
ANALYZING STUDENT LEARNING OUTCOMES IN PROGRAMMING COURSE USING

INDIVIDUAL STUDY VS. PAIR PROGRAMMING

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Keith Stefan Abeyratne

In Partial Fulfillment of Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

August 2014

Fargo, North Dakota

North Dakota State University
Graduate School

Title

 ANALYZING STUDENT LEARNING OUTCOMES IN PROGRAMMING

COURSE USING INDIVIDUAL STUDY VS. PAIR PROGRAMMING

 By

Keith Stefan Abeyratne

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Gursimran Walia

 Chair

Dr. Saeed Salem

Dr. Janet Knodel

 Approved:

 8/25/2014 Dr. Brian Slator
 Date Department Chair

ABSTRACT

Pair programming has been common practice in the programming industry during last

three decades, but only recently did it start to draw the attention as a teaching strategy. This

paper investigates whether we should introduce pair programming at the beginning of the

semester, instead later in the semester. To perform this investigation, we performed a control

group empirical study wherein pair programming was used in the first half of the semester (in

one section of introductory CS course). The control group (the other section of the same course)

introduced pair programming in the second half of the semester.

This study supported the implementation of specific assessment strategies to assess

individual programming abilities during pair programming situations. Results found that students

perceive pair programming as being beneficial and all of the subjects who used pair

programming indicated that they would prefer using it again as opposed to working individually.

iii

ACKNOWLEDGEMENTS

This research could not have been accomplished with only my contribution, but there

were many individuals who genuinely helped me in various ways. First and foremost, I would

like to thank my advisor Dr. Gursimran Walia for accepting me as a student, and providing me

freedom to learn. His guidance, encouragement, patience, thoughtfulness, and genuine support

for my research, academic achievements, as well as completing my thesis were enormous. I

would also extend my gratitude to Dr. Saeed Salem and Dr. Janet Knodel for accepting to me on

my committee in such short notice. This wouldn’t be possible without your help and quick

response.

I would like to give my gratitude to my colleagues at NSDU Computer Science

department for their support, friendship and collegiality, especially staff at the NDSU Graduate

School and computer science department, without your help and guidance this wouldn’t have

been a reality.

Last but not least my heartiest gratitude goes to my parents and my family, for giving me

their blessings, strength, love, comfort, guidance, support, courage and the best education. I owe

them for giving me their best throughout my life.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

1. INTRODUCTION ... 1

1.1. Problem Statement ... 3

1.2. Motivation and Research Goals ... 4

2. BACKGROUND & RELATED WORK .. 6

2.1. NDSU Studies .. 8

2.2. Problems when Using Pair Programming at NDSU .. 10

3. EXPERIMENT DESIGN .. 13

3.1. Variables ... 15

3.2. Study Subjects and Course Assignments ... 16

3.3. Study Procedure ... 17

3.4. Data Collection and Evaluation Criteria .. 19

4. RESULTS .. 20

5. THREATS TO VALIDITY ... 25

6. DISCUSSION AND CONCLUSION ... 26

v

7. REFERENCES .. 28

vi

LIST OF TABLES

Table Page

1: Independent and Dependent Variables. .. 15

2: Student Allocation .. 19

3: Marks Comparison of Group A and B .. 21

4: Final Grade Comparison ... 23

5: Mean & Standard Deviation of the Exam Marks ... 23

6: Introducing Pair Programming Initially versus Later ... 23

vii

LIST OF FIGURES

Figure Page

1: Experiment Design. .. 14

2: Experiment Procedure ... 17

3: Average Marks .. 20

4: Letter Grade Comparison .. 22

viii

1. INTRODUCTION

Pair programming (PP), by definition, is a programming technique in which two

programmers work together at one computer on the same task [1]. The term “pair programming”

was first used in 1999 as one of the core practices in the Extreme Programming (XP) software

development methodology in industry. As defined by Williams et al. [2], pair programming

refers to a practice in which two programmers sitting side by side using only one computer to

work collaboratively on the design, algorithm, code or test. The person typing is called a driver,

and the other partner is called a navigator. Both partners have their own; responsibilities; the

driver is in charge of producing the code. The navigator’s tasks are more strategic, such as

looking for errors, thinking about the overall structure of the code, finding information when

necessary, and being an ever-ready brainstorming partner to the driver. This arrangement leaves

the driver free to work on the tactical aspect of the program.

Challenges of creating rigorous, syntactically correct code without worrying about the big

picture, gives the navigator the opportunity to consider strategic issues without being distracted

by the details of coding. Together, the driver and navigator create higher-quality work more

quickly than either could produce on their own. Pair programming is one of the key practices in

Extreme Programming (XP) [3]. It was incorporated in XP, because it is argued to increase

project members’ productivity and satisfaction while improving communication and software

quality [3]. Since then, pair programming has become one of the most researched topics in the

realm of agile software development techniques [4].

 The practice of pair programming has been widely implemented in the industry as well as

in educational settings (Domino et al [6], Chong et al. [7]). A vast amount of research on pair

programming has been conducted to observe the benefits of the technique and to understand how

1

the practice can improve students’ learning outcomes. The stated benefits of pair programming

were identified as follows:

• Improvement in students’ academic performance such as in final and midterm exams,

quizzes, programming assignments and overall course grades [13, 14, 15, 18, 16, 17].

• Improvement in programming productivity in terms of the time spent on coding and

quality of the software produced [24, 02, 24, 25, 08].

• Increase in students’ retention rate and course completion rate [13, 14, 18].

• Increased students’ confidence level and enjoyment in learning programming [02, 13, 14,

16, 17].

• Reduced staff workload [22, 23].

• Increased efficiency in helping female students to work in programming tasks [19, 20,

21].

 Recently, many researchers have explored the suitability of pair programming to conduct

the programming laboratory classes in educational institutions. The pair programming can be

considered as one form of collaborative learning. In collaborative learning, small groups of

students associate with each other where each member contributes his/her personal experience,

information, perspective, insight, skills and attitudes, which can help, improve the learning

efficiency of others [12] (Klemm, 1994). When this kind of collaborative learning is adopted to

do programming assignments, generally the students divide the work among them and complete

it individually with little or no help from other students of the group.

2

1.1. PROBLEM STATEMENT

In literature, many benefits of pair programming have been proposed, such as increased

productivity, improved code quality, and confidence, to name a few. On the other hand, pair

programming has also received criticism over increasing efforts, expenditure and overall

personnel costs, and bringing out conflicts and personality clashes among developers. However,

the scientific empirical evidence behind these claims is currently scattered and unorganized, and

thus it is difficult to draw conclusions whether the pair programming indeed claims to be

beneficial for student learning or not. Researchers have also investigated the effect of the factors

(e.g., student’s skill levels) on the pair performance of students.

In fact, Hanks [5] points out regarding the quality improvement claims that “There does

not appear to be any empirical evidence that the programs [produced by pair programming] are

better in terms of design, readability, maintainability, or other internal quality attributes.” As a

consequence, the industry has been rightfully hesitant in adopting the pair programming practice.

On the contrary a study by John Nosek [33] examined how pair programming impacted the

amount of time it took to complete a programming task. His results found that pairs took about

70% of the time to complete a task as individuals. There are many studies that conclude pair

programming helps create better quality code, and improve student learning.

A recent study held at NDSU by Radermacher et.al [26,27,28,29,30] indicates some valid

points, which may be overlooked in other studies. Radermacher’s study [30] provided increased

support that the pair programming is more effective in improving student’s learning of

programming concepts compared to individual learning Radermacher found that overall

assignment scores improved for students participating in pair programming.

3

Pair programming has proved its usefulness in teaching and learning programming skills.

It also has received many criticism; therefore, the data we have is widely scattered. Furthermore,

there are very few studies which indicate when pair programming should be introduced in

introductory computer science courses to maximize its benefits. The main objective is to

understand when pair programming should be introduced in courses for the students. Our goal is

to use pair programming to improve student’s learning capacity.

1.2. MOTIVATION AND RESEARCH GOALS

 In recent years, the growth of extreme programming (XP) has brought considerable

attention to collaborative programming. Pair programming is a collaborative approach that

makes working in pairs rather than individually the primary work style for code development.

Because pair programming is a radically different approach than many developers are used to, it

can be hard to predict the effects when a team switches to pair programming. Despite the

advantages proposed for pair programming, many still suspect the overall usefulness and benefit

over traditional solo programming. One of the most questioned aspects lies on the feasibility of

achieving superliner speedup as compared to the legacy pattern [02].From a simple

management’s viewpoint, there is no reason to pair up developers if they cannot do things twice

faster. In addition to productivity, people also doubt if the improved software quality deserves

hiring twice many programmers [02]. Although pair programming is claimed to cost an

insignificant 15% more effort yet achieve a higher quality than solitary programming on the

same task [02], the paradigm is still questioned if solo programming plus an additional review

phase, which might be cheaper and equally effective, will achieve the same goal. The purpose of

this study was to investigate the effects of pair programming on student performance based on

4

the time it was introduced, and subsequent pursuit of computer science related degrees among

college students.

5

2. BACKGROUND & RELATED WORK

The pattern of pair programming in which two individuals develop one software module

together has attracted researcher and practitioner’s interest for almost 15 years. People following

the pair programming protocol sit in front of one screen, use a set of keyboard and mouse to

collaboratively solve a programming task [02]. While one developer is modifying the source

code, another is required to perform continuous code-review. This pattern was claimed by it

advocators to yield earlier release and higher software quality [02], and was included as one of

the rules of Extreme Programming (XP) [11], a popular software development methodology used

widely in the software industry.

Studies conducted on pair programming identified some of its advantages for the teaching

learning situation (Tomayko, 2002; Williams & Kessler, 2001; Williams & Upchurch, 2001). For

example, it has been found that when programmers work in pairs, fewer errors are made than in

individual programming situations (Tomayko, 2002), resulting in better programming

performance, increased confidence, and decreased frustration levels of the programmers

(VanDeGrift,2004). A possible explanation for these findings could be that pair members help

each other to solve the problem and complete the programming task together. Thus, there seems

to be some agreement among researchers that pair programming could be a promising teaching

strategy for teaching programming skills (VanDeGrift, 2004).

Despite the possible benefits of pair programming as a teaching strategy, some of its

limitations for student assessment have been documented as well. One such frequently

encountered limitation is that some students may receive undeserved credit for the successful

completion of a program (McDowell, Hanks, & Werner, 2003). The assumption is that it is

difficult to assess students’ individual programming abilities reliably in pair programming

6

situations. The first author of this article experienced a similar problem when implementing pair

programming as a teaching strategy during a second year Information Technology (IT) course

for student teachers. The students achieved high marks for their pair assignments, but

significantly lower marks for their individual assignments. This begs the question whether the

results of pair programming assignments are reliable indicators of students’ individual

programming abilities. Naude and Hörne (2006) even classify undeserved credit under the

umbrella of ‘cheating,’ and although cheating is a strong word, the researchers emphasize the

seriousness of the situation.

Several researchers highlight the problem of assigning group marks to individual students

(Parsons 2004). It is necessary to determine the contribution of each individual member, and

according to Parson (2004), this is not an easy task. Some students could contribute little or

nothing at all, and if there is no assessment of students’ individual contributions, marks awarded

could be an inaccurate reflection of a student’s abilities (Cheng & Warren, 2000). According to

Parsons (2004), a fair mark allocated to a given student should reflect that individual’s effort and

abilities. This statement is supported by the research of Verhaart, Hagen, and Giles (2005), who

also wished to determine whether students’ marks in group assessments correlated with their

marks in individual assessments. They proposed two different assessment methods as best

practice for assessing an individual’s performance in group work. In the base mark adjusted

method, they give individual tests, as well as self- and peer assessments after every group work

session. In the task splitting method, they split the group work task and require some work done

individually another work done in groups. A specific weighting is allocated to the different tasks

and students need to include a peer review to adjust the group contribution. Verhaart et al. (2005)

7

concluded that both these methods are “valid assessment forms, producing marks which seem to

reflect the students’ typical level of achievement.”

Although it cannot be clearly concluded from previous research whether pair

programming reduces the development effort of students it improves the quality of the artifacts.

Additional research may assist practitioners to know when and how to make pair programming

more effective. Research has just begun to understand the impact of pairing individuals with

different levels of expertise [17, 3]. Combining pair programming with solo programming are

also being researched [18, 15]. Furthermore, there are evidence showing that pair programming

might help teaching activities in Computer Science programs, for example, improving student

confidence and course performance.

2.1. NDSU STUDIES

At North Dakota State University, pair programming was introduced in the introductory

Computer Science programming courses (CS 160 and CS 161) beginning 2010.[26, 27, 28, 29

and 30] A series of empirical studies (SIGCSE’2011, CSEE&T’2011, SIGCSE’2012,

ICER’2012, FECS’2014) showed that Pair Programming had a significant positive impact on the

students’ acquisition of programming concepts and learning outcomes. Radermacher and Walia

et al. 2012, studied multiple aspects of pair programming and have conducted several empirical

studies North Dakota State University over the past two years. During this time, researchers

received valuable feedback from course instructors about the effects of implementing pair

programming in their introductory computer science courses. However these instructors also

expressed concerns about the use of pair programming in their courses. These include being able

to ensure equal participation from pair members and not being able to assess individual learning

outcomes effectively

8

The following section briefly talks about the NDSU studies and the problems and

concerns with the use of Pair Programming that led us to the current study (i.e., impact on the

learning outcomes by introducing Pair programming in the beginning half vs. later half in the

course) being reported in this paper.

NDSU Studies: A series of studies related to pair programming were conducted at NDSU

[26, 27, 28, 29, 30]. Radermacher et al. 2012 , reports on the results of two different studies

conducted during the spring 2010 semester [31]. Subjects in the first study were 35 students

enrolled in one section of the CS1 course and the second study included 39 students enrolled in

two sections of the CS2 course. Subjects in the CS1 course were split into two groups, one which

used pair programming and one that did not; whereas the subjects in the CS2 course were paired

based on declared major. Researchers reported that subjects from both the CS1 and CS2 courses

indicated that they felt pair programming improved their understanding of programming

concepts. Another major result indicated that pairing a computer science (CS) student with a

non-computer science (nonCS) student produced less compatible pairs as compared to CS-CS

pairs and nonCS-nonCS pairs.

Radermacher et al. 2012, reported another empirical study that investigated the effects of

pair programming on student-instructor interactions during programming laboratory sessions.

Subjects in this study were 44 students enrolled in one section of the CS1 course and 53 students

enrolled two sections of the CS2 course during the fall 2010 semester. Subjects in the CS1

course alternated between using pair programming and working individually during lab sessions,

whereas subjects in the CS2 course only used pair programming. Researchers monitored these

lab sessions, marking the number of questions asked, how long it took before an instructor could

address the subject’s question, and how long the instructor spent interacting with the subject.

9

Results of the study indicate that when pair programming is used, students spend less time

waiting for assistance from an instructor and spend more time interacting with the instructor,

likely due to a decrease in questions related to syntax errors or other minor problems.

Another experiment at NDSU investigated the effects of pairing subjects based on their

mental model consistency levels (ranging from highly consistent to highly inconsistent) at the

beginning of the semester to evaluate changes in the students’ mental model consistency and

their programming performance [27, 28]. The evidence suggest that such a pairing strategy can

be an effective way if previous performance data is not available and that certain mental-model-

based pairing arrangements (and not all) are more effective in motivating students towards

greater consistency and resulted in better performance on exams.

2.2. PROBLEMS WHEN USING PAIR PROGRAMMING AT NDSU

Individual Assessment: Difficulties assessing individual learning and ensuring that both

partners are benefiting from the use of pair programming is a common issue with pair

programming. One of the CS1 instructors at our university also expressed concerns that several

students, who he felt would not have normally been able to pass the class, had been able to pass

the class because their partner was able to help carry them. Based on eight semesters of historic

data for this instructor’s class, there was a large increase in the number of students who were

able to pass the course when pair programming was used and when students worked

individually.

Results for the drop-rate of the course during the fall 2010 semester was about 8% when

students used pair programming compared to the historical drop-rate of approximately 18%.

Bevan, et al 2005. Had also reported that students were willing to submit assignments that only

one of the students had completed. Williams, et al 2002. Also expressed similar concerns when

10

they discovered instances of students who performed well on pair programming exercises, but

scored poorly on exams, suggesting that one partner may have been completing most or all of the

work on the programming exercises, this phenomenon also was observed by our own instructors.

Other instructors indicated that this may have been an issue as a large number of laboratory

assignments that required substantial out-of-class work in order to complete in summary there

was no easy way to ensure that both partners had contributed equally.

How much Pair Programming: All three of the instructors with whom we worked have

expressed some concern that using pair programming for every assignment may not be as

effective as only using it for only some assignments. One of the CS1 instructors felt that most

new students did not have any programming experience and that until they gained some

knowledge they wouldn’t be able to effectively pair. One instructor noted instances where one

member of a pair would actually be providing the other with incorrect information.

Another instructor felt that some assignments should be completed individually in order

to provide the opportunity for students to show that they have mastered the ability to program

without the need of a partner. The instructor stated that occasionally one partner would be absent

from a lab and that the remaining student seemed to struggle, even though that student had done

well on previous lab exercises.

Previous research also has indicated that some students feel that it is important to work

individually. There is no doubt that pair programming is beneficial to student learning and

enjoyment and has benefits for instructors as well. It has already been suggested that pair work

should not constitute the majority of a student’s grade, but has not been determined how much

pair activity should be conducted for efficiency of learning.

11

In introductory computer science courses where a majority of subjects have little or no

experience with programming, our instructors felt that they should spend some initial time at the

beginning of the course working individually in order to acquire some programming knowledge

before working with a partner. Such an arrangement has several benefits. First, it provides

performance data that can be used to pair based on ability, as most researchers agree that this is

the most desirable pairing strategy. Secondly, it allows some time for students who do not intend

to complete the course to drop before pairs are created, minimizing the need to re-pair students.

Additionally, initial programming assignments are more likely be trivial or straightforward and

may not benefit from the use of pair programming. However, this has not yet been empirically

evaluated. So, the current paper tries to determine which timing of introducing Pair

Programming early in the first half of the semester vs. the second half of the semester is the most

beneficial to the students learning outcomes.

12

3. EXPERIMENT DESIGN

The main goal of this study was to understand whether introducing pair programming in

the beginning of the semester is more beneficial to students compared to introducing it at a later

stage in the semester. The high-level question addressed by this paper was:

When would be the best possible time frame to get students involved in pair

programming, in order to maximize the learning capacity of the students in introductory

computer programming course?

In order to evaluate the learning efficiency we propose the following hypotheses.

 Hypothesis 1: Introducing pair programming in the beginning of the semester

significantly improve students learning ability as compared to using Pair Programming later in

the semester.

 Alternate Hypothesis 1a: Introducing pair programming later in the semester

significantly improves students learning ability as compared to using Pair Programming at the

beginning of the semester.

 Null Hypothesis: Introducing pair programming at any stage are equally effective to

improve the students’ learning.

In order to test these hypotheses, a controlled experiment was conducted at NDSU

computer science programming course, wherein ones section of the course used the Pair

Programming at the beginning of the semester and the other section was introduced to the Pair

Programming in the second half of the semester. Details of that study are presented in this

section.

These experiments involved two types of learning methodologies: pair programming and

a traditional method. It was decided to conduct the experiment in regular laboratory classes.

13

Here, the traditional method is referring to solo programming where only one student is involved

in the development of a program for a laboratory exercise. Thus, the focus of the present study

was to compare the learning efficiency of the students when they use pair programming in

comparison to the traditional method for laboratory exercises.

Group A: The subjects belonging to this group worked in pairs and used pair

programming to complete a programming assignment starting early in the semester. During the

mid-way of the semester, the subjects worked individually on the remaining course work.

Group B: The subjects belonging to this group worked individually initially and were

paired with a partner to complete the assignment for the reminder of the course.

The high level experiment design is further illustrated in the Figure 1 below.

Figure 1: Experiment Design.

14

3.1. VARIABLES

 In table 1, the independent and dependent variables are listed and discussed in the text

below.

Table 1: Independent and Dependent Variables.

Independent variables Dependent variables

Pair Programming method Letter grade

Traditional learning method Total grade

 Exam grades

Independent Variable: The independent variables represent the cause for the effect in

any experiment. The two types of independent variables for our study were pair programming

and traditional method. The outcome of our study is learning efficiency and the conjectured

cause is the learning methodology. Thus, the independent variable for our study is learning

methodology. In the present study, we were interested in manipulating the learning methodology

to find its effect on learning efficiency and when should pair programming be introduced.

Dependent Variables: Researchers measured the following dependent variables:

 Letter Grade: The final letter grade (i.e. `A', `B', etc.) received by the subject was used

to evaluate their learning.

 Total Grade: The final grade received by each subject included their grades on exams

and programming exercises.

 Exam Grades: The grades received on midterm and final exams.

15

3.2. STUDY SUBJECTS AND COURSE ASSIGNMENTS

The participating subjects in these study were 72 students enrolled in the CS1

Introductory Computer Programming at NDSU. Subjects in one of the sections of the course

completed programming exercises in pairs, whereas subjects in the other section of the course

completed programming exercises individually. The subjects in this study worked in pairs and

individually throughout the semester and completed programming exercises related to variable

assignment, evaluating conditions, string manipulation, looping, and other object oriented

programming concepts during the semester.

Group A: The subjects were thirty-five undergraduate students enrolled in the CS1

course at NDSU.

Group B: The subjects were thirty-seven undergraduate students enrolled in the CS1

course at NDSU.

16

3.3. STUDY PROCEDURE

The overall study procedure is illustrated in figure 2 below.

Figure 2: Experiment Procedure

 Step 1: Subjects were assigned to two groups. In the experimental group (Group A), all

subjects were paired with a partner to work on programming exercises early in the semester. The

control group (group B) worked individually on programming assignments early in the semester.

 Step 2: Subjects Work on Programming Exercises: In the Group A, all subjects worked

on programming exercises with their assigned pairs for the duration of the first half of the

semester, and then completed programming exercises individually during the second half the

semester. In group B, all subjects worked on programming exercises individually for the

duration of the first half of the semester, whereas the remaining section the subjects were paired

and worked collaboratively on given programming assignments. This was done both to provide a

17

control group, and to ensure that all subjects had the opportunity to use pair programming in the

class.

 Step 3: Evaluate the subjects on group A (who used pair programming) and group B

(who worked individually) on their given programming assignments for the first half of the

semester, based on the understanding basic programming concepts which was taught during the

course.

 Step 4: The study subjects will be redistributed so that subjects who started with pair

programming will now be doing individual study and subjects who were studying individually

will be now using pair programming.

 Step 5:Subjects Work on Programming Exercises: In the Group A, all subjects worked on

programming exercises individually for the rest of the semester, In group B, all subjects worked

on programming exercises were now paired with another subject allowing them to work as pairs

for the rest of the semester.

 Step 6: Evaluate the subjects on group A (who used pair programming) and group B

(who worked individually) on their given programming assignments for the first half of the

semester, based on the understanding basic programming concepts which was taught during the

course.

On the day prior to beginning the programming exercise, subjects were shown a ten

minute video in class that described how to use pair programming effectively on their

programming assignment [11]. The next day during their lab session, subjects in both groups

worked on a programming exercise that was specifically designed by the instructor such that it

should not take more than one lab period (fifty minutes) to complete. Subjects were given a

programming exercise related to the topics that were being covered in class that week and were

18

given two lab periods (with each lasting fifty minutes) and three days of out-of class time to

complete the programming exercise. Subjects were only monitored while working on the

exercise during the designated lab periods. Subjects worked with their assigned partner to

complete the programming exercise.

Table 2: Student Allocation

 First half of the semester Second half of the semester

 Group A Group B Group A Group B

Pair programming 35 0 37 0

Individual 0 37 0 35

In the table 2, the allocation of students for each half of the semester is described. Thirty

five students were paired initially in the semester to work in pair for the first half of the semester

in which they worked of programming assignments with pairs. During the second half of the

semester those 35 students worked individually on programming assignments. Thirty seven

students worked individually during the first half of the semester and then paired with a partner

to work on the second half of the semester.

3.4. DATA COLLECTION AND EVALUATION CRITERIA

Student performances on lab assignments and tests (including mid-term and final

examinations) were analyzed to study the effects of the mental-model-based pairings on the

students’ performance. The final course grades for subjects in the study were also analyzed so

that we can determine the shift in student performance with related to the introduction of pair

programming.

19

4. RESULTS

We analyzed the midterm and end-of the term examination marks for the subjects who

used pair programming initially in the semester vs. subjects who started off studying

individually. Some background on students’ performance on these tasks, students generally did

very well on the all examinations. Average grades for students in Group A who were introduced

to pair programming at the beginning was 51.11 and 43.28 for midterm and final exams,

respectively. Average scores for students in Group B who worked individually initially and then

introduced to the pair programming later was 54.94 and 46.81 for midterm and final exams,

respectively. Figure 3, the average test scores are compared for each group.

Figure 3: Average Marks

There is a non-significant increase in scores of students who used Pair Programming later

in the semester in comparison to the students who used Pair Programming at the beginning of the

0

10

20

30

40

50

60

Midterm Avg. Final Avg.

Avg Marks

Group A

Group B

20

semester. When you consider the midterm marks of Group A and Group B, the Group B subjects

have performed better, and there is an increase of 3.83 for midterm which was not statistically

significant. Similarly, there is a small increase of 3.52 for final scores of group B subjects when

compared to group A subjects. Table 4 summarizes these results.

Table 3: Marks Comparison of Group A and B

Average Scores Change in Midterm

Versus Final Marks Midterm Exam Final Exam

Group A 51.11 43.28 7.82

Group B 54.94 46.81 8.13

Scores difference

between Group A & B

3.83 3.52

When comparing the final scores as listed in Table 3, even though the Group B subjects

had performed better than the Group A subjects, both groups did poorly in final exams. We have

compared each group’s midterm marks vs. the final marks. When considering Group A total of

7.8% drop in final grades compared to midterm grades. This is calculated by the difference

between midterm marks and final marks in group A.

Difference between final/midterm marks is calculated as below.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚 = 𝑀𝑀𝐷𝐷𝑀𝑀𝑀𝑀𝐷𝐷𝐷𝐷𝑚𝑚 𝑀𝑀𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐷𝐷𝐷𝐷𝑚𝑚𝐹𝐹 𝑀𝑀𝑚𝑚𝐷𝐷𝑚𝑚𝑚𝑚

Equation 1 : Difference in Midterm and Final Marks

 Group A 51.11-43.28 = 7.82

Group B 54.94 – 46.81 = 8.13

21

In group B this fall is about 8.1% drop in marks. The calculation of the drop in marks is

as follows using the above formula 1.

This observation in final marks also validates previous research, which also concluded

that pair programming does little to improve student learning and usually only in limited ways

such as better grades on programming exercises [13] and generally does not extend to exams.

Figure 4: Letter Grade Comparison

Figure 4 shows a graphical representation of grades achieved by each group. Based on

these results, Group A had a larger number of “A” a total of 3 students out of 37 students

obtained a grade of A, whereas in Group B students’ performance is much higher than the Group

A students performance.

A B C D F
Group A 3 2 13 10 3
Group B 1 9 12 8 4

0
2
4
6
8

10
12
14

M
ar

ks

Letter Grade Comparison

22

Table 4: Final Grade Comparison

Letter Grade Group A % Group A Group B % Group B

A 3 9.677419355 1 2.941176

B 2 6.451612903 9 26.47059

C 13 41.93548387 12 35.29412

D 10 32.25806452 8 23.52941

F 3 9.677419355 4 11.76471

The comparison of letter grades between the two groups are as follows, in Group A 9.6%

students obtained a grade A as compared to the 2.9% of students in Group B that obtained a

grade A. These results show that the total number of students who got a grade C or higher was 18

in Group A in comparison to 22 students in Group B. In Table 4 the grades that each group

obtained are summarized

Table 5: Mean & Standard Deviation of the Exam Marks

Table 6 also shows the p-values of midterm and final exams.

Table 6: Introducing Pair Programming Initially versus Later

 Midterm Final

P-Value 0.252 0.456

 Group A Group B
 Midterm Final Midterm Final
STDev 12.29 20.202 14.22 17.74
Mean 51.11 43.28 54.94 46.81

23

Results of the first pair and individual assessments initially indicated that there was a

very small difference between pair and individual marks. A similar study by Radermacher [27,

30] also validates our finding in this study. The results from Radermacher et al.[2012] shows that

students perceive pair programming as being beneficial and all of the subjects who used pair

programming indicated that they would prefer using it again in the future as opposed to working

individually. In addition pair programming is beneficial to student performance among students

who may be struggling with the course. Research also indicates that pair programming allows a

student pair to complete a given amount of work more quickly than individuals. [27]

24

5. THREATS TO VALIDITY

A major threat to validity deals with difficulties in being able to gather precise

measurements of each student’s performance based on the time when pair programming was

introduced. First, attendance was not taken during this course, so it is possible that whether or

not subjects attended lectures had some influence in the overall scores of midterm and final by

the subjects. The subjects of the experiments were mostly new to pair programming, and thus

might perform worse because they were not adapted to the duration of short experiments,

conduct so they may not have enough time to learn how to conduct pair programming well, as a

result they could not improve statistically.

25

6. DISCUSSION AND CONCLUSION

This presents an analysis of the data to provide answers to the hypothesis posed in

Section 3.0.The data analyzed includes the subject’s the grade received on the marks obtained

during midterm and final exam marks. Subjects’ pair performances on midterm and final exams

and their individual performances on tests (including mid-term and final examinations) were

analyzed to determine if the introducing pair programming at the beginning of the semester is

more beneficial to the student than introducing it at a later stage.

The results from this study do not indicate that one group is significantly more effective

than any other. There was not much difference between the exams scores in group A and Group

B students. However results showed that students perceive pair programming as being beneficial

and all of the subjects who used pair programming indicated that they would prefer using it again

in the future as opposed to working individually Pair programming introduced at any time of the

course was beneficial to students. It also shows that pair programming is beneficial to student

performance among students who may be struggling with the course.

The results of this study provides support to encourage further studies, particularly to

increase the number of data points in order to determine when is the best time to introduce pair

programming. Also it is possible for students to perform well in the initial weeks of the course

and then struggle with more difficult topics. When pair programming was introduced in later

stages, students had a better knowledge on basic concepts in programming and were able to

demonstrate those skills better. This would have resulted in better overall performance.

However, the results do not show a significant improvement when using Pair Programming later

vs. earlier.

26

Although this study has provided some valuable insights, results should not be

unconditionally generalized due to the small number of students who participated in this study. It

is recommended that the study should be replicated and involve a larger sample of participant’s

studies over a longer time period. More biographical information could also be useful for

analysis of differences between male and female, different personality types, and age groups.

27

7. REFERENCES

[1] L. Williams and R. Kessler, Pair Programming Illuminated: Addison-Wesley, 2003.

[2] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries, Strengthening the case for

pair programming, IEEE Software, 17(4), July – Aug. 2000, pages 19 – 25, 2000

[3] K. Beck, Extreme Programming Explained: Embrace Change: Addison-Wesley, 1999.

[4] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New Directions on Agile

Methods: A Comparative Analysis,” International Conference on Software Engineering,

2003.

[5] B. F. Hanks, “Tool Support for Distributed Pair Programming,” Workshop on

Distributed Pair Programming. Extreme Programming and Agile Methods - XP/Agile

Universe, 2002.

[6] Domino, M. A., R. Webb Collins &Hevner, A.R. (2007). Controlled experimentation on

adaptations of pair programming. Springer.

[7] J. Chong, T. Hurlbutt, The social dynamics of pair programming, ICSE 2007 29th

International Conference on Software Engineering, IEEE Computer Society, 2007.

[8] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, The effects of Pair-Programming on

Performance in an Introductory Programming Course, Proceedings 33rd SIGCSE

Technical Symposium on Computer Science Education, ACM Press, 2002.

[9] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, The impact of pair programming on

student performance perception and persistence, Proceedings 25th International

Conference on Software Engineering, 3 – 10 May 2003, pages 602 – 607, 2003.

28

[10] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, Pair programming improves student

retention, confidence, and program quality, Communications of the ACM, Vol. 49, No.

8, pages 90-95, 2006.

[11] D. Wells. The rules of extreme programming, 1999.

[12] Klemm,W.R. (1994). Using a formal collaborative learning paradigm for veterinary

medical education. Journal of Vertinary Medical Education, 21(1).

[13] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, The effects of Pair-Programming on

Performance in an Introductory Programming Course, Proceedings 33rd SIGCSE

Technical Symposium on Computer Science education, ACM Press, 2002.

[14] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, The impact of pair programming on

student performance perception and persistence, Proceedings 25th International

Conference on Software Engineering, 3 – 10 May 2003, pages 602 – 607, 2003.

[15] C. McDowell, L. Werner, H.F. Bullock, J. Fernald, Pair programming improves student

retention, confidence, and program quality, Communications of the ACM, Vol. 49, No.

8, pages 90-95, 2006

[16] E. Mendes, L. B. Al Fakhri, A. Luxton-Reilly, Investigating Pair Programming in a 2nd

year Software Development and Design Computer Science Course, Proceedings of

ITiCSE’05, June 2005, pages 296-300, 2005.

[17] E. Mendes, L. B. Al Fakhri, A. Luxton-Reilly, A Replicated Experiment of Pair

Programming in a 2nd year Software Development and Design Computer Science

Course, Proceedings of ITiCSE’06, 2006.

[18] N. Nagappan, L. Williams. M. Ferzli, E. Wiebe, K. Yang, C. Miller, S. Balik, Improving

the CS1 Experience with Pair Programming, Proceedings of the 34th SIGCSE Technical

29

Symposium on Computer Science Education, ACM SIGCSE Bulletin, 35 (1), pages 359

– 362, 2003.

[19] S. B. Berenson, K. M. Slaten, L. Williams, C. Ho, Voices of women in a software

engineering course: Reflections on collaboration, ACM Journal of Educational

Resources in Computing, 4(1), 2004, pages 1-18

[20] S. B. Berenson, K. M. Slaten, L. Williams, C. Ho, Voices of women in a software

engineering course: Reflections on collaboration, ACM Journal of Educational

Resources in Computing, 4(1), 2004, pages 1-18

[21] C. Ho.; Slaten, K.; Williams, L.; and Berenson, S., Examining the Impact of Pair

Programming on Female Students, NCSU Technical Report, TR-2004-20, June 17,

2004.

[22] D.C. Cliburn, Experiences with pair programming at a small college, Journal of

Computing Sciences in Colleges, October 2003, 19(1), 2003.

[23] L. Williams, K. Yang, E. Wiebe, M. Ferzli, C. Miller, Pair Programming in an

Introductory Computer Science Course: Initial Results and

Recommendations,Proceedings of OOPSLA, 4th Nov. – 8th Nov. 2002.

[24] E.F. Gehringer, A Pair-Programming experiment in a non-programming courses,

OOPSLA'03, ACM Press, 2003.

[25] S. Heiberg, Puus U., P. Salumaa, A. Seeba, Pairprogramming effect on developers

productivity, XP 2003 Extreme Programming and Agile Processes in Software

Engineering Conference, Proceedings (Lecture Notes in Computer Science), Springer-

Verlag,Vol.2675, pages 215-24, 2003.

30

[26] Radermacher, A., Walia, G., Abufardeh, S., and Myronovych, O, Guidelines for

Implementing Pair Programming in Introductory CS Courses: Experience

Report” Proceedings of 2014 International Conference on Frontiers in Education:

Computer Science and Computer Engineering (FECS). July 21- 24, 2014 USA

[27] Radermacher, A., Walia, G. "Improving Student Learning Outcomes with Pair

Programming" Proceedings of the 8th International Conference on Computing

Educational Research - ICER'2012. September 10-12, 2012 Auckland, New Zealand. pp.

87-92

[28] Radermacher, A., Walia, G. and Rummelt, R., “Assigning Student Programming Pairs

Based on Their Mental Model,” Proceedings of the 43rd ACM Technical Symposium on

Computer Science Education. February 29 – March 3, SIGCSE 2012: Teaching,

Learning, and Collaborating. Raleigh, North Carolina, USA

[29] Radermacher, A., Walia, G. "Investigating Student-Instructor Interactions When Using

Pair Programming: An Empirical Study," Proceedings of the 24th IEEE-CS Conference

on Software Engineering Education and Training. May 22-24, CSEE&T 2011 Waikiki,

Honolulu, Hawaii. pp. 41-50

[30] Radermacher, A., Walia, G. "Investigating the Effective Implementation of Pair

Programming: An Empirical Investigation," Proceedings of the 42nd ACM Technical

Symposium on Computer Science Education. March 9-12, SIGCSE 2011 Dallas, Texas,

USA. pp. 655-660

[31] Radermacher, A., and Walia, G. S. 2011. Investigating the effective implementation of

pair programming: an empirical investigation. In Proceedings of the 42nd ACM.

31

Technical symposium on Computer science education (SIGCSE '11). ACM, New York,

NY, USA, 655-660.

[32] Radermacher, A., and Walia, G. S. 2011. Investigating student-instructor interactions

when using pair programming: an empirical study. To be published in 24th Conference

on Software Engineering Education & Training (CSEET ’11). IEEE Computer Society,

Washington, DC, USA.

[33] Kim Man Lui ; Hong Kong Polytech. Univ., Hong Kong ; Chan, K.C.C. ; Nosek, J.T.,

The Effect of Pairs in Program Design Tasks , Software Engineering, IEEE Transactions

on (Volume:34 , Issue: 2) , March-April 2008

32

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	1. INTRODUCTION
	1.1. Problem Statement
	1.2. Motivation and Research Goals

	2. BACKGROUND & RELATED WORK
	2.1. NDSU Studies
	2.2. Problems when Using Pair Programming at NDSU

	3. EXPERIMENT DESIGN
	3.1. Variables
	3.2. Study Subjects and Course Assignments
	3.3. Study Procedure
	3.4. Data Collection and Evaluation Criteria

	4. RESULTS
	5. THREATS TO VALIDITY
	6. DISCUSSION AND CONCLUSION
	7. REFERENCES

