
COMPARISON OF CLASSIFICATION RATES AMONG LOGISTIC REGRESSION,

NEURAL NETWORK AND SUPPORT VECTOR MACHINES IN THE PRESENCE OF

MISSING DATA

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Sudhi Upadhyaya

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Statistics

May 2014

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Comparison of Classification Rates Among Logistic Regression, Neural

Network and Support Vector Machines in the Presence of Missing Data

 By

Sudhi Upadhyaya

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr.Rhonda Magel

 Chair

Mr. Curt Doetkott

Dr. Tatjana Miljkovic

Dr. Kambiz Farahmand

 Approved:

 May 12

th
 2014 Dr.Rhonda Magel

 Date Department Chair

iii

ABSTRACT

 Statistical models such as Logistic Regression (LR), Neural Network (NN) and Support

Vector Machines (SVM) often use datasets with missing values while making inferences

regarding the population. When inferences are made based on the data set used, the presence of

missing data can severely skew the results and distort the efficiency of the model. Our objective

was to identify a robust model among LR, NN, SVM in the presence of missing data. The study

was conducted by simulating observations based on Monte Carlo methods and missing data was

introduced randomly at 10% level. Single mode imputation was used to impute missing values.

Simple random samples of 120, 240 and 500 observations were chosen and these three models

were fit for two scenarios. Results showed that the performance of SVM was far superior

compared to LR or NN models. However, the classification accuracy of SVM gradually

decreased as sample size increased.

Key words : Missing data, Single mode imputation, Logistic Regression, Neural Network,

Support Vector Machine, classification probability

iv

TABLE OF CONTENTS

ABSTRACT…………………………………………………………………………….……..…iii

LIST OF TABLES……………………………………………………………………....………..vi

LIST OF FIGURES……………………………………………………………………...………vii

CHAPTER 1.INTRODUCTION…………………………………………………………….........1

CHAPTER 2. BACKGROUND…………………………………………………………….……4

CHAPTER 3. DESCRIPTION OF THE METHODS COMPARED………………………….…7

3.1. Neural Network …………………………………………………...…………………7

3.2. Logistic Regression……………………………………………………...…….…….12

3.3. Support Vector Machine………………………….…………………………………13

CHAPTER 4. DESIGN OF SIMULATION STUDY………..………………………………….16

4.1. Step 1: Choosing a Dataset……………………….……………......………………..16

4.2. Step 2: Choosing Variables From This Dataset.…...…………………………….….17

4.3. Step 3: Identifying Frequency Distribution….………...……………………………18

4.4. Step 4: Monte Carlo Simulation …………………………………......…………..…20

4.5. Step 5: Simulating Missing Values…..…..……………………………...………….21

4.6. Step 6: Mode Imputation……………………………………………………………21

CHAPTER 5. RESULTS………..…………………………………………………………...…..23

CHAPTER 6. CONCLUSIONS…………………………………………………………………30

REFERENCES…………………………………………………………………………………..32

APPENDIX A. SAS CODE FOR SAMPLE SIZE 120 , SCENARIO 1…………………..…...38

APPENDIX B. SAS CODE FOR SAMPLE SIZE 240 , SCENARIO 1…………………..…...48

APPENDIX C. SAS CODE FOR SAMPLE SIZE 500 , SCENARIO 1……………….….…...58

v

APPENDIX D. SAS CODE FOR SAMPLE SIZE 120 , SCENARIO 2…………………..…..68

APPENDIX E. SAS CODE FOR SAMPLE SIZE 240 , SCENARIO 2…………….….……...78

APPENDIX F. SAS CODE FOR SAMPLE SIZE 500 , SCENARIO 2……………….….…...88

vi

LIST OF TABLES

Table Page

1: Summary of Features Used to Build NN Model…………..…………………………........12

2: Summary of Features Used To Build The SVM Model………………………...………...15

3: Description of The Variables and Their Levels Used In The Study………..……………..17

4: Simulating 10% Missing Data………………………………………………..…..……….21

5: Decision Matrix of Diagnosis………………………………………………..….…….…..23

vii

LIST OF FIGURES

Figures Page

1: Overview Of A Neural Network Model ………………………………..……….…….... 7

2: List of Activation and Combination Functions…………………………...……………….9

3: Logistic Regression …………………………………………………………...…….........13

4: Linear Support Vector Machine, Adopted from Smola, & Schölkopf (2004)…................15

5: Outline Of The Design Of Simulation …………………...………………….……….......16

6: Summary Of Proportion Of Various Levels For Each Variable …….……...……............18

7: Mode Values For Each Independent Variable…………………………….………..…......22

8: Classification Table Logistic Regression…………...……………………….……............24

9: Classification Table Output for Neural Network………………….…..…….….……..….24

10: Classification Table Output for SVM……….……………...………………..........….…25

11: Percent Correct Classification, LR, NN and SVM, Sample Size 120, Scenario 1……....26

12: Percent Correct Classification, LR, NN and SVM, Sample Size 240, Scenario 1............26

13: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 1............27

14: Percent Correct Classification, LR, NN and SVM, Sample Size 120, Scenario 2……....28

15: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 2……....28

16: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 2……....29

1

CHAPTER 1. INTRODUCTION

 Analyses of incomplete data has been the object of many studies. The term missing data

refers to situations where one or more data values for variables are not observed. Missing data

are ubiquitous and the causes of missingness are numerous. This could be due to the general

study design, simply due to chance, or both. For instance, some information is not collected from

all subjects, some participants may decline to provide all information, and some information may

be purposely deleted to protect confidentiality (Horton & Kleinman, 2007). In some situations,

missing data is due to non-compliance, dropouts, or non-response.

 Over the past century, statisticians and other scientists not only have invented numerous

methods for handling missing/incomplete data, but also have invented many ways to impute

missing data. These include data augmentation, hidden states, latent variables, potential outcome,

and auxiliary variables. Purposely constructing unobserved/unobservable variables offers an

extraordinarily flexible and powerful framework for both scientific modeling and computation

and is one of the central statistical contributions to natural, engineering, and social sciences. In

parallel, much research has been devoted to better understanding and modeling of real-life

missing-data mechanisms; that is, the unintended data selection process that prevents us from

observing our intended data.

 There are four main sources of missing data. The first is item total nonresponse that

results from subjects refusal to participate in the survey. The second source of missing data is

due to non-coverage. This occurs when some elements of inference are not included in the

survey. For example: A survey conducted across the nation elicits responses whether or not a

subject climbed Mt.Everest. From the total responses received if the survey contains answers

from very few women, these responses are discarded. A third source of missing data is item

2

nonresponse. In this case the participant responses are partially complete and do not answer all

the elements in the survey. A fourth source of missing data is partial nonresponse. Partial

nonresponse falls between total and item nonresponse. Total nonresponse relates to failure to

obtain any response from a sampled element and item non-response implies the failure to obtain

responses for only a small number of survey items. Partial nonresponse involves a substantial

number of item nonresponses. An example of partial nonresponse is when a respondent cuts off

an interview in the middle (Brick & Kalton, 1996 ; Rubin,1976).

 Apart from the main sources of missingness, the pattern of missingness itself can be

classified into three categories; Missing Completely at Random (MCAR), Missing at Random

(MAR), Not Missing at Random (NMAR). Let xij represent complete data and mij represent

missing data vectors respectively. If f(mij|) = f(mij|xobs, xmiss,) xij (xobs, xmiss) , the data is

missing completely at random (MCAR) because the missing data does not depend on either

observed(xobs) or missing values(xmiss) of xij . If f(mij|) = f(mij| xobs,) xmiss, the data is

missing at random (MAR) because the missing data depends only on the observed component of

xij, xobs and not on the missing component of xij, xmiss . If f(mij|xij,) = f(mij| xmiss,) xij, the

data is not missing at random (NMAR) because here the missing value depends on the missing

values of yij (Little & Rubin, 2002).

Accordingly there are several statistical methods that can be applied to obtain either an

unbiased estimator or a model with robust prediction accuracy in the presence of missing data.

This depends on the assumption regarding missingness (MCAR, MAR or NMAR), but in

practice, analyzing the reason for incomplete data is very difficult since in most cases the

incomplete data themselves contain little or no information about the missing data mechanism

(Lu & Copas, 2004). According to Meng (2000), the missing-data mechanism is the very core

3

of statistics, and among the nastiest and the most deceptive area of statistics; “why on

earth should anyone be concerned with data that one does not even have?” , (p.1329).

4

CHAPTER 2. BACKGROUND

 A problem that is equally severe, if not greater than missing data, is the performance of

statistical models that use these datasets with missing values. The quality of the results obtained

using these models mainly depends on the quality of the data set used, and the presence of

missing data can severely skew the results and reduce the efficiency of the models (Gao & Hui ,

1997). Hence, it is very important to choose a prediction model that is very robust and efficient

in the presence of missing data.

Logistic Regression (LR), Artificial Neural Network (ANN) and Support Vector Machine

(SVM) are becoming increasingly popular tools for classification in many areas of science and

technology. Several studies have compared the performance of logistic regression models to

address various issues (Steyerberg, Eijkemans, Harrell, & Habbema, 2000 ; Steyerberg,

Eijkemans, Van Houwelingen, Lee, & Habbema, 2000 ; Lachin, 2008; Bellazzi & Zupan, 2008).

These studies in general can be classified as : 1) Studies that compare the variables identified by

logistic regression with variables identified by other models ; 2) Studies that compare the

sensitivity and specificity by logistic regression with other models; 3) Studies that compare the

logistic regression Receiver Operating Characteristics (ROC) or the Area Under the Curve

(AUC) with ROC or AUC values from other models (Austin, 2007).

During the past few years, the application of artificial neural networks (ANNs) for

prognostic and diagnostic classification in clinical medicine has attracted growing interest.

Preliminary studies have shown that neural networks are more accurate than physicians in

identifying acute myocardial infarction in patients presenting to the emergency department with

anterior chest pain (Faraggi & Simon, 1995; Faraggi, LeBlanc & Crowley, 2001 ; Biganzoli,

Boracchi, Mariani & Marubini, 1998).

5

 Support Vector Machine (SVM) is a related supervised learning algorithm used for

classification of both linear and nonlinear data based on a statistical learning theory. The basic

idea is that a SVM constructs a hyperplane or a set of hyperplanes in a high-dimensional space,

which can be further used for classification, regression or any other related tasks. The hyperplane

built by SVM optimally splits the training dataset between a set of objects belonging to different

groups (Czibula, Czibula, & Găceanu, 2014). SVM has an extensive scope and has been applied

in a number of areas such as healthcare (Dukart, Mueller, Barthel, Villringer, Sabri, & Schroeter,

2013), accident prevention (Suárez Sánchez, Riesgo Fernández, Sánchez Lasheras, de Cos Juez,

& García Nieto, 2011), bankruptcy prediction (Ravi Kumar & Ravi, 2007) among others.

 There have been several attempts to compare the classification efficiency of these

discriminant models, including:

 Nearest-neighbor, linear discriminant analysis, and classification tree while imputing

missing values based on k nearest-neighbor algorithm method (Dudoit, Fridlyand, &

Speed, 2006).

 Missing data techniques for generalized linear models, comparing four common

approaches for inference in generalized linear models (GLMs): maximum likelihood

(ML), multiple imputation (MI), fully Bayesian (FB), and weighted estimating equations

(WEEs) , (Ibrahim, Chen, Lipsitz & Herring, 2007).

 Comparing the accuracy of neural network, support vector machine and logistic

regression but missing data was not part of their objective, (Muniz, Liu, Lyons, Pahwa,

Liu, Nobre, & Nadal, 2010; Westreich, Lessler, & Funk, 2010; Chen, & Du, 2009; Chen

et.al, 2009).

6

However, to the best of our knowledge the classification efficiency of LR, NN and SVM models

were not compared in the presence of missing data to identify which among these was more

efficient when the mode imputation technique was applied. Therefore the goal of our research

was to identify which among these (LR, NN, SVM) are more efficient classifiers in the presence

of missing data when the mode based single imputation technique is used.

7

CHAPTER 3. DESCRIPTION OF THE METHODS COMPARED.

3.1. Neural Network

A typical NN model can accommodate multiple input features, xi, to predict multiple

outputs of interest, yi. It differs from conventional modeling approaches in its ability to learn

about the system that can be modeled without prior knowledge of the process relationships. The

prediction by a well-trained NN is normally much faster than the conventional simulation

programs or mathematical models because NN does not require lengthy iterative calculations to

solve differential equations or other complex estimation procedures (Oğuz, Sarıtas, & Baydan ,

2010).

Generally, NN is composed of three types of layers: an input layer, a hidden layer and an

output layer as shown in Figure 1. Each layer has a certain number of components called neurons

or nodes which are linked to each other. The neurons in the input layer represent the independent

variables and the neurons in the output layer represent the dependent variable. Each neuron is

linked to others with communication links accompanied by an associated weight (Ercan, 2011).

The number of neurons in each layer depends on the desired level of accuracy.

 Figure 1: Overview Of A Neural Network Model

8

Each neuron performs two functions: First, it adds all the inputs from the lower layers

based on their weights according to the equation ∑ where, wij represents the weight

connecting neurons in two adjacent layers i and j and aj is the output from the jth neuron.

Weights in neural networks are similar to coefficients in regression models and these weights are

calculated based on an equation which depends on the type of training technique used to train the

network (Ercan , 2011).

 There are two types of training: supervised and unsupervised. We used supervised

training in our analysis because it is performed when the observations consist of both

independent and target variables { x1, x2, x3, yi } and the training algorithm seeks a function where

f(.) results in y based on f(x,y). There are various supervised training algorithms including Trust-

Region Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient, DBLDOG, BackProp,

RPROP, QPROP, among others. Training is initialized by setting the threshold of the nodes and

the strengths of the links to a small random value. The network is trained with a set of training

cases. Each training case contains a set of input patterns and a corresponding desired output

pattern, {x1=1, x2=0,….xi=1, y=1 } {x1=0, x2=1,….xi=0, y=1}. Training is continued to achieve

good performance. Activity is then propagated from the hidden layer to the output layer. The

actual activities (predicted values) of the output nodes are then compared with the target values

and the error is computed (Ercan, 2011).

During the training process, the learning rule specifies how the weights of the

connections in the network are adjusted. The weights are usually adjusted in a large number of

small steps. We used Levenberg-Marquardt (LVM) training method in our study and hence

weights were calculated based on LVM method. When the NN is trained to satisfactory levels,

9

the weighted links between various neurons are saved. These weights are then used to predict

results from a new set of input data (Ercan , 2011).

A second function of a neuron in the neural network is that it processes the input it

receives as a sum using a function based on the equation ∑ where αj is

threshold value for the i
th

 neuron and ai is the output of the ith neuron. The function f(.) is

commonly referred to as transfer function or activation function. The purpose of the transfer or

activation function is to transform the weighted sum of values from the previous neurons, either

using a linear or non-linear relation and transfer the output to the next layer only if it crosses a

certain threshold value Ercan (2011). Figure 2 provides a brief overview of some of the hidden

layer combinations and transfer/activation functions and target layer combinations and

transfer/activation functions.

Figure 2: List of Activation and Combination Functions

There are several important issues in building a model. One issue is related to the model

itself, such as architecture, selection of hidden nodes, input features, training function, transfer

function and others. Other issues are those related to the analysis of the output, such as, the

reliability and interpretation of results (Hung, Shankar, Hu, 2002).

10

3.1.1. Neural Network-Architecture

The type of connections between the neurons define the architecture of a Neural

Network. Neural Networks where the neurons are connected to other units in the same layer, to

neurons in the preceding layer or even to themselves are termed recurrent networks. A

feedforward network is one where units in one layer are connected only to units in the next layer

and not to units in a preceding layer or units in the same layer. Multilayer Perceptron (MLP) is a

type of feedforward network. The Multi-Layer Perceptron (MLP) is the most frequently used

neural network technique in pattern recognition and classification problems (Rupérez, Martín-

Guerrero, Monserrat & Alcañiz , 2011). MLP is both simple and based on solid mathematical

framework. The inputs are processed through successive layers of neurons. In this study we used

a three layer MLP feedforward neural network architecture.

3.1.2. Neural Network- Hidden Layer

The hidden layer in a NN captures the nonlinear relations among various input features.

There is no specific rule for the selection of the number of neurons in the hidden layer or the

number of hidden layers that will produce the optimum results for a given problem (Lolas, &

Olatunbosun, 2008). Several authors have proposed various methods to calculate the number of

hidden nodes. For example, Qiu, Tao, Tan, & Wu (2007) calculated the number of hidden nodes

based on the formula, ()h N M where, h is the number of hidden nodes in hidden layer, N is

the number of input neural elements, M is the number of output neural elements, α is a constant

between 1 and 10.

Hanafizade, Ravasan, & Khaki (2010), stated that the range of the number of hidden

layers was between 2N +1 and O(N+1) where N is the number of input nodes and O is the

number of output nodes. Emin Tagluk, Akin, & Sezgin (2010) state that no precise formula

11

exists. In our study, the number of neurons in the hidden layer was determined empirically.

Results showed that out of the 2, 4, 6, 8, 10, 12, 16, 18, 20 hidden nodes tested , the NN model

built using 10 hidden nodes resulted in the highest sensitivity (0.9966) and specificity (0.9918)

and the maximum ROC.

3.1.3. Neural Network-Training

Training the neural network is defined as the process of identifying the optimal

parameters such as weights, biases, and other parameters so that the model can accurately predict

the outcome. Wilamowski, Iplikci, & Efe (2001) stated that neural network models trained using

the LVM algorithm have better classification accuracy compared to those trained based on

conventional back-propagation (BP) algorithm. Although the LVM algorithm has much higher

computational requirements, it is more efficient and faster in achieving global minimization of

the performance function. Therefore, we used the LVM algorithm to predict the outcome.

3.1.4. Neural Network-Target Layer, Combination, Activation and Error function

 Neural network modeling depends on correctly specifying the transfer combination and

error function which depends on the level of measurement of the target variable in the neural

network model. It was recommended that a general linear combination function is applied to

hidden-to-target layers for nominal type target values and a Softmax transformation function is

applied in the case of hidden-to-target layer for nominal or binary target values (SAS Institute

Inc., 2012). There are many different error functions that can be applied to hidden-to-target

layers: BiWeight, Bernoulli, Binomial, Cauchy, Entropy, Gamma, Huber, Logistic, MBernoulli,

MEntropy, Multinomial, Normal, Poisson and Wave. We tested our neural network for each of

these error functions while the combination function was set to Linear and transfer function was

set to Softmax. The results showed that Gamma , MBernoulli and Multinomial hidden-to-target

12

layers functions yield the highest classification efficiency with sensitivity 0.9966 and specificity

0.9918 and ROC=1. Table 1 below summarizes the features used to build the NN model.

Table 1: Summary of Features Used to Build NN Model

Features Options

Architecture: Multi Layer Perceptron

Training LVM

Direction Connection: No

Number of Hidden Nodes: 10

Input Standardization: None

Hidden Bias: Yes

Target Layer Combination Function: Linear

Target Layer Activation Function: Softmax

Target Layer Error Function: Gamma, MBernoulli, Multinomial

Target Bias: Yes

Maximum iterations: 1000

3.2. Logistic Regression

 LR is a regression method for predicting a binary dependent variable, y, by modeling this

as function of one or more independent features, xi. The LR model yields a probability value

which predicts the chances of the event occuring based on the best subset of predictors. This is

expressed as pi = ⁄ were pi represents the probability that the event occurs. This is

calculated based on α which a constant which represents the intercept, βi is the vector of

estimates for independent variables xi (Agresti , 1990) which is as shown in Figure 3.

 Thus the process of classification ultimately reduces to the process of

a) Identifying the subset of covariates (xi) that aid in classification.

b) Estimating the coefficients (α,βi) associated with theintercept and independent variables.

c) Calculating the probability p of the event. If p > 0.5, event occurs; if p ≤ 0.5 event does

not occur.

13

()1 1 xp e implies that probability increases or decreases in a sigmoid shape. This is a function of

covariates xi where α is the intercept constant and β1, β2, β3,… βi are the estimated regression

coefficients.

Figure 3: Logistic Regression

 Depending on the value of p, a decision is made as to which subset of the population the

subject belongs to on the basis of observed x. This classification into either p1 or p0 is the

partitioning of Rm into two regions, D1 and D0 such that a subject is classified as belonging to p1

if x ∈ D1. The model is considered efficient and accurate if it minimizes the probability of

misclassification of randomly selected subjects (O'Neill, 1980).

3.3. Support Vector Machine

 Support Vector Machine is a machine-learning algorithm that aids in generalizing the

charecteristics of input dataset. Consider a dataset with
 with input vector xi ϵ R

d
 and

yi transformed to {-1, 1 }. SVM maps the d-dimensional input vector xi from the input space to a

feature space using linear/non-linear function Ф(.). The separating hyperplane in the feature

space is based on equation Ф(xi)
T
 Ф(xi) + b =0, b is some constant where b ϵ R. If Ф(xi)

T
 Ф(xi)

+ b ≥ 1 then that data is assigned to a group 1 and if Ф(xi)
T
Ф(xi) + b ≤ -1 then the data is

assigned to group 2 (Louis, Agrawal & Khadikar, 2010; Smola, & Schölkopf , 2004)

14

 A perfect classifier will result in a classification equation Ф(xi)
T
 Ф(xi) + b ≥ 1 for y = 1

and Ф(xi)
T
 Ф(xi) + b ≤ -1 for y = -1 . However, in realility, there are always some data points

close to the separating hyperplane that could belong either to group 1 or to group 2 and this often

causes misclassification or classification error. This introduces a new scenario where the

objective is still classification while error is minimum and this is written as Minimize : z(w,e) =

 ∑

) such that Ф(xi)T Ф(xi) + b + ei ≥ 1 for yi = 1 and Ф(xi)

T
 Ф(xi) + b + ei ≤ 1

for yi = -1 where k is a regularization constant and ei is a slack variable to handle

misclassification. The values of ei represents the distance of xi with respect to the decision

boundary . This is as shown in Figure 4 below. (Louis, Agrawal & Khadikar, 2010; Smola, &

Schölkopf , 2004)

 There are three scenarios depending on the value of ei

 If ei ≥ 1 when y = 1 and Ф(xi)
t
Ф(xi) + b ≤ 1 or ei ≤ 1 when y = -1 and Ф(xi)

t
Ф(xi) +

b ≥ 1 then these scenarios indicate misclassification.

 If 0 ≤ ei ≤ 1 this indicates xi is correctly classified, but lies inside the margin.

 If ei = 0 then xi is correctly classified and on the margin boundary.

 Based on these notations, SVM is solved as a constrained primal optimization problem written

in a dual space and solved as a quadratic programing problem with lagrangian multiplier αi thus

taking the form ∑

 +b (Louis, Agrawal & Khadikar, 2010; Smola, &

Schölkopf , 2004)

 The idea behind SVM is to find a (linear/nonlinear) mapping function Ф(xi) that

transforms data in input space to data in feature space in such a way as to render a problem either

linearly or non-linearly separable. are the features of input variables xi after kernel

transformation, and b are the coefficients. Kernel transformation can be performed either

15

using linear, polynomial or radial bias functions (RBF). In our study we identified the fifth order

polynomial kernel as providing the best results. After kernel transformation, the new feature

space allows the data to be linearly or non-linearly separable, Louis, Agrawal & Khadikar, 2010;

Smola, & Schölkopf , 2004.

Figure 4 : Linear Support Vector Machine, Adopted from Smola, & Schölkopf (2004)

 We tested our SVM algorithm with various kernel transformation functions and identified

the fifth order polynomial as the most efficient kernel that resulted in highest classification

results. Table 2 below shows the various options that we used in developing our SVM algorithm.

Table 2: Summary of Features Used To Build The SVM Model

 Features Options

Kernel: Polynomial

Polynomial Order: 5

Estimation Method LSVM

Tuning Method: Grid Search

Regularization Parameter: Tuning

16

CHAPTER 4. DESIGN OF SIMULATION STUDY

The steps in our study design are outlined in the flowchart as shown in Figure 5.

Figure 5: Outline Of The Design Of Simulation

4.1. Step 1: Choosing a Dataset

We selected a data set that stored information about the health and wellbeing of Native

American elders. This dataset is based on a survey titled “Identifying Our Needs: A Survey of

Elders” that was conducted by the National Resource Center on Native American Aging. The

goal of the survey was to identify AI/AN elders with chronic illness such as diabetes, cancer and

other health related issues. The dataset includes responses from 18,078 AI/AN elders (6573

males, 10919 females and 586 did not indicate their gender .

17

4.2. Step 2: Choosing Variables From This Dataset

Table 3: Description of The Variables and Their Levels Used In The Study

Variable Name Description Levels

Falls # of times an elder experienced

falling during the past year

1,2,3,4 or 5

EyesPastYear

Whether the subject had his

eyes examined during the past

year

1 = Yes

0 = No

LastDrank

Alcohol consumption

1=during the past 30 days

2=during the past 1 year

3=sometime during the

past 3 or more years

AgeGrp

Age group

1='55 to 59'

2='60 to 69'

3='70 to 79'

4='80+'

CHF

Coronary Heart Failure

1 = Yes

0 = No

BMIGrp

Bod Mass Index

1= low

2= normal

3= obese

4= morbid obesity

Diab_Bernoulli_Sim

Diabetes

1= Yes

0 = No

Six independent variables: Body Mass Index (BMI), Falling, Alcohol consumption, Age

Group, Coronary Heart Failure (CHF), Eyes check past year and one dependent variable

Diabetes were considered for our study from this database. The description of these variables and

the different levels are shown in Table 3.

18

4.3. Step 3: Identifying Frequency Distribution

 Two different scenarios were used in determining the frequency distribution for

independent variables in our study.

4.3.1 Scenario 1- Frequency Distribution for independent variables

 The frequency distribution of different levels (p1,p2,…pj) within each variable (xi, yi)

listed in Table 3 was determined and the summarized results are as shown in Figure 6. The

largest percentage of observations in each category for the variables were, subjects between 60-

69 in age (45.95%), reported being obese (40.85%), falling once during the past year (65.98%),

very rarely consumed alcohol sometime during the past 3 years, (56.74), not experienced

coronary heart failure (87.77%) and had their eyes examined (62.88%) .

Figure 6: Summary Of Proportion Of Various Levels For Each Variable

19

4.3.2 Scenario 2-Frequency Distribution for independent variables

 The dataset used for this study stored self-reported data related to subjects health and well

being. In an attempt to assess the performance of these three classification methods we generated

another dataset which is different from the dataset in Scenario1. Tobias et.al (2014) investigated

the relation the between various levels of BMI and mortality among diabetes patients and

reported that there is direct linear relationship between mortality and diabetic subjects with

higher BMI. The frequency distribution of various levels of BMI in our original dataset

displayed an S -shaped relation between BMI and diabetes. Based on this information we

generated data for BMI (xBMI) by changing the proportions from 0.0124, 0.1825, 0.4085, 0.3966

to 0.012, 0.18, 0.35, 0.458. This new distribution represented a linear relation between BMI and

Diabetes compared to the S- shaped relationship in Scenario 1.

 A prospective study of 3,075 men and women aged 70 –79 years recruited at the

University of Pittsburgh, and the University of Tennessee, analyzed the overlap between risk of

falling and diabetes and concluded that older adults with diabetes are more likely to fall

(Schwartz et.al , 2008). Thus we generated new data for Fall (xfall) by changing the proportions

from 0.63, 0.26, 0.03, 0.07, 0.01 to 0.01, 0.03, 0.07, 0.26, 0.63.

 Age was simulated based on four levels in Scenario 1 as shown in Table 3. However, a

paper published by Koopman, Mainous, Diaz & Geesey (2005) stated that diabetes could be

occurring at a higher frequency in youth and in young adults. Results from their study showed

that age of diagnosis decreased from 52.0 to 46.0 years independent of race and ethnicity. So in

Scenario 2 we generated data for the age (xage) by modifying the proportions from 0.1525,

0.4594, 0.2799, 0.1082 to 0.2025, 0.4594, 0.2799, 0.0582.

20

 Howard, Arnsten & Gourevitch (2008) conducted a study to understand the effect of

alcohol consumption on Diabetes and concluded that moderate alcohol consumption is

associated with 55%-79% reduction in risk for death due to coronary heart disease. Thus based

on this information we generated data for alcohol consumption (xalcohol) by modifying the

proportions from 0.27, 0.16, 0.56 to 0.6, 0.1, 0.3.

 That diabetes can cause heart failure was discovered by Kannel, Hjortland & Castelli

(1974) and the results of their study were published as part of the very famous Framingham Heat

Study. This study concluded that diabetics are twice as likely to die due to congestive heart

failure as their non-diabetic cohorts. Based on this information we generated a new data for the

CHF (xchf) by changing the proportions from 0.87 to 0.95 in scenario 2.

 Diabetic retinopathy is the most common factor contributing to blindness among

diabetics and a study by Fong et.al (2004) stated that nearly 86% of blindness was attributed to

diabetes and based on this information we generated new data for EyesPastYear (xeyes) by

changing the proprotions from 0.37 to 0.85 in scenario 2.

4.4. Step 4: Monte Carlo Simulation

 A Monte Carlo simulation was conducted to generate 10000 observations that became the

population in our study. These observations consisted of six independent variables (Falls,

EyesPastYear, LastDrank, AgeGrp, CHF, BMIGrp) and dependent variable Diabetes based on

the proportions defined in both Scenario 1 and Scenario 2. This resulted in two different of

populations. For independent variables with more than two levels, we used the multinomial

distribution with parameter pi. For eyes check and CHF, we used Bernoulli distribution with

proportion parameter p. The proportion values, pi, were based on the proportion of each level

within each independent variable identified in Step2. The response variable, y, was generated

21

based on the equation logit(pi) = β0 + β1x(bmi) + β2x(age) + β3x(Fall) + β4x(alcohol) + β5x(eyes) + β6x(chf) ,

the pi from this equation was used as the input in the Bernoulli distribution which was used to

generate y based on the equation y = rand(“Bernoulli”, pi) (Wicklin, 2013).

4.5. Step 5: Simulating Missing Values

 In order to recreate the missing data scenario, missing values were simulated by

randomly generating binary data (1,0) based on Monte Carlo simulation using the binomial

distribution and the parameter p was set to 10%. This is represented as zi. This process generated

observations with approximately 90% 0s and 10% 1s. Each zi containing 1s and 0s was

associated with an independent variable xi. Cell values of xi were set to missing where zi =1, (xi.=

. | zi =1) . This is represented in Table 4.

Table 4: Simulating 10% Missing Data

BMIGrp z

BMIGrp z

1 0

1 0

3 0

3 0

2 0

2 0

3 1

. 1

3 0

3 0

4 1

. 1

4.6. Step 6: Mode Imputation

 Let xij represent the value of x for the i
th

 respondent, i=1….n , j
th

 covariate, j=1….6..

Single mode imputation substitutes the mode of variable xj for cells with missing data for that j
th

variable. For an equally weighted observation, the mode may be estimated by the mode of the

observed data values. We decided to use single mode imputation for our study because:

a. Mode imputation uses the same value for that specific xi .This process underestimates the

variance by reducing the discriminant power of a statistical model significantly.

22

b. This is a simple method. It is very easy to implement and avoids the issue with reduced

sample size due to deleting incomplete records (Tian, Yu, Yu & Ma , 2013).

 Figure 7 shows the values of mode for the six variables in our dataset. Results show that

mode values were: subjects experiencing fall at least once, getting their eyes checked during the

past year, rarely consume alcohol, between 60-69 years and not suffering from CHF for both

diabetic and non-diabetic subjects. The mode for BMI was obese.

Figure 7: Mode Values For Each Independent Variable

23

CHAPTER 5. RESULTS

 The efficiency and accuracy of a diagnostic test can be defined in many different ways.

For a diagnostic test that uses binary data, the results of the tests are classified as true positive,

true negative, false positive or false negative as shown in Table 5 below.

Table 5: Decision Matrix of Diagnosis

 Patient Diabetic Patient Not Diabetic

Model predicts diabetes True Positive False Positive.

Model does not predict diabetes False Negative True Negative

 A perfect test will predict the outcome correctly all the time. An inadequate test will

provide unreliable results. Thus the classification probabilities for true positive or true negative

are considered more relevant because they quantify how well the test reflects the true status of

the outcome. Also, there is a direct relation between the classification probabilities and the

predictive values (Pepe, 2003).

 For the LR model, we used the option CTABLE in proc Logistic to obtain a set of true

positive, false positive, true negative and false negative values at different probability levels. The

value in the percentage of correct classification column corresponding to the row with highest

sensitivity and specificity was chosen and this value represented the classification efficiency of

the LR model. For example, the highest values of specificity and sensitivity were 60.0 and 62.9

respectively. For these values of specificity and sensitivity the corresponding values of True

Positive , True Negative, False Positive and False Negative are as shown in Figure 8.

24

Figure 8: Classification Table Logistic Regression

 The highlighted row in Figure 9 shows that 30 events and 44 nonevents were accurately

classified out of a total of 120 observations, resulting in a classification accuracy of 74/120 =

61.67%.

Figure 9: Classification Table Output for Neural Network

 For the NN model we used the option OUTFIT in proc Neural which stored the results of

classification table as shown in Figure 9. This table contained data regarding total number of

wrong classifications and total observations. So the overall classification accuracy was

calculated as 1- (# of Wrong classification/Total number of observations), i.e, 1- (54/120) = 0.55

25

Figure 10: Classification Table Output for SVM

 For the SVM model we used the option OUTFIT in proc SVM and this option stored the

data related to classification table which is as shown in Figure 10. This table contains

information regarding N observations and Classification Error. The classification accuracy was

calculated as 1- (Classification Error/Total number of observations), i.e, 1- (25/120) = 0.79

 Thus performances of LR, NN and SVM were assessed using three different sample sizes

120, 240 and 500. Observations were drawn using simple random sampling for each iteration

(sample) from a population that was generated based on different proportions described in

Scenario1. Such a sampling approach was recommended to estimate the performance of the

classifier by Sahiner, Chan & Hadjiiski (2008). The results of 1000 iterations for the

performance of LR, NN, SVM when 10% data was missing and mode imputation was used are

as shown in Figures 11, 12 &13 for three different sample sizes ,120,240 and 500, respectively.

26

Figure 11: Percent Correct Classification, LR, NN and SVM, Sample Size 120, Scenario 1

Figure 12: Percent Correct Classification, LR, NN and SVM, Sample Size 240, Scenario 1

27

Figure 13: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 1

Similarly the performances of LR, NN and SVM were assessed using three different

sample sizes 120, 240 and 500. The observations were again drawn using simple random

sampling for each iteration (sample) from a population that was generated based on different

proportions described in Scenario 2. The results for the performance of LR, NN, SVM when

10% data was missing and mode imputation was used in Scenario 2 are as shown in Figures

14,15 &16 for three different sample sizes : 120,240 and 500, respectively.

28

Figure 14: Percent Correct Classification, LR, NN and SVM, Sample Size 120, Scenario 2

Figure 15: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 2

29

Figure 16: Percent Correct Classification, LR, NN and SVM, Sample Size 500, Scenario 2

 For all three sample sizes, 120, 240 and 500 and when tested on two different populations

generated based on two different frequency distributions, results consistently show that the

performance of SVM (Scenario1: 89.1%, 84.43%, 79.48%, Scenario 2: 83.16 ,78.99,75.24) was

far superior compared to LR (Scenario 1: 61.5%, 62.14%, 62.9%, Scenario 2: 61.29, 60.80,

61.84) or NN (Scenario 1: 59.39%, 60.65%, 60. 34%, Scenario 2: 56.98, 57.05, 57.31) models.

30

CHAPTER 6. CONCLUSIONS

 While classical LR is the default model of choice in many research areas such as

healthcare and sports because of its ability to predict the probability of an outcome as a function

of independent variables, results from our study showed that SVM is a more efficient and robust

classification model in the presence of 10% missing data when mode imputation was used. This

is because SVM generalizes the model efficiently by minimizing the classification error and

minimizing the complexity of the model. A disadvantage of the LR model is that this technique

is unable to identify nonlinear relationships whereas SVM uses nonlinear or more complex

decision boundaries to classify the dataset based on various kernel functions. Unlike LR, SVM

can prevent the model from being very sensitive to outliers in the data, resulting in a model that

is capable of making good predictions for prospective analyses.

 Although results from our study showed that SVM is a more effective classification

model compared to LR or NN, there are several drawbacks related to SVM and NN models. First

is the time required to identify the correct combination of various parameters to build a very

efficient SVM and NN model, second is the increasing sample size that results in degradation of

performance in SVM model and third is the computational burden of SVM and NN models

compared to LR model.

 The accuracy of a SVM depends on the choice of a kernel function, training method,

estimation method and choice of parameter. Similarly the accuracy of the NN model depends on

the right combination of architecture, number of hidden nodes, target layer combination

function, hidden and target layer activation function, target layer error function, and training

technique. For SVM if the kernel function is not chosen properly, SVM will be unable to find a

separating hyperplane in feature space. Similarly for NN, inaccurate choice of architecture may

31

result in failure to achieve appropriate convergence. Also the power of a NN over a main effects

LR model lies in the use of hidden nodes. These hidden nodes generate additional sets of

parameter estimates that result in a more complex regression equation but there are no clear rules

or formulas that help in determining the correct number of hidden nodes in the hidden layer.

 Thus choosing the best combination of these parameters is a very difficult task because of

the sensitivity of SVM and NN algorithm to these choices. Different choices often yield

completely different results. Hence, it is necessary to first execute SVM and NN models based

on different combinations of these parameters to identify the best possible combination that

provides highest classification efficiency. This is a very time consuming and tedious process.

 There was an increasing degradation of SVM model (Scenario1: 89.1%, 84.43%,

79.48%, Scenario 2: 83.16 ,78.99,75.24) as the sample size increased. One possible hypothesis

for this phenomenon is because as sample size increases we can expect more data points closer to

the hyperplane which could contribute to misclassification and hence gradually lead to

deterioration in performance as sample size increases. Another major drawback of SVM and NN

models are the higher computational burden compared to LR model. During our analysis, if LR

models for sample sizes of 120, 240 and 500 took between 10-30 minutes to execute, it took

somewhere between 90 – 240 minutes to execute NN models for sample sizes of 120,240 and

500 and between 180 - 1320 minutes to execute SVM models. All these processing times were

for 1000 iterations and excluded the setup time that involves identifying the right combination of

various parameters for NN and SVM models as mentioned earlier.

 However our attempt in using mode based single imputation is just the first step towards

identifying a very robust classification model in the presence of missing data and requires some

consideration in relation to the plethora of options that are available.

32

REFERENCES

Agresti, A., 1990, Categorical data analysis, New York: Wiley, 1990

Austin, P. C. (2007). A comparison of regression trees, logistic regression, generalized

 additive models, and multivariate adaptive regression splines for predicting AMI

 mortality. Statistics in Medicine, 26(15), 2937-2957.

Bellazzi, R., & Zupan, B. (2008). Predictive data mining in clinical medicine: current issues

 and guidelines. International journal of medical informatics,77(2), 81-97.

Biganzoli, E., Boracchi, P., Mariani, L., & Marubini, E. (1998). Feed forward neural

 networks for the analysis of censored survival data: a partial logistic regression approach.

 Statistics in Medicine, 17(10), 1169-1186.

Brick, J. M., & Kalton, G. (1996). Handling missing data in survey research. Statistical

 Methods in Medical Research, 5(3), 215-238.Chicago.

Chen, W. S., & Du, Y. K. (2009). Using neural networks and data mining techniques for the

 financial distress prediction model. Expert Systems with Applications, 36(2), 4075-4086.

Chen, S. T., Hsiao, Y. H., Huang, Y. L., Kuo, S. J., Tseng, H. S., Wu, H. K., & Chen, D. R.

 (2009). Comparative analysis of logistic regression, support vector machine and artificial

 neural network for the differential diagnosis of benign and malignant solid breast tumors

 by the use of three-dimensional power Doppler imaging. Korean Journal of Radiology,

 10(5), 464-471.

Czibula, G., Czibula, I. G., & Găceanu, R. D. (2014). A Support Vector Machine Model For

 Intelligent Selection of Data Representations. Applied Soft Computing.

33

Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the

 classification of tumors using gene expression data. Journal of the American Statistical

 Association, 97(457), 77-87.

Dukart, J., Mueller, K., Barthel, H., Villringer, A., Sabri, O., & Schroeter, M. L. (2013). Meta-

 analysis based SVM classification enables accurate detection of Alzheimer's disease

 across different clinical centers using FDG-PET and MRI.Psychiatry Research:

 Neuroimaging, 212(3), 230-236.

Emin Tagluk, M., Akin, M., & Sezgin, N. (2010). Classıfıcation of sleep apnea by using wavelet

 transform and NNs. Expert Systems with Applications, 37(2), 1600-1607.

Ercan, O. (2011) Neural Network based modelling of the Marshall Stability of Asphalt

 Concrete. Expert Systems with Applications 38: 6025-6030.

Faraggi, D., & Simon, R. (1995). A neural network model for survival data.Statistics in

 Medicine, 14(1), 73-82.

Faraggi, D., LeBlanc, M., & Crowley, J. (2001). Understanding neural networks using regression

 trees: an application to multiple myeloma survival data.Statistics in medicine, 20(19),

 2965-2976.

Fong, D. S., Aiello, L., Gardner, T. W., King, G. L., Blankenship, G., Cavallerano, J. D., ... &

 Klein, R. (2004). Retinopathy in diabetes. Diabetes Care, 27(suppl 1), s84-s87.

Gao, S., & Hui, S. L. (1997). Logistic regression models with missing covariate values for

 complex survey data. Statistics in Medicine, 16(21), 2419-2428.

Hanafizadeh P., Ravasan A.Z., and Khaki H. R., (2010). An expert system for perfume

 selection using NN, Expert Systems with Applications, 37(12), pp. 8879-8887.

34

Horton, N.J, Kleinman K,P. 2007. Much ado about nothing: A Comparison of Missing Data

 Methods and Software to fit Incomplete Data Regression Models. Am. Stat. 61:79–90.

Howard, A. A., Arnsten, J. H., & Gourevitch, M. N. (2004). Effect of Alcohol Consumption on

 Diabetes MellitusA Systematic Review. Annals of Internal Medicine, 140(3), 211-219.

Hung, M. S., Shanker, M., & Hu, M. Y. (2002). Estimating Breast Cancer Risks using Neural

 Networks. Journal of the Operational Research Society, 222-231.

Ibrahim, J. G., Chen, M. H., Lipsitz, S. R., & Herring, A. H. (2005). Missing-data methods for

 generalized linear models: A comparative review. Journal of the American Statistical

 Association, 100(469), 332-346.

Kannel, W. B., Hjortland, M., & Castelli, W. P. (1974). Role of diabetes in congestive heart

 failure: the Framingham study. The American Journal of Cardiology, 34(1), 29-34.

Koopman, R. J., Mainous, A. G., Diaz, V. A., & Geesey, M. E. (2005). Changes in age at

 diagnosis of type 2 diabetes mellitus in the United States, 1988 to 2000. The Annals of

 Family Medicine, 3(1), 60-63.

Lachin, J. M. (2008). Sample size evaluation for a multiply matched case–control study using the

 score test from a conditional logistic (discrete Cox PH) regression model. Statistics in

 Medicine, 27(14), 2509-2523.

Little, R. J., & Rubin, D. B. (2002). Statistical Analysis with Missing Data.

Lolas, S., & Olatunbosun, O. A. (2008). Prediction of vehicle reliability performance using

 Neural Networks. Expert Systems with Applications, 34(4), 2360-2369.

Louis, B., Agrawal, V. K., & Khadikar, P. V. (2010). Prediction of intrinsic solubility of generic

 drugs using MLR, ANN and SVM analyses. European journal of medicinal chemistry,

 45(9), 4018-4025.

35

Lu, G., & Copas, J. B. (2004). Missing at random, likelihood ignorability and model

 completeness. The Annals of Statistics, 32(2), 754-765.

Meng, X. L. (2000). Missing data: dial M for???. Journal of the American Statistical Association,

 95(452), 1325-1330.Chicago.

Muniz, A. M. S., Liu, H., Lyons, K. E., Pahwa, R., Liu, W., Nobre, F. F., & Nadal, J. (2010).

 Comparison among probabilistic neural network, support vector machine and logistic

 regression for evaluating the effect of subthalamic stimulation in Parkinson disease on

 ground reaction force during gait. Journal of Biomechanics, 43(4), 720-726.

Oğuz, H., Sarıtas, I., & Baydan, H. E. (2010). Prediction of diesel engine performance using

 biofuels with artificial neural network. Expert Systems with Applications, 37(9), 6579-

 6586.

O'Neill, T. J. (1980). The general distribution of the error rate of a classification procedure with

 application to LR discrimination. Journal of the American Statistical Association,

 75(369), 154-160.

Pepe, M. S. (2003). The statistical evaluation of medical tests for classification and prediction.

 Oxford University Press.

Qiu, X., Tao, N., Tan, Y., & Wu, X. (2007). Constructing of the risk classification model of

 cervical cancer by NN. Expert Systems with Applications, 32(4), 1094-1099.

Ravi Kumar, P., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and

 intelligent techniques–A review. European Journal of Operational Research, 180(1), 1-

 28.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.

36

Rupérez, M. J., Martín-Guerrero, J. D., Monserrat, C., & Alcañiz, M. (2011). Artificial neural

 networks for predicting dorsal pressures on the foot surface while walking. Expert

 Systems with Applications.

SAS Institute Inc. 2012. SAS/STAT 9.3 User’s Guide. Cary, NC: SAS Institute Inc.

Sahiner, B., Chan, H., Hadjiiski, L., 2008. Classifier performance prediction for computer-aided

 diagnosis using a limited dataset. Medical Physics 35 (4), 1559–1570.

Schwartz, A.V., Vittinghoff, E., Sellmeyer, D.E., Feingold, K.R., de RN, Strotmeyer, E.S., et al.

 2008, “Diabetes-related complications, glycemic control, and falls in older adults.”

 Diabetes Care 2008; 31: 391–6.

Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression.Statistics and

 Computing, 14(3), 199-222.

Steyerberg, E. W., Eijkemans, M. J., Harrell, F. E., & Habbema, J. D. F. (2000). Prognostic

 modelling with logistic regression analysis: a comparison of selection and estimation

 methods in small data sets. Statistics in Medicine, 19(8), 1059-1079.

Steyerberg, E. W., Eijkemans, M. J. C., Van Houwelingen, J. C., Lee, K. L., & Habbema, J. D.

 F. (2000). Prognostic models based on literature and individual patient data in logistic

 regression analysis. Statistics in Medicine, 19(2), 141-160.

Suárez Sánchez, A., Riesgo Fernández, P., Sánchez Lasheras, F., de Cos Juez, F. J., & García

 Nieto, P. J. (2011). Prediction of work-related accidents according to working conditions

 using support vector machines. Applied Mathematics and Computation, 218(7), 3539-

 3552.

37

Tian, J., Yu, B., Yu, D., & Ma, S. (2013). Clustering-Based Multiple Imputation via Gray

 Relational Analysis for Missing Data and Its Application to Aerospace Field. The

 Scientific World Journal, 2013.

Tobias, D. K., Pan, A., Jackson, C. L., O'Reilly, E. J., Ding, E. L., Willett, W. C., ... & Hu, F. B.

 (2014). Body-Mass Index and Mortality among Adults with Incident Type 2

 Diabetes. New England Journal of Medicine, 370(3), 233-244.

Westreich, D., Lessler, J., & Funk, M. J. (2010). Propensity score estimation: neural networks,

 support vector machines, decision trees (CART), and meta-classifiers as alternatives to

 logistic regression. Journal of Clinical Epidemiology,63(8), 826-833.24.

Wicklin, R. (2013). Simulating Data with SAS. SAS Institute. Cary, NC.

Wilamowski, B. M., Iplikci, S., & Efe, M. O. (2001). An algorithm for fast convergence in

 training neural networks. In Neural Networks, 2001. Proceedings. IJCNN'01.International

 Joint Conference on (Vol. 3, pp. 1778-1782). IEEE.

38

APPENDIX A. SAS CODE FOR SAMPLE SIZE 120 , SCENARIO 1

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\SampleSize120';

/* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.63,0.26,0.03,0.07,0.01);

 call streaminit(1234);

 do i = 1 to 10000;

 Falls = rand("Table", of prob[*]);

39

 output;

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.3712);

 LastDrank = rand("Table", 0.27, 0.1626, 0.5674);

 AgeGrp = rand("Table", 0.1525, 0.4594, 0.2799, 0.1082);

 CHF =rand("Bernoulli",0.8777);

 BMIGrp = rand("Table", 0.0124, 0.1825, 0.4085, 0.3966);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

 BMIgrp3=0;

40

 BMIgrp4=0;

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

 Falls3=1;

41

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

 end;

42

 else if CHF=0 then

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

run;

43

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data--------------------

----------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

%macro sim;

%let iterations = 1000;

44

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_Impute_Mode

 method = SRS

 reps = 1

 seed = 0

 N = 120

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_120_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

 proc surveyselect data=Sim.Sim_impute_mode

45

 method = SRS

 reps = 1

 N = 120

 out = Sim.ANN_Imputed_Data;

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_120_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

%macro svm;

%let iterations = 1000;

46

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 120

 out = Sim.SVM_Imputed_Data;

 run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_120_Classification

 data=Sim.svm_temp force;

 run;

%end;

run;

%mend svm;

47

%svm;

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_120_Classification;

run;

data Sim.Svm_Classification_120_1000(rename=(concordant=correct));

set Sim.Svm_120_Classification;

model='SVM';

run;

data sim.LR_Classification_120_1000 ;

set sim.LR_120_Classification;

model='LR';

run;

data Sim.ann_Classification_120_1000(rename=(ann_correct=correct));

set Sim.Ann_120_Classification;

model='NN';

run;

data Classification_120_1000;

 merge sim.LR_Classification_120_1000 Sim.ann_Classification_120_1000

Sim.Svm_Classification_120_1000;

 by model;

run;

proc univariate data=Classification_120_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

48

APPENDIX B. SAS CODE FOR SAMPLE SIZE 240 , SCENARIO 1

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\SampleSize240';

/* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.63,0.26,0.03,0.07,0.01);

 call streaminit(1234);

 do i = 1 to 10000;

49

 Falls = rand("Table", of prob[*]);

 output;

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.3712);

 LastDrank = rand("Table", 0.27, 0.1626, 0.5674);

 AgeGrp = rand("Table", 0.1525, 0.4594, 0.2799, 0.1082);

 CHF =rand("Bernoulli",0.8777);

 BMIGrp = rand("Table", 0.0124, 0.1825, 0.4085, 0.3966);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

50

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

51

 Falls3=1;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

52

 end;

 else if CHF=0 then

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

53

run;

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data--------------------

----------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

/*----------------------End---------Generating Missing Data------------------

-------------*/

54

/*-------------Start-------Randomly generate 10000 samples each sample of

size 120--------*/

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_Impute_Mode

 method = SRS

 reps = 1

 seed = 0

 N = 240

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_240_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

55

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

 proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 240

 out = Sim.ANN_Imputed_Data;

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_240_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

56

%macro svm;

%let iterations = 1000;

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 240

 out = Sim.SVM_Imputed_Data;

run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_240_Classification

 data=Sim.svm_temp force;

 run;

%end;

run;

%mend svm;

%svm;

57

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_240_Classification;

 run;

data Sim.Svm_Classification_240_1000(rename=(concordant=correct));

set Sim.Svm_240_Classification;

model='SVM';

run;

data sim.LR_Classification_240_1000 ;

set sim.LR_240_Classification;

model='LR';

run;

data Sim.ann_Classification_240_1000(rename=(ann_correct=correct));

set Sim.Ann_240_Classification;

model='NN';

run;

data Classification_240_1000;

 merge sim.LR_Classification_240_1000 Sim.ann_Classification_240_1000

Sim.Svm_Classification_240_1000;

 by model;

run;

proc univariate data=Classification_240_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

58

APPENDIX C. SAS CODE FOR SAMPLE SIZE 500 , SCENARIO 1

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\SampleSize500';

/* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.63,0.26,0.03,0.07,0.01);

 call streaminit(1234);

 do i = 1 to 10000;

 Falls = rand("Table", of prob[*]);

 output;

59

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.3712);

 LastDrank = rand("Table", 0.27, 0.1626, 0.5674);

 AgeGrp = rand("Table", 0.1525, 0.4594, 0.2799, 0.1082);

 CHF =rand("Bernoulli",0.8777);

 BMIGrp = rand("Table", 0.0124, 0.1825, 0.4085, 0.3966);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

 BMIgrp3=0;

 BMIgrp4=0;

60

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

 Falls3=1;

 Falls4=0;

61

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

 end;

 else if CHF=0 then

62

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

run;

63

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data------------------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_Impute_Mode

64

 method = SRS

 reps = 1

 seed = 0

 N = 500

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_500_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

 proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 500

 out = Sim.ANN_Imputed_Data;

65

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_500_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

%macro svm;

%let iterations = 1000;

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

66

 reps = 1

 N = 500

 out = Sim.SVM_Imputed_Data;

 run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_500_Classification

 data=Sim.svm_temp force;

 run;

%end;

run;

%mend svm;

%svm;

67

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_500_Classification;

run;

data Sim.Svm_Classification_500_1000(rename=(concordant=correct));

set Sim.Svm_500_Classification;

model='SVM';

run;

data sim.LR_Classification_500_1000 ;

set sim.LR_500_Classification;

model='LR';

run;

data Sim.ann_Classification_500_1000(rename=(ann_correct=correct));

set Sim.Ann_500_Classification;

model='NN';

run;

data Classification_500_1000;

 merge sim.LR_Classification_500_1000 Sim.ann_Classification_500_1000

Sim.Svm_Classification_500_1000;

 by model;

run;

proc univariate data=Classification_500_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

68

APPENDIX D. SAS CODE FOR SAMPLE SIZE 120 , SCENARIO 2

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\Scenario2\SampleSize120';

/* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.01, 0.03, 0.07, 0.26, 0.63);

 call streaminit(1234);

 do i = 1 to 10000;

 Falls = rand("Table", of prob[*]);

69

 output;

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.85);

 LastDrank = rand("Table", 0.6,0.1,0.3);

 AgeGrp = rand("Table", 0.2025, 0.4594, 0.2799, 0.0582);

 CHF =rand("Bernoulli",0.95);

 BMIGrp = rand("Table", 0.012 , 0.18, 0.35, 0.458);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

 BMIgrp3=0;

70

 BMIgrp4=0;

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

 Falls3=1;

71

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

 end;

72

 else if CHF=0 then

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

run;

73

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data--------------------

----------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

74

proc surveyselect data=Sim.Sim_Impute_Mode

 method = SRS

 reps = 1

 seed = 0

 N = 120

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_120_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

75

 proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 120

 out = Sim.ANN_Imputed_Data;

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_120_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

76

%macro svm;

%let iterations = 1000;

%do i = 1 %to &iterations;

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 120

 out = Sim.SVM_Imputed_Data;

 run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_120_Classification

 data=Sim.svm_temp force;

 run;

77

%end;

run;

%mend svm;

%svm;

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_120_Classification;

run;

data Sim.Svm_Classification_120_1000(rename=(concordant=correct));

set Sim.Svm_120_Classification;

model='SVM';

run;

data sim.LR_Classification_120_1000 ;

set sim.LR_120_Classification;

model='LR';

run;

data Sim.ann_Classification_120_1000(rename=(ann_correct=correct));

set Sim.Ann_120_Classification;

model='NN';

run;

data Classification_120_1000;

 merge sim.LR_Classification_120_1000 Sim.ann_Classification_120_1000

Sim.Svm_Classification_120_1000;

 by model;

run;

proc univariate data=Classification_120_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

78

APPENDIX E. SAS CODE FOR SAMPLE SIZE 240 , SCENARIO 2

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\Scenario2\SampleSize240';

 /* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.01, 0.03, 0.07, 0.26, 0.63);

 call streaminit(1234);

 do i = 1 to 10000;

 Falls = rand("Table", of prob[*]);

 output;

79

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.85);

 LastDrank = rand("Table", 0.6,0.1,0.3);

 AgeGrp = rand("Table", 0.2025, 0.4594, 0.2799, 0.0582);

 CHF =rand("Bernoulli",0.95);

 BMIGrp = rand("Table", 0.012 , 0.18, 0.35, 0.458);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

 BMIgrp3=0;

 BMIgrp4=0;

80

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

 Falls3=1;

 Falls4=0;

81

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

 end;

 else if CHF=0 then

82

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

run;

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

83

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data--------------------

----------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

84

proc surveyselect data=Sim.Sim_Impute_Mode

 method = SRS

 reps = 1

 seed = 0

 N = 240

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_240_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

 proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

85

 N = 240

 out = Sim.ANN_Imputed_Data;

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_240_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

%macro svm;

%let iterations = 1000;

%do i = 1 %to &iterations;

86

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 240

 out = Sim.SVM_Imputed_Data;

 run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_240_Classification

 data=Sim.svm_temp force;

 run;

%end;

run;

%mend svm;

87

%svm;

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_240_Classification;

run;

data Sim.Svm_Classification_240_1000(rename=(concordant=correct));

set Sim.Svm_240_Classification;

model='SVM';

run;

data sim.LR_Classification_240_1000 ;

set sim.LR_240_Classification;

model='LR';

run;

data Sim.ann_Classification_240_1000(rename=(ann_correct=correct));

set Sim.Ann_240_Classification;

model='NN';

run;

data Classification_240_1000;

 merge sim.LR_Classification_240_1000 Sim.ann_Classification_240_1000

Sim.Svm_Classification_240_1000;

 by model;

run;

proc univariate data=Classification_240_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

88

APPENDIX F. SAS CODE FOR SAMPLE SIZE 500 , SCENARIO 2

/* Creating a Library(Folder) for all dataset related to this work */

LIBNAME Sim 'T:\ms\Simulation\Scenario2\SampleSize500';

 /* Importing the 6572 male dataset with missing data */

PROC IMPORT

 OUT= Sim.Datamale

 DATAFILE= "T:\ms\Simulation\datamales.csv"

 DBMS=CSV REPLACE;

 GETNAMES=YES;

 DATAROW=2;

RUN;

/* Proc Univariate to generate Mode for the 6 covariates and store them

Sim.Model1*/

ods output BasicMeasures=Sim.Mode1;

proc univariate data=Sim.Datamale ;

 var BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Clean up code to just retain mode and delete all other unwanted

information */

data Sim.Mode (keep=VarName LocMeasure LocValue);

set Sim.Mode1;

where LocMeasure='Mode';

run;

/* Getting rid of Model1 table because the cleaner version of this is Model

*/

proc datasets library=Sim;

 delete Mode1;

run;

/* Ploting histogram to extract the proportions for BMI, CHF, Age, Eyes,

Falling, Alchohol_Consmp and levels from 6572 record dataset*/

/*Proc Gchart data=Sim.Datamale ;

 hbar BMIgrp /DISCRETE;

 hbar CHF /DISCRETE;

 hbar AgeGrp /DISCRETE;

 hbar EyesPastYear /DISCRETE;

 hbar Falls /DISCRETE;

 hbar LastDrank /DISCRETE;

run;*/

/* Using the proportion from the previous Proc Gchart to simulate Falling

data the relationship between

different levels { 1,2,3,4,5 } is maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX1 (drop = i) ;

array prob [5] (0.01, 0.03, 0.07, 0.26, 0.63);

 call streaminit(1234);

 do i = 1 to 10000;

 Falls = rand("Table", of prob[*]);

 output;

89

end;

run;

/* Using the proportion from the previous Proc Gchart to simulate Eyes,

Alchohol, Age, Heart, BMI data

the proprotion with different levels are maintained approximately like the

proportion in Datamale dataset */

data Sim.DataX2 (drop = i) ;

 call streaminit(1234);

 do i = 1 to 10000;

 int = 1;

 EyesPastYear =rand("Bernoulli",0.85);

 LastDrank = rand("Table", 0.6,0.1,0.3);

 AgeGrp = rand("Table", 0.2025, 0.4594, 0.2799, 0.0582);

 CHF =rand("Bernoulli",0.95);

 BMIGrp = rand("Table", 0.012 , 0.18, 0.35, 0.458);

 output;

end;

run;

/* Combining the Sim.Datax1 which contains Sim_Data_X_Y values for Falling

and

Combining Sim.Datax2 which contains Sim_Data_X_Y values for Eyes,

Alchohol,Age, Heart, and BMI into Sim.Data_X*/

data Sim.Data_X (drop= prob1 prob2 prob3 prob4 prob5);

merge Sim.DataX1 Sim.DataX2;

run;

/* Deleting Datax1 and Datax2 because they are already merged into Data_X */

proc datasets library=Sim;

 delete DataX1 DataX2;

run;

/* Run Proc Logistic on Clean Male Dataset with not missing data and store

the parameter estimates in

Estimates dataset */

proc logistic data=Sim.Datamale DESCENDING outest=Sim.Estimates ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='0') LastDrank(Ref='1')

 / param=ref;

 model Diabetes = BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

run;

/* Transform the Data_X dataset wich contains the Sim_Data_X_Y values for

Fall, Age, Alchohol, BMI into a

1 0 1, 1 1 1, 0 1 1, 0 0 0......etc matrix like this and store the values in

Transform10100 dataset*/

data Sim.Transform10100 (drop= BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank) ;

set Sim.Data_X ;

 if BMIGrp=1 then

 do;

 BMIgrp1=1;

 BMIgrp3=0;

 BMIgrp4=0;

90

 end;

 else if BMIGrp=2 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=0;

 end;

 else if BMIGrp=3 then

 do;

 BMIgrp1=0;

 BMIgrp3=1;

 BMIgrp4=0;

 end;

 else if BMIGrp=4 then

 do;

 BMIgrp1=0;

 BMIgrp3=0;

 BMIgrp4=1;

 end;

 if LastDrank=1 then

 do;

 LastDrank2=0;

 LastDrank3=0;

 end;

 if LastDrank=2 then

 do;

 LastDrank2=1;

 LastDrank3=0;

 end;

 else if LastDrank=3 then

 do;

 LastDrank2=0;

 LastDrank3=1;

 end;

 if Falls=1 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=2 then

 do;

 Falls2=1;

 Falls3=0;

 Falls4=0;

 Falls5=0;

 end;

 else if Falls=3 then

 do;

 Falls2=0;

 Falls3=1;

 Falls4=0;

91

 Falls5=0;

 end;

 else if Falls=4 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=1;

 Falls5=0;

 end;

 else if Falls=5 then

 do;

 Falls2=0;

 Falls3=0;

 Falls4=0;

 Falls5=1;

 end;

 if EyesPastYear=1 then

 do;

 EyesPastYear1=1;

 end;

 else if EyesPastYear=0 then

 do;

 EyesPastYear1=0;

 end;

 if AgeGrp=2 then

 do;

 AgeGrp2=1;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 else if AgeGrp=3 then

 do;

 AgeGrp2=0;

 AgeGrp3=1;

 AgeGrp4=0;

 end;

 else if AgeGrp=4 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=1;

 end;

 else if AgeGrp=1 then

 do;

 AgeGrp2=0;

 AgeGrp3=0;

 AgeGrp4=0;

 end;

 if CHF=1 then

 do;

 CHF1=1;

 end;

 else if CHF=0 then

92

 do;

 CHF1=0;

 end;

run;

/* Use Proc IML perform some array operations */

proc iml ;

 use sim.Estimates; /* Read all the parameter estimates stored in

Estimates dataset into an array z2 */

 read all ;

 z2 = Intercept || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank4 || Falls1 || Falls2 || Falls3 || Falls4 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 ||AgeGrp4 ||CHF1 ;

 use sim.Transform10100; /* Read all the Transform10100 dataset that

contains transformed Falls , BMI, Alchohol variables and store them in array

z4 */

 read all ;

 z4 = int || BMIgrp1 || BMIgrp3 || BMIgrp4 || LastDrank2 ||

LastDrank3 || Falls2 || Falls3 || Falls4 || Falls5 || EyesPastYear1 ||

AgeGrp2 || AgeGrp3 || AgeGrp4 || CHF1 ;

 /* scoring on the Sim_Data_X_Y dataset */

 z5 = z4*t(z2);

 p = exp(z5)/(1+exp(z5));

 /* Generating data for Diabetes based on Simulationnot very

strongly related to previous steps but just for further analysis */

 Diabetes = rand("Bernoulli",p);

 z6= p || Diabetes ; /* Merge two arrays p and Diabetes into one

z6 */

 /* putting these arrays back into a dataset Test 6 */

 create Sim.Test6 from z6;

 append from z6;

 close Sim.Test6;

quit;

/* Final Sim_Data_X_Y Data , contains both p and diabetes based on Bernouli

simuation*/

data Sim.Sim_Data_X_Y (rename=(Col1=p Col2=Diab_Bernoulli_Sim));

merge Sim.Data_X Sim.Test6;

if Col1<=0.5 then Diab_p=0;

else if Col1 > 0.5 then Diab_p=1;

id_Sim=_N_;

run;

/* Deleting Test6 because they are already merged into Sim_Data_X_Y */

proc datasets library=Sim;

 delete Test6 Data_X;

run;

proc logistic data=Sim.Sim_Data_X_Y DESCENDING ;

93

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank ;

run;

/*---------------------Start------Generating Missing Data--------------------

----------*/

data Sim.DataMiss1 ;

 call streaminit(1234);

 do id_miss = 1 to 10000;

 EyesPastYea = rand("Bernoulli",0.1);

 LastDran = rand("Bernoulli",0.1);

 AgeGp = rand("Bernoulli",0.1);

 CH = rand("Bernoulli",0.1);

 BMIGp = rand("Bernoulli",0.1);

 Fall = rand("Bernoulli",0.1);

 output;

end;

run;

data Sim.Sim_Miss_Data (keep= BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank

Diab_Bernoulli_Sim);

set Sim.DataMiss1 ; set Sim.Sim_Data_X_Y ;

if id_miss=id_Sim and EyesPastYea=1 then EyesPastYear=.;

if id_miss=id_Sim and AgeGp=1 then AgeGrp=.;

if id_miss=id_Sim and LastDran=1 then LastDrank=.;

if id_miss=id_Sim and CH=1 then CHF=.;

if id_miss=id_Sim and BMIGp=1 then BMIgrp=.;

if id_miss=id_Sim and Fall=1 then Falls=.;

run;

data Sim.Sim_Impute_Mode;

set Sim.Sim_Miss_Data;

if EyesPastYear=. then EyesPastYear=1;

if AgeGrp=. then AgeGrp=2;

if LastDrank=. then LastDrank=4;

if BMIgrp=. then BMIgrp=3 ;

if Falls=. then Falls=0;

if CHF=. then CHF=0;

run;

proc datasets library=Sim;

 delete DataMiss1 Transform10100;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

94

proc surveyselect data=Sim.Sim_Impute_Mode

 method = SRS

 reps = 1

 seed = 0

 N = 500

 out = Sim.Sample_Data;

run;

ods output Classification=Sim.ctable1;;

proc logistic data=Sim.Sample_Data DESCENDING ;

Class

 AgeGrp(Ref='1') BMIgrp(Ref='2') CHF(Ref='0') EyesPastYear(Ref='0')

Falls(Ref='1') LastDrank(Ref='1') / param=ref;

 model Diab_Bernoulli_Sim = BMIgrp CHF AgeGrp EyesPastYear Falls

LastDrank / ctable

 pprob=0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.9;

run;

data Sim.ctable2;

set Sim.ctable1;

total=Sensitivity + Specificity;

run;

proc sort data=Sim.ctable2;

 by total ProbLevel;

run;

data Sim.ctable3;

 set Sim.ctable2;

 if _n_ = 10 then output;

 keep Correct;

run;

proc append base=Sim.LR_500_Classification data=Sim.ctable3 force;

 run;

%end;

run;

%mend sim;

%sim;

proc datasets library=Sim;

 delete Ctable1 Ctable2 Ctable3;

run;

%macro sim;

%let iterations = 1000;

%do i = 1 %to &iterations;

 proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 500

95

 out = Sim.ANN_Imputed_Data;

 run;

 proc dmdb batch data= Sim.ANN_Imputed_Data

out=Sim.ANN_DM_Smp10 dmdbcat=Sim.ANN_CAT_Smp10;

 CLASS Diab_Bernoulli_Sim (DESC)

BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET Diab_Bernoulli_Sim;

 run;

 proc neural data= Sim.ANN_Imputed_Data

dmdbcat=Sim.ANN_CAT_Smp10;

 NETOPTIONS DECAY=0 INVALIDTARGET=OMITCASE

OBJECT=LIKE;

 INPUT BMIgrp CHF AgeGrp

EyesPastYear Falls LastDrank /level= nominal id=inp STD=NO ;

 TARGET Diab_Bernoulli_Sim /

level=nominal id=trg STD=NO ACT=SOFTMAX COMBINE=LINEAR ERROR=MBERNOULLI;

 ARCHI MLP HIDDEN = 10 ;

 TRAIN TECHNIQUE= LEVMAR

MAXITER=1000 ;

 INITIAL;

 SCORE data= Sim.ANN_Imputed_Data

out=Sim.ANN_OUT_Smp1 outfit=Sim.ANN_FIT_Smp1 role=TRAIN;;

 run;

 data Sim.temp;

 set Sim.ANN_FIT_Smp1;

 concordant = round((1 - _misc_)*100,.01);

 if _n_ = 2 then output;

 keep concordant;

 run;

 proc append base=Sim.ann_concordant data=Sim.temp

force;

 run;

%end;

run;

%mend sim;

%sim;

data Sim.ANN_500_Classification(rename=(concordant=Correct));

 set Sim.ann_concordant;

run;

%macro svm;

%let iterations = 1000;

%do i = 1 %to &iterations;

96

proc surveyselect data=Sim.Sim_impute_mode

 method = SRS

 reps = 1

 N = 500

 out = Sim.SVM_Imputed_Data;

 run;

proc dmdb

 batch

 data= Sim.SVM_Imputed_Data

 out=Sim.SVM_DM_Smp10

 dmdbcat=Sim.SVM_CAT_Smp10;

 CLASS

 Diab_Bernoulli_Sim (DESC) ;

 VAR

 BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

 TARGET

 Diab_Bernoulli_Sim;

run;

PROC SVM DATA=Sim.SVM_DM_Smp10 DMDBCAT=Sim.SVM_CAT_Smp10 CV=SPLIT FOLD=10

METHOD=LSVM KERNEL=POLYNOM K_PAR =5

OUT=Sim.SVM_OUT OUTEST= Sim.SVM_EST OUTFIT=Sim.SVM_FIT

TUN=GRID;

VAR BMIgrp CHF AgeGrp EyesPastYear Falls LastDrank ;

TARGET Diab_Bernoulli_Sim;

C 0.1 TO 1.0 by 0.1;

RUN;

 data Sim.svm_temp;

 set Sim.SVM_FIT;

 concordant = round((1 -

((_ACCU_)/(_NTRAIN_)))*100,0.01);

 if _n_ = 1 then output;

 keep concordant;

 run;

 proc append

 base=Sim.svm_500_Classification

 data=Sim.svm_temp force;

 run;

%end;

run;

%mend svm;

%svm;

97

data Sim.ann_concordant(rename=(concordant=ann_correct));

 set Sim.Ann_500_Classification;

run;

data Sim.Svm_Classification_500_1000(rename=(concordant=correct));

set Sim.Svm_500_Classification;

model='SVM';

run;

data sim.LR_Classification_500_1000 ;

set sim.LR_500_Classification;

model='LR';

run;

data Sim.ann_Classification_500_1000(rename=(ann_correct=correct));

set Sim.Ann_500_Classification;

model='NN';

run;

data Classification_500_1000;

 merge sim.LR_Classification_500_1000 Sim.ann_Classification_500_1000

Sim.Svm_Classification_500_1000;

 by model;

run;

proc univariate data=Classification_500_1000 noprint;

 class model;

 histogram Correct / nrows = 3

 intertile = 1

 cprop

 normal(noprint);

 inset n = "N" mean std / pos = nw;

run;

