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ABSTRACT 
 
  The two goals of this study were to identify the affect that arcB has on biofilm formation 

and to determine whether this was dependent on AckA. Acetyl phosphate is formed from acetyl-

CoA during acetate metabolism and is degraded to acetate through the enzyme AckA. ArcB is 

the sensor kinase of the ArcB/ArcA two-component system involved in anaerobic metabolism 

[1]. Another important factor is the FlhD/FlhC global transcriptional regulator complex involved 

in regulating motility. The overall conclusion indicates acetyl phosphate has an effect on arcB 

only when both genes are nonfunctional as demonstrated by a lack of biofilm, increased motility, 

and increased flhD expression.  

 To test the hypothesis, several experiments were performed including scanning electron 

microscopy (SEM), growth curves, motility assays, and a ß-galactosidase assay measuring flhD 

expression. The tests were performed using a parent Escherichia coli K-12 strain (AJW678) and 

mutants in ackA, arcB, and an ackA arcB double mutant.  
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LITERATURE REVIEW 

 Escherichia spp. consists of Gram-negative, facultative anaerobic organisms that are rod-

shaped and sometimes motile. Escherichia coli was initially isolated in 1885 by Theodor 

Escherich from the feces of a child and determined to be an organism in the intestines of healthy 

individuals [2]. Most strains of E. coli are essentially harmless inhabitants of the intestinal tract, 

however, there are several strains of E. coli that cause serious infections [3]. Pathogenic E. coli 

includes Shiga toxin-producing E. coli, Enterotoxigenic E. coli, Enteropathogenic E. coli, 

Enteroaggregative E. coli, Uropathogenic E. coli and Diffusely adherent E. coli [3]. Shiga-toxin 

producing E. coli is responsible for numerous foodborne outbreaks throughout the United States 

[3]. As previously studied, pathogenic E. coli may have been derived from non-pathogenic 

commensal E. coli [4].  

 The natural reservoir of E. coli is the intestinal tract of mammals and the bacteria is 

transmitted via fecal-oral route [5]. E. coli can also be found in soil and water as a result of fecal 

contamination [5]. Many E. coli strains also have the ability to form complex communities called 

biofilms composed of bacteria surrounding themselves in extra-cellular polymeric substance 

(EPS). EPS forms a glue-like slime layer allowing for greater attachment to the surface [6, 7]. 

Biofilms can form on inanimate surfaces such as medical implants or food processing equipment 

and inside living animal tissues [6, 7]. Biofilms are present in most bacterial infections due to the 

ability of the bacteria within the biofilms to resist antibiotics and remain protected from 

environmental stressors [6, 7]. Gene expression before and during biofilm formation is of 

particular interest to those researching medical preventions and treatments. During the planktonic 

stage, bacteria are open to phage infection, antimicrobials, and other harmful conditions, which 

explains why most bacterial infections involve biofilms [6]. Biofilms can be found in dental 
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implants, prosthetic heart valves, contact lenses, urinary catheters, and orthopedic implants 

among others [6].  

Significance of biofilms 

Common Biofilm-associated problems 

 Biofilms are ubiquitous in nature with a variety of organisms surviving within these 

complex communities. Biofilms can also form inside the human body leading to severe 

infections. These infections can occur in the eye, urinary tract, on dental surfaces, and can 

include device-related infections [6-8]. Table 1 provides examples of biofilm-associated 

diseases, some of which are detailed below.  

Table 1. Common biofilm-associated infections 

Medical situation Implication 
 

Bacteria 

Urinary catheters	   Long-term use provides the time 
required for biofilms to grow	  

Uropathogenic E. coli	  

Cystic Fibrosis pneumonia	  
The mucus buildup in the lungs 
from cystic fibrosis provides an 
ideal environment for biofilms	  

Pseudomonas aeruginosa	  

Artificial Heart Valve	   Can grow on the heart valve or in 
the surrounding tissues	  

Staphylococcus epidermidis 
Staphylococcus aureus	  

Nosocomial Infections	  
Possibly due to poor cleaning in 

the hospital or biofilms growing in 
pipes and air filters	  

 
Pseudomonas aeruginosa 

Cronobacter sakazakii 
Staphylococcus aureus 

Dental Plaque	   Favorable conditions within the 
mouth allow for biofilm growth	  

 
Streptococcus mitis 

Streptococcus mutans 
Actinomyces viscosus 
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Nosocomial infections  

 Urinary catheters are typically made up of latex or silicone and can be used for months at 

a time [7, 9]. The biofilms can form on both the inner or outer surface and typically affect 10-

50% of those using short-term catheters and almost all of those using long-term catheters [7, 9]. 

Biofilm growth was most dependent on the hydrophobicity of the surface of the catheter and also 

of the pH of the urine [9]. Researchers have investigated several materials to prevent infections; 

including antibiotics in the catheters and different coatings but to date no one material has 

prevented infections in humans [9, 10].  

 Biofilms can grow on the device or the surrounding tissues causing endocarditis [6]. 

Common bacteria found on the skin (S. epidermidis and S. aureus) can lead to infections after 

surgery [6, 7]. Locations involving swelling and tissue damage have a greater propensity towards 

infection since fibrin and platelets build up around the device [6, 7]. Device-related infections are 

difficult to treat especially those involving biofilms. Biofilms are notoriously difficult to remove 

especially with antibiotics alone; coatings may be the future in preventing infections.  

Biofilms play an important role in nosocomial infections including methicillin Staphylococcus 

aureus (MRSA) infections, ventilator-associated pneumonia, Clostridium difficile infections, and 

urinary tract infections [11]. Biofilms are notoriously difficult to remove so it is possible to 

acquire an infection from poorly cleaned ventilators, air vents, and other medical instruments. 

Endotrachael tubes provide an ideal environment for biofilms to form since the tube remains in a 

warm and dry environment for long periods of time [12]. Bacterial within biofilms are able to 

resist antibiotics and several different cleaning methods including shearing and scraping. 

Nosocomial infections remain a persistent problem of which further research needs to take place. 
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Each type of infection is different so addressing a common source may be the key to solving the 

problem. 

Effect of biofilms in the food safety industry 

 Biofilm formation is also a problem in the food industry. Foodborne outbreaks and 

diseases cause numerous illnesses every year leading to billions in health care and production 

costs. Foodborne outbreaks can involve single planktonic cells or increasingly, biofilms. As 

mentioned previously, biofilms are notoriously difficult to remove especially on metal food 

processing surfaces and other food contact areas. Biofilms are impervious to many 

antimicrobials, shearing forces, and cleaners making it even more difficult to prevent cross-

contamination. A variety of species form biofilms including Salmonella enterica on lettuce and 

cabbage, Listeria monocytogenes and Bacillus cereus on metal processing equipment [13]. The 

constant flow of a food product on a conveyor belt for example may provide nutrients for 

bacteria growing within a biofilm. Typically stainless steel, glass, rubber, and polyurethane are 

the materials used in food processing equipment, all of which can provide an ideal surface for 

biofilm growth. The ability of bacteria to form biofilms on processing equipment can cause 

major contamination in the food products especially when the bacteria disperse.  

 The ability of bacteria within biofilms to survive changes in pH, osmolarity, and 

temperature have presented many challenges to those involved in the food safety industry. The 

food industry has taken many measures to prevent biofilm contamination including regular 

cleaning to prevent irreversible attachment, antimicrobial coatings, and antimicrobial cleaners 

[13]. Currently the food industry uses a standard cleaning procedure which involves dry cleaning 

(scraping, sweeping etc.), rinsing with very hot water, addition of special detergents including 

hydrogen peroxide and peracetic acid, the addition of quaternary ammonium sanitizers, and the 
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use of testing to make certain that the biofilms have been removed [14]. Current research 

performed by the U.S. Department of Agriculture-Agricultural Research Service has indicated 

that adding a strong electronegative charge can reduce both planktonic and biofilm 

contamination [14]. The negative charge is added by placing the equipment in an acid bath and 

adding an electric charge [14]. Biofilms have a net negative charge so adding an even stronger 

negative charge will repel the biofilm growth. This is only the tip of the iceberg of biofilm 

prevention techniques.  

Biofilm-dependent applications 

 Even though biofilms can lead to severe disease, not all biofilms are harmful. Biofilms 

can be used in bioremediation and wastewater treatment. Bioremediation is an emerging trend to 

solve environmental pollution using microorganisms. Using biofilms is potentially more efficient 

than using planktonic bacteria, since bacteria within biofilms are able to withstand a larger 

variety of conditions. Biofilms offer greater protection and adaptation of the bacteria during 

stressful times allowing for more successful bioremediation [15]. 

 Of great interest is the ability of certain bacteria to degrade hydrocarbons, especially 

those present in oil. Pseudomonas spp. for example are able to use crude oil as an energy source. 

The bacteria are able to attach to the oil slicks and break it into smaller molecules to use for 

energy. Classically, dispersants have been used to clean up hydrocarbon spills, but combined 

with bacteria, they are able to clean up oil spills rapidly and with less potential toxicity [15, 16]. 

Dispersants are able to break oil slicks into more soluble droplets to be consumed by 

microorganisms or dissolved into the water. Dispersants can, however, be toxic to marine life 

and can disrupt the oceanic ecosystem. More research is needed to understand how to use 
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bacteria and other microorganisms to clean up pollutants without causing damage to the marine 

life.   

Gene regulation in biofilm formation 

Stages of biofilm formation 

 Biofilm formation requires many stages including initial attachment, irreversible 

attachment, maturation, and dispersal. These stages will be discussed further in Fig 1.  

 

Figure 1. Stages of Biofilm Formation. During the first stage of biofilm formation, bacteria 
reversibly attach to the surface using flagella. In the second stage, genes encoding flagella are 
turned off and curli and fimbriae aid in irreversible attachment. In the third state, bacteria form a 
mushroom structure and are covered by an extra extracellular polymeric substance composed of 
a colanic acid capsule. In the final stage, bacteria may leave the biofilm once flagella gene 
expression is turned on. (Figure modified from [17]). 

 
 In reversible attachment, planktonic bacteria attach reversibly to a surface. Bacteria are 

able to leave the surface during the reversible attachment stage. Genes involved in flagella 

synthesis are still expressed during the reversible attachment stage. Once the bacteria are 

reversibly attached, they limit flagella expression and express genes for curli and fimbriae. The 

bacteria at this point form an irreversible attachment to the surface and once they are irreversibly 

attached, the bacteria form a large three-dimensional structure during the maturation stage. In 
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order to stay protected from the environment, bacteria produce a slime layer composed of 

extracellular polymeric substance (EPS) that allows the bacteria to adhere to each other.  Deep 

within the mature biofilm the oxygen concentration is reduced and nutrients are often difficult to 

come by thus the bacteria change gene expression in order to survive the harsh conditions. This 

will be mentioned again under the arcB section. In the dispersal phase bacteria may turn the 

flagella genes on and leave the biofilm [17, 18]. Although less is known about the genes 

expressed during the dispersal stage.  

Acetate kinase (AckA) 

 AckA or acetate kinase is the enzyme responsible for degrading acetyl phosphate to 

acetate [19, 20]. The degradation of acetyl phosphate (acetyl phosphate) into acetate is an 

important part of central metabolism [20, 21]. Acetyl phosphate is formed by the activity of Pta, 

or phosphotransacetylase through the degradation of acetyl-CoA. These reactions are 

summarized in Fig. 2. 

 

 

Figure 2. Acetate metabolism schematic to illustrate central metabolism. Glycolysis results in the 
formation of acetyl-CoA, which is degraded into acetyl phosphate by Pta. Once acetyl phosphate 
is formed, AckA converts it to acetate. Without AckA, acetyl phosphate acts a phosphodonor to 
phosphorylate response regulators. 

Glycolysis 

	  	  	  Acetyl-‐CoA 

	  	  	  	  TCA 

	  	  	  	  	  	  Pta 
acP 

AckA 
acetate 
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 Acetyl phosphate transmits information regarding environmental signals to the central 

metabolism in E. coli [22]. Acetyl phosphate is a high energy intermediate with an affinity to 

donate its phosphate to a two-component system. The two-component system is composed of a 

response regulator and a sensor kinase. The sensor kinase senses environmental signals and 

phosphorylates the response regulator where a response can take place. The acetyl phosphate can 

donate its phosphate to certain response regulators, such as, OmpR and PhoB [23]. OmpR is part 

of the EnvZ/OmpR two-component system that is involved in osmoregulation in several bacterial 

species [23, 24]. PhoR/PhoB is another two-component system that regulates phosphate 

concentration in the cell [25]. Once a signal is sensed, the sensor kinase autophosphorylates and 

the phosphate is transferred to the response regulator. Acetyl phosphate can act as the phosphate 

donor to phosphorylate the sensor kinase. In this sense, acetyl phosphate acts as a global 

regulator that gathers information from the environment and modulates response regulator 

activity.  

 Acetyl phosphate may also mediate the switch between reversible to irreversible 

attachment during biofilm formation [22]. When the expression of acetyl phosphate is low, 

flagella expression is increased before transition to irreversible attachment occurs [22]. The 

switch is thought to occur when acetyl phosphate expression is higher in the cell.  

ArcB/ArcA two-component system 

 Another mutant that was studied for this project was a strain containing a non-functional 

arcB gene. The ArcB/ArcA two-component system or anoxic redox control contains ArcB, the 

membrane-bound sensor kinase, that is involved in regulating the response of changes in oxygen 

concentrations, along with ArcA acting as the cytosolic response regulator [26]. The ArcB/ArcA 
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two-component system is very important to the survival of E. coli cells. Surviving as a 

facultative anaerobe can be a difficult task, and being able to survive in both high and low 

concentrations of oxygen requires many genes. The ArcB sensor contains three domains 

including a transmitter domain (His292), a receiver domain (Asp576), and a phosphotransmitter 

domain (His717) [1, 27]. The ArcA response regulator contains an aspartyl residue (Asp54) [27].  

When the oxygen concentration decreases ArcB senses the decrease indirectly and instead senses 

a change in the redox potential of ubiquinone and menaquinone [28]. ArcB then 

autophosphorylates during a process that can also be assisted by pyruvate, lactate, and acetate 

[27].  The phosphate is then transferred to the ArcA aspartyl residue where there will be a 

response to the environmental signal. ArcA mediates the change from respiratory metabolism to 

fermentative metabolism by negatively regulating genes for aerobic metabolism pathways [1, 

27]. This reaction can also proceed in the reverse once the bacteria are under aerobic conditions; 

for example ArcB dephosphorylates ArcA.  

 

Figure 3. The ArcB/ArcA two-component system. The two-component system contains multiple 
phosphotransmitter domains including a histidine kinase domain, a receiver domain, and a 
histidine phosphotransmitter domain. The ArcA response regulator contains a typical aspartyl 
domain. The phosphate is transferred to the response regulator once low oxygen conditions are 
sensed (Figure modified from [29]). 

 
 On a biochemical level, ArcB phosphorylation occurs when there is a greater reduction 

potential than oxidation [30]. Quinone carriers prevent ArcB phosphorylation when the oxidation 

conditions occur in the cells [30]. When the cell is under anaerobic conditions the electron 
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carriers (ubiquinone and menaquinone) are reduced releasing disulfide bonds activating 

autophosphorylation [28].  

ArcZ – small non-coding RNA 

 Another important gene involved in the ArcB/ArcA two-component system is arcZ. The 

arcZ gene is a small non-coding RNA involved in the binding of Hfq (an RNA chaperone 

protein) to positively regulate the stress-response gene rpoS [31]. ArcZ is a negative regulator of 

rpoS mRNA translation and has also been shown to negatively regulate FlhDC by base-pairing 

with the 5’UTR mRNA [31]. FlhDC is a master regulator of flagella and will be discussed in the 

next section. The synthesis of flagella is regulated at the transcriptional and post-translational 

levels indicating that the small non-coding RNAs may be involved in the regulation [31]. In a 

study performed by Gottesman et al, it was found that ArcZ eliminated motility and negatively 

regulates FlhD and FlhC by binding to the FlhDC mRNA [31]. This occurs post-transcriptionally 

therefore preventing translation of the motility regulator. ArcZ is also repressed by the 

ArcB/ArcA two-component system once ArcA is phosphorylated by ArcB [31]. The arcZ 

expression is therefore higher under aerobic conditions while arcB is inhibited under aerobic 

conditions. Further research is needed to determine the impact of ArcZ pairing with FlhDC 

impacts motility.  

Master motility regulator FlhDC 

 FlhDC is the master regulator of flagella synthesis and as mentioned previously, flagella 

are an important factor in both the initial and dispersal phases of biofilm formation. FlhDC 

regulates over 50 genes including fliA, flgM, and fliC [32, 33]. FliA and FlgM direct transcription 

of class III operons involved in chemotaxis and filament construction [32]. FliC is a class III 
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gene and encodes for flagellin, which forms the filament of the flagellum [32]. These genes 

function to build the basal body, hook, and filament, which forms the structure of flagella [32]. 

Previous studies performed in our lab have shown that the expression of FlhC reduced biofilm 

formation and the cell division rate of E. coli O157:H7 [34]. Besides regulating flagella 

synthesis, FlhDC has also been linked to the regulation of anaerobic respiration [35]. This may 

indicate that FlhDC is involved in regulating the switch from aerobic to anaerobic growth [36]. 

As discussed earlier, ArcB/ArcA two-component system is involved in the switch from aerobic 

to anaerobic respiration and potentially regulates flhD expression [31]. The osmoregulator, 

EnvZ/OmpR, and colanic acid regulator RcsCDB also regulate the flhD operon. Both of these 

two component systems negatively regulate flhD [23, 37, 38].  
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RATIONALE 

 
Figure 4. Rationale of study. The hypothesis of the experiments is that ArcB/ArcA has a role in 
biofilm formation possibly involving acetyl phosphate and through the negative regulation of 
flhD. 

 The question has been raised whether ArcB has a role in the formation of biofilms. 

Several experiments were performed to facilitate further understanding of the role it plays in 

biofilm formation. It is plausible that since ArcB is the sensor kinase part of a two-component 

system that responds to changes in oxygen concentration there would be an effect on biofilm 

formation. Anaerobic conditions are found deep within biofilms so survival could be dependent 

on an intact ArcB/ArcA system among other two-component systems. In order to determine 

whether there was a correlation to biofilm formation, a strain containing a nonfunctional arcB 

gene was subjected to scanning electron microscopy, motility assays, a growth curve, and a ß-

galactosidase assay measuring flhD expression.  
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 Another aim was to determine what effect an accumulation of acetyl phosphate would 

have on the ArcB biofilm formation. To measure the effect, one strain containing nonfunctional 

ackA and arcB genes was examined using scanning electron microscopy (SEM) and a ß-

galactosidase assay quantifying biofilm amounts. The overall results indicated that biofilm 

formation changes only when both ackA and arcB are nonfunctional.  
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MATERIALS AND METHODS 

Bacterial strains 

Dr. Alan J. Wolfe of Loyola University Chicago (Maywood, IL) provided the strains used 

in this experiment. The ackA, arcB, and ackA arcB double mutants were compared to the 

AJW678 wild-type strain. 

 Table 2. Bacterial strains 

 Strains1 

  Relevant genotypes Reference 

 CP875 thi-1 thr-1(am) leuB6 metF159(Am) 
rpsL136 ΔlaxX74 λlacY 

Pruess et al., 
1994 

1 AJW678 thi-1 thr-1(am) leuB6 metF159(Am) 
rpsL136 ΔlaxX74 

Kumari et al. 
2000 

2 CP891 CP875 ackA::TnphoA’-2 tet Pruess et al., 
1994 

 JJ5536-1 BW25311 arcB::Tn5 CGSC2 

3 BP1283 AJW678 arcB::Tn5 This study 

4 BP1329 AJW678 ackATnphoA arcB::Tn5 This Study 

 CP992 OW1 D(lac)58 flhD::lacZ Shin and Park, 
1995 

 BP509 MC1000 flhD::lacZ This study 

5 BP1566 AJW678 flhD::lacZ  This Study 

6 BP1567 AJW678 ackA::TnphoA’-2 tet - flhD::lacZ This Study 

7 BP1568 AJW678 arcB::Tn5- flhD::lacZ This Study 

8 BP1569 AJW678 ackA::TnphoA’-2 tet  arcB::Tn5- 

flhD::lacZ 

This Study 

 
1Strains that were used in the physiological experiments are numbered consecutively. Strains 1 
through 4 were used for the electron microscopy, growth curve, and motility plates. They also 
served as recipient strains for the P1 transductions. BP509 is the donor strain for the P1 
transduction. Strains 5 through 8 were used for the gene expression experiment. 
2CGSC, Coli Genetic Stock Center 
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Growth conditions 

 Bacterial strains were stored at -80˚C in 80% glycerol. For experimental use, bacterial 

strains were streaked onto Luria Bertani (LB, 1% tryptone, 0.5% yeast extract, 0.5% NaCl, 1.5% 

agar) plates and incubated at 37˚C overnight. The cultures were streaked for isolation on the LB 

plate with one colony chosen to inoculate overnight culture. The colony was placed in liquid LB 

broth and grown at 37˚C overnight and aerated at 150 rpm.  

Electron microscopy of bacterial biofilms 

Growth of biofilms 

 A 12 mm glass coverslip (Assistent, Sondheim, Germany) was placed into the six-well 

plate prior to inoculation of all four strains allowing the biofilms to grow on the surface of the 

coverslip. From the overnight culture, the AJW678, ackA, arcB, and ackA arcB strains were 

diluted 1:100 in 4 ml of LB broth and placed into one well of a six-well plate. The Strains were 

incubated at 32˚C for 48 hours unaerated. After 48 hours, each well was washed twice with 4 ml 

phosphate buffered saline (PBS). The coverslips were removed from each well for further 

preparation. 

Preparation of biofilms for SEM 

 The biofilm containing glass cover slips were placed into a vial containing 2 ml of 2.5% 

glutaraldehyde fixative in 0.1 mol l-1 sodium phosphate buffer (Tousimis Research Corporation, 

Rockville, MD). Bacteria were fixed for 2 hours at 4˚C. The samples were dehydrated with a 

graded alcohol series treatment and then critical point dried. For the graded alcohol series, 

biofilm samples were treated for 15 minutes each in 30%, 50%, 70%, and 90% ethanol and 

finally with 100% ethanol for 15 minutes twice [21, 39]. The samples also required critical 
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drying using liquid carbon dioxide using an Autosamdri-810 critical point drier (Tousimis 

Research Corporation, Rockville MD). Following critical point drying, the glass coverslips were 

mounted on aluminum mounts with adhesive silver paint and coated with gold-palladium using 

Balzers SCK 030 sputter coater (Balzers Union Ltd., Liechtenstein) [39].  

 SEM images 

 Images were obtained using a JEOL JSM-6490LV scanning electron microscope (JEOL 

USA, Peabody MA). The strains were viewed at 1,000X, 3,000X, and 6,500X magnification. 

This procedure was repeated three times producing approximately 36 images per strain. One 

representative image per strain is presented.    

Growth curve 

A growth curve was produced using the same four strains as were used in the SEM 

experiment were plated from freezer stock. From the overnight cultures, 1 ml cultures were 

produced in cuvettes containing LB broth and covered with parafilm (American National Can 

Co., Greenwich CT) at an inoculation of 1:100 in LB broth. Cultures were incubated at 32˚C. 

The OD600 was read hourly for 6 hours and once per day for seven days using an Eppendorf 

BioPhotometer 6131 (Eppendorf, Hamburg Germany). The growth curve was measured by 

observing the shape of the curve and looking at how the ackA, arcB, and, ackA arcB compare to 

the AJW678 strain.  

Motility characterization 

Motility of the strains was also analyzed through swarm data collection. Motility agar 

plates were made from motility agar (1% tryptone, 0.5% NaCl, and 0.3% Bacto agar) on petri 

dishes (150 mm × 15 mm).  Bacteria were grown on fresh LB plates daily and used for 
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inoculation of the motility agar plates. Single colonies were spotted into the center of the plates, 

which were then incubated at 25˚C, 32˚C, and 37˚C. The procedure was performed in triplicate 

with the four strains from the previous experiments at each temperature. The diameter in 

millimeters was measured every three hours for approximately 30 hours. The swarm rate was 

determined across 30 hours (measured in mm/h using average and standard deviation.)  

P1 transduction 

The P1 phage was used for transduction of the flhD::lacZ from CP992 into the four 

strains used in the previous experiments through MC1000 [40].  

Preparation of the phage lysate from the donor strain 

From overnight cultures, 50 µl of the MC1000 flhD::lacZ donor strain was added to 5 ml 

of LB broth, supplemented with 0.2% glucose and 5 mM CaCl2. The sample was aerated for 30 

minutes at 37˚C. After 30 minutes, 100 µl of a lysate was added to the tube and incubated for 2-3 

hours until clearing or lysis occurred. Once lysed, 100 µl of chloroform was added and the 

sample was vortexed. The lysate was centrifuged at 3,000 rpm for 15 minutes. Another 100 µl of 

chloroform was added and the lysate was stored at 4˚C for future use.  

Transduction procedure 

Overnight cultures of the recipient strains were diluted to OD600 of 0.02-0.04 in LB broth 

(400 µl sample, 20 ml of LB broth,) supplemented with 0.1% glucose and 10 mM of CaCl2. The 

samples were aerated at 37˚C until cultures reached log phase (OD600 0.4-0.6). Once log phase 

was reached, 1 ml of cells were infected with 0, 10, 50, or 100 µl of phage lysate from the donor 

strain and incubated at 37˚C for 20 minutes unaerated. To the bacterial samples, 200 µl of 

sodium citrate was added and centrifuged at 3,000 rpm for 5-10 minutes. The pellet was 



	   18	  

resuspended in 500 µl LB broth and 200 µl sodium citrate and incubated for 1 hour at 37˚C 

unaerated. The samples were centrifuged at 3,000 rpm for 5-10 minutes. The pellet was 

resuspended in 100 µl of sodium citrate and the samples were plated on LB agar plates, 

containing 50 mg/ml of X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside). For 

controls, 100 µl of lysate and 100 µl of uninfected cells were used.  

Blue-white screening 

The samples made from the transduction procedure were plated onto X-gal-containing 

LB plates to determine whether the flhD::lacZ fusion was present in the newly created strains. X-

gal is used to determine whether the lacZ gene is functional. If transduction was successful in 

this case there will be white colonies with a few blue colonies. Blue colonies are indicative of a 

functional lacZ gene.  

ß-galactosidase assay for flhD expression 

The ß-galactosidase assay was used to measure flhD expression in biofilms of BP1566, 

BP1567, BP1568, and BP1569 strains, refer to table 2 for more information. A 1:100 dilution of 

overnight culture was added to each well of a 24-well plate. The plates were read at 96 hours and 

repeated six times.  

Plate processing 

Using the ß-galactosidase from Miller, 1972 [40] the flhD expression can be measured. 

On the day of processing, each well was washed twice with 1 ml of PBS. After washing, 1 ml of 

Z-buffer (0.06 M Na2HPO4 +7H2O, 0.04 M NaH2PO4 +H2O, 0.01 M KCl, 0.001 M MgS04 

+7H2O, 0.05 M ß-mercaptoethanol) was added to resuspend the biofilm. To determine the 

biomass of the biofilm, the OD600 was measured using the BioTek Synergy™H1 plate reader 
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(Winooski, VT).  To measure ß-galactosidase activity, the plate was further processed with 20 µl 

chloroform and 10 µl 0.1% SDS (Sodium dodecyl sulfate) into each well to lyse the cells. 

Bacterial lysates from each well were transferred to a clean 24-well plate after the chloroform 

destroyed the plastic. From here, 200 µl ONPG (40 mg ortho-Nitrophenyl-β-galactoside 

dissolved in 10 ml Z-buffer) was added to each well. The production of ortho nitrophenol (ONP) 

was determined at 420 nm using the BioTek Synergy™H1 plate reader (Winooski, VT). The 

OD600 and OD420 were each measured per minute and the OD420 was divided by the OD600. The 

rate of change in mOD420/mOD600 /min was measured to determine the flhD expression of each 

strain. The experiment was repeated several times and the flhD expression was determined using 

the average and standard deviation.  
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RESULTS 

SEM biofilm 

SEM imaging was performed on the ackA, arcB, and ackA arcB mutant strains and was 

compared to the AJW678 parent strain (Fig. 5). The AJW678 parent strain displayed a thin layer 

of bacteria with minor three-dimensional structuring. The arcB mutant also displayed a thin layer 

of bacteria but had more three-dimensional structuring. This is in contrast to the ackA mutant, 

which produced a biofilm that contained slightly more bacteria, which were also more organized 

in three-dimensional structures. The ackA arcB double mutant produced no biofilm.  

 

Figure 5. Scanning Electron Microscopy. SEM was used visualize biofilm formation in the E. 
coli parental strain (AJW678), and the arcB, ackA, ackA arcB mutants. The images are viewed at 
1,000X magnification. 
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Growth curve 

A growth curve was performed to determine whether the lack of biofilm produced by the 

ackA arcB double mutant was due to a growth deficiency (Fig. 6). The growth curves of the 

ackA, arcB, and ackA arcB mutants were compared to the AJW678 strain. The results indicate 

that although the ackA arcB mutant grew at a slower initial rate than AJW678 and the arcB 

mutant, it eventually caught up and surpassed the AJW678 strain. AJW678 and the arcB mutant 

strain had a similar growth pattern to one another, while the ackA mutant strain grew at a slower 

rate initially and eventually caught up to the other strains. Overall, the ackA arcB mutant did not 

have a growth deficiency that could account for poor biofilm formation.  

   

Figure 6. Growth curve analysis of AJW678, ackA, arcB, and ackA arcB. The experiment was 
performed using an Eppendorf Spectrophotometer and the strains were incubated at 32˚C for 48 
hours. 
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Motility characterization 

To investigate the relationship between biofilm and motility, motility assays were 

performed for the four strains at three different growth temperatures (Fig. 7). At 25˚C all four 

strains had a slower swarm rate. However, beginning at 32˚C the strains displayed a faster swarm 

rate as the temperature increased. At 37˚C the four strains had a larger swarm rate than at 32˚C. 

This leads to the conclusion that the swarm rate of the strains is temperature dependent. At all 

three growth temperatures, the ackA arcB double mutant swarmed at a much faster rate than any 

of the other strains while the ackA mutant swarmed the slowest. There was a more pronounced 

difference between the ackA arcB double mutant than the other strains at 37˚C. The graph also 

shows a plateau in the ackA arcB double mutant at 37˚C, which is due to the size of the plates 

(120mm in diameter) used in the experiment.  

 
 

 
 

Figure 7. Swarm rates at three different temperatures. Swarm rate was measured at three 
different temperatures for 30 hours. The X-axis refers to the time in hours and the Y-axis refers 
to the diameter measurement in millimeters. Graph A—25˚C, Graph B—32˚C, and Graph C—
37˚C. 
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ß-galactosidase assay measuring flhD expression 

The ß-galactosidase assay was performed to measure the flhD expression of the 

experimental strains at different time points during biofilm formation (Fig. 8). As mentioned 

previously, flhD is involved in the synthesis of flagella, which is an important factor in biofilm 

formation. The flhD expression was measured in mOD420/OD600/min. The results indicate that 

the expression of flhD was slightly higher in the ackA arcB double mutant than in the parent and 

very low in the ackA mutant. Prior to processing the plate for the ß-galactosidase assay, the 

amount of biofilm was quantified using the plate reader. The biofilm quantification was used to 

confirm the SEM image conclusions and the motility testing results. The lack of biofilm by the 

ackA arcB double mutant was confirmed using the quantification method.  
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Figure 8. ß-galactosidase assay to measure flhD expression and biofilm quantification. The 
samples were incubated at 32˚C for up to 96 hours. Panel A shows the flhD expression during 
different time points. Panel B shows the biofilm quantification measured using the same plate. 
The Asterisks and red box indicate a significant difference between the samples. 



	   25	  

DISCUSSION 
 
 The two goals of this study were to identify the affect that arcB has on biofilm formation 

and to determine whether this was dependent on AckA. The overall results showed that ackA and 

arcB had an effect on biofilm only when both genes were nonfunctional. This was demonstrated 

by the lack of biofilm in the SEM, increased motility, and increased flhD expression. 

Independently, the arcB mutant was very similar to that of AJW678 (wild-type) throughout all 

experiments and the ackA mutant demonstrated results similar to those of previous studies [22, 

41].  

 Previous data has shown that the ackA mutant forms thick biofilms due to acetyl 

phosphate accumulation [22]. Therefore, this strain is able to serve as the positive control that the 

SEM is yielding reliable results. The SEM images show that the ackA mutant displayed a thin 

biofilm that contained slightly more bacteria with more organized three-dimensional structuring 

than in the AJW678 strain as depicted in figure 5. A growth curve was performed to examine the 

growth pattern of the four strains with the ackA mutant growing at a slower rate than AJW678. 

The four strains are described in table 2. The growth pattern has been documented previously 

showing slow growth in the ackA mutant [41]. A motility assay was performed to determine the 

swarm rate of the strains, refer to figure 7. The results showed that the swarm rate was 

temperature dependent and in particular, the ackA mutant swarmed slower than the other strains 

especially at 32˚C and could be explained in part by the slow growth of the strain [41]. A ß-

galactosidase assay was performed to measure flhD expression during different time points, refer 

to figure 8. AckA, a mutant known to form thick biofilms, had low flhD expression rate 

throughout confirming the results in the motility assay. Biofilm quantification was measured 

using the same plate as the ß-galactosidase assay and measured biofilm formation during 
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different time points. The ackA mutant formed larger amount of biofilm after 24 hours with an 

optical density higher than that of the AJW678 strain.   

 In addition, it was hypothesized that ArcB/ArcA was among the two-component systems 

that might regulate biofilm through the wza operon that is responsible for the synthesis of colanic 

acid [42]. For this study, it was of particular interest to investigate the role of the ArcB/ArcA 

two-component system on biofilm formation in the presence and absence of AckA. The SEM 

results indicated, though not entirely in a consistent manner, that the arcB mutant displayed a 

thin layer of bacteria with minor three-dimensional structuring similar to that of the AJW678 

strain. The arcB mutant displayed a very similar growth pattern and motility pattern to that of the 

AJW678 strain. The flhD expression was similar to that of the AJW678 strain but the biofilm 

quantification demonstrated that the arcB mutant had a slightly higher optical density than the 

AJW678 strain indicating that it may form a slightly thicker biofilm. Overall, the results of the 

experiments for arcB were very similar to that of the AJW678 strain. 

 A goal of the study was to determine the effect that ackA has on arcB. The SEM results 

showed that the ackA arcB double mutant formed no biofilm. This was seen on all images and 

was produced with a high degree of consistency. Since no biofilm was produced, a growth curve 

was performed to determine whether there was a growth deficiency that could account for the 

lack of biofilm formation in the ackA arcB double mutant. The results show that the ackA arcB 

double mutant was a slow grower; however it caught up and surpassed the other strains. It can be 

concluded that ackA arcB did not have a growth deficiency that could explain the lack of biofilm 

formation. A motility assay was utilized to measure the swarm rate of the mutants. The ackA 

arcB double mutant swarmed at a faster rate than the other strains especially when temperature 

was increased. This result necessitated further examination of flhD expression since flhD is 



	   27	  

involved in motility. The results show that the flhD expression of the ackA arcB double mutant 

was slightly higher than in the AJW678 confirming the results of the motility assay. The biofilm 

amounts were also quantified and the results indicated that the ackA arcB double mutant had a 

very low optical density throughout the time points indicating that no biofilm was formed, which 

confirms the SEM results.  

 There were, however, a few problems with the ß-galactosidase assay. The chloroform 

destroyed the plastic in the plates, which required the transfer of the sample several times to new 

plates. In doing so, sample was left behind making it impossible to know how many lysed cells 

were left behind potentially impacting the results. A better study would be using fluorescence 

from a flhD::gfp fusion to examine flhD expression. This type of assay would not require the 

lysis of cells or any further processing. At the point in which flhD expression was to be measured 

a fluorescence assay was unavailable. 

Table 3. Overall conclusions  

 WT ackA ackA arcB Correlation 

Biofilm ++ +++ - NA 

Growth ++ + ++ None 

Motility ++ + +++ Inverse to biofilm 

flhD ++ + +++ 
Positive to 

motility, Inverse 
to biofilm 

 

 The experiments identified a potential link between ackA and arcB since biofilm 

formation was only impacted once both genes were nonfunctional. The reason as to why this 

occurred is unknown. Further investigation of arcA and arcZ and their role in biofilm formation 



	   28	  

is needed to understand how ackA can affect arcB. Since arcA is part of the ArcB/ArcA two-

component system it would be interesting to determine what effect a mutant in arcA would have 

on biofilm formation since acetyl phosphate may be unable to phosphorylate arcA independently 

of arcB [43]. ArcA has also been shown to regulate fliA, which is involved in motility [44]. The 

same study also indicated that arcB does not play much of role in motility so it may be worth 

examining motility and flhD expression in an arcA mutant [44]. The results of the motility assay 

performed in our lab found that arcB had a very similar motility pattern to that of the AJW678 

strain so further examination of arcA is needed. ArcB/ArcA has also been shown to partially 

regulate flhD expression by repression of arcZ, which further indicates that there has to be a 

relationship between arcB and arcA that needs to be studied with respect to biofilm formation 

and motility.  
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