HISTORICAL ANALYSIS AND ESTIMATION TOOL FOR ENERGY TRADING

A Paper
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Sharath Chandra Sambaraju

In Partial Fulfillment
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

December 2013

Fargo, North Dakota

North Dakota State University
Graduate School

Title

HISTORICAL ANALYSIS AND ESTIMATION TOOL FOR ENERGY
TRADING

By

SHARATH CHANDRA SAMBARAJU

The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

Chair

Dr. Rui Dai

Dr. Luis Del Rio

Approved:

04/14/2014 Dr. Brian Slator

Date Department Chair

ABSTRACT

Many forms of commodities are traded in today’s financial world, the most commonly
used commodity, ‘Electricity’, is no exception. Electricity is mostly traded on a day to day basis,
where the buyers and suppliers agree on a fixed price for electricity to be generated and
dispatched. These allow the markets to adjust themselves to efficient pricing based on the simple

supply and demand principle.

The objective of this paper is to understand the day ahead market data and collecting
historical market data and storing in to a RDBMS database, and design and program a windows-
based application using C# programming language, to query the RDBMS in transact SQL to
display the market data in a format that is easy to read. Use of this tool would allow deeper
analysis and provide the ability to estimate possible profitability for future trading by calculating

the variances, standard deviation, upper bounds, lower bounds, averages.

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my advisers, Dr. Simone Ludwig and Dr. Kendall
Nygard, for their continued support throughout this paper. | am grateful for the ideas and
suggestions given by Dr. Nygard, and the amount of guidance he gave is enormous. Also, special

thanks go to my advisory committee members.

TABLE OF CONTENTS

ABSTRACT .ttt R e R e e Rt e e n e r e nnee s ii
ACKNOWLEDGEMENTS ...ttt sttt eebeennne s iv
LIST OF FIGURESottt sttt e e beesneas vii
1. INTRODUGCTION ..ttt ettt ettt e bt esbe et e et e e e be e naneabeesenas 1
1.1, Problem DeSCIIPLION.......c.ciieie ettt sreenneenee e 1
1.2, ENEIQY MArKELSccvieiiceiecieee ettt ettt e e e te s e reenneenee e 1
1.2.1. EIECHCItY MArKELccvveiiieieiiese e 1
1.2.2. Trading MarketS.......ccoiiiieiiieieiee bbbt 2
1.2.3. NYISO ettt sttt b et nae e raeene e 2

1.3 MAKEE DALA.....c.ecueiieieiieiicee bbbttt 3
2. RELATED WORK ...ttt ettt et e e b r e nnn e 4
3. APPROAGCH ... et 7
3.1, DEVEIOPMENT TOOIS ...ttt bbbt se e 8
3.2, PIICING DALA.....cuiitiiiieiieiieie ettt 9
3.2.1. Day Ahead and Real TimMe PriCEScccciviiiiiiiiieieie et 9
3.2.2. Causes for Real Time Price FIUCtUALIONS...........ccoevviriiiiiiiiiieccee 12
3.2.3. PrOFItS @N0 LOSS......cviiiitiitiiiiiiieiee e 12

3.3, Database DESIGNccuiiiieeiiee ittt nrae s 12
3.4. Functionality and RiSK PrediCtioncuiiiiiiiiieieie e 16

341 FUNCHONAITY ..o bbb 16

3.4.2. DISPIAY CIITEIIA ...c.eiieteti ittt bbbt 16
3.4.3. Predicting Profit @nd LOSS..........coeiieiiiiieiieie e 17
3.4.4, EStIMAtioN FOMMUIA.......ccociiiiieieiic e 19

3.5. Graphical User INterface DESIONccviieieeiicieceesie et 20
3.5.1. DESIGN PrINCIPIES ...ttt 20

4. IMPLEMENTATION ...ttt ettt ettt e e nneas 22
4.1. Graphical User INterface (GUI).......cooiiiiiiiiiiiieccee s 22
4.1.1. Selection Criteria Or INPULScveiieiiiie e 23
4.1.2. LMP and Prediction BUIONS...........ccoeiiiiiiiisecseee e 26

4.2. Data Access Layer or BUSINESS LOGIC........ciuiiiiriiieiieie s 29
4.3, DA LAYET ...t 31
5. EXPERIMENTS ...ttt b et e et e e abe e sne e e beesbeeennee s 36
6. CONCLUSION, LIMITATIONS AND FUTURE WORKcccoiiiiiiiiiie e 40
8.1, CONCIUSTON.....euiiiititiieii ettt b bbb 40
6.2. Future Work and Limitationsccoooouerieiiiniinisenece e 40
REFERENGCES ...ttt ettt et e b et e e st e s st e e nb e e nbe e beeanteenneeanes 41

Vi

Figure

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.

LIST OF FIGURES

Page
A D I O I 1Y/ F- o TSP PRSPPI 3
APProaCh FIOW CRart.........coviiiiicceee ettt ns 7
Day Ahead Prices EXaMPIE. ...ccveoiiiiiiic et 10
Real Time PriceS EXAMPIE.ccocciiiiiieii et 11
DAtabase STIUCLUIE.cuiiiiieieiiit ettt sb e 13
Node Name Table SCheMA.coiiiiiiiee s 15
Day Ahead, Real Time, Difference Table’s Schema.c.ccooiiiiiiiiiie 15
Functionality of the TOOL.oii s 23
Z0NE SEIECTION CIITEIIA. ...viuvieitiitieieeiieieee ettt b bbb nne s 24
Price Sub Category SeleCtion CrItErIA.ccceiiririiieieie e 24
Date, Time and Hours SEIection CrIteria.ocvuviiiiiiiire e 25
GUI of Historical Analysis TOOL.coiiiiiiiie e 26
SQL QUENY EXAMPIE L. ..ot 27
SQL QUENY EXAMPIE 2. ..ot 28
GUI Of Prediction WINGOW.c.oiiiiiiiiiieiesiesie et 29
CodiNg EXAMPIE L. 30
CodiNG EXAMPIE 2. 31
SQL Script for Creating @ TabIe.ooviiiii e 32
CodiNg EXAMPIE 3. e 33
Day Ahead Pricing Data from the Database Table.cccooviiiiiiiiiieiee e 34
Real Time Pricing Data from the Database Table. ... 34

vii

22.

23.

24,

25.

26.

27.

28.

29.

30.

SQL Stored Procedure EXAMPIE.cooviiiiiiiiiieiieeeee e 35

Average Prices Displayed on the GUI for Hours 01 10 16.cccoovvevieieiiniieiesiesiiens 36
Average Prices Displayed on the GUI for Hours 08 10 23.cccooviiieiiiiniierecieseee 37
RT-DA Differences Displayed for Selected INPULS.cccoveririiiiiiciieieec e 37
RT-DA Differences Displayed for Selected INPULS.cccooiriiiniiiiiieiec e 38
ESTIMALION L. ..ot 38
ESHIMALION 2. ..ot 39
ESTIMALION 3. .ot 39
ESHMALION 4. ..o bbb bbbt 39

viii

1. INTRODUCTION

This chapter focuses on the problem description, energy markets, understanding the market
data and the New York Independent System Operator (NYISO) [1] energy market we chose to

build the trading tool for.

1.1. Problem Description

The energy markets allow traders and suppliers to buy and sell electricity based on the
demand and supply principles. The energy market operates o; complex sets of data which include
the power supply zones which are geographically mapped, the day-ahead prices of electricity that
suppliers are ready to generate power measured in dollars per megawatt hours (MWh); and the
real time prices that change due to issues that arise in power production and supply [6] [8].

A tool that arranges the data in an easily readable format and allows traders to query and
perform mathematical calculations to identify trends quickly could be invaluable to traders and
would increase their ability to make well informed decisions. In this paper we are going to collect
and store historical data in to an RDBMS and provide a graphical user interface (GUI) for the

traders to use.

1.2. Energy Markets
Commodities such as Oil, Gas, Electricity and other sources of energy fall under the Energy

Markets [7]. Where electricity or power is traded is referred to as the electricity market [6] [8].

1.2.1. Electricity Market

Electricity is one of the commodities that is needed all the time, but once generated
electricity has to be readily consumed as storing it can be quiet expensive. Energy markets exist to

make electricity cheaper for the users as well as to provide more electricity where the generators

simply follow the principle ‘economies of scale’, that is to generate more electricity at cheaper
costs and still be profitable. Energy generators have to take in to account, all the risks that would
break the flow of electricity like a power plan failure, broken transmission lines, inclement weather
and natural calamities and the predicted peak load to generate enough electricity, usually more
supply than demand. Energy markets allow the power generation companies to fix prices in to the

future and accept bids from independent traders to buy the output at a fixed cost [6] [8].

1.2.2. Trading Markets

There are many electricity markets in the United States like, PJM Interconnection
LLC (PJM), Electrical Reliability Council of Texas (ERCOT), New York Independent System
Operator (NYISO), Midwest 1ISO, California ISO and New England ISO [6]. Each of these markets
are associated with the power generated in different geographical areas of this country. In this way,
PJM Interconnection LLC (PJM) is a Regional Transmission Organization (RTO) which is part of
the Eastern Interconnection grid operating an electric transmission system serving all or parts of
Delaware, Illinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio,
Pennsylvania, Tennessee, Virginia, West Virginia and the District of Columbia. ERCOT serves all
of Texas, NYISO serves all of New York State, Midwest ISO serves all of the Midwestern states

and California ISO serves the state of California.

1.2.3. NYISO

NYISO [1] is one of the energy markets in the USA, where power generating companies
and traders come together to take part in the trading process of selling and buying electricity. At
NYISO, traders can purchase electricity in the day ahead market at different zones which are

nothing but geographical locations in the New York state. The following are the tradable zones in

NYISO: West, Genesee, Central, Mohawk Valley, North, Capital, Hudson Valley, Millwood and

Dunwood [10] as shown in Figure 1.

NYISO ZONES

----- Total East NYISO Interface

:
I NYSEG Service Territory
MILLWOOD

Figure 1. NYISO Map.

1.3. Market Data

NYISO as well as other markets have a repository of historical data like pricing data, load
data and constraint information that is available to the public. We are going to use the day ahead
and the real time pricing data for different zones for displaying and performing mathematical

calculations on the data. Market data for NYISO is hosted at the NYISO’s website [13].

2. RELATED WORK

Any company that wants to participate in electricity trading would require tools that would
help analyzing the pricing data and help traders in making informed decisions to buy electricity or
not to generate revenue [10] [18] [19]. Historical analysis and prediction tools are developed and
used by many trading companies today. Analysis tools are researched and developed by all trading
companies and the logic and uses of the tools are kept secret as the tools are designed to maximize
profits and reduce risks. As well as due to the high R & D costs involved in building these tools
make them publicly inaccessible. But again the logical setup or implementation principles of any
of these tools are highly guarded from public domains and remain unknown due to the proprietary
trademarks of the solution providers.

While these programs are highly guarded, many private companies, like ‘Sungard Financial
Systems’, ‘OATI” ‘CME Group’, ‘VENTYX’, ‘TIBCO’ etc. develop and sell similar tools in the
open market. These tools are used by traders to run simulations, building graphs, and conducting
risk analysis.

Here are some of the related works and tools provided by private companies that can be
used for energy trading.

SUNGARD: Sungard Financial Systems [21] offers a tool for traders called as ‘ALIGNE’.
This product has various features providing the ability of:

e Risk management and risk analysis through pricing and analysis models.
e Asset valuation and optimization and stress testing.
e Measurement of various market risks such as Value at Risk (VaR), Earnings at Risk

(EaR), Cash Flow at Risk (CFaR), and What-If VaR Analysis Tools.

e Business Intelligence: Provides a set of business intelligence and reporting tools that
can be used with any common data model and databases including advanced cubes. It
also provides the traders with dashboards that can be used to show real-time alerts and
data feeds to deliver consolidated views, graphical representations of the data,
forecasts, real-time market data and projected performance metrics.

OATI: OATI provides various sets of tools for trading electricity. Here is a brief description
of a few tools and their capabilities.

e OATI WebTrader [16] tool provides a comprehensive solution for financial and
physical trading, scheduling, risk, and settlements in energy markets. As well as
position reports, robust reporting features, and data calculation features.

e OATI Webintelligence [14] tool gives energy traders options to gather data, organize
data, display and create custom tabular or graphic reports, and analyze data by built-
in advanced forecasting service to predict LMPs based on historical data or forecasted
loads. Using meter and weather data the tool can automatically export the forecasted
value to any external system. As well as give the ability to download the data into
their personal databases or upload specific data into the tool for analysis.

e OATI WebRisk [15] tool allows traders and trading companies to manage and
measure various risk types like market risk, credit risk, and enterprise-wide risk and
the ability to simulate “what-if” scenarios to optimize trading strategies.

CME Group: CME Group provides a ‘Quikstrike Option Valuation Tool’ [3] that is
available across all asset classes and features data on current and historical volatility by strike,

pricing analysis data, spread analysis and risk graphics, delta sheets etc.

VENTYX: Ventyx provides the ‘Energy Market Intelligence, Forecasts, & Analytics’ [24]
tool that delivers hourly forecasts of mid- to long-term electric market prices easily, determine the
effects of transmission congestion, fuel costs, generator availability, bidding behavior, and load
growth on market prices. This tool contains the historic energy markets data that provides traders
analysis tools that benchmark, conduct planning and market analysis.

TIBCO: TIBCO provides the ‘SPOTFIRE’ [22] analytics tool that can be used to analyze
large amounts of data in a smaller time frame by giving the ability to interactively query by
providing a GUI, visualize, aggregate, filter, and drill into large datasets. And lets the traders use
data from various sources for analysis and decision making, It also provides risk analysis for better

understanding of the risk profile and better management and control of risk.

3. APPROACH

In this chapter we are going to create an executable plan to find a solution for implementing

and building a historical analysis tool. The approach is shown in Figure 2 as a step by step process.

Identifying DBMS
and programming
language and
development tools

Analyzing Pricing
Data and collecting
data.

storing various
pricing data

Defining features and
functionality of the
historical analysis
tool

Identifying GUI
design principles for
implementation

. N N N

Creating Database
table schemas for

Figure 2. Approach Flow Chart.

We need to identify the right tools for solving the problem. Understanding the pricing data
and designing a DBMS is the first step towards solving this problem. The importance of accurate
historical data is paramount and a good database design which follows the ACID (Atomicity,
Consistency, Isolation, and Durability) properties helps in maintaining stability and consistency of
the application.

Once the data is cleaned and stored into the DBMS, the other steps would involve the GUI
design that follows the globally accepted user interface design principles such as Aesthetically
pleasing, Clarity, Compatibility, Comprehensibility, Configurability, Consistency, Control,
Efficiency and Simplicity. The above user interface design principles are taken into consideration
to make the GUI easy to user, presentable and efficient to handle the user inputs and display the
data with accuracy ensuring readability.

The third step would involve formulating mathematical functions that would be performed
on the data to give users the ability to aggregate historical data into views. Here we are also going
to design the acceptable inputs for the tool combined with the mathematical function that would
be added to the conditional statements in Transact SQL for querying data. Thus, providing the

users with a complete and usable GUI that enables creation of various scenarios on the same data.

3.1. Development Tools
The tools more commonly used for the design and implementation of databases is,
Microsoft SQL Server Management Studio 2012 [11] while the tool used for design, development

and coding of GUI is Microsoft Visual Studio 2010 [12]. The programming language used is C#

[2].

3.2. Pricing Data
Energy Markets like NYISO provide pricing data for various zones, also called LBMP
(Location Based Marginal Pricing) in downloadable Comma Separated Values (CSV) files as well

as Portable Document Format (PDF) and Hyper Text Markup Language (HTML) formats [13].

3.2.1. Day Ahead and Real Time Prices

The day-ahead LBMP’s contain price (in $/MWh) for combined energy, losses, and
transmission congestion determined on an hourly basis and the traders will contract to buy
electricity at the day ahead prices only. The other pricing data is the real-time LBMP’s which, as
the result of the unavoidable demand and supply issues, transmission issues and other constraints
such as weather, generator failures, natural calamities, is usually higher or lower than the day-
ahead prices traders agreed to pay. The difference between these two sets represents the loss or a

gain in monetary value.

The images in Figure 3 and Figure 4 below are the examples of day-ahead and real time

data respectively for a zone in New York generated by NYISO [13].

Day Ahead Market Zonal LBMP

— LBMP § - Marginal Cost of Losses -— Marginal Cost of Congestion
Zonal Prices
Name 00:00 0100 0200 0300 0400 0500 0600 07:00 0800 0000 10:00 11:00
PTID EST EST EST EST EST EST EST EST EST EST EST EST
CAPITL 381 3304 2408 2300 304 3800 4008 5115 4711 4006 5047 4892
61757 158 158 168 1.60 165 218 345 2.08 308 3.00 254 213
1130 -1005 112 000 -806 88 140 375 000 413 -1063 -1185
CENTRL 2382 2310 2280 1274 2305 2974 4551 4688 4682 4599 4127 3865
61754 048 0.43 040 053 040 064 111 1.02 0.66 0.60 0.52 0.40
142 126 014 000 112 11 018 143 213 255 343 a3
DUNWOD 3301 3142 2535 2450 3061 3778 5004 3233 4926 5111 5001 4829
61760 237 227 231 220 227 300 473 5.02 5.4 5.10 451 432
471 774 08 000 690 680 -108 28 000 318 810 013
Name 1200 13:00 1400 1500 1600 1700 1800 1900 2000 21:00 2200 23:00
PTID EST EST EST EST EST EST EST EST EST EST EST EST
CAPITL 4838 4676 4725 3600 4500 6228 5633 4743 4270 4622 3886 3706
61757 214 201 190 215 281 381 3.49 287 250 246 221 152
1335 1287 1523 127 047 077 003 044 050 648 458 -14.13
CENTRL 3600 3487 3303 3388 4452 6052 5568 4644 4126 3800 3311 2442
61754 0.52 0.51 042 0.49 0.64 1.0 1.06 0.88 0.75 0.52 035 034
267 248 240 080 126 173 180 144 000 109 068 177
DUNWOD 4726 4582 4562 4634 5407 7472 5073 5534 5230 4600 3035 3550
61760 408 402 376 421 533 6.98 6.49 547 499 462 375 230
1020 002 1174 9054 613 -1005 042 575 760 400 353 -1080

Figure 3. Day Ahead Prices Example.

10

Time Weighted/Integrated Real Time LBMP - Zonal

LBMP § —- Marginal Cost of Losses — Marginal Cost of Congestion
Zonal Prices
Name 00:00 01:00 02:00 03100 04:00 03:00 06:00 07:00 08:00 09:00 10:00 11:00
PTID EST EST EST EST EST EST EST EST EST EST EST EST

CAPITL 2041 2546 1422 2750 2304 2523 7381 3800 3083 3480 3485 4065
61757 0.10 0.56 0.68 1.67 153 160 478 2.54 238 2.14 184 205
1085 -1725 405 211 000 026 246 000 420 154 620 805

CENTRL 308 003 1005 2430 2102 2372 7360 5637 3984 3341 3017 3475
61754 0.03 012 016 041 042 042 116 066 074 058 049 046
240 217 051 027 000 003 58 2017 504 16 206 464

DUNWOD 1680 2180 1366 2799 2300 2615 7558 3030 4014 3580 3463 4001
61760 0.16 0.88 107 265 248 268 711 385 3.68 343 3.06 348
1528 -1328 312 -163 000 020 -190 000 330 -118 484 680

Name 12:00 13:00 1400 1300 1600 1700 18:00 1200 20:00 0 21:00 22:00 2300
PTID EST EST EST EST EST EST EST EST EST EST EST EST

CAPITL 3825 3462 2350 1052 3138 3610 2070 3198 3304 3345 2100 258
61757 211 184 130 121 178 196 1.60 18 214 181 060 017-
545 517 13 026 263 477 -18%5 172 072 519 -1186 000

CENTRL 3580 3334 2144 1831 2021 2006 2655 2035 4114 2030 1020 244
61754 046 044 024 023 042 045 030 051 056 033 000 002-
465 528 033 002 183 014 000 -044 940 25 158 000

DUNWOD 3853 3401 2442 2361 6413 0346 5200 5260 4350 3493 1873 269
61760 3.65 331 252 221 327 341 3.04 33 371 312 0.98 028-
410 308 103 335 3380 6060 2280 -2087 881 535 013 000

Figure 4. Real Time Prices Example.

In Figure 3 and Figure 4, you can see the prices are arranged by zone with a name and a
unique ID also referred to as PTID and the prices for different hours in the day starting from 00:00
to 23:00. Hour 00:00 refers to the whole hour starting from 12 AM to 1 AM and henceforth ending
with hour 23:00 covering the entire hour ending at 11:59 PM. To make things easier we will
represent the hours as Hour Ending’s (HE) that would translate the hours from 0 to 23 I to HEO1

to HE24 while storing the data in the database.

11

3.2.2. Causes for Real Time Price Fluctuations

Apart from demand and supply issues, transmission issues and other constraints such as
weather, generator failures and natural calamities can affect prices of electricity. Other reasons
that also cause real time price fluctuations are the different days of the week like weekdays and
weekends where the energy loads drastically change when people and business, factories and other

industries change their power consumption needs.

Larger businesses might still continue to operate all days of the week but might close on
specific holidays changing the demand for electricity. And the other major factor is peak and non-
peak hours of the day, where the energy needs of businesses as well as people change quiet rapidly
as the activity during the peak hours is much larger than the non-peak hours. The peak hours are

considered as the time between 8 AM to 11 PM and non-peak from 11 PM to 7:59 AM.

3.2.3. Profits and Loss

As we understand that the traders buy for the day ahead or the next day and are eventually
tied to selling the electricity at real time prices, profit and loss depends on what the buying price
was and the difference in the real time selling price. So, if the real time prices are higher than the
day ahead prices, there is profit made in terms of ($/MWh) for the number of units of MW’s bought

or vice versa.

3.3. Database Design

The primary purpose of database design is to make sure that the data is arranged in tabular
format containing rows and columns, while maintaining the integrity of the data by avoiding
redundancies, incorrect or wrong data and normalizing the data to maintain its consistency and

integrity [5].

12

Purpose of the database — The purpose of the database is to store the pricing data that would
be used in the historical analysis and estimation tool. The tool should be able to populate the day
ahead and real time prices and give the user the ability to select the combination zones as well as
the hours and specific days of the week to recreate various scenarios for example, analyzing data

for a particular hour of a particular day over a period of a few years.

Find and organize the information required — The data we must have for the data base is
the dates, real time, day ahead prices, information about the zones such as the names of the zones

and unique ID. Figure 5 shows the database schema.

— Day Ahead Prices Table

— Real Time Prices Table

— Real Time - Day Ahead Table

NY-1SO Database
I

— Zones Table

Figure 5. Database Structure.

Divide the information into tables — From the data available four tables can be created one
each for the Day Ahead data, Real Time data, Zonal data and an additional table which would store

the difference of prices between the Real Time and Day ahead prices for each and every day, zone

13

by the hour in order to reduce the response time when the user just wants to look at the difference

or the average difference of prices for a given date range for a set of zones and hours.

Define Columns — The columns identify various types of information pertaining to the table
schema. The real time, day ahead and the difference table would have a similar schema with the
same number of columns due to the identical sets of data they hold. The list of columns include
[NID], [Day], [HEO1], [HEO2], [HEO3], [HE04], [HEO5], [HEO6], [HEO7],[HE08], [HE09],
[HE10], [HE11], [HE12], [HE13], [HE14], [HE15], [HE16], [HE17], [HE18], [HE19], [HE20],
[HE21], [HE22], HE23], [HE24], [Changed], [PriceType]. Where NID denoted the Node ID,
Changed denoted the timestamp when ever the data is modified for maintenance purposes and
Pricec Type denotes if the prices are for Real Time or Day Ahead or the Difference (RT-DA). A
separate table for the Zones should also be designed which contains the following columns [NID]
denotes the node ID an alias for each Zone, [Name] denotes the zones name, [NYID] denoted the

unique PTID and [Changed] denoted the timestamp for maintenance.

Primary Keys - The primary key is a column, or a set of columns, that is used to uniquely
identify each row. As we have a large dataset, in order to avoid redundancies while inserting,
deleting and reading data we need to have primary keys for each and every table in the database.
The primary key for the day ahead, real time and the difference tables would be the combination
of the Date and Node ID (NID) as shown in the images below. And the Node Name table would
have distinct node names or zones hence the Name column is designated as the primary key as

shown in Figure 6.

14

Column Name Data Type Allow Mulls

y [TW int [l
@ Mame varchar(30)]
NYID nchar(15)]
Changed datetime]

[]

Figure 6. Node Name Table Schema.

Figure 7 below shows the schema for various pricing types created in the NYISO

database.
Column Mame Data Type Allow Mulls
ME | NID L int]
% Day date |
HED1 decimal(18, 2)
HEDQZ2 decimal(18, 2)
HED3 decimal{18, 2)
HEDO4% decimal{18, 2)
HEDQS decimal{18, Z)
HEDS decimal{18, 2}
HEO7 decimal{18, 2)
HEDS decimal(18, 2)
HEDS decimal{18, 2)
HE 10 decimal{18, 2)
HE11 decimal{18, Z)
HE12 decimal{18, 2}
HE13 decimal{18, 2)
HE14 decimal(18, 2)
HE15 decimal{18, 2)
HE1& decimal{18, 2)
HE17 decimal{18, Z)
HE 13 decimal{18, 2}
HE1%9 decimal{18, 2)
HE20 decimal(18, 2)
HE21 decimal{18, 2)
HE2Z2 decimal{18, 2)
HE23 decimal{18, Z)
HEZ24 decimal{18, 2}
Changed datetime I
Price Type varchar{s)

Figure 7. Day Ahead, Real Time, Difference Table’s Schema.

15

3.4. Functionality and Risk Prediction

We need to define the functionality and the requirements of the tool before we start
designing the Graphical User Interface. Here we will take into account the different ways the data
can be modified and viewed by applying various mathematical functions and also define an

approach for predicting risks that would help in estimating profits and losses for day ahead trading.

3.4.1. Functionality

For a trader who is interested in analyzing historical data there is no easy alternative as it
would take enormous amounts of time to go through pages and pages of pricing information. For
a user to search for a particular set of data is much more time consuming and cumbersome. So, the
most important functionality of the tool would be to have a variety of inputs that would qualify for
the search and query criteria such as the ability to select specific zones of interest, combined with
specific days and even particular hours of the days over a large date range.

Once the selection criteria is established, the other important aspect is to condense the huge
amounts of data into meaningful mathematically applicable formats such as averages of day ahead,
real time, differences and combinations of all three types of prices when the traders can look at the
average day ahead prices, real time and the differences. Giving them an idea about the average

profit and loss over a particular scenario.

3.4.2. Display Criteria

We will discuss the different criteria’s that can be emulated into the tool so that the traders
can avoid using time taking process of loading data into Excel sheets and manipulating the data.
For the ease of reading lets represent the Day Ahead as ‘DA’, Real Time as ‘RT’ and the Difference
of Real Time and Day Ahead (RT-DA) as ‘DIFF’. So, we can give the traders the options to view

just the Real Time data or the Day ahead data or the Difference data with the selection criteria.

16

And to view the Day ahead Averages, Real Time Averages, and Difference Averages. This can be
achieved by taking the inputs from the tool and building a SQL query to display the data into a

data grid.

3.4.3. Predicting Profit and Loss

For predicting profit and loss we are going to use the following values: averages of the
Difference between Real Time prices and Day Ahead prices (RT-DA), calculate Standard
Deviation of the RT-DA prices and calculate the 95% confidence interval of the prices and get the
upper bound and the lower bounds of the prices over a large data set.

Averages: Average means the sum of the listed entries divided by the size of the total
entries. Averages provide a distinct view of the pricing data in our tool, as the traders can easily
spot the higher RT-DA prices on an average in making a decision. So, we shall consider the use
of RT_DA average for the prediction.

Variance and Standard Deviation: Variance measures the spread of a set of numbers and
the square root of variance is called the standard deviation. A small variance indicates that the data
points tend to be very close to the mean or the average value, while a high variance indicates that
the data points are very spread out from the mean and from each other.

The variance is typically designated as Var(X),02, or simply o® (pronounced
"sigma squared") [23]. And can also be defined as the average of the squared differences from the
mean. The expression for the variance can be expanded:

Var(X) = E[X? — 2XE[X] + (E[X]?] (1)

= E[x? — 2E[X]E[X] + (E[XD?]

17

= E[X?] — (E[XD?]

A mnemonic for the above expression is "mean of square minus square of mean". And
Standard Deviation [20] is designed by the symbol o (the Greek letter sigma) and can be
expanded as

Standard deviation = SQRT (Variance) or
6 = VVar(X))

Standard Deviation along with Confidence Intervals [4] are highly used in the financial
sectors to indicate the reliability of an estimate. A confidence interval gives an estimated range of
values which is likely to include an unknown population parameter (Prediction Price Difference),
the estimated range being calculated from a given set of sample data.

The selection of a confidence level for an interval determines the probability that the
confidence interval produced will contain the true parameter value. In our probability model we
will choose a 95% confidence interval. A 95% confidence interval covers 95% of the normal
curve the probability of observing a value outside of this area is less than 0.05.

We can calculate the Lower and Upper bounds of the 95% confidence interval by using the

formulae below.

Lower endpoint = X — 1.96 \% (3)

int = ¥ 2
Upper endpoint = X + 1.96 =

Where X represents the sample mean and n is the sample size.

Three Day Average: As the tool is capable of creating various scenarios, we wanted to
consider the three day RT-DT average (the three occurrences before the Day Ahead) into the
estimation formula, as this immediate data might be missing from the statistical analysis. And the

possibility of a trend in prices that closely follow the previous days values.

18

3.4.4. Estimation Formula

In order to predict a Real Time price a day before its occurrence we need to assign, different
probability values to the mathematical functions above as per their prediction abilities and
categorizing the final probability into risks.

The estimation pseudo code for our tool is as given below.

Assume probability P = 0;

IF Average (RealTime-DayAhead) > 0;
P=P+0.3;

IF (UpperBound — LowerBound) > 0;
P=P+0.5;

IF (Threeday RealTime-DayAhead Average) > 0;
P=P+0.2;

IFP>0.8

Definite Buy;

IF 0.6<P<0.8

Buy;

IF 0.45<P<0.6

Moderate Risk;

IF 0.3<P<0.45

Risky;

IF P<0.3

High Risk;

19

We are going to apply this logic in the C# code to display the risk of buying electricity for

a Day Ahead price based on various simulations by the user.

3.5. Graphical User Interface Design
For the GUI design we will take into consideration the various industry standards, such as
aesthetically pleasing, clarity, compatibility, comprehensibility, configurability, consistency,

control, directness and efficiency.

3.5.1. Design Principles

The following are the Interface design principles and standards [9] we are going to use in

designing the analysis tool:

e Aesthetically Pleasing: Creating meaningful elements and grouping them together
while maintaining a simple design makes a GUI easy to understand and use.

e Clarity: The GUI should have clarity in its elements, functions words and text.

e Compatibility: The GUI should be compatible with the user’s views, about the tasks
and functions of the interface.

e Comprehensibility: The interface should be easy to learn and the user should easily
know of what to do, what to look at, how to do and where on the interface and the
order of actions should be easily recollect able.

e Consistency: The system should look and feel the same across the board. Each and
every element should have a similar look, have similar uses, operate similarly while
every function should always yield the same results and the positions of the

elements should be static.

20

Control: The user must always control the interaction on the interface. And every
action should be performed quickly under explicit user requests and should be error
free. The means to achieve goals should be flexible and compatible with the user’s
skills, experiences, habits and preferences.

Efficiency: The interface should have various features to make it efficient to use
such as, minimal eye and hand movements, easy transactions and simpler flows
between various systems, shorter navigation paths and anticipated users wants and

needs whenever possible.

21

4. IMPLEMENTATION

For the implementation of the Historical Analysis Tool structured query language (SQL)
was used to query the database tables and return the outputs. C# was selected as the programming
language to build the GUI and the logic for the tool. SQL is widely used as a standard querying
mechanism by a majority of software developers and C# is an object oriented programming
language also widely used in conjunction with Microsoft Visual Studio for various types of
software development across the world. These selection have a huge impact on the project as they
are very efficient and reliable and also save time in developing software. They also are easier to

manage and edit in the future for further enhancements.

We followed a standard three-tier architecture, where the three layers are the GUI, Data

Access Layer (logic or code) or the Business Logic and the Data Layer (Database).

4.1. Graphical User Interface (GUI)
Following the GUI design principles as mention in the Approach and the requirements, let
us implement the design. Figure 8 shows the content and features of the tool that was built in the

implementation phase.

22

GUI (Inputs)

Prediction
Window with
various selectable

inputs.

Prices Window

Averages of
various price
types based on
inputs selected

Perform staistical

RT, DA, RT-DA

Prices based on
inputs selected

analysis and
predict risk

Figure 8. Functionality of the Tool.

4.1.1. Selection Criteria or Inputs

A menu of inputs to be used in simulations or data analysis are presented below for the
various function based on the requirements of having the ability to choose any one or various
Zones in NY1SO, Having a very detailed Date and Time options where the users can choose a start
date and an end date, different days of the week, and different hours and particular months. And a

prices sub category for the users to view different prices or a combination of them at once.

Here Figure 9 shows the windows that present Zone Selection choices; Figure 10 shows

Prices Sub Categories; and Figure 11 shows the date time criteria.

23

MARKET
NYISO v
PRICES SUB CATEGORY

[JALL ~
] CAPITL

[] CENTRL

[] DUNWOD

] GENESE

[1HaQ w

Figure 9. Zone Selection Criteria.

Here the Zones are displayed as a collection of CheckedListBoxes using C#. The user can
select any combination of zones or deselect them while simulating a scenario. The select Zones

will be inputs for the SQL query.

MARKET
MNYISOD v

FPRICES SUB CATEGORY

DA RT.DIFF I
Day Ahead

Real Time

RT-D& Difference

DA RT.DIFF Averages
Day Ahead Average
Real Time Averages —
RT-DA Averages

Figure 10. Price Sub Category Selection Criteria.

Figure 10 shows the prices sub category where the user has the ability to choose the
different price types and Averages of those price types they wish to see. ‘DA,RT,DIFF’ and
‘DA,RT,DIFF Averages’ gives the ability to display all three price types arranged by the Zone and

Day in a tabular format. And the other selections are self-explanatory.

24

DATE. TIME. DAYS

START | Thursday , Nowvember 21, 2013 E~ MONTHS
END Thursday , Movember 21, 2013 E- E}iﬁg ”
MON TUE WED THU FRI SAT SUN E;ﬂ;:{
pavs OO0 O O OO0 O O] ny
1 2 3 4 5 6 7 8 3 10 11 12 ALL n T aun
I I [auL
HOURS 13 14 15 16 17 18 19 20 21 22 23 24 onPEAK [AU CLEAR
000000000000 o [2 OSEP v

Figure 11. Date, Time and Hours Selection Criteria.

Figure 11 shows the date, time, day’s selector where the user is given various options to
choose the month, date, time and day of the week to simulate various criteria’s. Having the option
to choose Months is important as the traders can look for data pertaining to various seasons, as the
electricity usage varies from season to season. As an example, people use more electricity on very

cold or very hot days.

The ‘ALL’ checkbox works as a select all function, that selects all the hours and all the
months and all the days in the selection criteria. The ‘ON PEAK’ checkbox when checked will
select the hours from 8 to 23 and the ‘OFF PEAK’ when checked selects the hours 1 to 7 and 24.
This adds more functionality where the users can just select one checkbox instead of clicking on

all related hours.

The ‘CLEAR’ button works a clear all function where all the users’ previous selections

will be deselected for a fresh new set of inputs.

All of this logic is implemented in C# in the data access layer, where the button checks and
unchecks are configured to trigger their respective functions like selecting all the checkboxes or

clearing them.

25

4.1.2. LMP and Prediction Buttons

With the selection criteria in place, we need to define two functions for the user to analyze

data and they are setup as buttons that can be clicked to obtain the results.

LMP: The LMP function takes the various inputs selected by the user and returns the

pricing data by displaying it in a Data Grid View (tabular format). For every Price Sub Category

selected a different SQL query is executed to return the right output data. So, the data access layer

or the logic is coded in C# [2] to check for the price selections and dynamically generate an

executable SQL query that will be executed on the database with the other inputs as conditions.

(& LETC Tool -0
MARKET DATE, TIME, DAYS A
MONTHS
NYISO v START | Friday . November 22, 2013 B~ LMP
JAN
PRIGES SUB GATEGORY END | Fidy | MNovenber 222013 [+ HFEE :
M MON TUE WED THU FRI SAT SUN H:‘:;‘
AL o ws 0O 0OO0OODO a
:E’E‘:% 1234567885 00R L 0 mE
S 000000000000 T
= o HOURS 13 14 15 16 17 18 19 20 21 22 23 24 ONPEAK [J Tlaue SEE EERT
e . 000000000000 o g [Osep v
LWP | TRANSMISSION
Figure 12. GUI of Historical Analysis Tool.

26

Example of a SQL query based on the inputs to display the ON Peak Average, Off Peak
average, prices for all the hours from the Difference table for Zone CAPTIL for the date range of

all the day between '2011-10-10" AND '2012-10-19' and Sundays only is shown in Figure 13.

SQLQueryl.sql - G..ISO (usert (62))* " storedproc.sql - G...master (userl (68)) | NYISORT TableScr..ster (user] (63]) | ltctool.sql - GANE...aster (user] (63)) | differenceRT DA.sq...aster (userl (61)) | creatingcompkey.s...ster (userl (60)) ¥ X
SELECT node_name.Name, Da: ast | (HE23+ HE08+ HE09+ HE10+ HE1l+ HE12+ HE13+ HE14+ HE15+ HE16+ HELT+ HE18+ HE19+ HE20+ HE21+ HE22)/16 as numeric(8,2)) as ONEK , =
cast ((HEO1l+ HEQ2+ HEQ3+ HEQ4+ HEQ5+ HEQ6+ HEQ7+ HE24)/8 as numeric(8,2)) as OFFEK , &
HE01, HE02, HEQ3, HE04, HEOS, HEQ6, HE07, HEOS8, HE0S, HE10, HE11, HE12, HE13, HE14, HE15, HEl6, HE17, HE18, HE13, HE20, HE21, HE22, HEZ3, HE24
FROM RT_DA [HP node_nane ON RT_DA_IMP.NID
WHERE (node_name.Name CRPITL') Day LND '2012-10-19'
and RT (weekday, Day) IN (1
order by Name, Day asc

v

j Reshs _‘.j Messages
Name Day ONPK OFFPK HED! HEO2 HED3 HED4 HEQDS HEDE HED7 HEOB HEDS HEWD HEN1 HE1Z HE13 HEM HE1S HEVE HEI7 HES HEIS HEXD HEZ! HER HEZ3 HEM "

1O MG £ 207 &5 349 1M1 065 0 3% 2M 845 A 4% T4 S 420 26 200 207 A% 440 4% 00 45 44 I® 66
2 GPTL WM 0 4R 0 407 MR B8 T 641 GR 27 53 A} 48 59 18 B 4K 4B A5 A8 A8 A7 47 02 M 4Y
3 CAPTL 2014030 -1282 1636 083 67 2736 2687 2407 43 675 1960 938 189 BH7 955 926 4% A2 A0 007 719 75 244 4% 982 8% A
4 CAPTL 201106 075 380 265 487 Q83 210 349 AR 54 237 40 310 41 AN 0 0% 6 82 43 420 4¥ 76 269 5% B4 4R
5 CAPTL 201113 049 340 636 244 18 -8R 0R 216 204 89 4700 BB 338 BN G45 B0 050 040 /04 437 58 1853 361 306 055 (094
6 CAPTL 2014120 115 226 910 194 365 118 673 AW 186 2R 617 59 87 485 739 389 180 126 2626 1005 Q09 682 204 0B D15 167
TOCAPTL 2am17 702 431 764 443 786 363 1M 207 0% 3263 347 342 557 60 618 2% S04 4H 142 633 984 MO0 71 619 h& N0
& CAPTL 20m-204 414 113 15 084 046 872 946 637 040 228 462 660 B9 47 K0 416 A3 268 1% 260 206 B6 A0 AT 3% 2N
§ CAPTL 2011211 859 730 439 671 3 436 40 AR 7% 766 661 382 48 626 5M0 4% 609 233 1940 2673 1964 1885 A4 467 03 1162
10 CAPTL 2014218 420 477 464 426 712 285 416 489 457 635 482 5% 206 16 270 260 2% A3 W% 14 08 -4A 08 3% 540 7A
1 CAPTL 2014225 706 161 -0 132 225 045 88 0% 003 063 M 042 42 347 343 2% 53 408 042 1212 3005 2058 432 783 169 £H
12 CAPTL 20120101 333 478 064 162 2% 611 329 220 3% 7210 854 3956 070 014 453 3686 861 340 161 832 17M 709 648 8746 316 202
13 CAPTL 20120108 1% 507 52 210 291 439 589 881 706 58 281 02 343 1M 2 255 282 283 0 7% 87 1014 23 07 03 415
14 CAPTL 20120115 -1808 1042 2020 1874 4% 342 07 A28 382 662 244 461 A7HL 870 881 092 682 250 2762 /O3 308 3643 RE U5 2189 2T
15 CAPTL 2012012 154 537 188 781 925 753 803 79 008 740 3% 185 019 128 279 349 380 061 IO 168 827 B2 475 06 23 (46
16 CAPTL 20120129 552 079 428 9% 30 562 28 1357 N0 428 280 1906 397 7R 0% 760 474 S50 667 1251 Q24 2B 312 457 548 1908
17 CAPTL 20120205 117 086 47 -3 Q09 -5 082 2683 108 050 42 219 2R 1% 110 04 Q5 046 De6 3047 207 62 18 BH 2W 42
18 CAPTL 20120212 8% 550 1587 766 130 0% 177 431 8% 8 46 A0 2040 260 07 €5 3B 041 30 B BR TROHA IR W 7
19 CAPTL 20120219 0%2 146 006 124 209 268 024 108 419 513 48 118 0% 1A/ 4F 0% 4B Q%2 204 910 5EE 215 14 13 16 2%
A CAPTL 220226 182 280 471 A% 2% A5 261 646 328 1n 086 178 439 4% 34 400 36 60 414 442 132 0N 48 AWM 25 1%
21 CAPTL 20120304 407 0% 3% 112 045 0M 008 44 23 38 60 43 387 AW 47 3% 205 A7 AW 08 602 30 1M 405 609 717
2 CAPTL 2M20341 568 NULL 760 457 NULL 436 220 407 4075 747 072 842 7 137 47 37 Al 45 bR 0% 1654 653 489 1003 514 46D
B CAPTL 2120348 443 1153 350 835 764 141 745 B3 203 B 7% 202 563 ABT 474 23 18 27 287 A% 30 517 34 027 108 348

2 CAPTL 20120325 466 188 635 1579 9% 283 M8 251 797 K1 410 6251 788 472 0N 045 075 488 D07 04 57 D61 M 57 662 30 v

(9 Quey executed successiully. GANESHA\SOLEXPRESS (1030RTM) | user! (52) | NVISO | 00:0000 | 3 ows
ady In7 Col23 3

Figure 13. SQL Query Example 1.

Example of a SQL query to display average prices of Hour Ending 8, 9, 12, 15, 18, 21 and
23 for the Zone CAPTIL over a data range of all the weekdays between '2018-04-10" AND '2013-

06-10" as shown in Figure 14.

27

SQLQuery2.sql - G...ISO (user1 (53))*] 50LQueryl.sql - G...150 {user] (62))* | storedproc.sgl - G...master (userl (68)) MNYISORT_TableScri...ster (userl (63))
Select node_name.Name, da_lmp.Pricelype, cast(avg(HEOE)as numerici(g,2 as HEQE,

cast (avyg (HEQ9) as numeric (8,2 as HE09, cast(avg(HE10)as numeric (8,2 as HE10,
cast (avg (HE1l)as numeric (8,2 as HE11, cast(avg(HE12)as numeric(8,2 as HE1z2,
cast (avg (HE13)as numeric (8,2 as HE13, cast(avg(HE1l4)as numeric(8,2 as HE14,
cast (avg (HE1S5)as numeric(g, 2 as HE1S5, cast(avg(HE1l6)as numeric (8,2 a=z HEl&,
cast (avy (HE17)as numeric(g8, 2 as HE17, cast(avg(HE18)as numeric (8,2 as HE1S8,
cast (avg (HE19)as numeric (8,2 as HE19, cast(avg(HE20)as numeric(8,2 as HE20,
cast (avg (HE21)as numeric (8,2 as HE21, cast(avg(HE22)as numeric(8,2 as HE22,
cast (avg (HEZ23)as numeric(g, 2 as HEZ3

FRCOM da_lmp INNER JOIN mode name CON da lmp.NID = node name.NID

WHERE (node name.NWame like 'CAPITL') and Day BETWEEN '2013-04-10' AND '2013-06-10'
and DATEPART (weekday, Day) IN (2,3,4,5,6

}gro‘.:.p by node_name.Name, da lmp.Pricelype order by Name;

[Resutts _'_1 Messages
Name PriceType HEDE HEODS HE10 HE11 HE12 HE13 HE14 HE15 HE16 HE17 HE18 HE1S HE20 HE21 HE22 HE23
4176 4259 4481 4712 4837 4863 4838 4836 4754 4861 4816 4611 4766 45883 4285 3758

Figure 14. SQL Query Example 2.

PREDICT: The Predict button is defined to open a new Predict widow, where the user gets
an additional selection criteria that is completely independent from the main LMP window. This
additional GUI is designed to make the tool more user friendly and to improve the overall
efficiency. So, the users can view the LMP prices in the first window and click on the PREDICT
button to open a new window to perform statistical analysis and get a RISK value of buying

electricity at Day Ahead prices.

The predict button creates a new window on every click. Giving the user the ability to
multitask working with two windows as well as save time by creating different scenarios in
multiple windows. For example the user can view the ‘DA, RT, DIFF’ for a period of time in the
first window and use the Prediction window to run the statistical analysis. So, the user can look at
the risks and view the whole set of data on the first window side by side. Figure 15 is the screen

shot of the Prediction windows GUI.

28

START |Wednesday, October 9, 2012 [F

END |Wednesday. October 92013 [Tl

MON TUE WED THU FRI SAT SUN
pavs O O O OO O O

CHECKALL

Figure 15. GUI of Prediction Window.

4.2. Data Access Layer or Business Logic

The logical part of the project is implemented in C# [2] an objected oriented programming
language [17]. The business logic is the part of the program that encodes the real-world business
rules that determine how data can be created, displayed, stored, and changed. It is contrasted with
the remainder of the software which might be concerned with lower-level details of managing
a database or displaying the user interface, system infrastructure, or generally connecting various

parts of the program.

The C# Forms classes are used in generating the GUI containing the various Checkboxes
and Buttons. And C# events are used to derive the log behind clicking various function buttons
and checkboxes. And based on the selected inputs strings and string builders are used in

dynamically creating an executable SQL Query that will be sent to the SQL Server for execution

29

returning valid outputs. The output is then populated on the GUI using Data Sets and Data Grid
Views which store the data in a tabular format. The data in the data grid views can be further
processed and identified using the Rows and Column classes provided by the object oriented

programming framework.

Example Code for an event that is raised when the ‘OFF PEAK’ box is check in the date

and time selector panel. This event calls the offpeakcheck() function that checks the hours from 1

to 7 and 24 while unchecking the rest of them on the GUI as shown in Figure 16.

Graph.cs Days.cs Peaks.cs Form_LMP_Breakdown.cs Form2.cs Percent.cs [Design] Percent.cs miso.cs Forml.cs >

“I§ WindowsFormsApplication2.Form1 | 8% offpeakcheck()
1534 |
1535 = private void offpeakcheck(}
1536 {
1537 checkBoxl.Checked = true;
1538 checkBox2.Checked = true;
1539 checkBox3.Checked = true;
1548 checkBox4.Checked = true;
1541 checkBox5.Checked = true;
1542 checkBox6.Checked = true;
1543 checkBox?.Checked = false;
1544 checkBox8.Checked = false;
1545 checkBox8.Checked = false;
1546 checkBox18.Checked = false;
1547 checkBox1l.Checked = false;
1548 checkBox12.Checked = false;
1549 checkBox13.Checked = false;
1558 checkBox14.Checked = false;
1551 checkBox15.Checked = false;
1552 checkBox16.Checked = false;
1553 checkBox17.Checked = false;
1554 checkBox18.Checked = false;
1555 checkBox19.Checked = false;
1556 checkBox2@.Checked = false;
1557 checkBox2l.Checked = false;
1558 checkBox22.Checked = false;
1559 checkBox23.Checked = true;
1568 checkBox24.Checked = true;
1561 checkBox25.Checked = false;
1562 checkBox26.Checked = false;
1563 checkBox28.Checked = false;
1564 checkBox29.Checked = false;
1565 checkBox38.Checked = false;
1566 checkBox31.Checked = false;
1567 checkBox32.Checked = false;
1568 checkBox33.Checked = true;
1569 checkBox34.Checked = true;
1578
1571 for (int i = @; i < checkedListBox4.Items.Count; i++)
1572 {
1573 checkedListBoxd.SetItemChecked(i, true);
1574 T
1575
1576 }
1577

Figure 16. Coding Example 1.

30

Example code for dynamically building the inputs for the SQL queries to be executed on

the server as stored procedures by dynamically assigning parameters with values is shown in the

Figure 17.

LETC Tool - Microsoft Visual Studio - a
File Edit View Refactor Project Build Debug Team Data Tools Architecture Test Analyze Window Help
R I e A =T RIEs - Im iRy - A= N

iDabhafl==22|00388832-

Percentcs X

7igPercent FormsApp.Form1 <] 5% button4_Clickiobject sender, Eventargs &) JelaElEaa
630 3} = 3 solution 'LETC Tool' (2 projects)
631 4+ F LETC Tool
622 » [Properties
Z R 633 ls= if (Market == "NYIS0") . i References
634 3
3 app.confi
635 =q1.0pen(); = opp.cont
.] DALes
636 //Dataset ds = new Dataset(); >
637 Sqlcommand 51 = new SqlCommand("nyiso_final_sp_Avg", sql);) Daysics
<1 ConmandTimeout — 300; =] Form_constraints_to_Imps.cs
SL.CommandType = CommandType. StoredProcedure; 4[] Form LMP_Breakdown.cs
//51.Paramcters[e].Value = start_date; 2] Form_LMP_Breakdown Designer.cs
//51.Parameters[1].Value = end_date;] Form_LMP_Breakdown.resx
s1.Parameters.Add("@sdt”, SqlDbType.DateTime).Value = start date; 4 B Fomics
51.Parameters.Add("@enddt”, Sql0bType.DateTime).Value = end date; @) Form Designercs
s1.Paraneters.Add("@d1", 5q10bType.Int).Value = datepart[e]; - 9

s1.Parameters.Add("@d2", 5q10bType.Int).Value = datepart[1];
s1.Parameters.Add("@d3", Sq106Type.Int).Value = datepart[2];
s1.Parameters.Add("@d4", Sql0bType.Int).Value = datepart[3];

) Form1.resx

N

] Forma.es

#) Form2 Designer.cs
s1.Parameters.Add("@d5", Sql0bType.Int).Value = datepart[4]; 8 Form2 resx
s1.Parameters.Add("@d6", $ql0bType.Int).Value = datepart[5];) miso.cs
s1.Parameters.Add("@d7", 5q106Type.Int).Value = datepart[6]; &) misoDataSet xsd
s1.Parameters.Add("@nl", 5q106Type.Int).Value = monthpart[8];) Peakscs
s1.Parameters.Add("@n2", 5ql0bType.Int).Value = monthpart[1] E

o 4 [Percentages.cs
51.Parameters.Add("@3", 5q10bType.Int).Value = monthpart[2];

s1.Paraneters .Add("@ms"
s1.Paraneters .Add("@ns"
s1.Paraneters .Add("@15"

q106Type.Int).Value = monthpart[3];
q10bType.Int).Value = monthpart[4];
q10bType.Int).Value = monthpart[5];

‘&) Percentages.Designercs
%) Percentages.resx

] Program.cs
s1.Parameters.Add("@n7", SqlDbType.Int).Value = monthpart[6]; 4 (3 Percent-FormsApp
51.Parameters.Add("@n8", 5q10bType.Int).Value = monthpart[7]; » [Properties
s1.Parameters.Add("@a", Sql0bType.Int).Value = monthpart[8]; , [References
sL.Paraneters.Add("@nie”, sqlobType.Int).value = monthpart[9]; . [Graphees
s1.Paraneters Add("@n11", 5q10bType.Int).Value = monthpart[10];

s1.Parameters.Add("@n12", Sql0bType.Int).Value = monthpart[11];
//51. ExecuteNonQuery() ;
SqlDataAdapter sda = new SqlDataAdapter(sl);

N

[Percent.cs
] Percent Designer.cs

] Percentresc
sda.Fill(ds);) Program.cs
sql.close();

/freturn ds;
668)
669 }
0% -

&3 Solution Explorer

Figure 17. Coding Example 2.

A SQL Query that can be dynamically initiated and stored on the SQL Server. Stored
Procedures are highly efficient and reduce the data transferred from the application to the server
and reduce redundancies. In the above example, a SQL connection is established and the various
inputs are passed on as parameters to the Stored Procedure.

4.3. Data Layer

The data layer represents the implementation of the databases on the servers. As the
database schemas have been created earlier, we need to create the table schemas and load the data

from the CSV files from NYISO into their respective tables.

31

Here is an example of the script for creating the Day Ahead price table on the SQL Server

as shown in Figure 18.

/#3%%%% Object: Table [dbo].[DA IMP] Script Date: 7/7/2013 11:03:50 BYf *vésss !
SET ANSI NULLS ON
o

SET QUOTED IDENTIFIER ON
GO

[REATE TRBLE [dbo]. [RT_LMP] (
[NID] [int] HOT NULL

[Day] [date] N

[HEO1] [decimal] (1

[HE02] [decimal] (1

[HEO3] [decimal] (1

[HE04] [decimal] (1

[HEOS] [decimal] (1

[HEO6) [decimal] (1

[HEQ7] [decimal] (1

[HEOS] [decimal] (1

[HEQ9] [decimal] (1

[HE10] [decimal] (1

[HE11] [decimal] (1

[HE12] [decimal] (18,

11

11

101

101

101

101

101

101

101

101

101

[HE13] [decimal
[HE14] [decimal
[HE15] [decimal
[HE16] [decimal
[HE17] [decimal
[HE18] [decimal
[HE19] [decimal
[HE20] [decimal
[HE21] [decimal
[HE22] [decimal
[HE23] [decimal
[HEZ4] [decimal] (18, ,
[Changed] [datetime] NOT HULL

CONSTRAINT [pk newRTconstraint] PRIMARY KEY CLUSTERED

|
N T T N

[NID] AsC,
[Day) AsC

JWITH (PRD INDEX = OFF, STATISTICS NORECCMEUTE = OFF, IGNORE_DUF XEY = OFF, ALLOW ROW LOCKS = ON, ALLOW PAGE_LOCKS = ON) ON [ERIMARY]

) ON [PRIMARY]

GO

Figure 18. SQL Script for Creating a Table.

After creating the schemas for the price tables, we need to write an algorithm that would
parse the data from the CSV files containing the pricing data. So, as we are developing a tool for
historical analysis, we downloaded the CSV files from NYISO for a time period starting from

January 2008 to June 2013, totaling 66 months of pricing data.

32

Here is an example of the parsing algorithm written in C# that would access the CSV

files stored in a folder on the hard drive as shown in Figure 19.

Program.cs® X

ﬁNV\SO_DA_LMPSngmm vl ¥ GET_DA LMP(string path)

% | <
37
i 38 | foreach (string filenane in files)
1 B | {
4 StrearReader Resp = new StrearReader (Path. Combine(path , filename));
string line;

2 while ((line = Resp.ReadLine()) != null)
3|
) string[] variables = line.Split(',");
45 int NID = 6;
46 if (varizbles[@] != "\"Tine Stamp\"")
7 {
3 for (int 1 =9; 1 ¢ variables.length - 5; it+)
g {
50 variables[1] = variables[i].Remove(@, 1);
51 variables[1] = variables[1].Remove(variables[1].Length - 1, 1);
52
53 dt = DateTine.Parse(variables[8]). ToString("yyyy-Mi-dd");
54 try
5 {
56 SglCormand id = new SqlCommand("select NID from node_name where NYID = ' + variables[2] + """, sql);
57 NID = int.Parse(id.ExecuteScalar(). ToString());
53 }
5 cateh (Exception ee)
0 {
61 SqlComand insnid = new SqlComnand("insert into node_name(Name, NYID, Changed) values('™ + variables[1] + "', ' + variables[2] + "', " + DateTime.low + "')", sql);
62 insnid. ExecuteNonQuery();
i3 1
o4 int HE = int.Parse(DateTine. Parse(variables(@]).Adddours(+1). our. ToString());
£ if (HE == 0)
6 {
&7 HE = 24
i }
69 SqlConmand cnt2 = new SqlCommand("select COUNT(®) from rt_lmp where day = ' + dt + "' and NID = "™ + NID + """, sql);
L] int count2 = int.Parse(cnt2. ExecuteScalar(). ToString());
pul if (count? ¢ 1)
7 {
n SqlComand ilmp = new SgqlCommand("Insert into rt_lmp (NID, Day, HE" + HE.ToString("@a") + ", Changed) values('" + NID + "', "™ +dt + ™', ' + variables[3] + "', " + DateTime.Now + "')", sql
% 11mp. ExecuteNonQuery();
7 }

m% -

Figure 19. Coding Example 3.

Here Figure 20 is a screenshot of the data base table for the Day Ahead prices after the data

is inserted showing a total of 30030 rows of data.

33

File Edit View Query Debug Tools
BNewauey [|0y 5 Wl G [5

27 %7 | master - | ¥ Execute p

Window Community Help

v i

| SOLQuery3.sql - G..NYISO (user] (55)) | SQLQuery2.sq - G...150 (user1 (54))* ' SQLQuery1.sql - G._ster (user1 (52))"| - iﬂ
S J#=wxx% Script for SelectTopNRows command from SSMS *w#wex/ el
!:'. SELECT *~ ~ ‘E
i FROM [NYISO].[dbo].[DA_LMP] S
-1 L=}
:
ES v

HES HE? HEQS HEQ9 HEND HEN HEIZ HEI3 HEI4 HEIS HEIE HEI7 HEIE HEID HEZ HEZl HEZ HEZ3 HEH A

5283 5528 5500 6818 8144 6708 G006 7953 7930 7354 8273 9918 1539 10330 9783 9542 8830 U566 6024

7484 11178 11739 12695 11542 11126 11351 11100 10885 10838 TI0ES 12456 15156 14663 13201 13127 10630 9642 10130

10821 13558 13777 13921 14243 13785 13400 12660 12615 12415 13413 14607 18209 17586 16157 15115 14719 12083 12472

14190 16814 15018 14611 612 14646 1311 13130 12943 13245 13884 15163 16834 17251 15457 15385 14064 1318 14835

0875 10495 S259 10186 11744 11743 11527 10211 9996 £33 E1S9 11385 13718 12851 11399 %807 8% 353 7638

S50 6111 6089 7007 G040 B2 G082 7473 5930 5924 5951 @172 10468 10191 934 I 7E7 G321 5680

5134 7358 8546 8606 G247 7952 7625 7027 6466 6025 6309 8574 10101 9674 8514 768 6967 5772 533

3725 5510 7856 7513 7521 7236 7300 6781 6518 6378 6333 7920 10365 9499 8228 7533 G4 5657 4587

%13 6435 7359 71 A3 TM7 07 6871 €530 6282 EMI6 7380 9889 9034 7694 A5 GAd5 G2B4 470

500 7200 G271 G068 TRM BI52 TAZ RS2 TRl T2E4 8511 11164 10279 8820 8406 776 6788 5212

4317 €417 753 7558 7508 7428 6818 6770 6823 6560 7685 9238 8338 7514 7238 EBEZ 6013 4876

4187 4921 5188 EI0 TISE T2 7IE6 B4R 612 SR 7296 935 BAT4 G255 7741 EMS 72 5199

5045 5819 5177 6423 TE06 7730 BL3%6 G003 7153 6339 6774 10865 10506 9480 911 TAN7 6735 5747

5350 8177 8431 8687 8612 854D 8454 E1L72 7811 7461 9451 11082 10454 9863 S180 G040 6350 5973

5726 8636 10165 10477 9955 10431 10519 9552 99K 415 0237 12817 12506 11507 10422 9339 7651 6993

6918 9270 10193 SB51 9355 9355 9093 9049 80 8486 £A07 10370 12138 1630 10528 10062 080 6235 6427

6454 9057 9721 8380 §182 SO51 6766 8636 £147 B89 7REI 5213 V1385 11482 10546 9745 875 7245 5284

6116 8245 9181 8529 GL07 6759 8567 8007 7758 7519 767 8819 10808 9771 989 8725 7E35 612 606

5979 6125 7433 G218 447 %945 %634 9334 0336 E268 B4B6 10133 1178 1773 10357 10043 8843 TEE TR

6320 6435 8347 8671 8573 5802 9369 6805 7988 7777 8510 12189 15641 15627 15679 13463 10087 8307 7146

9741 12000 13540 14135 14186 13822 13218 13267 12973 12987 12613 14051 17363 17975 16040 14974 12976 12176 8941

€ >
(D Query executed successhully. | GANESHA\SQLEXPRESS (10.50 RTM) | user1 (52) | master | 00:00:01 | 30030 rows

Ready

Lnd Col3 Ch3 INS

Figure 20. Day Ahead Pricing Data from the Database Table.

Here Figure 21 is a screenshot of the data base table for the Real Time prices after the data

is inserted showing a total of 30015 rows of data.

File Edit View Query Debug Tools Window Community Help

Anewouey |00 |5 H & E 5

o Bl | master + 1 Eeate b v e 2 %g

7| SOLOuery35a] - GVISO (user] (55)) | SOLQueny2.cql- 650 (user! (34)°) SQLQuery .5q1 - Go-ster (user] (52" - x

9 [****%*x Script for SelectTopNRows command from SSMS *##xss/

= SELECT * -

; FROM [NYISO].[dbo] . [RT|_LMP]

=

<

E v
HEQ3 HEM4 HEDS HEDS HED7 HEOS HED9 HEID HEN HEIZ HEI3 HEM HE'S HEIG HEI7 HEIS HEID HEZD HEZI HEZ HER HEM
8280 6647 0188 007 7720 300 2553 6793 M205 1205 11214 10248 7356 8253 12731 13855 15149 14033 BA5D 15539 11480 M2
6131 3650 5393 2794 4776 14740 14554 14244 11791 7424 5614 7585 8017 6734 11698 32898 24273 21458 12420 17051 9516 10693
12285 14201 12804 7600 25493 41760 40323 20372 20245 12324 10947 12670 10603 11176 12765 18787 14352 13654 13846 10143 11863 13305
M2 ON211 6308 B701 13049 1402 13226 13517 12837 11225 10558 11166 10231 11551 11619 10254 1264 12182 %687 12157 118 10410
5676 4216 4691 4443 4383 3014 1952 5978 13132 8061 820 7451 6796 3433 6426 7560 5420 8939 6076 5670 5583 3299
4688 3299 3578 3876 2947 2151 3765 4160 5466 7032 8526 804 5473 3216 3791 5876 5430 8386 8023 4026 1229 3147
961 5395 4431 6942 95ED 11127 7633 G432 5563 5019 6157 3215 8057 7245 2908 7342 S331 G2 M2 W7 2316 XD
4 551 531 M1 BRI 7942 671 G444 6D 5787 5767 7708 797 5037 5533 T7E3 52l 6B 6904 W27 4166 6036
2476 2524 5042 5887 9340 8013 5322 10764 9176 7133 7100 9946 9726 8888 4576 9903 10013 8957 8660 7397 10724 17520
2043 4451 6983 7298 18784 8407 5034 5491 8302 9127 8274 6402 5551 5800 7070 78A1 7873 10080 6269 5287 8271 7319
5824 4039 3945 5318 TMO6 2477 600 11220 824 6979 9536 11138 13130 15400 6B06 9278 11290 15563 3962 15745 6206 5882
6173 6378 7498 4060 1208 2638 6210 4510 9125 10109 5313 12688 13701 4706 4332 4693 4020 10457 10848 3376 3034 5427
4391 4585 6467 10853 8769 5613 7782 9956 1078 8824 6568 5429 6858 18612 7099 11380 11163 8793 6379 5915 4007 5146
6462 4536 7573 5061 9960 8531 6725 930 BIS5 6782 9600 10924 10831 8891 11272 117 6615 5852 5265 6ASD 7078 6719
4660 5030 2783 M53 4975 7554 GBB2 6156 66d2 293 5725 E721 5346 5443 AD71 TMAD 12156 8209 5053 5AM0 MM 15106
7758 8234 8293 5352 7516 10026 7783 6762 10246 7990 5544 6033 21715 11306 90716 6121 8022 9640 9828 9658 13807 20361
6080 4303 13502 6987 8061 13835 13509 20810 9945 21027 11863 14474 10755 8862 23235 15049 14706 16688 15381 9513 6884 3062
5612 4835 5109 778 102 M46 BI03 15797 8645 13028 179 G164 6149 6740 4431 6RED B00B 11249 G035 79 6384 MBS
8727 860 7296 6632 2494 6345 4960 11602 14173 7580 6209 9566 11201 12603 9803 12253 12187 12743 11257 10213 3963 3226
5500 3536 2093 13536 12264 6621 3658 12567 14342 13931 14093 2024 12517 10903 9759 10526 11158 10559 10904 17453 14224 14524
925 11982 1435 11783 1390 12106 12227 16889 4103 11495 11321 28 0167 7362 10398 12129 28245 11938 10682 1032 1283 10089

< >
(@ Query executed successtully, | GANESH\SQLEXPRESS (10.50 RTM) | user (52) | master | 00:00:01 | 30015 rows

Figure 21. Real Time Pricing Data from the Database Table.

34

Here is an example part of a stored procedure that will be stored on the database and can
be accessed by the business access layer dynamically to return the standard deviation and other
mathematical function values based on the price data that can be used for calculating the risk factor

as shown in Figure 22.

WQuery2.sql - G150 (user (33))* | 80LQuery1.sgl - G../50 (user] (62))* / storedprocsql - G..master {user] [63))]’ NYISORT TableScri..ster (user! (63)) I Itctool.sql - GANE...aster (userl (63)) [differenceRT_DA.sq...aster (user]

select @STDDEV = STDEV([HEO01])

from [WYIS0].[dbo].[RT DA IMP]

where [Day] >= @startdt and [Day] <= @enddt and (DATEFART (month, [Day]) = @monthl or DATEFART (month, [Day]) = @month2 or

DATEPRRT (month, [Day]) = Gmonth3 or DATEPART (month, [Day]) = Gmonth4 or DATEPART (month, [Day]) = @month5 or

DATEPART (month, [Day]) = @monthé or DATEPART (month, [Day]) = @month7 or DATEPART (month, [Day]) = @month8 or

DATEPART (month, [Day]) = @month9 or DATEPART (month, [Day]) = @month10 or DATEEART (month, [Day]) = E@monthll or DATEPZRT (month, [Day]) = @monthl2)
and (DAIEPART (weekday, [day]) = @dayl or DATEPART (weekday, [day]) = @day2 or DATEFART (weekday, [day]) = @day3

or DATEPART (weekday, [day]) = @day4 or DATEPART (weekday, [day]) = @day5 or DATEPART (weekday, [day]) = @dayé or DATEPART (weekday, [day]) = @davT)
and NID = @nid

select @UB = LVG([HEO1])+ ((1.96)*(STDEV([HED1]))/=grt (@samplecount))

from [NYISO].[dbo].[RT_DA LMP]

where [Day] »>= @startdt and [Day] <= fenddt and (DATEPART (month, [Day]) = @monthl or DATEPART (month, [Day]) = @month? or

DATEPART (month, [Day]) = @month3 or DATEPART (month, [Day]) = @month4 or DATEPART (month, [Day]) = @month5 or

DATEPART (month, [Day]) = @monthé or DATEPART (month, [Day]) = @month? or DATEPART (month, [Day]) = @month® or

DATEPLRT (month, [Day]) = @month9 or DATEFART (month, [Day]) = @month10 or DATEEART (month, [Day]) = Emonthll or DRTEPART (month, [Day]l) = @monthl2)
and (DATEPART (weekday, [dav]) = @dayl or DATEPART (weekday, [day]) = @day2 or DATEPART (weekday, [day]) = Bday3

or DATEPART (weekday, [day]) = @day4 or DATEPART (weekday, [day]) = @day5 or DRTEPART (weekday, [day]) = @dayé or DATEPART (weekday, [day]) = @day7)
and NID = @nid

select @LB =AVG([HEO1])- ((1.96)*(STDEV([HEQ1]))/sqrt (@samplecount))

from [WYIS0].[dbo].[RT DA IMP]

where [Day] >= @startdt and [Day] <= @enddt and (DATEPART (month, [Day]) = @monthl or DATEPART (month, [Day]) = @month? or

DATEPART (month, [Day]) = @month3 or DATEPART (month, [Day]) = @month4 or DATEPART (month, [Day]) = @month5 or

DALTEPLRT (month, [Day]) = @monthé or DATEFART (month, [Day]) = @month7 or DATEPART (month, [Day]) = @month® or

DATEPART (month, [Day]) = @month9 or DRTEPART (month, [Day]) = @monthl0 or DATEPART (month, [Day]) = @monthll or DATEPART (month, [Day]) = @monthl2)
and (DATEPART (weekday, [day]) = @dayl or DATEPART (weekday, [day]) = @day? or DATEPART (weekday, [day]) = @day3

or DATEPART (weekday, [day]) = @day4 or DLTEZPART (weekday, [day]) = @day5 or DATEPART (weekday, [day]) = @dayé or DATEPLRT (weekday, [day]) = @day7)
and NID = @nid

zelect @MErr = (1.96)*(STDEV([HEO01]))/zqrt (@samplecount)

from [WYISO0].[dbo].[RT DA LMP]

where [Day] >= @startdc and [Day] <= @enddt and (DATEPART (month, [Day]) = @monthl or DATEPART (month, [Day]) = @month? or

DATEPART (month, [Day]l) = @month3 or DATEPART (month, [Day]) = @month4 or DAIEPART (month, [Day]) = @months or

DATEPRRT (month, [Day]) = Gmonthé or DATEPART (month, [Day]) = Gmonth7 or DATEPART (month, [Day]) = @month8 or

DRTEPRRT (month, [Day]) = Gmonth9 or DATEPART (month, [Day]) = Bmonth10 or DATEPART (month, [Day]) = Emonthll or DATEPART (month, [Day]) = @monthl2)
and |DATEPART (weekday, [day]) = @dayl or DATEPART (weekday, [day]) = @day? or DATEFART (weekday, [day]) = @day3

or DATEPLRT (weekday, [day]) = @day4 or DATEPART (weekday, [day]) = @day5 or DRTEFART (weekday, [day]) = @dayé or DAIEPRAT (weekday, [day]) = @day7)
and NID = @nid

zelect @RTAVE as RTAVG, EDALVG zs DAAVG, @DIFFAVG as DIFFAVE, @STDDEV as STODEV, EUS as UpperBound, @LB 2= LowerBound, @MErr as Marginfrr, @samplecount

Figure 22. SQL Stored Procedure Example.

35

5. EXPERIMENTS

We are going to simulate a few scenarios by using the tools and calculate the risk of

buying electricity for a particular zone at particular hours of the day.

The image below shows the DA, RT, DIFF averages for all the Fridays in between

January 1 2010 to June 1 2013. There are two screenshots as all the 24 hours cannot be displayed

without scrolling the data grid.

Here as shown in Figure 23, the users can view the averages of price types for the

selected zones.

MARKET DATE, TIME, DAYS
e MONTHS

T | PGy ey 10 Bv e
. WA

PRICES SUB CATEGORY D | Seuty, dne 12003 \ i Fe3

DARTDRF Aereges ¥ MON TUE WED THU FRI SAT SUN m

AL A s OO OO o0 e Trans

g cAeL 123456789010 TR

] CENTRL AL

 DUNHOD ¥ L

= Gese HOURS 13 1415 16 171619021 20 2% ONpes [m E —

 CE g [W

LMP | TRANSMISSION

Name PrceTyipe AVG ONPK OFFPK HEN HER? HED HEM HEOS HEDG

HEQ7

HEDR

HEDS

HED

HET

HE12

HET3

HEWX HE1S

GO Ch 4R 63 M MM BK RM DB DR KM MH 8B 40 04 90 BB 95 D5 09

MO R BB we B (W0 mM AW 7o 78 A% BT ¥® BB B8 4N en 40 A0 6%

Figure 23. Average Prices Displayed on the GUI for Hours 01 to 16.

36

HE16

A

Figure 24. Average Prices Displayed on the GUI for Hours 08 to 23.

MARKET DATE. TIME, DAYS MONTHS
ST | Frey |, by 120 Or N
VN A
PRICES SUB GATEGORY END | Saudey ne 12013 &] v FeB
e MON TUE WED THU FRI SAT SUN m‘
[JAL A oavs O O OO 0O 0 & MY Trans
] CAPITL 1234568789 0HR L 7 JUN
gm%[} VI L
£ oenest HOURS 13 14 1516 17 18 19 20 21 2 23 ¢4 ONPEAK [V7 AUG CLEAR PREDICT
I . ek [WS v
LMP | TRANSMISSION
Mame PiceType AVG ONPK OFFFK HEDS HEDS HEID HEN HEZ HEIZ HEM HEIS HEIE HET HEIS HEIS HEXN HEX HER HER

Using the average functions as shown in Figure 23 and Figure 24, we can easily spot

some of the profitable hours to buy electricity based on a positive DIFF Average. And we can

further drill down into the data by selecting a few hours and particular days as shown in Figure

25 and Figure 26.

MARKET DATE, TIME. DAYS
MONTHS
START | Monday , Apd 12013 [Ed
CuN A
PRICES SUB CATEGORY END | Setnday , ne 1,203 EHl o
EEDA Difosoco v MON TUE WED THU FRI SAT SUN ::“:}:
[ALL - pavys OO O OO OO O may Trans
L 1234567389 0012 . o 7 JUN
= S OD0000008® E00 mp
5 aENese HOURS 13 14 15 16 17 18 19 20 21 22 23 24 ONPEAK [[auG CLEAR PREDICT
OHa v ODO0O000d000000 ofex O [lser v
LMP [TRANSMISSION
.

ONPK

OFFFK

Figure 25. RT-DA Differences Displayed for Selected Inputs.

37

MARKET DATE, TIME, DAYS

MONTHS
START | Monday . April 1.2013 [Fhe T
CJJaN A
PRICES SUB CATEGORY END | Setudey . hne 12013 o o
MON TUE WED THU FRI SAT SUN L MaR
AL . s O O O O 0o i Trans
[E[CAPITL 12 3 45 6 7 8 9 101 12 [JUN
] CENTRL ALL O =
= bunwon ODOoOO0O0O0OO0O00 500
5 Genese HOURS 13 14 15 16 17 18 19 20 21 22 23 24 ONPEAK [[] aUG CLEAR PREDICT
CHa v ODoooooo0O000 ofeex O [Isep v
LMP | TRANSMISSION
Neme Day PiceType AVG ONPK OFFPK HEO1 HEQ2 HEO3 HEQ4 HEOS HEOS HEO? HEOR HEOS HE1D HE1 HE12 HE13 HET4 HETS

Figure 26. RT-DA Differences Displayed for Selected Inputs.

Using Prediction: The prediction window can be used separately to check for
probabilities and risks of buying electricity for certain scenarios.

If a trader is interested in buying electricity for particular hours of a particular day, he can
run various simulations as below to find the risk and can perform more searches on the main
window for a detailed set of data.

The Figures 27, 28, 29, 30 are a few examples of different estimation simulations with
different selections of hours and days and date ranges. The prediction column in the data grid

displays various risks associated respectively.

MARKET START | Frday . Jouay 12010 [+ _ MONTHS e Os
N A
oD | Sawdsy . ane 12013 - O res 12345676839 1012 G
B 8 | | e mODO0D00O0O00o00 U
[CENTRL MON TUE WED THU FRI SAT SUN L8 BB W EaE@s e
[v] DUNWOD s OO ODOW OO Ol ooboooooooooa
'] GENESE O jﬂ["
GHe | o
CJHUD VL v CHECK ALL Owe v CLEAR R

Margin
Emor

Figure 27. Estimation 1.

38

MARKET START | Fiday |, Jway L2000 | _ oNTHS THIES Os
N A
END | Seluday . June 1.2013 [[FEB 123 456789 10112 G
B g | | 5w ooooooowoooo O
T CENTRL I MON TUE WED THU FRI SAT SUN =:’:‘3 B BB DR LA ® B a8
¥ DUNWOD s OO OO® O O o oooooooooood
T GENESE O
@He] [t
] HUDVL ¥ A6 v READ

Figure 28. Estimation 2.

MARKET START | Fiday . Mach 1203 [+ _»ZOA:THS 0T Os
.
- M 12 3 45 6 7 8 9 101 12
a0 b, by 120G | St oooooooMooon DM
MON TUE WED THU FRI SAT SUN =N’R 13 14 15 16 17 18 19 20 21 22 B3 4
s OO OO O 0O :m OoO0ooooooooad
]
C o | | O

Margin
Emmor

Figure 29. Estimation 3.

MARKET START Vechesdy, bne 92000 [+ HONTHS S Os

0 A
o | Sndy | dre sAT Ov T Fes 12345673839 01012 e
Qe | | st oooooooooomo U
[] NORTH MON TUE WED THU FRI SAT SUN []APR B BB WE W& D R
[NPx ms MO OOO OO :m OOoooOdooooooo
0
CHECKALL LA v CLEAR FE

Margin
Emor

262

Figure 30. Estimation 4.

39

6. CONCLUSION, LIMITATIONS AND FUTURE WORK

6.1. Conclusion

This current research aims to provide the users with a historical analysis and estimation
tool with a user friendly and efficient GUI, reduce the usage of cumbersome and time taking
spreadsheets for analyzing large quantities of data as well as some basic risk prediction

functionality.

The databases have been designed to perform consistently and efficiently as per the
requirements of the tool and can be easily modified with changing needs. And an object oriented
language has been used for coding the project in order to implement the latest programming
principles with focus on efficiency, easy to test and manage if changes are required. Thus providing

a good platform to invest into and develop in the future.

6.2. Future Work and Limitations

This tools efficiency and functionalities can be effectively maximized by adding the ability
to have weather data, oil and natural gas prices and other constraints information. Having these
additional sets of information would take a huge effort and time but can provide a great tool for

traders to use and make profits.

40

REFERENCES

[1] About NYISO. (2013, 12 15). Retrieved from NYISO:

http://www.nyiso.com/public/about_nyiso/nyisoataglance/index.jsp

[2] C# Programming Language. (2013, 12 15). Retrieved from MSDN:

http://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

[3] CME Group Energy Tools. (2013, 12 15). Retrieved from CME Group:

http://www.cmegroup.com/tools-information/energy-tools.html

[4] Confidence Interval. (2013, 12 15). Retrieved from mathworld.wolfram.com:

http://mathworld.wolfram.com/Confidencelnterval.html

[5] Database Design. (2013, 11 01). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Database_design

[6] Electricity Market. (2013, 12 15). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Electricity_market

[7] Energy Markets. (2013, 12 15). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Energy_market

[8] FERC. (2013, 11 01). Retrieved from Energy Primer: http://www.ferc.gov/market-

oversight/guide/energy-primer.pdf

[9] Heike Brand, E. T. (2002). Market analysis and tool for Electricity Trading.

[10] ISO Maps. (2013, 11 01). Retrieved from NYSEG:

http://lwww.nyseg.com/SuppliersAndPartners/electricityescos/isomaps/default.html

41

[11] Microsoft SQL Server. (2013, 11 01). Retrieved from Microsoft:

https://www.microsoft.com/en-us/sqlserver/product-info.aspx

[12] Microsoft Visual Studio. (2013, 11 01). Retrieved from MSDN:

http://msdn.microsoft.com/en-us/vstudio/cc136611.aspx

[13] NYISO Market Data. (2013, 11 01). Retrieved from NYISO:

http://lwww.nyiso.com/public/markets_operations/market_data/pricing_data/index.jsp

[14] OATI Data Analytics. (2013, 11 01). Retrieved from OATI:

http://www.oati.com/Solution/Energy-Trading-RIsk-Management/Data-Analytics

[15] OATI Risk Management. (2013, 11 01). Retrieved from OATI:

http://www.oati.com/Solution/Energy-Trading-RIsk-Management/Risk-Management

[16] OATI Trading and Scheduling. (2013, 11 01). Retrieved from OATI:

http://www.oati.com/Solution/Energy-Trading-RIsk-Management/Trading-Scheduling

[17] Object Oriented Programming. (2013, 11 01). Retrieved from Wikipedia:

http://en.wikipedia.org/wiki/Object-oriented_programming

[18] Singh, P. B. (2004). Electricity Trading In Competitive Power Market: An
Overview And Key Issues. INTERNATIONAL CONFERENCE ON POWER SYSTEMS,

ICPS2004, KATHMANDU, NEPAL (P110) .

[19] Spolsky, J. (2013). User Interface Design for Programmers. In J. Spolsky, User
Interface Design for Programmers (pp. 1-60). Retrieved from Wikipedia:

http://en.wikibooks.org/wiki/GUI_Design_Principles

42

[20] Standard Deviation. (2013, 11 01). Retrieved from mathworld.wolfram.com:

http://mathworld.wolfram.com/StandardDeviation.html

[21] Sungard - Marketing and Trading Tools. (2013, 11 01). Retrieved from Sungard
Financial Systems: http://financialsystems.sungard.com/solutions/energy-trading-

operations/marketing-trading

[22] TIBCO - Discover Spotfire. (2013, 11 01). Retrieved from TIBCO:

http://spotfire.tibco.com/en/discover-spotfire/who-uses-spotfire/by-industry/energy.aspx

[23] Variance. (2013, 11 01). Retrieved from mathworld.wolfram.com:

http://mathworld.wolfram.com/Variance.html

[24] Ventyx - Energy Market Intelligence & Forecasting Solutions. (2013, 11 01).
Retrieved from Ventyx: http://www.ventyx.com/en/enterprise/business-
operations/energy-mkit-
intell?kw=energy%20trading%20software&cid=701600000007MJg&gclid=CMPpo-

3KkLsCFdE-MgodITkAzA

43

