
PROJECT QUALITY TOOL: A TOOL FOR PROJECT SUCCESS

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Pallavi Srichinta

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

December 2012

Fargo, North Dakota

North Dakota State University

Graduate School

Title

PROJECT QUALITY TOOL: A TOOL FOR PROJECT SUCCESS

 By

Pallavi Srichinta

 The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted standards

for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Kenneth Magel

 Chair

Dr. William Perrizo

Dr. Simone Ludwig

Dr. Jacob Glower

 Approved:

 12/20/2013 Brain M. Slator

 Date Department Chair

iii

ABSTRACT

This paper proposes a solution to the current changing requirements communication

problem in an offshore on-site software development model. The proposed model is a web-based

tool where the user in a project team can enter the new Requirements, map them to Design,

create Test Cases from design, Execute them, and track failed ones by creating Defects. When

the requirements change the existing tools available in the market, the changes are not

communicated to the entire project team; leaving the Quality Assurance team verifying old

(incomplete) requirements which ultimately costs more time, money and delays the project

delivery.

In this paper, a prototype tool intended to automatically handle the above-mentioned

communication problems whenever requirements are changed after the design is in place. The

prototype manages the gap between on-site and offshore teams and adds value to the project

development by saving time, money, and improving the quality of the final product.

iv

ACKNOWLEDGEMENTS

To My Parents, My Husband, My Daughters and My Sister for all the support and

encouragement in completing this Project.

To My Advisor for his continuous support, guidance and patience.

To My Committee for their time, support and suggestions.

To Stephanie for her help during the entire process.

v

DEDICATION

To My Father and Mother

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. LITERATURE REVIEW .. 5

2.1. Bugzilla .. 6

2.2. HP Quality Center .. 6

2.3. JIRA ... 8

2.4. Subversion .. 8

2.5. TRAC ... 8

2.6. GEMINI ... 9

2.7. IBM Rational ClearQuest ... 9

2.8. Shortcomings of Existing Tools ... 10

CHAPTER 3. RESEARCH APPROACH .. 12

3.1. Overview of Project Quality Tool .. 12

vii

3.2. Brief Introduction about Project Quality .. 14

3.3. Functional Overview of Project Quality Tool .. 15

3.4. Project Quality Tool Architecture .. 29

3.5. Flow Charts of the Project Functionality ... 30

CHAPTER 4. RESEARCH EVALUATION ... 34

CHAPTER 5. CONCLUSION.. 42

REFERENCES ... 43

viii

LIST OF TABLES

Table Page

1. Experiment Project Quality Tool versus Other Tools Mentioned in Chapter 234

ix

LIST OF FIGURES

Figure Page

1. Silverlight Architecture from Microsoft MSDN Library Entity Data Model 13

2. Log-in Screen .. 15

3. Project Selection Screen ... 16

4. Home Screen ... 16

5. Requirements Submit Button .. 17

6. Requirements Data Grid ... 17

7. Options and Update Button in Requirements Tab .. 18

8. Design Tab .. 19

9. JAD Session Link ... 20

10. Development Status Dropdown .. 20

11. Options in Design Tab .. 21

12. Design Data Grid ... 22

13. Test Suite Tab ... 22

14. Options in Test Suite Tab ... 23

15. Update Button in Test Suite Tab ... 24

16. Test Execution Tab ... 24

17. Test Execution Data Grid .. 25

18. Defects Tab ... 26

19. Update Button in Defects Tab... 26

20. Reports Tab ... 27

21. Project Quality Tool Database Diagram ... 29

x

22. Flow Chart of User Logging In and landing in project Home Screen Page 30

23. Flow Chart of Inserting Requirements in a Selected Project .. 31

24. Flow Chart of Updating Requirements and Project Team Email Notification 32

25. Flow Chart of Inserting Design Document and Design Phase Details in a Project 33

26. Sample Gift Card Project Requirements in Requirements tab.. 36

27. Sample Gift Card Project Design Tab .. 37

28. Sample Gift Card Project Test Suite tab ... 37

29. Sample Gift Card Project Unit Test Results Link ... 38

30. Sample Gift Card Project Changed Requirements.. 39

31. Sample Gift Card Project Requirement Change Email Notification 39

32. Sample Gift Card Project Design Change Email Notification .. 40

33. Sample Gift Card Project Report Showing Unmapped Requirements41

xi

LIST OF ABBREVIATIONS

QA ……………………………..…………Quality Assurance

UAT………………………………………User Acceptance Testing

TCERs……………………………………Test Cases and Expected Results

SDLC……………………………………..Software Development Life Cycle

1

CHAPTER 1. INTRODUCTION

In the current offshore onsite model of software development, delivering high quality,

testable code in a timely manner is a challenge. Fundamental to developing such a code is a clear

understanding and communication of the project’s requirements. Unfortunately, complete and

correct communication of the code’s requirements is difficult using current development tools.

This can result in a code which does not meet the requirements, incorrect test procedures, and

possibly even a code which is the opposite of what the client has asked for. In order to save time

and money, many companies outsource some of the phases of software development. During

this process, the analysis phases such as planning and requirements gathering are often done

onsite in order to be closer to the users (and likewise improve communications) while design,

development, and testing are performed offshore. Towards the end of the development cycle,

deployment and support are often brought back to the on-site facility prior to delivery. The

design and code reviews happen but they often focus on data types and data flow rather than end-

to-end functional requirement details since the product has not yet been developed. Once

feedback from the reviews is incorporated into the design, development begins.

Even greater challenges to developing codes arise when the requirements change during

the course of development. This creates problems with communications – especially since teams

are required to act fast. Typically, changed requirements are communicated to on-site technical

leaders, who are then responsible for assuring that these changed requirements are

communicated to offshore development and quality assurance team members. Complicating

matters, offshore development and quality assurance members can be a long distance away, in

different time zones, with different work schedules. This can result in the changed requirements

2

not being communicated to the correct people at the right time. If the changed requirements do

not reach the quality assurance teams, they will be designing test cases from the original

incorrect document. This, in turn, results in the Test Cases and Expected Results (TCERs) not

being updated according to the changed requirements. This may result in two things: 1) Testing

something wrong/outdated, or 2) re-testing/rotation is a challenge due to lack of documentation

in the TCERs. Both are very stressful and may result in incomplete testing due to the crunch

time. Quality assurance (QA) would finish the system testing, integration testing and inform the

on-site facility that they are ready for User Acceptance Testing (UAT) at the last minute. Since

the UAT is coordinated completely on-site, the user scenarios will be documented with

continuous UAT prep meetings, and as the offshore QA team could not test it thoroughly, there

is a fair chance that the defects would be identified in UAT. And this goes on between

development and user acceptance testing until the UAT defects are fixed.

Another problem in the offshore on-site model is that the Unit Testing is often not

performed by the developers. Code is passed to the quality assurance server, thinking that the

QA team is responsible for the entire testing. This results in degradation of the testing effort as

the testing team is now doing and digging for the unit test defects during their system testing

phase, and sometimes the code will not even be in an executable condition because of issues in

the test box. To make matters worse, the Quality Assurance team is often not allocated extra time

in spite of the increased workload.

To overcome these problems, this paper proposes the Project Quality Tool. This is an

easy to use tool for enterprise requirements specification, design documentation, test planning,

test execution and defect tracking; features that, to the author’s knowledge, are not available in

other tools that are currently on the market.

3

The Project Quality Tool simplifies the Software Development Life Cycle (SDLC), and

reduces human intervention in communication of the changed requirements. This tool not only

assures that the changed requirements are communicated and incorporated into the project

design, but also into the subsequent phases like testing. The logical interconnection between the

requirements and design is that the design and test suite is aiding the tool to be able to coordinate

the pending tasks. To solve the unfinished Unit Testing problem and also some other issues, this

tool includes features that makes the Unit Testing Results mandatory in order to begin the testing

phase of any delivered code.

The Project Quality Tool is similar to a dashboard where business analysts put their

requirements together, and developers upload their design documents. In addition, JAD sessions

are recorded and stored in .wav files on a shared drive pointing the path in the design dashboard,

and also uploading the whiteboard pictures to the dashboard, plus storing the unit test results for

each module.

In the Test Suite tab, the QA testers would work on creating the test cases based on the

design document and detailed requirements. If the requirements are updated, then the email is

triggered to the project team to update the design document; and, if the design is updated, then an

email notification will be sent to the project team to update the TCERs.

In the Test Execution tab, QA testers would pull the TCERs from Test Suite to run them

in sets like System Testing Cycle 1, Integration Testing Round 1, or they can pull the TCERs

into a set each day to monitor their execution on a daily basis. The former is recommended for

small to large projects, while the latter is recommended for tiny enhancements.

There is a Defect tab which actually holds the defect or issue information. The testers, as

they see any scenario failing, would open a defect in this tab and then wait for the defect to be

4

fixed, then work on test execution after testing the fixes first, as defects take priority over the

new functional testing.

The Reports tab is an information tab for the project team. The Project Status Report is

generated with a button click, and can be used to monitor and track these changes in each team

meeting; and, it will always be visible to all the offshore and on-site members in the project

team.

5

CHAPTER 2. LITERATURE REVIEW

In this chapter, an overview is presented of the main problems encountered in offshore,

on-site or distributed software development models which are relevant to this study. In addition,

an overview of popular project quality tools currently available is presented.

What is Requirements Management? Requirements management is “a systematic

approach to eliciting, organizing and documenting the requirements of the system and a process

that establishes and maintains agreement between the customer and the project team on the

changing requirements of the system” (Leffingwell & Widrig, 2000).

McAllister stated that, “Software Applications often fail to satisfy User’s expectations if

developers misunderstand their requirements” (McAllister, 2006). One reason this happens is

ineffective communication. “Miscommunication and misunderstanding between software

developers and users are at the heart of the requirements dilemma” (DeBellis & Haapala, 1995,

2006).

According to George Stepanek (2012), software is normally commissioned for the needs

of the users and managers, and not professional developers. These individuals understand the

business process, but it is still very difficult to take into account all of the alternative flows and

error conditions, and how the requirements are interrelated. Stepanek (2012) further stated that it

is impossible to accurately blueprint software or draw up a complete set of requirements before

the actual software development, as the users would gain insight into their needs as the software

application starts to take shape (Stepanek, 2012).

To avoid developing something that does not fulfill the users’ requirements, it is

important to have traceability to the Software Development Life Cycle (SDLC) artifacts

documented during the software’s development cycle. Spanoudakis and Zisman (2005) define

6

software traceability as the “ability to relate artifacts created during the development of a

software system to describe the system from different perspectives” (pp. 256-273). The

traceability assures that the required features are implemented and thoroughly tested. Based upon

the author’s experience, traceability is performed after the fact, and is done manually by the

Requirement Traceability Matrix (Sundaram, Hayes, Dekhtyar, & Holbrook, 2008).

Below are some of the tools that are available in the market which are being used by

companies for tracking several phases in the software development process.

2.1. Bugzilla

Bugzilla is a web-based general purpose bug tracker and testing tool originally developed

and used by the Mozilla project, and is licensed under the Mozilla Public License. Released as

open source software by Netscape Communications in 1998, it has been adopted by a variety of

organizations for use as a bug tracking system, and occasionally as a data source for project

management software. It is used for both free and open source software, as well as proprietary

projects and products (http://www.bugzilla.org/docs/4.2/en/pdf/Bugzilla-Guide.pdf).

2.2. HP Quality Center

HP Quality Center (QC), formerly known as Mercury Quality Center, is a web-based test

management software tool from Hewlett-Packard, acquired from Mercury Interactive

Corporation. HP Quality Center offers software quality assurance, including requirements

management, test case management, test execution and defect tracking for IT and application

environments (HPQC13). In HP Quality Center, the testing process includes five phases:

1. Specifying Releases

2. Specifying Requirements

3. Planning Tests

7

4. Running Tests

5. Tracking Defects

Release cycles are specified. In each release cycle, specific requirements that need to be

tested are chosen for Test Planning. In Test Planning, test scripts are planned and documented.

When the build becomes available, the scripts are run in the order that they are meant to be run.

Defects identified in testing are tracked and re-tested. Once the requirements are created and test

cases are approved, if the requirement is changed, there is no automatic tracking or notification

sent to the project team to update the downstream deliverables. Hence, it leaves a large gap

between what is required and what is tested. Whereas in Project Quality, all of the below-

mentioned phases are integrated:

1. Specifying Requirements

2. Design Documentation

3. Test Case Design

4. Test Execution

5. Defects Tracking

6. Reports

If any requirement has been changed or added, the project team will receive notification

and the downstream deliverables should be updated with the changed requirements. This helps us

in requirement traceability, and in testing what the business actually wanted. Based on this, the

subsequent phase of the software development life cycle puts the production support staff at

ease. (http://en.wikipedia.org/wiki/HP_Quality_Center)

8

2.3. JIRA

JIRA is an issue tracking tool, and will not facilitate any other phases in software

development. It was developed by Atlassian, commonly used for bug tracking, issue tracking,

and project management. The product name JIRA is a truncation of "Gojira," the Japanese name

for Godzilla. It has been developed since 2002.

(http://wpc.29c4.edgecastcdn.net/8029C4/downloads/software/jira/downloads/documentation/JI

RA%205.0%20Documentation%20(PDF)%2020120305.pdf).

2.4. Subversion

Subversion is a version control tool used to keep track of code versions. This tool is

similar to a popular CVS tool, and is currently being used to maintain the new version and

previous versions of source codes, and files relative to application and documentation. There is

no provision in this tool to hold SDLC deliverables.

(http://books.google.com/books?hl=en&lr=&id=b3TsOSvU5TUC&oi=fnd&pg=PR4&dq=Subve

rsion+tool&ots=zTGB2W6gqA&sig=vPe9Bm_K-

3LIksclw4MCM9JaUhM#v=onepage&q=Subversion%20tool&f=false).

2.5. TRAC

TRAC allows hyperlinking information between a bug database, revision control and

wiki content. It also serves as a web interface to the following revision control systems:

Subversion, Git, Mercurial, Bazaar, Perforce and Darcs. Other features include: project

management (Roadmap, Milestones, etc.), ticket system (bug tracking, tasks, etc.), Wiki (syntax

similar to MoinMoin), customized reporting and multiple project support (Trac13).

(http://en.wikipedia.org/wiki/Trac)

9

2.6. GEMINI

Gemini is a proprietary web-based issue tracking and bug tracking system provided by

Countersoft, Ltd. Gemini is based on Microsoft's .NET Framework. It was developed using C#,

ASP.Net, and Microsoft SQL Server. Gemini supports integration with Visual Studio, Outlook,

Subversion (SVN) and Windows Live Messenger. Gemini is proprietary software, but a freeware

10-user license is available, and optional source code licensing is available with the enterprise

license (Gemini13). (http://en.wikipedia.org/wiki/Gemini_(issue_tracking_system)

2.7. IBM Rational ClearQuest

Rational ClearQuest is an enterprise level workflow automation tool from the Rational

Software Division of IBM. Commonly, ClearQuest is configured as a bug tracking system, but it

can be configured to act as a CRM tool, or to track a complex manufacturing process. It also has

the ability to implement these functions together. ClearQuest is a client-server application

although there is no ClearQuest "back-end." Rather, the ClearQuest clients utilize an existing

database server. ClearQuest supports various back-end databases including Oracle, SQL Server

and IBM DB2. ClearQuest has been criticized for price, which is four to five times that of

competing products (IBMCQ13). (http://en.wikipedia.org/wiki/IBM_Rational_ClearQuest)

Some of the above-mentioned tools are open source and some are proprietary. But, in

either case, these tools cannot provide centralized solutions for storing the details of end-to-end

SDLC artifacts. Moreover, companies which use the above-mentioned tools should utilize a

separate requirement traceability method to track if all of the requirements specified by the users

made it to the code, and are perfectly tested.

10

2.8. Shortcomings of Existing Tools

Based upon the author’s experience, having worked in the IT industry for eight years, the

requirements that any end-to-end project tracking tool should have are as follows:

1. Facilitate requirement gathering for multiple projects by business analysts.

2. Provide ability to store design document details in the same portal by the

Application Development Team.

3. Provide ability to map and trace the requirements to the design documents.

4. Provide ability to store JAD Session discussion details and white board sessions

which are very important for production support.

5. Provide ability to store and make Unit Testing mandatory before moving onto the

System Testing phase.

6. Provide ability to map the Design to Test Cases which in turn maps to the

Requirements.

7. Provide ability to create Test Cases and Expected Results by QA Team.

8. Provide ability to track the Test Execution.

9. Provide ability to track the Defects identified until resolved.

10. Provide ability to broadcast the CHANGED REQUIREMENT to the Project

Team when the project is in-flight.

11. Provide ability to broadcast the CHANGED DESIGN to the Project Team when

there is any change in Design when the project is in-flight.

12. Provide ability to broadcast the CHANGED Test Case and Expected Results to

the Project Team when the project is in-flight.

13. Provide ability to Review the artifacts from all the phases in the SDLC.

11

14. Provide ability to print the up-to-date Reports for management and project team

review.

15. Cost effective.

16. Ease of use.

17. Project documentation centralization.

18. Compatibility to any browser.

19. Platform independent and machine independent.

20. Works faster because of the architecture.

21. Better warranty when handing off to the production support team.

22. Provide Live Traceability from Requirement to Design, Design to Test Cases, and

Test Cases to Test Execution.

None of the previously described software packages meet all of these requirements. As a

result, a new package, termed the Project Quality Tool, is developed and presented in the

following chapters.

12

CHAPTER 3. RESEARCH APPROACH

This chapter presents the research approach used, and a proposed solution to overcome

the limitations of the most commonly used tools available in the market. This solution is called

the Project Quality Tool hereafter. The advantages and significance of each module will be

presented for each module as well.

3.1. Overview of Project Quality Tool

The Project Quality Tool is a web-based application, developed to support multiple

phases of a software development life cycle. It is developed in C# using Visual Studio 2010, and

the front end is developed in Silverlight 4.0. The database server is SQL Server 2008. The

following paragraph explains in detail why I have chosen this framework.

Microsoft Silverlight is a cross-browser, cross-platform implementation of the .NET

Framework for building and delivering the next generation of media experiences, and rich

interactive applications for the web. Silverlight uses the Extensible Application Markup

Language (XAML) to ease User Interface development (e.g. controls, animations, graphics,

layout, etc.) while using managed code or dynamic languages for application logic. Silverlight is

very quick in response. The beauty of the tool is that it reads the user’s input and updates the

display without refreshing the whole page. I have created the Project Quality Tool using C# code

with the help of the Visual Studio development tool.

13

Figure 1. Silverlight Architecture from Microsoft MSDN Library Entity Data Model

The Entity Framework enables developers to create data access applications by

programming against a conceptual application model instead of programming directly against a

relational storage schema.

The Entity Framework is an object-relational mapper that reduces the impedance

mismatch between the object-oriented world of .NET Framework developers and the world of

relational databases. It enables developers to primarily interact with an application’s conceptual

model, using familiar object-oriented techniques. In the Entity Framework, you can work with

data in the form of domain-specific objects and properties, such as User and User’s email,

without having to concern yourself with the underlying database tables and columns where this

data is stored. Developers can issue data access operations against the conceptual model, and the

14

Entity Framework translates the operations into relational database actions. There are two major

layers in an Entity Framework application:

1. The modeling layer

2. The object layer

Microsoft SQL Server is a database management and analysis system for data

warehousing solutions. The SQL Server contains a variety of features and tools that we can use

to develop and manage the databases and solutions. SQL Server is much more robust and

scalable than a desktop database management system such as Microsoft Access.

3.2. Brief Introduction about Project Quality

The following sections will demonstrate various functionalities of Project Quality Tool:

1. Login Interface – Existing users would log on.

2. Project Selection – User can select the desired project from the list of projects drop

down box.

3. Home Screen – It consists of six tabs each for a different phase of a project life cycle.

a. Requirement tab – Business analysts would view, insert, update, delete and

review requirements.

b. Design tab – Developers would store the design documents, JAD session

recording link, unit test results, edit, delete them and get the design documents

reviewed.

c. Test Suite tab – QA team would write the test cases, edit, delete them and have

the test cases and expected results reviewed.

15

d. Test Execution tab – QA team would pull the test cases and organize them into

test sets, execute the TCERs as the code is delivered, and begin testing the code

only after receiving the Unit Test Results from development team.

e. Defect tab – QA would open the defects tab if any test case fails; then the defect

would finish the defect life cycle in this tab.

f. Reports tab – this tab would give updated information about the project status at

the click of a button.

4. Logout Screen – This screen will be displayed after the user hits the log out button

and will give an option to re-log-in.

3.3. Functional Overview of Project Quality Tool

This section explains in detail about the Project Quality Tool’s functionality. The users

would log-in to the application with their assigned Username and Password. The system would

take the user to the Project Selection screen, only if the password matches the stored password in

the database. If the password is incorrect, it throws an error on the screen to re-enter the correct

one. Figure 2 below shows the log-in screen snapshot.

Figure 2. Log-in Screen

16

The Project Selection page would allow the user to choose the desired project that he/she

wants to log-in to. The user can be part of multiple projects, thus, this option would allow the

user work on each of them without mixing the requirements and other subsequent phases. Figure

3 below shows the project selection screen snapshot.

Figure 3. Project Selection Screen

The Home Screen is the main page of the application. It hosts the entire project life cycle

details in one place. The home screen is organized into several tabs as discussed in section 3.2.3.

Figure 4 below shows the home screen.

Figure 4. Home Screen

17

The Home Screen Requirements tab would hold details about the specific requirements.

Here, the business analyst can add the requirements to the selected project by filling in the

Requirement Name, Module and Description, and then click on Submit to insert a new

requirement. Figure 5 below shows the Requirements Submit Button.

Figure 5. Requirements Submit Button

Once the requirements are added, the screen gets refreshed in the data grid. Figure 6

below shows the Requirements Data Grid.

Figure 6. Requirements Data Grid

18

Anyone who logs into a particular project can view the requirements by clicking the

View button on the Requirements tab. We can delete a requirement by selecting a particular

requirement, and pressing the Delete button on the Requirement tab. In the same way, we can

update a requirement by selecting the Required Requirement, which would populate the text in

respective text boxes above the data grid. The business analyst can make the desired updates to

the requirements, and then click on the Update button to incorporate the changes into the

database. Figure 7 below shows the Options and Update button in the requirements tab.

Figure 7. Options and Update Button in Requirements Tab

In the Home Screen Design tab, the developers can store the design document details. To

insert the new design document details, the developer has to enter the description, select the

requirements that this particular design document is mapped to, and enter the design document

link in the section highlighted below. Figure 8 below shows the Design tab.

19

Figure 8. Design Tab

An additional feature that I believe is very valuable to the project is the JAD session

recording link. It is always a challenge to remember what all has been discussed during the JAD

sessions. Sometimes, small things discussed during the JAD session can be very important, and

have slipped during the course of development. Furthermore, people who were present at the

time of the JAD session discussions may leave early. So, it is always important to store these

JAD sessions, as they can add value to the knowledge transfer. It can also be helpful for the

Quality Assurance team to review these JAD session recordings together to talk through the

application flow. As each module will be tested by different QA personnel, if they know how

they integrate with other modules even before doing the integration testing, then they would find

the defects related to the functional flow very quickly in the Project Life Cycle. Figure 9 below

shows the JAD session link.

20

Figure 9. JAD Session Link

Development status is a drop-down status box that would be updated by developers to

report the progress of the development phase to the project team. This would benefit the QA

team in planning their testing efforts and resource allocations. Figure 10 below shows the

Development Status dropdown.

Figure 10. Development Status Dropdown

21

Another interesting and important place holder for developer’s tasks in the Design tab is

the Unit Test Results link. Oftentimes, no one from the development team is performing the Unit

Testing; they are just throwing the build over the wall, thinking that testing is the Tester’s

responsibility. I disagree with this because testing is the tester’s job – just to make sure the

requirements are met and business scenarios are working correctly. Without unit testing, the

quality of the code will be very poor, and QA would not get that far in measuring the quality

100%. They would spend most of their time in finding Unit Test defects, and they may end up

doing less system testing. Just like in the Requirements tab, here developers can view, insert,

update and delete in order to perform all the necessary tasks based on their responsibility. Figure

11 below shows the View, Delete and Review buttons in the Design tab.

Figure 11. Options in Design Tab

22

Every time a new record is inserted, the design data grid gets refreshed. Figure 12 shows

the Design Data Grid snapshot.

Figure 12. Design Data Grid

The Test Suite tab is for the QA team to create test cases and expected results. Here, they

type the test case name, description, and expected result, then select the design document name

to which this TCER is associated, and press the Submit button to insert the data into the

database. After that, the changes made will get refreshed in the Test Suite data grid. Figure 13

below shows the Test Suite snapshot screen.

Figure 13. Test Suite Tab

23

The tester can view, insert, update and delete the test cases. Once the test case is inserted,

the Test Suite Data Grid gets refreshed, and displays the newly inserted test case and expected

results details. Figure 14 below shows a snapshot of the Test Suite tab options with View, Delete

and Review buttons.

Figure 14. Options in Test Suite Tab

If the tester has to update any test case and expected results, he/she needs to select the test

case that they would like to edit. Upon selection, the text boxes will be filled with the selected

content, and the test case can be modified. The Update button can be clicked to submit the

changes to the database. Figure 15 below shows a snapshot of the Test Suite tab with the Update

button.

24

Figure 15. Update Button in Test Suite Tab

The Test Execution tab contains the details about the testing progress. Testers will create

a test set name and description, selects the test case, and then hit Submit to add the TCER to the

test set. Testers can organize the TCERs before they actually begin testing. Figure 16 below

shows the screen snapshot of the Test Execution tab.

Figure 16. Test Execution Tab

25

Later, when they are ready for execution they can just select the desired test case,

perform the necessary test execution steps, update the Actual Result, and write some execution

comments as needed; they can also specify pass or fail results and if the TCER failed, a defect

can be opened in the Defect tab and the Defect ID can be updated here in the Test Execution tab.

Once the Update button is clicked, the data gets refreshed in the test execution data grid to show

the latest database instance. Figure 17 below shows a screen snapshot of the Test Execution data

grid.

Figure 17. Test Execution Data Grid

The Defects tab on the home screen is all about creating a defect when a test case failed

in any testing phase. The defect would finish its life cycle in this tab as the changes occur.

While creating a defect, the tester would specify the summary of the defect, description, select

the Detected by from the drop down, select the assigned to from the drop down, specify the

phase, severity, priority, status, select if it is reproducible and hit the submit button to create a

defect. Figure 18 below shows a screen snapshot of the Defects tab.

26

Figure 18. Defects Tab

When a defect is inserted, the data grid would be refreshed, and the new defect inserted

will be displayed in the defect data grid. A defect can also be updated by the developers; they

can change the defect status, and add some additional content to the description test box to add

comments. As soon as the defect is updated, the data in the defects data grid will get refreshed

with the new updated data. Figure 19 below shows the screen snapshot of the Update button in

the Defects tab.

Figure 19. Update Button in Defects Tab

27

The Reports tab is used to generate a report at the click of a button for any particular

project. Figure 20 below shows a screen snapshot of the Reports tab.

Figure 20. Reports Tab

A Report helps measure the Project progress and is very useful for the project team when

a quick snapshot is needed. An explanation of the Reports generation tool categories is listed

below.

1. Total Number of Requirements – This field gives the total number of

requirements in a selected project.

2. Total Number of Updated Requirements – This field shows the total number of

updated requirements in the selected project.

3. Requirements Mapped to Design – Technically, all the requirements in the (1)

should be in this field.

4. Updated Requirements Mapped to Design – All the requirements in the (2) should

be in this field.

28

5. Unmapped Requirements – If there are any requirements that are not mapped to

any design they will be specified comma separated in this field. The Project

Manager or the Leads can delegate them as Action Items and get them addressed

by the project team.

6. Total number of TCERs – This field holds the total number of Test Cases and

Expected Results created in the selected project.

7. TCERs Mapped to Design – The Test cases would be written off of the Design

document and keeping Requirements in mind. This field shows the number of

TCERs that are mapped to the Design documents.

8. TCERs Mapped to Updated Design – This field shows the number of TCERs that

are mapped to the Updated Design documents.

9. TCERs Mapped to Test Execution – The TCERs that were created in the Test

Suite tab should be pulled into the Test Execution tab for execution. The total

number of TCERs pulled to test execution should be greater than or equal to

TCERs.

10. Total Number of Defects – This field tells the number of defects created in this

particular project.

11. New Defects – The defects that are created will have different stages before they

finish their lifecycle. This field shows the “Newly Created” defects.

12. Open Defects – This field shows the defects that have been in the open status.

13. Fixed and Closed Defects – This field shows the defects that have been in fixed or

closed status.

29

3.4. Project Quality Tool Architecture

Figure 21. Project Quality Tool Database Diagram

30

3.5. Flow Charts of the Project Functionality

Figure 22. Flow Chart of User Logging In and landing in project Home Screen Page

31

Figure 23. Flow Chart of Inserting Requirements in a Selected Project

32

Figure 24. Flow Chart of Updating Requirements and Project Team Email Notification

33

Figure 25. Flow Chart of Inserting Design Document and Design Phase Details in a Project

34

CHAPTER 4. RESEARCH EVALUATION

In this chapter, the value of the Project Quality Tool is evaluated. To do this, a sample

experiment is presented along with a sample project called the “Gift Card.” This will

demonstrate how the Project Quality Tool will help in documenting and tracking the

requirements, acting as a design documents repository, retaining JAD sessions forever, collecting

Unit Test results, which gives us an ability to trace the requirements to the Test Cases and

Expected Results and track the TCERs’ execution and defect management, giving a snapshot of

the project status using reports. Table 1 below shows a summary of the experiment.

Table 1

Experiment Project Quality Tool versus Other Tools Mentioned in Chapter 2

Project # of

Req

of

Changed

Req (m)

of Req

correctly

communicated

(n)

of Req

miscomm

unicated

Traceability

from Req to

Design and

Design to

Test Cases

Criticali

ty to

Project

 % of

Projec

t not

Delive

red

 % of

Projec

t

Delive

red (p)

With Tools Mentioned in Chapter 2 Literature Review

1 30 3 0 3 N Y 10% 90%

2 10 3 1 2 N Y 20% 80%

3 20 5 0 5 N Y 25% 75%

With Project Quality Tool

1 30 3 3 0 Y Y 0% 100%

2 10 3 3 0 Y Y 0% 100%

3 20 5 5 0 Y Y 0% 100%

If (m-n) = 0 then p will be 100%,

if (m-n) ≠ 0 then p will not be 100%

35

In the above experiment, if the difference between # of changed requirements and # of

correctly communicated requirements is zero then the % of project delivered will be 100%. If the

difference between # of changed requirements and # of correctly communicated requirements is

not zero, then the % of project delivered will not be 100%.

Below is the sample project that I have set-up to show how Project Quality Tool helps in

every phase of the Software Development Life Cycle, as well as how the in-built traceability

would help communicate any change in requirements after the project is in-flight.

There is a retail grocery chain called ‘XYZ MART’ and it would like to introduce the

Gift Card Program into their business before the holiday season. The main purpose of this project

is to sell gift cards and allow Gift Card Redemption. For now, we will be concentrating on gift

card sales, and not the redemptions. Below are the Requirements for the Gift Card Project:

1. Sell and Activate Gift Cards through Store Terminals.

2. Fixed denomination per UPC code/ Item Number.

3. Provide the following fields to back office: Account ID, Store #, Unique ID,

Employee ID, Terminal ID, Transaction Date, Transaction Amount and Item

Number.

4. Capture both Sales and Returns amount activity of the Gift Cards.

5. Create new revenue group to support reporting of Gift Cards.

6. Feed Sales Audit with the Total Sales (new transaction code) and returns (new

transaction code) through a flat file at the end-of-the-day processing.

7. Receive the Sales Audit files from each store and post it into back office system.

8. At the time of month-end processing, book the Revenue into the General Ledger.

36

9. Generate a Monthly Summary Report of Total Units Sold, Total Sales Amount,

Total Units Returned, Total Return Amount, per Store.

10. Generate Year-End Reports of Total Units Sold, Total Sales Amount, Total Units

Returned, Total Returned Amount, per Store.

In the Requirements tab, the business analyst would create the requirements and have

them reviewed by the business and IT partners. Figure 26 shows the Requirements tab snapshot

from the tool.

Figure 26. Sample Gift Card Project Requirements in Requirements Tab

After the requirement review is completed, the developers would work on designing the

application. They would divide the requirements modules based on technology or functional area

after brain-storming in the JAD sessions. The developers/development leads would share the

design document for review by rest of the project team. For this step, he/she would be inserting

the name, description, select the requirements that this design is mapped to and specify path of

design document, specify the development status and JAD session recording into the details and

37

hit submit to insert the record. They would get the design document reviewed, and proceed with

the development effort.

Figure 27. Sample Gift Card Project Design Tab

Once the design has been reviewed, Quality Assurance would start writing the TCERs,

and kick-start the test planning in the Test Suite tab.

Figure 28. Sample Gift Card Project Test Suite tab

38

As soon as the build becomes available, the developers should complete the unit testing

and upload their Unit Test Results before turning over the build to QA.

Figure 29. Sample Gift Card Project Unit Test Results Link

Quality Assurance would begin their System Testing after sanity checking the build. Note

that this illustration is for an ideal environment with no change orders. Similarly, in our Gift

Card Application, there was an additional requirement that is added i.e. to sell and activate non

denominated gift cards. Now, the project is 80% complete; adding a new requirement at this

stage would cause a lot of commotion, and there would be compromise in quality in order to

accommodate this new requirement, and a wide communication gap could occur unnecessarily

due to the last minute changes.

With the help of our Project Quality Tool, we can easily add this new requirement, or

modify an existing requirement at any time during the project life cycle, and still be able keep

track of this requirement change. The Tool will send out an email notification to the rest of the

project team about the new requirements changes so that everybody in the project team would be

39

aware of what this new requirement is, how this new requirement impacts their area, and how it

needs to be addressed.

Figure 30. Sample Gift Card Project Changed Requirements

Figure 31. Sample Gift Card Project Requirement Change Email Notification

40

As the Project Quality Tool is capable of linking the requirements to design for

traceability, any unmapped new requirements, or modified existing requirements would show up

in the reports stating the problem area to the rest of the project team. This feature will help us to

check the completeness of the project at any point in time.

Similarly, if a design document is updated after the TCERs are reviewed, then a

notification will be sent to the project team stating that there is a change in the design document,

and the subsequent phases may possibly be affected by these changes.

Figure 32. Sample Gift Card Project Design Change Email Notification

41

Figure 33. Sample Gift Card Project Report Showing Unmapped Requirements

If there are any unmapped requirements, the project team can identify them and make

necessary updates to TCERs for the completeness of the project.

This Tool will be very helpful for small to medium projects, as the timeline will be very

challenging for these projects. All of the large scale projects are well-planned and process-

oriented as the timeline will be huge. This is also a good tool for the offshore and on-site model

as the staff will be working in different shifts; with this centralized tool it would be helpful for

transitioning. Not only this, but imagine the production support dilemma when the person who

designed this is not available. With the JAD session recordings and other details, when the

project is turned over to the production support team, they can do a better job in fixing the

production issues quickly and efficiently.

42

CHAPTER 5. CONCLUSION

In this paper, the Project Quality Tool was presented. This Tool addresses issues in day-

to-day software development in the offshore and on-site model-based companies and distributed

development. As such, my Project Quality Tool fulfills the requirements specified in Chapter 2.

It allows us to track requirements, designs and test case changes, and for the first time preserving

the JAD sessions and unit test result details along with SDLC deliverables all in one portal.

While this tool can be a valuable asset, additional features would enhance it further and

may be included in future versions. First, it would be convenient to have the ability to record the

JAD sessions and important project meetings live, and have them compressed and stored directly

in the respective Audio/Video folder for any given project. Second, future versions should

include a feature for checking the SDLC deliverables automatically. Third, a feature to record

and plan’s project timeline into the tool would make the TCERs reusable between multiple

projects with export functionality. These features will automate the entire process flow which

will help the Project Managers track the progress made at any given point, and also help the

Quality Assurance team re-use the regression test cases at Enterprise Level which would aid in

reducing the time and redundancy during test case designing.

As it is, however, the proposed Project Quality Tool will be a useful tool when there are

constant requirement changes or any other challenges due to team globalization as this tool

would satisfy Users, Management and Software Development teams.

43

REFERENCES

DeBellis & Haapala. (2006, August). McAllister Dissertation. Retrieved November 27, 2013

from http://www.drjohnlatham.com/resources/2006_McAllister_Dissertation.pdf

Khanduja, J. (2009, March 2). 10 golden rules for requirements based testing. Retrieved from

http://itknowledgeexchange.techtarget.com/quality-assurance/10-golden-rules-for-

requirements-based-testing/

Leffingwell, D. & Widrig, D. (2000). Managing software requirements: A unified approach.

Boston, MA: Addison-Wesley.

Leffingwell, D. & Widrig, D. (2003). Managing software requirements: A use case approach.

Boston, MA: Addison-Wesley.

McAllister, C. A. (2006, August). Requirements determination of information systems: User and

developer perceptions of factors contributing to misunderstandings. Retrieved from

http://www.drjohnlatham.com/resources/2006_McAllister_Dissertation.pdf

Nemani, R. & Ichu, E. (2011, July-August). The role of quality assurance in software

development projects: Project failures and business performance. International Journal of

Computer Technology and Applications, 2(4), 716-725.

Noble, S. (2004, October 28). Why offshore outsourcing projects fail. (White Paper). Santa Fe,

NM: Global Sourcing Insights LLC. Retrieved from http://costkiller.net/tribune/Tribu-

PDF/Why_outsourcing_fails.pdf

Spanoudakis, G. & Zisman, A. (2005, August). Software traceability: A roadmap. In Chang, S.K.

(Ed.) Advances in software engineering and knowledge engineering, Vol 3: Recent

advances. World Scientific Publishing, ISBN: 981-256-273-7.

44

Stepanek, G. (2012). Software project secrets: Why software projects fail. New York: Apress.

Sundaram, S. K., Hayes, J. H., Dekhtyar, A., & Holbrook, E. (2008, November 15). Assessing

traceability of software engineering artifacts. London: Springer-Verlag. Retrieved from

http://selab.netlab.uky.edu/homepage/publications/rej_2007_sundaram_hayes_dekhtyar_

holbrook.pdf

	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. LITERATURE REVIEW
	2.1. Bugzilla
	2.2. HP Quality Center
	2.3. JIRA
	2.4. Subversion
	2.5. TRAC
	2.6. GEMINI
	2.7. IBM Rational ClearQuest
	2.8. Shortcomings of Existing Tools

	CHAPTER 3. RESEARCH APPROACH
	3.1. Overview of Project Quality Tool
	3.2. Brief Introduction about Project Quality
	3.3. Functional Overview of Project Quality Tool
	3.4. Project Quality Tool Architecture
	3.5. Flow Charts of the Project Functionality

	CHAPTER 4. RESEARCH EVALUATION
	CHAPTER 5. CONCLUSION
	REFERENCES

