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ABSTRACT 

 

Machine learning algorithms have the advantage of making use of the powerful 

Hadoop distributed computing platform and the MapReduce programming model to process 

data in parallel. Many machine learning algorithms have been investigated to be 

transformed to the MapReduce paradigm in order to make use of the Hadoop Distributed 

File System (HDFS). Naïve Bayes classifier is one of the supervised learning classification 

algorithm that can be programmed in form of MapReduce. In our study, we build a Naïve 

Bayes MapReduce model and evaluate the classifier on five datasets based on the prediction 

accuracy. Also, a scalability analysis is conducted to see the speedup of the data processing 

time with the increasing number of nodes in the cluster. Results show that running the 

Naïve Bayes MapReduce model across multiple nodes can save considerate amount of time 

compared with running the model against a single node, without sacrificing the classification 

accuracy.  
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1. INTRODUCTION 

 

1.1. Big Data 

With the prevalence of Web 2.0, Big Data is a heated topic nowadays and is 

generally believed to be the next big thing in the IT world [1]. Web 2.0 allows the 

individuals to be connected with each other and share their interpersonal contents online, 

and enables companies to provide their services online for customers. As a result of the 

Web 2.0, e-commerce [2] and social networks [3] are starting to build up vast databases of 

customer activity and wish to generate additional values from it. As well as financial 

services [4], healthcare [5], telecommunication [6] and many other services, they are 

beginning to capture more and more data to gain more insights and help them make 

business decisions. Big Data does not link to any specific quantity of data, but is a general 

term used to describe the massive amount of digital information a company creates – which 

takes too much time and costs too much money to be analyzed with traditional computing 

techniques.  

To get a handle on the problems of traditional computing techniques, people have 

used “three Vs” of volume, velocity and variety to describe the challenges of Big Data [7]. 

Whereas the volume of data is the biggest challenge of Big Data, it offers us a lot of 

opportunities. Being able to store and process a vast amount of data raises the possibility of 

a variety of different activities – disease diagnosis, customer behavior tracking, healthcare 

services planning, and climate modeling, etc. These tasks usually involve petabytes or even 

exabytes of data to store and process which goes beyond the capability of traditional 

database technologies. We need a new system that is capable to overcome the limitations of 

traditional hardware solutions and scale our Big Data [8]. Velocity is also one of the issues 

of Big Data. Web 2.0, cloud computing, and the prevalence of mobile devices lead the data 

to flow into the organizations in an exponential rate that easily dwarfs the traditional 

computing technologies. Many applications like online video streaming and gaming require 
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the data to be transferred at an exceptionally high velocity, which poses a great pressure to 

the IT systems [9]. Variety is another characteristic of Big Data, with the digital information 

many organizations captured becomes increasingly diverse and dense. Voluminous amount 

of unstructured and semi-structured data that companies create, like photographs, video 

and audio etc., poses a great challenge with traditional technologies. Big Data in reality is 

messy and massive data, pre-processing and data cleansing is a necessity before any 

computing effort can be performed [10].  

1.2. Hadoop overview 

Due to the challenges brought up by volume, velocity and variety, a new technology 

is required for Big Data. Apache Hadoop is playing a leading role in the Big Data field 

currently and it is the first viable platform for Big Data analytics. Hadoop is an open-source 

software framework for scalable, reliable, distributed computing system that is capable of 

getting a handle on Big Data’s “three Vs” challenges. Originally inspired by Google’s 

MapReduce [11] and Google File System (GFS) [12], what Hadoop does is to use a simple 

programming model to process large-scale datasets across clusters of machines and 

distribute the storage. Since the data processing is running on a cluster of machines, it is 

necessary to deal with node failure that is likely to occur during the course of the 

processing. Instead of relying on highly expensive servers with high fault tolerance, Hadoop 

handles node failure itself through its service, which is able to detect the node failure in the 

cluster and re-distribute the data to other available machines. In addition, Hadoop sets up a 

scheme to protect it from losing the metadata of the distributed environment. Therefore, 

Hadoop becomes widely employed by many organizations because of its reliability and 

scalability to process vast quantities of data with an affordable cost of distributed computing 

infrastructure [13].  

Hadoop consists of two important elements. The first high-performance distributed 

data processing framework called MapReduce. Hadoop breaks down the datasets into 

multiple partitions and distribute its storage over the cluster. MapReduce performs data 
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processing on each servers against the blocks of data residing on that machine – which 

saves a great amount of time due to parallel processing. This emits intermediate summaries 

which are aggregated and resolved to the final result in a reduce stage. Specifically, the 

MapReduce paradigm consists of two major steps: map step and reduce step (as shown in 

Figure 1) – the map step converts the input partition of data into a key/value pair which 

operates parallel in the cluster, and the reduce task collects the data, performs some 

computation and resolves them into a single value. When the MapReduce is running on 

distributed file systems like HDFS, because of HDFS’s natural data locality property, the 

tasks will always operate on the node closest to the residence of the data block. This 

significantly reduces the I/O cost during the data computation, which allows the parallel 

data processing to be exceedingly fast [14].  

 

Figure 1. Illustration of the MapReduce framework 

The second element of Hadoop is the Hadoop Distributed File System (HDFS), which 

permits high-bandwidth computation and distributed low-cost storage which is essential for 

Big Data tasks. Figure 2 shows a basic architecture of HDFS, there is one NameNode and 

multiple DataNodes, where NameNode manages all of the file system metadata and 

DataNodes stores the blocks of datasets (represented by b1, b2, b3, etc.). When the 

datasets are loaded into HDFS, HDFS will distribute the storage of the data across the 
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cluster in a way that will be reliable and can be retrieved faster. A typical HDFS data block 

size is 64 – 128MB and each partition of data is replicated to multiple nodes. The scale-out 

architecture gives Hadoop a superb horizontal scalability and significantly increases the 

availability and fault tolerance of the distributed system [15].  

 

Figure 2. Hadoop Distributed File System (HDFS) architecture 

1.3. Word count example 

The word count example is a classic example to get started with the Hadoop and 

MapReduce development. Understanding the word count example is very important for 

understanding other variations of MapReduce programs. The idea of the word count 

example is basically to count the number of occurrences of each word of a given input file.  

Just like any other MapReduce programs, the word count example also runs in two 

phases, first the map step on mappers and then the reduce step on reducers. However, 

before running map and reduce tasks for the word count example, we must first load our 

input data into the Hadoop Distributed File System (HDFS). Given a large size input file, 

HDFS will split the input data into several blocks and replicate the blocks to the available 

nodes in the clusters, which is the key for Hadoop to realize its high availability and fault 

tolerance.  

In the map phase, the content in the given input file will be tokenized and a list of 

key/value pairs will be formed with key being the each word and value being ‘1’. For 

instance, say we have a file with content “hello world bye world”, the key-value pairs 
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generated after the map step will be like: <hello, 1>, <world, 1>, <bye, 1>, <world, 1>. 

In the reduce phase, the intermediate key-value pair from the mapper are sent to the 

reducers and the pairs with the same key are aggregated and resolved to a single key-value 

pair. Again, from the above example, the output from the reducers will be like: <hello, 1>, 

<world, 2>, <bye, 1>. The output gives the information of the words and their occurrences 

in the given file.  

In HDFS, the default block size is 64MB, which means the data will be partitioned 

into multiple blocks if the size is greater than 64MB. Each block of data will have 3 copies 

evenly distributed across all the nodes in case of the node failure. Each mapper loads the 

set of data local to that machine and processes them. Figure 3 gives the illustration of how 

map and reduce tasks are performed in word count example. For simplicity, we only have 

two input files and having 4 words in each file. In the map task, we assume the content of 

each file is stored in separate mappers in HDFS, i.e. “Hello Hadoop” and “Bye Hadoop” are 

passed to different mapper instances. The mapper instances will process the block data 

concurrently and emit the intermediate key-value pair. When the mapping phase has 

completed, there is a shuffle and sort process in which the intermediate key-value pair is 

exchanged between machines to send all values with the same key to a single reducer. In 

our example, two <Hadoop, 1> pairs will be placed in the same reducer. In the reduce task, 

a reducer receives an iterator of key-value pairs and combines them into a single output 

value. For example, two <Hadoop, 1> pairs will be aggregated as a single key-value pair 

<Hadoop, 2>.  
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Figure 3. Word count map and reduce flow 
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2. MACHINE LEARNING AND NAÏVE BAYES 

 

2.1. Large scale machine learning 

Machine learning is a technology that has strong ties to statistics and optimization to 

learn from the existing data to explore hidden valuable information. It has become one of 

the most popular techniques for knowledge discovery and predictive analytics, especially 

with the current exponentially growing amount of data from science, business and 

healthcare, etc. Many applications, like spam filtering [16], advertisement targeting [17], 

computer vision [18], and bioinformatics [19], etc., have adopted machine learning 

algorithms to better guide their decisions. Machine learning algorithms can be roughly 

divided into supervised learning and unsupervised learning. With the domination of 

distributed computing system in large scale data processing, parallel programming models 

are developed to speed up machine learning algorithms in multi-core environment [20]. 

Although some complicated machine learning tasks are difficult to address with the 

MapReduce paradigm, the MapReduce programming model implemented in the Hadoop 

platform is the choice to improve the performance for machine learning algorithms [21]. 

Currently, Mahout - a scalable machine learning library is available to support large data set 

processing [22].  

2.2. Statistical machine learning 

2.2.1. Unsupervised learning 

Unsupervised learning is used in the problem of learning from a collection of data 

instances with no training labels. The purpose of unsupervised learning is to discover the 

under-the-hood cluster pattern of the given collection of data. Clustering is one of the most 

popular fields of study in unsupervised learning, and it has been widely employed in data 

mining applications [23]. Clustering techniques have been studied for many years and many 

learning algorithms have been proposed and improved, such as k-means clustering [24], 

fuzzy clustering [25], DBSCAN [26], etc.  
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2.2.2. Supervised learning 

Supervised learning considers the problems of estimating a model from data samples 

with label information. Each input data instance in the sample is associated with 

corresponding training labels, which is assumed to be a supervised process. A broad family 

of statistical learning theories have been investigated to achieve risk minimization and 

generalization maximization in the learning tasks [27]. There are many new machine 

learning algorithms for applications that are developed based on those statistical theories. 

Among them, regression based learning is concerned with modeling the relationship 

between variables that are iteratively refined using a measure of error in the predictions 

made by the model [28], such as logistic regression, ordinary least squares etc., which have 

excellent performance in a range of applications, especially for classification tasks. Also, 

there is kernel based machine learning approach, which is the state-of-art methodology in 

real-world applications. This approach maps input data into a higher dimensional vector 

space where some classification or regression problems are easier to model [29]. The 

example of kernel based algorithms are support vector machine (SVM) and linear 

discriminant analysis (LDA).  

2.3. Naïve Bayes classification algorithm 

The Naïve Bayes algorithm is one of the most important supervised machine learning 

algorithms for classification. This classifier is a simple probabilistic classifier based on 

applying Bayes’ theorem as follows: 

P(A|B) =  
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)
 

Naïve Bayes classification has an assumption that attribute probabilities P(𝑥𝑖|𝑐𝑗) are 

independent given the class 𝑐𝑗, where 𝑥𝑖 is i
th attribute of the data instance. This assumption 

reduces the complexity of the problem to practical and can be solved easily. Despite the 

simplification of the problem, the Naïve Bayes classifier still gives us a high degree of 

accuracy.  
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2.3.1. Formulation 

For a data instance d and a class c, based on the Bayes theorem we have: 

P(c|d) =  
𝑃(𝑑|𝑐) 𝑃(𝑐)

𝑃(𝑑)
 

Where P(c|d) is the probability of a class given a data instance. 𝑃(𝑑|𝑐) is the probability of a 

data instance given the class, 𝑃(𝑐) is the probability of the class, and 𝑃(𝑑) is the probability 

of a document. P(c|d) is the probability we use to choose the class, specifically, we are 

looking for a class that maximizes P(c|d) out of all classes for a given data instance as shown 

in the following equation: 

𝑐𝑀𝐴𝑃 = argmax
𝑐∈𝐶

𝑃(𝑐|𝑑) = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)𝑃(𝑐)

𝑃(𝑑)
= argmax

𝑐∈𝐶
𝑃(𝑑|𝑐)𝑃(𝑐) 

Where 𝑐𝑀𝐴𝑃 is the class that has maximum a posteriori (MAP), or maximum probability 

P(c|d). Notably, the probability of the data instance is a constant, which is dropped from the 

equation above. We call 𝑃(𝑑|𝑐) the likelihood, which is the probability of a given class, and 

call 𝑃(𝑐) the prior, which is the probability of the class. We can represent 𝑃(𝑑|𝑐) to be the 

probability of a vector of attributes conditioning on the class, as follows: 

𝑐𝑀𝐴𝑃 = argmax
𝑐∈𝐶

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑐)𝑃(𝑐) 

With the assumption that the attribute probabilities P(𝑥𝑖|𝑐𝑗) are independent given the class 

c, we have the probability of a set of attributes given the class to be the product of a whole 

bunch of independent probabilities.  

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑐) = 𝑃(𝑥1|𝑐) ∙ 𝑃(𝑥2|𝑐) ∙ 𝑃(𝑥3|𝑐) ∙ … ∙ 𝑃(𝑥𝑛|𝑐) 

Hence the best class of Naïve Bayes classifier will be:  

𝑐𝑁𝐵 = argmax
𝑐∈𝐶

𝑃(𝑐) ∏ 𝑃(𝑥|𝑐)

𝑥∈𝑋

 

2.3.2. Parameter estimation 

Upon obtaining the mathematical model of the Naïve Bayes classifier, the next step 

is to estimate the parameters in the model – the prior of each class and the distributions of 



10 

 

attributes. The prior of the class P(c) can be estimated by simply calculating an estimate for 

the probability of the class in our training sample:  

P(c) =  
𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 

With regard to estimation of attribute distributions, there are three models that are 

widely used in applications – Gaussian Naïve Bayes, Multinomial Naïve Bayes and Bernoulli 

Naïve Bayes. Gaussian Naïve Bayes is mostly used when dealing with continuous data, while 

the other two models is well suited for discrete data. For multinomial Naïve Bayes, the 

probability of ith attribute has value a conditioning on a given class 𝑃(𝐴𝑖 = 𝑎|𝑐) can be 

estimated by using the training dataset:  

𝑃(𝐴𝑖 = 𝑎 | 𝑐) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑖𝑡ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐴𝑖  𝑤𝑖𝑡ℎ 𝑣𝑎𝑙𝑢𝑒 𝑎

𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
 

2.3.3. Measurement of Naïve Bayes classifier 

The starting point for understanding the measure of the Naïve Bayes algorithm is the 

following two by two contingency table (Table 1). There are essentially four states for any 

particular piece of data we evaluate. On one axis we choose whether this piece of data 

correctly belongs to a class or whether it does not correctly belong to a class, and thus this 

axis we describe as truth. Now, we build a Naïve Bayes classifier that tries to detect the 

truth and the classifier will tell us the data belongs to which class. Therefore, there are four 

possibilities that occur – true positive (tp), true negative (tn), false positive (fp) and false 

negative (fn). For example, if the truth of the data instance is correct and we select it, then 

it is a true positive. Another possibility is that our classifier does not say it it correct, then it 

is a false negative. On the other hand, it is possible that the instance is not correct in which 

case there are two possibilities – our classifier mistakenly classifies the instance to the 

“correct” category, which is called false positive, or our classifier correctly places the 

instance into the “not correct” category, which is called true negative.  
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Table 1. The 2-by-2 contingency table 

 correct not correct 

selected tp fp 

not selected fn tn 

1) Accuracy 

Accuracy is the first reasonable measure to look at. Accuracy equals the true 

positives, plus the true negatives over all four classes (true positives, true negatives, false 

positives and false negatives). In many applications, accuracy is a useful measure for the 

Naïve Bayes classifier. But there is a particular scenario when dealing with things that are 

uncommon, in which the accuracy is not a useful measure. For example, 99.99% of the data 

are from category A, while only 0.01% is from the counterpart category B. So, we will have 

99.99% of accuracy even when our classifier assigned all data into category B, which is 

apparently undesired. For this situation, precision and recall are used as the measurement 

of our classifier.  

Accuracy =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

2) Recall 

Recall is the percentage of correct items that are selected. By applying recall as a 

measurement, the above-mentioned situation for accuracy can be resolved. Simply 

assigning all items to category A will give zero recall, which turns out to be an undesired 

classifier. In various applications, such as for things like legal applications, where you want 

to find all of the appropriate evidence, such as in discovery procedures. What you really 

want to do is having a classifier that has high recall, that finds as much of the relevant 

items as possible. In other words, you do not want relevant evidences left unselected. 

Recall =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

3) Precision 

Precision is the percentage of selected items that are correct. Precision can also be a 

resolution for the condition when dealing with uncommon things. In some contexts, you 
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might be more interested in precision over recall. For example, you want to show customers 

some merchandises that are good (correct), and do not care that only 1/10 or 1/20 of the 

things do satisfy their query.  

Precision =  
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

We see the tradeoff that balances between recall and precision, because inevitably if 

you increase your recall then you are going to make some mistakes hence the precision 

goes down. The more you try and boost recall, the more your precision is starting to drop. 

So people are trading off precision and recall and the tradeoff is played out differently in 

different applications. If it is important to find the correct items returned then you should 

choose to have a high precision, while you will need a high recall classifier if you try to find 

all correct things. But sometimes people want to determine which classifier is better and 

need a way to compare, and the F measure is proposed to combine precision and recall.  

4) F measure 

F measure is a combined measure that assesses the precision and recall tradeoff and 

is basically a weighted harmonic mean of precision (P) and recall (R):  

F =
1

𝛼
1
𝑃

+ (1 − 𝛼)
1
𝑅

=
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅
 

Where α is the coefficient that weights precision or recall, people usually use balanced F1 

measure as the measurement:  

F1 =
2𝑃𝑅

𝑃 + 𝑅
 

2.3.4. Validation of Naïve Bayes classifier 

If we use the same data set for both the training and testing phase of the algorithm, 

the outcome will be overly optimistic [30]. Hence in order to obtain a better estimate of the 

model parameters and simulate real-world situation, the testing sample is not included in 

the training and acts as “unknown” data. After the training phase is completed, then we 

apply the model against the testing sample to see the outcome accuracy of the model.  
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1) Holdout validation 

Holdout method is the simplest validation method, in this method the original data 

set is partitioned into a training and testing set. The training set is solely used for model 

parameter estimation, and the testing set is used for the validation of the model prediction 

accuracy [31]. This method works when there are no dependencies in the chosen training 

sample, however, this is not always guaranteed. It is very likely that the instances in the 

training sample are correlated, which causes a bias in the model estimate.  

2) K-fold cross validation 

In order to improve the estimate of holdout validation, k-fold cross validation is 

introduced. In this method, the data set is divided into K subsets, in each of K runs, 1 

subset is used for testing and the remaining K − 1 subsets are used for training. The error 

rate of the model is the average of all K error rates. After K runs, we choose the model 

which has the lowest error rate and apply it against the “unknown” data to see the outcome 

accuracy. Although k-fold cross validation cost K times computation compared with holdout 

validation, but it opts out the possible bias in the model estimation.  
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3. IMPLEMENTATION 

 

3.1. Overview 

In this section, we describe the implementation and development details of building 

the Naïve Bayes classifier using the MapReduce paradigm. The implementation contains five 

steps: data preparation, data preprocessing, data processing using MapReduce, data 

classification using Naïve Bayes algorithm, and classifier evaluation. We downloaded 5 

datasets (adult, car-evaluation, contraceptive method choice, mushroom, and nursery) from 

the University of California Irvine (UCI) Machine Learning Repository [32], all of the 

datasets are multivariate of categorical or integer variables and default for classification 

tasks. In the data preprocessing stage, we augmented the original datasets to gigabyte 

level so to better leverage the powerful Hadoop computing capability. Also, the dataset is 

divided into two parts: one for model training and the other are treated as “unknown” data 

for model testing. We use cross validation to find the estimated model with the highest 

accuracy. If there are continuous attributes in our dataset, a preprocessing MapReduce job 

is performed to discretize the continuous variables. After preprocessing is done, we load the 

preprocessed data into HDFS, and perform map and reduce tasks against the data. In this 

step, we are able to obtain the number of occurrences of an attribute with a specific value 

given a certain class. With the result from the MapReduce task, we can compute the prior, 

likelihood, and hence posterior for each class, and then assign the instance to a class. 

Finally, we count the number of instance correctly and wrongly classified to get an overall 

accuracy of the estimated model. The overview of the implementation diagram is shown in 

Figure 4.  
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Figure 4. Implementation overview 

3.2. Implementation choice 

Hadoop is written in Java, although Hadoop streaming supports many languages to 

enjoy the advantages offered by Hadoop platform, MapReduce is still most commonly 

written in Java [33]. The Hadoop version I used is cdh4.2.0 – a Cloudera distribution of 

Apache Hadoop. The project is built and packaged using Apache Maven. In our 

implementation, we construct explicit mapper and reducer functions in Java. My choice of 

development environment is Eclipse. 

3.3. File preprocessing 

3.3.1. Data augmentation 

Hadoop is designed for large scale data processing while suffering a performance 

penalty when dealing with small datasets [34, 35]. If you have data measured in terabyte 

or even petabyte, the superior scalability of Hadoop will save you a considerable amount of 

money and time. However, if you only have megabytes of data, then Hadoop is not the 

choice as its performance will be significantly lower and is no competitor for Excel or other 

SQL tools. Hadoop Wiki suggests that since the map/reduce setup takes for a while, so 

ideally we should at least allow the map task to execute for a minute [36]. The five datasets 
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downloaded from UCI Machine Learning Repository only have their size at a few megabytes 

level, which is not suitable for Hadoop experiment. Hence, I augmented the datasets by 

concatenating the copy of data to a much greater size so that Hadoop can distinguish the 

environment warm-up time and the actual data processing time. The size of the augmented 

data is still not ideal for Hadoop to show its strong scaling capability, which usually goes 

beyond terabytes or even exabytes, however, this is sufficient for our experiments. 

3.3.2. Data split and cross validation 

In order to test the accuracy of our Naïve Bayes classifier, we randomly take 70% of 

instances for model training and the remaining 30% for model testing. The testing data set 

is treated as “unknown” data, which is never involved in the training process. This is 

considered to be a resemble of the real-world and will not get overoptimistic estimates. The 

training dataset is divided into 6 folds and cross validation is performed to eliminate the bias 

within the dataset. There are in total 6 runs for cross validation and in each run we in turn 

pick 1 of 6 folds as the testing set and the rest for training. Finally we choose the estimated 

model with lowest error rate. The selected model will be applied to the “unknown” data for 

classification. We calculate the accuracy of the classifier based on the number of instances 

correctly and wrongly estimated.  

3.3.3. Data discretization 

There are two of five datasets – adult and contraceptive method choice - that have 

mixed categorical and continuous variables, and therefore, we have to discretize the 

continuous variables in the datasets so as to apply the Naïve Bayes classifier. Instead of 

using the Gaussian distribution assumption to estimate mean and variance of continuous 

variables, we use binning to categorize continuous feature attributes, to obtain a new set of 

Bernoulli-distributed attributes [37]. The number of bins can be customized, but usually a 

more finely spaced bin can reduce the discretization error with an increasing cost of 

computation [38]. In order to correctly categorize continuous variables, it is required to 

obtain the range of the variable. We dump the data into HDFS and perform an additional 
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MapReduce job to find the maximum and minimum value of each continuous variable. This 

step saves us additional time compared with the traditional approach because the 

computation can be done in parallel across the cluster. Below is the snippet of MapReduce 

source code in the preprocessing step:  

The mapper class source code is shown in Figure 5.  

public class PreprocessMapper extends Mapper<LongWritable, Text, Text, 

DoubleWritable> { 

    protected void map(LongWritable key, Text value, Context context) throws 

IOException, InterruptedException  

    {...} 

} 

Figure 5. PreprocessMapper.java 

Input key: the offset of the beginning of the line from the beginning of the file [39] 

Input value: the string content of the line 

Output key: attribute name (i.e. age) 

Output value: attribute value (i.e. 29) 

Where only continuous variables and their values are sent to the reducers.  

The reducer class source code is shown in Figure 6.  

public class PreprocessReducer extends Reducer<Text, DoubleWritable, Text, 

DoubleWritable>  

{ 

    protected void reduce(Text key, Iterable<DoubleWritable> values, Context 

context) throws IOException, InterruptedException 

    {...} 

} 

Figure 6. PreprocessReducer.java 

Input key: attribute name 

Input value: attribute value 

Output key: attribute name_min or attribute name_max (i.e. age_min, age_max) 

Output value: minimum or maximum value of the attribute 

Notably, the output key/value of the mapper should be identical to the input 

key/value of the reducer. The reduce function takes a list of value output from the map 

function and resolves to a single maximum and minimum value of a continuous variable.  
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We store the output from the preprocessing step as a SequenceFile, a flat file 

consisting of binary key/value pairs, which is also internally used for temporary map output 

[40]. Using SequenceFile as the intermediate output format increases the performance 

when there are multiple MapReduce jobs run in consecutive.  

The remaining three datasets (car-evaluation, mushroom and nursery) do not have 

continuous feature attributes, hence, there is no need to run data discretization step on 

those three datasets.  

3.4. File processing and parameter estimation 

File processing is the key step for our Naïve Bayes classifier implementation. We 

build a MapReduce model to estimate the parameters in the model – prior and likelihood of 

a given class. The model is able to handle large scale Naïve Bayes classification tasks due to 

the distributed nature of the MapReduce paradigm.  

3.4.1. Naïve Bayes MapReduce model 

Naïve Bayes is one of the machine learning algorithms that can be applied against 

the MapReduce paradigm [41]. For simplicity, suppose there are only two classes 𝑐1 and 𝑐2 

for classification and each data instance has M attributes (mostly with discrete value). In 

order to estimate the parameters in the Naïve Bayes model, i.e. P(𝑐𝑗) and 𝑃(𝐴𝑖 = 𝑎|𝑐𝑗), where 

P(𝑐𝑗) is the prior of class 𝑐𝑗 (j = 1 or 2), and 𝑃(𝐴𝑖 = 𝑎|𝑐𝑗) is the likelihood of the ith attribute, 𝐴𝑖 

has value a (i = 1, 2, … , M) conditioning on class 𝑐𝑗, we need to get the total number of 

instances in the sample, namely N, occurrences of class 𝑐𝑗 in the sample, namely 𝑁𝑗, and 

number of instances having ith attribute 𝐴𝑖 with value a in the sample namely 𝑛𝑖. By iterating 

through the sample, we can obtain N and 𝑁𝑗.  

For the next step we use the MapReduce model to obtain the value of 𝑛𝑖. In the map 

task it takes a line as input and converts the content of the line into a key/value pair, where 

the key is a combination of the class, attribute and its attribute value, namely a unique 
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string with a form like 𝐴𝑖_𝑎𝑖_𝑐𝑗, the value is 1. The source code snippet of the map function is 

shown in Figure 7.  

public class ProcessMapper extends Mapper<LongWritable, Text, Text, 

IntWritable>  

{    

    protected transient HashMap<String, Double> _map; 

    protected void setup(Context context) throws IOException, 

InterruptedException  

    {...} 

    protected void map(LongWritable key, Text value, Context context) throws 

IOException, InterruptedException 

    {...} 

    private void createContKey(String attribute, String value, String 

category, int bin, Context context) throws IOException, InterruptedException  

    {...} 

    private void createDiscKey(String attributes, String value, String 

category, Context context) throws IOException, InterruptedException 

    {...} 

} 

Figure 7. ProcessMapper.java 

Input key: the offset of the beginning of the line from the beginning of the file 

Input value: the string content of the line 

Output key: attribute name_attribute value_class (i.e. age_0_<=50K, 

education_Masters_>50K) 

Output value: 1 

 

In the reduce task, the values of the same key is added up and a single key/value 

pair is emitted, where the key is the unique string combination and the value is the count of 

the occurrences of such string combination. The reducer class source code is shown in 

Figure 8.  

public class ProcessReducer extends Reducer<Text, IntWritable, Text, 

IntWritable>  

{ 

    protected void reduce(Text key, Iterable<IntWritable> values, Context 

context) throws IOException, InterruptedException 

    {...} 

} 

Figure 8. ProcessReducer.java 

Input key: attribute name_attribute value_class (i.e. age_0_<=50K, 

education_Masters_>50K) 
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Input value: 1 

Output key: attribute name_attribute value_class (i.e. age_0_<=50K, 

education_Masters_>50K) 

Output value: number of instances having ith attribute 𝐴𝑖 with value a in the sample 

𝑛𝑖  

The reduce function takes a list of 1’s from the map function and resolves to a single 

count. 

3.4.2. Parameter estimation and classification 

With the MapReduce approach, we are able to process the file in multiple nodes in 

parallel and significantly expedite the performance compared with running on single node. 

From the output of the MapReduce run, we can easily obtain the prior and likelihood for 

each class by:  

P(𝑐𝑗) =
𝑁𝑗

𝑁
 

P(𝐴𝑖 = a | 𝑐𝑗) =  
𝑛𝑖

𝑁𝑗

 

For every instance d, according to Bayes’ theorem we have the posterior for instance d: 

P(𝑐𝑗|d) ∝ P(𝑐𝑗) ∗  P(𝐴1 = 𝑎1 | 𝑐𝑗) ∗  P(𝐴2 = 𝑎2 | 𝑐𝑗) ∗ … ∗  P(𝐴𝑀 = 𝑎𝑀  | 𝑐𝑗) 

If P(𝑐1|d) is greater than P(𝑐2|d), we classify data instance d to class 𝑐1, otherwise we classify 

it to 𝑐2. Sometimes it is necessary to use log likelihood instead of likelihood to avoid floating 

point overflow, then we have:  

P(𝑐𝑗|d) ∝ log P(𝑐𝑗) + log P(𝐴1 = 𝑎1 | 𝑐𝑗) + log P(𝐴2 = 𝑎2 | 𝑐𝑗) + ⋯ + log P(𝐴𝑀 = 𝑎𝑀  | 𝑐𝑗) 

Notably, it is possible that an attribute value does not occur in every class, which will lead to 

a zero likelihood estimate for that class. To get a handle on this zero-frequency issue, we 

added a value 1 to the count of every attribute value-class combination. Also, as discussed 

in Section 4.3.3, if we have continuous feature attributes that exist, a preprocessing job is 

required to categorize the continuous variable before we estimate the parameters using the 

MapReduce model.  
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3.4.3. Model evaluation 

In the cross validation step, we apply the Naïve Bayes MapReduce model developed 

in our study for each of the 6 runs and select the model with the highest accuracy. The 

chosen model will be used to classify the “unknown” data. Finally, we count the number of 

instances correctly and wrongly classified, and hence, obtain the model accuracy. If the 

dataset has only two classes, we can also calculate the recall, precision, and F measure for 

our classifier.  

3.5. Scalability analysis 

Horizontal scalability is necessary for large-scale data processing. By adding more 

nodes to the system, the computation can be distributed across the nodes and run in 

parallel [42]. This not only significantly reduces the hardware cost, but also processing 

time. In this section, we will conduct a scalability analysis to discover how Hadoop 

horizontal scalability improves the performance of the system, and the relationship between 

the processing time and the number of nodes used in the system. Notably, map and reduce 

tasks take time to warm up, so it is recommended that the task takes at least one minute to 

run. The implementation of the Naïve Bayes algorithms have two MapReduce jobs – 

preprocess file, and process file – here we only study the second MapReduce job. Different 

number of nodes are used to process the data, i.e. single node and 2, 4, 6, 8, 10, 12, 14 

nodes are used for each run to split the data to be sent to the mappers (shown in Table 2). 

Number of reduce tasks actually spawned will be less than the number of mappers but 

determined by Hadoop internally. The running time is recorded by placing a timestamp at 

the beginning and end of the method. Table 2 shows the number of mappers and reducers 

used for each run. Since node failure could happen and there are many variables that could 

impact the running time, for each node setting we perform 10 runs and take the average as 

the running time reported.  
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Table 2. Number of nodes used in each run 

Run 1 2 3 4 5 6 7 8 

# Mappers 1 2 4 6 8 10 12 14 
 

In our implementation the total number of nodes in use is configured as a command 

line variable, as well as the input file path and output directory. The example command to 

run this algorithm is as follows:  

hadoop jar job/nb-classifier-1.0.jar NaiveBayesJob -inputfile ~/naive-

bayes/input/adult-training-1.data -outputdir ~/naive-bayes/output -numnodes 8 

Where job/naïve-bayes-1.0.jar is the job jar file containing the binary code of the 

implementation 

NaiveBayesJob is the class containing main method 

-inputfile is the input file path 

-outputdir is the output directory 

-numnodes is the number of nodes in use for each run  

Notably all nodes in use will be used as mappers, usually half of the nodes or more 

will be used as reducers during the MapReduce run.  
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4. EXPERIMENTS AND RESULTS 

 

This section describes two experiments.  The first is experiment is the evaluation of 

the Naïve Bayes classifier build on top of the MapReduce model. Five datasets downloaded 

from the UCI Machine Learning Repository are used in our experiments (Table 3).  The 

second experiment is the scalability analysis to see the relationship between the number of 

nodes used in the system and the processing time.  

Table 3. Five experiment datasets 

Name Data Types Attribute Types # Instances # Attributes 

Adult Multivariate 
Categorical, 

Integer 
48842 14 

Car evaluation Multivariate Categorical 1728 6 

Contraceptive Method 

Choice 
Multivariate 

Categorical, 

Integer 
1473 9 

Mushroom Multivariate Categorical 8124 22 

Nursery Multivariate Categorical 12960 8 
 

4.1. Naïve Bayes MapReduce model evaluation 

4.1.1. Experiment 1 – adult dataset 

The adult dataset has 48842 instances and 14 attributes, including 6 continuous 

variables and 8 categorical variables. There are two classes in this dataset, the individual 

income is greater than 50K (>50K) or no greater than 50K (<=50K). Table 4 is a snapshot 

of adult data attributes. All continuous attributes are discretized into 4 bins so that the 

Naïve Bayes algorithm can be employed.  

The original data is divided into training and testing set, where the training set has 

70% of the data and testing set has 30%. 6-fold cross validation is used for parameter 

estimation. In the first run, we use the first fold as testing set, for the second run we use 

the second fold as testing set, and so on. The result accuracy rate for each run is shown in 

Table 5.   
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Table 4. Attribute and its type of adult data 

Attribute Type 

age continuous 

workclass 
Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov, 

Without-pay, Never-worked 

fnlwgt continuous 

education 

Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-

voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th, 

Preschool 

education-

num 
continuous 

marital-status 
Married-civ-spouse, Divorced, Never-married, Separated, Widowed, 

Married-spouse-absent, Married-AF-spouse 

occupation 

Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-

fishing, Transportation-moving, Priv-house-serv, Protective-serv, Armed-

Forces 

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried 

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black 

sex Female, male 

capital-gain continuous 

capital-loss continuous 

hours-per-

week 
continuous 

native-

country 

United-States, Cambodia, England, Puerto-Rico, Canada, Germany, 

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba, 

Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico, 

Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan, 

Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand, 

Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands 
 

Table 5. Accuracy of 6 runs of cross validation for adult data 

Run 1 2 3 4 5 6 

Accuracy rate 0.762563 0.763433 0.763625 0.762413 0.762104 0.76257 

Error rate 0.237437 0.236567 0.236375 0.237587 0.237896 0.23743 

 

From Table 5, we can see that the accuracy rate of each run is very close, we can 

say that there is no bias for each training set. As the error rate of the third run is slightly 

lower than the rest of the runs, we use the estimated model of this run to predict the 

classification of the “unknown” data. The two-by-two contingency table of the Naïve Bayes 

classification result is shown in Table 6.  
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Table 6. The 2-by-2 contingency table of adult data 

 Actual annual income > 50K Actual annual income <= 50K 

Classified to “>50k” tp=612606 fp=599740 

Classified to “<=50K” fn=94603 tn=1623541 
 

Here we define “Actual annual income > 50K” to be true, while “Actual annual 

income <= 50K” to be false. With the contingency table, we can calculate several 

measurement to evaluate the Naïve Bayes classifier.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
= 0.763062 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
= 0.86623 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
= 0.505306 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 0.638279 

For the adult dataset, we are equally concerned about whether we can correctly 

classify each individual to the actual annual income class, no matter >50K or <=50K. So 

here accuracy is our interest of measurement to evaluate the model, 76% of accuracy is an 

acceptable level to predict the income class of an individual.  

4.1.2. Experiment 2 – car evaluation dataset 

The car evaluation dataset has 1728 instances and 6 attributes and all attributes are 

categorical variables, hence there is no need to discretize the data. There are four classes in 

this dataset – unacc (unacceptable), acc (acceptable), good and vgood (very good). Table 7 

is a snapshot of car evaluation data attributes.  

Table 7. Attribute and its type of car evaluation data 

Attribute Type 

buying v-high, high, med, low 

maint v-high, high, med, low 

doors 2, 3, 4, 5-more 

persons 2, 4, more 

lug_boot small, med, big 

safety low, med, high 
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From Table 8, we can see the error rate of the second run is slightly lower than the 

rest of the runs, we use the estimated model of this run to predict the classification of the 

“unknown” data. The four-by-four confusion table of the Naïve Bayes classification result is 

shown in Table 9. The accuracy of the Naïve Bayes classifier is 0.8739.   

Table 8. Accuracy of 6 runs of cross validation for adult data 

Run 1 2 3 4 5 6 

Accuracy 
rate 

0.872490079 0.87409623 0.872574405 0.872980159 0.872780754 0.873262897 

Error rate 0.127509921 0.12590377 0.127425595 0.127019841 0.127219246 0.126737103 

 

Table 9. The 4-by-4 confusion table of car evaluation data 

 unacc acc good vgood 

Classified to “unacc” 1742470 127760 0 0 

Classified to “acc” 70432 433176 68560 39016 

Classified to “good” 3010 15044 31261 0 

Classified to “vgood” 0 0 3021 58250 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
1742470 + 433176 + 31261 + 58250

1742470 + 433176 + 31261 + 58250 + 127760 + 70432 + 68560 + 39016 + 3010 + 31261 + 3021
= 0.8739 

We can see a very promising result accuracy of the classifier that 87.39% of the 

unknown cars are correctly classified to its actual acceptance level. Also, from the 4-by-4 

confusion table, we can see that only a very small portion of unacceptable cars are accepted 

and no good or very good cars are treated as unacceptable cars.  

4.1.3. Experiment 3 – contraceptive method choice dataset 

The contraceptive method choice dataset has 1473 instances and 9 attributes 

including 2 continuous variables and 7 categorical variables. There are three classes in this 

dataset, No-use (1), Long-term (2) and Short-term (3). Table 10 is a snapshot of 

contraceptive method choice data attributes. Attribute “Wife’s age” is discretized into 5 

categories, while attribute “Number of children ever born” is discretized into 8 categories.  

From Table 11, we can see the error rate of the second run is slightly lower than the 

rest of the runs, we use the estimated model of this run to predict the classification of the 
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“unknown” data. The four-by-four confusion table of the Naïve Bayes classification result is 

shown in Table 12. The accuracy of the Naïve Bayes classifier is 0.5182.   

Table 10. Attribute and its type of contraceptive method choice data 

Attribute Type 

Wife’s age continuous 

Wife's education 1=low, 2, 3, 4-high 

Husband's education 1=low, 2, 3, 4-high 

Number of children ever born continuous 

Wife's religion 0=Non-Islam, 1=Islam 

Wife's now working? 0=Yes, 1=No 

Husband's occupation 1, 2, 3, 4 

Standard-of-living index 1=low, 2, 3, 4-high 

Media exposure 0=Good, 1=Not good 
 

Table 11. Accuracy of 6 runs of cross validation for cmc data 

Run 1 2 3 4 5 6 

Accuracy rate 0.51841 0.481698 0.481374 0.48316 0.481007 0.48087 

Error rate 0.48159 0.518302 0.518626 0.51684 0.518993 0.51913 

 

Table 12. The 4-by-4 confusion table of contraceptive method choice data 

 No-use Long-term Short-term 

Classified to “No-use” 1224569 303302 592985 

Classified to “Long-term” 378241 551109 426720 

Classified to “Short-term” 284863 143166 514045 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1224569 + 551109 + 514045

1224569 + 551109 + 514045 + 303302 + 592985 + 378241 + 426720 + 284863 + 143166
= 0.5182 

For this dataset, the Naïve Bayes classifier only classifies 51.82% of the unknown 

data correctly, which is not a very promising result. There could be a couple of reasons that 

the Naïve Bayes classifier is the best very fit for the dataset – the number of instances is 

not sufficient, the attributes are confounded or dependent which degrades its usefulness. 

We can use other classification algorithms to classify this dataset, i.e. linear or logistic 

regression, support vector machine (SVM) etc.  
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4.1.4. Experiment 4 – mushroom dataset 

The mushroom dataset has 8124 instances and 22 attributes and all attributes are 

categorical variables, hence, there is no need to discretize the data. There are two classes in 

this dataset – edible mushroom and poisonous mushroom. Table 13 is a snapshot of 

mushroom data attributes.  

Table 13. Attribute and its type of mushroom data 

Attribute Type 

cap-shape bell=b,  conical=c, convex=x, flat=f, knobbed=k, sunken=s 

cap-surface fibrous=f, grooves=g, scaly=y, smooth=s 

cap-color brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u, 

red=e, white=w, yellow=y 

bruises? bruises=t, no=f 

odor almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n, 

pungent=p, spicy=s 

gill-attachment attached=a, descending=d, free=f, notched=n 

gill-spacing close=c, crowded=w, distant=d 

gill-size broad=b, narrow=n 

gill-color black=k, brown=n, buff=b, chocolate=h, gray=g, green=r, 

orange=o, pink=p, purple=u, red=e, white=w, yellow=y 

stalk-shape enlarging=e, tapering=t 

stalk-root bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r, 

missing=? 

stalk-surface-above-

ring 

fibrous=f, scaly=y, silky=k, smooth=s 

stalk-surface-below-

ring 

fibrous=f, scaly=y, silky=k, smooth=s 

stalk-color-above-

ring 

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, 

white=w, yellow=y 

stalk-color-below-

ring 

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e, 

white=w, yellow=y 

veil-type partial=p, universal=u 

veil-color brown=n, orange=o, white=w, yellow=y 

ring-number none=n, one=o, two=t 

ring-type cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p, 

sheathing=s, zone=z 

spore-print-color black=k, brown=n, buff=b, chocolate=h, green=r, orange=o, 

purple=u, white=w, yellow=y 

population abundant=a, clustered=c, numerous=n, scattered=s, several=v, 

solitary=y 

habitat grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w, 

woods=d 
 

From Table 14, we can see the error rate of the third run is slightly lower than the 

rest of the runs, we use the estimated model of this run to predict the classification of the 
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“unknown” data. The two-by-two contingency table of the Naïve Bayes classification result is 

shown in Table 15.  The accuracy of the Naïve Bayes classifier is 0.9929.   

Table 14. Accuracy of 6 runs of cross validation for adult data 

Run 1 2 3 4 5 6 

Accuracy rate 0.992893 0.992998 0.993112 0.993093 0.992946 0.993043 

Error rate 0.007107 0.007002 0.006888 0.006907 0.007054 0.006957 

 

Table 15. The 2-by-2 contingency table of mushroom data 

 Actual poisonous mushroom Actual edible mushroom 

Classified to “poisonous” tp=1396965 fp=7327 

Classified to “edible” fn=13400 tn=1506948 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
= 0.9929 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
= 0.9905 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
= 0.9948 

𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 0.9926 

Nearly all the unknown instances are correctly classified and our Naïve Bayes 

classifier works perfect for the mushroom dataset. Four measurements – accuracy, recall, 

precision and F measure are all above 99%. This is probably due to the fact that the dataset 

has only two classes for classification and the number of each class in the sample is very 

close, also we have 22 feature attributes for the classification task.  

4.1.5. Experiment 5 – nursery dataset 

The nursery dataset has 12960 instances and 8 attributes and all attributes are 

categorical variables, hence there is no need to discretize the data. There are five classes in 

this dataset – not_recom, recommend, very_recom, priority and spec_prior. Table 16 is a 

snapshot of nursery data attributes.  

From Table 17, we can see the error rate of the third run is slightly lower than the 

rest of the runs, we use the estimated model of this run to predict the classification of the 
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“unknown” data. The five-by-five confusion table of the Naïve Bayes classification result is 

shown in Table 18. The accuracy of the Naïve Bayes classifier is 0.9016.   

Table 16. Attribute and its type of nursery data 

Attribute Type 

parents     usual, pretentious, great_pret 

has_nurs    proper, less_proper, improper, critical, very_crit 

form        complete, completed, incomplete, foster 

children    1, 2, 3, more 

housing     convenient, less_conv, critical 

finance     convenient, inconv 

social      non-prob, slightly_prob, problematic 

health      recommended, priority, not_recom 
 

Table 17. Accuracy of 6 runs of cross validation for adult data 

Run 1 2 3 4 5 6 

Accuracy 
rate 

0.901551834 0.90082523 0.901657654 0.901176504 0.901504711 0.901261656 

Error rate 0.098448166 0.09917477 0.098342346 0.098823496 0.098495289 0.098738344 

 

Table 18. The 5-by-5 confusion table of nursery data 

 not_recom recommend very_recom priority spec_prior 

Classified to “not_recom” 1036881 0 0 0 0 

Classified to “recommend” 0 0 0 0 0 

Classified to “very_recom” 0 0 0 0 0 

Classified to “priority” 0 460 78353 934263 137911 

Classified to “spec_prior” 0 0 0 89381 833144 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1036881 + 934263 + 833144

1036881 + 934263 + 833144 + 460 + 78353 + 137911 + 89381
= 0.9016 

The accuracy our classifier is at a level of 90%, we could say the model is more than 

enough to predict the unknown nursery data. However, from the confusion table we can 

observe that there is no “recommend” or “very recommend” data that is correctly classified, 

in other words, all recommended and very recommended nurses are classified into other 

groups. This is probably due to that there is only 0.015% recommended nurses, and 

2.531% very recommended nurses in our sample dataset. We can use other classifiers like 

support vector machine (SVM), artificial neural networks (ANN), decision tree model, 
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random forest model, etc. for prediction if one or more classes are only a very small portion 

of the entire dataset.  

4.2. Scalability analysis  

The scalability analysis of MapReduce paradigm is performed against the second 

MapReduce job run – file processing. The MapReduce jobs are executed on Hadoop cluster 

hosted in Department of Computer Science at North Dakota State University. The cluster 

has a capacity of 14 virtual machines in total, of which all can be run as a mapper or 

reducer. As discussed in Section 4.6, we have 8 number of nodes setting to perform the 

analysis, and in each setting we run the MapReduce job 10 times because many causes 

which beyond our control could impact the job running time. The running time, recorded in 

seconds, for each nodes setting is shown in Table 19. The relationship between the 

processing time and number of nodes used in the system is displayed in Figure 9.  

Table 19. Running time of each MapReduce run (adult dataset) 

# of nodes 1 2 4 6 8 10 12 14 

Run 1 580.138 247.563 144.346 180.343 173.264 166.43 170.419 109.236 

Run 2 628.37 212.438 143.553 159.669 156.263 160.416 135.408 96.39 

Run 3 461.847 296.547 207.753 193.795 125.923 150.682 147.507 121.023 

Run 4 414.454 356.884 178.595 141.294 167.455 101.43 104.783 101.488 

Run 5 489.227 229.743 239.913 185.745 139.22 142.497 86.317 105.222 

Run 6 417.212 360.798 158.418 152.442 125.362 124.304 113.547 127.382 

Run 7 423.052 354.824 207.46 123.527 132.687 108.234 105.148 122.596 

Run 8 513.744 215.532 123.767 174.659 171.454 105.693 143.478 119.276 

Run 9 449.821 313.728 189.82 129.285 111.402 140.361 144.549 125.232 

Run 10 475.865 309.569 214.681 165.445 95.435 123.343 114.668 110.884 

Average 485.373 289.7626 180.8306 160.6204 139.8465 132.339 126.5824 113.8729 

Std. dev. 71.27059 59.31965 37.46947 23.89855 26.6339 23.20544 25.63301 10.70952 

 

From Figure 9 we can see that the job running time drops significantly from single 

node execution to 4-node processing – in single node run, the node will be used as both 

mapper and reducer, the data flow and I/O will be significantly higher and it could possibly 

suffers from network interruption or outages. With the increasing number of nodes, the 

impact of node failure can be mitigated and jobs can be run in parallel for each block of the 
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data. A 4-node cluster only takes 180 seconds to complete the job as compare to 483 

seconds for single node processing. More nodes can be added to the cluster leveraging the 

horizontal scalability of Hadoop, the job performance can be improved even more with the 

addition of new nodes. However, the improvement is not as significant as the beginning, a 

14-node cluster is only 67 seconds faster than a 4-node cluster. One reason is that the size 

of our data is not very large, a 4-node cluster is sufficient for our needs of scalability. From 

the experiment, we can observe the strong scalability of Hadoop for large-scale data 

processing.  

 

Figure 9. Scalability analysis  
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5. CONCLUSIONS AND FUTURE WORK 

 

Hadoop is the choice of platform for large-scale data processing, its good scalability, 

high availability and fault tolerance gives the industry an approach to retrieve information 

from big data in a reasonably short amount of time. The MapReduce programming model is 

easy to use, people can create MapReduce programs without a detailed understanding of 

the internal system design of Hadoop. Apart from Java, now Hadoop streaming allows 

people to program MapReduce jobs in other languages like R, Python and etc. A number of 

applications are built on top of Hadoop framework to even more advance the large-scale 

data processing technology.  

Machine learning is a field combined with statistics and artificial intelligence to learn 

from data and discover the hidden but valuable information behind data. In the Big Data 

era, machine learning is extremely useful for enterprises to turn the “garbage data” to 

valuable information and help them to make better business decisions.  Researchers have 

done a lot of investigation to distribute machine learning algorithms to expedite the 

computation process. A number of machine learning algorithms have been incorporated into 

Mahout [22], a Java scalable machine library.  

In our study, we built a Naïve Bayes classifier by leveraging the MapReduce function 

and also perform a scalability analysis to see the relationship between the running time and 

the size of the cluster. It turns out that, without reducing the accuracy, a distributed Naïve 

Bayes classifier has a much higher performance compared with the running of the algorithm 

on a single machine. A MapReduce version of the Naïve Bayes classifier turns out to be 

extremely efficient when dealing with large amount of data.  

Our work in this paper is only a small step towards leveraging machine learning 

algorithms using the MapReduce model. In the future, one direction can be experimenting 

with more machine learning algorithms using MapReduce and using Mahout API to 

benchmark our experiments. The other option could be to understand more internal system 
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design of Hadoop framework so to better utilize our cluster resources for the job we 

created, for example, investigating the optimal number of mappers and reducers used for a 

job to maximize the throughput of our large-scale data processing jobs.  
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