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ABSTRACT 

This paper presents an application based on the Simplicial Intercept Depth method 

introduced by Liu (2004). We use this method to get the best linear fit of the phenotypic data 

for spot blotch resistant reaction of two different barley groups. The Simplicial Intercept Depth 

method is generalized by Simplicial Depth, also proposed by Liu in 1990. It provides a robust 

way for data analysis when outliers appear. In this paper, we use the Bootstrapping method, 

which is introduced by Bradley Efron (1979), to resample from the original dataset to get a 

distribution of the estimates. We also compare the SID with least squares regression and the 

Theil-type estimate which introduced by Shen (2009). The result shows that the SID is a robust 

method for estimating the coefficients of the linear regression model.  
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1. INTRODUCTION 

The least squares method is the most common statistical method used for analyzing 

related variables. It performs perfectly when the distribution of the dataset is normal. But if the 

outliers arise, which happens a lot in real data, this method usually delivers unsatisfied results. 

The Simplicial Intercept Depth (SID) method, introduced in section 2.2, provides a geometric 

way to find the best linear fit for a given dataset. It considers each pair of input and output 

variables as a single point in the plane, and finds the best fitted line formed by two of those 

points. The SID method is proposed by Liu (2004) based on the notion of Simplicial Depth by 

Liu (1990). This SID method shows robustness against outliers. 

In section 3, we provide the phenotypic data for two different groups of inoculated 

barley. Spot blotch is a barley disease due to the fungus named Cochlioblus sativus. This 

disease is around all the places that barley is grown. It is one of the most important kinds of 

leaf disease of barley in North Dakota. It may cause significant yield losses in the warm 

temperature and moist humid climates. Under favorable conditions, the diseases could spread 

rapidly. The infections present as dark blotches, then the spots will spread to form dead dark 

patches on the leaves. The data shows the disease resistant reaction levels from 1 to 9, where 1 

represents the most resistant reaction while 9 is the most susceptible one. In this paper, we are 

trying to use SID to estimate the difference between the two groups. 

When we estimate the coefficients of the linear fit by SID, we use the Bootstrapping 

method, introduced in section 2.3, to resample the data. Thus we can construct a distribution 

of the estimated coefficients and then confidence intervals. The best linear fit is formed by the 

mean of the coefficients. 
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In order to show the robustness of the SID method, in section 5 we present some 

examples to compare the results with the least squares method and a Theil-type estimate (by 

Shen, 2009). We insert some significant outliers in the simulated data. The fitted lines by SID 

and the Theil-type estimate still pass through the bulk of the dataset, while the least squares 

method is attracted by the outliers. Though the SID method is computational expensive, it 

provides an alternative way to get the robust linear fit. 
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2. METHODOLOGY 

2.1. Simplicial Depth 

The notion of Simplicial Depth (SD) was proposed by Liu(1990). The idea is trying to 

find the probability that a point is inside a random simplex that formed by the independent 

observations from the given dataset. Statistical data depth started to play an increasing role in 

data analysis after that. The data depths represent how deep or central a given point is relative 

to the distribution or to the given data cloud. Liu introduced the Simplicial depth as a depth 

function that is robust and affine invariant.  

      Definition: Given a distribution F in Rp , the simplicial depth of the point x is the 

probability that x is inside a random simplex in Rp : 

𝑆𝐷(𝐹; 𝑥) =  𝑃𝐹(𝑥 ∈ 𝑆[𝑋1, … , 𝑋𝑝+1]) 

where 𝑆[𝑋1, … , 𝑋𝑝+1] is a closed simplex formed by p + 1 random points from the distribution 

F. 

If we consider F as a distribution on R2, the simplicial depth function could be easily 

written as  

𝑆𝐷 = 𝑃𝐹(𝑥 ∈  ∆(𝑋1, 𝑋2, 𝑋3)) 

where X1, X2, X3 are any three independent points form F. It is easy to be understood through 

geometry. It means the probability the point x inside the triangles formed by the dataset is the 

so-called simplicial depth of x. The point near the center of the data cloud should be contained 

in more triangles while the point away from the center should be contained in less. In other 

words, the function SD should have higher values for the deeper points and should approach 
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zero as the point leaving the center.  

If the sample size is n, we could estimate the above equation as  

𝑆𝐷̂ =  (
𝑛

3
)

−1

∑ 𝐼

∗

(𝑥 ∈  ∆(𝑋𝑖, 𝑋𝑗, 𝑋𝑘)) 

where * indicates that 1 ≤ i < j < k ≤ n and I( ) is the indicator function. To visualize the sample 

depth, we may imagine painting a layer with unit darkness on the region corresponding to each 

triangle ∆(𝑋𝑖, 𝑋𝑗, 𝑋𝑘), until all the (𝑛
3
) triangles are painted. The resulting degree of darkness 

thus represents the shape of the depth function. The points with larger depth values should 

show darker in color. 

Here we can get some properties of the Simplicial Depth function, 

(i) Affine Invariance. Assuming A( ) is an affine transformation function, the depth of 

point x respect to distribution F is equal to the depth of point A(x) respect to the distribution 

A(F). That is  

SD( F; x) = SD( A(F); A(x)) 

(ii) Maximality at Center. The depth of the center point p should be always equal or 

greater than any other point q in the dataset. 

SD( F; p) ≥ SD( F; q) 

(iii) Monotonicity Relative to Deepest point. The depth of any point between center 

point p and any other point q should be equal or greater than the depth of point q. 

SD( F; p + r(q - p)) ≥ SD( F; q) ;  r ∈ [ 0, 1] 

(iv) Vanishing at Infinity. If the point q is far away from the data cloud, it is an outlier, 

and the depth of q becomes zero. That’s the motivation of using this method to detect outliers. 
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lim
||q||→∞

SD( F; q) = 0 

Simplicial Depth mainly deals with the shape of data. It can be thought of as a measure 

of how well a point characterizes a dataset. This provides an alternative method to classical 

statistical analysis. 

2.2. Simplicial Intercept Depth (SID) 

When we try to study some related variables, the first and most commonly used 

statistical method that comes to mind is always linear fitting. Among all the existing linear 

fitting methods, the least squares regression has been used most extensively, for its 

mathematical convenience as well as for the optimality properties under normally distributed 

errors. However, it is less satisfactory when the error distributions are heavy-tailed or when the 

outliers are present, while SID shows more robustness in comparison. 

SID was also introduced by Liu (2004). It may be viewed as a generation of simplicial 

depth. Unlike the usual concept of depth defined with respect to the point in a multivariate data 

cloud, the SID is presented as the depth for lines or for hyperplanes in general. It measures the 

depth of lines instead of points. 

Although the SID method is suitable for the cases in any dimension, in this paper, we 

only focus on the multiple linear models in tow dimension, 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥𝑖 +  𝑒𝑖      for    i = 1,……,n 

where n is the sample size, 𝑥𝑖  is the i-th input variable, and 𝑦𝑖  is the i-th output variable or 

response variable. ei is the independent error and assumed to have mean zero and variance 𝜎2. 

𝛽0 and 𝛽1 are to be estimated from the given dataset. 
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In R2, the depth of a line is simply calculated as the average length ratio of the line 

intercept within each triangle to its longest edge, over all the triangles formed by the dataset. 

The depth here, in other words, presents how deep the line cuts through all the triangles. The 

SID value is 1 when all the data points fall on the line, and it decreases as data points move 

away. The line with the highest SID value will be considered as the best fit for the distribution. 

Definition: For a given line 𝐿𝑖𝑗, the criterion function of simplicial intercept depth is 

SID(𝐿𝑖𝑗) =  (𝑛
3
)

−1
∑ {

𝑑𝑘(𝑖,𝑗)

𝑚(∆𝑘)
}

(𝑛
3)

𝑘=1 , 

for i, j = 1,……, n, i ≠ j 

where n is the sample size. 𝐿𝑖𝑗 is the line formed by the 2 given points pi, pj from the dataset. 

Then the number of the lines 𝐿𝑖𝑗 is (𝑛
2
). 𝑑𝑘(𝑖, 𝑗) is the intercept of 𝐿𝑖𝑗 within the triangle 

∆𝑘. ∆𝑘 is formed by any three points pa, pb and pc from the data. 𝑚(∆𝑘) is the longest side 

of ∆𝑘. The number of the triangles ∆𝑘 is (𝑛
3
). A larger SID value for 𝐿𝑖𝑗 means that the 

line 𝐿𝑖𝑗 cuts deeper into more triangles, which implies the line describe the dataset better. 

There are two degenerate cases. One is when two vertices of the triangle are at the 

same position, the triangle will become a line. In this case, the ratio is 1 if the line 𝐿𝑖𝑗 

overlaps with the line representing the triangle, 0 otherwise. Another case is that all the three 

vertices are same, then the ratio is defined to be 1 if the coincided vertex is on the line 𝐿𝑖𝑗, 0 

otherwise. 

In this function, the line 𝐿𝑖𝑗 with the largest SID value is going to be considered as 

the best linear fit for the given dataset. That SID value of the fitted line can be considered as a 

robust condition of the coefficient of determination defined in the least squares regression. It 

provides a natural measurement of goodness fit for the line 𝐿𝑖𝑗. It’s not hard to find that the 
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SID value of the fitted line is 1 if and only if every data point is on this line, and it will 

decrease when the data points scatter away from it. 

Liu also showed the rotation and reflection invariance property of SID in his paper. 

Denote 𝐷𝑛 ={𝑝1,…, 𝑝𝑛} be the dataset, where 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)
𝑇. Consider H as a 2*2 

orthonormal matrix, that is HtH = HHt = I. Let 𝑝𝑖 = 𝐻𝑝𝑖, then 𝐷𝑛̃ is the orthonormal 

transformation of the original data. So we can get 

𝑆𝐼𝐷𝐷𝑛
(𝐿) =  𝑆𝐼𝐷𝐷̃𝑛

(𝐿̃) 

where 𝐿 is the given line with coefficients 𝛽0, 𝛽1. 𝐿̃ is the line with coefficients 𝛽0, 𝛽1, 

where (𝛽0, 𝛽1)𝑇 = H(𝛽0,𝛽1)𝑇. 𝑆𝐼𝐷𝐷𝑛
(𝐿) implies the SID value of the line 𝐿 with respect to 

the dataset 𝐷𝑛, while 𝑆𝐼𝐷𝐷̃𝑛
(𝐿̃) is the SID value of the line 𝐿̃  with respect to the dataset 

𝐷̃𝑛. 

    This suggests SID treats the input and the output variable symmetrically, and it is not 

usually shared by other regression methods. When the roles of the two variables as input and 

output variables are reversed, reflection invariance keeps the linear relationship between them 

unaffected. 

2.3. Bootstrapping 

Bootstrapping is a useful statistical method introduced by B. Efron(1979) for 

assigning measures of accuracy to sample estimates. It allows estimating the sampling 

distribution of almost any statistic using very simple methods. The basic idea of 

bootstrapping is to speculate about a population from sample data. This can be conducted by 

constructing a number of resamples, the number is usually 1,000 or 10,000. A moderate size 
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resample usually contains 20 or 50 individuals. Each of these resamples is generated by 

random sampling with replacement from the given dataset. Bootstrapping may also be used to 

construct hypothesis tests. 

In this paper, we only have one dataset. When we get the fitted model through SID 

(Section 4), we can’t test the significance of the coefficients. Therefore, we use the 

bootstrapping to create a large number of datasets and compute the coefficients on each of 

these subsets. Thus we get a distribution of the coefficients. Also, we use bootstrapping to 

avoid the computational expensive of SID. 

2.4. The Theil-type Estimate 

This method is similar as the idea of SID. They both transfer the problem of 

regression to the one of location. Theil estimate is also affine invariance. In this paper, to 

simplify, we only consider the case in two-dimension. Therefore, the linear regression model 

will also be similar as (3) 

𝑦𝑖  =  𝛽0 +  𝛽1𝑥𝑖 +  𝑒𝑖      for    i = 1,……,n 

where n is the sample size, xi is the i-th input variable or so-called deterministic in this case, 

and yi is the i-th output variable. ei is independent error with zero mean and variance 𝜎2. 𝛽0 

and 𝛽1 are the estimators. 

For the given 𝑥𝑖 and 𝑥𝑗, we have corresponding 𝑦𝑖 and 𝑦𝑗,where i and j are from 1 

to n and i is different from j. There are 𝑏𝑖 and 𝑏𝑗 representing the coefficients of them 

respectively. In another word, 𝑏𝑖 = (𝛽0𝑖, 𝛽1𝑖)
𝑇 and 𝑏𝑗 = (𝛽0𝑗, 𝛽1𝑗)𝑇. Then this Theil-type 

method gives us the estimate of β which minimizes the function 
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𝐷𝑛(𝛽) =  
1

(𝑛
2)(𝑛−2

2 )
∑ ∑ |𝐾𝑖𝑗(𝛽)|𝑗𝑖 , 

where 

𝐾𝑖𝑗(𝛽) = 𝑑𝑒𝑡 ( 1    1    1
𝑏𝑖   𝑏𝑗   𝛽

). 

This method, already proven by Shen (2009), provides more robust results than the 

least squares estimate. 
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3. DATA DESCRIPTION 

In our work, the data was collected from the department of plant pathology of NDSU. 

It was read from two groups of inoculated barley lines. For group 1, each line with three 

replicates was planted in greenhouse room 1. The barley in group 2 was planted in 

greenhouse room 2 as four replicates.  

The inoculated seedlings were read for disease resistant reaction at about ten days 

after the inoculation with a 1-9 scale method developed by Fetch and Steffenson (1999), 

where 1 represents the most resistant reaction and 9 represents the most susceptible reaction. 

Three independent inoculated plants were rated for each replicate and the averaged disease 

data were used to represent the reaction. 

We had 1012 barley lines in group 1, and 1050 lines in group 2. We can see from 

Table 1 and Figure 1 that there is a difference between the mean of the two groups, but it is 

unclear if the difference is significant. The scatter points in Figure 1 are the outliers. 

Table 1. Summary of data in group 1 and group 2. 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Group 1 2.2 6.1 6.8 6.643 7.4 8.7 

Group 2 3.3 6 6.5 6.418 6.9 8 
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Figure 1. Boxplot for group 1 and group 2. 
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4. MODEL FITTING 

The SID is a robust regression method that ignores the cluster of outliers, and the 

fitted line passes through the bulk of the major data cloud. This analysis in our paper is trying 

to find if there is a difference of the disease resistant reactions between the two groups. In this 

case, it is actually a simplified situation of SID in two-dimension. We use the disease resistant 

reaction levels as the response variables and consider 0 and 1 as input variables for group 1 

and group 2, respectively. The input and output variables can be inversed, which was 

introduced in section 2. 

However, our goal is to find the best linear fit by using the SID value to explain the 

dataset. The line with the largest SID value is estimated as the best fit. 

We here assume the model as 

𝑦𝑖  =  𝛽0 + 𝛽1𝑥𝑖 + 𝑒𝑖    for   i = 1, … , n, 

where n is the sample size, which equals to the total of the barley lines in both groups. 𝑥𝑖 is 

the i-th input variable, which equals to either 0 or 1. And yi is the i-th output variable 

representing the disease resistant level with value from 1 to 9. ei is the independent error and 

assumed to have zero mean and variance 𝜎2. 𝛽0 and 𝛽1 are the intercept and slope that need 

to be estimated from the dataset.  

We define the whole dataset as 𝑄𝑛 = {𝑞1, … , 𝑞𝑛}, where 𝑞𝑖 =  (𝑥𝑖, 𝑦𝑖)
𝑇 . Then we 

consider 2 subsets 𝑈ℎ = {𝑢1, … , 𝑢ℎ} ,  𝑉𝑙 = {𝑣1, … , 𝑣𝑙}  for the two groups, respectively. 

Where ℎ = 1, ... , nℎ;  𝑙 = 1, … , n𝑙, then 𝑢ℎ =  (0, 𝑦ℎ)𝑇, 𝑣𝑙 =  (1, 𝑦𝑙)𝑇. 

In this case, when we are getting the pool of the lines using SID, the line x = 0 and x = 

1 are useless since we are trying to compare 𝑈ℎ and 𝑉𝑙. Therefore, we only choose the line 
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that passes through each pair of points 𝑢ℎ and 𝑣𝑙. That means each line here is formed by 

one point in group 1 and another point in group 2. We denote the pool of all the nℎ × n𝑙 

lines  

𝐿ℎ𝑙  ≡ {𝑙𝑖𝑛𝑒ℎ𝑙 ∶  ℎ = 1, ... , nℎ;  𝑙 = 1, … , n𝑙}. 

Let Δ denote the collection of triangles. If all the three vertices of the triangle are from 

the same subset, then this triangle will be represented by a line, either x = 0 or x = 1. Recall 

that SID is the ratio between the length of the line’s intercept within the triangle to the length 

of the longest side of that triangle. The SID value of any line with that triangle is always 0 

since the length of the intercept is 0. Hence we define the subset of triangles with two vertices 

from 𝑈ℎ and another one from 𝑉𝑙 as 

∆u ≡ {∆𝑢1, … , ∆𝑢𝑘ℎ} 

where 𝑘ℎ =  (𝑛ℎ
2

)  ×  𝑛𝑙. The format of each triangle in this subset should be like 

∆(𝑢𝑖, 𝑢𝑗 , 𝑣𝑘). Let another subset for the triangles with one vertex from 𝑈ℎ and two from 𝑉𝑙 

as 

∆v ≡ {∆𝑣1, … , ∆𝑣𝑘𝑙} 

where 𝑘𝑙 =  (𝑛𝑙
2

)  × 𝑛ℎ. Each triangle here is represented as ∆(𝑢𝑖, 𝑣𝑗 , 𝑣𝑘). Therefore, the 

total number of the triangles we get in this research is 

nt = kh + kl = (𝑛ℎ
2

)  × 𝑛𝑙 +  (𝑛𝑙
2

)  × 𝑛ℎ  

Then for a given line 𝑙𝑖𝑛𝑒ℎ𝑙 in the pool 𝐿ℎ𝑙 and a triangle ∆𝑡 in Δ, we can check if 

they intersect. If any point of intersection with the line representing any side of the triangle 

∆𝑡 has an X-axis position between 0 and 1, then the line 𝑙𝑖𝑛𝑒ℎ𝑙 passes through the triangle 

∆𝑡. Let 𝑑𝑡(ℎ, 𝑙) denote the distance between the intersection points. Then we can get the SID 
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value of 𝑙𝑖𝑛𝑒ℎ𝑙 using the following equation 

SID(𝑙𝑖𝑛𝑒ℎ𝑙) =  
1

𝑛𝑡
∑{

𝑑𝑡(ℎ, 𝑙)

𝑚(∆𝑡)
}

𝑛𝑡

𝑡=1

 

where 𝑚(∆𝑡) is the length of the longest side of ∆𝑡. 

There are several cases when we calculate 𝑑𝑡(ℎ, 𝑙): 

(i) If 𝑙𝑖𝑛𝑒ℎ𝑙 has the same coefficients with one of the lines representing the side of the 

triangle ∆𝑡, then 𝑑𝑡(ℎ, 𝑙) equals to the length of that side.  

(ii) Clearly 𝑑𝑡(ℎ, 𝑙) = 0 if the line does not pass through the triangle, which means no 

intersection point has an X-axis value between 0 and 1. 

(iii) If there are two intersections’ X-axis position between 0 and 1, then 𝑑𝑡(ℎ, 𝑙) is 

the distance between those two points. 

(iv) If there is only one intersection point’s X-axis position between 0 and 1, and the 

triangle ∆𝑡 is in the subset ∆u, then 𝑑𝑡(ℎ, 𝑙) is the distance between that point and the 

intercept point of 𝑙𝑖𝑛𝑒ℎ𝑙. 

(v) If there is only one intersection point’s X-axis position between 0 and 1, and the 

triangle ∆𝑡 is in the subset ∆v, then 𝑑𝑡(ℎ, 𝑙) is the distance between that point and the point 

𝑣𝑙. 

We calculate all the SID value for every single line in the pool 𝐿ℎ𝑙. The best linear fit 

for the dataset 𝑄𝑛 is the line with maximum SID value. We denote the estimated coefficients 

as 𝛽0
∗ and 𝛽1

∗. 

In this research, we are using Bootstrapping method to construct 𝑈ℎ and 𝑉𝑙 with 

resampling from the original datasets with the resample size 50 and 51, respectively. 1000 
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bootstrapping samples are created, we can get 1000 pairs of 𝛽0
∗ and 𝛽1

∗. Their average values 

are used as the fitted coefficients for our model. Their summary is shown in Table 2. Then we 

get the fitted model  

𝑦𝑖  =  6.72 − 0.6288𝑥𝑖    for   i = 1, … , n, 

The 95% confidence interval for 𝛽0
∗ is (5.2, 7.6), and for 𝛽1

∗ is (-1.5, -0.1). From this 

result, we could find that the plants in group 2 shows more resistance to the spot blotch 

disease than those in group 1. 

Table 2. Summary of estimated coefficients by SID. 

 Min. 1st Qu. Median Mean 3rd Qu. Max. 

Beta0 4.7 6.4 6.8 6.72 7.2 8.0 

Beta1 -2.1 -1.0 -0.6 -0.6288 -0.4 1.0 

 

 

Figure 2. Histogram of estimated 𝛽0
∗ and  𝛽1

∗. 

The least squares regression provides the fitted linear model as 𝑦𝑖  =  6.64 − 0.22𝑥𝑖 , 

with 95% confidence interval (6.586, 6.700) for 𝛽0
∗ and (-0.304, -0.147) for 𝛽1

∗, while the 
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linear model fitted by the Theil-type estimate is 𝑦𝑖  =  6.79 − 0.49𝑥𝑖. The 95% confidence 

intervals for 𝛽0
∗ and 𝛽1

∗ are (6.502, 7.086) and (-0.844, -0.134), respectively. 

The results of all the methods are significant because the sample size is large enough. 

Note that when we use the Theil-type estimate to fit the model, we also use bootstrapping to 

get the resamples to avoid computational expense. 
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5. ROBUSTNESS COMPARISONS 

To maintain the consistency of this paper, here we still use the assumption that the 

linear model is 

𝑦𝑝  =  𝛽0 + 𝛽1𝑥𝑝 +  𝑒𝑖      for    p = 1,……,n 

We apply the three methods, least squares estimate, the Theil-type estimate and SID, 

to the dataset we created in four different cases. In each case, we give specified values for 𝛽0 

and 𝛽1 and a certain distribution for the error 𝑒𝑖. Let 𝑒𝑖 generalize from the given 

distribution, then we can get the simulated response values 𝑦𝑝.  

Denote D = {𝑑𝑝 =  (𝑥𝑝, 𝑦𝑝)𝑇} as the dataset we created. Let 𝑛 = 100, WI = {𝑤𝑖 =

(𝑥𝑖, 𝑦𝑖)𝑇} and WJ = {𝑤𝑗 = (𝑥𝑗 , 𝑦𝑗)𝑇} be the two subsets of the variables, where i, j = 1,…, 50. 

Then we define 𝑥𝑖 = 0 and 𝑥𝑗 = 1. It is easy to find that  𝑦𝑖  =  𝛽0 +  𝑒𝑖  and  𝑦𝑗  =  𝛽0 +

 𝛽1 +  𝑒𝑗. And then we create three significant outliers in WI, as 𝑦1= 𝑦2= 𝑦3= -100. 

For the least squares method, the regression is simply the linear model for the 

response variable 𝑦𝑝 with respect to the input variable 𝑥𝑝. We can get the fitted model, 

standard error for the estimated coefficients and the test score for it. Then we conduct the 

95% confidence interval for the coefficients by using asymptotic normality. 

As for the model fitting method of SID we mentioned in section 4, we consider the 

response variables 𝑦𝑖 in WI as the elements in the subset 𝑈ℎ, and let all the 𝑦𝑗 in WJ be the 

variables in 𝑉𝑙. Then we can use SID to get our fitted linear model with the resample size 20, 

and find out the 95% interval for the bootstrapping coefficients. 

Similar to SID, the Theil-type estimate considers  𝑏𝑖 = (𝛽0𝑖, 𝛽1𝑖)
𝑇 and 𝑏𝑗 = 

(𝛽0𝑗, 𝛽1𝑗)𝑇 as the coefficients with respect to each 𝑤𝑖 and 𝑤𝑗 from the subsets WI and WJ, 
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respectively. Then we fit the 𝑏𝑖 and 𝑏𝑗 in the function 𝐷𝑛(𝛽) mentioned in section 2.4 to 

find the minimizer 𝛽. This simulation also runs 1000 times to get the distribution of 𝛽 and 

the 95% confidence intervals. 

The four cases include the situations that the given slope is both positive or negative, 

also the independent errors both from normal distribution or student-t distribution. To be fair, 

we set the variance of the errors to be the same in all the cases. The results are shown as 

follows. 

Case 1: 𝛽0 = 1, 𝛽1= -2, 𝑒𝑖 iid from n(0, 1). Then 𝑦𝑖 has mean 1 and variance 1, 𝑦𝑗 

has mean -1 and variance 1. 

The fitted lines by the three methods are shown respectively as below: 

                                                        LS:         y =  −4.903 + 3.796x 

                                                      SID:         y = 1.027 − 1.969x 

                                                   Theil:         y = 0.885 − 1.889x 

Table 3. 95% confidence intervals for case 1. 

 LS SID Theil 

𝛽0 (-9.721, -0.080) (0.6120, 1.436) (0.691, 1.079) 

𝛽1 (-3.053, 10.596) (-2.494, -1.457) (-2.096, -1.682) 

 

 

Figure 3. Coefficients estimated by SID for case 1. 
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Figure 4. Coefficients estimated by Theil-type for case 1. 

Case 2: 𝛽0 = 1, 𝛽1= -2, 𝑒𝑖 iid from 
𝑡4

√2
 . Then 𝑦𝑖 has mean 1 and variance 1, 𝑦𝑗 

has mean -1 and variance 1. 

The fitted lines are 

                                                        LS:         y =  −4.826 + 3.827x 

                                                      SID:         y = 1.173 − 1.917x 

                                                   Theil:         y = 0.914 − 1.915x 

Table 4. 95% confidence intervals for case 2. 

 LS SID Theil 

𝛽0 (-9.652, -0.000) (0.561, 1.763) (0.685, 1.143) 

𝛽1 (-2.999, 10.654) (-4.297, -0.379) (-2.131, -1.699) 

 

 

Figure 5. Coefficients estimated by SID for case 2. 
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Figure 6. Coefficients estimated by Theil-type for case 2. 

Case 3: 𝛽0 = 1, 𝛽1= 3, 𝑒𝑖 iid from n(0,1). Then 𝑦𝑖 has mean 1 and variance 1, 𝑦𝑗 

has mean 4 and variance 1. 

We can get the fitted lines as these 

                                                        LS:         y =  −4.962 + 8.890x 

                                                      SID:         y = 1.022 + 3.018x 

                                                   Theil:         y = 0.904 + 3.092x 

Table 5. 95% confidence intervals for case 3. 

 LS SID Theil 

𝛽0 (-9.782, -0.142) (0.621, 1.439) (0.615, 1.193) 

𝛽1 (2.071, 15.709) (2.611, 3.412) (2.669, 3.515) 

 

 

Figure 7. Coefficients estimated by SID for case 3. 
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Figure 8. Coefficients estimated by Theil-type for case 3. 

Case 4: 𝛽0 = 1, 𝛽1= 3, 𝑒𝑖 iid from 
𝑡4

√2
. Then 𝑦𝑖 has mean 1 and variance 1, 𝑦𝑗 has 

mean 4 and variance 1. 

The results of the three methods are 

                                                        LS:         y =  −5.434 + 9.377x 

                                                      SID:         y = 0.973 + 3.110x 

                                                   Theil:         y = 0.917 + 3.080x 

Table 6. 95% confidence intervals for case 4. 

 LS SID Theil 

𝛽0 (-10.236, -0.631) (0.331, 1.635) (0.723, 1.111) 

𝛽1 (2.584, 16.170) (2.431, 3.790) (2.857, 3.303) 

 

 

Figure 9. Coefficients estimated by SID for case 4. 
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Figure 10. Coefficients estimated by Theil-type for case 4. 

From the four different cases shown as above, we can observe that the lines fitted by 

least squares are affected by the outliers, and the regression models are actually not 

significant. Also, we could see from Figure 3 to 10 that the results of SID and the Theil-type 

method perform similarly. The estimated values of the two methods are very close to the 

assumptions. We could say they have almost no influence from the outliers. 
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6. DISCUSSION 

In this research, we have used the SID method to find the best linear fit for the data of 

disease resistant reaction of spot blotch of barley. The result shows the group of barley lines 

planted in group 2 has more resistance to the disease. In this case, all the methods performed 

well because the sample size is large enough. In the simulation part, we reduced the sample 

size. The SID method shows less affect from the outliers than the common least squares 

method. It seems that SID gives more robust results in a small sample size. SID analyzes the 

numerical data in a geometric way. It provides an alternative to classical statistical analysis, 

and visualizes the problems while many measures are geometric in nature.  

The resample size is set around 50 for each subset when we construct the 

bootstrapping samples to avoid computational expense. Imagine if we enlarge the size to 100, 

the number of lines in the pool will be 10,000, and the number of triangles will become about 

1 million. We would need to calculate the SID of each the 10,000 lines with respect to all 

those triangles, and then bootstrapping for 1000 times. The calculation would need a really 

long time to complete. That’s a point that needs to be focused on in the future research. 

However, the SID method still works well on datasets with small sample size and provides a 

robust way to fit linear models against outliers.  
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APPENDIX 

  A.1. R Code for Simplicial Intercept Depth Method 

#distance btw 2 points# 

distance <- function(a, b){ 

sqrt((a[1]-b[1])^2+(a[2]-b[2])^2) 

} 

#point of intersection of 2 lines# 

poi <- function(x,y){              #x,y indicate (intercept,slope) of each line# 

e <- (x[2]-y[2]); 

if(e==0) {  no.inter<-c(0,0);    #parallel or overlap# 

          no.inter 

   }else 

{yy <- -1*(y[2]*x[1]-x[2]*y[1])/e; 

if(y[2]==0){ 

  xx <- (yy-x[1])/x[2]; 

} 

else{ 

  xx <- (yy-y[1])/y[2]; 

} 

p<-c(xx,yy); 

p} 

} 
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#read the data# 

Group1 <-t(read.table(file.choose(),sep=" ")); #1012 group1 barly with 3 reps# 

Group2 <-t(read.table(file.choose(),sep=" ")) ; #1050 group2 barly with 4 reps# 

## make length of each group as 5% ## 

nF <- 50  ;                  #NF=1012#  

nG <- 51  ;                   #NG=1050# 

F <- rep(0,nF) 

G <- rep(0,nG) 

xF <- 0; 

xG <- 1; 

##use Line(u) to get the (intercept, slope) of the no.u line## 

##u from 1 to nG*nF   ## 

k.line<-cbind(c(rep(c(1:nF),each=nG)),c(rep(c(1:nG),nF))); 

Line <- function(u){                        

  intc <- F[c(rep(c(1:nF),each=nG))]; 

  slp <- rep(0,nF*nG) 

  for(i in 1:(nF*nG)){ 

     slp[i] <- G[k.line[i,2]]-F[k.line[i,1]] 

    } 

  L<-cbind(intc, slp); 

  L[u,] 

} 
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nL <- nG*nF             #number of lines# 

#get the set of all triangles# 

  #triangles with 2 vertices  form F# 

nt2F <- nG*choose(nF,2);   

kt2F <- 

cbind(matrix(rep(combn(c(1:nF),2),nG),ncol=2,byrow=TRUE),rep(c(1:nG),each=choose(nF,

2))); 

triangle.2F1G <- function(k){       #length of k is 3# 

  line1<- c(F[k[1]],G[k[3]]-F[k[1]]) 

  line2<- c(F[k[2]],G[k[3]]-F[k[2]]) 

  edgecoef <-rbind(line1,line2) 

  l1<-distance(c(0,F[k[1]]),c(0,F[k[2]])) 

  l2<-distance(c(0,F[k[1]]),c(1,G[k[3]])) 

  l3<-distance(c(0,F[k[2]]),c(1,G[k[3]])) 

  loe<-c(l1,l2,l3) 

  list("edgecoef"=edgecoef, "max.e"=max(loe))     #get the coef of 2 edges and the longest 

length of all 3 lines# 

} 

  #triangles with 2 vertices  form G# 

nt2G <- nF*choose(nG,2); 

kt2G <- 

cbind(rep(c(1:nF),each=choose(nG,2)),matrix(rep(combn(c(1:nG),2),nF),ncol=2,byrow=TRU



28 
 

E)); 

triangle.1F2G <- function(k){ 

  line1<- c(F[k[1]],G[k[2]]-F[k[1]]) 

  line2<- c(F[k[1]],G[k[3]]-F[k[1]]) 

  ec<-rbind(line1,line2) 

  l1<-distance(c(0,F[k[1]]),c(1,G[k[2]])) 

  l2<-distance(c(0,F[k[1]]),c(1,G[k[3]])) 

  l3<-distance(c(0,G[k[2]]),c(1,G[k[3]])) 

  loe<-c(l1,l2,l3) 

  list("edgecoef"=ec, "max.e"=max(loe)) 

} 

#identify each triangle# 

tr <- function(q){ 

  if(q<=nt2F){ 

    kt<-kt2F 

    t<-triangle.2F1G(kt[q,]) 

  }else 

  { 

    kt<-kt2G 

    t<-triangle.1F2G(kt[q-nt2F,]) 

  } 

  t 
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} 

nt <- nt2F+nt2G;     #no. of all triangles# 

#SID function# 

SID <- function(l){ 

   d<-0;s<-0;m<-1;pp1<-c(0,0);pp2<-pp1 

   i<-0 

   while(i<nt){ 

      i<- i+1 

      m<- tr(i)$max 

      if(sum(Line(l)==tr(i)$e[1,])==2 || sum(Line(l)==tr(i)$e[2,])==2){ 

           d<- distance(c(0,Line(1)[1]),c(1,sum(Line(l)))) 

           } 

      else{ 

          if(i<=nt2F){xxx<-0;yyy<-Line(l)[1]} 

          else{xxx<-1;yyy<-sum(Line(l))}; 

          pp1<- poi(Line(l),tr(i)$e[1,]); 

          pp2<- poi(Line(l),tr(i)$e[2,]); 

          if(pp1[1]>0 & pp1[1]<1 & pp2[1]>0 & pp2[1]<1){d<- distance(pp1,pp2)}; 

          if(!(pp1[1]>0 & pp1[1]<1) & !(pp2[1]>0 & pp2[1]<1)){d<- 0}; 

          if(pp1[1]>0 & pp1[1]<1 & !(pp2[1]>0 & pp2[1]<1)){d<- 

distance(pp1,c(xxx,yyy))}; 

          if(!(pp1[1]>0 & pp1[1]<1) & pp2[1]>0 & pp2[1]<1){d<- 
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distance(c(xxx,yyy),pp2)}; 

           } 

       s<- (d/m) + s 

    } 

    s<- s/nt; 

    s 

} 

####Bootstrapping with 1000 times#### 

beta0 <- rep(0,1000) 

beta1 <- rep(0,1000) 

b<-0 

while(b < 1000){ 

  b <- b + 1 

  F <- sample(Group1, size=nF, replace=TRUE) 

  G <- sample(Group2, size=nG, replace= TRUE) 

  #find the line with max SID value# 

  SID.v <- c(rep(0,nL)) 

  for(z in 1:nL){ 

    SID.v[z] <- SID(z) 

  } 

  location<- (1:nL)[SID.v==max(SID.v)] 

  beta <- Line(location[1]) 



31 
 

  beta0[b] <- beta[1] 

  beta1[b] <- beta[2] 

} 

 

 

  A.2. R Code for the Theil-type Estimate. 

options(expressions=100000) 

library(gregmisc) 

n = 50 

ss = n*(n-1)/2 

ind = combinations(n, 2, repeats=FALSE) 

c1 = rep(ind[,1], each = ss, times =1) 

c3 = rep(ind[,2], each = ss, times =1) 

c2 = rep(ind[,1], each = 1, times=ss) + n 

c4 = rep(ind[,2], each = 1, times=ss) + n 

sim = 1000 

betan.oja = matrix(NA, 2, sim) 

b0=1 

b00=3 

for (i in 1:sim) { 

en = rnorm(100,0,1) 

for (w in 1:50){ 
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 yn1[w] = b0+en[w] 

 yn2[w] = b0+b00+en[w+50] 

} 

yn1[c(1:3)] = -100         ## creat outliers## 

yn = c(yn1,yn2) 

y = yn 

d1arg1 = y[c1]*y[c4]-y[c2]*y[c3] 

d1arg2 = y[c4]-y[c2] 

d1arg3 = y[c3]-y[c1] 

d2arg1 = y[c1]*y[c2]-y[c3]*y[c4] 

d2arg2 = y[c2]-y[c4] 

d2arg3 = y[c3]-y[c1] 

d1 = cbind(d1arg1, -d1arg2, d1arg3) 

d2 = cbind(d2arg1, -d2arg2, d2arg3) 

f<-function(b){ 

b1<- b[1] 

b2<- b[2] 

vb<- c(1, b1,b1+b2) 

colSums(abs(d1%*%vb)+abs(d2%*%vb))/(ss^2) 

} 

est<-nlminb(c(0,0),f) 

betan.oja[,i] = est$par 
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crit<-est$convergence 

                 } 

 

 

 

 

 

 


