and C-injective modules.

Proposition 5.13 ([12, Proposition 2.6]). Let C be a semidualizing R-module.

(a) If P is a projective R-module, then P and C ⊗R P are GC-projective.

(b) If I is an injective R-module, then I and HomR(C, I) are GC-injective.

Proof. (a) From Lemma 5.9(a), it suffices to show that C and R admit complete PC-resolutions. We first

show that C admits such a resolution. Since C is semidualizing, there is an augmented projective resolution

X+ := · · · → Rβ1 → Rβ0 → C → 0

that is exact; in particular, C ∼= coker(Rβ1 → Rβ0). It remains to show that HomR(X+, C ⊗R Q) is exact

for any projective R-module Q. Exactness in nonnegative degrees follows from left-exactness of the functor

HomR(−, C ⊗R Q). For i > 1 we have

Hi(HomR(X+, C ⊗R Q)) ∼= Hi(HomR(X+, C)⊗R Q)

∼= Hi(HomR(X+, C))⊗R Q

= ExtiR(C,C)⊗R Q

= 0

where the first isomorphism follows from Lemma 5.10(a) since each X+
i is finitely generated and Q is flat, the

second follows from [8, Theorem IV.1.10(a)] since Q is flat, and the final equality follows from Definition 2.1.

We now claim that HomR(X+, C) is a complete PC-resolution of R. We have

HomR(X+, C) = 0→ HomR(C,C)→ HomR(Rβ0 , C)→ HomR(Rβ1 , C)→ · · ·

∼= 0→ R→ HomR(R,C)β0 → HomR(R,C)β1 → · · ·

∼= 0→ R→ Cβ0 → Cβ1 → · · ·

since HomR(C,C) ∼= R by Definition 2.1. Thus HomR(X+, C) has the correct form for a complete PC-

resolution of R. The complex HomR(X+, C) is exact by setting Q = R in our previous work. Further, the

biduality map X+ → HomR(HomR(X+, C), C) is an isomorphism by Lemma 5.12. Hence for any projective
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module Q we have

HomR(HomR(X+, C), C ⊗R Q) ∼= HomR(HomR(X+, C), C)⊗R Q

∼= X+ ⊗R Q

as before. SinceX+ is exact and Q is projective, the complexX+⊗RQ is exact, so the complex HomR(X+, C)

is a complete PC-resolution of R.

(b) Let I be an injective R-module. There exists an augmented injective resolution

+Y = 0→ HomR(C, I)→ I0 → I1 → · · ·

of HomR(C, I). We claim that +Y is a complete IC-resolution of HomR(C, I), giving that HomR(C, I) is

GC-injective. It suffices to show that

HomR(HomR(C, J),+Y ) = 0→ HomR(HomR(C, J),HomR(C, I))→ HomR(HomR(C, J), I0)→ · · ·

is exact for every injective R-module J . We obtain exactness at HomR(HomR(C, J),HomR(C, I)) and

HomR(HomR(C, J), I0) by left-exactness of the functor HomR(HomR(C, J),−). For the remaining terms,

it suffices to show that ExtiR(HomR(C, J),HomR(C, I)) = 0 for i ≥ 1. Let P+ be an augmented projective

resolution of C. Then HomR(P, I) is an augmented injective resolution of HomR(C, I), so

ExtiR(HomR(C, J),HomR(C, I)) ∼= Hi(HomR(HomR(C, J),HomR(P, I)))

∼= Hi(HomR(P ⊗R HomR(C, J), I))

∼= HomR(Hi(P ⊗R HomR(C, J)), I)

∼= HomR(TorRi (C,HomR(C, J)), I)

= 0

since J ∈ BC . Hence HomR(C, I) is GC-injective. It remains to show that I is GC-injective. Let

X := 0→ R→ Cβ0 → Cβ
1

→ · · ·

be the complete PC-resolution of R from part (a). We claim that HomR(X, I) is a complete IC-resolution
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of I, and hence that I is GC-injective. Indeed,

HomR(X, I) = · · · → HomR(Cβ1 , I)→ HomR(Cβ0 , I)→ HomR(R, I)→ 0

∼= · · · → HomR(C, Iβ1)→ HomR(C, Iβ0)→ I → 0

where each HomR(C, Iβ) ∈ IC . Thus HomR(X, I) has the correct form for a complete IC-resolution of I.

We must also show that HomR(HomR(C, J),HomR(X, I)) is exact for any injective module J . We have

HomR(HomR(C, J),HomR(X, I)) ∼= HomR(X ⊗R HomR(C, J), I)

∼= HomR(X,HomR(HomR(C, J), I))

∼= HomR(X,C ⊗R HomR(J, I))

∼= HomR(X,C)⊗R HomR(J, I)

where the third isomorphism follows from Lemma 5.10(b) since I is injective and C is finitely generated,

and the last isomorphism follows from Lemma 5.10(a) since HomR(J, I) is flat and HomR(X,C)i is finitely

generated for all i. By the proof of part (a), the complex HomR(X,C) is an augmented free resolution of C,

so it is exact; the flatness of HomR(J, I) gives that the complex HomR(X,C) ⊗R HomR(J, I) is also exact.

Hence I is GC-injective. ý

Corollary 5.14. Let C be a semidualizing R-module. Every R-module admits a GC-projective resolution

and a GC-injective coresolution.

Proof. Every module admits a projective resolution and an injective coresolution. The result follows since

every projective module is GC-projective and every injective module is GC-injective by Proposition 5.13. ý

Next, we obtain some useful Ext-vanishing.

Proposition 5.15 ([12, Proposition 2.7]). Let C be a semidualizing R-module.

(a) If X is a complete PC-resolution and L has finite PC-projective dimension, then HomR(X,L) is exact.

In particular, if M is GC-projective, then ExtiR(M,L) = 0 for i > 0.

(b) If Y is a complete IC-resolution and L has finite IC-injective dimension, then HomR(L, Y ) is exact. In

particular, if M is GC-injective, then ExtiR(L,M) = 0 for i > 0.

Proof. (a) We proceed by induction on n := PC -pdR(L). In the case where n = 0, we have L ∼= C ⊗R P0

for some projective R-module P0, so HomR(X,L) ∼= HomR(X,C ⊗R P0) is exact by definition. In the case
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where n > 0, consider an augmented proper PC-projective resolution

0→ C ⊗R Pn → · · · → C ⊗R P1 → C ⊗R P0 → L→ 0

of L. By Corollary 3.13(a), this resolution is exact. Form the commutative diagram

0 // C ⊗R Pn // · · · // C ⊗R P1
∂1 //

%%

C ⊗R P0
// L // 0

Im ∂1

99

%%
0

99

0

where the two crossing subsequences are exact by construction. The complex HomR(X,C ⊗ P0) is exact

by the base case previously shown. Observe that PC -pdR(Im ∂1) < n by our diagram, so by induction the

complex HomR(X, Im ∂1) is exact. The sequence

0→ HomR(X, Im ∂1)→ HomR(X,C ⊗R P0)→ HomR(X,L)

is exact by left-exactness of the functor HomR(X,−).

We show that the map HomR(X,C ⊗R P0) → HomR(X,L) is surjective. By the long exact se-

quence in ExtR(Xi,−), it suffices to show that Ext1R(Xi, Im ∂1) = 0 for all i. By definition, each Xi is

either projective or C-projective. If Xi is projective, then Ext1R(Xi, Im ∂1) = 0. If instead Xi ∈ PC ,

then Ext1R(Xi, Im ∂1) ∼= Ext1PC
(Xi, Im ∂1) = 0, where the isomorphism follows from Corollary 3.13(a) and

Theorem 4.11(a), and the vanishing is from Theorem 4.1(a).

The long exact sequence in homology implies that HomR(X,L) is exact. If M is GC-projective, then

the Ext-vanishing follows by using a truncation of X as a projective resolution of M .

(b) We proceed by induction on n := IC -idR(L). In the case where n = 0, we have L ∼= HomR(C, I0)

for some injective R-module I0, so HomR(L, Y ) ∼= HomR(HomR(C, I0), Y ) is exact by definition. In the case

where n > 0, consider an augmented proper IC-injective coresolution

0→ L→ HomR(C, I0)→ HomR(C, I1)→ · · · → HomR(C, In)→ 0
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of L. By Corollary 3.13(b), this coresolution is exact. Form the commutative diagram

0 // L // HomR(C, I0)
∂0

//

&&

HomR(C, I1) // · · · // HomR(C, In) // 0

Im ∂0

88

''
0

77

0

where the two crossing subsequences are exact by construction. The complex HomR(Y,HomR(C, I0)) is

exact by the base case previously shown. Observe that IC -idR(Im ∂0) < n by our diagram, so by induction

the complex HomR(Y, Im ∂0) is exact. The sequence

0→ HomR(Im ∂0, Y )→ HomR(HomR(C, I0), Y )→ HomR(L, Y )

is exact by left-exactness of the functor HomR(−, Y ).

We show that the map HomR(HomR(C, I0), Y ) → HomR(L, Y ) is surjective. By the long exact

sequence in ExtR(−, Y i), it suffices to show that Ext1R(Im ∂0, Y i) = 0 for all i. By definition, each Y i

is either injective or C-injective. If Y i is injective, then Ext1R(Im ∂0, Y i) = 0. If instead Y i ∈ IC , then

Ext1R(Im ∂0, Y i) ∼= Ext1IC (Im ∂0, Y i) = 0, where the isomorphism follows from Corollary 3.13(b) and Theo-

rem 4.11(b), and the vanishing is from Theorem 4.1(b).

The long exact sequence in homology implies that HomR(L, Y ) is exact. If M is GC-injective, then

the Ext-vanishing follows by using a truncation of Y as an injective coresolution of M . ý

The next definition leads to a main result. It is a slightly weaker version of the usual “two of three”

condition on modules in short exact sequences.

Definition 5.16. Let χ be a class of R-modules.

1. We say χ is resolving if it satisfies the following conditions:

(a) P(R) ⊂ χ;

(b) for every short exact sequence 0 → M ′ → M → M ′′ → 0 of R-module homomorphisms with

M ′′ ∈ χ, we have M ∈ χ if and only if M ′ ∈ χ; and

(c) χ is closed under direct summands.

If χ satisfies only conditions (b) and (c), we say it is quasi-resolving.

2. We say χ is coresolving if it satisfies the following conditions:
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(a) I(R) ⊂ χ;

(b) for every short exact sequence 0 → M ′ → M → M ′′ → 0 of R-module homomorphisms with

M ′ ∈ χ, we have M ∈ χ if and only if M ′′ ∈ χ; and

(c) χ is closed under direct summands.

If χ satisfies only conditions (b) and (c), we say it is quasi-coresolving.

The next result is part of Theorem 1.7 from the introduction.

Theorem 5.17. Let C be a semidualizing R-module.

(a) The class of C-projective modules is quasi-resolving.

(b) The class of C-injective modules is quasi-coresolving.

Proof. (a) Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of R-module homomorphisms such

that M ′′ ∈ PC . Assume that either M ′′ ∈ PC or M ∈ PC . Then M ′′ ∈ BC by Theorem 3.16 and either

M ′ ∈ BC or M ∈ BC . By Proposition 2.8(c), we conclude that M ′ ∈ BC and M ∈ BC . In either of our

cases, the sequence

0→ HomR(C,M ′)→ HomR(C,M)→ HomR(C,M ′′)→ 0

is exact since Ext1R(C,M ′) = 0 by Definition 2.7. Since HomR(C,M ′′) is projective by Theorem 3.15(c)

and Corollary 3.14(a), we have that HomR(C,M ′) is projective if and only if HomR(C,M) is projective. It

follows by the same corollary that PC -pdR(M ′) = 0 if and only if PC -pdR(M) = 0.

It remains to show that PC is closed under direct summands. Let M = L ⊕ N ∈ PC . We must

show that L ∈ PC . Theorem 3.16 implies that HomR(C,M) ∼= HomR(C,L)⊕HomR(C,N) is projective, so

the summands are also projective. Another application of Theorem 3.16 implies that L ∈ PC . Hence PC is

quasi-resolving.

(b) Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of R-module homomorphisms such that

M ′ ∈ IC . Assume that either M ′′ ∈ IC or M ∈ IC . Then M ′ ∈ AC by Theorem 3.16 and either M ′′ ∈ AC

or M ∈ AC . By Proposition 2.8(a), we conclude that M ∈ AC and M ′′ ∈ AC . In either case, the sequence

0→ C ⊗RM ′ → C ⊗RM → C ⊗RM ′′ → 0

is exact since TorR1 (C,M ′′) = 0 by Definition 2.7. Since C ⊗R M ′ is injective by Theorem 3.15(b) and

Corollary 3.14(b), we have that C ⊗R M is injective if and only if C ⊗R M ′′ is injective. It follows by the

same corollary that IC -idR(M) = 0 if and only if IC -idR(M ′′) = 0.
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It remains to show that IC is closed under direct summands. Let M = L⊕N ∈ IC . We must show

that L ∈ IC . Theorem 3.16 implies that C ⊗RM ∼= (C ⊗R L)⊕ (C ⊗RN) is injective, so the summands are

also injective. Another application of Theorem 3.16 implies that L ∈ IC . Hence IC is quasi-coresolving. ý

To show that the classes of GC-projective and GC-injective modules are resolving and coresolving,

respectively, we need modified versions of some well-known results.

Lemma 5.18 (Horseshoe lemma). Let 0 → M ′
f−→ M

g−→ M ′′ → 0 be a short exact sequence of R-module

homomorphisms.

(a) If X ′ and X ′′ are complete PC-resolutions of M ′ and M ′′ (respectively), then there is a complete PC-

resolution X of M such that there is a degreewise split exact sequence 0 → X ′ → X → X ′′ → 0 of

R-complexes. In particular, if M ′ and M ′′ are GC-projective, then so is M .

(b) If Y ′ and Y ′′ are complete IC-resolutions of M ′ and M ′′ (respectively), then there is a complete IC-

resolution Y of M such that there is a degreewise split exact sequence 0 → Y ′ → Y → Y ′′ → 0 of

R-complexes. In particular, if M ′ and M ′′ are GC-injective, then so is M .

Proof. (a) Suppose that M ′ and M ′′ are GC-projective with complete PC-resolutions X ′ and X ′′, respec-

tively. From X ′ and X ′′ we may extract augmented projective resolutions · · · → P ′1 → P ′0 → M ′ → 0 and

· · · → P ′′1 → P ′′0 → M ′′ → 0 and, applying the projective horseshoe lemma (as in [8, Lemma VIII.3.2]), we

may construct an augmented projective resolution · · · → P ′1 ⊕ P ′′1 → P ′0 ⊕ P ′′0 → M → 0 of M such that

the diagram
...

∂′2

��

...

∂2

��

...

∂′′2

��
0 // P ′1 //

∂′1
��

P ′1 ⊕ P ′′1 //

∂1

��

P ′′1 //

∂′′1
��

0

0 // P ′0 //

τ ′

��

P ′0 ⊕ P ′′0 //

τ

��

P ′′0 //

τ ′′

��

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

with exact rows commutes. We may extract augmented coproper PC-projective coresolutions 0 → M ′
ε′−→

0X ′ → 1X ′ → · · · and 0 → M ′′
ε′′−→ 0X ′′ → 1X ′′ → · · · , where we define iX ′ := C ⊗R iQ′ for some

projective module iQ′ (and similarly for iX ′′). Applying the functor HomR(−, 0X ′) to the original short
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exact sequence, we obtain the exact sequence

0→ HomR(M ′′, 0X ′)→ HomR(M, 0X ′)→ HomR(M ′, 0X ′)→ Ext1R(M ′′, 0X ′)

and the vanishing Ext1R(M ′′, 0X ′) = 0 by Proposition 5.3(a) since 0X ′ ∈ PC . This vanishing implies the map

HomR(M, 0X ′)→ HomR(M ′, 0X ′) is surjective, so we obtain the following commutative diagram, where the

existence of the map ε ∈ HomR(M ′, 0X ′) implies the existence of the map h ∈ HomR(M, 0X ′) such that

ε = hf and we define ε := (h, e′′g):

0

��

0

��

0

��
0 // M ′

f //

ε′

��

M
g //

ε

��
h

yy

M ′′ //

ε′′

��

0

0 // 0X ′ // 0X ′ ⊕ 0X ′′ // 0X ′′ // 0

We then apply the snake lemma and obtain the next commutative diagram

0

��

0

��

0

��
0 // M ′

f //

ε′

��

M
g //

ε

��
h

xx

M ′′ //

ε′′

��

0

0 // 0X ′ //

��

0X ′ ⊕ 0X ′′ //

��

0X ′′ //

��

0

0 // coker ε′ // coker ε // coker ε′′ // 0

with exact rows and columns. Since coker ε′ and coker ε′′ have coproper PC-projective coresolutions, we may

apply the same procedure to the bottom row of the diagram. We obtain the commutative diagram

0 // coker ε′ //

0∂′

��

coker ε //

0∂
��

h0

ww

coker ε′′ //

0∂′′

��

0

0 // 1X ′ //

��

1X ′ ⊕ 1X ′′ //

��

1X ′′ //

��

0

0 // coker 0∂′ // coker 0∂ // coker 0∂′′ // 0

with exact rows and columns, where we define 0∂ as above. Splicing these diagrams together and continuing
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this process inductively, we obtain the commutative diagram

0

��

0

��

0

��
0 // M ′ //

ε′

��

M //

ε

��

M ′′ //

ε′′

��

0

0 // 0X ′ //

0∂′

��

0X ′ ⊕ 0X ′′ //

∂0

��

0X ′′ //

0∂′′

��

0

0 // 1X ′ //

1∂′ ��

1X ′ ⊕ 1X ′′ //

∂1��

1X ′′ //

1∂′′��

0

...
...

...

with exact rows and columns. Splicing this diagram with the diagram obtained from the projective horseshoe

lemma yields the exact sequence

0→ X ′ → X → X ′′ → 0.

We claim that that X is a complete PC-resolution of M . To show this, fix any projective R-module Q. We

have the exact sequence

0→ HomR(X ′′, C ⊗R Q)→ HomR(X,C ⊗R Q)→ HomR(X ′, C ⊗R Q)→ 0

by Ext-vanishing, so exactness of HomR(X ′, C⊗RQ) and HomR(X ′′, C⊗RQ) imply exactness of the complex

HomR(X,C ⊗R Q) using the long exact sequence in homology. Further, we have

M ∼= coker(P ′1 ⊕ P ′′1 → P ′0 ⊕ P ′′0 )

by construction.

(b) Suppose that M ′ and M ′′ are GC-injective with complete IC-resolutions Y ′ and Y ′′ respectively.

From Y ′ and Y ′′ we may extract augmented injective coresolutions 0 → M ′ → 0J ′ → 1J ′ → · · · and

0 → M ′′ → 0J ′′ → 1J ′′ → · · · and, appying the injective horseshoe lemma (as in [8, Lemma VIII.3.4]), we

may construct an augmented injective coresolution 0→M → 0J ′ ⊕ 0J ′′ → 1J ′ ⊕ 1J ′′ → · · · of M such that
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the diagram

0

��

0

��

0

��
0 // M ′

f //

ε′

��

M
g //

ε

��

M ′′ //

ε′′

��

0

0 // 0J ′ //

0∂′

��

0J ′ ⊕ 0J ′′ //

0∂
��

0J ′′ //

0∂′′

��

0

0 // 1J ′ //

1∂′ ��

1J ′ ⊕ 1J ′′ //

1∂��

1J ′′ //

1∂′′��

0

...
...

...

with exact rows commutes. We may extract augmented coproper IC-injective resolutions · · · → Y ′1 → Y ′0
τ ′−→

M ′ → 0 and · · · → Y ′′1 → Y ′′0
τ ′′−−→M ′′ → 0 where we define Y ′i := HomR(C, I ′i) for some injective module I ′i

(and similarly for Y ′′i ). Applying the functor HomR(Y ′′0 ,−) to the original short exact sequence, we obtain

the exact sequence

0→ HomR(Y ′′0 ,M
′)→ HomR(Y ′′0 ,M)→ HomR(Y ′′0 ,M

′′)→ Ext1R(Y ′′0 ,M
′)

and the vanishing ExtiR(Y ′′0 ,M
′) = 0 by Proposition 5.3(b) since Y ′′0 ∈ IC . Since the map HomR(Y ′′0 ,M)→

HomR(Y ′′0 ,M
′′) is surjective, we obtain the following commutative diagram, where the existence of the map

τ ′′ ∈ HomR(Y ′′0 ,M
′′) implies the existence of the map h ∈ HomR(Y ′′0 ,M) such that τ ′′ = gh and we define

τ such that (x, y) 7→ fτ ′(x) + h(y):

0 // Y ′0 //

τ ′

��

Y ′0 ⊕ Y ′′0 //

τ

��

Y ′′0 //

τ ′′

��

h

zz

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0
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We apply the snake lemma and obtain the commutative diagram

0 // ker τ ′ //

��

ker τ //

��

ker τ ′′ //

��

0

0 // Y ′0 //

τ ′

��

Y ′0 ⊕ Y ′′0 //

τ

��

Y ′′0 //

τ ′′

��

h

yy

0

0 // M ′
f //

��

M
g //

��

M ′′ //

��

0

0 0 0

with exact rows and columns. Since ker τ ′′ and ker τ have coproper IC-injective coresolutions, we may apply

the same procedure to the top row of the diagram. We obtain the commutative diagram

0 // ker ∂′1 //

��

ker d1 //

��

ker ∂′′1 //

��

0

0 // Y ′1 //

∂′1
��

Y ′1 ⊕ Y ′′1 //

d1

��

Y ′′1 //

∂′′1
��

h1

yy

0

0 // ker τ ′ // ker τ // ker τ ′′ // 0

with exact rows and columns, where we define d1 as above. Splicing these diagrams together and continuing

this process inductively, we obtain the commutative diagram

...

∂′2

��

...

∂2

��

...

∂′′2

��
0 // Y ′1 //

∂′1
��

Y ′1 ⊕ Y ′′1 //

∂1

��

Y ′′1 //

∂′′2
��

0

0 // Y ′0 //

τ ′

��

Y ′0 ⊕ Y ′′0 //

τ

��

Y ′′0 //

τ ′′

��

0

0 // M ′ //

��

M //

��

M ′′ //

��

0

0 0 0

with exact rows and columns. Splicing this diagram with the diagram obtained from the injective horseshoe

lemma yields the exact sequence

0→ Y ′ → Y → Y ′′ → 0.
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We claim that Y is a complete IC-resolution of M . To show this, fix any injective R-module J . We have

the exact sequence

0→ HomR(HomR(C, J), Y ′)→ HomR(HomR(C, J), Y )→ HomR(HomR(C, J), Y ′′)→ 0

by Ext-vanishing, so exactness of HomR(HomR(C, J), Y ′) and HomR(HomR(C, J), Y ′′) imply exactness of

HomR(HomR(C, J), Y ) using the long exact sequence in homology. Further, we have

M ∼= ker(0J ′ ⊕ 0J ′′ → 1J ′ ⊕ 1J ′′)

by construction. ý

Lemma 5.19 (Lifting lemma). Let C be a semidualizing R-module.

(a) Let X and X ′ be complete PC-resolutions of R-modules M and M ′, respectively. Let f : M →M ′ be a

homomorphism. Then f induces a chain map F : X → X ′ such that the diagram

X0
//

F0

��

M //

f

��

0X

F 0

��
X ′0 // M ′ // 0X ′

commutes.

(b) Let Y and Y ′ be complete IC-resolutions of R-modules M and M ′, respectively. Let g : M → M ′ be a

homomorphism. Then g induces a chain map G : Y → Y ′ such that the diagram

Y0 //

G0

��

M //

g

��

0Y

G0

��
Y ′0 // M ′ // 0Y ′

commutes.

Proof. (a) Let

X := · · · → P1 → P0 → C ⊗R Q0 → C ⊗R Q1 → · · ·

X ′ := · · · → P ′1 → P ′0 → C ⊗R (Q0)′ → C ⊗R (Q1)′ → · · ·

be complete PC-resolutions of M and M ′, respectively. By the construction in Proposition 5.3(a), there are
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augmented projective resolutions P := · · · → P1 → P0 → M → 0 and P ′ := · · · → P ′1 → P ′0 → M ′ → 0 of

M and M ′, respectively. The projective lifting lemma (as in [8, Proposition VI.3.2]) gives maps such that

the diagram

· · · // P1
//

f1

��

P0
//

f0

��

M //

f

��

0

· · · // P ′1 // P ′0 // M ′ // 0

defines a chain map P → P ′. Proposition 5.3(a) gives augmented coproper PC-projective coresolutions

0→M → C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

0→M ′ → C ⊗R (Q0)′
(∂0)′−−−→ C ⊗R (Q1)′

(∂1)′−−−→ · · ·

of M and M ′, respectively. Consider the exact sequence

0→M → C ⊗R Q0 → Im ∂0 → 0

and the associated sequence

0→ HomR(Im ∂0, C ⊗R (Q0)′)→ HomR(C ⊗R Q0, C ⊗R (Q0)′)→ HomR(M,C ⊗R (Q0)′)→ 0

that is also exact since Ext1R(Im ∂0, C ⊗R (Q0)′) = 0 by Proposition 5.3(a). Hence we have a surjection

HomR(C ⊗R Q0) � HomR(M,C ⊗R (Q0)′)

that gives a map f0 such that the diagram

0 // M //

f

��

C ⊗R Q0 ∂0
//

f0

��

C ⊗R Q1 ∂1
// · · ·

0 // M ′ // C ⊗R (Q0)′
(∂0)′ // C ⊗R (Q1)′

(∂1)′ // · · ·

commutes. Continue this process inductively to obtain a chain map between these coresolutions induced

by f . A routine diagram chase gives the resulting chain map F : X → X ′.
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(b) Let

Y := · · · → HomR(C, I1)→ HomR(C, I0)→ J0 → J1 → · · ·

Y ′ := · · · → HomR(C, I ′1)→ HomR(C, I ′0)→ (J0)′ → (J1)′ → · · ·

be complete IC-resolutions of M and M ′, respectively. By the construction in Proposition 5.3(b), there are

augmented injective coresolutions J := 0→M → J0 → J1 → · · · and J ′ := 0→M ′ → (J0)′ → (J1)′ → · · ·

of M and M ′, respectively. The injective lifting lemma (as in [8, Proposition VI.3.6]) gives maps such that

the diagram

0 // M //

g

��

J0 //

g0

��

J1 //

g1

��

· · ·

0 // M ′ // (J0)′ // (J1)′ // · · ·

defines a chain map J → J ′. Proposition 5.3(b) gives augmented coproper IC-injective resolutions

· · · ∂
2

−→ HomR(C, I1)
∂1

−→ HomR(C, I0)→M → 0

· · · (∂2)′−−−→ HomR(C, I ′1)
(∂1)′−−−→ HomR(C, I ′0)→M ′ → 0

of N and N ′, respectively. Consider the exact sequence

0→ Im(∂1)′ → HomR(C, I ′0)→M ′ → 0

and the associated sequence

0→ HomR(HomR(C, I0), Im(∂1)′)→ HomR(HomR(C, I0),HomR(C, I ′0))→ HomR(HomR(C, I0),M ′)→ 0

that is also exact since Ext1R(HomR(C, I0), Im(∂1)′) = 0 by Proposition 5.3(b). Hence we have a surjection

HomR(HomR(C, I0),HomR(C, I ′0)) � HomR(HomR(C, I0),M ′)

that gives a map g0 such that the diagram

· · · ∂2
// HomR(C, I0)

∂1
// HomR(C, I0) //

g0

��

M //

g

��

0

· · ·
(∂2)′ // HomR(C, I ′1)

(∂1)′ // HomR(C, I ′0) // M ′ // 0
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commutes. Continue this process inductively to obtain a chain map between these resolutions induced by g.

A routine diagram chase gives the resulting chain map G : Y → Y ′. ý

Lemma 5.20. Let C be a semidualizing R-module.

(a) Let X and X ′ be complete PC-resolutions of R-modules M and M ′, respectively. Let f : M � M ′ be

an epimorphism. Then there exists a complete PC-resolution X of M such that f induces a surjective

chain map F : X → X ′.

(b) Let Y and Y ′ be complete IC-resolutions of R-modules N and N ′, respectively. Let g : N ↪→ N ′ be a

monomorphism. Then there exists a complete IC-resolution Y
′

of N ′ such that g induces an injective

chain map G : Y → Y
′
.

Proof. (a) We construct the resolution and lifting by induction, constructing at each step a new resolution

and a lifting that is surjective in increasing homological degree. The proof of Lemma 5.19(a) gives augmented

projective resolutions of M and M ′ and a lifting {. . . , f1, f0, f} making the diagram

· · · ∂2 // P1
∂1 //

f1

��

P0
τ //

f0

��

M //

f

��

0

· · ·
∂′2 // P ′1

∂′1 // P ′0
τ ′ // M ′ // 0

commute. Construct the commutative digram

0 // ker τ //

g0

��

P0
//

f0

��

M //

f

��

0

0 // ker τ ′ // P ′0 // M ′ // 0

0 // P ′1 ⊕ ker τ(
1 0
0 ε0

) //
( τ ′1 g0 )

OO

P ′1 ⊕ P0
( 0 τ )

//

( ∂′1 f0 )

OO

M //

f

OO

0

where the maps are defined by the first diagram and the associated natural maps τ ′1 : P ′1 → ker τ ′ and

ε0 : ker τ → P0, and g0 is the induced map on kernels. Here the maps f and

(
τ ′1 g0

)
are surjective

by construction, so

(
∂′1 f0

)
must also be surjective by the snake lemma. Use this map to construct the
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augmented projective resolution of M and lifting

· · ·

(
0
∂2

)
// P ′1 ⊕ P1

(
1 0
0 ∂1

)
//

( 1 f1 )

��

P ′1 ⊕ P0

( 0 τ ) //

( ∂′1 f0 )
��

M //

f

��

0

· · ·
∂′2 // P ′1

∂′1 // P ′0
τ ′ // M ′ // 0

that is surjective at the two rightmost degrees and exact since it is of the form P+⊕Z ′ for Z ′ := 0→ P ′1
1−→

P ′1 → 0. Continue this process inductively using this diagram and its associated natural maps to obtain a

projective resolution of M and surjective lifting. The construction of an appropriate augmented coproper

PC-projective coresolution of M and projective lifting follow similarly; we splice them together to obtain X.

(b) We construct the resolution and lifting by induction, constructing at each step a new resolu-

tion and a lifting that is surjective in increasing cohomological degree. The proof of Lemma 5.19(b) gives

augmented injective coresolutions of N and N ′ and a lifting {g, g0, g1, . . .} making the digram

0 // N
ε //

g

��

J0 ∂0
//

g0

��

J1 ∂1
//

g1

��

· · ·

0 // N ′
ε′ // (J0)′

(∂0)′ // (J1)′
(∂1)′ // · · ·

commute. Construct the commutative diagram

0 // N ′
( 0 ε′ ) // J1 ⊕ (J0)′

(
1 0
0 (τ0)′

)
// J1 ⊕ coker ε′ // 0

0 // N //

g

OO

g

��

J0 //

( ∂0 g0 )

OO

g0

��

coker ε //

( ε0 h0 )

OO

h0

��

0

0 // N ′ // (J0)′ // coker ε′ // 0

where the maps are defined by the first diagram and the associated natural maps (τ0)′ : (J0)′ → coker ε′

and ε0 : coker ε→ J1, and h0 is the induced map on cokernels. Here the maps g and

(
ε0 h0

)
are injective

by construction, so

(
∂0 g0

)
must also be injective by the snake lemma. Use this map to construct the
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augmented injective coresolution of N ′ and lifting

0 // N
ε //

g

��

J0 ∂0
//

( ∂0 g0 )

��

J1 ∂1
//

( 1 g1 )

��

· · ·

0 // N ′ //
( 0 ε′ )

// J1 ⊕ (J0)′(
1 0
0 (∂0)′

)// J1 ⊕ (J1)′(
0

(∂1)′

)// · · ·

that is injective at the two leftmost degrees since it is of the form +I ⊕ Z for Z := 0 → J1 1−→ J1 → 0.

Continue this process inductively using this diagram and its associated natural maps to obtain an injective

coresolution of N ′ and injective lifting. The construction of an appropriate augmented coproper IC-injective

resolution of N ′ and injective lifting follow similarly; we splice them together to obtain Y
′
. ý

Here is the main result of this section. It is part of Theorem 1.7 from the introduction.

Theorem 5.21 ([12, Theorem 2.8] and [4, Proposition 1.4]). Let C be a semidualizing R-module.

(a) The class of GC-projective modules is resolving.

(b) The class of GC-injective modules is coresolving.

Proof. (a) Let 0 → M ′
f−→ M

g−→ M ′′ → 0 be an exact sequence of R-modules. Suppose that M ′ and M ′′

are GC-projective. Lemma 5.18(a) implies that M is also GC-projective. If M and M ′′ are GC-projective,

there are corresponding complete PC-resolutions X and X ′′, respectively, and a chain map G : X → X ′′

induced by g. By Lemma 5.20(a), we may assume without loss of generality that G is surjective. There is

the following commutative diagram:

0

��

0

��

0

��

0

��
· · · // kerG1

//

��

kerG0
//

��

kerG0 //

��

kerG1 //

��

· · ·

· · · // P1
//

G1

��

P0
//

G0

��

C ⊗R Q0 //

G0

��

C ⊗R Q1 //

G1

��

· · ·

· · · // P ′′1 //

��

P ′′0 //

��

C ⊗R (Q0)′′ //

��

C ⊗R (Q1)′′ //

��

· · ·

0 0 0 0

Denote the top row of the above diagram by X ′; this complex is exact by the long exact sequence in homology.

Since the bottom two rows are complete PC-resolutions, long exact sequences in ExtR(−, C⊗RQ) give that
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each column is HomR(−, C⊗RQ)-exact for every projective R-module Q by Propositions 5.3(a) and 5.13(a).

Hence HomR(X,C ⊗R Q) is exact by the associated long exact sequence in homology. Since the classes

of projective and C-projective modules are quasi-resolving, each kerGi is projective and each kerGj is

C-projective. Truncation of the above diagram after the second column gives, by the snake lemma, the

sequence

0→ coker(kerG1 → kerG0)→ coker ∂1︸ ︷︷ ︸
∼=M

g−→ coker ∂′′1︸ ︷︷ ︸
∼=M ′′

→ 0

and implies that coker(kerG1 → kerG0) ∼= ker g ∼= M ′; hence M ′ is GC-projective.

It remains to show that the class of GC-projective modules is closed under direct summands. Let

Y ⊕Z be GC-projective. If we define W = Y ⊕Z ⊕ Y ⊕Z ⊕ · · · , then W ∈ PC by Proposition 5.5(a). Since

W ∼= Y ⊕ (Y ⊕Z)⊕ (Y ⊕Z) · · · = Y ⊕W , there is an exact sequence 0→ Y → Y ⊕W →W → 0. Since we

have shown that Y ⊕W ∼= W is GC-projective, our previous work shows that Y is also GC-projective and

we are done.

(b) Let 0 → M ′
f−→ M

g−→ M ′′ → 0 be an exact sequence of R-modules. Suppose that M ′ and M ′′

are GC-injective. Lemma 5.18(b) implies that M is also GC-injective. If M ′ and M are GC-injective, there

are corresponding complete IC-resolutions Y ′ and Y , respectively, and a chain map F : Y ′ → Y induced

by f . By Lemma 5.20(b), we may assume without loss of generality that F is injective. There is the following

commutative diagram:

0

��

0

��

0

��

0

��
· · · // HomR(C, I ′1) //

F1

��

HomR(C, I ′0) //

F0

��

(J0)′ //

F 0

��

(J1)′ //

F 1

��

· · ·

· · · // HomR(C, I1) //

��

HomR(C, I0) //

��

J0 //

��

J1 //

��

· · ·

· · · // cokerF1
//

��

cokerF0
//

��

cokerF 0 //

��

cokerF 1 //

��

· · ·

0 0 0 0

Denote the bottom row of the above diagram by Y ′′; this complex is exact by the long exact sequence in

homology. Since the top two rows are complete IC-resolutions, long exact sequences in ExtR(HomR(C, J),−)

give that each column is HomR(HomR(C, J),−)-exact for every injective R-module J by Propositions 5.3(b)

and 5.13(b). Hence HomR(HomR(C, J), Y ) is exact by the associated long exact sequence in homology.

Since the classes of injective and C-injective modules are quasi-coresolving, each cokerF i is injective and
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each cokerFi is C-injective. Truncation of the above diagram after the second column gives, by the snake

lemma, the sequence

0→ ker(∂0)′︸ ︷︷ ︸
∼=M ′

f−→ ker ∂0︸ ︷︷ ︸
∼=M

→ ker(cokerF 0 → cokerF 1)→ 0

and implies that ker(cokerF 0 → cokerF 1) ∼= Im f ∼= M ′′; hence M ′′ is GC-injective.

It remains to show that the class of GC-injective modules is closed under direct summands. Let

Y ⊕Z be GC-projective. If we define W = Y ×Z × Y ×Z × · · · , then W ∈ IC by Proposition 5.5(b). Since

W ∼= Y × (Y ×Z)× (Y ×Z)× = Y ×W ∼= W × Y , there is an exact sequence 0→W →W ⊕ Y → Y → 0.

Since we have shown that W ⊕ Y ∼= W is GC-injective, our previous work shows that Y is also GC-injective

and we are done. ý

Corollary 5.22 ([12, Proposition 2.9]). Let C be a semidualizing R-module.

(a) Every cokernel in a complete PC-resolution is GC-projective.

(b) Every kernel in a complete IC-resolution is GC-injective.

Proof. (a) Consider a complete PC-resolution

X := · · · ∂2−→ P1
∂1−→ P0

∂0−→ C ⊗R Q0 ∂0

−→ C ⊗R Q1 ∂1

−→ · · ·

of an R-module M . There is a short exact sequence 0 → coker ∂2 → P0 → M → 0 since M ∼= coker ∂1

by definition. Since both P0 and M are GC-projective, Theorem 5.21(a) implies that coker ∂2 is also GC-

projective. Inductively, we form short exact sequences of the form 0 → coker ∂i+1 → Pi−1 → coker ∂i → 0

and, since both Pi−1 and coker ∂i are GC-projective, we have that coker ∂i+1 is also GC-projective.

By Proposition 5.3(a), it suffices to show that ExtiR(coker ∂j , C ⊗R Q) = 0 for i > 0, j ≥ 0, and

all projective R-modules Q. Consider the short exact sequence 0 → M → C ⊗R Q0 → coker ∂0 → 0. We

have that M is GC-projective by assumption, and Proposition 5.13(a) implies that C ⊗R Q0 is also GC-

projective. Hence, we have ExtiR(M,C ⊗R Q) = 0 = ExtiR(C ⊗R Q0, C ⊗R Q) for all i ≥ 1. This gives

ExtiR(coker ∂0, C ⊗R Q) = 0 for i > 1. Since HomR(X,C ⊗R Q) is exact, the sequence

0→ HomR(coker ∂0, C ⊗R Q)→ HomR(C ⊗R Q0, C ⊗R Q)→ HomR(M,C ⊗R Q)→ 0

is exact as well, so Ext1R(coker ∂0, C ⊗R Q) = 0. Inductively, we form short exact sequences of the form

0→ coker ∂j−1 → C ⊗R Qj+1 → coker ∂j → 0 and apply the same reasoning to conclude that each coker ∂j

is GC-projective.
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(b) Consider a complete IC-resolution

Y := · · · ∂2−→ HomR(C, I1)
∂1−→ HomR(C, I0)

∂0−→ J0 ∂0

−→ J1 ∂1

−→→ · · ·

of an R-module M . There is a short exact sequence 0 → M → J0 → ker ∂1 → 0 since M ∼= ker ∂0 by

definition. Since both J0 and M are GC-injective, Theorem 5.21(a) implies that ker ∂1 is also GC-injective.

Inductively, we form short exact sequences of the form 0→ ker ∂i → J i → ker ∂i+1 → 0 and, since both J i

and ker ∂i are GC-injective, we have that ker ∂i+1 is also GC-injective.

By Proposition 5.3(b), it suffices to show that ExtiR(HomR(C, J), ker ∂j) = 0 for all i > 0, j ≥ 0,

and all injective R-modules J . Consider the short exact sequence 0 → ker ∂0 → HomR(C, I0) → M → 0.

We have that M is GC-injective by assumption, and Proposition 5.13(b) implies that HomR(C, I0) is also

GC-injective. Hence, we have ExtiR(HomR(C, J),M) = 0 = ExtiR(HomR(C, J),HomR(C, I0)) for all i ≥ 1.

This gives ExtiR(HomR(C, J), ker ∂0) = 0 for i > 1. Since HomR(HomR(C, J), Y ) is exact, the sequence

0→ HomR(HomR(C, J),M)→ HomR(HomR(C, J),HomR(C, I0))→ HomR(HomR(C, J), ker ∂0)→ 0

is exact as well, so Ext1R(HomR(C, J), ker ∂0) = 0. Inductively, we form short exact sequences of the form

0 → ker ∂j → HomR(C, Ij) → ker ∂j−1 → 0 and apply the same reasoning to conclude that each ker ∂j is

GC-injective. ý
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