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ABSTRACT

Current research on network analysis; such as community detection, pattern

mining and many other graph mining application mostly focus on large social or

biological networks. Such experiments may find interesting patterns that helps us to

understand the unknown relationship within the network. Sometimes the size of the

input networks are so big that it needs an efficient algorithm to overcome the time

and space complexities. In this paper we modify an existing algorithm that finds the

maximal patterns from a set of input networks. Maximal patterns are those patterns

that are not part of any frequent patterns. We introduce a new relational attributes

to our algorithm from the input networks, we call them the edge attributes. We have

tested our algorithm on a co-author relationship database; and after analyzing we

have found some interesting characteristics of the input dataset.
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1. INTRODUCTION AND RELATED WORK

Data mining algorithms works fine with the traditional data and finds useful

information from it. In fact, the research is increasing day by day to grasp complex

scientific and commercial domains [4, 1, 3, 13, 33]. Both sequential and non-sequential

approaches work fine to search for frequent patterns, but non-traditional data needs a

more comprehensive way of presenting their complex structure. Graph structure has

emerged as a popular data structure for storing the relationship in a complex system.

Many researchers have proposed efficient algorithms for graph mining [16, 31, 9,

20]. Since then, graphs have become very popular to model relationships among

entities in various areas. It gives a clear and concise representation of complex

data with nodes corresponding to entities and edges reflect relationships between

the entities.

An example of a graph database is a protein-protein interaction (PPI) network,

where a vertex represents a protein and physical interactions between various proteins

are represented with edges connecting them. Analysis of PPI networks using graph-

theory framework reveals important molecular interaction informations that helps

understanding cellular organization, functional hierarchy and evolutionary conserva-

tion [17, 27, 22, 8, 15].

(a) (b)

Figure 1. Yeast Gene (a) and Human Gene (b) Interaction network.
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Another area where graphs are used to model interactions is the social networks.

Social networks are widely used for communication and sharing contents between

individuals. Here, a vertex represents a person and an edge connecting two vertices

exhibits the friendship among them. It is a group of communities where all the people

inside the community interact frequently with each other. It is likely that if a largest

number of people have interest in one particular subject, then any personal choice

will be interesting to others as well.

The problem is how to efficiently detect groups or communities from these type

of giant networks since no explicit information is available [7]. Newman and Girvan

[23] uses a betweenness property to find out the community structure. Ruan et al. [25]

has shown that using contents and link information in graph structure has eliminated

noise while discovering communities. Tang et al. [28] presented a joint optimization

framework to detect communities by integrating multiple data sources. Qi et al. [24]

proposed an algorithm to show that instead of node content, the edge content has

the flexibility to detect community effectively.

Many data mining applications uses frequent itemset mining technique as their

fundamental approach [12]. It is the first step for important discovery tasks like

finding association rules, strong rules, correlations, sequential rules, episodes, multi-

dimensional pattern [34]. Frequent itemset mining is described as; find frequent set of

items from a given large database with item transactions and a user-defined threshold

known as support. An itemset is frequent if it has occurred in at least number of

graphs equals to support.

Frequent itemset mining is always costly especially when the size of the database

is huge. Most of the frequent itemset mining approach are a variant of the A-priori

algorithm [4], a bottom up approach that finds frequent items efficiently. A-priori

uses a downward closure to prune the search space to find the frequent itemsets. Still

2



the size of the frequent itemsets is big since it has redundant data, as subsets of a

larger frequent itemset also be present in the database. Another modified approach

of mining frequent itemset is mining frequent maximal itemset, i.e. keeping only the

larger patterns that will have the same properties but allows to compress the output

data.

Some scientific applications uses multi-dimensional complex database and needs

more comprehensive way to present. In these cases a graph structure is more

easy to represent. Various objects from the database can be represented as node,

interaction between the nodes can be represented as an edge. A mining approach

on the graph database can find interesting behavior among the objects. Mining for

frequent subgraphs is similar to itemset mining; find all the frequent subgraphs that

has occurred frequently enough in the entire graph database.

Some of the approaches require that all the nodes in the graph has to be

unique (MULE [18]), i.e. no two nodes in the graph can have the same label.

Algorithms like FSG [20], gspan [31], Spin [16] does not require the labels to be

unique. But these approaches has helped solving problems that was not possible

to solve by basic itemsset approach like common motif discovery in DNA, finding

recurrent substructure in chemical compounds and etc.

Using of Graph theoretic formalism has simplified the analysis of commercial,

scientific and technological data. It describes efficient frameworks for clustering,

shortest-path computation, graph matching, graph alignment, subgraph homeomor-

phism and graph mining, but still finding these informations from a graph is costly.

Most of these data analysis includes frequent pattern mining from the graph database.

It is similar to the frequent item set mining in data mining literature. Due to subgraph

isomorphism, finding frequent patterns from a graph database NP-hard problem [20].

3



Interactions in networks can be weighted. Examples include; the number

of posts in Facebook, the number of papers in a co-author relationship and the

correlation of expression in gene co-expression networks. In this paper we develop a

method to use a summary graph to mine maximal-cohesive patterns. This algorithm

uses several powerful pruning techniques to prune the search space, thus improving

the performance of the algorithm. The proposed algorithm is based on the MULE

algorithm[18]. MULE does not take weights of a interaction in a networks, hence

there is a need for a new algorithm.

The rest of the paper is structured as follows: Section 2 describes the basics of

frequent pattern mining, Section 3 gives the problem definition and some preliminary

definitions related to graph mining. Section 4 describes the basic MULE algorithm

and our proposed methods. The results of the algorithm on real world data is shown

in Section 5. Lastly, Section 6 presents the conclusion and how this work might be

extended in the future.

4



2. MINING FREQUENT PATTERNS

Finding frequent patterns in a graph database follows a similar approach to

that employed in frequent item set mining in the market-basket example [1]. In retail

businesses, management analyzes the customer shopping carts to mine interesting

patterns. The analysis might find some patterns about how likely are two sets

of items to co-occur or to conditionally occur. For example rules like “Customers

who buy Bread and Milk also tend to buy Eggs” can be deduced from the analysis,

which may result in arranging bread, milk and egg in the same aisle in a grocery

store. Discovering common subsequences and motifs in biomolecules is another

example of frequent pattern mining [6]. Recent research on molecular biology has

evolved to produce a new generation of bimolecular interaction data, analyzing

these relationships and interactions convey functional, structural, and evolutionary

information [14]. Here, in this section we introduce the itemset mining algorithm to

familiarize the reader with the topic.

A B C D
1 0 1 1 1
2 1 1 0 0
3 0 1 0 1
4 0 0 1 1
5 0 0 0 1

(a)

t(i)
1 BCD
2 AB
3 BD
4 CD
5 D

(b)

A B C D
2 1 1 1

t(X) 2 4 3
3 4

5
(c)

Figure 2. Example of different database representations. (a) shows the
Binary Database , (b) shows the Transaction Database and (c) shows the Vertical
Database.

In this paragraph we present the database representation as described in [32].

Let I = {x1, x2, . . . , xm} be the set of items. A set X of size k is said to be an

itemset only if X ⊆ I, and is called a k-itemset. The set of all possible subsets

of I of size k is denoted by Ik. We define a database of n transactions as D =

5



{(1, T1), (2, T2), . . . , (n, Tn)}. For an itemset X, the set of all subset of X, i.e. the

power set of X is denoted as 2X . The set of items contained in transaction, tid t

is denoted as i(t). Figure 2(b) shows the corresponding transaction database, the

binary database represented in 2(a); 2(c) shows the vertical representation of the

binary database. So the first transaction in figure 2(b) is (1,{B,C,D}) means items

B, C and D are present in transaction one. The vertical notation of item D would

be (D,{1,3,4,5}) meaning that item D appears in transactions {1,3,4,5} ( shown in

2(c)).

Support of an itemset can be defined in terms of cardinality of its corresponding

tidset t(X). Here tidset(X) is the set of transactions that contain all the items in X.

More formally:

t(X,D) = {(ti, i(ti)) ∈ D — X ⊆ i(ti)}

The support of an itemset X in database D is the number of transactions in D

that contains X, denoted as sup(X,D):

sup(X,D) = |t(X,D)|

Frequent Itemset: An itemset X is said to be frequent if sup(X) ≥ minsup, where

minsup is a user defined threshold, the set of all frequent itemsets is denoted as F .

Definition 1 (Frequent Itemset). If the frequency of an itemset X is greater

than minsup then FREQ(X)=TRUE, i.e. FREQ(X) = TRUE ⇐⇒ sup(X) ≥ σ∗.

Definition 2 (Frequent Itemset Mining Problem). Given a database D of n

transactions and a minsup σ∗, then the problem is defined as to find F , the set of

frequent patterns.

To find out the frequent item sets, a brute force approach is to run over all

the items in power set of I;P (I) [29] and check their frequency. This will ensure

no combination of items in set S is tried twice. Rymon [26] proposed similar way of

searching through systemic set enumeration.
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Figure 3. Set enumeration tree of items in I. It shows a lattice structure
for the database shown in figure 2(a)), here any two itemsets X and Y are linked
iff X ⊆ Y and |X| = |Y | − 1. The itemsets in the lattice can be enumerated using
either breadth-first (BFS) or depth-first (DFS) in the prefix tree, drawn with bold
line. Here in the prefix tree two items X and Y are connected by bold line iff X is a
direct subset and prefix of Y .

An example of a set enumeration tree for the set I = {A,B,C,D} is shown

in Figure 3 with bold line. The Set enumeration tree starts with an empty set

or null to indicate that at level zero it has no member in its database. Then it

discovers all its members one by one in sorted order and adds them in a breadth-

first or depth-first approach. In a breadth-first approach, it will find all the single

frequent items (ex: {A,B}) at level one, at level two it will have all the frequent

paired items (ex: {AB,AC}), so at level n it will discover all the frequent item

sets which has exactly n items in it. Obviously, it is easier to understand that

for a large sized set I, it may run out the system memory before it finds out

all the frequent items. Depth-first approach works with an extra modification. It

builds it database for single frequent items exclusively out side of the main process.

This set of single valued frequent items is known as member set. Now within a

recursive procedure it combines two frequent items to grow a newer pattern (so at

level k + 1 it will create fk+1 = fk ∪ f ′k) and checks it frequency. In Figure 3,

the depth-first traversal order starts with item {A}, as it traverse grows the patterns

7



{A,B}, {A,B,C}, {A,B,C,D}, {A,B,D}, {A,C}, {A,C,D}, {A,D} chronologically

all patterns with a prefix “A”. Then it will go back to the item {B} on the first level.

Here we define an anti-monotone constraint:

Definition 3 (Anti-monotone constraint). A constraint P is anti-monotone

for an itemset, X, if the following condition is satisfied:

P (X) = TRUE =⇒ P (X ′) = TRUE , ∀ X ′ ⊆ X

i(t)
1 B,C,D,E
2 A,B
3 B,D
4 C,D
5 D

(a)

(b)

Figure 4. Effect of pruning on the prefix tree after applying A-priori. The
dotted line in the figure shows the pruned branches. Solid line represents the itemsets
that has been generated by A-priori. Itemsets with shaded oval ({A,BC}) are the
infrequent patterns.

Let X, Y ⊆ I be any two itemsets. We can say that sup(X) ≥ sup(Y ) when

X is a subset of Y, i.e. X ⊆ Y . So from this relation we can say that if X is

frequent then any P ⊆ X is also frequent and if X is not frequent then any Q ⊃ X

is not frequent. Agrawal and Srikant [2] developed A-priori algorithm based on this

observation using set enumeration tree. It stops generating candidate patterns when

8



it reaches an infrequent pattern as no superset can be frequent. In A-priori it avoids

any candidate that has an infrequent subset. The rest of the A-priori algorithm is

similar to the level wise breadth-first approach describe earlier in this chapter.

Figure 4 shows the effect of pruning with a support of 2 on the database shown

in figure 2(b). Here, since support of A is one, i.e. sup(A) = 1, which is not frequent,

so none of its supersets {AB,AC,AD,ABC,ABD,ACD,ABCD} will be grown by

A-priori algorithm. The reason is from the observation that, since the subset {A} is

not frequent none of its superset can be frequent. Same thing is true for the itemset

{BC}, so its superset {BCD} will not be generated by the algorithm. Comparing

to to the set enumeration approach shown in figure 3, A-priori checks less number of

items, reports the same frequent itemsets, and is much faster.

Figure 5. Tidset intersection approach on a database. The database shown
in Figure 2.

Zaki and Gouda [33] proposed the Tidset Intersection algorithm for finding

frequent itemsets from the database D shown in Figure 6. The approach is simple,

instead of generating subsets of each transaction and count their support, the

transaction id sets (tidsets) has been used directly in the algorithm. If two itemsets

are frequent in the current iteration, then these two can be merged together to create

a new itemset in the next iteration. So the occurring tidsets of the new pattern can

9



be computed simply by intersecting the tidsets of the candidate sets. For example in

figure 2, tidsets of B i.e. t(B) = {1, 2, 3} and t(D) = {1, 3, 4, 5}. Now the support of

the itemset BD can be determined by t(BD) = t(B)∩t(D) = {1, 2, 3}∩{1, 3, 4, 5} =

{1, 3}, so the frequency of itemset BD is 2. The algorithm does not include the

infrequent patterns, so pruning strategy is also employed by this is faster approach of

support computation. The set enumeration tree for the example is shown in Figure

5.

Algorithm 1: Algorithm IntersectTidsets

// Initial Call : IntersectTidsets({〈i, t(i)〉 : i ∈ I},minsup)
IntersectTidsets(P,minsup):
1. foreach 〈X, t(X)〉 ∈ P do
2. PX ← ∅
3. foreach 〈Y, t(Y )〉 ∈ P with Y > X do
4. NXY = X ∪ Y
5. t(NXY ) = t(X) ∩ t(Y )
6. if sup(NXY ) ≥ minsup then
7. PX ← PX ∪ {〈NXY , t(NXY )〉}
8. print NXY , sup(NXY )
9. endif
10. endfor
11. IntersectTidsets(P,minsup)
12. endfor

Figure 6. Tidset Intersection Approach - The Eclat Algorithm.

Both the breadth-first and Depth-first approach work fine if the intention is find-

ing the frequent patterns only. But numerous scientific and commercial application

domains produces abundant transactional data, where the search space is enormous.

A complete search for frequent patterns has to compute over an overwhelming size of

data which is beyond the scope for analysis. Now most research focuses on how to

reduce the frequent patterns to a smaller summary set that contains representative,

non-redundant and discriminative patterns [5].
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It is evident that frequency constraint is an anti-monotone which can be

employed in frequent pattern set mining to prune the searching branches. But

identifying huge number of similar frequent itemsets can be redundant. The results

from a frequent itemset mining can be narrowed down. We can only keep the large

frequent itemsets, as all the subset of a large frequent itemset will also be frequent. So

instead of the largest set of groups, consider only those itemsets that still satisfies the

frequent property will be more interesting. Gouda and Zaki [10] proposed a method

to mine condensed representation of the frequent itemset known as maximal frequent

itemset, representing partial frequent itemsets removing all redundant information

that still holds the same characteristics of the original set enumeration tree. This has

reduced the overhead to analyze the correlations found, at the same time reduces the

cost of data storage and computation. In itemset mining concept, a frequent itemset

X ∈ F is called maximal iff it has no frequent supersets.

Definition 4 (Maximal frequent). An itemset, X, is maximal if the following

condition is satisfied:

FREQ(X) = TRUE , @ X ′ ⊇ X ∧ FREQ(X ′) = TRUE

Enumerating only maximal itemsets offers more opportunities for pruning. Any

node with a frequent child cannot be maximal. After pruning for frequency, only the

leaf nodes are potential maximal frequent nodes. Let M be the set of all maximal

frequent itemsets, then M is defined as :

M = {X|X is frequent and @Y ⊃ X, such that Y is frequent}

Maximal patterns from a database gives us information about all the frequent

items. If we find out all the subsets of maximal patterns then we will know all the
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frequent patterns in the database. Figure 7 shows an example of set enumeration

tree with support 2. Itemset {BDE} is a maximal pattern since it has no frequents

superset.

(a)

i(t)
t1 B,C,D,E
t2 A,B,E
t3 B,D,E
t4 C,D
t5 D,E

(b)

sup i(t)
4 D,E
3 B,BE,DE
2 C,BD,CD,BDE

(c)

itemset
B,C,D,E,BD,

F BE,CD,DE,BDE
D,E,BE,

C CD,DE,BDE
M CD,BDE

(d)

Figure 7. Set enumeration tree for I= {A,B,C,D,E}. (a) shows the frequent
itemset enumeration tree with minimum support of 2. The table in (b) shows the
items in each transaction. Itemset that has frequency from 2-4 is listed in (c).
Frequent(F), Closed(C) and Maximal(M) itemsets are listed in (d).

But maximal pattern is a lossy compression, since we can not generate all

frequent patterns with their frequencies from the set of maximal frequent patterns.

Therefore we need another summarization technique, [34] proposed an algorithm to

mine all the frequent closed patterns from a database while given a user defined

support. A close pattern doesn’t have any superset with the same frequency. So

subset of a close pattern tells us that they occurred at-least more than the pattern.

Let C be the set of all closed frequent itemsets, which can be written as:

12



C = {X|X is frequent and @Y ⊃ Xwith sup(X) = sup(Y )}

Itemset {BD} in Figure 7, is not closed since its superset {BDE} has same

support, i.e. sup(BD) = sup(BDE) and BDE ⊃ BD. Itemset {DE} has no child,

but still it is not a maximal pattern as BDE ⊃ DE. Itemset {B} is frequent but not

closed again for the same reason that one of its superset {BE} has the same support.

The frequent patterns F , the maximal patterns M and the closed patterns C for

I = {A,B,C,D,E} are highlighted in Figure 7(c).
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3. PROBLEM DESCRIPTION

In this section, we define some terms related to graph mining that we will use

throughout the chapter. The graphs considered here are simple graphs. A simple

graph is a graph which only has undirected edges. In addition, a simple graph has

no self-directed edges or multi-edges.

3.1. Preliminary Definitions

A graph G = (V,E), consists of a set of vertices V = {v1, v2, · · · , vn}, and a

set of edges E = {e1, e2, · · · , em} where E ⊆ V × V connecting the vertices. Two

vertices u and v are adjacent if there is an edge connecting u and v. The degree of a

vertex v is denoted by deg(v) and is the number of edges connected to v. Nodes of a

graph can have labels and edges can have weights. The weight on edge (u,v) ∈ E is

denoted as w(u, v) ∈ R. The size of a graph G, denoted |G|, is the cardinality of the

edge set (i.e., |G| = |E|). The vertex set and edge set of a graph G are denoted by

V (G), and E(G), respectively.

A graph G′(V ′, E ′) is a subgraph of G, denoted as G′ ⊆ G, if V ′ ⊆ V and

E ′ ⊆ E. A subgraph G′ of G is said to be induced if for x, y ∈ V (G′), there is

an edge between x and y in G′ if and only there is an edge between x, y in G, i.e.

(x, y) ∈ E(G). The subgraph G′ is said to be induced from G by the vertex set V (G′)

and is written as G[V (G′)].

Figure 8(a) is a uniquely labeled graph since none of its node has repeating

labels, a graph is a uniquelabeled graph when none of its vertex labels are repeated,

otherwise it is called as non-unique labeled graph. The subgraph G′ = {V =

(a, c, d, e, h), E = {(a, c), (a, d), (e, d), (e, h)}} is not induced subgraph of G, since

two edges {(e, c), (a, e)} that are contained in G are not in G′. In 8(b) the subgraph

in bold line is induced as, all the edges connecting node {a, b, c, d} in G, are also in

G′.
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Definition 5 (Support). Given a relation graph dataset, G =

{G1, G2, ...., Gn}, where Gi = (Vi, Ei), the support of a graph G is the number

of graphs (in G) where G is a subgraph, defined as:

occurrences(G,G) = {Gi|G ⊆ Gi, Gi ∈ G}

sup(G,G) = | occurrences(G)|

(a) (b)

(c)

Figure 8. Unique and non-unique labeled graph. In the above figure, (a)
shows a unique labeled graph (G1), (b) shows a non-unique labeled graph (G2). The
subgraph in (c), g1 = {V = (a, c, d, e), E = {(a, c), (c, d), (a, e), (d, e)}} is not induced
since (a, d) and (c, e) is not connected. {g2, g3} are the induced subgraphs of G1.

We can find support of a connected subgraph G′ by simply iterating over each

graph, Gi ∈ G and check whether G′ ⊆ Gi; i.e., checking if the connected subgraph is

a subgraph of Gi. If it is subsumed, then we simply increment the counter and move

forward with the next graph. During frequency count, subgraph checking is sometimes

very costly due to NP-hard subgraph isomorphism problem [30]. Kuramochi and

Karypis [20] described a method, Canonical Labeling to overcome the duplicate

consideration of subgraphs and hence avoids the redundancy during frequency count.
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Definition 6 (Frequent Subgraph Mining). A subgraph G′ is frequent in the

graph database G, if it is evident in minsup graphs. The goal of frequent graph-mining

is to mine the set of frequent subgraphs F = {G1, G2 . . . , G|F|} with sup(G′,G) ≥ σ∗,

where σ∗ is a support threshold provided by the user.

(a) (b)

(c) (d)

Figure 9. An example of non-unique labeled graph database. (a) shows the
sample graph, (b) shows all the frequent patterns (F) found in the database with
sup, σ∗ = 3. (c) shows the Maximal patterns (M) and (d) shows the Closed patterns
(C).

Figure 9 shows an illustrating example of finding frequent subgraphs from the

graph database shown in 9(a), which has 4 graphs in the database. The vertex set of

the graph database G is {A,B,C,D}. Here the edges are not labeled.

Figure 9(b) shows all the frequent subgraphs found with support at least 3.

For example the graph, g8, (V = {a, a, b}, E = {(a, b), (a, b)}) is frequent since it is

present in {G1, G2, G3, G4}.

In figure 9(b), it is noticeable that the frequent subgraphs found for the graph

database in 9(a) are redundant. For example {g1, g2, g6, g8, } in 9(b) are subset of

g11, if we look at the supersets(9(c)), we can see that subsets of these supersets are

also frequent. So frequent subgraph mining needs a way of summarizing similar to

maximal itemset mining approach described in chapter 2.
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Definition 7 (Closed Frequent Subgraph). A frequent graph is closed if it

has no frequent super-graph with the same support, i.e. @G′ : G ⊆ G′ and sup(G) =

sup(G′).

ClosedFrequentSubgraph, C = {G′|G′isclosed}

The problem of mining frequent closed subgraph is, finding all the subgraph in

the database that is closed, more formally the closed pattern set is described as:

C = {G′|G′ is frequent and @G∗ s.t. G∗ ⊇ G′,with sup(G′,G)= sup(G∗,G)}

Mining closed frequent subgraph from a graph database G, is to find all the

connected subgraphs G′ such that sup(G′,G) ≥ σ∗, this means that G′ is frequent

subgraph in the graph database G and there is no frequent subgraph G∗ ∈ G s.t.

G′ ⊆ G∗ and sup(G′,G) = sup(G∗,G). Figure 9(d) shows the set of closed frequent

subgraph patterns (total 3 closed frequent patterns found) with support = 3.

Mining for frequent subgraphs or closed frequent subgraphs does not help much,

since it will produce huge amount of redundant data. From the figure in 9 we have

seen 15 frequent subgraphs and 3 closed frequent subgraphs produced for simple graph

database of size 4.

Again most of the frequent subgraphs in 9(b) are redundant. For example, the

subgraph V = {a, b}, E = {(a, b)} in g2 appeared in {g6, g8, g9, g11, g12, g13, g14, g15}.

So if we mine for a large graph database it will produce massive data which is

another problem for data analysis and cause information overload. We want to

shrink the resultant subgraphs that still holds the same characteristics with no loss

of information. Huan et al. [16], Koyutürk et al. [18] and Hu et al. [15] proposed

algorithms for mining maximal frequent subgraphs that has efficiently compressed

the output of frequent subgraphs.

Definition 8 (Maximal frequent subgraph). A frequent graph is maximal if

it has no frequent super-graph,i.e. @G′ : G ⊆ G′ and G′ is frequent. Mining frequent
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subgraph is finding all the subgraph in the database that is frequent, denoted by M

and defined as :

M = {G ′|G ′ is frequent and @G∗ ⊃ G′, such that G∗ ∈ F}

Mining maximal frequent subgraphs refers to the problem of mining set of

subgraphs G′ ∈ G and supp(G′,G ≥ σ∗, means they have to be frequent in graph

database G and there is no such frequent subgraph G∗ that subsumes G′. Fig 9(c)

shows an example of maximal frequent pattern mining with support σ∗ = 3. It

shows that only 2 maximal frequent patterns found in the graph graph database

shown in figure 9(a). By definition, the relationship among frequent, closed and

maximal patterns can be stated asM⊆ C ⊆ F . Looking at the patterns in frequent

subgraphs [9(b)] and closed subgraphs [9(d)] it is clear that they are subsets of the

maximal patterns in 9(c). So keeping only maximal patterns in the database will

obviously occupy much less memory than keeping frequent or closed patterns and

allow researchers to look at the summary set of frequent patterns.

We might want to mine interesting patterns. An interestingness constraint can

be very general and involves many conditions. In this work, we only consider anti-

monotone constraints so that the exponential search space of the problem can be

reduced by pruning the search space.

Definition 9 (Anti-monotone constraint). A constraint R is anti-monotone

if a graph G satisfies the constraint, implies that all its subgraphs also satisfy the

same constraint, i.e., R(G) = 1 =⇒ R(G′) = 1 for all G′ ⊆ G. Or inversely,

if a graph does not satisfy the constraint, then none of its super-graphs do, i.e., if

R(G) = 0 =⇒ R(G′) = 0 for all G′ ⊇ G.

An example of an anti-monotone constraint is the frequency threshold, if it less

than the user-defined threshold σ∗ we can simply ignore that search space. If the
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support of a subgraph G′ is less than the user defined threshold then G′ does not

satisfy the constraint.

We can enforce more constraints that takes edge labels into consideration. Edges

in the subgraph must have the same attribute values, or it can differ by at most a

user-defined threshold.
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4. MULE ALGORITHM AND OUR PROPOSED

APPROACH

In this section we describe the original MULE algorithm[19] and how it works.

MULE algorithm finds frequently occurring subgraph in metabolic pathways ex-

tracted from the KEGG database. Each enzyme is represented using an identical

node, there exists a directed edge from one enzyme to another enzyme in the graph if

and only if the second enzyme consumes a product of the first one [19]. So the graph

model represents the metabolic pathways using simple directed graphs that efficiently

captures these informations [19].

Mining all frequent patterns will result in redundant patterns since all subgraphs

of a larger pattern are also frequent and will be in the database as well. Hence the

MULE algorithm mines only maximally frequent patterns in the database to avoid

redundancy. Moreover, as these are maximally occurring patterns it is guaranteed

that there are no superset in the database that contains the same edgesets. To avoid

considering the same edgeset twice, the algorithm enumerates frequent patterns by

adding connected frequent candidate edges in a depth-first enumeration approach

based on backtracking [11].

Koyutürk et al. [18] proposed this algorithm, the basic MULE for frequent

subgraph mining shown in Figure 10. Initially the algorithm enumerates over the

graph database, if an edge is present in the graph it is recorded. At the same time

candidlate edges for each edges also updated. Finally when enumeration over the

graph database is done, the edge list has the information about all edges that are

present in the whole graph database. The total count of an edge, i.e., how many

times an edge was seen during database read can be calculated from the edge list, if

the count is greater than the user-defined support, then it is added to the frequent

edge list. In line 2 (Figure 10) we iterate over all edges in ck and we try to extend gk
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Algorithm 1: Basic MULE algorithm

procedure MinePathways(MFS, gk, ck, d)
.MFS: Set of maximal frequent subgraphs
.gk: Frequent subgraph with k edges
.ck: Set of candidate edges
.d: Set of already visited edges

1. ismaximal← ture
2. for all edges ei ∈ ck do
3. d← d ∪ {ei}
4. gk+1 ← gk ∪ {ei}
5. if gk+1 is frequent then
6. ismaximal← false
7. gk+1 ← (ck ∪N(ei)) \D
8. MinePathways(MFS, gk+1, ck+1, d)
9. endif
10. endfor
11. if ismaximal then
12. if gk has no superset in MFS then
13. MFS ←MFS ∪ gk
14. endif
15. endif

Figure 10. Depth-first enumeration algorithm for MULE.

with each edge. Here, gk denotes the current pattern (of size k) which we are trying

to extend with each edges ej in ck to make the new subgraph gk+1. N(ei) in line 7,

holds the neighboring edges of ei. Candidate set, ck, represents neighboring edges of

subgraph gk, meaning that edges in ck also shares at least a common vertex with the

edges in gk. Since ej is already in pattern gk+1, there has to be a way of tracking

already visited edges, so that ej is not encountered again in later iteration.

The discovered set d keeps track of the edges that have already been visited in

edgeset extension. Initially the maximal set MFS is empty. The algorithm keeps

traversing the set enumeration tree, when it finds a maximal pattern at the end of

the branch then it will be added to the maximal set, if it is not subsumed by another

already found maximal pattern. It is a recursive approach, in each iteration it tries to
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extend the subgraph by connecting an edge from the candidate edgeset. If the newly

grown subgraph is frequent then the process continues, and the candidate list of the

new pattern is updated. If it is not possible to extend the pattern then it checks if

the pattern is subsumed by any maximal pattern previously mined. If not then the

subgraph is included in the maximal set MFS.

(a) (b)

Figure 11. A sample execution of maximal frequent subgraph mining.
(a) shows the input collections of unique labeled graphs, (b) shows the resulting
enumeration tree with frequent subgraphs with support 2. The subgraphs in ovals
are the maximal pattern found from the execution. Patterns that are not frequent
are pointed by dotted lines.

Figure 11(a) shows an example database, Figure 11(b) show the pattern

enumeration tree after running MULE. Here, initially the algorithm starts with an

empty set, then it takes each frequent edges and tries to grow with its neighboring

candidate edges. Here, in the example it starts with the edge (a, b). Its occurrence

list is {1, 2, 3, 4}, we can see that it is present in all input graphs and so it is frequent.

Now the frequent candidate edges of (a, b), are {(a, c), (b, c)}. In next step, (a, b) is ex-
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tended with (a, c) to create a new subgraph g11 = {V = (a, b, c), E = {(a, b), (a, c)}},

candidate edges for the subgraph will be updated to {(b, c), (b, d), (c, e)}.

At this point, since {(a, b), (a, c)}, both the edges have been visited, they will

be added to the discovered edgeset,d. Now it checks whether the new pattern g11 is

frequent or not. Since it is frequent in {G1, G2, G3}, then (a, b) is not maximal pattern.

Next it extends g11 and keeps growing with its candidate edges {(b, c), (b, d), (c, e)}.

This time it combines with (b, c) and creates the new pattern g21 = {V = (a, b, c), E =

{(a, b), (a, c), (b, c)}}. The subgraph g21 can not be grown further since it is not

frequent.

Now MULE backtracks to the previously grown pattern g11 and tries with

its next candidate edge (b, d). The subgraph g22 = {V = (a, b, c, d), E =

{(a, b), (a, c), (b, d)}} is frequent so the discovered and candidate edges are updated.

Now, it grows to form the pattern g31 [Figure 11(b)] and figures out that its is not

frequent. So MULE gets back to the previous pattern g22 and marks it as the maximal

pattern, since there are no frequent candidate edges to combine with as well as no

frequent subgraphs already found that subsumes the subgraph g22.

Again for the subgraph g12 = {V = (a, b, c), E = {(a, b), (b, c)}} both of its

extended subgraphs (g24, g25) are infrequent. So upon return, the subgraph is checked

with previously found maximal pattern, as g12 6⊆ g22, it is also marked as a maximal

pattern. From the Figure 11(b), we can see that the frequent edges {(a, c), (b, c), (b, d)}

has not grown with its candidate edges as they are subset of the existing maximal

subgraphs g12 and g22. (c, e) grows with its only candidate edge (d, e), as the subgraph

g13 = {V = (c, d, e), E = {(c, e), (d, e)}} is not frequent it backtracks to (c, e) and

marks as a maximal. (d, e) has no candidate edges to grow with, so it is marked as

maximal patterns as well, as it is not found in other maximal patterns.
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4.1. Mining Coherent Frequent Subgraphs

MULE does not consider edge weights. It works on binary database, an edge’s

presence is shown with a “1” and absence with a “0”. For example, the database in

Figure 12 has more information regrading the edge (1, 2), its weight is 2 in graphs

{G0, G2, G4}, only 1 in {G1} and was not present in {G3, G5}. Let this example

database represents authors and number of paper published in different conferences,

then the edge represents that authors 1 and 2 published two papers in conference G0.

Similar to this sample database, there are more datasets that might carry valuable

edge attributes, considering this data may find more interesting results.

Figure 12. A sample graph database.

In this paper, we developed an algorithm for discovering maximal-cohesive

frequent patterns. The modified MULE algorithm (Figure 13) can work on a graph

database G, similar to shown in Figure 12. Here, each graph G in the graph database

has edges, ei in the database with profile information {w1(ei), w2(ei), . . . , wn(ei)}.

Here, w1(ei) represents weight of ei in graph G1. It takes two more parameters as

input, frequency (σ∗) and cohesive (δ∗) threshold.

24



The first step of the algorithm is to iterate over each edge ei and find out if

it is frequent (ei.supp ≥ σ∗) and update max (ei.max) and min (ei.min) attributes.

Initially for all frequent subgraphs with only one edge,

ei.max = ei.min = {w1(ei), w2(ei), . . . , wn(ei)}.

At the end of the iteration one, it will produce a summery graph like in Figure

15(c). At this point, all the frequent edges have been discovered in the list of frequent

edges F . From the frequent edge list F , the total occurrences of an edge can easily be

found. Now, the algorithm iterates over each edges ei ∈ F , and updates its candidate

edgeset N(ei). Each ej ∈ N(ei) has to ensure that ej ∩ ei 6= ∅, i.e., ei and ej shares

one vertex within themselves. Once the neighboring information of the frequent edges

has been updated, it starts extending each edge in F by calling the pattern extension

algorithm genMCFS in Figures 13. The genMCFS algorithm takes two more sets

for extending the pattern Pk, the candidate set Ck and the set of already discovered

edgeset Dk.

The pattern extension algorithm (genMCFS) recursively calls itself if an

existing pattern Pk can be extended with one of its candidate edge c ∈ Ck a new

pattern Pk+1 is generated by extending Pk with an edge. Max and Min attribute for

the new pattern will be updated as,

∪nj=0(Pk+1[j].max) = max(Pk[j].max, wj(c)) and

∪nj=0(Pk+1[j].min) = min(Pk[j].min, wj(c))

Now, here at any point j = x, when the new pattern has the difference between

the max and the min attribute greater than the cohesive constraint, we set a flag

and do not include it during frequency count. Frequency check is similar to the basic

MULE algorithm, simply count the total occurrence, but in this case we ignore it if

it is an ignore flag from frequency count. If the count is greater than the frequency

threshold then it is frequent. If it is so then the parent edgeset Pk is set as not
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maximal since Pk ⊆ Pk+1. This time the candidate edge c is added to the set of

already visited edgeset Dk, since it is already in the newly grown pattern Pk+1. We

update the new candidate edgeset Ck+1 by removing c and merging it with Ck and

neighboring edgeset of c, from genMCFS algorithm in Figure 13, line 8 shows how

we update Ck+1. The function again calls itself (line 9 from genMCFS in Figure 13)

with the parameters Pk+1, Ck+1 and Dk. It stops at a point when there is no more

candidate in Ck, means there is nothing more left for this current pattern to grow

with and if this is frequent and cohesive it is added to the maximal-cohesive edgeset

(MCFS).

Figure 14 shows an illustrating example of our proposed method for finding

cohesive patterns. Initially it finds the frequent edgesets {g0, g1, g2, g3}; and this

time their attribute matrix is similar as in the input database. Now g0 and g1, i.e.

edge (2, 5) and (2, 4) tries to extend since they have a common node “2”. While it

tries to extend, it updates the min and max attribute from their participating edges.

Here, in the Figure 14, attribute M01 gets updated from the attribute set {M0,M1}.

For example the pattern g0 has min = 1 in M0[G1,min]; and g1 has min = 3 in

M1[G1,min]. So now the min attribute for the pattern g01 will be updated by the

following formula;

M01[Gx,min] = min(M0[Gx,min],M1[Gx,min])

Here, min(M0[G1,min],M1[G1,min]) = min(1, 3) = 1, so M01[G1,min] = 1.

Similar way it updates the max values of M01, by the following formula;

M01[Gx,max] = min(M0[Gx,max],M1[Gx,max])

Once the attribute M01 is updated, it checks the cohesiveness, since the differ-

ence betweenM01[G1,min] andM01[G1,max] is greater than the cohesive threshold, it

is replaced by the ignore condition(-1). Similar way M01[G2,min] and M01[G2,max]

is replaced by the ignore condition. So now we calculate the support of the new
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pattern from the updated matrix; the pattern has only true condition out of three.

Hence the pattern g01 is frequent but not cohesive. So g01 is pruned, in the next

iteration this pattern will not be considered for more extension.
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Input:
. G:unique labeled Graph database {G1, G2, . . . , Gn}
. σ∗:frequency threshold
. δ∗:cohesive threshold

Output:
.MCFS:Maximal Cohesive Frequent Subgraphs

1. ε← {e = (u, v) : ∃G ∈ G, (u, v) ∈ E(G)} .Get all identical edge information
2. MCFS = ∅ .initialize Set of MCFS
3. foreach e = (u, v) ∈ ε do
4. e.supp← update frequency of e ∈ G
5. if e.supp ≥ σ∗then .check if e is frequent
6. e.max← {w1(e), w2(e), . . . , wn(e)}
7. e.min← {w1(e), w2(e), . . . , wn(e)}
8. F ← F ∪ {e} .add into frequent edgeset
9. endif
10. endfor
11. .Depth-first traversal of the tree starting from each edge in level 1
12. foreach ei ∈ F do
13. N(ei)← {ej ∈ F : ej ∩ ei 6= ∅} .Neighboring edgeset of {ei}
14. genMCFS({ei}, N(ei), {e1, e2, . . . , ei−1})
15. endfor
16. return MCFS

genMCFS(Pk, Ck,Dk)
.Input Pk: Frequent edgeset with k edges
.Input Ck: Set of candidate edges for edgeset extension
.Input Dk: Set of already visited edges

1. isMaximal← true
2. foreach c ∈ Ck do
3. Dk ← Dk ∪ {c} .Update the discover set
4. Pk+1 ← Pk ∪ {c} .New pattern in level k + 1
5. update Pk+1.max and Pk+1.min
6. if Pk+1 is frequent and cohesive then
7. ismaximal← false
8. Ck+1 ← (Ck ∪N(c)) \ Dk

9. genMCFS(Pk+1, Ck+1,Dk)
10. endif
11. endfor
12. if isMaximal and Pk is cohesive then
13. if @P ′ ∈MCFS s.t Pk ⊆ P ′ then
14. MCFS ←MCFS ∪ Pk
15. endif
16. endif

Figure 13. Mining Maximal Cohesive Subgraphs.
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Figure 14. The graph database G0, G1, G2. It is a part of the graph database
shown in Figure 15(b). {g0, g1, g2, g3} are the frequent edges for support threshold 2.
For cohesive threshold 1, {g01} gets pruned while {g23} is frequent and cohesive.
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Edge Profile Info
G0 G1 G2 G3 G4 G5

1-2 2 1 2 0 2 0
1-3 2 2 2 2 0 0
2-3 1 2 3 0 0 2
2-4 3 3 1 2 2 2
2-5 3 1 3 0 0 0
2-6 1 0 0 2 1 1
3-4 0 2 0 1 0 1
4-6 0 0 2 3 2 2

(a)

(b) (c) (d)

(e)

Figure 15. The sample graph database. In (a) shows another sample graph
database, (b) shows the illustrating network. (c) Resulting summary graph found at
the end of level one. (d) Set of maximal frequent pattern, F found from the database
in Figure (b) (min support, σ=3). (e) Resulting set enumeration tree of frequent
edges shown in (c).
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5. EXPERIMENTS

In this project modified MULE algorithm was implemented in python. We have

used Digital Bibliography & Library Project (DBLP) for extensive testing used. The

DBLP is a bibliography data in XML format which has all the computer science

publication information since 1980s [21]. It was reported in 2013 that DBLP has

more than 2.3 millions of articles.

5.1. Dataset

We designed and wrote a small script to extract the top 50 conference names

from the DBLP dataset that has the largest number of articles. Some of the impor-

tant conference names are KDD, ICDM, CIKM, SDM, SIGCOMM, SIGMETRICS,

INFOCOM, MOBICOM and etc.

Figure 16 shows example of XML entry of the DBLP dataset. We can see the

first journal name in “Journal” tag called “Further Normalization of the Data Base

Relational Model” was published in 1971, the name of the author can be found in

“author” tag; which is “E. F. Codd”. There are more XML tags related to each entry,

such as month, volume number, cdrom, ee, metadata for the article and etc.

From the DBLP dataset, if any paper was published in these conferences within

years 2000 - 2013, then an edge is created between each pair of authors of the paper

and added to the author mapping list. The conference attribute also records the

published paper by updating the associated row (author mapping edge) and column

(conference mapping graph).

The edge attribute X captures the occurrences of the co-author relationship in

conference, so the number Xij in conference graph, determines authors in the mapping

edge (row i from author mapping list) has published X numbers of papers in the jth

conference. If Xij is zero then there was no paper published in the conference by the

authors. Year graph dataset was prepared in the same way, here in the dataset each
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<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE dblp SYSTEM “dblp.dtd”>

<dblp>
<article mdate=”2002-01-03” key=”persons/CoddD74”>

<author>E. F. Codd</author>
<author>C. J. Date</author>

<title>Interactive Support for Non-Programmers: The Relational
and Network Approaches.</title>

<journal>IBM Research Report, San Jose, California</journal>
<volume>RJ1400</volume>
<month>June</month>
<year>1974</year>

</article>

<article mdate=”2011-12-29” key=”tr/trier/MI94-13”
publtype=”informal publication”>
<author>Reiner Horst</author>

<author>Nguyen V. Thoai</author>
<title>An Integer Concave Minimization Approach for the Minimum

Concave Cost Capacitated Flow Problem on Networks</title>
<journal>Universityaumlt Trier, Mathematik/Informatik,

Forschungsbericht</journal>
<volume>94-13</volume>

<year>1994</year>
</article>

Figure 16. Example of XML entry of the DBLP data.

column represents a year. So if two authors have published a paper in year 2000 then

there will a “1” in the column that represents year “2000”.

Figure 17 shows the number of papers for the top 50 conferences. We found

that a total of 192,650 papers were published in these conferences within the last

fourteen years (2000-2013); and the conference called “IEEE GLOBECOM” has the

highest number of publications (8228). Figure 18 shows a similar histogram related

to the DBLP dataset. We represent the year information against the total number

of papers published in these years. We can see that, gradually, the number of papers

has increased from year 2000 to year 2013. We have not considered the current year

since the DBLP dataset is incomplete for the current year.
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Figure 17. Paper published in each conference over the years from 2000
to 2013.

Figure 18. Paper published in conferences - each year from 2000 to 2013.

The histogram in Figure 19 shows another characteristics of the DBLP dataset.

Here on the X-axis shows number of papers published and the Y-axis, shows how

many authors published this many papers. An interesting observation is, there are

few authors that have published many papers; i.e. as the number of papers published

increases, the author count decreases.

5.2. Results

We ran the proposed algorithm for detecting maximal cohesive patterns with

varying frequency constraint with constant cohesive threshold on two datasets. One

with authorship network and conference attributes; and the other is authorship
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Figure 19. Number of papers distribution. Number of papers published and
the number of authors contributed in paper publication.

network and year attributes. For author and conference graph, frequency threshold σ∗

was varied from 4 to 13 in 1 increment with constant cohesiveness δ∗ = 0. Frequency

threshold σ∗=4, means that we were looking for frequent subgraphs that is common

at least in four conferences or years.

Table 1. Analysis of maximal patterns for varying support (i). To find the
maximal cohesive patterns, the constant is the cohesiveness(δ∗=0). The author and
conference graph database is used here for analysis which was found in the DBLP
data.

Sup RunTime #FrequentEdge #Pattern #Pattern(≥ 2) AV GSize(≥ 2) Density Sizeofthelargestpattern

4 1881.85 4562 3982 432 2.45 0.61 15
5 11.94 1233 1136 169 2.64 0.60 10
6 2.05 305 290 10 2.70 0.58 6
7 1.73 103 100 2 2.50 0.58 3
8 1.68 34 32 2 2.00 0.67 2
9 1.61 13 13 0 0 1.00 1
10 1.68 3 3 0 0 1.00 1

Table 1 shows the experimental results on the DBLP data for author-conference

graph database. For the 50 conference data, when the frequency threshold is 4 (i.e.

frequent in 4 out of 50 conferences), the algorithm takes around 1881.85 sec to finish.

The algorithm reports total of 4562 frequent edges at level one. Figure 20(a) shows

the number of maximal cohesive patterns found for varying support. Here, we can see

that, as we increase the support threshold, the number of maximal cohesive patterns
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decreases. Also in Figure 20(b), we can see that as we increase the support threshold,

the number of frequent edges found at level one also decreases. The number of

maximal cohesive patterns, found with support threshold σ∗ = 4 was 3982, and the

largest pattern among these patterns has 15 edges, most of the patterns has 2 or 3

edges. The average size of the patterns is 2.45, which has overall density of 0.61. As

the frequency threshold is increased 7, 8, 9 to 10 the execution time reduces to 1.73,

1.68, 1.61 and 1.68 seconds. Figure 20(c) shows how the change in support reduces

the runtime. For support threshold 11, 12 and 13 the run times are almost same;

mostly the time needed for reading level one.

(a) (b)

(c) (d)

Figure 20. Author and Conference graph database analysis. The graph
network was extracted from DBLP dataset, this time only constant parameter is
δ∗ = 0. (a) Shows varying support vs number of maximal cohesive patterns found.
(b) Varying support vs frequent edges found at level one. (c) Varying support vs
runtime in seconds and (d) Shows varying support vs average density of the cohesive
patterns.
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Figure 20(d) shows the average density of the maximal patterns for varying

support thresholds. Here, we can see that after support threshold is increased from 9

to 13 the density is “1” for all, this is because all the maximal cohesive pattern found

this time have a single edge only.

(a)

Conference
icc
iros
vtc
pimcr

(b)

Figure 21. Largest pattern found in DBLP dataset. (a) shows the co-author
relationship network, (b) shows the 4 conferences that all the edges from the pattern
must have appeared.

Figure 21 shows an example of maximal cohesive pattern found in the DBLP

dataset. We used conference graph with author information, this time the setting

was support σ∗ = 4 and cohesive δ∗ = 0. The pattern has 15 edges and 12 authors.

We can see from the figure that there are nodes that are connected to more than one

node. Since support threshold was four, we can say that this pattern was present at

least in four conferences; i.e. these co-author relationship have appeared together in

at least 4 conferences.

Table 2 shows experimental results for author-year graph, here we can see that

for support threshold 4, the algorithm finishes in 55.31 sec. We found total 4153

frequent edges at level one, which is almost same as the number of frequent edges

found at level one from the author-conference graph database (Table 1). Figure

22(a) shows the number of maximal cohesive patterns found in author-year graph

database; and 22(b) shows the total frequent edges found at level one with varying
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Table 2. Analysis of maximal patterns for varying support (ii). This time
varying support σ∗ is used with constant cohesiveness(δ∗=0) on DBLP dataset with
author and year informations only.

Sup RunTime #FrequentEdge #Pattern #Pattern(≥ 2) AV GSize(≥ 2) Density Sizeofthelargestpattern

4 55.31 4153 4136 21 2.00 0.67 2
5 11.25 1837 1835 2 2.00 0.67 2
6 3.03 887 887 0 0 1.00 1
7 1.41 460 460 0 0 1.00 1
8 0.85 248 248 0 0 1.00 1
9 0.70 123 123 0 0 1.00 1
10 0.66 69 69 0 0 1.00 1
11 0.65 30 30 0 0 1.00 1
12 1.29 13 13 0 0 1.00 1
13 0.67 7 7 0 0 1.00 1

support from author-year graph database. In both experiments we see that number

of patterns discovered constantly decreases when we increase the support threshold.

(a) (b)

(c) (d)

Figure 22. Author and year graph database analysis. (a) Varying support
vs number of maximal patterns found from DBLP dataset. (b) Varying support vs
frequent edges at level one. (c) Varying support vs runtime in seconds and (d) Varying
support vs average density.
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In Table 2, we can see that the number of maximal cohesive pattern is 4136

when support threshold is 4, and only 21 patterns have size of 2, i.e. these patterns

have 2 edges as the size of the largest pattern reported was only 2-edges. Comparing

to author-conference graph database, we found 432 maximal cohesive patterns that

have at least 2 edges, more over the largest pattern has 15 edges 21. From the results

we can see that, as we increase support threshold, the runtime also decreases; Figure

22(c) shows the runtime for different support thresholds used in the experiments.

We found some interesting measures from the experiments which is shown in

Table 1 and Table 2. After support threshold 8, the maximal cohesive patterns found

in author-conference graph database have single edge only; and for the author-year

graph database the support threshold was 6 when we started seeing maximal cohesive

patterns with single edges, some maximal patterns with single edge only found are

“Fred S. Richardson and Yue-Jin Lv”, “Michael G. Huchyj and David J. Dewit” and

“Xianfeng Jiao and Sungchul Kim”. In both experiments, when we started seeing

single edged maximal cohesive patterns, their average size (Averagesize = 1) and

density (density = 1) became constant. Figure 22(d) and 22(d) shows the changes in

density when we increase the threshold for support.

Table 3. Analysis of maximal patterns for varying cohesive threshold.
DBLP dataset with co-author relationship and conference attributes δ∗ is used with
constant support (σ∗=5).

Sup Cohesive RunTime #FrequentEdge #Pattern #Pattern(≥ 2) AV GSize(≥ 2) Density Sizeofthelargestpattern

5 0 11.94 1233 1136 169 2.64 0.60 10
5 1 1284.70 1233 1041 162 2.60 0.59 10

Table 3 shows another analysis of DBLP data, this time we used varying cohesive

threshold (“0” and “1”) against constant support σ∗=5. We found that number of

frequent edges at level one is exactly same in both cases. Number of maximal patterns

reduced to 1041. But running time was around 30 minutes when we increased the

cohesive threshold. So checking the cohesive constraint was expensive for increasing
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cohesive threshold. Other measures such as average size, density, number of patterns

of size greater than two and size of the largest pattern was almost same. We run

our experiment with more increasing cohesive threshold but it didn’t output any

significant results as the average co-authorship count is around 1.5.

39



6. CONCLUSION

In this paper, we modified and extended an existing graph mining algorithm,

called MULE. We introduce edge weights to the algorithm, our algorithm works on

undirected graph networks with edge weights; what we call the edge attributes. We

have seen that introducing edge attributes can find more interesting measures from a

graph network which will be useful for graph pattern mining, pattern discovery and

lot more graph mining applications. We have worked on DBLP dataset, we extracted

best 50 conference names and co-author relationships for last 13 years(200-2013).

We found some interesting characteristics of DBLP data after running our modified

algorithm with varying support and cohesive threshold.

This paper only scopes to maximal cohesive patterns. Our algorithm can work

fine to discover frequent closed patterns after slight modification to overcome lossy

compression of graph network data. Our approach works fine up to certain support

threshold. Here, we were constraint by the run time. We tried running our algorithm

for low support, σ∗=3; and it was running for two consecutive days and did not

finished. So, there is a need for efficient algorithms to mine frequent patterns. Parallel

algorithms is one solution, specially multi-threaded algorithms. This is important

since the modern machines have multiple core and we can run the parallel algorithm

on personal computers.
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[8] Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and Thomas Seidl,
Mining coherent subgraphs in multi-layer graphs with edge labels, Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and
data mining, KDD ’12, 2012, pp. 1258–1266.

[9] Douglas Burdick, Manuel Calimlim, and Johannes Gehrke, Mafia: A maximal
frequent itemset algorithm for transactional databases, Data Engineering, 2001.
Proceedings. 17th International Conference on, IEEE, 2001, pp. 443–452.

[10] Karam Gouda and Mohammed J. Zaki, Genmax: An efficient algorithm for
mining maximal frequent itemsets, Data Mining and Knowledge Discovery: An
International Journal 11 (2005), no. 3, 223–242.

[11] Karam Gouda and Mohammed Javeed Zaki, Efficiently mining maximal frequent
itemsets, Data Mining, 2001. ICDM 2001, Proceedings IEEE International
Conference on, IEEE, 2001, pp. 163–170.

41



[12] Jiawei Han, Micheline Kamber, and Jian Pei, Data mining: concepts and
techniques, Morgan kaufmann, 2006.

[13] Jiawei Han, Jian Pei, and Yiwen Yin, Mining frequent patterns without candidate
generation, ACM SIGMOD Record, vol. 29, ACM, 2000, pp. 1–12.

[14] Leland H Hartwell, John J Hopfield, Stanislas Leibler, and Andrew W Murray,
From molecular to modular cell biology, Nature 402 (1999), C47–C52.

[15] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine
Zhou, Mining coherent dense subgraphs across massive biological networks for
functional discovery, Bioinformatics 21 (2005), no. suppl 1, i213–i221.

[16] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang, Spin: mining maximal
frequent subgraphs from graph databases, Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM, 2004,
pp. 581–586.

[17] M. Koyutürk, Y. Kim, S. Subramaniam, W. Szpankowski, and A. Grama,
Detecting conserved interaction patterns in biological networks, Journal of
Computational Biology 13 (2006), no. 7, 1299–1322.

[18] Mehmet Koyutürk, Ananth Grama, and Wojciech Szpankowski, An efficient
algorithm for detecting frequent subgraphs in biological networks, Bioinformatics
20 (2004), no. suppl 1, i200–i207.

[19] Mehmet Koyuturk, Yohan Kim, Shankar Subramaniam, Wojciech Szpankowski,
and Ananth Grama, Detecting conserved interaction patterns in biological
networks, Journal of Computational Biology 13 (2006), no. 7, 1299–1322.

[20] M. Kuramochi and G. Karypis, Frequent subgraph discovery, Data Mining,
2001. ICDM 2001, Proceedings IEEE International Conference on, IEEE, 2001,
pp. 313–320.

[21] Michael Ley, Marc Herbstritt, Marcel R. Ackermann, Oliver Hoffmann, Michael
Wagner, Stefanie von Keutz, and Katharina Hostert, Dblp bibliography, May
2013.

[22] Xiaoli Li, Min Wu, Chee-Keong Kwoh, and See-Kiong Ng, Computational
approaches for detecting protein complexes from protein interaction networks:
a survey, BMC Genomics 11 (2010), no. Suppl 1, S3.

[23] Mark EJ Newman and Michelle Girvan, Finding and evaluating community
structure in networks, Physical review E 69 (2004), no. 2, 026113.

[24] Guo-Jun Qi, Charu C Aggarwal, and Thomas Huang, Community detection with
edge content in social media networks, Data Engineering (ICDE), 2012 IEEE 28th
International Conference on, IEEE, 2012, pp. 534–545.

42



[25] Yiye Ruan, David Fuhry, and Srinivasan Parthasarathy, Efficient community
detection in large networks using content and links, Proceedings of the 22nd
international conference on World Wide Web, International World Wide Web
Conferences Steering Committee, 2013, pp. 1089–1098.

[26] Ron Rymon, Search through systematic set enumeration, KR, 1992, pp. 539–550.

[27] Saeed Salem, Rami Alroobi, Syed Ahmed, and Mohammad Hossain, Discovering
maximal cohesive subgraphs and patterns from attributed biological networks,
Proceedings of the 5th International Workshop on Bio-molecular Network
Analysis (Philadelphia, PA, USA), IWBNA’12 (in conjunction with IEEE-BIBM
’12), October 2012.

[28] Jiliang Tang, Xufei Wang, and Huan Liu, Integrating social media data for
community detection, Modeling and Mining Ubiquitous Social Media, Springer,
2012, pp. 1–20.

[29] Andrzej Trybulec, Enumerated sets, Journal of Formalized Mathematics 1
(1989).

[30] Julian R Ullmann, An algorithm for subgraph isomorphism, Journal of the ACM
(JACM) 23 (1976), no. 1, 31–42.

[31] Xifeng Yan and Jiawei Han, gspan: Graph-based substructure pattern mining,
Data Mining, 2002. ICDM 2003. Proceedings. 2002 IEEE International
Conference on, IEEE, 2002, pp. 721–724.

[32] M Zaki and Wagner Meira Jr, Fundamentals of data mining algorithms, 2012.

[33] Mohammed J Zaki and Karam Gouda, Fast vertical mining using diffsets,
Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2003, pp. 326–335.

[34] Mohammed Javeed Zaki and Ching-Jiu Hsiao, Charm: An efficient algorithm
for closed itemset mining., SDM, vol. 2, 2002, pp. 457–473.

43


