

NAÏVE BAYES CLASSIFIER: A MAPREDUCE APPROACH

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

SONGTAO ZHENG

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

October 2014

Fargo, North Dakota

North Dakota State University
 Graduate School

 Title

Naïve Bayes Classifier: A MapReduce Approach

 By

SONGTAO ZHENG

The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted

standards for the degree of

 MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

 Dr. Simone Ludwig

Chair

Dr. Saeed Salem

Dr. Yarong Yang

 Approved by Department Chair: Dr. Brian Slator

11/14/14

Dr. Brian M. Slator

Date Signature

iii

ABSTRACT

Machine learning algorithms have the advantage of making use of the powerful

Hadoop distributed computing platform and the MapReduce programming model to process

data in parallel. Many machine learning algorithms have been investigated to be

transformed to the MapReduce paradigm in order to make use of the Hadoop Distributed

File System (HDFS). Naïve Bayes classifier is one of the supervised learning classification

algorithm that can be programmed in form of MapReduce. In our study, we build a Naïve

Bayes MapReduce model and evaluate the classifier on five datasets based on the prediction

accuracy. Also, a scalability analysis is conducted to see the speedup of the data processing

time with the increasing number of nodes in the cluster. Results show that running the

Naïve Bayes MapReduce model across multiple nodes can save considerate amount of time

compared with running the model against a single node, without sacrificing the classification

accuracy.

iv

ACKNOWLEDGEMENTS

I would like to express my thanks to my adviser, Dr. Simone Ludwig. Her advice,

guidance and support helped a lot in my research of Big Data technologies. Also, I sincerely

appreciate her time to improve the quality of my paper. I also would like to think the rest of

my committee, Dr. Saeed Salem and Dr. Yarong Yang, for their encouragement and

insightful comments.

I also thank my parents and grandma for their continuous support during my

studying in United States, and thank my girlfriend L. M. for her support during my

preparation of my defense.

v

DEDICATION

This thesis is dedicated to my grandma. For her endless love, support and encouragement

through my life.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

DEDICATION ... v

LIST OF TABLES ...viii

LIST OF FIGURES .. ix

1. INTRODUCTION ... 1

1.1. Big Data .. 1

1.2. Hadoop overview .. 2

1.3. Word count example ... 4

2. MACHINE LEARNING AND NAÏVE BAYES .. 7

2.1. Large scale machine learning.. 7

2.2. Statistical machine learning .. 7

2.2.1. Unsupervised learning ... 7

2.2.2. Supervised learning .. 8

2.3. Naïve Bayes classification algorithm .. 8

2.3.1. Formulation ... 9

2.3.2. Parameter estimation .. 9

2.3.3. Measurement of Naïve Bayes classifier .. 10

2.3.4. Validation of Naïve Bayes classifier.. 12

3. IMPLEMENTATION .. 14

3.1. Overview ... 14

vii

3.2. Implementation choice .. 15

3.3. File preprocessing ... 15

3.3.1. Data augmentation ... 15

3.3.2. Data split and cross validation .. 16

3.3.3. Data discretization .. 16

3.4. File processing and parameter estimation .. 18

3.4.1. Naïve Bayes MapReduce model ... 18

3.4.2. Parameter estimation and classification ... 20

3.4.3. Model evaluation... 21

3.5. Scalability analysis .. 21

4. EXPERIMENTS AND RESULTS... 23

4.1. Naïve Bayes MapReduce model evaluation ... 23

4.1.1. Experiment 1 – adult dataset ... 23

4.1.2. Experiment 2 – car evaluation dataset ... 25

4.1.3. Experiment 3 – contraceptive method choice dataset 26

4.1.4. Experiment 4 – mushroom dataset ... 28

4.1.5. Experiment 5 – nursery dataset .. 29

4.2. Scalability analysis .. 31

5. CONCLUSIONS AND FUTURE WORK ... 33

6. REFERENCES ... 35

viii

LIST OF TABLES

Table Page

1. The 2-by-2 contingency table .. 11

2. Number of nodes used in each run ... 22

3. Five experiment datasets .. 23

4. Attribute and its type of adult data .. 24

5. Accuracy of 6 runs of cross validation for adult data .. 24

6. The 2-by-2 contingency table of adult data ... 25

7. Attribute and its type of car evaluation data.. 25

8. Accuracy of 6 runs of cross validation for adult data .. 26

9. The 4-by-4 confusion table of car evaluation data .. 26

10. Attribute and its type of contraceptive method choice data 27

11. Accuracy of 6 runs of cross validation for cmc data .. 27

12. The 4-by-4 confusion table of contraceptive method choice data 27

13. Attribute and its type of mushroom data ... 28

14. Accuracy of 6 runs of cross validation for adult data ... 29

15. The 2-by-2 contingency table of mushroom data ... 29

16. Attribute and its type of nursery data ... 30

17. Accuracy of 6 runs of cross validation for adult data ... 30

18. The 5-by-5 confusion table of nursery data ... 30

19. Running time of each MapReduce run ... 31

ix

LIST OF FIGURES

Figure Page

1. Illustration of the MapReduce framework .. 3

2. Hadoop Distributed File System (HDFS) architecture .. 4

3. Word count map and reduce flow .. 6

4. Implementation overview ... 15

5. PreprocessMapper.java .. 17

6. PreprocessReducer.java ... 17

7. ProcessMapper.java ... 19

8. ProcessReducer.java .. 19

9. Scalability analysis .. 32

1

1. INTRODUCTION

1.1. Big Data

With the prevalence of Web 2.0, Big Data is a heated topic nowadays and is

generally believed to be the next big thing in the IT world [1]. Web 2.0 allows the

individuals to be connected with each other and share their interpersonal contents online,

and enables companies to provide their services online for customers. As a result of the

Web 2.0, e-commerce [2] and social networks [3] are starting to build up vast databases of

customer activity and wish to generate additional values from it. As well as financial

services [4], healthcare [5], telecommunication [6] and many other services, they are

beginning to capture more and more data to gain more insights and help them make

business decisions. Big Data does not link to any specific quantity of data, but is a general

term used to describe the massive amount of digital information a company creates – which

takes too much time and costs too much money to be analyzed with traditional computing

techniques.

To get a handle on the problems of traditional computing techniques, people have

used “three Vs” of volume, velocity and variety to describe the challenges of Big Data [7].

Whereas the volume of data is the biggest challenge of Big Data, it offers us a lot of

opportunities. Being able to store and process a vast amount of data raises the possibility of

a variety of different activities – disease diagnosis, customer behavior tracking, healthcare

services planning, and climate modeling, etc. These tasks usually involve petabytes or even

exabytes of data to store and process which goes beyond the capability of traditional

database technologies. We need a new system that is capable to overcome the limitations of

traditional hardware solutions and scale our Big Data [8]. Velocity is also one of the issues

of Big Data. Web 2.0, cloud computing, and the prevalence of mobile devices lead the data

to flow into the organizations in an exponential rate that easily dwarfs the traditional

computing technologies. Many applications like online video streaming and gaming require

2

the data to be transferred at an exceptionally high velocity, which poses a great pressure to

the IT systems [9]. Variety is another characteristic of Big Data, with the digital information

many organizations captured becomes increasingly diverse and dense. Voluminous amount

of unstructured and semi-structured data that companies create, like photographs, video

and audio etc., poses a great challenge with traditional technologies. Big Data in reality is

messy and massive data, pre-processing and data cleansing is a necessity before any

computing effort can be performed [10].

1.2. Hadoop overview

Due to the challenges brought up by volume, velocity and variety, a new technology

is required for Big Data. Apache Hadoop is playing a leading role in the Big Data field

currently and it is the first viable platform for Big Data analytics. Hadoop is an open-source

software framework for scalable, reliable, distributed computing system that is capable of

getting a handle on Big Data’s “three Vs” challenges. Originally inspired by Google’s

MapReduce [11] and Google File System (GFS) [12], what Hadoop does is to use a simple

programming model to process large-scale datasets across clusters of machines and

distribute the storage. Since the data processing is running on a cluster of machines, it is

necessary to deal with node failure that is likely to occur during the course of the

processing. Instead of relying on highly expensive servers with high fault tolerance, Hadoop

handles node failure itself through its service, which is able to detect the node failure in the

cluster and re-distribute the data to other available machines. In addition, Hadoop sets up a

scheme to protect it from losing the metadata of the distributed environment. Therefore,

Hadoop becomes widely employed by many organizations because of its reliability and

scalability to process vast quantities of data with an affordable cost of distributed computing

infrastructure [13].

Hadoop consists of two important elements. The first high-performance distributed

data processing framework called MapReduce. Hadoop breaks down the datasets into

multiple partitions and distribute its storage over the cluster. MapReduce performs data

3

processing on each servers against the blocks of data residing on that machine – which

saves a great amount of time due to parallel processing. This emits intermediate summaries

which are aggregated and resolved to the final result in a reduce stage. Specifically, the

MapReduce paradigm consists of two major steps: map step and reduce step (as shown in

Figure 1) – the map step converts the input partition of data into a key/value pair which

operates parallel in the cluster, and the reduce task collects the data, performs some

computation and resolves them into a single value. When the MapReduce is running on

distributed file systems like HDFS, because of HDFS’s natural data locality property, the

tasks will always operate on the node closest to the residence of the data block. This

significantly reduces the I/O cost during the data computation, which allows the parallel

data processing to be exceedingly fast [14].

Figure 1. Illustration of the MapReduce framework

The second element of Hadoop is the Hadoop Distributed File System (HDFS), which

permits high-bandwidth computation and distributed low-cost storage which is essential for

Big Data tasks. Figure 2 shows a basic architecture of HDFS, there is one NameNode and

multiple DataNodes, where NameNode manages all of the file system metadata and

DataNodes stores the blocks of datasets (represented by b1, b2, b3, etc.). When the

datasets are loaded into HDFS, HDFS will distribute the storage of the data across the

4

cluster in a way that will be reliable and can be retrieved faster. A typical HDFS data block

size is 64 – 128MB and each partition of data is replicated to multiple nodes. The scale-out

architecture gives Hadoop a superb horizontal scalability and significantly increases the

availability and fault tolerance of the distributed system [15].

Figure 2. Hadoop Distributed File System (HDFS) architecture

1.3. Word count example

The word count example is a classic example to get started with the Hadoop and

MapReduce development. Understanding the word count example is very important for

understanding other variations of MapReduce programs. The idea of the word count

example is basically to count the number of occurrences of each word of a given input file.

Just like any other MapReduce programs, the word count example also runs in two

phases, first the map step on mappers and then the reduce step on reducers. However,

before running map and reduce tasks for the word count example, we must first load our

input data into the Hadoop Distributed File System (HDFS). Given a large size input file,

HDFS will split the input data into several blocks and replicate the blocks to the available

nodes in the clusters, which is the key for Hadoop to realize its high availability and fault

tolerance.

In the map phase, the content in the given input file will be tokenized and a list of

key/value pairs will be formed with key being the each word and value being ‘1’. For

instance, say we have a file with content “hello world bye world”, the key-value pairs

5

generated after the map step will be like: <hello, 1>, <world, 1>, <bye, 1>, <world, 1>.

In the reduce phase, the intermediate key-value pair from the mapper are sent to the

reducers and the pairs with the same key are aggregated and resolved to a single key-value

pair. Again, from the above example, the output from the reducers will be like: <hello, 1>,

<world, 2>, <bye, 1>. The output gives the information of the words and their occurrences

in the given file.

In HDFS, the default block size is 64MB, which means the data will be partitioned

into multiple blocks if the size is greater than 64MB. Each block of data will have 3 copies

evenly distributed across all the nodes in case of the node failure. Each mapper loads the

set of data local to that machine and processes them. Figure 3 gives the illustration of how

map and reduce tasks are performed in word count example. For simplicity, we only have

two input files and having 4 words in each file. In the map task, we assume the content of

each file is stored in separate mappers in HDFS, i.e. “Hello Hadoop” and “Bye Hadoop” are

passed to different mapper instances. The mapper instances will process the block data

concurrently and emit the intermediate key-value pair. When the mapping phase has

completed, there is a shuffle and sort process in which the intermediate key-value pair is

exchanged between machines to send all values with the same key to a single reducer. In

our example, two <Hadoop, 1> pairs will be placed in the same reducer. In the reduce task,

a reducer receives an iterator of key-value pairs and combines them into a single output

value. For example, two <Hadoop, 1> pairs will be aggregated as a single key-value pair

<Hadoop, 2>.

6

Figure 3. Word count map and reduce flow

7

2. MACHINE LEARNING AND NAÏVE BAYES

2.1. Large scale machine learning

Machine learning is a technology that has strong ties to statistics and optimization to

learn from the existing data to explore hidden valuable information. It has become one of

the most popular techniques for knowledge discovery and predictive analytics, especially

with the current exponentially growing amount of data from science, business and

healthcare, etc. Many applications, like spam filtering [16], advertisement targeting [17],

computer vision [18], and bioinformatics [19], etc., have adopted machine learning

algorithms to better guide their decisions. Machine learning algorithms can be roughly

divided into supervised learning and unsupervised learning. With the domination of

distributed computing system in large scale data processing, parallel programming models

are developed to speed up machine learning algorithms in multi-core environment [20].

Although some complicated machine learning tasks are difficult to address with the

MapReduce paradigm, the MapReduce programming model implemented in the Hadoop

platform is the choice to improve the performance for machine learning algorithms [21].

Currently, Mahout - a scalable machine learning library is available to support large data set

processing [22].

2.2. Statistical machine learning

2.2.1. Unsupervised learning

Unsupervised learning is used in the problem of learning from a collection of data

instances with no training labels. The purpose of unsupervised learning is to discover the

under-the-hood cluster pattern of the given collection of data. Clustering is one of the most

popular fields of study in unsupervised learning, and it has been widely employed in data

mining applications [23]. Clustering techniques have been studied for many years and many

learning algorithms have been proposed and improved, such as k-means clustering [24],

fuzzy clustering [25], DBSCAN [26], etc.

8

2.2.2. Supervised learning

Supervised learning considers the problems of estimating a model from data samples

with label information. Each input data instance in the sample is associated with

corresponding training labels, which is assumed to be a supervised process. A broad family

of statistical learning theories have been investigated to achieve risk minimization and

generalization maximization in the learning tasks [27]. There are many new machine

learning algorithms for applications that are developed based on those statistical theories.

Among them, regression based learning is concerned with modeling the relationship

between variables that are iteratively refined using a measure of error in the predictions

made by the model [28], such as logistic regression, ordinary least squares etc., which have

excellent performance in a range of applications, especially for classification tasks. Also,

there is kernel based machine learning approach, which is the state-of-art methodology in

real-world applications. This approach maps input data into a higher dimensional vector

space where some classification or regression problems are easier to model [29]. The

example of kernel based algorithms are support vector machine (SVM) and linear

discriminant analysis (LDA).

2.3. Naïve Bayes classification algorithm

The Naïve Bayes algorithm is one of the most important supervised machine learning

algorithms for classification. This classifier is a simple probabilistic classifier based on

applying Bayes’ theorem as follows:

P(A|B) =
𝑃(𝐵|𝐴) 𝑃(𝐴)

𝑃(𝐵)

Naïve Bayes classification has an assumption that attribute probabilities P(𝑥𝑖|𝑐𝑗) are

independent given the class 𝑐𝑗, where 𝑥𝑖 is i
th attribute of the data instance. This assumption

reduces the complexity of the problem to practical and can be solved easily. Despite the

simplification of the problem, the Naïve Bayes classifier still gives us a high degree of

accuracy.

9

2.3.1. Formulation

For a data instance d and a class c, based on the Bayes theorem we have:

P(c|d) =
𝑃(𝑑|𝑐) 𝑃(𝑐)

𝑃(𝑑)

Where P(c|d) is the probability of a class given a data instance. 𝑃(𝑑|𝑐) is the probability of a

data instance given the class, 𝑃(𝑐) is the probability of the class, and 𝑃(𝑑) is the probability

of a document. P(c|d) is the probability we use to choose the class, specifically, we are

looking for a class that maximizes P(c|d) out of all classes for a given data instance as shown

in the following equation:

𝑐𝑀𝐴𝑃 = argmax
𝑐∈𝐶

𝑃(𝑐|𝑑) = argmax
𝑐∈𝐶

𝑃(𝑑|𝑐)𝑃(𝑐)

𝑃(𝑑)
= argmax

𝑐∈𝐶
𝑃(𝑑|𝑐)𝑃(𝑐)

Where 𝑐𝑀𝐴𝑃 is the class that has maximum a posteriori (MAP), or maximum probability

P(c|d). Notably, the probability of the data instance is a constant, which is dropped from the

equation above. We call 𝑃(𝑑|𝑐) the likelihood, which is the probability of a given class, and

call 𝑃(𝑐) the prior, which is the probability of the class. We can represent 𝑃(𝑑|𝑐) to be the

probability of a vector of attributes conditioning on the class, as follows:

𝑐𝑀𝐴𝑃 = argmax
𝑐∈𝐶

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑐)𝑃(𝑐)

With the assumption that the attribute probabilities P(𝑥𝑖|𝑐𝑗) are independent given the class

c, we have the probability of a set of attributes given the class to be the product of a whole

bunch of independent probabilities.

𝑃(𝑥1, 𝑥2, … , 𝑥𝑛|𝑐) = 𝑃(𝑥1|𝑐) ∙ 𝑃(𝑥2|𝑐) ∙ 𝑃(𝑥3|𝑐) ∙ … ∙ 𝑃(𝑥𝑛|𝑐)

Hence the best class of Naïve Bayes classifier will be:

𝑐𝑁𝐵 = argmax
𝑐∈𝐶

𝑃(𝑐) ∏ 𝑃(𝑥|𝑐)

𝑥∈𝑋

2.3.2. Parameter estimation

Upon obtaining the mathematical model of the Naïve Bayes classifier, the next step

is to estimate the parameters in the model – the prior of each class and the distributions of

10

attributes. The prior of the class P(c) can be estimated by simply calculating an estimate for

the probability of the class in our training sample:

P(c) =
𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

With regard to estimation of attribute distributions, there are three models that are

widely used in applications – Gaussian Naïve Bayes, Multinomial Naïve Bayes and Bernoulli

Naïve Bayes. Gaussian Naïve Bayes is mostly used when dealing with continuous data, while

the other two models is well suited for discrete data. For multinomial Naïve Bayes, the

probability of ith attribute has value a conditioning on a given class 𝑃(𝐴𝑖 = 𝑎|𝑐) can be

estimated by using the training dataset:

𝑃(𝐴𝑖 = 𝑎 | 𝑐) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑖𝑡ℎ 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐴𝑖 𝑤𝑖𝑡ℎ 𝑣𝑎𝑙𝑢𝑒 𝑎

𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠 𝑐 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

2.3.3. Measurement of Naïve Bayes classifier

The starting point for understanding the measure of the Naïve Bayes algorithm is the

following two by two contingency table (Table 1). There are essentially four states for any

particular piece of data we evaluate. On one axis we choose whether this piece of data

correctly belongs to a class or whether it does not correctly belong to a class, and thus this

axis we describe as truth. Now, we build a Naïve Bayes classifier that tries to detect the

truth and the classifier will tell us the data belongs to which class. Therefore, there are four

possibilities that occur – true positive (tp), true negative (tn), false positive (fp) and false

negative (fn). For example, if the truth of the data instance is correct and we select it, then

it is a true positive. Another possibility is that our classifier does not say it it correct, then it

is a false negative. On the other hand, it is possible that the instance is not correct in which

case there are two possibilities – our classifier mistakenly classifies the instance to the

“correct” category, which is called false positive, or our classifier correctly places the

instance into the “not correct” category, which is called true negative.

11

Table 1. The 2-by-2 contingency table

 correct not correct

selected tp fp

not selected fn tn

1) Accuracy

Accuracy is the first reasonable measure to look at. Accuracy equals the true

positives, plus the true negatives over all four classes (true positives, true negatives, false

positives and false negatives). In many applications, accuracy is a useful measure for the

Naïve Bayes classifier. But there is a particular scenario when dealing with things that are

uncommon, in which the accuracy is not a useful measure. For example, 99.99% of the data

are from category A, while only 0.01% is from the counterpart category B. So, we will have

99.99% of accuracy even when our classifier assigned all data into category B, which is

apparently undesired. For this situation, precision and recall are used as the measurement

of our classifier.

Accuracy =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

2) Recall

Recall is the percentage of correct items that are selected. By applying recall as a

measurement, the above-mentioned situation for accuracy can be resolved. Simply

assigning all items to category A will give zero recall, which turns out to be an undesired

classifier. In various applications, such as for things like legal applications, where you want

to find all of the appropriate evidence, such as in discovery procedures. What you really

want to do is having a classifier that has high recall, that finds as much of the relevant

items as possible. In other words, you do not want relevant evidences left unselected.

Recall =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

3) Precision

Precision is the percentage of selected items that are correct. Precision can also be a

resolution for the condition when dealing with uncommon things. In some contexts, you

12

might be more interested in precision over recall. For example, you want to show customers

some merchandises that are good (correct), and do not care that only 1/10 or 1/20 of the

things do satisfy their query.

Precision =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

We see the tradeoff that balances between recall and precision, because inevitably if

you increase your recall then you are going to make some mistakes hence the precision

goes down. The more you try and boost recall, the more your precision is starting to drop.

So people are trading off precision and recall and the tradeoff is played out differently in

different applications. If it is important to find the correct items returned then you should

choose to have a high precision, while you will need a high recall classifier if you try to find

all correct things. But sometimes people want to determine which classifier is better and

need a way to compare, and the F measure is proposed to combine precision and recall.

4) F measure

F measure is a combined measure that assesses the precision and recall tradeoff and

is basically a weighted harmonic mean of precision (P) and recall (R):

F =
1

𝛼
1
𝑃

+ (1 − 𝛼)
1
𝑅

=
(𝛽2 + 1)𝑃𝑅

𝛽2𝑃 + 𝑅

Where α is the coefficient that weights precision or recall, people usually use balanced F1

measure as the measurement:

F1 =
2𝑃𝑅

𝑃 + 𝑅

2.3.4. Validation of Naïve Bayes classifier

If we use the same data set for both the training and testing phase of the algorithm,

the outcome will be overly optimistic [30]. Hence in order to obtain a better estimate of the

model parameters and simulate real-world situation, the testing sample is not included in

the training and acts as “unknown” data. After the training phase is completed, then we

apply the model against the testing sample to see the outcome accuracy of the model.

13

1) Holdout validation

Holdout method is the simplest validation method, in this method the original data

set is partitioned into a training and testing set. The training set is solely used for model

parameter estimation, and the testing set is used for the validation of the model prediction

accuracy [31]. This method works when there are no dependencies in the chosen training

sample, however, this is not always guaranteed. It is very likely that the instances in the

training sample are correlated, which causes a bias in the model estimate.

2) K-fold cross validation

In order to improve the estimate of holdout validation, k-fold cross validation is

introduced. In this method, the data set is divided into K subsets, in each of K runs, 1

subset is used for testing and the remaining K − 1 subsets are used for training. The error

rate of the model is the average of all K error rates. After K runs, we choose the model

which has the lowest error rate and apply it against the “unknown” data to see the outcome

accuracy. Although k-fold cross validation cost K times computation compared with holdout

validation, but it opts out the possible bias in the model estimation.

14

3. IMPLEMENTATION

3.1. Overview

In this section, we describe the implementation and development details of building

the Naïve Bayes classifier using the MapReduce paradigm. The implementation contains five

steps: data preparation, data preprocessing, data processing using MapReduce, data

classification using Naïve Bayes algorithm, and classifier evaluation. We downloaded 5

datasets (adult, car-evaluation, contraceptive method choice, mushroom, and nursery) from

the University of California Irvine (UCI) Machine Learning Repository [32], all of the

datasets are multivariate of categorical or integer variables and default for classification

tasks. In the data preprocessing stage, we augmented the original datasets to gigabyte

level so to better leverage the powerful Hadoop computing capability. Also, the dataset is

divided into two parts: one for model training and the other are treated as “unknown” data

for model testing. We use cross validation to find the estimated model with the highest

accuracy. If there are continuous attributes in our dataset, a preprocessing MapReduce job

is performed to discretize the continuous variables. After preprocessing is done, we load the

preprocessed data into HDFS, and perform map and reduce tasks against the data. In this

step, we are able to obtain the number of occurrences of an attribute with a specific value

given a certain class. With the result from the MapReduce task, we can compute the prior,

likelihood, and hence posterior for each class, and then assign the instance to a class.

Finally, we count the number of instance correctly and wrongly classified to get an overall

accuracy of the estimated model. The overview of the implementation diagram is shown in

Figure 4.

15

Figure 4. Implementation overview

3.2. Implementation choice

Hadoop is written in Java, although Hadoop streaming supports many languages to

enjoy the advantages offered by Hadoop platform, MapReduce is still most commonly

written in Java [33]. The Hadoop version I used is cdh4.2.0 – a Cloudera distribution of

Apache Hadoop. The project is built and packaged using Apache Maven. In our

implementation, we construct explicit mapper and reducer functions in Java. My choice of

development environment is Eclipse.

3.3. File preprocessing

3.3.1. Data augmentation

Hadoop is designed for large scale data processing while suffering a performance

penalty when dealing with small datasets [34, 35]. If you have data measured in terabyte

or even petabyte, the superior scalability of Hadoop will save you a considerable amount of

money and time. However, if you only have megabytes of data, then Hadoop is not the

choice as its performance will be significantly lower and is no competitor for Excel or other

SQL tools. Hadoop Wiki suggests that since the map/reduce setup takes for a while, so

ideally we should at least allow the map task to execute for a minute [36]. The five datasets

16

downloaded from UCI Machine Learning Repository only have their size at a few megabytes

level, which is not suitable for Hadoop experiment. Hence, I augmented the datasets by

concatenating the copy of data to a much greater size so that Hadoop can distinguish the

environment warm-up time and the actual data processing time. The size of the augmented

data is still not ideal for Hadoop to show its strong scaling capability, which usually goes

beyond terabytes or even exabytes, however, this is sufficient for our experiments.

3.3.2. Data split and cross validation

In order to test the accuracy of our Naïve Bayes classifier, we randomly take 70% of

instances for model training and the remaining 30% for model testing. The testing data set

is treated as “unknown” data, which is never involved in the training process. This is

considered to be a resemble of the real-world and will not get overoptimistic estimates. The

training dataset is divided into 6 folds and cross validation is performed to eliminate the bias

within the dataset. There are in total 6 runs for cross validation and in each run we in turn

pick 1 of 6 folds as the testing set and the rest for training. Finally we choose the estimated

model with lowest error rate. The selected model will be applied to the “unknown” data for

classification. We calculate the accuracy of the classifier based on the number of instances

correctly and wrongly estimated.

3.3.3. Data discretization

There are two of five datasets – adult and contraceptive method choice - that have

mixed categorical and continuous variables, and therefore, we have to discretize the

continuous variables in the datasets so as to apply the Naïve Bayes classifier. Instead of

using the Gaussian distribution assumption to estimate mean and variance of continuous

variables, we use binning to categorize continuous feature attributes, to obtain a new set of

Bernoulli-distributed attributes [37]. The number of bins can be customized, but usually a

more finely spaced bin can reduce the discretization error with an increasing cost of

computation [38]. In order to correctly categorize continuous variables, it is required to

obtain the range of the variable. We dump the data into HDFS and perform an additional

17

MapReduce job to find the maximum and minimum value of each continuous variable. This

step saves us additional time compared with the traditional approach because the

computation can be done in parallel across the cluster. Below is the snippet of MapReduce

source code in the preprocessing step:

The mapper class source code is shown in Figure 5.

public class PreprocessMapper extends Mapper<LongWritable, Text, Text,

DoubleWritable> {

 protected void map(LongWritable key, Text value, Context context) throws

IOException, InterruptedException

 {...}

}

Figure 5. PreprocessMapper.java

Input key: the offset of the beginning of the line from the beginning of the file [39]

Input value: the string content of the line

Output key: attribute name (i.e. age)

Output value: attribute value (i.e. 29)

Where only continuous variables and their values are sent to the reducers.

The reducer class source code is shown in Figure 6.

public class PreprocessReducer extends Reducer<Text, DoubleWritable, Text,

DoubleWritable>

{

 protected void reduce(Text key, Iterable<DoubleWritable> values, Context

context) throws IOException, InterruptedException

 {...}

}

Figure 6. PreprocessReducer.java

Input key: attribute name

Input value: attribute value

Output key: attribute name_min or attribute name_max (i.e. age_min, age_max)

Output value: minimum or maximum value of the attribute

Notably, the output key/value of the mapper should be identical to the input

key/value of the reducer. The reduce function takes a list of value output from the map

function and resolves to a single maximum and minimum value of a continuous variable.

18

We store the output from the preprocessing step as a SequenceFile, a flat file

consisting of binary key/value pairs, which is also internally used for temporary map output

[40]. Using SequenceFile as the intermediate output format increases the performance

when there are multiple MapReduce jobs run in consecutive.

The remaining three datasets (car-evaluation, mushroom and nursery) do not have

continuous feature attributes, hence, there is no need to run data discretization step on

those three datasets.

3.4. File processing and parameter estimation

File processing is the key step for our Naïve Bayes classifier implementation. We

build a MapReduce model to estimate the parameters in the model – prior and likelihood of

a given class. The model is able to handle large scale Naïve Bayes classification tasks due to

the distributed nature of the MapReduce paradigm.

3.4.1. Naïve Bayes MapReduce model

Naïve Bayes is one of the machine learning algorithms that can be applied against

the MapReduce paradigm [41]. For simplicity, suppose there are only two classes 𝑐1 and 𝑐2

for classification and each data instance has M attributes (mostly with discrete value). In

order to estimate the parameters in the Naïve Bayes model, i.e. P(𝑐𝑗) and 𝑃(𝐴𝑖 = 𝑎|𝑐𝑗), where

P(𝑐𝑗) is the prior of class 𝑐𝑗 (j = 1 or 2), and 𝑃(𝐴𝑖 = 𝑎|𝑐𝑗) is the likelihood of the ith attribute, 𝐴𝑖

has value a (i = 1, 2, … , M) conditioning on class 𝑐𝑗, we need to get the total number of

instances in the sample, namely N, occurrences of class 𝑐𝑗 in the sample, namely 𝑁𝑗, and

number of instances having ith attribute 𝐴𝑖 with value a in the sample namely 𝑛𝑖. By iterating

through the sample, we can obtain N and 𝑁𝑗.

For the next step we use the MapReduce model to obtain the value of 𝑛𝑖. In the map

task it takes a line as input and converts the content of the line into a key/value pair, where

the key is a combination of the class, attribute and its attribute value, namely a unique

19

string with a form like 𝐴𝑖_𝑎𝑖_𝑐𝑗, the value is 1. The source code snippet of the map function is

shown in Figure 7.

public class ProcessMapper extends Mapper<LongWritable, Text, Text,

IntWritable>

{

 protected transient HashMap<String, Double> _map;

 protected void setup(Context context) throws IOException,

InterruptedException

 {...}

 protected void map(LongWritable key, Text value, Context context) throws

IOException, InterruptedException

 {...}

 private void createContKey(String attribute, String value, String

category, int bin, Context context) throws IOException, InterruptedException

 {...}

 private void createDiscKey(String attributes, String value, String

category, Context context) throws IOException, InterruptedException

 {...}

}

Figure 7. ProcessMapper.java

Input key: the offset of the beginning of the line from the beginning of the file

Input value: the string content of the line

Output key: attribute name_attribute value_class (i.e. age_0_<=50K,

education_Masters_>50K)

Output value: 1

In the reduce task, the values of the same key is added up and a single key/value

pair is emitted, where the key is the unique string combination and the value is the count of

the occurrences of such string combination. The reducer class source code is shown in

Figure 8.

public class ProcessReducer extends Reducer<Text, IntWritable, Text,

IntWritable>

{

 protected void reduce(Text key, Iterable<IntWritable> values, Context

context) throws IOException, InterruptedException

 {...}

}

Figure 8. ProcessReducer.java

Input key: attribute name_attribute value_class (i.e. age_0_<=50K,

education_Masters_>50K)

20

Input value: 1

Output key: attribute name_attribute value_class (i.e. age_0_<=50K,

education_Masters_>50K)

Output value: number of instances having ith attribute 𝐴𝑖 with value a in the sample

𝑛𝑖

The reduce function takes a list of 1’s from the map function and resolves to a single

count.

3.4.2. Parameter estimation and classification

With the MapReduce approach, we are able to process the file in multiple nodes in

parallel and significantly expedite the performance compared with running on single node.

From the output of the MapReduce run, we can easily obtain the prior and likelihood for

each class by:

P(𝑐𝑗) =
𝑁𝑗

𝑁

P(𝐴𝑖 = a | 𝑐𝑗) =
𝑛𝑖

𝑁𝑗

For every instance d, according to Bayes’ theorem we have the posterior for instance d:

P(𝑐𝑗|d) ∝ P(𝑐𝑗) ∗ P(𝐴1 = 𝑎1 | 𝑐𝑗) ∗ P(𝐴2 = 𝑎2 | 𝑐𝑗) ∗ … ∗ P(𝐴𝑀 = 𝑎𝑀 | 𝑐𝑗)

If P(𝑐1|d) is greater than P(𝑐2|d), we classify data instance d to class 𝑐1, otherwise we classify

it to 𝑐2. Sometimes it is necessary to use log likelihood instead of likelihood to avoid floating

point overflow, then we have:

P(𝑐𝑗|d) ∝ log P(𝑐𝑗) + log P(𝐴1 = 𝑎1 | 𝑐𝑗) + log P(𝐴2 = 𝑎2 | 𝑐𝑗) + ⋯ + log P(𝐴𝑀 = 𝑎𝑀 | 𝑐𝑗)

Notably, it is possible that an attribute value does not occur in every class, which will lead to

a zero likelihood estimate for that class. To get a handle on this zero-frequency issue, we

added a value 1 to the count of every attribute value-class combination. Also, as discussed

in Section 4.3.3, if we have continuous feature attributes that exist, a preprocessing job is

required to categorize the continuous variable before we estimate the parameters using the

MapReduce model.

21

3.4.3. Model evaluation

In the cross validation step, we apply the Naïve Bayes MapReduce model developed

in our study for each of the 6 runs and select the model with the highest accuracy. The

chosen model will be used to classify the “unknown” data. Finally, we count the number of

instances correctly and wrongly classified, and hence, obtain the model accuracy. If the

dataset has only two classes, we can also calculate the recall, precision, and F measure for

our classifier.

3.5. Scalability analysis

Horizontal scalability is necessary for large-scale data processing. By adding more

nodes to the system, the computation can be distributed across the nodes and run in

parallel [42]. This not only significantly reduces the hardware cost, but also processing

time. In this section, we will conduct a scalability analysis to discover how Hadoop

horizontal scalability improves the performance of the system, and the relationship between

the processing time and the number of nodes used in the system. Notably, map and reduce

tasks take time to warm up, so it is recommended that the task takes at least one minute to

run. The implementation of the Naïve Bayes algorithms have two MapReduce jobs –

preprocess file, and process file – here we only study the second MapReduce job. Different

number of nodes are used to process the data, i.e. single node and 2, 4, 6, 8, 10, 12, 14

nodes are used for each run to split the data to be sent to the mappers (shown in Table 2).

Number of reduce tasks actually spawned will be less than the number of mappers but

determined by Hadoop internally. The running time is recorded by placing a timestamp at

the beginning and end of the method. Table 2 shows the number of mappers and reducers

used for each run. Since node failure could happen and there are many variables that could

impact the running time, for each node setting we perform 10 runs and take the average as

the running time reported.

22

Table 2. Number of nodes used in each run

Run 1 2 3 4 5 6 7 8

Mappers 1 2 4 6 8 10 12 14

In our implementation the total number of nodes in use is configured as a command

line variable, as well as the input file path and output directory. The example command to

run this algorithm is as follows:

hadoop jar job/nb-classifier-1.0.jar NaiveBayesJob -inputfile ~/naive-

bayes/input/adult-training-1.data -outputdir ~/naive-bayes/output -numnodes 8

Where job/naïve-bayes-1.0.jar is the job jar file containing the binary code of the

implementation

NaiveBayesJob is the class containing main method

-inputfile is the input file path

-outputdir is the output directory

-numnodes is the number of nodes in use for each run

Notably all nodes in use will be used as mappers, usually half of the nodes or more

will be used as reducers during the MapReduce run.

23

4. EXPERIMENTS AND RESULTS

This section describes two experiments. The first is experiment is the evaluation of

the Naïve Bayes classifier build on top of the MapReduce model. Five datasets downloaded

from the UCI Machine Learning Repository are used in our experiments (Table 3). The

second experiment is the scalability analysis to see the relationship between the number of

nodes used in the system and the processing time.

Table 3. Five experiment datasets

Name Data Types Attribute Types # Instances # Attributes

Adult Multivariate
Categorical,

Integer
48842 14

Car evaluation Multivariate Categorical 1728 6

Contraceptive Method

Choice
Multivariate

Categorical,

Integer
1473 9

Mushroom Multivariate Categorical 8124 22

Nursery Multivariate Categorical 12960 8

4.1. Naïve Bayes MapReduce model evaluation

4.1.1. Experiment 1 – adult dataset

The adult dataset has 48842 instances and 14 attributes, including 6 continuous

variables and 8 categorical variables. There are two classes in this dataset, the individual

income is greater than 50K (>50K) or no greater than 50K (<=50K). Table 4 is a snapshot

of adult data attributes. All continuous attributes are discretized into 4 bins so that the

Naïve Bayes algorithm can be employed.

The original data is divided into training and testing set, where the training set has

70% of the data and testing set has 30%. 6-fold cross validation is used for parameter

estimation. In the first run, we use the first fold as testing set, for the second run we use

the second fold as testing set, and so on. The result accuracy rate for each run is shown in

Table 5.

24

Table 4. Attribute and its type of adult data

Attribute Type

age continuous

workclass
Private, Self-emp-not-inc, Self-emp-inc, Federal-gov, Local-gov, State-gov,

Without-pay, Never-worked

fnlwgt continuous

education

Bachelors, Some-college, 11th, HS-grad, Prof-school, Assoc-acdm, Assoc-

voc, 9th, 7th-8th, 12th, Masters, 1st-4th, 10th, Doctorate, 5th-6th,

Preschool

education-

num
continuous

marital-status
Married-civ-spouse, Divorced, Never-married, Separated, Widowed,

Married-spouse-absent, Married-AF-spouse

occupation

Tech-support, Craft-repair, Other-service, Sales, Exec-managerial, Prof-

specialty, Handlers-cleaners, Machine-op-inspct, Adm-clerical, Farming-

fishing, Transportation-moving, Priv-house-serv, Protective-serv, Armed-

Forces

relationship Wife, Own-child, Husband, Not-in-family, Other-relative, Unmarried

race White, Asian-Pac-Islander, Amer-Indian-Eskimo, Other, Black

sex Female, male

capital-gain continuous

capital-loss continuous

hours-per-

week
continuous

native-

country

United-States, Cambodia, England, Puerto-Rico, Canada, Germany,

Outlying-US(Guam-USVI-etc), India, Japan, Greece, South, China, Cuba,

Iran, Honduras, Philippines, Italy, Poland, Jamaica, Vietnam, Mexico,

Portugal, Ireland, France, Dominican-Republic, Laos, Ecuador, Taiwan,

Haiti, Columbia, Hungary, Guatemala, Nicaragua, Scotland, Thailand,

Yugoslavia, El-Salvador, Trinadad&Tobago, Peru, Hong, Holand-Netherlands

Table 5. Accuracy of 6 runs of cross validation for adult data

Run 1 2 3 4 5 6

Accuracy rate 0.762563 0.763433 0.763625 0.762413 0.762104 0.76257

Error rate 0.237437 0.236567 0.236375 0.237587 0.237896 0.23743

From Table 5, we can see that the accuracy rate of each run is very close, we can

say that there is no bias for each training set. As the error rate of the third run is slightly

lower than the rest of the runs, we use the estimated model of this run to predict the

classification of the “unknown” data. The two-by-two contingency table of the Naïve Bayes

classification result is shown in Table 6.

25

Table 6. The 2-by-2 contingency table of adult data

 Actual annual income > 50K Actual annual income <= 50K

Classified to “>50k” tp=612606 fp=599740

Classified to “<=50K” fn=94603 tn=1623541

Here we define “Actual annual income > 50K” to be true, while “Actual annual

income <= 50K” to be false. With the contingency table, we can calculate several

measurement to evaluate the Naïve Bayes classifier.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
= 0.763062

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
= 0.86623

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
= 0.505306

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 0.638279

For the adult dataset, we are equally concerned about whether we can correctly

classify each individual to the actual annual income class, no matter >50K or <=50K. So

here accuracy is our interest of measurement to evaluate the model, 76% of accuracy is an

acceptable level to predict the income class of an individual.

4.1.2. Experiment 2 – car evaluation dataset

The car evaluation dataset has 1728 instances and 6 attributes and all attributes are

categorical variables, hence there is no need to discretize the data. There are four classes in

this dataset – unacc (unacceptable), acc (acceptable), good and vgood (very good). Table 7

is a snapshot of car evaluation data attributes.

Table 7. Attribute and its type of car evaluation data

Attribute Type

buying v-high, high, med, low

maint v-high, high, med, low

doors 2, 3, 4, 5-more

persons 2, 4, more

lug_boot small, med, big

safety low, med, high

26

From Table 8, we can see the error rate of the second run is slightly lower than the

rest of the runs, we use the estimated model of this run to predict the classification of the

“unknown” data. The four-by-four confusion table of the Naïve Bayes classification result is

shown in Table 9. The accuracy of the Naïve Bayes classifier is 0.8739.

Table 8. Accuracy of 6 runs of cross validation for adult data

Run 1 2 3 4 5 6

Accuracy
rate

0.872490079 0.87409623 0.872574405 0.872980159 0.872780754 0.873262897

Error rate 0.127509921 0.12590377 0.127425595 0.127019841 0.127219246 0.126737103

Table 9. The 4-by-4 confusion table of car evaluation data

 unacc acc good vgood

Classified to “unacc” 1742470 127760 0 0

Classified to “acc” 70432 433176 68560 39016

Classified to “good” 3010 15044 31261 0

Classified to “vgood” 0 0 3021 58250

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
1742470 + 433176 + 31261 + 58250

1742470 + 433176 + 31261 + 58250 + 127760 + 70432 + 68560 + 39016 + 3010 + 31261 + 3021
= 0.8739

We can see a very promising result accuracy of the classifier that 87.39% of the

unknown cars are correctly classified to its actual acceptance level. Also, from the 4-by-4

confusion table, we can see that only a very small portion of unacceptable cars are accepted

and no good or very good cars are treated as unacceptable cars.

4.1.3. Experiment 3 – contraceptive method choice dataset

The contraceptive method choice dataset has 1473 instances and 9 attributes

including 2 continuous variables and 7 categorical variables. There are three classes in this

dataset, No-use (1), Long-term (2) and Short-term (3). Table 10 is a snapshot of

contraceptive method choice data attributes. Attribute “Wife’s age” is discretized into 5

categories, while attribute “Number of children ever born” is discretized into 8 categories.

From Table 11, we can see the error rate of the second run is slightly lower than the

rest of the runs, we use the estimated model of this run to predict the classification of the

27

“unknown” data. The four-by-four confusion table of the Naïve Bayes classification result is

shown in Table 12. The accuracy of the Naïve Bayes classifier is 0.5182.

Table 10. Attribute and its type of contraceptive method choice data

Attribute Type

Wife’s age continuous

Wife's education 1=low, 2, 3, 4-high

Husband's education 1=low, 2, 3, 4-high

Number of children ever born continuous

Wife's religion 0=Non-Islam, 1=Islam

Wife's now working? 0=Yes, 1=No

Husband's occupation 1, 2, 3, 4

Standard-of-living index 1=low, 2, 3, 4-high

Media exposure 0=Good, 1=Not good

Table 11. Accuracy of 6 runs of cross validation for cmc data

Run 1 2 3 4 5 6

Accuracy rate 0.51841 0.481698 0.481374 0.48316 0.481007 0.48087

Error rate 0.48159 0.518302 0.518626 0.51684 0.518993 0.51913

Table 12. The 4-by-4 confusion table of contraceptive method choice data

 No-use Long-term Short-term

Classified to “No-use” 1224569 303302 592985

Classified to “Long-term” 378241 551109 426720

Classified to “Short-term” 284863 143166 514045

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1224569 + 551109 + 514045

1224569 + 551109 + 514045 + 303302 + 592985 + 378241 + 426720 + 284863 + 143166
= 0.5182

For this dataset, the Naïve Bayes classifier only classifies 51.82% of the unknown

data correctly, which is not a very promising result. There could be a couple of reasons that

the Naïve Bayes classifier is the best very fit for the dataset – the number of instances is

not sufficient, the attributes are confounded or dependent which degrades its usefulness.

We can use other classification algorithms to classify this dataset, i.e. linear or logistic

regression, support vector machine (SVM) etc.

28

4.1.4. Experiment 4 – mushroom dataset

The mushroom dataset has 8124 instances and 22 attributes and all attributes are

categorical variables, hence, there is no need to discretize the data. There are two classes in

this dataset – edible mushroom and poisonous mushroom. Table 13 is a snapshot of

mushroom data attributes.

Table 13. Attribute and its type of mushroom data

Attribute Type

cap-shape bell=b, conical=c, convex=x, flat=f, knobbed=k, sunken=s

cap-surface fibrous=f, grooves=g, scaly=y, smooth=s

cap-color brown=n, buff=b, cinnamon=c, gray=g, green=r, pink=p, purple=u,

red=e, white=w, yellow=y

bruises? bruises=t, no=f

odor almond=a, anise=l, creosote=c, fishy=y, foul=f, musty=m, none=n,

pungent=p, spicy=s

gill-attachment attached=a, descending=d, free=f, notched=n

gill-spacing close=c, crowded=w, distant=d

gill-size broad=b, narrow=n

gill-color black=k, brown=n, buff=b, chocolate=h, gray=g, green=r,

orange=o, pink=p, purple=u, red=e, white=w, yellow=y

stalk-shape enlarging=e, tapering=t

stalk-root bulbous=b, club=c, cup=u, equal=e, rhizomorphs=z, rooted=r,

missing=?

stalk-surface-above-

ring

fibrous=f, scaly=y, silky=k, smooth=s

stalk-surface-below-

ring

fibrous=f, scaly=y, silky=k, smooth=s

stalk-color-above-

ring

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,

white=w, yellow=y

stalk-color-below-

ring

brown=n, buff=b, cinnamon=c, gray=g, orange=o, pink=p, red=e,

white=w, yellow=y

veil-type partial=p, universal=u

veil-color brown=n, orange=o, white=w, yellow=y

ring-number none=n, one=o, two=t

ring-type cobwebby=c, evanescent=e, flaring=f, large=l, none=n, pendant=p,

sheathing=s, zone=z

spore-print-color black=k, brown=n, buff=b, chocolate=h, green=r, orange=o,

purple=u, white=w, yellow=y

population abundant=a, clustered=c, numerous=n, scattered=s, several=v,

solitary=y

habitat grasses=g, leaves=l, meadows=m, paths=p, urban=u, waste=w,

woods=d

From Table 14, we can see the error rate of the third run is slightly lower than the

rest of the runs, we use the estimated model of this run to predict the classification of the

29

“unknown” data. The two-by-two contingency table of the Naïve Bayes classification result is

shown in Table 15. The accuracy of the Naïve Bayes classifier is 0.9929.

Table 14. Accuracy of 6 runs of cross validation for adult data

Run 1 2 3 4 5 6

Accuracy rate 0.992893 0.992998 0.993112 0.993093 0.992946 0.993043

Error rate 0.007107 0.007002 0.006888 0.006907 0.007054 0.006957

Table 15. The 2-by-2 contingency table of mushroom data

 Actual poisonous mushroom Actual edible mushroom

Classified to “poisonous” tp=1396965 fp=7327

Classified to “edible” fn=13400 tn=1506948

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛
= 0.9929

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
= 0.9905

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
= 0.9948

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 0.9926

Nearly all the unknown instances are correctly classified and our Naïve Bayes

classifier works perfect for the mushroom dataset. Four measurements – accuracy, recall,

precision and F measure are all above 99%. This is probably due to the fact that the dataset

has only two classes for classification and the number of each class in the sample is very

close, also we have 22 feature attributes for the classification task.

4.1.5. Experiment 5 – nursery dataset

The nursery dataset has 12960 instances and 8 attributes and all attributes are

categorical variables, hence there is no need to discretize the data. There are five classes in

this dataset – not_recom, recommend, very_recom, priority and spec_prior. Table 16 is a

snapshot of nursery data attributes.

From Table 17, we can see the error rate of the third run is slightly lower than the

rest of the runs, we use the estimated model of this run to predict the classification of the

30

“unknown” data. The five-by-five confusion table of the Naïve Bayes classification result is

shown in Table 18. The accuracy of the Naïve Bayes classifier is 0.9016.

Table 16. Attribute and its type of nursery data

Attribute Type

parents usual, pretentious, great_pret

has_nurs proper, less_proper, improper, critical, very_crit

form complete, completed, incomplete, foster

children 1, 2, 3, more

housing convenient, less_conv, critical

finance convenient, inconv

social non-prob, slightly_prob, problematic

health recommended, priority, not_recom

Table 17. Accuracy of 6 runs of cross validation for adult data

Run 1 2 3 4 5 6

Accuracy
rate

0.901551834 0.90082523 0.901657654 0.901176504 0.901504711 0.901261656

Error rate 0.098448166 0.09917477 0.098342346 0.098823496 0.098495289 0.098738344

Table 18. The 5-by-5 confusion table of nursery data

 not_recom recommend very_recom priority spec_prior

Classified to “not_recom” 1036881 0 0 0 0

Classified to “recommend” 0 0 0 0 0

Classified to “very_recom” 0 0 0 0 0

Classified to “priority” 0 460 78353 934263 137911

Classified to “spec_prior” 0 0 0 89381 833144

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1036881 + 934263 + 833144

1036881 + 934263 + 833144 + 460 + 78353 + 137911 + 89381
= 0.9016

The accuracy our classifier is at a level of 90%, we could say the model is more than

enough to predict the unknown nursery data. However, from the confusion table we can

observe that there is no “recommend” or “very recommend” data that is correctly classified,

in other words, all recommended and very recommended nurses are classified into other

groups. This is probably due to that there is only 0.015% recommended nurses, and

2.531% very recommended nurses in our sample dataset. We can use other classifiers like

support vector machine (SVM), artificial neural networks (ANN), decision tree model,

31

random forest model, etc. for prediction if one or more classes are only a very small portion

of the entire dataset.

4.2. Scalability analysis

The scalability analysis of MapReduce paradigm is performed against the second

MapReduce job run – file processing. The MapReduce jobs are executed on Hadoop cluster

hosted in Department of Computer Science at North Dakota State University. The cluster

has a capacity of 14 virtual machines in total, of which all can be run as a mapper or

reducer. As discussed in Section 4.6, we have 8 number of nodes setting to perform the

analysis, and in each setting we run the MapReduce job 10 times because many causes

which beyond our control could impact the job running time. The running time, recorded in

seconds, for each nodes setting is shown in Table 19. The relationship between the

processing time and number of nodes used in the system is displayed in Figure 9.

Table 19. Running time of each MapReduce run (adult dataset)

of nodes 1 2 4 6 8 10 12 14

Run 1 580.138 247.563 144.346 180.343 173.264 166.43 170.419 109.236

Run 2 628.37 212.438 143.553 159.669 156.263 160.416 135.408 96.39

Run 3 461.847 296.547 207.753 193.795 125.923 150.682 147.507 121.023

Run 4 414.454 356.884 178.595 141.294 167.455 101.43 104.783 101.488

Run 5 489.227 229.743 239.913 185.745 139.22 142.497 86.317 105.222

Run 6 417.212 360.798 158.418 152.442 125.362 124.304 113.547 127.382

Run 7 423.052 354.824 207.46 123.527 132.687 108.234 105.148 122.596

Run 8 513.744 215.532 123.767 174.659 171.454 105.693 143.478 119.276

Run 9 449.821 313.728 189.82 129.285 111.402 140.361 144.549 125.232

Run 10 475.865 309.569 214.681 165.445 95.435 123.343 114.668 110.884

Average 485.373 289.7626 180.8306 160.6204 139.8465 132.339 126.5824 113.8729

Std. dev. 71.27059 59.31965 37.46947 23.89855 26.6339 23.20544 25.63301 10.70952

From Figure 9 we can see that the job running time drops significantly from single

node execution to 4-node processing – in single node run, the node will be used as both

mapper and reducer, the data flow and I/O will be significantly higher and it could possibly

suffers from network interruption or outages. With the increasing number of nodes, the

impact of node failure can be mitigated and jobs can be run in parallel for each block of the

32

data. A 4-node cluster only takes 180 seconds to complete the job as compare to 483

seconds for single node processing. More nodes can be added to the cluster leveraging the

horizontal scalability of Hadoop, the job performance can be improved even more with the

addition of new nodes. However, the improvement is not as significant as the beginning, a

14-node cluster is only 67 seconds faster than a 4-node cluster. One reason is that the size

of our data is not very large, a 4-node cluster is sufficient for our needs of scalability. From

the experiment, we can observe the strong scalability of Hadoop for large-scale data

processing.

Figure 9. Scalability analysis

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

R
u

n
n

in
g

ti
m

e
in

 s
ec

o
n

d
s

Number of nodes in use

Scalability analysis

33

5. CONCLUSIONS AND FUTURE WORK

Hadoop is the choice of platform for large-scale data processing, its good scalability,

high availability and fault tolerance gives the industry an approach to retrieve information

from big data in a reasonably short amount of time. The MapReduce programming model is

easy to use, people can create MapReduce programs without a detailed understanding of

the internal system design of Hadoop. Apart from Java, now Hadoop streaming allows

people to program MapReduce jobs in other languages like R, Python and etc. A number of

applications are built on top of Hadoop framework to even more advance the large-scale

data processing technology.

Machine learning is a field combined with statistics and artificial intelligence to learn

from data and discover the hidden but valuable information behind data. In the Big Data

era, machine learning is extremely useful for enterprises to turn the “garbage data” to

valuable information and help them to make better business decisions. Researchers have

done a lot of investigation to distribute machine learning algorithms to expedite the

computation process. A number of machine learning algorithms have been incorporated into

Mahout [22], a Java scalable machine library.

In our study, we built a Naïve Bayes classifier by leveraging the MapReduce function

and also perform a scalability analysis to see the relationship between the running time and

the size of the cluster. It turns out that, without reducing the accuracy, a distributed Naïve

Bayes classifier has a much higher performance compared with the running of the algorithm

on a single machine. A MapReduce version of the Naïve Bayes classifier turns out to be

extremely efficient when dealing with large amount of data.

Our work in this paper is only a small step towards leveraging machine learning

algorithms using the MapReduce model. In the future, one direction can be experimenting

with more machine learning algorithms using MapReduce and using Mahout API to

benchmark our experiments. The other option could be to understand more internal system

34

design of Hadoop framework so to better utilize our cluster resources for the job we

created, for example, investigating the optimal number of mappers and reducers used for a

job to maximize the throughput of our large-scale data processing jobs.

35

6. REFERENCES

[1] J. Bughin, M. Chui, and J. Manyika. 2010. “Clouds, big data, and smart assets: Ten tech-

enabled business trends to watch”. McKinsey Quarterly 56(1), pp. 75-86.

[2] R. Kohavi, L. Mason, R. Parekh, and Z. Zheng. 2004. “Lessons and challenges from

mining retail e-commerce data” Machine Learning 57(1-2), pp. 83-113.

[3] K. Chard, S. Caton, O. Rana, and K. Bubendorfer. 2010. “Social cloud: Cloud computing

in social networks." In IEEE 3rd International Conference on Cloud Computing, pp. 99-

106.

[4] R. Bryant, R. H. Katz, and E. D. Lazowska. 2008. “Big-Data Computing: Creating

Revolutionary Breakthroughs in Commerce, Science and Society”. In Computing

Research Initiatives for the 21st Century. Computing Research Association.

[5] Zaslavsky, C. Perera, and D. Georgakopoulos. 2013. “Sensing as a service and big

data”. International Conference on Advances in Cloud Computing, pp. 21-29.

[6] K. McKelvey, A. Rudnick, M. D. Conover and F. Menczer. 2012. “Visualizing

communication on social media: Making big data accessible”. arXiv preprint

arXiv:1202.1367.

[7] P. Zikopoulos and C. Eaton. 2011. “Understanding big data: Analytics for enterprise

class hadoop and streaming data”. McGraw-Hill Osborne Media.

[8] S. Madden. 2012. “From databases to big data”. IEEE Internet Computing, 16(3), 0004-

6.

[9] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money. 2013. “Big data: Issues and

challenges moving forward.”. In System Sciences (HICSS), 46th Hawaii International

Conference on (pp. 995-1004). IEEE.

[10] P. Laube. 2014. “Grand Challenges in Computational Movement Analysis”. In

Computational Movement Analysis (pp. 81-87). Springer International Publishing.

36

[11] J. Dean and S. Ghemawat. 2004. “MapReduce: simplified data processing on large

clusters”. Communications of the ACM, 51(1), pp. 107-113.

[12] S. Ghemawat, H. Gobioff and S. Leung. 2003. “The Google file system”. Proceedings of

the nineteenth ACM symposium on Operating systems principles.

[13] P. Zikopoulos. 2012. “Understanding Big Data: Analytics for Enterprise Class Hadoop

and Streaming Data”. New York: McGraw-Hill.

[14] Z. Guo, G. Fox and M. Zhou. 2012. “Investigation of Data Locality in MapReduce”.

Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing.

[15] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. 2010. “The hadoop distributed file

system”. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on (pp. 1-10). IEEE.

[16] T. Guzella and W. Caminhas. 2009. “A review of machine learning approaches to Spam

filtering”. Expert Systems With Applications 36(7), pp. 10206–10222.

[17] W. Yih, J. Goodman and V. Carvalho. 2006. “Finding advertising keywords on web

pages”. Proceedings of the 15th international conference on World Wide Web.

[18] E. Rosten and T. Drummond. 2006. “Machine learning for high-speed corner detection”.

Proceedings of the 9th European conference on Computer Vision - Volume Part I.

[19] P. Baldi and S. Brunak. 1998. “Bioinformatics: The machine learning approach”.

Cambridge, Mass: MIT Press.

[20] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng and K. Olukotun. 2006. “Map-Reduce

for Machine Learning on Multicore”. NIPS.

[21] D. Gillick, A. Faria and J. DeNero. 2006. “MapReduce: Distributed Computing for

Machine Learning”. Berkeley Dec.

[22] S. Owen, R. Anil, T. Dunning and E. Friedman. 2011. “Mahout in action”. Manning.

[23] A. K. Jain and M. N. Murty. 1999. “Data clustering: A review”. ACM Computing

Surveys, 32(3), pp. 264-323.

37

[24] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman and A. Y. Wu.

2002. “An efficient k-means clustering algorithm: Analysis and implementation”. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 24(7), pp. 881-892.

[25] I. Gath and A. B. Geva. 1989. “Unsupervised optimal fuzzy clustering”. Pattern Analysis

and Machine Intelligence, IEEE Transactions on, 11(7), pp. 773-780.

[26] Y. F. Yu and A. W. Zhou. 2011. “An Improved Algorithm of DBSCAN”. Computer

Technology and Development, 21(2), pp. 30-33.

[27] V. N. Vapnik. 1999. “An overview of statistical learning theory”. Neural Networks, IEEE

Transactions on, 10(5), pp. 988-999.

[28] J. Friedman, T. Hastie and R. Tibshirani. 2000. “Additive logistic regression: a statistical

view of boosting (with discussion and a rejoinder by the authors)”. The annals of

statistics, 28(2), pp. 337-407.

[29] K. Muller, S. Mika, G. Ratsch, K. Tsuda and B. Scholkopf. 2001. “An introduction to

kernel-based learning algorithms”. Neural Networks, IEEE Transactions on, 12(2), pp.

181-201.

[30] S. C. Larson. 1931. “The shrinkage of the coefficient of multiple correlation”. Journal of

Educational Psychology 22(1), pp. 45-55.

[31] S. Arlot and A. Celisse. 2010. “A survey of cross-validation procedures for model

selection”. Statistics surveys 4, pp. 40-79.

[32] “UCI Machine Learning Repository” [Online]. Available: http://archive.ics.uci.edu/ml/.

[Accessed 09/01/2014]

[33] T. G. Addair, D. A. Dodge, W. R. Walter and S. D. Ruppert. 2014. “Large-scale seismic

signal analysis with Hadoop”. Computers & Geosciences 66, pp. 145-154.

[34] X. Liu, J. Han, Y. Zhong, C. Han and X. He. 2009. “Implementing WebGIS on Hadoop:

A case study of improving small file I/O performance on HDFS”. Cluster Computing and

Workshops, IEEE International Conference on.

http://archive.ics.uci.edu/ml/

38

[35] N. Mohandas, and S. M. Thampi. 2011. “Improving Hadoop performance in handling

small files”. Advances in Computing and Communications 193, pp. 187-194.

[36] “Hadoop Wiki - Partitioning your job into maps and reduces” [Online]. Available:

http://wiki.apache.org/hadoop/HowManyMapsAndReduces. [Accessed 09/01/2014]

[37] D. Keren. 2002. “Painter identification using local features and naive bayes”. In Pattern

Recognition Proceedings. 16th International Conference on (Vol. 2, pp. 474-477). IEEE.

[38] A. Gray, M. Wingate, C. T. Davies, E. Gulez, G. P. Lepage, Q. Mason, M. Nobes and J.

Shigemitsu. 2005. “B-meson decay constant from unquenched lattice QCD”. Physical

review letters, 95(21), 212001.

[39] T. White. 2012. “Hadoop: The definitive guide”. Yahoo Press.

[40] “Hadoop Wiki - SequenceFile” [Online]. Available:

http://wiki.apache.org/hadoop/SequenceFile. [Accessed 09/01/2014]

[41] S. B. Kim, K. S. Han, H. C. Rim and S. H. Myaeng. 2006. “Some effective techniques

for naive bayes text classification”. Knowledge and Data Engineering, IEEE Transactions

18(11), pp. 1457-1466.

[42] R. McCreadie, C. Macdonald and I. Ounis. 2011. “MapReduce indexing strategies:

Studying scalability and efficiency”. Information Processing and Management 48(5), pp.

873-888.

http://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://wiki.apache.org/hadoop/SequenceFile

