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ABSTRACT 

Recently, in many experimental studies, the statistical analysis of nonparametric 

comparisons has grown in the area of computational intelligence. The research refers to 

application of different techniques that are used to show comparison among the algorithms in an 

experimental study. Pairwise statistical technique perform individual comparison between two 

algorithms and multiple statistical technique perform comparison between more than two 

algorithms. Techniques include the Sign test, Wilcoxon signed ranks test, the multiple sign test, 

the Friedman test, the Friedman aligned ranks test and the Quade test. 

In this paper, we used these tests to analyze the results obtained in an experimental study 

comparing well-known algorithms and optimization functions. The analyses showed that the 

application of statistical tests helps to identify the algorithm that is significantly different than the 

remaining algorithms in a comparison. Different statistical analyses were conducted on the 

results of an experimental study obtained with varying dimension size.  
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1. INTRODUCTION 

In present days, the usage of statistical tests in computational intelligence is commonly 

used for improving the evaluation process. Usually, these statistical tests are employed in the 

process of any experimental analysis to check whether the algorithm is better than the other. 

Depending upon the type of data employed that is used for analyses, statistical procedures are 

classified as parametric and nonparametric [1].  

Parametric statistics are well-known statistical methods which are based on assumptions. 

These tests are said to have more power with correct assumptions which provides more precise 

and accurate estimates. However, parametric tests can mislead in case of incorrect assumptions 

especially during the analyses of stochastic algorithms based on computational intelligence [2,3]. 

Nonparametric statistical procedures are devoid of limitation of assumptions and can grow in 

size to accommodate the complexity of data. Hence nonparametric tests are considered as the 

practical tool in single and multi-problem analysis unlike parametric tests that studies only single 

problem analysis. 

Nonparametric procedure is categorized as pairwise and multiple comparison tests. In this 

paper, our interest is focused on two types of pairwise and four types of multiple comparison 

tests. The sign test and the Wilcoxon signed ranks tests belong to the branch of pairwise 

comparison and the multiple sign test, the Friedman test, the Friedman aligned ranks test and the 

Quade test belong to the branch of multiple comparison. The main objectives of these tests are as 

follows: 

1. Application of nonparametric statistical tests in the area of computational 

intelligence. The tests used are already proposed in many papers of literature [2-5]. 

The properties of different tests are explained and to show how these tests can 
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improve the way in which practitioners and researchers can contrast the results 

obtained in their studies. 

2. Provides a set of procedures to choose any of the statistical tests for the analysis of 

their results 

Throughout the paper, the test problems of CEC’ 2005 special session are opted to 

represent the real parametric optimization through illustration of tests, analysis of performances, 

evolutionary algorithms and swarm intelligence algorithms. This paper reiterates the efficacy of 

different statistical techniques and identifies the most appropriate and efficient statistical 

techniques among the computational intelligence algorithms.  

This paper is organized well as follows. Section 2 gives some introductory background 

on the benchmark functions suite considered for the application of procedures, hypothesis testing 

and description of nonparametric tests for pair-wise and multiple comparisons. Section 3 

describes the evaluation of statistical tests using MS-Excel [15] and MATLAB [16] tools. 

Section 4 provides statistical analysis for four data tables considered in the form of separate test 

cases and finally Section 5 concludes the paper. 
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2. LITERATURE REVIEW 

This section covers the representation of benchmark functions, swarm intelligence 

algorithms and differential evolution algorithms along with some inferential statistics.  

2.1. Bench mark functions: CEC’2005 special session on real parameter optimization 

Through this paper the statistical differences between different algorithms are exhibited 

with non-parametric tests. (1) An experimental study relating 9 algorithms and 25 optimization 

functions demonstrating different statistical methodologies are used. We have chosen 25 test 

problems of dimension 10 used in CEC’2005 special session on real parameter optimization [6]. 

(2) An experimental study relating 5 strategies of differential evolution algorithm with 20 

optimization functions demonstrating different statistical methods used. We have chosen 20 test 

problems run for dimension 10, 30 and 50.  

The benchmark suite [6] is composed of 5 unimodal functions, 20 multi-modal functions. 

Unimodal functions 

 F1: Shifted Sphere Function. 

 F2: Shifted Schwefel’s Problem 1.2. 

 F3: Shifted Rotated High Conditioned Elliptic Function. 

 F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness. 

 F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds. 

Multimodal functions 

 F6: Shifted Rosenbrock’s Function. 

 F7: Shifted Rotated Griewank Function without Bounds. 

 F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds. 

 F9: Shifted Rastrigin’s Function. 
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 F10: Shifted Rotated Rastrigin’s Function. 

 F11: Shifted Rotated Weierstrass Function. 

 F12: Schwefel’s problem 2.13. 

 F13: Expanded Extended Griewank’s plus Rosenbrock’s function (F8F2) 

 F14: Shifted Rotated Expanded Scaffers F6. 

 Each one (F15 to F25) has been defined through compositions of 10 out of the 14 

previous functions (different in each case). 

Benchmark functions: All functions are displaced in order to ensure that their optima can 

never be found in the center of the search space. Additionally, for the two functions, the optima 

cannot be found within the initialization range, and the domain of search is not limited (the 

optimum is out of the range of initialization). 

2.2. Comparison algorithms 

2.2.1. Evolutionary and swarm intelligence algorithms 

Our main objective in this case study is to compare the performance of 9 continuous 

optimization algorithms. A brief description and the characteristics of the algorithms are 

described below: 

 PSO: Particle swarm optimization (PSO) [7] is an artificial intelligence 

computational technique that optimizes a problem trying to improve a candidate 

solution for every iteration. It is used to optimize a problem by having a population of 

candidate solutions (particles) and moving these particles around in the search-

space using mathematical formulae over the solution's position and velocity. Each 

particle is influenced by its local best known position and is also guided in the search 

space toward the best known positions that are updated as better positions. Always 

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Candidate_solution
http://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
http://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
http://en.wikipedia.org/wiki/Formula
http://en.wikipedia.org/wiki/Position_(vector)
http://en.wikipedia.org/wiki/Velocity
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this method tries to move the swarm toward the best solutions. The population 

consists of 100 individuals and the parameters are c1 = 2.8, c2 = 1.3, and w from 0.9 

to 0.4. For this characteristic, a classic PSO model for numerical optimization has 

been used. 

 IPOP-CMA-ES: Evolutionary algorithms like Genetic algorithms use combination 

and selection method and in PSO particle shares some information with other 

particles that helps in next effort by the information in search-space. Unlike GA and 

PSO, CMA-ES finds the best solution by updating its mean and covariance matrix to 

displace the distribution by generating sets of search points according to the multi 

variation of normal distribution [26]. It is called as restart Covariant Matrix 

Evolutionary Strategy (CMA-ES) [8]. This CMA-ES variation begins a restart by 

doubling the population size, once it identifies the premature convergence. The 

doubling population size increases the global reach after every restart which 

empowers the operation mode of CMA-ES variation on multi-modal functions. We 

have considered using the default parameters and the initial distribution size is one 

third of the domain size. 

 CHC: CHC (Cross-generational elitist selection, Heterogeneous recombination, and 

cataclysmic mutation) is evolved from GA that uses a highly disruptive crossover 

operator to generate new individuals almost completely different from their parents. 

Best individuals are not the only ones that participate in mating, but parents are 

allowed to get paired randomly in a mating pool. However, if the Hamming distance 

between the parents is above a certain level then recombination is applied. CHC 

exchanges half of the other genes using half-uniform crossover technique. Instead of 
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applying mutation directly, CHC uses a re-start mechanism when the population does 

not change after a given number of iterations [27]. CHC model was tested with real-

coded chromosomes, using a real-parameter crossover operator, BLX-α (with α = 

0.5), and a population size of 50 chromosomes [9, 10]. 

 SSGA: It is called as Steady state GA. It means there are no iterations (generations). 

Unlike generic GA the tournament selection does not replace some of the individuals 

in population. SSGA does not add children of selected parents into the next 

generation but chooses the best two individuals out of four (two parents and two 

children) and add them back to the population to keep its size unchanged [28]. A real-

coded Steady-State Genetic algorithm is performed on high population diversity 

levels with BLX-α crossover operator (with α=0.5) and negative assortative mating 

strategy [11]. Diversity is checked by means of BGA mutation operator. 

 SS-arit & SS-BLX: Scatter search is a population based evolutionary method that 

uses a reference set to combine its solutions and produce other individuals. A 

reference set is generated from a population of solutions. An improvement procedure 

is run over the solutions in the reference set that are combined to get individuals. The 

result may sometimes indicate an updating of the reference set and also an updating 

of the population of individuals. SS builds, maintains and evolves a set of solutions 

throughout the search [29]. SS-arit and SS-BLX are two classic scatter search models 

using the arithmetical combination operator and BLX-α crossover operator [12].  

 DE-Exp & DE-Bin: DE model [13] is explained in the next section. Two classic 

crossover operators proposed in the literature. They are Rand/1/exp, and Rand/1/bin. 

The population size is 100 individuals with F=0.5 and CR=0.9 
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 SaDE: Another type of differential evolution is self-adaptive DE. Due to different 

characteristics and good performance on problems, two learning strategies in DE are 

selected as candidates. Selected strategies chosen are applied to individuals in the 

current population with probability proportional to their previous success rates to 

generate potentially new candidates. Instead of dealing with fixed values for different 

classes of problems two out of three parameters that is F and CR are changed 

adaptively and NP is set to user-defined to take care of complex problems. Adapting 

parameters F and CR are used with a population size of 100 individuals [14]. 

Mean values are tabulated in Table 1. 

Table 1: Error table obtained for each 25 benchmark functions and 9 algorithms with 

dimension=10 [31] 
Fun PSO IPOP CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE

F1 1.23E-04 0 2.464 8.42E-09 3.40E+01 1.06E+00 7.72E-09 8.26E-09 8.42E-09

F2 2.60E-02 0 1.18E+02 8.72E-05 1.73E+00 5.28E+00 8.34E-09 8.18E-09 8.21E-09

F3 5.17E+04 0 2.70E+05 7.95E+04 1.84E+05 2.54E+05 4.23E+01 9.94E+01 6.56E+03

F4 2.488 2.93E+03 9.19E+01 2.59E-03 6.23E+00 5.76E+00 7.69E-09 8.35E-09 8.09E-09

F5 4.10E+02 8.10E-10 2.64E+02 1.34E+02 2.19E+00 1.44E+01 8.61E-09 8.51E-09 8.64E-09

F6 7.31E+02 0 1.42E+06 6.17E+00 1.15E+02 4.95E+02 7.96E-09 8.39E-09 1.61E-02

F7 26.78 1.27E+03 1.27E+03 1.27E+03 1.97E+03 1.91E+03 1.27E+03 1.27E+03 1.26E+03

F8 20.43 2.00E+01 2.03E+01 2.04E+01 2.04E+00 2.04E+01 2.03E+01 2.04E+01 20.32

F9 14.38 2.84E+01 5.89E+00 7.29E-09 4.20E+00 5.96E+00 4.55E+00 8.15E-09 8.33E-09

F10 14.04 2.33E+01 7.12E+00 1.71E+01 1.24E+01 2.18E+01 1.23E+01 1.12E+01 15.48

F11 5.59 1.34E+00 1.60E+00 3.26E+00 2.93E+00 2.86E+00 2.43E+00 2.07E+00 6.796

F12 6.36E+02 2.13E+02 7.06E+02 2.79E+02 1.51E+02 2.41E+02 1.06E+02 6.31E+01 56.34

F13 1.503 1.13E+00 8.30E+01 6.71E+01 3.25E+01 5.48E+01 1.57E+00 6.40E+01 70.7

F14 3.304 3.78E+00 2.07E+00 2.26E+00 2.80E+00 2.97E+00 3.07E+00 3.16E+00 3.415

F15 3.40E+02 1.93E+02 2.75E+02 2.92E+02 1.14E+02 1.29E+02 3.72E+02 2.94E+02 84.23

F16 1.33E+02 1.17E+02 9.73E+01 1.05E+02 1.04E+02 1.13E+02 1.12E+02 1.13E+02 1.23E+02

F17 1.50E+02 3.39E+02 1.05E+02 1.19E+02 1.18E+02 1.28E+02 1.42E+02 1.31E+02 1.39E+02

F18 8.51E+02 5.57E+02 8.80E+02 8.06E+02 7.67E+02 6.58E+02 5.10E+02 4.48E+02 5.32E+02

F19 8.50E+02 5.29E+02 8.80E+02 8.90E+02 7.56E+02 7.01E+02 5.01E+02 4.34E+02 5.20E+02

F20 8.51E+02 5.26E+02 8.96E+02 8.89E+02 7.46E+02 6.41E+02 4.93E+02 4.19E+02 4.77E+02

F21 9.14E+02 4.42E+02 8.16E+02 8.52E+02 4.85E+02 5.01E+02 5.24E+02 5.42E+02 5.14E+02

F22 8.07E+02 7.65E+02 7.74E+02 7.52E+02 6.83E+02 6.94E+02 7.72E+02 7.72E+02 7.66E+02

F23 1.03E+03 8.54E+02 1.08E+03 1.00E+03 5.74E+02 5.83E+02 6.34E+02 5.82E+02 6.51E+02

F24 4.12E+02 6.10E+02 2.96E+02 2.36E+02 2.51E+02 2.01E+02 2.06E+02 2.02E+02 2.00E+02

F25 5.10E+02 1.82E+03 1.76E+03 1.75E+03 1.79E+03 1.80E+03 1.74E+03 1.74E+03 1.74E+03  
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All the algorithms considered have been run 50 times for each test function. 

 

2.2.2. Differential evolution algorithm with different strategies 

Another study in this paper consists of comparison of performance between 5 strategies 

of differential evolution algorithm on 20 problems. DE [30] optimizes a problem by maintaining 

a population of candidate solutions and creating new candidate solutions by combining existing 

ones according to its simple formulae, and then keeping whichever candidate solution has the 

best score or fitness on the optimization problem at hand. Strategies of DE are best explained by 

the type of mutation scheme we consider. They are described below from [30]: 

 DE/rand/1: The mutation scheme uses a randomly selected vector and one weighted 

difference and hence the name DE/rand/1. The equation for DE/rand/1 is        

               
         

 DE/rand/2: It uses two weighted differences and hence the name. The equation is      

=      +               
) +               

) 

 DE/best/1: The mutation scheme uses a best vector and one weighted difference and 

hence the name. The equation is      =         +               ) 

 DE/best/2: The mutation scheme uses a best vector and two weighted differences and 

hence the name. Equation is      =         +        
       

) +        
       

) 

 DE/target-to-best/1: The mutation scheme used is      =      +                ) + 

              
) 

All the algorithms in the study considered have been run 25 times for each test function 

and averages are tabulated in Table 2 for dimension=10, Table 3 for dimension=30, and Table 4 

for dimension=50. 
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Table 2: Error obtained for each 20 benchmark functions and 5 DE strategies with 

dimension=10 
Best1 Best2 Rand1 Rand2 TTB

F1 3.23E-01 0 0.00E+000 0.00E+000 0.00E+000

F2 1.62E+04 0.00E+000 0.00E+000 7.46E-012 6.18E+002

F3 7.66E-03 0 0.00E+000 3.14E-009 1.02E-002

F4 1.11E-02 0 0.00E+000 0.00E+000 0.00E+000

F5 2.05E+01 9.09E-015 0.00E+000 0.00E+000 1.90E+001

F6 4.31E+00 0 0.00E+000 0.00E+000 5.97E-002

F7 1.01E+01 9.75E-012 6.74E-012 6.29E-011 1.56E-003

F8 2.05E+01 2.04E+001 2.04E+001 2.04E+001 2.04E+001

F9 2.38E+00 4.40E-002 9.53E-001 2.53E+000 4.12E-001

F10 2.16E+00 4.05E-001 9.43E-002 4.36E-001 6.30E-002

F11 1.78E+01 1.76E+000 6.54E+000 2.02E+001 1.67E+000

F12 1.57E+01 2.01E+001 1.60E+001 2.66E+001 7.72E+000

F13 3.21E+01 2.28E+001 1.82E+001 2.61E+001 1.14E+001

F14 5.05E+02 9.18E+002 4.11E+002 8.69E+002 2.71E+002

F15 4.98E+02 9.80E+002 2.11E+002 3.22E+002 5.20E+002

F16 6.82E-01 8.48E-001 8.49E-001 9.17E-001 6.33E-001

F17 1.62E+01 2.09E+001 1.58E+001 3.01E+001 1.27E+001

F18 2.70E+01 2.86E+001 3.00E+001 2.59E+001 2.03E+001

F19 9.11E-01 5.74E-001 4.49E-001 1.15E+000 5.51E-001

F20 2.71E+00 2.23E+000 1.85E+000 3.20E+000 2.11E+000  

Table 3 tabulates the averages of algorithm/problem pair for dimension = 30. 

Table 3: Error obtained for each 20 benchmark functions and 5 DE strategies with 

dimension=30 
Best1 Best2 Rand1 Rand2 TTB

F1 3.52E+03 2.36E-13 0.00E+00 1.39E+00 6.72E+02

F2 2.07E+07 8.23E+04 5.98E+05 4.57E+07 6.01E+06

F3 4.64E+10 2.03E+00 1.64E-01 3.86E+08 3.16E+10

F4 3.05E-07 4.23E+00 2.08E+03 5.27E+04 3.72E-01

F5 1.37E+03 1.73E-13 1.09E-13 1.57E+00 2.22E+02

F6 5.58E+02 1.65E-01 2.72E+00 5.09E+01 2.73E+02

F7 1.00E+02 7.77E+00 1.10E-10 4.81E+01 4.52E+01

F8 2.09E+01 2.09E+01 2.10E+01 2.09E+01 2.10E+01

F9 2.07E+01 1.81E+01 2.64E+01 3.80E+01 9.85E+00

F10 8.23E+02 1.61E-02 2.96E-04 5.32E+01 2.51E+02

F11 2.18E+02 1.87E+02 1.55E+02 2.20E+02 8.97E+01

F12 2.10E+02 1.98E+02 1.79E+02 2.34E+02 8.70E+01

F13 2.88E+02 2.05E+02 1.79E+02 2.33E+02 1.58E+02

F14 3.25E+03 6.63E+03 5.80E+03 6.39E+03 5.95E+03

F15 3.67E+03 6.93E+03 6.80E+03 6.87E+03 6.68E+03

F16 2.14E+00 2.34E+00 2.38E+00 2.35E+00 2.31E+00

F17 3.01E+02 2.15E+02 1.96E+02 2.83E+02 2.13E+02

F18 3.25E+02 2.34E+02 2.12E+02 2.95E+02 2.33E+02

F19 6.65E+02 1.99E+00 1.37E+00 1.79E+01 6.25E+01

F20 1.50E+01 1.25E+01 1.27E+01 1.29E+01 1.31E+01  
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Table 4 tabulates the averages of algorithm/problem pair for dimension = 50. 

Table 4: Error obtained for each 20 benchmark functions and 5 DE strategies with 

dimension=50 
Best1 Best2 Rand1 Rand2 TTB

F1 2.58E+04 4.18E-13 2.09E-13 2.88E+03 1.60E+04

F2 2.75E+08 3.19E+06 2.23E+07 3.10E+08 4.50E+07

F3 3.03E+14 4.63E+01 5.59E+00 4.57E+10 1.74E+11

F4 2.80E+01 6.79E+04 7.05E+04 1.50E+05 2.96E+01

F5 5.79E+03 4.14E-13 9.74E-10 1.42E+02 2.53E+03

F6 2.96E+03 4.11E+01 5.89E+01 6.65E+02 1.23E+03

F7 9.63E+04 3.20E+01 1.50E+00 1.35E+02 1.29E+02

F8 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01

F9 4.38E+01 6.81E+01 6.40E+01 7.22E+01 2.52E+01

F10 3.99E+03 2.77E-02 1.32E-02 1.37E+03 1.56E+03

F11 6.75E+02 4.21E+02 3.35E+02 4.90E+02 3.28E+02

F12 7.20E+02 4.44E+02 3.64E+02 5.43E+02 3.41E+02

F13 8.76E+02 4.37E+02 3.72E+02 5.21E+02 4.93E+02

F14 6.81E+03 1.33E+04 1.08E+04 1.32E+04 1.26E+04

F15 6.96E+03 1.39E+04 1.34E+04 1.35E+04 1.30E+04

F16 3.23E+00 3.39E+00 3.36E+00 3.28E+00 3.39E+00

F17 8.23E+02 4.63E+02 3.96E+02 7.05E+02 5.13E+02

F18 1.09E+03 4.84E+02 4.16E+02 7.72E+02 6.35E+02

F19 2.19E+04 5.50E+00 2.03E+00 3.94E+02 5.46E+03

F20 2.50E+01 2.43E+01 2.24E+01 2.36E+01 2.50E+01  

2.3. Concepts of inferential statistics 

In the computational intelligence community, single problem analysis and multi-problem 

analyses would drastically differ. The single problem analysis provides results of running the 

algorithms multiple times, while the multi-problem analysis demonstrates the result per 

algorithm and problem pair. 

Hypothesis testing [17] can be used in the field of inferential statistics to draw inferences 

about one or more populations from the given samples. To do so we have defined both null 

hypothesis H0 and the alternative hypothesis H1. For testing the hypothesis in this paper we 

consider the null hypothesis if there is no difference between algorithms and the alternative 

hypothesis if there is a difference. Significance level α is used to determine at which level the 

hypothesis may be rejected when applied to a statistical procedure. The p-value helps us to 

estimate how significant the results are. If the test value does not fall in the critical region, the 
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decision is not to reject the null hypothesis else the decision is to reject the null hypothesis 

because our sample mean is far away from indicating the difference. 

Sometimes parametric tests are used in analysis in cases like finding the difference 

between the results of two algorithms in non-random paired t-test. This test checks whether the 

average difference is significant (not equal to 0). For comparing the multiple algorithms, 

ANOVA [18] tests are commonly used statistical methods used for finding the differences. In 

one way ANOVA, we find one independent variable with three levels, but in two ways ANOVA 

we concentrate on the severity of two independent variables.  

Nonparametric tests apart from ordinal data can also be extended to continuous data by 

ranking based transformations and making modifications to the input test data. The 

nonparametric tests can yield pair wise comparisons and multiple comparisons. Pairwise 

comparisons are used to compare two individual algorithms using an independent p-value. Thus, 

to compare more than two algorithms, multiple comparison tests are ideal. In the comparisons 

the best performing algorithm is highlighted with the application of the test. Statistical 

procedures used in the paper are collected in Table 5 with appropriate section numbers that 

describes the tests. 

Table 5: Nonparametric statistical procedures performed on algorithms [31] 

Type of Comparison Procedures Section 

Pairwise comparisons Sign test 2.4.1 

 Wilcoxon test 2.4.2 

Multiple comparisons Multiple sign test 2.5.1 

 Friedman test 2.5.2 

 Friedman Aligned 2.5.3 

 Quade test 2.5.4 
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For analyzing the data of the results obtained in evolutionary algorithms: 

  refers to number of problems;   refers to its associated index 

  refers to number of algorithms used for comparison;   refers to its associated index 

  refers the difference of performance between the algorithms used. 

2.4. Pairwise comparisons 

The Pairwise comparisons are the simplest kind and are used to compare the 

performances of two algorithms when applied to a set of problems. Two tests used for pairwise 

comparisons are the sign test and Wilcoxon signed rank test. This section characterizes the 

behavior of each algorithm with every other algorithm (1x1comparison). 

2.4.1. A simple procedure: Sign test 

The sign test is comparing the overall performances of algorithms and counting the 

number of cases on which an algorithm is the overall winner. In the inferential statistics, two 

tailed binomial test is known as sign test [19]. If the algorithm is compared as null hypothesis out 

of   problems each should win     problems. The number of wins is attributed to binomial 

distributions; greater the number of cases the wins is under null hypothesis distributed as 

           , it allows for the use of z-test. If the number of wins is at least                 

then the algorithm is better with p < 0.05. 

Table 6 shows the number of wins needed to achieve α=0.05 and α=0.1 levels of 

significance. Tied matches should be counted by splitting evenly between the two algorithms. 

For odd number of ties one must be ignored. 

Table 6: Critical number of wins needed at α=0.05 and α=0.1 for Sign test [31] 

#Cases 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α = 0.05 5 6 7 7 8 9 9 10 10 11 12 12 13 13 14 15 15 16 17 18 18

α = 0.1 5 6 6 7 7 8 9 9 10 10 11 12 12 13 13 14 14 15 16 16 17   
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2.4.2. Wilcoxon signed ranks test 

Wilcoxon signed ranks test is used for answering if there are two samples from two 

different populations. This is a nonparametric test used in hypothesis testing situations, which 

has two sample designs and analogous to the paired t-test;  

Let    as the difference between the performances of the two algorithms on     out of 

  problems. Differences are ranked based on absolute values; in case of any ties, take the average 

of ranks with same differences and assign [20].  

Wilcoxon’s test [31] is calculated as    be the sum of ranks for the problems where first 

algorithm outperformed the second and    is the sum of ranks for the opposite. When   =0, 

ranks are separated evenly among the sums; the odd number among them is ignored. 

  = ∑          
    + 

 

 
∑          

    

  = ∑          
    + 

 

 
∑          

    

If    is less than or equal to the value of the distribution for   degrees of freedom then the 

null hypothesis is rejected. The Wilcoxon signed rank test assumes that the greater differences 

are only counted but ignores the absolute magnitudes. This test is safer as it does not assume 

normal distributions; this test has difference   . It should not be rounded to one or two decimals, 

since it would decrease the power of test in case of more number of such differences. 

2.5. Multiple comparisons 

In most situations statistical procedures are frequently requested in the joint analysis of 

results achieved by various algorithms. In this method each block represents the results obtained 

over a particular problem. One block here represents three or more subjects or results. In the 

analysis of pairwise comparison, an accumulated error is obtained from the conclusion that 

involves more than one pairwise comparison and its combination. The family wise error rate 
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(FWER) [31], defined as probability of making one or more false discoveries among the entire 

hypothesis when performing multiple pairwise tests. Therefore, a pairwise comparison test such 

as Wilcoxon test should not be used to conduct various comparisons with a set of algorithms, 

because FWER is not controlled. 

First we get to learn about the sign test for multiple comparisons. The multiple sign 

method is not very effective for finding the differences between the algorithms. Next the well 

know procedures that help in testing more than two samples is the Friedman test and its 

advanced versions Friedman aligned ranks test and the Quade test [31].  

2.5.1. Multiple sign test 

This test allows us to highlight the difference in the performances of algorithms of 

statistical difference when compared to the control algorithm. The procedure proposed in [21, 

22] is as follows: 

1. Let     and      are the performances of the control and the     algorithm in the     

problem. 

2. Computing the difference with the following equation    =     -    .  

3. Let    equal the number of differences,     that has less frequently occurring sign. 

4. Let    be the median response of a sample of results of control algorithm and    be 

the median sample of     algorithm. 

5. For testing              against              reject    if the number of 

minus signs is less than or equal to the critical value of    appearing in [33] for 

     . 

6. For testing              against           , reject    if the number of plus 

signs is less than or equal to the critical value of    appearing in [33] for         
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In fact, it is a possible argue that if the number of methods (algorithms) is reduced in the 

comparison,    value may be changed (increased) and we would detect significant differences of 

a few algorithms as expected with the control algorithm. It means that the rejection of pairwise 

hypothesis with the control depends on the rest of the algorithms in the comparison. 

2.5.2. Friedman test 

Friedman Test [23, 24], the two-way analysis of variance of ranks is nonparametric 

analog of parametric two way analysis of variance. It answers the questions of a set of   samples 

( >=2). Samples represent the population. The Friedman test is analogous to the repeated 

measures ANOVA in nonparametric procedure. Therefore, it aims at finding the significant 

differences between two or more algorithms. 

The null hypothesis states the equality of medians between the populations and the 

alternative hypothesis states the negation of the null hypothesis. Before calculating the test 

statistic, first the results are converted to ranks and are computed as follows: 

1. Gather observed results for each algorithm/problem pair. 

2. For each problem  , rank values from 1 for good result and   for poor result. Denote 

these ranks as   
 
            

3. For each algorithm  , average the ranks obtained in all problems to get the final rank 

that is   = 
 

 
 ∑    

 
  

Therefore, it ranks algorithms for each problem individually; the algorithm with good 

performance is ranked as 1 and the next best is ranked as 2. If in case there is a tie we need to 

compute average ranks. The Friedman statistic is computed as   =
   

      
[∑   

 
  

       

 
]  that 

is distributed according to a    distribution with     degrees of freedom.  
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The Friedman test allows for intra-set comparisons only. When number of algorithms is 

small for comparison, this may pose a disadvantage since inter-set comparisons may be 

meaningless. In such cases, comparability among problems is desirable.  

2.5.3. Friedman aligned ranks method 

For Friedman aligned ranks test [25], a value of location is computed as the average 

performance by all algorithms in each problem. The difference between the performance and the 

value of location is obtained. This is repeated in each combination of algorithms and problems. 

The results of the aligned observations keep their identities with respect to problem and 

combination of algorithms which are ranked from 1 to   times of  . The ranks assigned to the 

aligned observations are called aligned ranks. 

The test statistic of Friedman aligned ranks test can be defined as 

   =
     [∑   

  (    ⁄ ) 
          ]

[                ⁄ ]      ⁄  ∑   
  

   

 where    is equal to the rank total of     problem and    is 

the rank total of     algorithm. The test statistic     is compared with    distribution with     

degrees of freedom. 

2.5.4. Quade test 

The last test in performing multiple comparisons is Quade test [32]. The procedure for 

the Quade test is as follows: 

1. Finding the ranks   
 
as the same way done in the Friedman test.  

2. Let   
 
be the original values of performance of algorithms. 

3. Ranks are assigned to the problems according to the size of the sample range in each 

problem. Sample range for the problem i is the difference between two extreme 

observations within that problem. Where Sample Range =      
 
 –        

 
. There 
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are   number of ranks for   number of problems. Assign best rank to the smallest 

range and so on such that the highest range will get a rank of  . Assign average of 

ranks for any ties. 

4. Let    denotes the ranks for sample ranges for problems            respectively. 

5. Let   
 
 be the statistic that represents the relative size of each observation within the 

problem. The equation is   
 
=  [  

 
 

   

 
] 

Also,    is sum of  
 
’s for each algorithm where            . 

6. To establish a relationship with Friedman test, rankings without average adjusting is 

used with   
 
=  [  

 
] 

The average ranking for the     algorithm,    is given as 
  

       ⁄
 and where   is the sum 

of    
 
’s for each algorithm where              

7. Definitions required for computing the test statistic    are 

  
                       

  
 and   

 

 
∑   

  
     

The test statistic    is    
      

   
 , which is distributed according to the F-distribution 

with     and            degrees of freedom. Note that when computing the statistic, if 

A=B then p-value is     ⁄     . 
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3. DESCRIPTION OF TESTS 

Now-a-days there are many tools available to evaluate complex statistical and 

engineering procedures. Tools use the appropriate statistical and engineering macro functions 

and then display the results in the output table. Some tools generate charts in addition to output 

tables. 

In this paper the tools used for the evaluation of nonparametric pairwise and multiple 

comparisons is MS-Excel [15] and MATLAB [16]. Both these tools provide many statistical, 

financial, engineering functions some are built in and others become available through 

customization.  

Statistical procedures analyzed in MS-Excel are:  

3.1. The Sign test 

3.2. Multiple Sign test 

Procedures that are analyzed using MATLAB are: 

3.3. Wilcoxon Sign test 

3.4. Friedman test 

3.5. Friedman aligned ranks test 

3.6. Quade test 

3.1. Description of Sign test  

In this pairwise comparison, the performances of every algorithm are compared with the 

performances of every other algorithm.  

1. Imported data to Excel worksheet in the form of  x . where  = number of rows 

(performances of the algorithms) and   = number of columns (number of algorithms) 
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2. Chosen one algorithm (Column1) and compared its performances with the 

performances of the other algorithms (Column2, Column3…….. Columnk) 

separately. Algorithm with the best performance (lesser value) is given a score of 1 

and using the count function the number of wins for both algorithms is tabulated. 

3. Step 2 is repeated for all other algorithms similar to Column1. 

4. If both algorithms compared are assumed to be under null hypothesis, each should 

win n/2 out of n. 

5. To reject null hypothesis, the number of wins must be greater than or equal to: 

 18 at 0.05 significance level for n=25 

 17 at 0.1 significance level for n=25 

 15 at 0.05 significance level for n=20 

 14 at 0.1 significance level for n=20 

3.2. Description of Wilcoxon sign test (1x1 Comparison)  

Tool used for Wilcoxon test is MATLAB.  

1. Data is supplied to MATLAB from Excel worksheet and saved as Matrix m x n form 

2. [         ]                                                    is a 

prebuilt function used to calculate the p-value, h value and statistic value. Where p-

value describes the significant differences between comparison algorithms, h=0 

describes the equality of two algorithms that is supporting null hypothesis, and h=1 

describes the rejection of null hypothesis. Signrank is the function that uses the 

required columns from the matrix for comparison.  

3.3. Description of Multiple sign test (1xn Comparison) 

Used MS-Excel to perform multiple comparison Sign test. 
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1. Imported data to Excel worksheet in the form of n x k. where n= number of rows 

(performances of the algorithms) and k = number of columns ( number of algorithms) 

2. Chosen one algorithm (Column) as a control and subtracted its performances from the 

performances of every other algorithm to form a new matrix that is   n x k-1. 

3. For every column in the new matrix that is n x (k-1) number of minus and plus signs 

are tabulated. 

4. To test for null hypothesis, critical value    is considered from [33] for a given n and 

k-1 values.  

 For n=25 and k-1=8 are 

  =5, for 0.05 level of significance. 

  =6, for 0.1 level of significance 

 For n=20 and k-1=4 are 

  =4, for 0.05 level of significance. 

  =5, for 0.1 level of significance. 

5. Algorithms with number of minus or plus signs less than or equal to the critical value 

is considered as significantly different. 

3.4. Description of Friedman Test 

Used MATLAB to perform statistical analysis 

1. Read data from Excel to MATLAB. 

2.              function is called in the command window that results in Friedman 

statistic value and Ranks of the Algorithms. 

3. p-value is calculated from the Statistic calculator. 

4. Methods and variables involved in Friedman aligned Ranks test are: 
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        : Data read from Excel worksheet is stored. 

 [   ]: Size of data that is n x k. 

                  : used to get ranks for the performances in a problem 

from       . Equal ranks are controlled. 

       : It is the average of all ranks in an algorithm. Repeated for all other 

algorithms. 

       : used to get the statistic value for Friedman test. 

5. Hypothesis testing: If   >      
  at a significance level of 0.05 or   >     

   at a 

significance level of 0.1 for     degrees of freedom then reject null hypothesis, else 

support null hypothesis.  

3.5. Description of Friedman aligned ranks test 

Used MATLAB to perform the statistical analysis. 

1. Read data from Excel to MATLAB. 

2.                      function is called in the command window that results in 

Friedman statistic value and ranks of the algorithms. 

3. p-value is calculated from the Statistic calculator. 

4. Methods and variables involved in Friedman aligned Ranks test: 

        : Data is read from the excel worksheet. 

 [   ]: Size of data that is n x k. 

              : used to get the average of problems. 

              : Difference of each cell of the problem and average of that 

problem and in the form of n x k. 
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                    : Ranking          (whole table) with rank 1 for 

the least value and rank n * k for the highest value. Same ranks are controlled 

in this method. 

         : used to get the statistic value for Friedman aligned ranks test 

            : used to get the mean rank of algorithm for all problems. 

5. Hypothesis testing: If     >      
  at a significance level of 0.05 or     >     

   at a 

significance level of 0.1 for     degrees of freedom then reject null hypothesis, else 

support null hypothesis. 

3.6. Description of Quade test  

Used MATLAB to perform statistical analysis. 

1. Read data from Excel to MATLAB. 

2.           Function is called in the command window that results in Quade statistic 

value, and ranks of the algorithms. 

3. p-value is calculated from the Statistic calculator. 

4. Methods and variables involved in Friedman aligned ranks test: 

        : Data is read from the excel worksheet. 

 [   ]: Size of data that is n x k. 

            : Gives the minimum value for every problem (row). 

            : Gives the maximum value for every problem (row). 

                : Difference of maximum and minimum values for every 

problem. 

           : used to get the ranks of                . 
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                  : used to get ranks for the performances in a problem. 

Similarly to all problems. Equal ranks are controlled. 

           : Ranking of                   with average adjusting. 

             : Sum of the ranks of problems from            for every 

algorithm. 

           : Ranking of                   without average adjusting. 

             : Sum of the ranks of problems from            for every 

algorithm. 

        : Adjusted ranks of             .         ranks decide the best 

algorithm out of all. 

        : used to get the statistic value for       test. 

5. Hypothesis testing: If    >       at a significance level of 0.05 or     >     
   at a 

significance level of 0.1 for     and            degrees of freedom then reject 

null hypothesis else support null hypothesis. 
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4. RESULTS AND DISCUSSIONS 

4.1. Test case 1: Table 1 is considered for the statistical analysis 

Data considered for statistical analysis is shown in Table 1.  

Number of problems (n) = 25. 

Number of algorithms (k) = 9. 

Dimension = 10.  

4.1.1. Application of Sign test 

In this experimental study, performing a sign test to compare the results of an algorithm 

is simple. It only requires the number of wins achieved by an algorithm with the comparison 

algorithms. Table 7 summarizes the winning algorithms count with comparison algorithms. 

Table 7: Wins of an algorithm over rest of the algorithms for Sign test on Table 1 
PSO IPOP CHC SSGA SS-BLX SS-Arit DE-Bin DE-Exp SaDE

PSO - 8 13 7 7 8 4 3 5

α=

IPOP 17 - 17 16 12 14 11 11 11

α= 0.1 0.1

CHC 12 8 - 10 8 9 6 7 5

α=

SSGA 18 9 15 - 10 12 6 6 7

α= 0.05

SS-BLx 18 13 17 15 - 17 9 9 10

α= 0.05 0.1 0.1

SS-Arit 17 11 16 13 8 - 7 7 8

α= 0.1

DE-Bin 21 14 19 19 16 18 - 10 14

α= 0.05 0.05 0.05 0.05

De-Exp 22 14 18 19 16 18 15 - 16

α= 0.05 0.05 0.05 0.05

SaDE 20 14 20 18 15 17 11 9 -

α= 0.05 0.05 0.05 0.1  
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IPOP wins over PSO and CHC with detected difference of 0.1 when compared with the 

remaining 8 algorithms. SSGA wins over PSO with a difference of 0.05, SS-BLX over PSO with 

a difference of 0.05 and CHC, SS-Arit with a difference of 0.1, SS-Arit over PSO with a 

difference of 0.1, DE-Bin and DE-Exp over PSO, CHC, SSGA, SS-Arit with a difference of 0.05 

and SaDE algorithm over PSO, CHC, SSGA with 0.05 and SS-Arit with 0.1. 

4.1.2. Application of Wilcoxon test 

When using Wilcoxon test in our study, Table 8 shows that R+, R- and p-values 

computed for all the pairwise comparisons concerning PSO. As the table states, PSO shows a 

significant improvement over DE-Bin, DE-Exp and SaDE with a level of significance α=0.05. 

Table 8: Ranks and p-value of PSO over other algorithms for Table 1 

PSO versus R+ R- p-value

IPOP 209 116 0.2109

CHC 121 204 0.2641

SSGA 203 122 0.2758

SS-BLX 225 100 1.6817

SS-Arit 221 104 0.1155

DE-Bin 263 62 0.0068

DE-Exp 265 60 0.0058

SaDE 251 74 0.0173  

As Table 9 states, IPOP shows a significant improvement over CHC, DE-Bin, DE-Exp 

and SaDE with a level of significance α=0.1. 

Table 9: Ranks and p-value of IPOP over other algorithms for Table 1 

IPOP versus R+ R- p-value

PSO 116 209 0.2109

CHC 92 233 0.0578

SSGA 119 206 0.2418

SS-BLX 164 161 0.9678

SS-Arit 143 182 0.5998

DE-Bin 228 97 0.078

DE-Exp 229 96 0.0736

SaDE 226 99 0.0875  
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As Table 10 states, CHC shows a significant improvement over SSGA, SS-BLX, SS-Arit, 

DE-Bin, DE-Exp and SaDE with a level of significance α=0.05 and over IPOP with α=0.1. 

Table 10: Ranks and p-value of CHC over other algorithms for Table 1 

CHC versus R+ R- p-value

PSO 204 121 0.2641

IPOP 233 92 0.0578

SSGA 248 77 0.0214

SS-BLX 267 58 0.0049

SS-Arit 261 64 0.008

DE-Bin 277 48 0.0021

DE-Exp 280 45 0.0016

SaDE 290 35 6.02E-04  

As Table 11 states, SSGA shows a significant improvement over CHC, DE-Bin, DE-Exp 

and SaDE with a level of significance α=0.05. 

Table 11: Ranks and p-value of SSGA over other algorithms for Table 1 

SSGA versus R+ R- p-value

PSO 122 203 0.2758

IPOP 206 119 0.2418

CHC 77 248 0.0214

SS-BLX 204 121 0.2641

SS-Arit 187 138 0.5098

DE-Bin 256 69 0.0119

DE-Exp 265 60 0.0058

SaDE 258 67 0.0102  

As Table 12 states, SS-BLX shows a significant improvement over CHC with a level of 

significance α=0.05 and over SaDE with a level of significance α=0.1. 

Table 12: Ranks and p-value of SS-BLX over other algorithms for Table 1 

SS-BLX versus R+ R- p-value

PSO 100 225 1.6817

IPOP 161 164 0.9678

CHC 58 267 0.0049

SSGA 121 204 0.2641

SS-Arit 202 123 0.2879

DE-Bin 222 103 0.1094

DE-Exp 220 105 0.1218

SaDE 228 97 0.078  
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As Table 13 states, SS-Arit shows a significant improvement over CHC, SS-BLX, DE-

Bin, DE-Exp and SaDE with a level of significance α=0.05. 

Table 13: Ranks and p-value of SS-Arit over other algorithms for Table 1 

SS-Arit versus R+ R- p-value

PSO 104 221 0.1155

IPOP 182 143 0.5998

CHC 64 261 0.008

SSGA 138 187 0.5098

SS-BLX 202 123 0.2879

DE-Bin 239 86 0.0396

DE-Exp 247 78 0.023

SaDE 236 89 0.048  

As Table 14 states, DE-Bin shows a significant improvement over PSO, CHC, SSGA, 

SS-Arit, with a level of significance α=0.05 and over IPOP with a level of significance α=0.1. 

Table 14: Ranks and p-value of DE-Bin over other algorithms for Table 1 

DE-Bin versus R+ R- p-value

PSO 62 263 0.0068

IPOP 97 228 0.078

CHC 48 277 0.0021

SSGA 69 256 0.0119

SS-BLX 222 103 0.1094

SS-Arit 86 239 0.0396

DE-Exp 222 103 0.1094

SaDE 154 171 0.8191  

As Table 15 states, DE-Exp shows a significant improvement over PSO, CHC, SSGA, 

SS-Arit with a level of significance α=0.05 and over IPOP with a level of significance α=0.1. 

Table 15: Ranks and p-value of DE-Exp over other algorithms for Table 1 

DE-Exp versus R+ R- p-value

PSO 60 265 0.0058

IPOP 96 229 0.0736

CHC 45 280 0.0016

SSGA 60 265 0.0058

SS-BLX 220 105 0.1218

SS-Arit 78 247 0.023

DE-Bin 103 222 0.1094

SaDE 115 210 0.2012  
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As Table 16 states, SaDE shows a significant improvement over PSO, CHC, SSGA, SS-

Arit with a level of significance α=0.05 and over IPOP,SS-BLX with a level of significance 

α=0.1. 

Table 16: Ranks and p-value of SaDE over other algorithms for Table 1 

SaDE versus R+ R- p-value

PSO 74 251 0.0173

IPOP 99 226 0.0875

CHC 35 290 6.02E-04

SSGA 67 258 0.0102

SS-BLX 228 97 0.078

SS-Arit 89 236 0.048

DE-Bin 171 154 0.8191

DE-Exp 210 115 0.2012  

4.1.3. Application of Multiple sign test 

Critical values are taken from [33] where   =5 for α=0.05 and   = 6 for α=0.1. Table 17 

shows the number of wins and losses of control algorithm with the rest of the algorithms. 

Table 17: Number of wins and losses by control algorithm over rest of them using Multiple 

sign test for Table 1 

+ - + - + - + - + - + - + - + - + -

PSO 0 0 17 8 12 13 18 7 18 7 17 8 21 4 22 3 19 6

IPOP 8 17 0 0 8 17 9 16 13 12 11 14 14 11 14 11 14 11

CHC 13 12 17 8 0 0 15 10 17 8 16 9 19 6 18 7 20 5

SSGA 7 18 16 9 10 15 0 0 15 10 13 12 19 6 18 7 18 7

SS-BLX 7 18 12 13 8 17 10 15 0 0 8 17 16 9 16 9 15 10

SS-Arit 8 17 14 11 9 16 12 13 17 8 0 0 18 7 17 8 17 8

DE-Bin 4 21 11 14 6 19 6 19 9 16 7 18 0 0 15 10 12 13

DE-Exp 3 22 11 14 7 18 7 18 9 16 8 17 10 15 0 0 9 16

SaDE 6 19 11 14 5 20 7 18 10 15 8 17 13 12 16 9 0 0

SS-BLX 

CONTROL ALGORITHM

SS-Arit DE-Bin DE-Exp SaDE PSO IPOP CHC SSGA 

 

1. Labeling PSO as a control algorithm, we may reuse the results of Table 17 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 
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critical value of 5 is DE-Bin and DE-Exp and less than or equal to a critical value of 6 

is SaDE. We may conclude that PSO is significantly different than these two. 

2. Labeling IPOP as a control algorithm, results in Table 17 supports null hypothesis 

when compared with all other algorithms. It does not fall in to the critical region and 

hence IPOP is not significantly different than all other algorithms. 

3. Labeling CHC as a control algorithm, we may reuse the results of Table 17 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 5 is DE-Bin and DE-Exp and less than or equal to a critical value of 6 

is SaDE. We may conclude that PSO has better performance than these three. 

4. Labeling SSGA as a control algorithm, we may reuse the results of Table 17 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 6 is DE-Bin. We may conclude that SSGA has better performance 

than DE-Bin. 

5. Labeling SS-BLX and SS-Arit as a control algorithm, results in Table 17 support null 

hypothesis when compared with all other algorithms. They does not fall in to the 

critical region with a critical value less than or equal to 6. Hence SS-BLX and SS-Arit 

are not significantly different than all other algorithms. 

6. Labeling DE-Bin as a control algorithm, we may reuse the results of Table 17 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 5 is PSO and less than or equal to a critical value of 6 is CHC and 
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SSGA. We may conclude that DE-Bin is significantly different than PSO, CHC and 

SSGA. 

7. Labeling DE-Exp as a control algorithm, we may reuse the results of Table 17 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 5 is PSO. We may conclude that DE-Exp is significantly different 

than PSO. 

8. Similarly, labeling SaDE as a control algorithm, the algorithms with number of minus 

signs less than or equal to a critical value of 5 is CHC and less than or equal to a 

critical value of 6 is PSO. We may conclude that SaDE is significantly different than 

PSO, CHC. 

4.1.4. Application of Friedman, Friedman aligned ranks and Quade tests 

Continuing with our experimental study, the ranks of the Friedman, Friedman aligned, 

and Quade tests are computed for all the algorithms considered. Table 18 shows that DE-Exp as 

the best performing algorithm of the comparison, with a rank of 3.56, 85.74, and 3.169 for the 

Friedman, Friedman aligned, and Quade tests, respectively. 

Table 18: Ranks, statistic value and p-value of algorithms using Friedman, Friedman 

aligned ranks and Quade test on Table 1 

Algorithms Friedman Friedman Aligned Quade

PSO 6.76 135.28 6.42154

IPOP 4.64 112.4 4.52615

CHC 6.40 159.32 7.37538

SSGA 5.64 131.72 5.96923

SS-BLX 4.68 108.2 5.13846

SS-Arit 5.48 108.76 5.60308

DE-Bin 3.80 86.72 3.48615

DE-Exp 3.56 85.48 3.16923

SaDE 4.04 87.12 3.31077

statistic 34.55 15.735625 6.99483

p-value 3.20E-05 0.0463247 4.00E-08  
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4.2. Test case 2: Table 2 is considered for the statistical analysis 

Data considered for statistical analysis is given in Table 2.  

Number of problems (n) = 20. 

Number of algorithms (k) = 5 

Dimension = 10. 

4.2.1. Application of Sign test 

Table 19 summarizes the winning count of algorithms with comparison algorithms. Best2 

wins over Best1 and Rand2 with detected difference of 0.1 when compared with the remaining 4 

algorithms. Rand1 wins over Best1 and Rand2 with a difference of 0.05, and TargetToBest over 

Best1 with a difference of 0.05. 

Table 19: Wins of an algorithm over rest of the algorithms for Sign test on Table 2 

Sign Table Best1 Best2 Rand1 Rand2 TargetToBest

Best1 wins - 6 3 8 2

α=

Best2 wins 14 - 7 14 7

α= 0.1 0.1

Rand1 wins 17 12 - 17 9

α= 0.05 0.05

Rand2 wins 12 5 3 - 7

α=

TargetToBest 18 13 11 13 -

α= 0.05  

4.2.2. Application of Wilcoxon test 

When using Wilcoxon test in our study, Table 20 shows that R+, R- and p-values 

computed for all the pairwise comparisons concerning the Best1 algorithm. As the table states, 

Best1 is significantly different than Rand1 and TargetToBest with a level of significance α=0.05. 
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Table 20: Ranks and p-value of Best1 over other algorithms for Table 2 

Best1 versus R+ R- p-value

Best2 136 74 0.2471

Rand1 189 21 0.0017

Rand2 126 84 0.433

TargetToBest 191 19 0.0013  

As Table 21 states, Best2 supports null hypothesis and is not significantly different than 

any of the comparison algorithms as p-value is greater than 0.1. 

Table 21: Ranks and p-value of Best2 over other algorithms for Table 2 

Best2 versus R+ R- p-value

Best1 74 136 0.2471

Rand1 84 36 0.1876

Rand2 45 108 0.1359

TargetToBest 121 50 0.1221  

As Table 22 states, Rand1 is significantly different than Best1 and Rand2 with a level of 

significance α=0.05 as p-value is less than 0.05. 

Table 22: Ranks and p-value of Rand1 over other algorithms for Table 2 

Rand1 versus R+ R- p-value

Best1 21 189 0.0017

Best2 36 84 0.1876

Rand2 10 126 0.0027

TargetToBest 99 72 0.5566  

As Table 23 states, Rand2 is significantly different than Rand1 with a level of 

significance α=0.05. 

Table 23: Ranks and p-value of Rand2 over other algorithms for Table 2 

Rand2 versus R+ R- p-value

Best1 84 126 0.433

Best2 108 45 0.1359

Rand1 126 10 0.0027

TargetToBest 115 56 0.1989  

As Table 24 states, TargetToBest is significantly different than Best1 with a level of 

significance α=0.05. 
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Table 24: Ranks and p-value of TargetToBest over other algorithms for Table 2 

Target to Best versus R+ R- p-value

Best1 19 191 0.0013

Best2 50 121 0.1221

Rand1 72 99 0.5566

Rand2 56 115 0.1989  

4.2.3. Application of Multiple sign test 

Critical values are taken from [33] where   =4 for α=0.05 and   = 5 for α=0.1. Table 25 

tabulates the number of wins and losses by control algorithm on rest of the algorithms. 

Table 25: Number of wins and losses by control algorithm over rest of them using Multiple 

sign test for Table 2 

+ - + - + - + - + -

Best1 0 0 14 6 17 3 12 8 18 2

Best2 6 14 0 0 10 5 4 13 12 6

Rand1 3 17 5 10 0 0 1 15 10 8

Rand2 8 12 13 4 15 1 0 0 12 6

TargetToBest 2 18 6 12 8 10 6 12 0 0

TargetToBest 

Control Algorithm

Best1 Best2 Rand1 Rand2

 

1. Labeling Best1 as a control algorithm, we may reuse the results of Table 25 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 4 is Rand1 and TargetToBest at a level of 0.05. We may conclude 

that Best1 is significantly different than these two. 

2. Labeling Best2 as a control algorithm, we may reuse the results of Table 25 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 4 is Rand2 at a level of 0.05. We may conclude that Best2 is 

significantly different than Rand2. 
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3. Labeling Rand1 as a control algorithm, we may reuse the results of Table 25 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 4 is Best1 and Rand2 at a level of 0.05 and minus signs less than or 

equal to 5 is Best2 at a level of 0.1. We may conclude that Rand1 is significantly 

different than these three. 

4. Labeling Rand2 as a control algorithm, we may reuse the results of Table 25 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 4 is Best2 and Rand1 at a level of 0.05. We may conclude that Rand2 

is significantly different than these two. 

5. Labeling TargetToBest as a control algorithm, we may reuse the results of Table 25 

for applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 4 is Best1 at a level of 0.05. We may conclude that TargetToBest is 

significantly different than Best1. 

4.2.4. Application of Friedman, Friedman aligned ranks and Quade tests 

Continuing with our experimental study, the ranks of the Friedman, Friedman aligned, 

and Quade tests can be computed for all the algorithms considered.  

Following are the guidelines exposed and the results are tabulated in the below table. 

Table 26 shows that Rand1 algorithm as the best performing algorithm of the comparison, with 

a rank of 2.2, 35.975, and 2.1 for the Friedman, Friedman aligned, and Quade tests, 

respectively. 
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Table 26: Ranks, statistic value and p-value of algorithms using Friedman, Friedman 

aligned ranks and Quade test on Table 2 

Algorithms Friedman Friedman Aligned Quade

Best1 4.05 66.3 3.97

Best2 2.825 53.75 3.09

Rand1 2.2 35.975 2.1

Rand2 3.6 57.975 3.54

TargetToBest 2.225 38.5 2.27

statistic 17.07 14.49947 4.71482

p-value 0.00187334 0.00586 0.001879  

The p-values computed through the statistics of each of the tests considered 

(0.00187334, 0.00586, and 0.001879) strongly suggest the existence of significant differences 

among the algorithms considered. These values also suggest that at which probability level the 

null hypothesis can be rejected. 

4.3. Test case 3: Table 3 is considered for the statistical analysis 

Data considered for statistical analysis is shown in Table 3.  

Number of problems (n) = 20. 

Number of algorithms (k) = 5. 

Dimension = 30. 

4.3.1. Application of Sign test 

Table 27 summarizes the winning algorithms with comparison algorithms. Best2 wins 

over Best1 and Rand2 with detected difference of 0.05 when compared with the remaining 4 

algorithms.  

Rand1 wins over Best1 with a difference of 0.1 and Rand2 with a difference of 0.05, and 

TargetToBest over Best1 with a difference of 0.05. Hence, we could reject null hypothesis and 

conclude that there is a significant difference between the compared algorithms. 
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Table 27: Wins of an algorithm over rest of the algorithms for Sign test on Table 3 

Best1 Best2 Rand1 Rand2 TargetToBest

Best1 wins - 5 6 8 5

α=

Best2 wins 15 - 7 17 10

α= 0.05 0.05

Rand1 wins 14 13 - 18 12

α= 0.1 0.05

Rand2 wins 12 3 2 - 8

α=

TargetToBest 15 10 8 12 -

α= 0.05  

 

4.3.2. Application of Wilcoxon test 

When using Wilcoxon test in our study, the rank values that is R+ and R- and p-values 

are noted down in the below tables. 

 Table 28 shows the ranks and p-value of pairwise comparisons concerning Best1 

algorithm when the Wilcoxon signed ranks test is used for the statistical analysis. As the table 

states, Best1 is significantly different than Best2 and TargetToBest with a level of significance 

α=0.05 and Rand1 with a level of 0.1. 

Table 28: Ranks and p-value of Best1 over other algorithms for Table 3 

Best1 versus R+ R- p-value

Best2 169 41 0.0169

Rand1 155 55 0.062

Rand2 124 86 0.4781

TargetToBest 170 40 0.0152  

As Table 29 states, Best2 is significantly different than Best1 and Rand2 with a level of 

significance α=0.05. 
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Table 29: Ranks and p-value of Best2 over other algorithms for Table 3 

Best2 versus R+ R- p-value

Best1 41 169 0.0169

Rand1 137 73 0.2322

Rand2 32 178 0.0064

TargetToBest 88 122 0.5257  

As Table 30 states, Rand1 is significantly different than Best1 with level of significance 

α=0.1 and Rand2 with a level of significance α=0.05 as p-value is less than 0.05. 

Table 30: Ranks and p-value of Rand1 over other algorithms for Table 3 

Rand1 versus R+ R- p-value

Best1 55 155 0.062

Best2 73 137 0.2322

Rand2 3 207 0.000140

TargetToBest 65 145 0.1354  

As Table 31 states, Rand2 is significantly different than Rand1 with a level of 

significance α=0.05. 

Table 31: Ranks and p-value of Rand2 over other algorithms for Table 3 

Rand2 versus R+ R- p-value

Best1 86 124 0.4781

Best2 178 32 0.0064

Rand1 207 3 0.000140

TargetToBest 121 89 0.5503  

As Table 32 states, TargetToBest is significantly different than Best1 with a level of 

significance α=0.05. 

Table 32: Ranks and p-value of TargetToBest over other algorithms for Table 3 

Target to Best versus R+ R- p-value

Best1 40 170 0.0152

Best2 122 88 0.5257

Rand1 145 65 0.1354

Rand2 89 121 0.5503  

4.3.3. Applying Multiple sign test 

Critical values are taken from [33] where   =4 for α=0.05 and   = 5 for α=0.1. Table 33 

tabulates the number of wins and losses of control algorithm with the rest of the algorithms. 
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Table 33: Number of wins and losses by control algorithm over rest of them using Multiple 

sign test for Table 3 

+ - + - + - + - + -

Best1 0 0 15 5 14 5 12 8 15 5

Best2 5 15 0 0 13 7 3 17 10 10

Rand1 6 14 7 13 0 0 2 18 8 12

Rand2 8 12 17 3 18 2 0 0 12 8

TargetToBest 5 15 10 10 12 8 8 12 0 0

Control Algorithm

TargetToBest Best1 Best2 Rand1 Rand2

 

1. Labeling Best1 as a control algorithm, we may reuse the results of Table 33 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 5 is Best2 and TargetToBest at a level of 0.1. We may conclude that 

Best1 is significantly different than these two. 

2. Labeling Best2 as a control algorithm, we may reuse the results of Table 33 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 4 is Rand2 at a level of 0.05 and minus signs less than or equal to a 

critical value of 5 is Best1 at a level of 0.1. We may conclude that Best2 is 

significantly different than Rand2 and Best1. 

3. Labeling Rand1 as a control algorithm, we may reuse the results of Table 33 for 

applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 4 is Rand2 at a level of 0.05. We may conclude that Rand1 is 

significantly different than Rand2. 

4. Labeling Rand2 as a control algorithm, we may reuse the results of Table 33 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 
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hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 4 is Best2 and Rand1 at a level of 0.05. We may conclude that Rand2 

is significantly different than these two. 

5. Labeling TargetToBest as a control algorithm, we may reuse the results of Table 33 

for applying multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 

hypothesis testing, the algorithms with number of minus signs less than or equal to a 

critical value of 5 is Best1 at a level of 0.1. We may conclude that TargetToBest is 

significantly different than Best1. 

4.3.4. Applying Friedman, Friedman aligned ranks and Quade tests 

Continuing with our experimental study, the ranks of the Friedman, Friedman aligned, 

and Quade tests can be computed for all the algorithms considered. Following are the guidelines 

exposed. Table 34 shows that Rand1 as the best performing algorithm of the comparison, with a 

rank of 2.15, 37.5, and 1.88 for the Friedman, Friedman aligned, and Quade tests, respectively. 

Table 34: Ranks, statistic value and p-value of algorithms using Friedman, Friedman 

aligned ranks and Quade test on Table 3 

Algorithms Friedman Friedman Aligned Quade

Best1 3.8 67.5 3.8

Best2 2.55 40.45 2.58

Rand1 2.15 37.5 1.88

Rand2 3.75 58 3.84

TargetToBest 2.75 48.6 2.91

statistic 17.52 14.7075257 5.1914

p-value 0.001531 0.005347 0.00094445

 

The p-values computed through the statistics of each of the tests considered (0.001531, 

0.005347, and 0.00094445) strongly suggest the existence of significant differences among the 

algorithms considered. 
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4.4. Test case 4: Table 4 is considered for the statistical analysis 

Data considered for statistical analysis is given in Table 4.  

Number of problems (n) = 20. 

Number of algorithms (k) = 5. 

Dimension = 50.  

4.4.1. Application of Sign test 

Table 35 summarizes the winning algorithms with comparison algorithms. Best2 wins 

over Best1 and Rand2 with detected difference of 0.05 when compared with rest 4 algorithms. 

Rand1 wins over Best1, Best2, Rand2 and TargetToBest with a difference of 0.05, and 

TargetToBest over Best1 with a difference of 0.05. 

Table 35: Wins of an algorithm over rest of the algorithms for Sign test on Table 4 

Best1 Best2 Rand1 Rand2 TargetToBest

Best1 wins - 5 5 6 4

α=

Best2 wins 15 - 5 15 13

α= 0.05 0.05

Rand1 wins 15 15 - 18 15

α= 0.05 0.05 0.05 0.05

Rand2 wins 14 5 2 - 9

α= 0.1

TargetToBest 15 7 5 11 -

α= 0.05  

4.4.2. Applying Wilcoxon test 

When using Wilcoxon test in our study, Table 36 shows that R+, R- and p-values 

computed for all the pairwise comparisons concerning Best1 Algorithm. As the table states, 

Best1 is significantly different than Best2, Rand1 and TargetToBest with a difference of α=0.05. 
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Table 36: Ranks and p-value of Best1 over other algorithms for Table 4 

Best1 versus R+ R- p-value

Best2 160 50 0.04

Rand1 161 49 0.0366

Rand2 140 70 0.1913

TargetToBest 158 32 0.0112  

As Table 37 states, Best2 is significantly different than Best1 and Rand2 with a level of 

significance α=0.05 and Rand1 at a level of 0.1. 

Table 37: Ranks and p-value of Best2 over other algorithms for Table 4 

Best2 versus R+ R- p-value

Best1 50 160 0.04

Rand1 157 53 0.0522

Rand2 26 184 0.0032

TargetToBest 63 147 0.1169  

As Table 38 states, Rand1 is significantly different than Best2 with level of significance 

α=0.1 and Best1, Rand2, TargetToBest with a level of significance α=0.05 as p-value is less than 

0.05. 

Table 38: Ranks and p-value of Rand1 over other algorithms for Table 4 

Rand1 versus R+ R- p-value

Best1 49 161 0.0366

Best2 53 157 0.0522

Rand2 3 207 0.000140

TargetToBest 44 166 0.0228  

As Table 39 states, Rand2 is significantly different than Best2 and Rand1 with a level of 

significance α=0.05. 

Table 39: Ranks and p-value of Rand2 over other algorithms for Table 4 

Rand2 versus R+ R- p-value

Best1 70 140 0.1913

Best2 184 26 0.0032

Rand1 207 3 0.000140

TargetToBest 113 97 0.7652  
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As Table 40 states, TargetToBest is significantly different than Best1 and Rand1 with a 

level of significance α=0.05. 

Table 40: Ranks and p-value of TargetToBest over other algorithms for Table 4 

Target to Best versus R+ R- p-value

Best1 32 158 0.0112

Best2 147 63 0.1169

Rand1 166 44 0.0228

Rand2 97 113 0.7652  

4.4.3. Application of Multiple sign test 

Critical values are taken from [33] where   =4 for α=0.05 and   = 5 for α=0.1. Table 41 

tabulates the wins and losses of control algorithm over rest of the other algorithms. 

Table 41: Number of wins and losses by control algorithm over rest of them using Multiple 

sign test for Table 4 

+ - + - + - + - + -

Best1 0 0 15 5 15 5 14 6 15 4

Best2 5 15 0 0 15 5 5 15 7 13

Rand1 5 15 6 14 0 0 2 18 6 14

Rand2 6 14 15 5 18 2 0 0 11 9

TargetToBest 4 15 13 7 15 5 9 11 0 0

Control Algorithm

TargetToBest Best1 Best2 Rand1 Rand2

 

 

1. Labeling Best1 as a control algorithm, we may reuse the results of Table 41 for 

applying multiple sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 

hypothesis testing, the algorithms with number of plus signs less than or equal to a 

critical value of 4 is TargetToBest at a level of 0.05 and plus signs less than or equal 

to a critical value of 5 is Best2 and Rand1 at a level of 0.1. We may conclude that 

Best1 is significantly different than these three. 

2. Labeling Best2 as a control algorithm, we may reuse the results for applying multiple 

sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 hypothesis testing, the 

algorithms with number of minus signs less than or equal to a critical value of 5 is 
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Best1 and Rand2 at a level of 0.1. We may conclude that Best2 is significantly 

different than Rand2 and Best1. 

3. Labeling Rand1 as a control algorithm, we may reuse the results for applying multiple 

sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 hypothesis testing, the 

algorithms with number of minus signs less than or equal to a critical value of 4 is 

Rand2 at a level of 0.05 and minus signs less than 5 is Best1, Best2, TargetToBest at 

a level of 0.1. We may conclude that Rand1 is significantly different than these four. 

4. Labeling Rand2 as a control algorithm, we may reuse the results for applying multiple 

sign test. Considering Ho: Mj <= M1 against H1: Mj > M1 hypothesis testing, the 

algorithms with number of plus signs less than or equal to a critical value of 4 is 

Rand1 and plus signs less than or equal to a critical value of 5 is Best2 at a level of 

0.1. We may conclude that Rand2 is significantly different than these two. 

5. Labeling TargetToBest as a control algorithm, we may reuse the results for applying 

multiple sign test. Considering Ho: Mj >= M1 against H1: Mj < M1 hypothesis 

testing, the algorithms with number of minus signs less than or equal to a critical 

value of 4 is Best1 at a level of 0.05. We may conclude that TargetToBest is 

significantly different than Best1.  

4.4.4. Application of Friedman, Friedman aligned ranks and Quade tests 

Continuing with our experimental study, the ranks of the Friedman, Friedman aligned, 

and Quade tests can be computed for all the algorithms considered, following the guidelines 

exposed, above table shows that Rand1 as the best performing algorithm of the comparison with 

a rank of 1.85, 36.85, and 1.77 for the Friedman, Friedman aligned, and Quade tests, 

respectively. 
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Table 42: Ranks, statistic value and p-value of algorithms using Friedman, Friedman 

aligned ranks and Quade test on Table 4 

Algorithms Friedman Friedman Aligned Quade

Best1 3.975 70.375 3.95

Best2 2.6 41.95 2.41

Rand1 1.85 36.85 1.77

Rand2 3.5 54 3.73

TargetToBest 3.075 49.275 3.14

statistic 21.51 14.8511977 6.531626

p-value 0.000251 0.00502 0.00014253  

The p-values computed through the statistics of each of the tests considered (0.000251, 

0.00502, and 0.00014253) strongly suggest the existence of significant differences among the 

algorithms considered. 
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5. CONCLUSION 

In statistical analyses, parametric procedures are most commonly used that are based on 

assumptions. Due to the fact that assumptions are violated while performing analyses on 

stochastic algorithms in computational intelligence, nonparametric statistical procedures are used 

that are more effective, especially in multi-problem analysis. We have used wide range of tests in 

nonparametric statistical analysis starting from basic techniques like sign tester to complex 

techniques like the Friedman aligned ranks and the Quade tests. 

In this paper, we used all the tests and applied on the results obtained for evolutionary 

swarm intelligence algorithms to find the algorithm that is significantly different than remaining 

algorithms in a comparison. Analysis reveals that the algorithm which is significantly different 

and better than remaining algorithms is same in every statistical test. 

Also, to present the efficacy of the different procedures, we have implemented 

comprehensive case study analysis on the results with varied dimension. Application of the tests 

reveals that the significantly different algorithm became more powerful and tries to act as the 

best algorithm when results with increased dimensions are analyzed. 

In the future, these tests can be applied to other engineering and research areas and leaves 

a choice to pick the most suitable test for their analysis.  
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APPENDIX 

A.1. MATLAB code for Friedman test 

function FriedmanTest 

% the functions calculates the Friedman statistic and  

% mean rank values 

% 

% input: 

% Update the input file name in the code 

% Example: 

% FreidmanTest 

% 

% 

% Output:  

% * Friedman stats value 

% * Mean ranks 

% 

% 

% Author: Srinivas Adithya Amanchi 

% Data: 12.02.2014 

clear all 

clc 

% impoting the given data into a variable called RawData 

RawData = xlsread('RawDataFriedman.xlsx'); 
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% n = NoOfRows 

% k = NoOfColumns 

[n, k] = size(RawData); 

%% Finding Rank of the problems 

for i = 1:n 

    RankOfTheProblems(i,:) = tiedrank(RawData(i,:)); 

end 

%% Taking average of the rank of the problems 

AvgOfRankOfProblems = mean(RankOfTheProblems); 

SquareOfTheAvgs = AvgOfRankOfProblems  .* AvgOfRankOfProblems; 

SumOfTheSquares = sum(SquareOfTheAvgs); 

FfStats = (12*n/(k*(k+1))) * (SumOfTheSquares - ((k*(k+1)^2)/4)); 

%% Display the results 

formatSpec = 'Friedman statistic  is %4.2f and \n '; 

fprintf(formatSpec,FfStats); 

disp('Average of the ranks obtained in all problems'); 

disp(AvgOfRankOfProblems) 

A.2. MATLAB code for Friedman aligned test 

function FriedmanAllignedTest 

% the functions calculates the Friedman statistic and  

% mean rank values 

% 

% input: 
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% Update the input file name in the code 

% Example: 

% FreidmanAllignedTest 

% 

% 

% Output:  

% * Friedman stats value 

% * Mean ranks 

% 

% 

% Author: Srinivas Adithya Amanchi 

% Data: 05.02.2014 

clear all 

clc 

% impoting the given data into a variable called RawData 

RawData = xlsread('RawDataFriedmanAlligned.xlsx'); 

% n = NoOfRows 

% k = NoOfColumns 

[n, k] = size(RawData); 

% Taking the average of all the problems 

AvgOfProblems = mean(RawData')'; 

% calculating the difference of each and every variable with respect to their 

% respective mean value and created a new data file that has all the 
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% differences 

for i = 1:n; 

    for j = 1:k; 

        DiffData(i,j) = RawData(i,j)-AvgOfProblems(i); 

    end 

end 

clear i j AvgOfProblems 

%% finding the Rank (rather ORDER) of each and every number in the difference matrix 

[~, ~, RankTemp] = unique(DiffData); 

% Finding values with equal rank and turn them into average ranks 

UniqueRanks = unique(RankTemp); 

EqualRanks=UniqueRanks(histc(RankTemp,UniqueRanks)>1); 

for i=1:length(EqualRanks) 

TempMatrix{i} = find(RankTemp==EqualRanks(i)); 

NoTemp = numel(TempMatrix{i}); 

for j = 2:NoTemp 

ix = TempMatrix{i}(j); 

if DiffData(ix) >0 

DiffData(ix) = DiffData(ix)+(0.00000000001*j); 

else 

DiffData(ix) = DiffData(ix)-(0.00000000001*j); 

end 

end 
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end 

[~, ~, RankTemp] = unique(DiffData); 

ix = length(RankTemp)/k; 

j =1; 

for i = 1:ix:length(RankTemp); 

if j<=k 

RankOfTheProblems(:,j) = RankTemp(i:i+ix-1); 

j = j+1; 

end 

end 

clear NoTemp UniqueRanks i ix j EqualRanks 

for i = 1:length(TempMatrix) 

RankOfTheProblems(TempMatrix{i}) = mean(RankTemp(TempMatrix{i})); 

end 

clear RankTemp TempMatrix i 

%% Information on ranks - ROW's wise 

SumOfEachRanksRows = sum(RankOfTheProblems,2);%% Ri 

%SumOfRanksRows = sum(SumOfEachRanksRows); 

SquareOfSumOfRanksRows = SumOfEachRanksRows .* SumOfEachRanksRows;  %% 

Ri^2 

SumOfSquaresOfRanksRows = sum(SquareOfSumOfRanksRows);   %% sum(Ri^2) 

%% Information on ranks - COLUMN's wise 

SumOfEachRanksColumns = sum(RankOfTheProblems,1);   %% Rj 
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%SumOfRanksColumns = sum(SumOfEachRanksColumns); 

SquareOfSumOfRanksColumns==SumOfEachRanksColumns*SumOfEachRanksColum

ns; 

%% Rj^2 

SumOfSquaresOfRanksColumns = sum(SquareOfSumOfRanksColumns);%% sum(Rj^2) 

clear DiffData 

%% Friedman statistic 

FARStats = ((k-1) * [(SumOfSquaresOfRanksColumns) - (((k*(n*n))/4)*(k*n +1)^2)])/ 

    ((((k*n)*(k*n+1)*(2*k*n+1))/6) - (1/k)*(SumOfSquaresOfRanksRows)); 

MeanRanks = (SumOfEachRanksColumns)/n; 

Sigma = std(MeanRanks); 

%% Display the results 

formatSpec = 'Friedman Alligned statistic is %4.2f and  \n'; 

fprintf(formatSpec,FARStats); 

disp('Mean Ranks'); 

disp(MeanRanks) 

A.3. MATLAB code for the Quade test 

function QuadeTest 

% the functions calculates the Quade statistic and  

% mean rank values 

% 

% input: 

% Update the input file name in the code 
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% Example: 

% QuadeTest 

% 

% 

% Output:  

% * Quade stats value 

% * Mean ranks 

% 

% 

% Author: Srinivas Adithya Amanchi 

% Data: 06.02.2014 

clear all 

clc 

% impoting the given data into a variable called RawData 

RawData = xlsread('RawDataQuade.xlsx'); 

% n = NoOfRows 

% k = NoOfColumns 

[n, k] = size(RawData); 

%% 

MinValueRow = min(RawData')'; 

MaxValueRow = max(RawData')'; 

DiffMaxMinValue = MaxValueRow - MinValueRow; 

RankOfDiff = tiedrank(DiffMaxMinValue);  
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for i = 1:n 

RankOfTheProblems(i,:) = tiedrank(RawData(i,:)); 

end 

clear MinValueRow MaxValueRow DiffMaxMinValue RawData 

%% rankings without average adjusting statistic that represents the relative size of each 

observation within the problem,  Sj 

for i = 1:k 

StatsSij(:,i) = RankOfDiff .* ( RankOfTheProblems(:,i) - ((k+1)/2)); 

end 

SumOfStatSj = sum(StatsSij); 

SquareOfSumOfStatsSj = SumOfStatSj .* SumOfStatSj; 

SumOfSquareSj = sum(SquareOfSumOfStatsSj); 

clear SquareOfSumOfStatsSj SumOfStatSj StatsSij 

%% rankings without average adjusting 

for i = 1:k 

StatsWij(:,i) = RankOfDiff .* ( RankOfTheProblems(:,i)); 

end 

SumOfStatWj = sum(StatsWij); 

clear StatsWij 

%% the average ranking for the jth algorithm, Tj 

StatsTj = SumOfStatWj/(n*(n+1)/2); 

clear SumOfStatWj 

%% Remaining statistics 
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% A = n(n + 1)(2n + 1)k(k + 1)(k ? 1)/72 

StatsAValue = (n*(n+1)*(2*n+1)*k*(k+1)*(k-1))/72; 

% B = mean(kSj^2)  

StatsBValue = (SumOfSquareSj)/n; 

%% Quade Stats Value 

FQStats = ((n-1)*StatsBValue)/(StatsAValue - StatsBValue); 

%% Display the results 

formatSpec = 'Quade statistic  is %4.2f\n A value is %4.2f and \n  B Value is %4.2f\n'; 

fprintf(formatSpec,FQStats,StatsAValue,StatsBValue); 

disp('The average ranking for the jth algorithm, Tj'); 

disp(StatsTj) 


