

EVALUATING THE USEFULNESS OF REQUIREMENT ERROR

TAXONOMY AS A DEFECT PREVENTION TECHNIQUE: AN EMPIRICAL

INVESTIGATION

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Sana Rehman

In Partial Fulfillment

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

April 2014

Fargo, North Dakota

North Dakota State University

 Graduate School

 Title

Evaluating the Usefulness of Requirement Error Taxonomy as a Defect Prevention Technique:

An Empirical Investigation

 By

SANA REHMAN

The Supervisory Committee certifies that this disquisition complies with North

Dakota State University’s regulations and meets the accepted standards for the

degree of

 MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

 Dr. Gursimran Walia

Chair

Dr. Kendall E. Nygard

Dr. Maria Alfonseca-Cubero

 Approved by Department Chair: Dr. Brian M Slator

04/11/2014

 Brian M Slator

Date

Signature

iii

ABSTRACT

Defect prevention techniques can be used during the creation of software artifacts to help

developers create high-quality artifacts. The Requirement Error Taxonomy developed by Walia

et al. [22, 23] helps focus developer’s attention on common errors that can occur during

requirements engineering. This paper investigates the usefulness of the Requirement Error

Taxonomy as a defect prevention technique. The goal was to determine if making requirements

engineers’ familiar with the Requirement Error Taxonomy would reduce the likelihood that they

commit errors while developing a requirements document. We conducted an empirical study in

which the participants used the Requirement Error Taxonomy during inspection of a

requirements document. Then, in teams, they developed their own requirements document which

was evaluated by other students. The hypothesis was that participants who find more errors

during the inspection of a requirements document would make fewer errors when creating their

own requirements document. The overall result supports this hypothesis.

iv

ACKNOWLEDGEMENTS

I would like to thank all the individuals and organizations who have me accomplishing

this task. First of all, I would like to extend my gratitude towards my adviser Dr. Gursimran

Walia for his continuous help, support, patience and guidance in the development and

completion of this paper. He has been a helpful advisor who has motivated me at every step and

guided me during my master’s program.

I am grateful to Dr. Kendall Nygard who provided me the opportunity to become part of

NDSU and for being a great mentor throughout. His presence on this committee is very special

for me and I want to thank him for his time.

I am thankful to Dr.Maria Alfonseca-Cubero from the department of Mathematics who

kindly consented to be on my supervisory committee and supported me through this effort.

My journey through the Master’s program went through many moments of success and

failures but I was always reminded of the famous quote from Winston Churchill who once said:

“Success is not final, failure is not fatal: it is the courage to continue that counts.”

I continued through this journey but it was only possible because of the support and

guidance of the faculty and staff of Computer Science Department, my family and friends who

stood by me as a rock and above all the Almighty.

v

DEDICATION

I dedicate this research paper to my family who supported me through thick and thin

from thousand miles in India and my friends who are my family in the US.

To my parents Dr.H.R.Khan and Dr. (Mrs.) Shamim Khan for having faith and believing

in my dreams. Your push for tenacity still ring in my ears and it is only because of your sacrifice

and hardwork that I could achieve this milestone in my life.

My brother Hasan Raza Khan and sister Sanobar Khan for their unconditional love,

support and for always being by my side. You both are very special.

A very special thanks to my friend and colleague Anshuman Manori who always stood

by me in difficult times and inspired me to pursue higher studies from NDSU, USA.I appreciate

his help in proofreading this paper.

I am in debt to Dr.Robert Roach who performed the lifesaving brain surgery on me when

I was diagnosed with brain tumor. Without his timely diagnosis and treatment I would not have

seen this day.

Dr.Gursimran Walia has been the ideal advisor. His sage advice, insightful criticisms and

patient encouragement aided me in research in innumerable ways.

Most of all thanks to God for being so merciful by showering his blessings on me and

making this possible.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

1. INTRODUCTION.. 1

2. BACKGROUND AND RELATED WORK ... 4

2.1. Approaches on the Sources of Faults .. 6

2.2. A Cognitive Psychology Perspective on Errors .. 8

3. REQUIREMENT ERROR TAXONOMY DEVELOPMENT AND EVELUATION .. 10

3.1. Development of Requirement Error Taxonomy ... 11

3.2. Evaluation of Requirement Error Taxonomy as a Defect Detection Method 13

4. EXPERIMENT DESIGN ... 16

4.1. Research Questions and Hypotheses .. 16

4.2. Independent and Dependent Variables ... 17

4.3. Participating Subjects.. 17

4.4. Artifacts: ... 18

4.5. Experiment Methodology: .. 19

4.5.1. Step 1- Inspecting an Example SRS Document ... 20

4.5.1.1.Training 1.. 20

4.5.1.2.Inspecting SRS for Faults.. 21

4.5.1.3.Re-inspection of SRS Document.. 21

4.5.2. Step 2- In class Discussion of Inspection Results. 22

4.5.3. Step 3- Development of SRS Documents .. 22

vii

4.5.4. Step 4- Inspection of Developed SRS Documents. 22

4.5.5. Step 5- Team Meetings to Discuss Errors and Faults: 23

4.5.6. Step 6- Fix SRS and Post-Study Questionnaire:. 23

4.6. Data Collection ... 23

5. RESULTS AND ANALYSIS .. 26

5.1. Analysis of the Inspection Prior to the Development vs. Quality of Requirements

 Document Developed by Student Teams .. 26

5.2. Analysis of the Type of Errors Detected Prior to the Development of the

 Requirements Document ... 29

5.3. Analysis of the Pre-Test Data ... 30

6. THREATS TO VALIDITY OF RESULTS ... 32

7. DISCUSSION OF RESULTS .. 33

8. CONCLUSION AND FUTURE WORK... 35

REFERENCES ... 36

APPENDIX ... 39

viii

LIST OF TABLES

Table Page

1. Description of Requirement Error Classes (Walia, 2009)…12

2. Teams and System Descriptions………………………………...................…...……18

ix

LIST OF FIGURES

Figure Page

1. Research Approach……………………...…………………10

2. The Family of Experiments……………….......................................……………………13

3. Overview of the Experimental Steps……………...............................…………………..19

4. Details of the Experimental Procedure……………….......................…………………...20

5. Error Detection Pre-Development vs. Faults during the Development…….…...........….27

6. Fault Detection Pre-Development vs. Faults during the Development...….........…........28

1

1. INTRODUCTION

Software Engineers are constantly focused on developing high quality software. To

address the problem of poor software quality, researchers have devoted considerable effort to

developing methods that help developers find and fix problems early when these repairs are

easiest and cheapest. Most of the early-lifecycle quality improvement methods focus on faults

i.e., mistakes recorded in a requirement or design document. The use of fault detection methods

(based on fault classification taxonomies) has been empirically evaluated through controlled

experiments and case studies in both laboratory and real setting (e.g., [2, 5, 6, 21]). Even when

faithfully applying empirically-validated fault-based techniques, developers do not find all

problems in the software. As a result, an estimated 40-50% of development effort is spent fixing

problems that should have been fixed in an earlier phase or should have been prevented

altogether [3]. Therefore, there is a need to improve early defect detection and to help developers

eliminate the unnecessary rework.

Because there are a number of competing definitions in the literature, we will first define

the terms “error” and “fault” to avoid any confusion. An error is a defect in the human thought

process while trying to understand information, solve problems, or use methods and tools. A

fault is a concrete manifestation of an error within a software artifact. One error may cause

several faults and various errors may cause the same fault. The definition of “error” used in this

paper more closely resembles the definition of human error than that of program error (or

incorrect program condition) in IEEE standard 610 [1].

The main drawback of software quality approaches that focuses exclusively on faults is

that the underlying cause of the fault (i.e., the error) is neither addressed nor identified. An error

taxonomy can help developers detect and eliminate errors and related faults. Furthermore, by

2

identifying errors, developers can find additional related faults that may have been overlooked

(similar to a doctor finding and treating all symptoms once he knows the underlying disease).

Therefore, an error-based quality improvement approach is needed.

The idea of using error information to improve software quality is not novel. Researchers

have used information about source of faults in different ways. Some techniques that focus on

errors determine the cause of only a sample of previous faults to suggest software process

changes and prevent future faults [4, 7-8, 12, 14-17]. In the cases where techniques do address

the underlying cause of faults (e.g., Root-Cause Analysis [14], Orthogonal Defect Classification

[5], and Error Abstraction [12]), the research has focused primarily on errors from the software

engineering domain. These approaches lack a strong cognitive theory to describe the types of

mistakes make when creating software artifacts. Human Error research in cognitive psychology

builds upon theoretical models of human reasoning, planning, and problem solving, and how

these ordinary psychological processes fail [11, 13, 18-20]. The exploitation of human error

research broadens our understanding of errors that software engineers make during development.

To address this issue, we combined information from software engineering and cognitive

psychology to develop requirements error taxonomy [24]. We have also evaluated the usefulness

and completeness of the taxonomy with a family of four controlled empirical studies [23-26].

Section II provides a brief description of the error taxonomy along with its development and

evaluation processes.

The results from our previous studies show that the requirement error taxonomy improves

the defect detection effectiveness of both individual inspectors and teams. A second important

value of the requirement error taxonomy is that it can focus developers’ attention on common

errors during the requirement engineering process. An awareness of these common errors should

3

make developers less likely to commit them and more likely to create an artifact that will have

fewer defects to remove during the review and testing.

This paper presents an empirical study to investigate the usefulness of the requirement

error taxonomy as a defect prevention technique. A controlled study with university students was

performed to determine if students avoided making the errors and faults in their own document

that they had found in earlier inspection of someone else’s document.

Section II provides some background on the error abstraction process and the requirement

error taxonomy. Section III describes the study design. Section IV describes the data analysis

results. Section V discusses the threats to validity. Section VI focuses on the relevance of the

results. Section VII summarizes the results from this study. Section VIII concludes the paper and

presents ideas for future work.

4

2. BACKGROUND AND RELATED WORK

Our literature review identified nine methods that used causal analysis to determine the

source of a fault and suggest preventive actions (e.g., [4, 16]) or process changes (e.g., [7-9, 15,

17]). These method were successful relative to their goals, but were incomplete because they

focused on a representative sample of faults (potentially overlooking many errors). Nevertheless,

the insights provided by these methods provided input to the requirement error taxonomy. A

complete discussion of these methods, their limitations and their contributions to the requirement

error taxonomy has been published in a systematic literature review [24].

Previously, other researchers have developed quality improvement approaches based on

the source of faults. While these approaches have been effective, they have two shortcomings: 1)

they typically do not define formal error identification and repair process; and 2) they were

developed based on a sample of observed faults rather than on a strong cognitive theory that

provides comprehensive insight into human mistakes. Section 2.1 discusses three approaches that

were developed based on the sources of faults. Section 2.2 provides an overview of how

cognitive psychology research can help identify the sources of faults. Section 3then provides our

background work done in developing and validating the requirement error taxonomy.

A discussion about software quality necessarily focuses on a three important terms,

which we have referred to: error, fault, and failure. These terms have competing and

contradictory definitions in the literature. To reduce confusion, we provide a definition for each

term that is used throughout this proposal. These definitions are similar to those provided by

Lanubile, et al. [46][46] and are consistent with software engineering (SE) textbooks [27, 60, 74]

and an IEEE standard [1].

5

 An error occurs when a developer’s thought process is flawed. The error may affect

one or more elements in a software artifact. Errors may arise from different sources,

including such things as slips that occur due to incorrect execution of a planned action

(e.g. out of order sequence of steps) or mistakes that occur due to inaccurate or

incomplete understanding of a system (e.g. some system-specific information was

misunderstood leading to the selection of wrong method). The term error has

multiple definitions. In fact, IEEE Standard 610 provides four definitions ranging

from an incorrect program condition (referred to as a program error) to a mistake in

the human thought process (referred to as a human error). The definition of error

used in this proposal more closely resembles the definition of a human error rather

than a program error.

 A fault is a concrete manifestation of an error, i.e. something written incorrectly in an

artifact.

 A failure is the incorrect execution of software, e.g. a software crash or an incorrect

output.

A medical analogy may help illuminate the differences between faults and errors. A

patient who is sick with a disease exhibits symptoms, or visible manifestations of that disease.

For example, a patient may complain of severe headaches. A doctor can prescribe painkillers for

the headaches, but symptomatic treatment does not affect the underlying symptomatic cause. The

patient might have migraines and need a beta-blocker or they might have a more serious problem

such as a brain tumor that requires surgical intervention. Painkillers may provide short-term

relief, but the underlying problem will return unless an effort is made to treat its true source.

Fault-based approaches to software quality treat the symptoms, but do not necessarily treat the

6

causes. We must look deeper to find and fix the errors, the cause of the problem, rather than

finding and fixing only the fault, the symptom of the problem

Defect prevention techniques can be used during the creation of software artifacts to help

developers create high-quality artifacts. These artifacts should have fewer faults that must be

removed during inspection and testing. The Requirement Error Taxonomy that we have

developed helps focus developers’ attention on common errors that can occur during

requirements engineering. By focusing on those errors, the developers will be less likely to

commit them. This paper investigates the usefulness of the Requirement Error Taxonomy as a

defect prevention technique. The goal was to determine if making requirements engineers’

familiar with the Requirement Error Taxonomy would reduce the likelihood that they commit

errors while developing a requirements document. We conducted an empirical study in which the

participants were given the opportunity to learn how to use the Requirement Error Taxonomy by

employing it during the inspection of a requirements document. Then, in teams, they developed

their own requirements document. This requirements document was then evaluated by other

students to identify any errors made. The hypothesis was that participants who find more errors

during the inspection of a requirements document would make fewer errors when creating their

own requirements document. The overall result supports this hypothesis.

2.1. Approaches on the Sources of Faults

 Prior research has employed the sources of faults in different ways with varying levels of

success. SE techniques use different methods to analyze faults to determine their causes and

suggest process improvements [5, 12, 31, 54, 55, 57]. Here we describe three examples of such

techniques.

7

 Root Cause Analysis (RCA) helps identify systematic development problems to drive

process improvement. These problems are detected during the testing phase and, separate from

the development process, analyzed to determine their cause and suggest process improvements

[12]. Four multi-dimensional defect triggers help developers characterize the source of the faults

and identify process improvement needs based on those sources [51]. Our work extends this idea

by emphasizing early-lifecycle faults (i.e. requirements) rather than late (i.e. implementation,

testing).

 Similarly, the Orthogonal Defect Classification (ODC) provides developers with in-

process feedback on development activities. Developers classify defects using the ODC. Then,

developers identify the trigger that caused the defect to surface (not necessarily the cause of

defect insertion). Because this process is applied to code and the triggers explain the actions that

revealed the failure, it is more objective than predicting the actual cause of defect insertion. The

ODC has been shown to provide useful feedback to developers [23]. Our work extends this idea

by helping developers understand not only what caused a fault to be revealed, but more

importantly what caused the fault to be inserted.

 A somewhat different approach to understanding the source of faults is Error

Abstraction. Developers analyze faults detected during an inspection to determine their

underlying cause, i.e. the error. Inspectors follow a process to abstract the faults to the errors that

likely caused them. These errors then guide a re-inspection to detect other related faults that were

overlooked during the original inspection. This process did not make use of a type of formal

error taxonomy to guide inspectors [46]. Our work extends this approach by formalizing the

error taxonomy, with input from psychology, to make developers more effective during the error

inspection process.

8

 In these methods, developers analyze only a sample of faults, potentially overlooking

many errors. These methods also lack a formal process to assist developers in finding and fixing

errors. A major drawback of many of these approaches is the lack of strong cognitive theory to

describe the types of mistakes people make during development. Therefore, our work combines

SE research with human error research to provide a more comprehensive solution [87, 95].

2.2. A Cognitive Psychology Perspective on Errors

Psychological study of human errors received increased attention beginning in the early

1970’s (e.g., [80, 81]). Systematic models of human error capitalized on basic theoretical

research in human cognition, especially related to information processing. It quickly became

apparent that errors generally were not the result of irrational or maladaptive tendencies, but

instead resulted from normal psychological processes gone awry. Reason [66] introduced a well-

respected taxonomy of human errors that begins with a distinction between slips, lapses, and

mistakes. Slips are often committed by experts who employ a familiar routine even though the

situation calls for novel behavior. Mistakes are often committed by novices, who simply

misunderstand something and act accordingly. To clarify this distinction, consider two

programmers who are coding a for-loop in C. Arrays in C are referenced from zero and it is

common to code a for-loop that walks through an array as for (var = 0; var < limit; var++). A

novice programmer who does not understand array references in C might instead use for (var =

1; var <= limit; var++), a misunderstanding-based mistake. Conversely, an expert programmer

might find himself in a situation where no initialization is needed (or desired) and should code

for (var < limit; var++) but instead inserts the unwanted initialization anyway due to the

activation of a familiar habit, an example of a slip.

9

Rasmussen [62, 64] used a related taxonomy to study errors in an organizational context.

He distinguished between skill-based errors, rule-based errors, and knowledge-based errors.

Rule-based errors arise when a familiar rule is applied inappropriately or an incorrect rule is

employed. Knowledge-based errors occur when someone finds herself in an unfamiliar situation

and must reason about how to behave. Gaps in their knowledge often lead to errors. This

approach was employed by Bates and colleagues to identify the origins of medication errors and

to provide alternative procedures in order to reduce adverse drug events [8].

Ko and Myers [42] used largely the same theoretical framework to adapt error models to

software development tasks. Although their main focus was on programming errors made by

novices, they identified a framework that encompassed both the specification and

implementation stages. Likely because of their focus on programming errors by novices, the

framework provides little specificity for errors that occur early in the lifecycle. Rather, it notes

the possibility of a “skill-based error made during the creation of documents that result in a

requirements specification error” and similar errors. True error taxonomies go beyond these

abstract possibilities: “The lead software engineer forgot to ask the client for input from end-

users, so useful functionality was omitted from the requirements specifications.” Ko and Myers

provide this rich analysis of errors only for novice programmers. Our target is different: to

analyze errors made during the requirements engineering process (to prevent and catch costly

mistakes early) and to work with more experienced developers who make fewer mistakes than

novices.

10

3. REQUIREMENT ERROR TAXONOMY DEVELOPMENT AND EVELUATION

 Lanubile et al., proposed the Error Abstraction approach, in which developers analyze

faults detected during an inspection to determine the underlying errors likely to have caused

them. These errors are then used to guide a re-inspection to detect additional faults. This work

produced some promising initial results, but Lanubile, et al., did not pursue this research [12].

Our work built on Lanubile’s approach by formalizing requirement error taxonomy, with

additional input from cognitive psychology, to better support developers during the error

abstraction and re-inspection process. Fig. 1 illustrates Dr. Walia’s previous research in

developing and evaluating the requirement error taxonomy. This work is discussed in following

subsections.

 The requirement error taxonomy was developed by combining specific types of errors

identified within the software engineering research together with cognitive psychology research

about human errors. First, we developed an initial taxonomy (1. Ad-hoc Review) and empirically

evaluated it (2. Feasibility Study at Mississippi State University [MSU]). Then, we refined the

taxonomy using a more systematic approach (3. Systematic Review), and re-evaluated it using

Figure 1. Research Approach

11

three additional empirical studies (4. Control Group Study and 5. Observational Study at MSU;

and 6. Control Group Replicated Study at North Dakota State University [NDSU]).

Because the systematic literature review and the Requirement Error Taxonomy (V2.0) have

already been published (Walia, 2009), Section 3.1 just provides a summary of the taxonomy

development. Section 3.2 provides an overview of the empirical studies and how the results

motivated the current paper.

3.1. Development of Requirement Error Taxonomy

The requirement error taxonomy helps inspectors identify and understand errors and

provides guidance for identifying additional errors and faults. It has evolved through two

versions. We used an ad-hoc review of the software engineering and psychology literature to

develop the initial requirement error taxonomy (V1.0) (Walia, 2006a). After the feasibility study

(Walia, 2006b), we performed a systematic literature review to more completely identify and

document the types of requirement errors (Walia, 2009). This review included 149 papers from

software engineering, human cognition and psychology. The systematic approach is commonly

used in other fields (e.g. medicine) to draw high-level conclusions across a series of detailed

studies (Kitchenham, 2004).

To generate the taxonomy we grouped the errors identified in the software engineering,

human cognition, and psychology literature into 14 detailed error classes which we then grouped

into three high-level error types (Table 1). The three error types are People Errors, Process

Errors, and Documentation Errors.

People Errors include mistakes caused by fallibilities of the individuals involved in

project development. Process Errors are caused by mistakes in selecting the means of achieving

goals/objectives and focus mostly on the inadequacy of the requirements engineering process.

12

Documentation Errors are caused by mistakes in organizing and specifying the

requirements regardless of whether the developer correctly understood the requirement.

Each error class was derived from specific errors identified in the software engineering

and human cognition literature. Specifically, errors related to human cognition span all three

error types and fall into seven of the fourteen error classes: Domain Knowledge, Specific

Application Knowledge, Process Execution, Inadequate Method of Achieving Objectives,

Organization, Specification, and Other Cognition.

The complete description of the systematic review process, details of the requirement

error taxonomy and examples of errors and related faults for all 14 error classes can be found in

the systematic literature review (Walia, 2009) and in Appendix A. To illustrate the error

Table 1 - Description of Requirement Error Classes (Walia, 2009)

Error Type Error Class Description

People Errors

Communication Poor or missing communication among the various stakeholders

Participation Inadequate or missing participation of important stakeholders

Domain Knowledge
Requirement authors lack knowledge or experience with problem

domain

Specific Application

Knowledge

Requirement authors lack knowledge about specific aspects of the

application

Process Execution

Requirement authors make mistakes while executing requirement

elicitation and development, regardless of the adequacy of the

chosen process

Other Cognition
Other errors resulting from the constraints on the cognitive

abilities of the requirement authors

Process Errors

Inadequate Method of

Achieving Goals and

Objectives

Selecting inadequate or incorrect methods, techniques, or

approaches to achieve a given goal or objective

Management Inadequate or poor management processes

Elicitation Inadequate requirements elicitation process

Analysis Inadequate requirements analysis process

Traceability Inadequate or incomplete requirements traceability

Documentation

Errors

Organization Problems while organizing requirements during documentation

No Use of Standard
Problems resulting from the lack of using a documentation

standard

Specification
General documentation errors, regardless of whether the

requirement author correctly understood the requirements

13

taxonomy, we provide an example participation error along with a related fault taken from a

generic ATM system:

Error: An important stakeholder (e.g., a bank manager in an ATM system) was not

involved in the requirement gathering process;

Fault: Some functionality (e.g., handling multiple ATM cards simultaneously at different

machines) was omitted.

3.2. Evaluation of Requirement Error Taxonomy as a Defect Detection Method

To evaluate the usefulness of the requirement error taxonomy and the error abstraction

process, we conducted a family of four controlled experiments (studies one, two and three at

MSU and study four at NDSU). A family of studies is a set of related studies that focus on the

same research question or hypotheses (Basili, 1999). While each of our studies tested the same

basic hypotheses, the designs of later studies were slightly modified based on the lessons learned

during the earlier studies. As shown in Figure 2, the results from Study 1 motivated the design of

Studies 2 and 3 (by adding a control group variable and an observational variable respectively).

Similarly, the results from Study 2 motivated the design of Study 4 (by replicating Study 2 in a

different university setting).

Figure 2. The Family of Experiments

14

We evaluated the usefulness of the requirement error taxonomy with four empirical

studies. The validation goal of these studies was to ensure that: 1) the error classes are clearly

described, useful, and complete, and 2) the developers can use the error taxonomy to increase

their defect detection effectiveness during inspections.

Study 1 and 3 (see Fig. 1), were conducted in senior-level capstone courses where

students developed a project for real customer. In these studies, the students first performed an

inspection of their requirement document to identify faults. Then, they were trained on the use of

error taxonomy. The students then used the error taxonomy to abstract and classify the errors that

caused the observed faults. Finally, the students used the error information to guide the re-

inspection of the requirement document. The results from these two studies indicated that the

participants found the error taxonomy both easy to use and effective. In addition, by using the

error taxonomy, the participants found a significant number of new faults during the re-

inspection. Finally, most participants found errors that were derived from the cognitive

psychology human error research, 10%-20% of the total errors reported [21, 26].

 Study 2 and 4 (see Fig. 1), were conducted with students enrolled in graduate-level

courses. In these studies, one group of students (i.e., the experiment group) used the same

procedure as in the Study 1 and 3 described above. The other group of students (i.e., the control

group) inspected the artifact two times without using error abstraction. In Study 2, the control

group participants used the same fault inspection technique during both inspections and in Study

4, they used a more mature fault inspection technique for the re-inspection. We compared the

results from the experimental group with the results from the control group to determine what

portion of the additional faults found during the re-inspection can be attributed to the use of the

error abstraction and classification approach. The results from these studies showed that the

15

group who used the error abstraction and classification process found significantly more faults

during re-inspection than the control group, providing more evidence of its usefulness [25-26].

The results from these four studies can be summarized as follows: 1) the error abstraction

and classification approach improves the effectiveness (number of faults found) of inspectors

during a requirements inspection, 2) the requirement error taxonomy is subjectively useful for

inspectors to find errors and faults, and 3) the human error research from cognitive psychology

helped inspectors detect more faults. More details of the experiment designs and results from

each of these studies can be referred [21-26].

While the requirement error taxonomy has been effective in detecting defects during

inspections, a more useful analysis would require evaluating the effectiveness of the requirement

error taxonomy for preventing defects from occurring during the requirements development.

Leape, and other researchers have employed a similar approach to the analysis of adverse

medical events in order to understand what caused the individuals to make errors [11, 13]. Leape

et al., argued that the underlying cause of the problems should be used to prevent errors rather

than attempting to remove the errors. Because the errors are mistakes or misunderstandings of

the software engineers while creating a software artifact, the information about the commonly

made errors can be used to educate software engineers to prevent them from making errors in the

first place.

16

4. EXPERIMENT DESIGN

The major goal of this study is to evaluate the usefulness of the requirement error

taxonomy as a defect prevention technique. This study investigates whether developers can avoid

making errors if they have a priori information about the types of errors that can occur during

requirement development.

This experiment is a control group design in which participants were divided into two

groups and inspected a requirements document (developed externally) using the error abstraction

and classification method (the first group) and using the traditional fault checklist method (the

second group). These inspections resulted in a list of errors and faults for each participant. The

participants are then briefed on the different types of errors that may occur during the

requirement development (using information in the requirement error taxonomy). Next, each

team of 3 or 4 participants developed a requirement document for a different system. These

requirements documents were then evaluated by other participants to identify errors and faults.

The details of the study are provided in the following subsections.

 Research Questions and Hypotheses 4.1.

 Three research questions were investigated in this study.

Research Question 1: Does knowledge about the types of errors and faults that may occur

during requirement development make developers less likely to make those errors?

Research Question 2: Does finding a particular type of error (e.g., people or process or

documentation errors) reduce the likelihood that a developer will commit that type of error

while creating his own document?

Research Question 3: Is a student’s understanding of the error classes an accurate predictor

of their effectiveness during an error-based inspection of someone else’s document and an

17

accurate predictor of their ability to make fewer errors when developing their own

document?

Three hypotheses related to above questions are:

Hypothesis 1: The teams whose members find more errors (as opposed to the faults) during

the inspection of someone else’s requirement document will make fewer errors and faults

when creating their own document.

Hypothesis 2: The teams whose members find more errors of an error type during the

inspection of someone else’s document will make fewer errors of that error type when

creating their own document.

Hypothesis 3: The teams whose members find significantly more People Errors during the

inspection of someone else’s document will make fewer total errors when creating their own

document.

 Independent and Dependent Variables 4.2.

The experiment manipulated the following independent variables:

The pre-test: measures the performance of subjects during an in-class training exercise on the

error taxonomy.

The inspection technique: employed by the participants prior to the development of the

requirements document.

We also measured the following dependent Variables:

Effectiveness: the number of errors and the number of faults found by each subject.

 Participating Subjects 4.3.

 Forty three undergraduate students enrolled in System Analysis and Design course at

North Dakota State University (NDSU) participated in this study. The students worked in

18

thirteen teams of three (there was one team of four students) to develop a requirement

document for different projects.

 Artifacts 4.4.

There were two phases to this study (inspection and development). Each phase used

different artifacts. First, during the inspection phase, all participants inspected a software

requirements specification (SRS) document developed externally by capstone project

students at Florida International University (FIU). This requirements document describes an

interactive restaurant menu (RIM) that the students at FIU later implemented. The RIM

system provides customers the ability to make their dining choices through a table terminal,

PDA, and/or web-based application. This document was chosen because it was developed by

a team of four undergraduate students and contains a representative sample of the kind of

errors and faults that the participants at NDSU would make. Second, for the development

phase, each team of four participants developed a software requirement specification (SRS)

document for a different system. Table 2 provides a list of these systems.

Table 2 – Teams and System Descriptions

Team # System Description

1 Retail Management System

2 Healthcare Database System

3 Food Order Via Facebook

4 Online Playlist Management System

5 Incident Management System

6 Social Networking based Course Management System

7 Online Video Rental System

8 Mobile Payment and Account Management System

9 Scoreboard Content Management System

10 Concert Hall Management System

11 Portable Health Monitoring System

12 Warehouse Inventory Management System

13 NDSU Biometric System

14 Bison Campus Maintenance Alert System

19

 Experiment Methodology 4.5.

The experimental design includes five steps. Fig. 3 provides an overview of

experiment steps. Fig. 4 shows the details of the experiment steps. The details are

provided in the following subsections.

20

4.5.1. Step 1- Inspecting an Example SRS Document

This step involved using the error abstraction and classification method to inspect

the RIM SRS document:

4.5.1.1. Training 1: During this 60 minutes session, the participants received the

SRS document for the RIM system, the fault checklist and a list of the fault

classes. They were instructed on how to use the fault checklist to locate faults

and how to record faults.

Figure 4. Details of the Experimental Procedure

1. Inspection using
Fault Checklist

2. Error Abstraction
and Error

Classification

3. Re-Inspection
using Errors

Training 1

Training 2

Fault
List

Error
Fault
List

New Error Fault List

SRS

EXPERIMENT GROUP
(21 subjects)

43 Student at NDSU

In-class Discussion of
a) Inspection Results and

b) Requirement Errors

3. Developing SRS

SRS 1 SRS 13

2,3,…,
12

1. Inspection using
Fault Checklist

2. Error Abstraction
and Error

Classification

3. Re-Inspection
using Errors

Recap of
Training 1 and

Training 2

Fault
List

Error
Fault
List

New Error Fault List

SRS

4. Inspecting Real SRS

5. Team meetings to agree/disagree on
Faults and errors found during inspection

2. In-class discussion

Fault
List

Error
Fault List

New Error
Fault List

6. Fix faults in SRS
and Post-study
Questionnaire

1. Inspection
using Fault
Checklist

2. re-Inspect Using Fault Checklist

Training 1

Training 2

Fault
List

New Error Fault List

SRS

CONTROL GROUP
(22 subjects)

1. Inspecting Example SRS

21

4.5.1.2. Inspecting SRS for Faults: Using the information from Training 1, each

participant inspected the RIM requirement document using the fault checklist.

This step produced 43 individual fault lists (one per participant).

Training 2: During this training session, the participants were divided into two

groups. The control group had 22 subjects and the experiment group had 21 subjects.

The 22 subjects in the control group were re-trained on the fault checklist technique

and were told that they had missed certain faults during the first inspection. The 21

participants in the experiment group learned about the error abstraction process and

the requirement error taxonomy. The participants were first trained on how to use the

error abstraction process to abstract errors from the faults on their individual fault

lists. Because abstracting errors from faults is a subjective process, the requirement

error taxonomy was described in detail to support the error abstraction process. Next,

the participants were taught how to classify errors. They were given the description of

an example system and 12 errors. They classified those errors using the 14 detailed

error classes in the taxonomy. The participants’ classifications of these errors served

as a pre-test to provide an idea of how well they understood the classification scheme.

They were also instructed on how to use the error list (to record and classify the

abstracted errors). Finally, the participants were taught how to use the error

information in the error list to re-inspect the requirements document. They were also

instructed on how to record the new faults found during re-inspection in the new

error-fault list.

4.5.1.3. Re-inspection of SRS Document: The 21 participants used the information

about errors gathered during the error abstraction and classification to re-

22

inspect the requirements document to locate additional faults. The output of

this step was 21 individual new error-fault lists (one per experiment group

participant). Also, the 22 participants in the control group re-inspected the SRS

document using the same fault checklist technique and produced a list of new

faults found during the second inspection. The output of this step was 22

individual new fault lists (one per control group participant)

4.5.2. Step 2- In class Discussion of Inspection Results

Using the information about the errors and faults found in Step1, the first author

discussed these errors and faults separately with the participants in the experiment and

the control group.

4.5.3. Step 3- Development of SRS Documents

The 43 participants were divided into 14 teams (7 belonging to the control group

and 7 belonging to the experiment group). The 21 experiment group subjects were

divided into 7 teams of three subjects each. The 22 control group subjects were also

divided into 7 teams where 6 teams were made of three subjects and 1 team with four

members. The participants were allowed to select their own team members. Each team

developed the requirements document for a different software system (as described in

Table II). Team numbers 1, 3, 5, 7, 9, 11, 13 belonged to the experiment group and Team

numbers 2, 4, 6, 8, 10, 12, 14 belonged to the control group.

4.5.4. Step 4- Inspection of Developed SRS Documents

During this step, the instructor provided the participants with a training session on

the Fault Checklist, Error Abstraction Process and Requirement Error taxonomy. After

each team had developed their software requirement document, three or four participants

(equivalent to the number of developers) were assigned to inspect it. These inspectors

23

were chosen at random with the constraint that they had to all come from different

development teams (and that they should not be inspecting the document that they were

part of the development). Each participant then used the error abstraction and

classification method to inspect the requirements document (in the same manner as in

Step 1). Each participant produced three outputs: 1) individual fault list (first inspection),

2) individual error-fault list (error abstraction), and 3) individual new fault list (re-

inspection). This step resulted in a list of errors and faults found by four different

inspectors for each of the thirteen requirement documents (43 in total).

4.5.5. Step 5- Team Meetings to Discuss Errors and Faults

The developers of each requirements document analyzed and discussed the errors

and faults found by the inspectors. This step resulted in a list of errors and faults that the

development team agreed with and a list they disagreed with, along with the reason for

disagreement. The first author discussed this list with the developers and the inspectors

(if the description of error/fault was unclear) to arrive on a final list of agreed-upon

errors and faults.

4.5.6. Step 6- Fix SRS and Post-Study Questionnaire

This step used the list of agreed error and faults from Step 5 to fix the problems in

their documents. The subjects were then given a questionnaire to provide feedback about

the error abstraction process, the requirement error taxonomy, and the quality of SRS

documents.

4.6. Data Collection

This section provides a brief description of qualitative and quantitative data collected

during Study. The quantitative data includes the faults found by participants prior to the

24

development of their own document. This includes the faults found during Step 1 using the fault

checklist technique (i.e., the control group subjects) and the faults and errors found by the

participants using the error abstraction and classification process (i.e., the experiment group

subjects). We then collected the faults made by the student teams during the development of their

SRS documents (Table II). Each of these 14 documents was inspected by students and their fault

lists were analyzed to count the number of unique faults committed during the development of

these documents.

The fault reporting forms also provide the participants with space to indicate timing

information, including the start and end times of the inspection, the time they found each fault,

and any breaks they took.

In addition, the fault reporting forms required the participants to rate the importance level

and the severity of the faults identified during the first and second inspection cycle. The

importance level, which is the potential that a particular requirement fault found during

inspection can cause a redesign of the software, was classified using the following scale (0- not

important, designer should easily see the problem; 1- problem, if a failure occurs it should be

easy to find and fix; 2– important, if a failure occurs it could be hard to find and fix, 3– very

important, if a failure occurs it could be very hard to find and fix, 4- if a failure occurs it could

cause a redesign). The severity, which is the probability that a particular fault will cause a system

failure, was classified using the following scale (0- will not cause failure, regardless whether it is

caught by the designer; 1- will not cause failure, because it will be caught by the designer; 2–

could cause a failure, but most likely be caught by the designer, 3– would cause a failure, will

most likely not be caught by the designer).

One of the researchers validated that the faults reported by each participant were true-

positives. The researcher, who had knowledge of the system for which the requirements were

25

developed, read through the faults reported by each participant to remove any false-positives

before analyzing the data. If any faults were unclear, the researcher clarified them with the

participant to accurately determine the validity of the fault. Regarding the evaluation of the

errors reported by participants, the researcher read through the errors to ensure that the

description of each error represented a real mistake or misunderstanding that could have

happened during the development. Also, the researcher evaluated the errors for correct

classification by making sure that the description of the error was consistent with the actual

description of that error class.

26

5. RESULTS AND ANALYSIS

This section provides an analysis of error data. This section is organized to test the effect

the inspection in Step 1 had on the subsequent steps. We also compared whether information

about errors (the experiment group) vs. faults (the control group) prior to the development are

significantly correlated to the number of errors and faults present in the developed documents.

An alpha value of 0.05 was used for all statistical tests.

5.1. Analysis of the Inspection Prior to the Development vs. Quality of Requirements

Document Developed by Student Teams

This section analyzes the effect the number of errors found by developers (belonging to

the experiment group) during an error-based inspection of someone else’s requirement document

(i.e., Step 1) had, on the number of errors and faults committed by them while developing their

own requirements documents (i.e., Step 3). Similarly, we also analyzed the number of faults

found by developers during (belonging to the control group) a fault-checklist based inspection of

someone else’s requirement document (i.e., Step 1) had, on the number of errors and faults

committed by them while developing their own requirements documents (i.e., Step 3). The goal

of this analysis was to evaluate whether developers with prior knowledge of errors vs. fault had a

correlation (we expected a negative correlation) with the number of defects present in their own

documents.

Because each development team consisted of four people and the inspection data from

Step 1 was individual data, we had to combine the Step 1 scores into one team score. The error-

detection effectiveness of the development teams (the experiment group) and the fault detection

effectiveness of the teams (the control group) during Step 1 was calculated by combining the list

27

of unique errors and/or unique faults each participant found in the RIM requirement document.

The errors committed by developers while developing their own requirements document (during

Step 3) were calculated by combining the list of unique errors that the four inspectors found

(during Step 4) and agreed upon by the developers and the inspectors (Step 5). This analysis was

performed for each of the 14 teams. We performed this analysis separately for the 7 teams in the

experiment group (where the error and fault count during step 1 were analyzed against the errors

and faults during the step 3) and for the 7 teams in the control group (where the fault count

during step 1 were correlated against the errors and faults during Step 3).

The reason for using the unique errors and faults (as opposed to the total error and fault

count) are because we were interested in coverage of the error space by the teams (and the fault

space by the control group teams) as opposed to high overlap in the error and fault lists or

individual team member’s knowledge.

Figure 5 plots the number of unique errors found during an inspection prior to the

development against the number of unique errors and the number of faults made during the

Figure 5. Error Detection Pre-Development vs. Faults during the Development

0

20

40

60

80

100

120

140

160

180

200

1 3 5 7 9 11 13

A
ve

ra
ge

 n
u

m
b

e
r

o
f

e
rr

o
rs

 o
r

fa
u

lt
s

fo
u

n
d

Team Number

Total Number of Errors found at Step 1

Total Number of Faults found at Step 4 and agreed on at Step 5

28

development of their requirement document for the 7 teams in the experiment group.

To test the hypothesis 1, we ran a linear regression test to see whether the number of

errors found by a team during Step 1 is inversely correlated to the number of errors made during

development of their own requirements. The results from a linear regression shows a strong and

significant correlation (r = -0.831, r
2
 = 0.69 and p-value of 0.013) between the number of errors

found by the development team and the number of faults made by them during the development.

That is, the teams that found a larger number of errors prior to the development made fewer

errors and faults during the development of their own document and vice versa.

Similarly, Figure 6 plots the number of unique faults found during the inspection prior to

the development against the number of unique errors and the number of faults made during the

development of their requirement document for the 7 teams in the control group.

We ran a linear regression test to see whether the number of faults found by a team

during Step 1 is inversely correlated to the number of errors made during development of their

own requirements. The results from a linear regression shows a weak but positive correlation (r =

Figure 6. Fault Detection Pre-Development vs. Faults during the Development

0

20

40

60

80

100

120

140

2 4 6 8 10 12 14

A
ve

ra
ge

 n
u

m
b

e
r

o
f

fa
u

lt
 f

o
u

n
d

Team Number

Total Number of Faults found at Step 1

Total Number of Faults found at Step 4 and agreed on at Step 5

29

+0.352, r
2
 = 0.124 and p-value of 0.13) between the number of faults found by the development

team and the number of faults made by them during the development. That is, the teams that

found a fewer (or larger) number of errors prior to the development made fewer (or more) faults

during the development of their own document. This result was not significantly correlated (p-

value of 0.2192).

Based on these results, using the requirement error taxonomy to guide an inspection of

someone else’s document does appear to reduce the number of errors (and resulting faults)

committed during the subsequent development of a different document. However, the fault

checklist technique alone cannot help the developers avoid making same faults when developing

their own document. A major reason for this might have been the fact that, using the error

inspection, developers are able to understand the root cause of the faults (and the mistakes that

are likely to happen during the development) as opposed to the manifestation of the errors during

the fault based inspection.

5.2. Analysis of the Type of Errors Detected Prior to the Development of the

Requirements Document

While Figure 5 shows the total number of errors, it is also important to conduct a similar

analysis for each major error type. We analyzed whether the number of errors within each error

type (People or Process or Documentation Errors) detected by developers prior to development

had an effect on the faults committed during the development.

We broke down the total errors into the number of People, Process, and Documentation

Errors found by each team prior to development and the number of faults caused by each error

type made during development.

30

To test hypothesis 2, we ran a linear regression test to see whether the number of errors

belonging to each error type found at Step 1 is inversely correlated to the number of faults

(caused by the errors of that error type) made during the development. The results show that only

the People Errors found at Step 1 are significantly correlated to the number of faults made by

teams that were attributable to the People Errors while developing their own documents. The

result had a significant negative correlation (r = -0.743, r2 = 0.56, and p-value = 0.03). While the

Process Errors and Documentation Errors were negatively correlated, the results showed a weak

and an insignificant correlation.

Based on this result, the teams that found a larger number of People Errors prior to the

development made fewer numbers of faults when developing their own document. Therefore,

People Errors are the most common type of errors and a major source of requirement problems.

Therefore, during requirement creation, developers can use the error taxonomy to focus their

attention on commonly occurring people errors, so that they will be less likely to commit them,

resulting in high-quality software artifacts.

5.3. Analysis of the Pre-Test Data

The number of errors correctly classified during the pre-test at Step 1 was analyzed to

determine whether it was related to the number of errors found during Step 1. Note that only the

21 subjects in the experiment group performed the error inspection during the Step 1. The goal of

this analysis was to understand whether performance of a team on a pre-test could be an accurate

predictor of their performance during the actual development. To perform this analysis, the

average number of errors correctly classified by four participants on each team was compared

against the number of errors committed during development. The linear regression test showed

31

that the two variables had a positive relationship but the correlation was weak and was not

significant.

32

6. THREATS TO VALIDITY OF RESULTS

In this study, we were able to address some threats to validity. To avoid a learning effect

during the pre-test, the order of the errors being classified was randomized. Also, the participants

inspected the requirements for a real system prior to the development as opposed to using an

artificially seeded document. While the participants developed real documents, there were some

threats to external validity. The study focused on students in a classroom setting who are likely

to have different experience and time pressures than would be true of professionals in a real

environment. Also, there remains a threat to external validity of using a requirements document

that was not implemented. This study was an initial investigation and we plan to address this

threat in future study. We were able to address the threat by including a control group. Finally,

we do not know the actual number of errors and faults present in the documents developed by the

participants. We only used the number of errors and faults found by the inspectors. So, there

might be more errors present in the document that could change the results.

33

7. DISCUSSION OF RESULTS

A major focus of this study is to investigate the usefulness of the error taxonomy (as

opposed to the fault checklist technique) as a defect prevention technique.

Our first question focused on understanding whether the participants made fewer errors

and faults in their own documents after they had found errors (vs. faults) in the earlier inspection

of someone else’s document. The results in Figure 5 and Figure 6 showed that the performance

(of participants in each team) during an error based inspection prior to the development had an

inverse relationship with the number of errors and faults made during the development of their

own documents. This result means that the more errors found during an inspection (Step 1) the

fewer errors and faults made during subsequent development of a requirements document. When

this result was tested statistically there was a significant and strong negative correlation between

the two variables. There was no significant and negative correlation between the performances of

student teams in control group. Therefore, using error taxonomy to guide an inspection prior to

development of a requirement document is beneficial.

The results from our previous studies have shown that even though the three error types

in taxonomy provide a good coverage of requirement error space, People Errors tend to be the

largest source of requirement problems [22-26]. Therefore, this research question investigated

the effect of the number of People, Process, and Documentation Errors found prior to the

development, on the number of errors committed within each error type, and the total number of

faults committed (within each error type) while developing their own documents. The answer to

this question will help software developers focus their attention on the most common errors

during the requirement development process. The results show that among the three errors types,

People Errors had the largest and most significant effect. The teams that found significantly

34

larger number of People Errors during an inspection of someone else’s document, made fewer

People Errors and fewer total number of errors while developing their own documents.

Software organizations can use the error taxonomy to educate their software developers

about the common errors that can occur during the artifact creation process. By focusing on these

errors, developers will be less likely to commit them. Furthermore, because the error taxonomy

describes some common faults that can result from the errors, the artifact creators can use this

information to reduce the chance they will insert those faults into the artifact. As a result, they

will produce higher quality documents that will require less effort to remove the smaller number

of faults during the inspection and testing phases. Especially in large software organizations,

major problems arise from the mistakes and misunderstandings among the people involved in the

development process. Furthermore, understanding the commonly occurring errors in an

organization over a period of time can help correct the system inadequacies that cause the

individuals to make errors

35

8. CONCLUSION AND FUTURE WORK

Based on the results provided in this paper, investing in the error taxonomy to help

developers learn from other’s mistakes is a reasonable cost for avoiding costly rework, that is

fixing problems that should have been fixed in earlier lifecycle phases or should have been

prevented altogether. The results in this paper have motivated us to further investigate the

promise of using the error taxonomy as a defect prevention technique. In future, we plan to

replicate this study and other studies to investigate the use of error taxonomy as defect

prevention technique in different settings including capstone project courses (where students will

actually implement the systems) and in an industrial setting (with professional software

developers). Our future work also includes creating more formal techniques for error prevention

using the requirement error taxonomy.

36

REFERENCES

1. IEEE Std 610.12-1990, IEEE standard glossary of software engineering terminology. 1990.

2. Basili, V.R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S., and

Zelkowitz, M.V., "The Empirical Investigation of Perspective-Based Reading." Empirical

Software Engineering: An International Journal, 1996. 1(2): 133-164.

3. Boehm, B. and Basili, V.R., "Software Defect Reduction Top 10 List." IEEE Computer,

2001. 34(1): 135-137.

4. Card, D.N., "Learning from our mistakes with defect causal analysis." Software, IEEE, 1998.

15(1): 56-63.

5. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K., and

Wong, M.Y., "Orthogonal defect classification-a concept for in-process measurements."

IEEE Transactions on Software Engineering, 1992. 18(11): 943-956.

6. Florac, W. Software Quality Measurement: A Framework for Counting Problems and

Defects. Technical Reports, CMU/SEI-92-TR-22. Software Engineering Institute: 1992.

7. Grady, R.B., “Software Failure Analysis for High-Return Process Improvement,” Hewlett-

Packard Journal, 1996. 47(4):15-24.

8. Jacobs, J., Moll, J.V., Krause, P., Kusters, R., Trienekens, J., and Brombacher, A.,

"Exploring Defect Causes in Products Developed by Virtual Teams." Journal of Information

and Software Technology, 2005. 47(6): 399-410.

9. Kan, S.H., Basili, V.R., and Shapiro, L.N., "Software Quality: An Overview from The

Perspective Of Total Quality Management." IBM Systems Journal, 1994. 33(1): 4-19.

10. Kitchenham, B. Procedures for Performing Systematic Reviews. TR/SE-0401. Department of

Computer Science, Keele University and National ICT, Australia Ltd.: 2004.

37

11. Kohn, L.T., Corrigan, J.M., and Donaldson, M.S., "To Err is Human: Building a Safer Health

System. A Report of the Committee on Quality Health Care". 2000, Washington, DC.

12. Lanubile, F., Shull, F., and Basili, V.R. "Experimenting with error abstraction in

requirements documents". In Proceedings of Fifth International Software Metrics

Symposium, METRICS98. p. 114-121.

13. Leape, L. L., "Errors in Medicine," Journal of the American Medical Association, 272(23):

1851-1857. 1994

14. Lezak, M., Perry, D., and Stoll, D. "A Case Study in Root Cause Defect Analysis". In

Proceedings of the 22nd International Conference on Software Engineering. Ireland. 2000. p.

428-437.

15. Masuck, C., "Incorporating A Fault Categorization and Analysis Process in the Software

Build Cycle." Journal of Computing Sciences in Colleges 2005. 20(5): 239 – 248.

16. Mays, R.G., Jones, C.L., Holloway, G.J., and Studinski, D.P., "Experiences with Defect

Prevention." IBM Systems Journal, 1990. 29(1): 4 – 32.

17. Nakashima, T., Oyama, M., Hisada, H., and Ishii, N., "Analysis of Software Bug Causes and

Its Prevention." Journal of Information and Software Technology, 1999. 41(15): 1059-1068.

18. Norman, D.A., "Categorization of Action Slips." Psychological Review, 1981. 88: 1-15.

19. Rasmussen, J., "Skills, Rules, Knowledge: Signals, Signs and Symbols and Other

Distinctions in Human Performance Models." IEEE Transactions: Systems, Man, &

Cybernetics, 1983. 257-267.

20. Reason, J., Human Error. 1990, New York: Cambridge Press.

21. Sakthivel, S., "A Survey of Requirements Verification Techniques," Journal of Information

Technology, 668-79. 1991

38

22. Walia, G.S., Empirical Validaton of Requirement Error Abstraction and Classification: A

Multidisciplinary Approach, M.S Thesis, Computer Science and Engineering, Mississippi,

Starkville, 2006(a).

23. Walia, G.S., Carver, J., and Philip, T. "Requirement Error Abstraction and Classification: An

Empirical Study". In Proceedings of IEEE Symposium on Empirical Software Engineering.

Brazil: ACM Press. 2006(b). p. 336-345.

24. Walia, G.S. and Carver, J., “A Systematic Literature Review to Identify and Classify

Requirement Errors,” Journal of Information and Software Technology, 2009. 51(7) 1087-

1109.

25. Walia, G., Carver, J., and Philip, T., Requirement Error Abstraction and Classification: A

Control Group Replicated Study, in 18th IEEE Symposium on Software Reliability

Engineering. 2007: Sweden.

26. Walia, G., Carver, J., Using Error Abstraction and Classification to Improve the Quality of

Requirements: Conclusions from Family of Studies, Technical Report. 2010, NDSU,

http://cs.ndsu.edu/research/ reports.htm

39

APPENDIX

This appendix describes the different errors in each of the fourteen detailed error classes

(described in Table 1). A complete description of the requirement error taxonomy (along with

examples of errors and faults) has been published in a systematic literature review (Walia, 2009).

The list below shows each error class along with the specific errors that make up that error class.

Communication Errors

 Inadequate project communications

 Changes in requirements not communicated

 Communication problems, lack of communication among developers and between

developers and users

 Poor communication between users and developers, and between members of the

development team

 Lack of communication between sub teams

 Communication between development teams

 Lack of user communication

 Unclear lines of communication and authority

 Poor communication among developers involved in the development process

 Communication problems, information not passed between individuals

 Communication errors within a team or between teams

 Lack of communication of changes made to the requirements

 Lack of communication among groups of people working together

Participation Errors

 No involvement of all the stakeholders

 Lack of involvement of users at all times during requirement development

 Involving only selected users to define requirements due to the internal factors like

rivalry among developers or lack of the motivation

 Lack of mechanism to involve all the users and developers together to resolve the

conflicting requirements needs

Domain Knowledge Errors

 Lack of domain knowledge or lack of system knowledge

 Complexity of the problem domain

40

 Lack of appropriate knowledge about the application

 Complexity of the task leading to misunderstandings

 Lack of adequate training or experience of the requirement engineer

 Lack of knowledge, skills, or experience to perform a task

 Some properties of the problem space are not fully investigated

 Mistaken assumptions about the problem space

Specific Application Errors

 Lack of understanding of the particular aspects of the problem domain

 Misunderstandings of hardware and software interface specification

 Misunderstanding of the software interfaces with the rest of the system

 User needs are not well understood or interpreted while resolving conflicting

requirements

 Mistakes in expression of the end state or output expected

 Misunderstandings about the timing constraints, data dependency constraints, and event

constraints

 Misunderstandings among input, output and process mappings

Process Execution Errors

 Mistakes in executing the action sequence or the requirement engineering process,

regardless of its adequacy

 Execution or storage errors, out of order sequence of steps and slips/lapses on the part of

people executing the process

Other Human Cognition Errors

 Mistakes caused by adverse mental states, loss of situation awareness

 Mistakes caused by ergonomics or environmental conditions

 Constraints on humans as information processors e.g., task saturation

Inadequate Method of Achieving Goals and Objectives

 Incomplete knowledge leading to poor plan on achieving goals

 Mistakes in setting goals

 Error in choosing the wrong method or wrong action to achieve goals

 Some system-specific information was misunderstood leading to the selection of wrong

method

 Selection of a method that was successful on other projects

 Inadequate setting of goals and objectives

 Error in selecting a choice of a solution

41

 Using an analogy to derive a sequence of actions from other similar situations resulting in

the wrong choice of a sequence of actions

 Transcription error, the developer understood everything but simply made a mistake

Management Errors

 Poor management of people and resources

 Lack of management leadership and necessary motivation

 Problems in assignment of resources to different tasks

Requirement Organization Errors

 Poor organization of requirements.

 Lapses in organizing requirements.

 Ineffective method for organizing together the requirements documented by different

developers.

Requirement Traceability Errors

 Inadequate/poor requirement traceability

 Inadequate change management, including impact analysis of changing requirements

Requirement Elicitation Errors

 Inadequate requirement gathering process

 Only relying on selected users to accurately define all the requirements

 Lack of awareness of all the sources of requirements

 Lack of proper methods for collecting requirements

Requirement Analysis Errors

 Incorrect model(s) while trying to construct and analyze solution

 Mistakes in developing models for analyzing requirements

 Problem while analyzing the individual pieces of the solution space

 Misunderstanding of the feasibility and risks associated with requirements

 Misuse or misunderstanding of problem solution processes

 Unresolved issues and unanticipated dependencies in solution space

 Inability to consider all cases to document exact behavior of the system

 Mistakes while analyzing requirement use cases or scenarios

42

No Use of Standard for Documenting Errors

 No use of standard format for documenting requirements

 Different technical standard or notations used by sub teams for documenting

requirements

Specification Errors

 Missing checks (item exists but forgotten)

 Carelessness while organizing or documenting requirement regardless of the

effectiveness of the method used

 Human nature (mistakes or omissions) while documenting requirements

 Omission of necessary verification checks or repetition of verification checks during the

specification

