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ABSTRACT

Data mining techniques have an important implication in social and biological

network analysis, were we’re interested in finding related complexes and communities.

A modern paradigm for solving this problem involves finding densely connected

interacting members such as bound proteins in a PPI. It’s important to also consider

the properties of members. In the context of social networks, we might be interested

in finding groups of friends of similar age and sharing common interests. This

information can lead to better targeting for advertising and suggestions.

In this paper, we introduce an algorithm that can be applied to mining entity-

relationship networks. Our approach discovers relevant subnetworks by considering

density among entities as well as their similar attribute properties. We apply two

distinct methods of forming subnetworks in order to find as many relevant complexes

as possible. In addition, we supply techniques for summarization and reduction of

nearly-redundant subnetworks in the results.
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1. INTRODUCTION

Due to the large amount of data involved in biological and social network

analysis, researchers have turned to data mining techniques to filter out meaningful

and relevant portions. Social media on the Internet is rapidly gaining popularity [2].

Millions of online profiles exist on popular websites like Facebook, Twitter, Reddit,

etc. This trend has a positive impact on marketing; personalized recommendation

systems like those used by Amazon or Netflix can take advantage of social network

interactions for better results, e.g. making suggestions based on the tastes of your

peers [1]. In a similar manner, these techniques can also be used to improve

personalized advertising [7]. Network analysis is also often applied on a molecular

level. We know that proteins play an essential role in performing vital functions and

bond together to form important biological structures such as hemoglobin [4, 23].

Research has shown that by observing protein-protein interaction (PPI) networks,

that densely connected subnetworks are often correlated with real and meaningful

protein complexes [25]. By making more thorough analyses of PPI networks, we can

attempt to make new discoveries of unknown complexes.

In addition to observing interactions, it is often important to consider the

attribute profiles of entities [14, 10]. Attribute values in biological networks often

represent gene expression data which can give more contextual information regarding

an interaction, such as location and time of an incident. In a social network, an

attribute profile might correspond to the personal profile of a member and include

things such as age, interests, locale, etc. In reality, attribute values can denote almost

any kind of additional information about an entity. Including these kinds of data in

the mining process has an outstanding benefit.

By combining information about the relational structure of the network and the

properties of each member in it, we are able to extract more meaningful results as
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we take more variables into account. To make this apparent, consider a community

such as Facebook, where a single family would often be a densely connected sub-

community. If advertisers of Facebook published advertisements based solely on

dense community similarity, for example, female product interests expressed by the

mother of the family might often cause advertisements for similar products to be

displayed to her son. From this scenario, it becomes clear why it is important to

consider attributes of members in addition to community structure. The advertising

approach could observe the gender difference between the mother and son as well as

the age dissimilarity to determine more suitable advertisements to display. Similarly,

when mining networks, it is exceptionally helpful to consider the connectivity of the

networks in combination with the attribute profiles of the entities.

For the remainder of this paper, we begin by reviewing the related works of

several notable graph mining algorithms and give some examples of their processes

in Section 2. Section 3 provides some necessary technical definitions to understand

the problem. In Section 4 we introduce our own proposed algorithm and explain its

operation and benefits, along with examples. In Section 5 we make some comparisons

against similar algorithms with experiments and analyze the results. Finally, Section

6 outlines the conclusion and future work for possible improvements to our methods.

2



2. RELATED WORK

Traditionally, a network is often be represented as a graph where a person in a

social network or a protein in a PPI network can be represented as a vertex and an

interaction between them is denoted by an edge. In the case of a social network like

Facebook, a two-way friendship correlates to an undirected edge and in the case of

a site like Twitter, for example, one member following another is usually denoted as

a directed edge. The attribute profiles of entities are often represented as a function

mapping of vertices to vectors of real number values. There are a number of existing

approaches that use graph mining techniques to discover meaningful patterns in large

(and possibly attributed) networks. These approaches are generally divided into two

groups: graph partitioning and enumeration based methods.

2.1. Graph Partitioning Methods

Graph partitioning algorithms generally operate in a ’natural’ sort of way, where

the structure of the graph as a whole has a great influence on how patterns are

discovered. In 2004, Newman and Girvan [20] presented several algorithms for graph

partitioning which discover edges that exhibit high edge betweenness and remove

them. Edges with high betweenness can be thought of as roads that connect major

cities. Intuitively, by removing the links (the roads) between dense communities (the

cities) in a graph, you are simply left with the communities, which are your discovered

patterns. Betweenness is found by calculating shortest paths between vertices and

assigning scores to the edges based on how often they’re included in a shortest path.

In general, the algorithm operates as follows:

1. The betweenness score of each edge in the graph is calculated.

2. The edge with the highest score is removed.

3. The betweenness scores of remaining edges are again recalculated.

3



4. Steps 2 through 4 are repeated.

Each time an edge is removed, the result is a new graph in which the dense

communities become more apparent. The process can be stopped at any time and

the resulting graph can be used to select prominent clusters.

Figure 1. Three stages of Newman’s algorithm. In (a), the dashed edge has
the highest betweenness score so it will be removed, resulting in the two communities
shown in (b). Again, the dashed edge in (b) exhibits the greatest betweenness so it
will be removed. (c) shows three communities as the result of step (b).

Another famous work published by van Dongen [27] introduced Markov Clus-

tering (MCL). MCL simulates a random walk from each vertex in the graph to

itself and its neighbors. The entire graph is represented as a stochastic matrix

and the probability of each walk is an entry Mij in the matrix. Figure 2 (a)

shows an example graph and its corresponding right stochastic matrix (self loops

are implied). To determine partitioning, the idea is to inflate the probabilities,

i.e. make high probabilities higher and low probabilities lower — exaggeration

reveals the clusters. MCL accomplishes this through a series of expansion and

4



inflation operations performed on the matrix. During expansion, the matrix is simply

multiplied by itself in order to distribute probabilities more evenly, even between

unconnected vertices. Inflation exaggerates probabilities; an inflation operator r ≥ 1

is given and the expanded matrix is raised to the power r. Then the resulting matrix is

normalized; each Mij is divided by the sum of the row. This process continues until a

convergence is reached, meaning a sequence of expansion and inflation produces little

or no change in the matrix. Figure 2 (b) shows the resulting matrix and corresponding

graph illustration after one sequence of expansion and inflation. Here, an inflation

operator of r = 2.5 is used. Figure 2 (c) shows the final result after six iterations and

convergence. Two discovered clusters are clearly visible.

Figure 2. Visual example of the MCL algorithm. The entire graph is
represented as a right stochastic matrix where each entry value is the probability
of travel for a random walk. Through a series of expansion and inflation operations,
eventually a convergence is reached.

2.2. Enumeration Based Methods

Enumeration based algorithms offer better control over what will be included

in the result set. For example, several graph mining algorithms take some sort of

connectedness threshold parameter that all subnetworks that end up in the results

must pass. There are several different measures for defining what constitutes a

subgraph.

5



2.2.1. Cliques

The notion of a clique was originally created to measure the cohesiveness of

social networks [29, 15]. In order for a subgraph to be considered a clique, each vertex

in the subgraph must be connected to each other vertex, i.e. it must be a fully-

connected subgraph. Derényi et al. [5] introduced the k-clique percolation method,

which is used to discover densely connected overlapping communities. A k -clique

is a clique containing k vertices and two k -cliques are considered neighbors if they

share k − 1 vertices. The k -clique percolation method essentially groups neighboring

k -cliques into communities. Figure 3 demonstrates an example of this process with

k = 3. From the initial graph in (a), first find all cliques of size k (Figure 3 (b)).

Then combine neighboring cliques as shown in (c) to create communities. Continue

combining neighbors in this way until each community has no more neighbors. The

final step (d) shows the resulting graph of two communities with one vertex that

belongs in both; this overlap often happens when finding percolated cliques.

Figure 3. An example process of the k-clique percolation method. First
find all k -cliques (here k = 3) as shown in (b). Then combine neighboring cliques into
communities like (c) until each community has no more valid neighbors. The result
contains two communities (d) with one vertex belonging to both.

6



2.2.2. Quasi-Cliques

Several authors [18, 16, 17] have used the term γ-quasi-clique to refer to a

subgraph in which the degree of each vertex is γ percent of its greatest possible degree.

Naturally, the connectedness of a quasi-clique does not need to be as strong as a clique,

and this measure is adjustable by γ. Mining quasi-cliques has traditionally been

accomplished by using a set enumeration tree, similarly to itemset mining. Figure 4

gives an example of a small graph and its associated enumeration tree. Each node in

the tree represents a set of vertices in the graph as well as a candidate set of other

vertices in the graph after the last vertex in lexicographical order. In the example, the

candidate sets for level 1 of the tree are shown and underlined. It is these candidate

vertices that the tree node will expand with to produce the next level in the tree. For

example, in Figure 4, {B, C} has the candidate set of {D, E} so {B, C} will branch

twice — into {B, C, D} and {B, C, E}. Generally, a min size parameter is given in

order to exclude unnecessarily small patterns (of size < min size) from the results.

A major problem that occurs, unlike in itemset mining, is that the enumeration

tree is not anti-monotone — if one pattern in the tree is not a quasi-clique, there

is no guarantee that none of its children will be. This makes it difficult to apply

pruning strategies to skip enumerating over unnecessary branches of the tree as is

done in itemset mining. This problem becomes much more hindering for large graphs

since without pruning, the search space is equal to the power set of vertices in the

graph. However, there are several other pruning strategies that have been developed

to address this issue [21, 17, 13]. Two of them, introduced by Pei et al. [21], will be

discussed here;

1. Since each quasi-clique in the results must have more than min size vertices, the

degree of a single vertex in any quasi-clique cannot be less than min degree =

dγ(min size−1)e. All vertices with degree less than this threshold can be safely

7



pruned. This can be observed in the example in Figure 4 where vertex {A} has

been pruned since the degree of {A} is 1 < d0.6(3− 1)e = 2 when γ = 0.6 and

min size = 3.

2. The maximum diameter of a γ-quasi-clique can be calculated with respect to γ,

e.g., when γ ≥ 0.5 then the maximum diameter is 2. Figure 4 shows an example

case; notice how the candidate set for vertex {B} does not include {F} and {G}

since the shortest path from {B} to each of them is longer than 2 when γ = 0.6.

Figure 4. Example graph (a) and its enumeration tree (b) for mining
γ-quasi-cliques. Here, γ = 0.6 and min size = 3. The tree node for vertex {A}
and its entire subtree can be pruned according to pruning strategy 1. Note that {B}
does not include in its candidate set vertices which can be reached on a path of size
≤ 2 as per strategy 2. In this example, the two discovered γ-quasi-cliques happen to
also be cliques (they are circled in the figure).

As mentioned in the introduction, it is often very important to consider

additional information about entities when graph mining. Gunnemann et al. [10]

proposed a solution to address this issue with their algorithm GAMer. Their method

combines γ-quasi-clique subgraph discovery with subspace clustering in order to find

dense communities that also share similar attributes. They define an attributed

8



graph G = (V,E, l) where V is the set of vertices in G and E is the set of edges.

l is a labeling function l : V → Rd which maps a vertex to a real vector in

d dimensions. In other words, each entity has additional data associated with it

which is represented by a vector in d -dimensional space. See Figure 6 for a visual

representation. For example, in a simple social network, the collection of subspaces

may be something like (age, sex,marital status) and one vertex’s vector of associated

attributes be (24,Male, Single). In order to discover coherent patterns, two more

threshold parameters must be given: t is amount by which two attributes can differ

but still be considered similar, smin is the minimum number of similar dimensions a

quasi-clique must share in order to be a coherent quasi-clique. For a set of vectors

X = {x1, ..., xd} where ∀xi ∈ X : xi ⊆ Rd and dimensions S ⊆ {1, ..., d}, they define

(X,S) to be a subspace cluster if

• ∀i ∈ S : ∀x1, x2 ∈ X : |x1[i]− x2[i]| ≤ t

• ∀i ∈ {1, ..., d}\S : ∃x1, x2 ∈ X : |x1[i]− x2[i]| > t

GAMer builds a γ-quasi-clique enumeration tree as previously discussed but at each

node in the tree, attribute profiles of the current vertices are compared using subspace

clustering. Fortunately, subspace clustering is an anti-monotone process; if at any

point in the tree, the number of similar dimensions |S| falls below smin, the current

node and all subtrees can be pruned.

2.2.3. Dense Subgraphs

An issue with the quasi-clique definition is that every vertex in the quasi-clique

must have at least a certain degree. In real life, data is noisy and communities can

often contain members that do not quite meet the minimum degree requirements.

In 2007, Uno [26] introduced an algorithm for mining dense modules using the

traditional density definition. In a θ-dense subgraph, the ratio of the number of

edges to the total possible number of edges is at least 0 ≤ θ ≤ 1, where θ is a

9



user-defined minimum threshold. This definition allows for more flexibility than the

quasi-clique definition because it observes the density of the pattern as a whole rather

than concerning each individual member. Similarly to γ-quasi-clique discovery, dense

subgraph enumeration is not anti-monotone. However, Uno [26] presented a method

for efficiently enumerating dense subgraphs and later contributed development of

the Dense Module Enumeration (DME) algorithm [9]. DME mines maximal dense

subgraphs (or modules) from weighted networks. They provide the definition for the

weighted degree of a vertex as the sum of its edge weights. For example, in Figure 5,

the weighted degree of C = 0.6. In addition, they define a module density equation

ρ(U) which amounts to the sum of the edge weights in the module U divided by the

number of possible edges in the module. Formally,

ρ(U) =

∑
i,j∈U,i<j wij

|U |(|U | − 1)/2

where wij is the weight of the edge between i and j. The algorithm takes advantage

of a property for these dense graphs which states that the density of a module does

not increase when a vertex added to the module has weighted degree that is no larger

than the weighted degree of each other vertex already in the module; i.e. if v ∈ U

is a node with minimum wighted degree in U : ∀u ∈ U : degU(u) ≥ degU(v). Then,

ρ(U\{v}) ≥ ρ(U). Inversely, it is also true that removing a vertex with minimum

weighted degree in U does not decrease the density of U . They provide a proof

for this property in [26, 9] and explain how they are able to leverage it in order to

prune unnecessary branches in the enumeration tree. With this knowledge, patterns

can be discovered in such a way that, as the enumeration tree is expanded from

top to bottom, module sizes are increasing while their densities are guaranteed to

be decreasing or remaining the same. Therefore, if a module with density less than

a given threshold θ is found in the tree, we can stop extending it since none of its

10



children can pass the threshold. Before running the algorithm, the vertices in the

graph must be given a strict order. The example in Figure 5 uses an ordering of

ord(A) < ord(B) < ord(C) < ord(D) < ord(E). Then, the procedure begins with

the empty set and builds the enumeration tree. Let U be the set of vertices at the

current node in the tree and Z = V \U be the remaining vertices in the graph that

are not in U . At each stage in the enumeration, a branch of the tree is extended with

z ∈ Z to produce U ′ = U ∪ {z} if one of the following conditions are met:

• The weighted degree of z w.r.t. U ′ is strictly less than each other vertex in U .

• The weighted degree of z w.r.t. U ′ is equal to the weighted degree of each other

vertex in U and the order of z is less than the order of each other vertex in U .

More formally,

∀u ∈ U : (degU ′(z) < degU ′(u)) ∨ (degU ′(z) = degU ′(u) ∧ ord(z) < ord(u))

Figure 5 shows an example graph and the associated enumeration tree. DME

traditionally mines maximal patterns, which are circled in the image. The pruned

branches are crossed out.

Similarly to GAMer, DME additionally includes limited subspace clustering of

the attribute profiles of vertices. However, the data in feature vectors can only be

represented as integer values. In that same year, Moser et al. [19] introduced their

algorithm CoPaM, which discovers cohesive maximal dense patterns of vertices with

real attribute values. The ability to process this real data is an important feature for

many network mining algorithms.
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Figure 5. Weighted graph (a) and its DME enumeration tree (b). For
this tree, θ = 0.6 and the order of vertices are lexicographical. Crosses show which
branches are able to be pruned. The discovered maximal patterns have been circled.
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3. PROBLEM DEFINITION

In this section, we give some necessary definitions which are used to better

understand the problem. Similarly to all of the aforementioned related approaches,

we represent a network as a graph.

Definition 1. The graph G = (V,E, f) is an unweighted, attributed graph

with no self-loops. V = {v1, ..., vn} is the set of vertices in G, E ⊆ V × V is the

set of edges, and f : V → Rd is a function that maps a vertex to a real vector in

d dimensions. We will use the vector to represent the attributes of entities. The

number of vertices and number of edges in G are denoted as |V | and |E| respectively.

As an example, refer to Figure 6; here, V = {Tim, Sam, Ben, Jay, May}, E =

{{Tim,Sam},{Tim,Jay},{Jay,Ben},...}, and f(Tim) = (0.5, 1.0, -1.9).

Figure 6. An example of an attributed graph with three subspaces.

Definition 2. We define the density property (denoted as ρ) of a subgraph U

similarly to the definition provided by Uno [26]:

ρ(U) =
2|E|

|U |(|U | − 1)
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In other words, the density of a subgraph U is equal to the number of its edges divided

by the number of total possible edges in U . In the case of Figure 6, ρ({Sam, Jay,

Mia}) = 2
3

= 0.66. The density of a single vertex is always 1. Intuitively, a subgraph

with many edges will have a higher density value than a subset with fewer edges for

the same set of vertices.

Definition 3. To consider attribute profiles, we define the notion of a subspace

cluster. Given a set of vectors X = {x1, ..., xd} where ∀xi ∈ X : xi ⊆ Rd, a

set of dimensions (subspaces) S ⊆ {1, ..., d}, tolerance threshold t, and minimum

dimensionality threshold smin, (X,S) forms a valid subspace cluster if:

• ∀i ∈ S : ∀x1, x2 ∈ X : |x1[i]− x2[i]| ≤ t

• ∀i ∈ {1, ..., d}\S : ∃x1, x2 ∈ X : |x1[i]− x2[i]| > t

• |S| ≥ smin

The tolerance threshold t is the maximum amount two attribute values in a single

subspace can differ by in order to still be consider similar. The dimensionality

threshold smin is the minimum number of similar dimensions a set of vectors can

have in order to form a valid subspace cluster. The second condition ensures that

the cluster is maximal, i.e., there are no more dimensions outside of S in which two

attributes are similar. Referring to Figure 6,

f(Jay) = (0.9, 1.2, -2.0)

f(Mia) = (-0.2, 1.1, -1.7)

Given threshold parameters t = 0.5 and smin = 2, for example, these two vectors will

make up a valid subspace cluster with similar attributes in dimensions {2, 3}.
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Definition 4. Additionally, we also introduce the notion of support. The

support of a subgraph U , denoted as |S(U)|, is equal to the maximum number of

similar subspaces for all attribute vectors associated with U . Formally,

|S(U)| = |S| : ∀i ∈ S : ∀u1, u2 ∈ U : |f(u1)[i]− f(u2)[i]| ≤ t

For example, the support |S({Jay, Mia})| = |{2, 3}| = 2. We will use this definition

when discovering closed subgraphs.

Definition 5. A coherent dense subgraph U ⊆ V is an induced subgraph of G

which satisfies each of the following conditions.

1. Each vertex u ∈ U is connected to at least one other vertex in U .

2. Given a density threshold parameter 0 < θ ≤ 1, the subgraph U has a density

value ρ(U) ≥ θ.

3. The attribute profiles of all u ∈ U form a subspace cluster given a set of

dimensions S, and threshold parameters t and smin, i.e.

∀u1, u2 ∈ U : ∀i ∈ S : |f(u1)[i]− f(u2)[i]| ≤ t, |S| ≥ smin

In Figure 6, the subgraph U = {Sam, Jay, Mia}, for example, forms a coherent

subgraph with given thresholds θ = 0.6, t = 0.5, and smin = 2 in dimensions S =

{2, 3}.
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4. PROPOSED ALGORITHM

In this section we introduce our algorithm Cohesive Dense Network

Enumeration (CoDeNE). As the name suggests, the algorithm discovers cohesive

dense structures in a network — that is, dense patterns with similar attribute profiles.

CoDeNE operates on an attributed graph in the form described by Definition 1. In

general, the algorithm performs a reverse search method to discover closed dense and

maximal dense coherent patterns with real attribute values. In addition, we provide

some post-processing methods to reduce redundancy in the results and to summarize

similar communities. Figure 7 gives a visual overview of CoDeNE.

We adopt a pattern mining approach similar to the method described in [9].

Algorithm 1 shows pseudo code for our pattern discovery process. The recursive

function builds an enumeration tree like the example in Figure 5. Note that we only

consider tree node expansion if the three conditions given in Definition 5 are met

(Algorithm 1, line 8). The child of each node in the tree is obtained (Algorithm 1,

line 13) in the same manner as [9] and described previously in Section 2.2.3. The

result is the set of maximal coherent patterns M and closed coherent patterns C.
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Figure 7. Overview of CoDeNE.

4.1. Finding Maximal Coherent Patterns

According to Definition 5, a coherent subgraph is any subgraph that can satisfy

the three conditions. However, a singular vertex is, by itself, completely dense by

definition and has absolute similarity among its own attributes. Also, a pattern of

two vertices with a single edge has a density of 1, for example. It needs only to satisfy

the third condition of Definition 5 in order to be considered a coherent subgraph. It
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is obvious that we need a way to keep these kinds of unmeaningful subgraphs out of

our result set. A common solution is to mine for the maximal patterns. A subgraph

is considered maximal if it has no direct superset with a density that satisfies the

density threshold condition. For example, in Figure 8, ρ(a) = 5
6

= 0.833 and ρ(b) =

6
10

= 0.6. If (b) is the only superset of (a) and θ = 0.7 then graph (a) is maximal

since it has no dense superset.

Figure 8. An example subset. (a) is a subset of (b). The density of (a)
ρ({A,B,C,D}) = 5

6
= 0.833 and the density of (b) ρ({A,B,C,D,E}) = 6

10
= 0.6. If (b)

is the only superset of (a) and θ = 0.7, then (a) is maximal subgraph.

Incorporating attribute profiles into the maximal subgraph discovery process

allows us to find more meaningful coherent maximal dense subgraphs. In order for

a subgraph U ⊆ V to be considered coherent maximal it must meet each of the

following conditions:

1. It is a maximal dense subgraph, i.e.,

@Z : U ⊆ Z, ρ(Z) ≥ θ

2. U is a coherent subgraph according to Definition 5.

4.2. Finding Closed Coherent Patterns

As is often the case in itemset mining, we might also be interested in discovering

closed patterns, as some important clusters that are not maximal would not be

included in the results of the previous algorithm. For this reason, we developed
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CoDeNE with the ability to additionally find coherent closed patterns. Similarly to

itemset mining, we define a set of vertices in a graph to be coherent closed if there

is no direct superset of vertices with the same support. The support of a subgraph

U (denoted as |S(U)|) is is equal to the number of similar subspaces for all attribute

vectors associated with U (Definition 4). Formally, we say a subgraph U ⊆ V is

coherent closed if

@Z : U ⊂ Z, |S(U)| = |S(Z)|

Figure 14 shows the result of mining the example graph from Figure 6 with CoDeNE

using parameters θ = 0.6, smin = 2, and t = 0.5.

Figure 9. Closed coherent and maximal coherent subgraphs example. With
thresholds θ = 0.6, smin = 2, and t = 0.5, the pattern {Tim, Sam, Jay} is a closed
coherent subgraph because there is no superset with the same support. {Tim, Sam,
Jay, Mia} is closed and maximal coherent since it does not have a superset that
satisfies the threshold conditions.

The algorithm has discovered two patterns. The first, {Tim, Sam, Jay}, is

a closed coherent pattern with a density of 1 and support of 3. It was found to

be closed since its only two direct supersets, namely {Tim, Sam, Jay, Ben} and

{Tim, Sam, Jay, Mia}, have support of 1 and 2 respectively. Note that Ben does
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have one similar attribute but since smin = 2 he will not be included in the valid

pattern. The second resulting cohesive pattern {Tim, Sam, Jay, Mia} is closed and

maximal with a density of 0.66 and support of 2. Its only direct superset, which is

the whole graph, has a support of 0 and a density of 0.6. Although this superset still

meets the density criteria, it does not have enough similar attribute subspaces to be

considered maximal coherent. As is the case in itemset mining, the set of maximal

patterns is always a subset of the set of closed patterns. This small example provides

a good demonstration of a case where it is important to additionally mine for closed

subgraphs. The non-maximal closed pattern {Tim, Sam, Jay} is extremely coherent

as it has complete similarity in all attributes and has the greatest possible density

of 1. Had we been searching for only maximal coherent subgraphs, this important

pattern would have been omitted.
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Algorithm 1 Pattern Discovery
Input:
G = (V,E, f): an attributed graph
min size: the minimum size of pattern to include in results
θ: density threshold
smin: minimum number of similar dimensions per pattern
Output:
M : maximal coherent patterns
C: closed coherent patterns

1: M = {}
2: C = {}
3: MinePatterns({})
4: function MinePatterns(U)
5: locally maximal← true
6: locally closed← true
7: for v ∈ V \U do
8: if isConnected(U , v) and ρ(U ∪ {v}) > θ and |S(U ∪ {v})| ≥ smin then
9: locally maximal← false
10: if |S(U)| = |S(U ∪ {v})| then
11: locally closed← false
12: end if
13: if isChild(U ∪ {v}, U) then
14: MinePatterns(U ∪ {v})
15: end if
16: end if
17: end for
18: if locally closed then
19: if |U | ≥ min size then
20: C = C ∪ U
21: if locally maximal then
22: M =M ∪ U
23: end if
24: end if
25: end if
26: end function
27: return M , C

Figure 10. Pattern Discovery algorithm. This algorithm presents pseudo-code
for CoDeNE’s pattern mining process.
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4.3. Overlap Detection

A large dataset often yields a large number of coherent patterns, and examining

those results often means filtering through overlapping subsets. These kinds of

patterns are especially prominent in the closed result set, which always has at least as

many patterns as the maximal set. For this reason, it is very desirable to involve some

post-processing techniques for handling this problem. We apply an overlap detection

method that consists of two distinct steps.

4.3.1. Finding Similarity Scores

In the first step, we apply a function which is used to assign similarity scores

between pairs of cohesive subgraphs in the results. The function requires a parameter

0 ≤ α ≤ 1 which is used to distribute weight between the vertex similarity and

attribute similarity. For a pair of coherent subgraphs U , U ′ and their respective

attribute subspace clusters S(U), S(U ′), the pairwise similarity score can be obtained

by:

sim(U,U ′) = α

(
|U ∩ U ′|
|U ∪ U ′|

)
+ (1− α)

(
|S(U) ∩ S(U ′)|
|S(U) ∪ S(U ′)|

)

Figure 11. Cohesive subgraph pairwise similarity example. These four
overlapping patterns are candidates for similarity comparison. A dark box indicates
shared similarity in the subgraph at that attribute subspace.
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For example, the similarity function can be applied to each pair of the four

subgraphs in Figure 11. Assume α = 0.5.

sim(P1, P2) = 0.5

(
3

4

)
+ 0.5

(
1

4

)
= 0.5

sim(P2, P3) = 0.5

(
3

5

)
+ 0.5

(
2

4

)
= 0.55

sim(P1, P4) = 0.5

(
2

5

)
+ 0.5

(
0

4

)
= 0.3

Intuitively, if α = 0.5 then we consider vertex similarity as equally important as

attribute subspaces similarity. In an extreme case where α = 1 for example, then we

do not consider attribute subspaces when determining the score. If we apply α = 1

to the same example in Figure 11, we obtain new similarity scores which depend only

on the vertex composition similarity of the two subgraphs:

sim(P1, P2) =

(
3

4

)
= 0.75

sim(P2, P3) =

(
3

5

)
= 0.6

sim(P1, P4) =

(
3

5

)
= 0.6

At this point, we introduce a new threshold parameter 0 ≤ β ≤ 1 which is used

to determine if two patterns are actually considered similar; if sim(U,U ′) ≥ β, then

we say U and U ′ are indeed similar. In our example, if α = 0.5 and β = 0.5, then

sim(P1, P2) = 0.5 = β so P1 and P2 are similar. In the same manner, P2 and P3

(sim(P2, P3) = 0.55 > β) are also similar but P1 and P4 (sim(P1, P4) = 0.3 < β)

are not. Intuitively, as β increases, fewer patterns will be considered similar as their

similarity scores fall below the threshold; inversely, if β is set to a smaller value,

the number of similar patterns will be greater as even low similarity scores meet the

threshold.
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4.3.2. Similarity Graph

The second step of our overlap detection method involves building a new graph

G′ = (V ′, E ′) where each vertex v ∈ V ′ represents a pattern from the results and

an edge between them means they are similar according to the criteria explained

in Section 4.3.1 (sim(v1, v2) ≥ β). The size |V ′| should be equal to the number of

patterns in the result set.

We now find dominating subsets of this new graph. A dominating set D ⊆ V ′ is

a subset in which every vertex of V ′ not in D is connected to at least one d ∈ D. We

can say that D is a representative of V ′ since every vertex in V ′ is represented by a

vertex in D for which it is similar. Figure 12 shows two examples of valid dominating

sets. However, Figure 12 (b) shows the best solution, as it is the solution with the

fewest dominating vertices. Finding an exact solution for the dominating set is a

classical NP-complete problem [8]; however, we adopt a greedy algorithm which can

give us an approximation of the best solution [28].

Figure 12. Two examples of dominating sets. In each, the shaded vertices
make up the dominating set. (b) is the best solution because it has the fewest possible
dominating vertices.

We can now use the similarity graph as input to the dominating set procedure

(although this algorithm could be applied to any undirected graph). The relevant

pseudo code is given in Algorithm 2. Initially, each input vertex is marked as

uncovered. The process continues by iteratively scanning the graph and selecting

a vertex with the greatest uncoverd degree — that is, a vertex who is connected to
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the most uncovered vertices (lines 6 - 11). Note that the uncovered degree of a vertex

considers the state of itself - i.e., if a vertex is uncovered, then its uncovered degree

will be 1 plus the number of uncovered neighbors it has. In the first iteration, we

simply select a vertex with the highest degree since all vertices are uncovered. When a

vertex has been selected, we mark it and its neighbors as covered (line 13) and add the

vertex to our new summary result set R (line 14). At this point, we also update the

uncovered degree of the selected vertex, its neighbors, and its neighbors’ neighbors.

The algorithm proceeds to the next iteration and continues this process until each

vertex in the graph has been marked as covered. When finished, our summary result

set will contain one vertex from each iteration and this new set represents our concise

results.

Figure 13. Visual example of the redundancy reduction process. The four
coherent subgraphs in Figure 11 are shown in (a). Pairwise similarity between each
coherent subgraph is calculated with α = 0.5 and shown in (b). Applying threshold
parameter β = 0.5 results in the similarity graph (c). The greedy dominating set
algorithm results in P2 being the sole representative pattern for the four cohesive
subgraphs (d).

25



Algorithm 2 Dominating Set
Input:
G = (V,E): a graph
Output:
R: representative subset of V

1: R = {}
2: finished← false
3: repeat
4: covers most← null
5: greatest ud← 0
6: for all v ∈ V \R do
7: if ud(v) > greatest ud then
8: covers most← v
9: greatest ud← ud(v)
10: end if
11: end for
12: if covers most 6= null then
13: coverSurrounding(v, V ) . Also updates uncovered degree for v and neighbors of v.
14: R← R ∪ {covers most}
15: else
16: finished← true
17: end if
18: until finished
19: return R

Figure 14. Dominating Set algorithm. This algorithm presents pseudo-code for
CoDeNE’s greedy dominating set function.
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5. EXPERIMENTS

We compare our algorithm against GAMer [10] using three real-world networks

and their associated attribute data: Genes, High Confidence Yeast (YeastHC), and

the Human Protein Reference Database (HPRD). Table 1 outlines the information

relating to each dataset.

Table 1. Experimental datasets.

Dataset Vertices Edges Dimensions
Genes 3548 8334 115

HC 4008 9857 22
HPRD 9465 37039 79

For each experimental dataset, we also provide statistics of CoDeNE’s maximal

and closed results, as well as the summarized results for each. There are many possible

permutations of parameters and statistics that could be applied and measured here.

Primarily, we are concerned with measuring the size and number of resulting patterns

as the minimum dimensionality and density threshold parameters are varied. It should

be noted that, in each experiment, we provide the same density threshold parameter

value for both algorithms. Since GAMer uses this parameter in a more restrictive

way, it can be expected that the two algorithms will yield very different results. All

experiments were run independently on an Arch Linux operating system with an Intel

Core i5-2500K (3.3GHz) processor and 8 Gigabytes of main memory.
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5.1. Gene Dataset

The Gene dataset was used by Gunnemann et al. [10] to compare GAMer

to other algorithms and benchmarks. It consists of a protein-protein interaction

network as well as expression information taken from human tissue samples. A single

interaction is represented by an edge and each tissue sample is a dimension. For

each algorithm, a constant minimum pattern size parameter of 6 and tolerance of

1.0 were given. Summary for CoDeNE was provided with α and β values of 0.5.

Table 2 shows the statistics of the of the reported maximal dense cohesive patterns

by CoDeNE before and after summary as well as GAMer. In the table, the number

of resulting patterns (denoted as |N |) and average pattern density (ρ) are given as

the density threshold and minimum dimensionality parameters are varied.

Table 2. Statistics of cohesive maximal dense patterns in the Gene dataset.

Parameters CoDeNE After Summary GAMer
θ/γ smin |N | ρ |N | ρ |N | ρ

0.8 15 2556 0.82 183 0.83 719 0.9
0.8 30 314 0.82 26 0.83 35 0.9
0.9 15 287 0.94 24 0.96 180 1.0
0.9 30 19 0.94 2 0.93 3 1.0
1.0 15 70 1.0 11 1.0 180 1.0
1.0 30 3 1.0 1 1.0 3 1.0

Figure 15 (a) shows that CoDeNE’s maximal patterns are always the largest on

average. This is to be expected; when mining maximal patterns, we select as many

vertices as possible while still satisfying the threshold conditions, thus maximizing

each result set. Because of this, and because the set of closed patterns is always a

superset of the maximal patterns, we should expect to see the overall average size

of closed patterns to be equal to or less than the maximal patterns. This can be

verified by observing (a) and (b). Figure 15 (b), also demonstrates that increasing

the dimension similarity threshold tends to result in a steady decrease of average
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pattern size. This happens because it is more common to find entities with fewer

likenesses and more rare to find entities with many likenesses.

(a) (b)

(c) (d)

Figure 15. Results for varying θ and smin for experiments on Gene dataset.

Figure 16 shows the trend for the number of resulting patterns as β increased

from 0.1 to 1.0 while all other parameters remained constant.

We can visually see how, as β becomes larger, fewer patterns are considered

similar, since the threshold becomes more difficult to meet. Note how the number of

summarized closed and maximal patterns remains roughly the same when β ≤ 0.8.
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Figure 16. Beta’s impact on number of summarized patterns for Gene
dataset.
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(a) (b)

Figure 17. Runtimes for Gene experiments.

Figure 17 shows that GAMer is able to run much faster than CoDeNE, especially

when density and dimensionally thresholds are lower. This is primarily because

GAMer is able to prune much more often, as it uses the density threshold parameter

in a much more restrictive way. Since GAMer mines for γ-quasi cliques, it can prune

the enumeration tree whenever a vertex that does not meet the quasi-dense criteria

is found. Because of this, GAMer will also generally report fewer resulting patterns

that CoDeNE is able to discover, which can be observed in (c) and (d) of Figures 15,

18, and 19 as well as Tables 2, 3, and 5.

5.2. High Confidence Yeast (YeastHC) Dataset

We also performed experiments on the YeastHC interaction network (Batada

et al. [3]). In addition, we include growth profile information which was obtained by

exposing each gene to 21 different environmental conditions (Dudley et al. [6]) and

observing either a growth or growth defect. For this dataset, we represent the yeast

interaction network as the graph and each environmental condition as a dimension.

Since the profile data is binary, the tolerance threshold t is set to 0 in each experiment

and we only consider growth when finding subspace clusters. In other words, a growth

defect under a particular environmental condition will invalidate that subspace for the
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cluster. Table 3 and Figure 18 outline topological properties reported by CoDeNE and

GAMer for this dataset. In the table, |N | is used to denote the number of resulting

patterns and ρ represents the average density.

Table 3. Statistics of cohesive maximal dense patterns for Yeast dataset.

Parameters CoDeNE After Summary GAMer
θ/γ smin |N | ρ |N | ρ |N | e ρ

0.7 2 34 0.75 12 0.78 17 0.9
0.7 3 24 0.77 9 0.82 8 0.9
0.8 2 13 0.87 11 0.88 13 1.0
0.8 3 12 0.89 8 0.88 7 1.0
0.9 2 8 0.95 8 0.95 13 1.0
0.9 3 6 0.98 5 0.98 7 1.0
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(a) (b)

(c) (d)

Figure 18. Results for varying θ and smin for experiments on Yeast.

Figure 18 shows a visual analysis of the results. Similarly to the results of

the Gene dataset, we see that the overall average size of the closed result sets are

always less than or equal to the average size of the maximal sets, as expected. Note,

however, that is not always the case with the summarized results since larger patterns,

regardless of their density, can be removed if they are redundant, which skews the

overall average.
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Using the YeastHC dataset, we additionally performed some biological enrich-

ment analysis using the Database for Annotation, Visualization, and Integrated

Discovery — DAVID [11, 12]. In order to verify the significance of our results, we

attempt to find enrichment of Gene Ontology process terms (GOTERMS) as well

as KEGG pathway enrichment in our resulting patterns. We say that a pattern is

enriched with a biological process function if that function is overrepresented in the

genes from the pattern. In other words, the probability of there being a number of

genes in a pattern that are involved in that process function by chance is statistically

low, yet we have found them in that pattern. Because of this, we can say with a fair

degree of certainty that those genes were not included in the pattern by chance —

the algorithm discovered them because there is a correlation between that biological

function and the density and attribute similarity of the genes in the pattern. For

example, using the maximal resulting patterns discovered by providing a density

threshold of 0.9, we found that four out of eight genes were enriched with the protein

transport GOTERM. This is a much larger ratio than can be expected by simply

choosing eight random genes from the entire dataset and checking the expression.

We selected four of our maximal result sets to be samples for the analysis.

The enrichment for a given result set is calculated by dividing the number of

enriched patterns by the total number of patterns in the set. For each sample

result set, we found that every pattern was enriched with at least one GOTERM

function, thus resulting in an enrichment score of 100% for each set. Some common

biological process GOTERMS that were enriched in these patterns include protein

transport (GO:0015031), establishment of protein localization (GO:0045184), and

protein localization (GO:0008104).

The KEGG pathway database is a set of mappings which represent molecular

interactions. To be enriched, a function must be overrepresented in the genes of
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the pattern and those genes must also share an interaction according to the KEGG

database. Because of this, the KEGG database is more restrictive than GOTERM

and higher enrichment scores are more difficult to achieve. Table 4 outlines the results

for the KEGG pathway analysis using our four sample result sets. These enrichment

scores for the GOTERM and KEGG database analysis pose convincing evidence that

our algorithm produces results with meaningful biological significance.

Table 4. Pathway enrichment for YeastHC dataset using CoDeNE.

θ smin |N | KEGG
0.6 2 55 44%
0.7 2 34 35%
0.8 2 13 38%
0.9 2 8 25%

5.3. Human Protein Reference Database (HPRD)

The final experimental dataset we used was the HPRD (Peri et al. [22]) along

with gene expression profile data from 79 different human tissues (Su et al. [24]). Like

the YeastHC dataset, the profile information is binary; either the gene is expressed

or suppressed and the tolerance threshold t was set to 0. Only the expressed genes

were accepted when forming subspace clusters. Table 5 outlines the results.

Table 5. Statistics of cohesive maximal dense patterns for HPRD dataset.

Parameters CoDeNE After Summary GAMer
θ/γ smin |N | ρ |N | ρ |N | ρ

0.7 9 3084 0.7 148 0.7 129 0.84
0.7 10 2454 0.7 124 0.7 100 0.85
0.8 9 313 0.8 45 0.8 12 0.98
0.8 10 240 0.8 40 0.8 11 0.99
0.9 9 38 0.9 16 0.9 9 1.00
0.9 10 29 0.9 14 0.9 9 1.00

Figure 19 presents four plots for an visual overview of the different experiments.

As the density threshold increases, we can observe a drastic decrease in the number
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of resulting patterns (c). This is natural, as it is more common to find spares

communities and more rare to find closely-connected communities. Also note the

impact that summarization has on the number of results in (d). This is highly

beneficial since many redundant patterns can be removed from the results.

(a) (b)

(c) (d)

Figure 19. Results for varying θ and smin for experiments on HPRD.

36



6. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new graph mining algorithm Cohesive Dense

Network Enumeration. CoDeNE mines undirected, attributed graphs and discovers

both maximal and closed cohesive dense patterns by integrating dense subgraph

discovery with real value subspace clustering. In addition, CoDeNE provides post

processing techniques for summarization of redundant results. We made comparisons

with a related algorithm, GAMer, with three datasets and gave a summary of

the results. Finally, we performed enrichment analysis to assess the functional

homogeneity, and thus, the accuracy of our results.

Currently CoDeNE has the potential for a major future improvement. The

nature of it using a reverse search approach allows the algorithm to be parallelized

when discovering dense patterns. Since each branch in the enumeration tree is

independent and does not rely on the results of another branch, each could potentially

be forked to another thread and/or another machine for processing. This could lead

to incredible improvements in overall performance.
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