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ABSTRACT 

Number of nature inspired algorithms is proposed to solve complex optimization 

problems. The Krill Herd algorithm is one such biologically-inspired algorithm, proposed to 

solve optimization problems in response to biological and environmental processes. It is mainly 

based on the simulation technique of the herding behavior of the krill swarms. The objective 

function is defined as the combination of minimum distance of the krill individual from food and 

from the highest density of the swarm. The position of the krill individual is mainly influenced 

by three important factors, (i) movement induced by other krill individuals, (ii) foraging activity, 

and (iii) random diffusion. The process is mimicked to find optimum solution of the algorithm. 

In this paper, I implemented and evaluated the algorithm using five different benchmark 

functions, namely Alpine, Ackley, Griewank, Rastrigin and Sphere. The results obtained are 

satisfactory and proves the Krill herd algorithm’s efficiency in solving the optimization 

problems. 
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1. INTRODUCTION 

Optimization can be defined as the act of achieving the best possible solution to a 

problem under given circumstance. The interest in the field of optimization has been enormously 

increased since the late fifties and various theories have been proposed to provide an optimum 

solution. The optimization problems in the real world are very challenging and hard to solve. 

Solving such hard problems requires using optimization tools. Also, the optimization tools may 

or may not provide the optimum solution depending on the degree of difficulty of the problem. 

As a result, various optimization techniques came into practice. Additionally, many new 

algorithms are proposed to solve these kinds of challenging optimization problems. 

In the process of optimization, there are many decisions that are to be taken according to 

the constraints. The goal of these decisions is to either minimize or maximize the solution to 

constrained optimization problems. Here, the solution can be referred to as a function of certain 

design variables. Hence, we can say optimization is the process of finding the conditions that 

give the maximum or the minimum value of a function. The word optimum can mean either 

‘maximum’ or ‘minimum’ based on the circumstances. 

Optimization problems are always encountered in different fields such as in Engineering, 

Mathematics, and Sciences, etc. And there is no one single method that is available to solve all 

kinds of optimization problems. Hence, various numbers of theories have come into existence 

and are still undergoing continuous development to provide efficient solutions to the complex 

optimization problems based on some criterion.  

Metaheuristic algorithms have become a prominent source in providing solutions to the 

optimization problems, and are proven to be efficient when compared to the other conventional 

methods followed based on the Linear and Non-Linear programming [1]. It has mainly two 
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phases, firstly it searches for the current best solution and the best individuals, and secondly, the 

search space is explored thoroughly keeping in mind all the constraints [2]. This procedure 

ensures the algorithm to be faster and also makes it capable of solving larger search spaces [3]. 

Always, nature has been one of the inspirations to many of the research areas. As such, 

the nature inspired algorithms came into existence. All the existing algorithms are divided into 

four categories depending upon the source of inspiration namely, Swarm intelligence based, Bio-

inspired based, Physics/Chemistry based, and others [4]. This division is emphasized based upon 

the focus and perspective of the search criteria. For example: population-based and trajectory-

based in case of Particle Swarm Optimization [5] and Simulated Annealing [6]. If the focus is 

upon the interaction between the individuals, they can be categorized as attractive based and 

non-attractive-based and so on. Here, the classifications are done mainly considering the actual 

perspective and the motivations behind it along with the sources of inspiration. 

 Among all, Particle Swarm Optimization, Firefly algorithm [7] etc., have gained 

importance due to their efficiency. Currently, about 40 different algorithms are used in practice. 

Classification of these algorithms systematically is a tedious task. 

1.1. Swarm Intelligence Algorithms 

The Swarm Intelligence (SI) algorithms are based upon the simulation of the collective, 

emerging behavior of individuals following some simple rules. Each individual in the solution 

space is considered to be not very intelligent, the whole system of multiple individuals exhibit 

self-organization behavior, thus showing some collective intelligence. 

The SI based algorithms are inspired from the collective behavior of the insects, like ants, 

bees, wasps, etc., and also from different animal categories like flock of birds, or fish, etc. Few 

popular algorithms of Swarm Intelligence are: (i) Particle Swarm Optimization (PSO), proposed 
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by Eberhart and Kennedy, where the algorithm uses the swarming behavior of fish or birds etc. 

(ii) Firefly Algorithm (FA), which uses the flashing behavior of swarming fireflies. (iii) Ant 

Colony Optimization [8], which uses the interaction of the social insects like ants. Similarly, 

cuckoo search [2] uses the brooding parasitism of cuckoos; bat algorithm [9] uses the 

echolocation of foraging bats; bee algorithm [10] uses the foraging behavior of the honey bees. 

The Swarm Intelligence algorithms are popular and widely used in practice, mainly the 

reason being the sharing of information between multiple individuals making self-organization 

over the iterations highly efficient. Also, Swarm intelligence can be parallelized so that large-

scale optimization implementations appear more practical in nature. 

1.2. Bio-Inspired Optimization Algorithms 

Among all the Nature Inspired Algorithms, the Bio Inspired Algorithms is one of the 

main categories of Nature Inspired Meta-heuristic Algorithms. These algorithms also can be said 

as a super class to the Swarm Intelligence based algorithms.  

 The Swarm Intelligence algorithms follow the swarming behavior of the individuals 

whereas the Bio Inspired algorithms indirectly follow the swarming behavior of the individuals. 

For example, Genetic Algorithms [11] fall under Bio-inspired algorithms rather than Swarm 

Intelligence based. Similarly, the Flower Algorithm [12], where it is a culmination of the 

pollination characteristics of flowering plants and associated flower consistency of pollinating 

insects. 

 The Bio-inspired Algorithms in turn can be categorized into 

(i) Evolutionary Algorithms,  

(ii) Bacterial Foraging Algorithms 
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1.2.1. Evolutionary Algorithms 

The emphasis of the Evolutionary algorithms is on the genetic evolution process. They 

are also said to be inspired by natural selection and biological modeling of evolution. The 

Evolution helps the species adapt to their environments. The factors that influence the survival of 

the individuals may include climate, the availability of the food, presence of predators, etc. It is 

modeled on natural processes, such as Selection, Mutation, Crossover, and Neighborhood, etc. 

The environment is constrained around the parameters and in return improves the generation of 

potential solutions over iterations [13].  

These algorithms work on a population of solutions rather than a single solution. The 

algorithm applies the principle of survival over iterations to produce better and better results to a 

solution. The algorithm randomly initializes the population and the objective function is 

evaluated on them. The individuals are selected for the production of the next generation 

depending on their fitness values in the current generation. The individuals are recombined to 

produce the offspring, and then the fitness of the offspring is evaluated. The offspring replaces 

the parents producing the new generation, and the process continues until the optimization 

criterion is reached. 

Evolutionary algorithms are capable of providing a number of potential solutions for a 

given problem. It generally uses the probabilistic methods rather than the deterministic methods. 

Stud Genetic Algorithm (SGA) [14] is one such evolutionary algorithm where it uses only the 

best individual at each of the iteration for the crossover. 

 Following the Evolutionary Genetic Algorithms, many approaches have been proposed as 

an improvement of the Genetic Programming [15] for non-linear system modelling. Some of 

them are Multi-stage GP [16], where the simulations are based on the effect of the predictor 
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variable as well as the interactions between the variables, this algorithm is proposed by Gandomi 

and Alavi; and Biogeography based optimization (BBO) [17] proposed by Simon. 

1.2.2. Bacterial Foraging Algorithms 

The Bacterial Foraging Optimization [18] technique is introduced to provide approximate 

solutions to extremely difficult or impossible numeric problems. The algorithm follows a 

probabilistic approach and simulation is based upon the food seeking and the reproductive 

behavior of the bacteria. Computing Systems of Microbial Interactions and Communications 

(COSMIC) [19] and Rule Based Bacterial Modelling (RUBAM) [20] are few famous Bacterial 

Foraging Algorithms in the current generation and wide research is taking place in this area. 

The Krill Herd (KH) [21] algorithm is a meta-heuristic algorithm that is inspired by the 

bio-based swarm intelligence algorithm. The algorithm is modelled on the simulation of the 

herding behavior of the Krill Swarms. The distance from the food and from the highest density 

of the swarm forms the objective function of the krill individuals. The time-dependent position 

of the krill individuals is mainly influenced by the following three factors: 

(i) Movement induced by other krill individuals 

(ii) Foraging Activity 

(iii)Random Diffusion 

The objective function of the krill individuals is evaluated against the above factors and 

the best krill and the best position is determined over the iterations until the optimization criteria 

are reached. The algorithm is evaluated a number of times with respect to the changes in the 

number of iterations per run, population size, problem dimension, and number of runs.  

Here, the algorithm is implemented in Eclipse environment using Java language and 

tested against five different benchmark functions. Various test cases are considered to validate 
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the performance of the algorithm. The results are tabulated and shown in graphical 

representations. Comparisons were made to study the performance of the algorithm with respect 

to others. 

The paper is organized as follows: Chapter 2 describes the Krill Herd Algorithm, 

Lagrangian model, and characteristics of the algorithm, formulation and the herding behavior of 

the krill individuals. Chapter 3 describes the experimental set up and the results obtained during 

the evaluation. Chapter 4 concludes the study with ideas for future work. 
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2. KRILL HERD ALGORITHM 

The Krill Herd Algorithm was first proposed by Gandomi and Alavi in 2012 [21]. This is 

a Bio-Inspired Optimization Algorithm. This algorithm is proposed to solve complex engineering 

optimization problems. This algorithm studies the herding behavior of the krill swarms 

considering the factors influencing the position of the krill individually as well as in the herd. 

The algorithm is evaluated using various benchmark functions to test its efficiency. Also, it has 

been compared with other eight well know methods for the best optimum solution obtained. 

2.1. Herding Behavior of Krill Swarms 

Nature has always been an interesting topic in the area of research. One of the topics is 

identifying the grouping mechanism of various animal species. The formations are usually non-

organized and not regular in manner. Many studies have taken place in order to understand the 

technique behind it, how the grouping mechanism is done, and how it is affected. The 

researchers came up with various observations, which suggest the mechanisms are mainly 

influenced by the (i) feeding ability, (ii) reproduction capability, (iii) predators effect, and (iv) 

environmental conditions. The effect of these factors varies from species to species in governing 

the grouping mechanism. 

This paper describes one such observation made on the Antarctic Krill species [22]. This 

is considered as one of the best studied marine animal species. These krills are capable of 

forming large groups of swarms with no parallel orientation existing between them. Since 

decades, studies are carried out to understand the herding mechanism of the krills and the 

individual distribution of the krills among the herds. The studies made clear some of the factors 

in spite of some uncertainties observed. It says, the basic unit of the organization is the ‘krill 

swarm’. 
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As mentioned earlier, one important factor considered here is the presence of the 

predator. When one krill is affected by the predator, that krill is abandoned from the herd, which 

in turn reduces the density of the swarm. The increase in the krill density and distance from the 

food is always the phenomenon or the criteria to be reached during the formation of the herds. 

Hence, it can be called as one multi-objective mechanism. 

The optimum solution or the global minima is attained considering the two main 

objectives of density-dependent attraction of the krill and areas of high food concentration. The 

relation between the objective function and the krill position is proportionate in nature. The 

global minimum, or less objective function value, implies the minimum distance of a krill from 

the highest density and food in the solution. The objective function of the algorithm is 

determined with some coefficients determined after a brief empirical study. The krill individuals 

always try to move towards the best solution in this process.  

2.2. Lagrangian Model of Krill Herding 

The Lagrangian model [23] states the objective function of the Krill Herd algorithm. The 

fitness function of a krill is a combination of the highest density of the krill and the distance of 

food from the krill. The fitness value gives the imaginary distances of the krill from the herd 

density and food. 

In a two dimensional surface, the time-dependent position of a krill is mainly 

influenced/controlled by the following three factors: 

(i) Movement induced by other krill individuals 

(ii) Foraging activity 

(iii)Random diffusion 
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Extending the algorithm to an n-dimensional space, the fitness function of the algorithm (for i
th 

krill individual) is determined as below: 

 𝑑𝑋𝑖

𝑑𝑡
= 𝑁𝑖 + 𝐹𝑖 + 𝐷𝑖 (1) 

Where Ni: Motion induced on i
th

 krill individual due to the other krill individuals 

           Fi: Foraging motion 

           Di: Random diffusion   

2.2.1. Motion Induced by other Krill Individuals   

The fitness function of the algorithm mainly depends on the density of the krills in the 

search space. So, it is essential to maintain a high krill density in order to achieve an optimum 

solution. The individuals keep on rebuilding the system maintaining this high density under the 

influence of the other individuals. The movement of a krill individual is mainly dependent on the 

neighboring krill individuals and the mutual effects between them. 

The direction of the krill movement, iis calculated based upon the different swarm 

densities i.e., i) ‘local effect’ provided by local krill density, ii) ‘target effect’ provided by target 

krill density, and iii) ‘repulsive effect’ provided by repulsive swarm density. Considering the 

influence of all these effects, the movement of the i
th

 krill individual Ni can be defined as: 

 𝑁𝑖
𝑛𝑒𝑤 =  𝑁𝑚𝑎𝑥𝛼𝑖 + 𝜔𝑛𝑁𝑖

𝑜𝑙𝑑 (2) 

Where, i = i
local

 + i
target 

              N
max

: Maximum induced speed 

               n: Inertia weight 

               Ni
old

: Previous motion induced 

               i
local

: Local effect provided by the neighboring krill individuals 
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                i
target

: Target effect provided by the best krill individual 

Calculation of Neighbors Krill Effect: 

From the empirical study, the inertial weight of the motion induced n, is said to be in the 

range of [0, 1], and the N
max

 the maximum induced speed is calculated to be around 0.01 ms
-1

. 

The neighbors of a krill individual have either an attractive or a repulsive effect on the movement 

of the krill. The effect of the neighbors on the movement of a krill individual is generally 

calculated by the following equations: 

 

𝛼𝑖
𝑙𝑜𝑐𝑎𝑙 =  ∑ 𝐾̂𝑖𝑗

𝑁𝑁

𝑗=1

𝑋̂𝑖𝑗 (3) 

 
𝑋̂𝑖𝑗 =  

𝑋𝑗 −  𝑋𝑖

‖𝑋𝑗 − 𝑋𝑖‖ +  𝜀
 (4) 

 
𝐾̂𝑖𝑗 =  

𝐾𝑖 −  𝐾𝑗

𝐾𝑤𝑜𝑟𝑠𝑡 −  𝐾𝑏𝑒𝑠𝑡
 (5) 

Here, K
best

 and K
worst

 represent the best fitness and worst fitness values of the krill individuals so 

far. 

- Ki: Fitness value of the i
th

 krill individual 

- Kj: Fitness value of the j
th

 neighbor (j = 1, 2, …,NN)  NN: total number of neighbors 

- X: Relative position of the krills 

- : Small positive number 

The effect induced by the neighbors is obtained from the above equations. Each krill 

individual ’i’ is taken into consideration, and the i
local

 value is calculated. The Ki,j is the fitness 

value of the i
th

 individual under the influence of j
th

 neighbor. All the neighbor pair’s fitness 

values are calculated. Similarly, the relative position vector Xi,j is determined. The i
local

 , that is 

the cumulative sum of the local effect of the neighbors (j=1,2,..,NN) is calculated from the 
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relative position Xi,j and relative fitness Ki,j values. The alpha vector gives the induced directions 

by the different neighbors and each value represents the effect of a neighbor on a krill individual. 

The positive value determines the attractive effect while the negative value indicates the 

repulsive effect on the krill individual from its neighbors.  

The important part in the evaluation of the Krill movement is the identification of the 

neighbors and their consideration. From all the individuals in the local search space, only some 

krills are said to be a neighbor of i
th

 krill individual and vice versa. The identification of the 

neighbors is done using different strategies present in the real time scenario. One among them is 

from the calculation of the “Neighborhood ratio” value. It is defined in order to determine the 

number of nearest krill individuals/neighbors present in the search space around the i
th

 krill 

individual located at position Xi. The sensing distance ‘ds’ is calculated from this individual and 

all the neighbors located within this distance are said to be neighbors of krill individual ‘i’. 

                                

Figure 1. Schematic representation of Sensing Distance around a krill individual ‘i’ 

From Figure 1, we can say the krill individual has three neighbors namely neighbor 1, 2, 3 that 

fall inside the sensing ambit. 
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The sensing distance of i
th

 krill individual ds,i is determined from the following equation 

using one of the heuristic methods. 

 

𝑑𝑠,𝑖 =  
1

5𝑁
 ∑‖𝑋𝑖 −  𝑋𝑗‖

𝑁

𝑗=1

 (6) 

Where N represents the number of krill individuals in the search space.  

According to the study, the distance between the krill individuals is compared against the 

sensing distance and if it is encountered to be less than ds,i, then the two krill individuals are said 

to be neighbors. 

Calculation of Best Krill Effect:  

The direction of motion induced due to the best krill individual in the herd is said to be 

referred to the target effect. The other krill individuals in the herd try to reach the global optima. 

In general, a krill individual with the lowest fitness value is said to be the best krill individual in 

the herd. All the other individuals try to reach this target vector of lowest fitness. The effect of 

this best fitness and best fitness krill individual on the i
th

 krill individual is calculated by the 

following equation. 

 𝛼𝑖
𝑡𝑎𝑟𝑔𝑒𝑡

=  𝐶𝑏𝑒𝑠𝑡𝐾̂𝑖,𝑏𝑒𝑠𝑡𝑋̂𝑖,𝑏𝑒𝑠𝑡 (7) 

Where Cbest: Effective coefficient of best fitness krill individual to the i
th

 krill individual. 

Iterating over this equation, i
target

 value leads us in achieving the global optimum solution. 

The Cbest value should be calculated efficiently, as it has significant importance in 

achieving the global optima, when compared to the local effect due to the neighbors. The Cbest 

value is calculated using the following equation. 

 
𝐶𝑏𝑒𝑠𝑡 = 2 (𝑟𝑎𝑛𝑑 +  

𝐼

𝐼𝑚𝑎𝑥
) (8) 

Where rand: a random variable in the range of [0,1]. 
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             I: current iteration index 

             Imax: total/maximum number of iterations 

2.2.2. Foraging Motion 

The Krill herding mechanism is influenced by the presence of food around the 

individuals. The minimum distances of the krill individual from the food is said to be considered 

as one of the objective functions for the movement of the krill’s in the solution space. The less 

the distance to the food as well as to the highest density of the herd, the less the objective 

function value which in turn implies the best fitness for that krill individual. Iterating over the 

process, it eventually leads to the global optima. 

Here, the foraging motion is nothing but the motion induced to a krill individual due to 

the presence of food and its locations in the solution. The foraging motion considers two 

prominent factors, namely 1) the food location, and 2) the previous experience about the food 

location. 

The foraging motion value for the i
th

 krill individual is calculates by the following equation: 

 𝐹𝑖 =  𝑉𝑓𝛽𝑖 +  𝜔𝑓𝐹𝑖
𝑜𝑙𝑑 (9) 

Where Vf : Foraging speed 

           f : inertia weight of the foraging motion 

           Fi
old

 : Last foraging motion value 

From the study, the inertia weight is calculated to be in the range of [0,1] and the foraging speed 

Vf is taken to be 0.02 ms
-1

. 

The value of i is calculated as follows:  

𝛽𝑖 =  𝛽𝑖
𝑓𝑜𝑜𝑑

+ 𝛽𝑖
𝑏𝑒𝑠𝑡 

Where i
food

 : Effect due to the presence of food 
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             i
best

 : Effect due to the current krill’s best fitness value recorded 

The effect of food on the herding mechanism is defined depending on the food’s location. 

Here, we are calculating the center of the food location, and then the food attraction value i
food

 

is calculated. The center of the food location is estimated from the krills fitness distribution 

values. We need to calculate the center of food location in the iteration through the krill size N, 

and it gets updated through the iterations. The equation to calculate X
food

, center of food location 

is as follows: 

 

𝑋𝑓𝑜𝑜𝑑 =  
∑

1
𝐾𝑖

𝑋𝑖
𝑁
𝑖=1

∑
1
𝐾𝑖

𝑁
𝑖=1

 (10) 

Where, Xi and Ki are the krills current position and fitness values. 

Calculation of Food Attraction: 

The attractive effect of food on the i
th

 krill individual is obtained by the following equation: 

 𝛽𝑖
𝑓𝑜𝑜𝑑

=  𝐶𝑓𝑜𝑜𝑑𝐾̂𝑖,𝑓𝑜𝑜𝑑𝑋̂𝑖,𝑓𝑜𝑜𝑑 (11) 

Where C
food

 : Effective food coefficient 

The C
food

 is calculates as follows: 

 
𝐶𝑓𝑜𝑜𝑑 = 2 (1 − 

𝐼

𝐼𝑚𝑎𝑥
) (12) 

Where Imax : Total/Maximum number of iterations. 

From the above equation we can say that the effect of food on the Krill herding mechanism 

decreases over time. 

Calculation of Best Position Attraction: 

The ultimate goal of the algorithm is to achieve the global optima; hence the effect of 

food attraction on the krill individuals decreases after some iteration once the global optima 
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criterion has been reached. This is considered to be an efficient global optimization strategy that 

improves the globality of the Krill Herd algorithm. 

The effect of the i
th

 krill individual’s best fitness so far, is determined by the following equation: 

 𝛽𝑖
𝑏𝑒𝑠𝑡 =  𝐾̂𝑖,𝑖𝑏𝑒𝑠𝑡𝑋̂𝑖,𝑖𝑏𝑒𝑠𝑡 (13) 

Where Kibest: fitness value of the previously visited position 

             Xibest: previous position of i
th

 krill individual 

Calculating the food attraction and best position effect, the Food fitness values are 

obtained and the value Kfood, is made sure to be the best food location (minimum fitness) by 

comparing it against the previous food location in the last iteration and is updated accordingly. 

2.2.3. Physical Diffusion 

The third factor that influences the herding mechanism of the Krill individuals is the 

Physical Diffusion process. This is nothing but the random diffusion of the krill individuals in 

the solution space. 

The krill movement is calculated from the speed of the krill movement and a randomly 

generated directional vector. The equation to calculate this diffusion effect is as follows: 

 𝐷𝑖 =  𝐷𝑚𝑎𝑥𝛿 (14) 

Where D
max

: Maximum diffusion speed 

             : Random directional vector 

The random directional vector, with values ramping in between [-1, 1]. 

From the studies of Wolpert and Macready, it is observed that for a krill individual, the range of 

the maximum diffusion speed lies in between [0.002, 0.0010] (ms
-1

). 
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The effect of this random diffusion is inversely proportional to the best position of the 

krill, that implies when the krill individual is in its best position, then the random diffusion of 

that krill individual is also less. Thus, another term is added to take this effect into consideration. 

Also, the physical diffusion is a random process and this random vector does not steadily reduce 

with an increase in the iteration index. To avoid this effect, an additional term is added. 

Hence, the above equation is modified to the following: 

 
𝐷𝑖 =  𝐷𝑚𝑎𝑥 (1 −  

𝐼

𝐼𝑚𝑎𝑥
) 𝛿 (15) 

The above added term makes the random diffusion speed to decrease linearly over the 

time. Here, the random diffusion speed of every krill individual (to the maximum of N) is 

calculated over all the iterations. 

2.2.4. Motion Process of the KH Algorithm 

The KH algorithm is developed to achieve the global optima for the whole solution. Also, 

in this process, each krill individual moves towards the best fitness position as the direction of 

motion changes due to the effects of neighbor krills and the presence of food. The two factors i) 

motion induced by other krill individuals and the foraging motion always have global and local 

effects on the krill individuals, i.e, Local Effect: Neighbor krill’s effect (i
local

), and Global 

Effect: Best Krill effect (i
target

) in the case of motion induced by other krill individuals, and 

secondly Local Effect: Presence of Food (i
food

), and Global Effect: Best fitness position (i
best

). 

These two strategies work in parallel to improve the efficiency of the Krill Herd Algorithm.  

From the study, considering the respective fitness values of the above mentioned global 

and local effects,  i.e., Kj, K
best

, K
food

, Ki
best

 of an i
th

 krill individual, if any of this fitness values is 

better i.e., less than the previous positions fitness value of the i
th

 krill individual, then it is said to 
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be having an attractive effect on the krill individual. Otherwise, if the fitness values are worse, 

that is greater than the previous fitness value, then it is said to be having a repulsive effect. From 

the above equations, it is observed that the effect of the best fitness on the krill individual is 

having much impact on the krill movement when compared to the other effects. The physical 

diffusion/random diffusion process performs a random search in the solution space.  

Using all the effective parameters (Ni, Fi, Di) of the motion obtained over time, the 

random position of the krill individual during the interval t and t can be obtained by the 

following equation and the position of the each krill individual is updated, 

 
𝑋𝑖(𝑡 +  ∆𝑡) =  𝑋𝑖(𝑡) +  ∆𝑡

𝑑𝑋𝑖

𝑑𝑡
 (16) 

and dXi =  N(i) + F(i) + D(i) 

Where t, is referred to as Scale factor, and it should be set carefully as it is considered to 

be one of the most important constants in solving the Krill herd optimization problem. This 

constant will be working as a scale factor of the speed vector. 

The scale factor, t, can be obtained by the following equation and it also depends on the 

solution search space and its dimensions. 

 

∆𝑡 =  𝐶𝑡 ∑(𝑈𝐵𝑗 − 𝐿𝐵𝑗)

𝑁𝑉

𝑗=1

 (17) 

Where UBj, LBj: Upper and lower bounds of the variable where j varies from 1 to number of 

variables. 

             NV:  Number of Variables. 

             Ct: Empirical constant that lies between [0, 2]. 

Considering the lower and upper bounds, the absolute difference between these bounds 

gives the information about the solution/search space. And from the studies [21], it is observed 



18 

 

that the values of Ct are directly related to the search space. The lesser the value of Ct is, the 

more efficiently the individuals in the krill herd can search through the space. 

Once the new positions of the each krill individual are obtained, the positions are updated 

and the process is repeated, by evaluating the each krill individual with the updated positions and 

calculating the induced motion from the effects of neighbors, food and physical diffusion and so 

on, until the global optima or the criterion has been reached. 

2.3. Methodology of the Krill Herd Algorithm 

The Krill Herd Optimization algorithm usually starts with a set of krill individuals 

located in the search space or distributed in the search space randomly. And at each generation of 

optimization, the movement of the krill individuals, foraging activity and random diffusion 

parameters are calculated from the above mentioned equations, respectively. Finally, the 

displacements of the krill individuals from the previous positions due to these effects are 

calculated by Equation 16. The position of each krill individual is updated by this equation and 

the evaluation process takes place. Eventually, the Krill herd optimization algorithm is 

terminated when the satisfaction criterion of global maxima or global minima is obtained; here 

the criterion is global minima which implies the best fitness value for the overall solution and as 

well as for the each krill individual. 

Summarizing the Krill herd algorithm and laying out a step by step procedure, the Krill 

herd algorithm can be described by the following steps: 

I. Data Structures:  

Define the simple bounds, determination of algorithm parameters, etc. Some of the 

parameters are defined in the algorithm as below: 

numberOfRuns -------- Number of Runs 
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numberOfIterations -------- Number of Iterations 

krillSize --------- Number of Krill’s 

dimension ---------- Number of Dimensions 

Nmax -------- Maximum Induced Speed 

Vf --------- Foraging Speed 

Dmax --------- Maximum Diffusion Speed 

rand -------- Random variable 

epsilon ------- Small positive number 

II. Initialization: Randomly create the initial population in the search space. 

III. Fitness Evaluation: Evaluation of each krill individual according to its position 

A- For i = 1: krillSize do 

     Xvector (i) = random number (between the maxPosition and minPosition) 

     Kvector (i) = evaluate (Xvector(i)) 

B- Kib=K; best fitness values for whole swarm so far 

     Xib=X; best position for whole swarm so far 

C- Find the krill that has the best fitness and its position  

     Kgbest = min(K)  

     Xgbest= return the position of Kgbest 

IV. Motion Calculation: 

 Motion induced by the presence of other individuals 

 Foraging motion 

 Physical Diffusion 
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V. Updating: updating the krill individual position in the search space 

           dXi = delta_t*(N(i)+F(i)+D(i)); 

           X(i)=X(i)+dXi; Update the position 

VI. Repeating: go to step III until the stop criteria is reached 

           K(i)=evaluate(X(i)) and update the current best Kgbest 

VII. End 

Table 1. Parameters and definitions 

Parameter Notation in Algorithm 

Number of generations numberOfRuns 

Number of Neighbors NN 

Number of Dimensions dimension 

  

 The above table gives the mapping of the parameters and corresponding notations used 

in the algorithm below. 

Algorithm: 

Initialize the benchmark functions f(x) 

Initialize the parameters 

    for p=1:numberOfRuns 

       Randomly generate the krill population x(i=1, 2,…,krillSize) 

         for q=1:numberOfIterations 

             for k=1:krillSize 

               Evaluate the krills fitness values 
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               Find bestFitness, worstFitness, bestKrillIndex, bestPosition  

             end 

             Find the virtual Food  

                   for i=1:dimension 

                       for j=1:krillSize 

                          vFood(i) = ∑ (
𝑋𝑖(1:𝑘𝑟𝑖𝑙𝑙𝑆𝑖𝑧𝑒)

𝐾
) ; 

                       end 

                       Calculate xFood, kFood 

                   end 

 Update inertia 

    for i=1:krillSize 

      for j=1:dimension         

         A- Motion induced by other Krill Individuals 

                  N[i][j] = inertia*N[i][j] + Nmax*(alpha_local[i][j]+alpha_target[i][j]); 

        B- Foraging Motion 

                   F[i][j] = inertia*F[i][j] + Vf*(beta_best[i][j]+beta_food[i][j]); 

        C- Random Diffusion 

                   D[i][j] = Dmax*(1-q/numberOfIterations)*segma; 

        Calculate the scale factor 

        Update the krill positions 

                 dXi[i][j] = scaleFactor*(N[i][j]+F[i][j]+D[i][j]); 

                 Xi(j)=Xi(j)+dXi[i][j]; Update the position 

       end 
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     end 

 end 

Plot the results 

end 

Representing the Krill Herd Algorithm diagrammatically, we have 

Krill Herd Algorithm Flow Chart: 

 

Figure 2. Simplified flowchart of the krill herd algorithm 
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3. BENCHMARK PROBLEMS 

In the real world, there is a need of various test functions in order to compare and validate 

the optimization algorithms for its performance and reliability. These test functions which are 

also referred as benchmark functions are tested against many new optimization algorithms that 

come into existence to test their reliability, efficiency and validity of the algorithm [24]. These 

are nothing but a set of common standard functions that have diverse properties to judge the new 

optimization problems in an unbiased way. 

Many researchers follow the process of comparing different algorithms on a large test set, 

whenever there is the involvement of optimization techniques. Identification of the kind of 

problems where it performs the best when compared to others, helps in the categorization of the 

problems for which the algorithm suits best. Therefore, the benchmark functions are categorized 

in to variety of problems [25], such as  

a) Unimodal and Multimodal Functions,  

b) Regular and Irregular Functions,  

c) Separable and non-separable Functions, and  

d) Multi-dimensional Functions. 

In this paper, the Krill Herd Optimization algorithm is tested against five benchmark 

problems that are defined below with their mathematical notation. These functions are 

implemented in order to evaluate the performance of the algorithm, in terms of efficiency of 

obtaining the optimum solution and the rate of convergence to the optimum solution. 

3.1. Ackley Function 

Ackley is a multimodal non-separable function [25]. It is widely used for validation and 

testing purposes of algorithms. 
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f(x) = −a. exp (−0.02. √
∑ xi

2n
i=1

n
) − exp (

∑ cos(cxi)
n
i=1

n
) + a + exp(1) (18) 

where, a = 20, n is the dimension of the problem and the test area lies between−32 ≤

 𝑥𝑖 ≤ 32, i=1,2,…,n. Its global minimum f(x) = 0 is obtainable for xi=0, i= 1,…,n. 

3.2. Alpine Function 

The Alpine function is a non-separable function f(x), and is called an m-nonseparable 

function, if at most m of its parameters xi is not independent. A non-separable function f(x) is 

called fully non-separable function if any two of its parameters xi are not independent. 

 
𝑓(𝑥) =  ∑|𝑥𝑖𝑠𝑖𝑛(𝑥𝑖)  +  0.1𝑥𝑖|

𝑛

𝑖=1

 (19) 

where, n ≥2 is the dimension and x = (x1, x2, …, xd) is a n-dimensional row vector (i.e., a 

1×n matrix). Test area is usually restricted to -10 ≤ xi ≤ 10, i=1,…,n. Its global minimum F(x) = 

0 is obtainable for xi, i=1,…,n. 

3.3. Griewank Function 

The Griewank function is a continuous and a non-separable multimodal function. The 

product term in the equation introduces the interdependence among the variables. The 

optimization techniques optimize each variable independently. The global optima of Griewank 

function resemble a regularly distributed plot. 

 
𝑓(𝑥) =  ∑

𝑥𝑖
2

4000

𝑛

𝑖=1

− ∏ cos (
𝑥𝑖

√𝑖
) + 1 (20) 

where, n ≥2 is the dimension and the test area is restricted to −600 ≤  𝑥𝑖 ≤ 600, and 

i=1, 2, …,n. Its global minimum f(x) = 0 is obtainable for xi, i=1,2,…,n. 
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3.4. Rastrigin Function 

The Rastrigin function is based on the function of De Jong [26] with the addition of 

Cosine modulation in order to produce frequent local minima and is defined as follows: 

 
𝑓(𝑥) = 10𝑛 + ∑ (𝑥𝑖

2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖))

𝑛

𝑖=1

 (21) 

where, n is the dimension and x = (x1, x2, … , xd) is a n-dimensional row vector (i.e., a 

1×n matrix). Similarly, to make it nonseparable, an orthogonal matrix is also used for coordinate 

rotation. Rastrigin’s function is a classical multimodal problem. It is difficult since the number of 

local optima grows exponentially with the increase of dimensionality. Test area is usually 

restricted to a hypercube −5.12 ≤  𝑥𝑖 ≤ 5.12, i=1,…,n. Its global minimum f(x)=0 is 

obtainable for xi=0, i= 1,…,n. 

3.5. Sphere Function 

The Sphere function is a simple and a continuous benchmark function [24] and belongs to 

the unimodal, multi-dimensional benchmark function. It is mathematically defined as: 

 
f(x) =  ∑ xi

2

n

i=1

 (22) 

where n is the dimension of the problem and the test area lies between −5.12 ≤  𝑥𝑖 ≤

5.12, i=1,2,…,n. Its global minimum f(x)=0 is obtainable for xi=0, i= 1,…,n. 
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Table 2. Benchmark problems 

Function Name Search Space 

Ackley -32 to +32 

Alpine -10 to +10 

Griewank -600 to +600 

Rastrigin -5.12 to +5.12 

Sphere -5.12 to +5.12 

 

The krill herd optimization problem is tested using the above five benchmark functions 

mentioned in Table 2 for its performance and efficiency of the technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

 

4. EXPERIMENTAL SETUP AND RESULTS 

4.1. Experimental Setup 

As said in the earlier section, the Krill Herd algorithm is evaluated to test the validity and 

performance of the optimization technique using some well-known benchmark functions that are 

mentioned, such as Alpine function, Ackley function, Griewank function, Rastrigin function and 

finally the Sphere function. These benchmark functions are tested against different dimensions 

such as both low and high dimension problems, and the algorithm is evaluated. Similarly, the 

algorithm is evaluated with different configurations by varying the krillSize, number of 

iterations, and number of runs. The results obtained are observed and comparisons are made to 

evaluate the behavior and efficiency of the algorithm in reaching the global minima with respect 

to the time required. 

As the Krill Herd algorithm deals with the random behavior of the krill individuals and is 

not easy to determine the end results, the performance of the algorithm needs to be judged by 

running the algorithm in multiple runs with different number of iterations. Similarly, different 

attempts with independent krill population initializations are made to obtain the best conclusion 

about the Krill Herd algorithm in terms of performance. 

4.1.1. General Settings 

The algorithm has some of the general settings with some constant parameters such as: 

a) Inertia Weight is taken as 0.9 at the beginning of the search and it gets updated for 

every iteration according to the following equation: (here refers to both nf) 

 ω = (0.1 + 0.8 ∗ (𝑖/𝑚𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)) (23) 

where i: Current iteration number 

                      maxIterations: Total number of iterations in a single run. 
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b) Maximum Foraging Speed, Vf : is a constant value throughout the experiment and is 

equal to 0.02 (ms
-1

). 

c) Maximum Induced Speed, Nmax : is a constant value throughout the experiment and is 

equal to 0.01 (ms
-1

). 

d) Maximum Diffusion Speed, Dmax : is a constant value throughout the experiment and is 

equal to 0.005 (ms
-1

). 

e) Random number, rand = 0.9. 

f) Small positive number, epsilon  = 0.00001. 

The Search space for the Krill Herd algorithm is different for each of the benchmark 

functions. Once the termination criterion, that is the maximum number of fitness/objective 

function evaluations are performed, the algorithm is terminated. 

The global optimum value for the above mentioned five benchmark functions is 0.0. 

The number of simulations/runs = 25, are made for each of the five benchmark functions with 

varying parameters of krillSize, numberOfIterations, and dimensions. 

4.1.2. Test Cases 

Case (i): 

Number of Runs: 25, Number of Iterations: 1000, Problem Dimension: 4, Krill Size 50. 

For the 25 simulations, all the parameters are kept fixed and the best fitness, average fitness, 

standard deviation and the execution time are observed. 

Case (ii): 

Number of Runs: 25, Number of Iterations: 1000, Krill Size: 50. 
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For the constant 25 simulations, the problem dimension is changed for all the five benchmark 

functions; dimension is varied from 2, 4, 6, 8 and the effect of the change in Fitness values is 

observed. 

Case (iii): 

Number of Runs: 25, Krill Size: 50, Problem Dimension: 4. 

For the constant 25 simulations, the maximum number of iterations or the number of function 

evaluations is changed; noOfIterations varying from 100 to 1000, 10000 and to 100000, and the 

effect of the change in Fitness Evaluations is observed. 

Case (iv): 

Number of Iterations: 50, Krill Size: 50, Dimension: 4 and Number of Runs: 1 

This test case involves plotting the graph of Best fitness over Number of Iterations and the 

behavior of the algorithm over five different benchmark functions is observed. 

Observations: 

From the simulations performed, on all the five benchmark functions mentioned above, 

the following results have been collected: 

1. The best fitness value 

2. The average fitness value 

3. The standard deviation value  

4. The time elapsed in executing the simulation 
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4.2. Results 

The Krill Herd algorithm is tested against five different benchmark functions via different 

test cases, as mentioned earlier. This section gives a clear explanation of the test cases that are 

performed to evaluate the performance of the Krill Herd algorithm. The test cases have a varying 

parameter and the effect of the parameter on the best fitness, average fitness and the standard 

deviation is evaluated.  

4.2.1. Test Case 1: Fixed Number of Iterations = 1000 

Settings: Krill Size=50 & Dimension 4 & Runs 25. 

Table 3 shows the average results of 25 independent runs on the benchmark function 

Ackley. The best fitness value of the Krill Herd algorithm is 6.88E-06, the mean of the 25 

independent runs was 0.001147 and the value of the Standard deviation is 0.005504. The time 

elapsed for performing 25 independent runs and to collect the results was 644 ms.   

Table 3. Ackley benchmark function outputs 

Best Average Standard Deviation Time (in ms.) 

6.88E-06 0.001147 0.005504 644 

 

Table 4 shows the results of 25 independent runs on the benchmark function Alpine. The 

best fitness value of the Krill Herd algorithm is 4.83E-11, the mean of the 25 independent runs 

was 4.04E-07 and the value of the Standard deviation is 1.94E-06. The time elapsed for 

performing 25 independent runs and to collect the results was 643 ms.   
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 Table 4. Alpine benchmark function outputs 

Best Average Standard Deviation Time (in ms.) 

4.83E-11 4.04E-07 1.94E-06 643 

 

Table 5 shows the results of 25 independent runs on the benchmark function Griewank. 

The best fitness value of the Krill Herd algorithm is 0.006416, the mean of the 25 independent 

runs was 0.472084 and the value of the Standard deviation is 2.266001. The time elapsed for 

performing 25 independent runs and to collect the results was 381 ms.  

 Table 5. Griewank benchmark function outputs 

Best Average Standard Deviation Time (in ms.) 

0.006416 0.472084 2.266001 381 

 

Table 6 shows the results of 25 independent runs on the benchmark function Rastrigin. 

The best fitness value of the Krill Herd algorithm is 0.000679, the mean of the 25 independent 

runs was 0.158179 and the value of the Standard deviation is 0.759258. The time elapsed for 

performing 25 independent runs and to collect the results was 380 ms.   

 Table 6. Rastrigin benchmark function outputs 

Best Average Standard Deviation Time (in ms.) 

0.000679 0.158179 0.759258 380 

 

Table 7 shows the results of 25 independent runs on the benchmark function Sphere. The 

best fitness value of the Krill Herd algorithm is 4.58E-07, the mean of the 25 independent runs 
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was 4.76E-05 and the value of the Standard deviation is 0.000229. The time elapsed for 

performing 25 independent runs and to collect the results was 617 ms.   

 Table 7. Sphere benchmark function outputs 

Best Average Standard Deviation Time (in ms.) 

4.58E-07 4.76E-05 0.000229 617 

 

From the above results we can say that, the Alpine benchmark function achieved best 

results in terms of best fitness value (4.83E-11), average value (4.04E-07) and standard deviation 

with a very low value of 1.94E-06. The Griewank function performed poorly when compared to 

other benchmark functions with a high standard deviation value of 2.266001. The Rastrigin 

function is the least complex function to evaluate in terms of evaluation time. The average time 

taken to execute a single run is 380 ms and this is closely followed by Griewank function with an 

execution time of 381ms. All the others functions performed moderately. 

4.2.2. Test Case 2: Varying Problem Dimension = 2, 4, 6, 8 

The following section discusses the results obtained by varying the problem dimension 

over a constant number of iterations. 25 independent repetitions have been performed for five 

functions and the best, average, and standard deviation of all the 25 independent runs has been 

reported. Table 8 to Table 10 shows the collected results. 
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Effect of the varying dimension on the Best Fitness value: (Krill Size 50, Iterations 1000) 

Table 8. Best fitness values for function on varying dimension 

Function Name Dim = 2 Dim = 4 Dim = 6 Dim = 8 

Ackley 3.43E-07 2.44E-05 4.95E-05 0.000137 

Alpine 3.52E-10 7.18E-10 1.07E-09 4.57E-09 

Griewank 0.000392 0.002856 0.018128 0.031813 

Rastrigin 7.45E-07 0.000887 0.004092 0.004916 

Sphere 1.1E-09 4.88E-07 6.24E-06 8.65E-06 

 

As the dimension of the Krill algorithm increased, the best fitness values obtained from 

the algorithm are increasing as expected; since it requires more iteration to reach the best values. 

 

Effect of the varying dimension on the Standard Dev: (Krill Size 50, Iterations 1000) 

Table 9.  Standard deviation values for function on varying dimension 

Function Name Dim = 2 Dim = 4 Dim = 6 Dim = 8 

Ackley 0.000424 0.005438 0.01657 0.030205 

Alpine 7.8E-07 2.01E-06 3.23E-06 7.47E-06 

Griewank 0.417563 2.782524 12.5561 10.38485 

Rastrigin 0.054719 3.15004 3.251203 4.118589 

Sphere 9.35E-07 0.000207 0.003084 0.012852 

 

As the dimension of the krill algorithm increased, the standard deviation is increased as 

expected except for the Griewank function. 
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Effect of the varying dimension on the Average Fitness Value: (Krill Size 50, Iterations 1000)  

Table 10. Average results for function on varying dimension 

Function Name Dim = 2 Dim = 4 Dim = 6 Dim = 8 

Ackley 8.83E-05 0.001133 0.003452 0.006293 

Alpine 1.63E-07 4.18E-07 6.72E-07 1.56E-06 

Griewank 0.086992 0.579693 2.615854 2.163511 

Rastrigin 0.0114 0.656258 0.677334 0.858039 

Sphere 1.95E-07 4.31E-05 0.000643 0.002678 

 

Presented below are the individual graphs for each function displaying the variation of 

mean value over 25 independent runs with increase in the problem dimension value. 

 

 

Figure 3. Average values for Ackley against dimension 
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The variation of the mean versus augmenting dimension value for Ackley is shown in 

Figure 3. The lowest mean value 8.83E-05 was for dimension 2, and the highest mean value 

0.006283 was obtained for dimension 8. 

 

Figure 4. Average values for Alpine against dimension 

 

The variation of the mean versus augmenting dimension value for Alpine function is 

shown in Figure 4. The lowest mean value 1.63E-07 was achieved for dimension 2, and the 

highest mean value 1.56E-06 was obtained for dimension 8. 
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Figure 5. Average values for Griewank against dimension 

 The variation of the mean versus augmenting dimension value for Griewank is shown in 

Figure 5. The lowest mean value 0.086992 was at dimension 2 and the highest mean value 

2.615854 was at dimension 6. 

 

Figure 6. Average values for Rastrigin against dimension 

The variation of the mean versus augmenting dimension value for Rastrigin is shown in 

Figure 6. The lowest mean value 0.0114 was at dimension 2 and the highest mean value 0.858039 

was at dimension 8. 
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Figure 7. Average values for Sphere against dimension 

The variation of the mean versus augmenting dimension value for Sphere is shown in 

Figure 7. The lowest mean value 1.95E-07 was at dimension 2 and the highest mean value 

0.002678 was at dimension 8. 

The tabular values and the graphs presented illustrate that the lower the dimension, the 

better the performance of the algorithm for a fixed number of iterations. This is a well-known 

behavior of optimization algorithms in general. 

4.2.3. Test Case 3: Varying Number of Iterations = 100, 1000, 10000, 100000 

Five functions were evaluated by the krill herd algorithm on a constant number of 

dimensions, by varying the number of iterations. Twenty five independent runs for each function 

have been made, the best, average and standard deviation over the 25 runs are calculated and the 

results have been tabulated in Table 11 to Table 13.  
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Effect of varying Iterations on the Best Fitness: (Krill Size 50, Dimension 4) 

Table 11. Varying number of iterations and calculating best fitness value 

Function Name Iterations =  

100 

Iterations =  

1000 

Iterations = 

10000 

Iterations = 

100000 

Ackley 2.9764E-05 1.01454E-05 7.4485E-06 4.4229E-06 

Alpine 2.49887E-09 7.79325E-10 4.8406E-11 1.2738E-12 

Griewank 0.001174387 0.008668097 0.00795148 0.00129299 

Rastrigin 0.000813417 0.000992133 0.00094699 0.00014526 

Sphere 1.01592E-05 2.82841E-07 4.4668E-08 2.697E-08 

 

As the number of iterations got increased, the Best Fitness value got improved except for 

the Griewank and Rastrigin Functions. 

 

Effect of varying Iterations on the Standard Dev: (Krill Size 50, Dimension 4) 

Table 12. Varying number of iterations and calculating standard deviation 

Function Name Iterations =  

100 

Iterations =  

1000 

Iterations = 

10000 

Iterations = 

100000 

Ackley 0.0111448 0.00537887 0.003084698 0.001557194 

Alpine 1.909E-05 1.9717E-06 2.36943E-07 1.97986E-08 

Griewank 2.6525683 5.04392968 2.568646693 3.474356292 

Rastrigin 1.3352213 3.21568529 5.922939286 2.212308028 

Sphere 0.0144992 0.00022608 6.2379E-05 1.28587E-05 
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As the number of iterations got increased, the Standard Deviation got improved except 

for the Griewank and Rastrigin Functions. 

 

Effect of varying Iterations on the Average Fitness Value: (Krill Size 50, Dimension 4) 

 Table 13. Varying number of iterations and calculating average value 

Function 

Name 

Average Fitness 

Iterations 

=100 

Iterations 

=1,000 

Iterations 

=10,000 

Iterations 

=100,000 

Ackley 0.0023218 0.001120599 0.000642645 0.00032442 

Alpine 3.977E-06 4.10781E-07 4.93632E-08 4.1247E-09 

Griewank 0.9867384 1.095340352 0.661511676 0.504567335 

Rastrigin 0.8826019 0.405636546 0.354945234 0.151437425 

Sphere 0.0030207 4.70998E-05 1.29956E-05 2.6789E-06 

 

The results tabulated have been plotted and have shown the following behavior: 
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Figure 8. Variation of average value for Ackley against increasing iterations 

The variation of average value versus the number of iterations for Ackley function is 

illustrated in Figure 8. The average value has varied between 0.0023 and 0.00032. 

 

Figure 9. Variation of average value for Alpine against increasing iterations 

The variation of average value versus the number of iterations for Alpine function is 

illustrated in Figure 9. The average value has been calculated at 4 different points between 100 
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and 100,000. The average value has varied between 3.98E-06 and 4.12E-09. The average value 

almost remained constant from 10,000 to 100,000 iterations. 

 

Figure 10. Variation of average value for Griewank against increasing iterations 

The variation of average value versus the number of iterations for Griewank function is 

illustrated in Figure 10. The average value has been calculated at 4 different points between 100 

and 100,000. The average value has varied between 0.9867 and 0.5046.  

 

Figure 11. Variation of average value for Rastrigin against increasing iterations 
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The variation of average value versus the number of iterations for Rastrigin function is 

illustrated in Figure 11. The average value has been calculated at 4 different points between 100 

and 100,000. The average value has varied between 0.8826 and 0.151. 

 

Figure 12. Variation of average value for Sphere against increasing iterations 

The variation of average value versus the number of iterations for Sphere function is 

illustrated in Figure 12. The average value has been calculated at 4 different points between 100 

and 100,000. The average value has varied between 0.003 and 2.68E-06. The average value 

almost remained constant from 1,000 to 100,000 iterations. 

There is an improvement in performance of the algorithm with the increase in the number 

of iterations for all of the benchmark functions except Griewank and Rastrigin. Also, the 

increased performance is larger in some functions than in other functions. 
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4.2.4. Test Case 4: Plot Graph Number of Iterations = 50 

The following section describes the results obtained by considering the number of 

iterations equal to 50 and recording the best value for one single independent run with the 

dimension=4. The simulations have been performed on five different functions and the results 

obtained are illustrated in Figure 13. 

 

Figure 13. Variation of best value with number of iterations for Ackley 

The variation of best objective value versus number of iterations for Ackley function is 

illustrated in Figure 13. The number of iterations has been varied between 0 and 50. The best 

objective value obtained is 0.0030515. 
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Figure 14. Variation of best value against number of iterations for Alpine 

The variation of best objective value versus number of iterations for Alpine function is 

illustrated in Figure 14. The number of iterations has been varied between 0 and 50. The best 

objective value obtained is 7.93E-05. 

 

Figure 15. Variation of best value with number of iterations for Griewank 



45 

 

The variation of best objective value versus number of iterations for Griewank function is 

illustrated in Figure 15. The number of iterations has been varied in between 0 and 50. The best 

objective value obtained is 0.951116. 

 

Figure 16. Variation of best value with number of iterations for Rastrigin 

The variation of best objective value versus number of iterations for Rastrigin function is 

illustrated in Figure 16. The number of iterations has been varied in between 0 and 50. The best 

objective obtained is 0.095465. 
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Figure 17. Variation of best value with number of iterations for Sphere 

The variation of best objective value versus number of iterations for the Sphere function 

is illustrated in Figure 17. The number of iterations has been varied between 0 and 50. The best 

objective value obtained is 7.09E-04. 

The plots clearly show that the best value decreases, that is, the performance of the 

algorithm increases with increasing number of iterations. 

From the experiments performed and the results obtained, it is observed that the Krill 

Herd Algorithm is very efficient in finding the global minima under the influence of all the 

factors such as Neighbors, Food, Random diffusion, in all the possible cases.  

Comparisons: 

The Krill Herd algorithm is compared with the basic PSO [27]. Both algorithms are 

evaluated over 25 simulations for 1 million iterations, and two dimensions. The average values 

are recorded and are tabulated for comparison as shown in  

Table 14. 
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Table 14. Average Fitness value comparisons made for 1 million iterations and 2 dimension 

 Krill Herd Basic PSO 

Alpine 3.49E-09 0.0 

Rastrigin 0.0172 0.0254 

Sphere 2.59E-09 9.1E-15 

 

From the table, it is observed that the performance of the Krill Herd algorithm is better 

when compared to the PSO algorithm, when evaluated with the Rastrigin benchmark function. 

The PSO algorithm outperformed the Krill Herd Algorithm when evaluated with the Sphere and 

Alpine benchmark functions. However, this is a small set of benchmark functions to compare 

both algorithms with, and therefore, more benchmark functions should be tested for a meaningful 

comparison. 
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5. CONCLUSIONS AND FUTURE WORK 

The Krill Herd Algorithm uses the krill herding mechanism in order to solve the 

optimization problems. The algorithm optimizes the objective function in an efficient way. This 

makes the algorithm useful in many areas and is extended to solve real world optimization 

problems. 

The algorithm mainly considers the three essential activities, namely (i) Motion induced 

by other krill individuals, (ii) Foraging Activity, and (iii) Random Diffusion process. These 

factors determine the time dependent position of a krill individual. The first two activities 

contain both a global and a local optimizer that is having a local effect due to the presence of 

neighbor krills, and the global effect due to the best krill individual. Similarly in the case of the 

foraging activity, the local effect is due to the food attraction, and the global effect is due to the 

best position attraction of a krill individual found so far. Also, the third action, random 

movement is added to the krill herd methodology. 

The Krill herd algorithm simulations are done carefully by considering the coefficients 

obtained from real world empirical studies done on the krill and its herding mechanism. Hence, 

the algorithm requires only the parameter Ct (time interval) to be fine-tuned. Using the real world 

coefficients and its requirement of less number of parameters tuning, makes the Krill herd 

algorithm a good algorithm when compared to the other nature-inspired algorithms. 

There are many advantages of the Lagrangian model as it considers the effect of each and 

every krill individual’s fitness value for the moving process in the search space. Also, the 

neighbors influence the movement of the krill individuals and the krills always try to maintain a 

high density in the herd. Finally, finding the center of food can also be considered as obtaining 
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the global best fitness value of the krill herd algorithm. The paper mainly discusses about the 

proposed krill herd algorithm and its methodology.  

In this paper, the Krill Herd algorithm was implemented using Eclipse environment in 

Java language with five different benchmark functions. Various test case conditions are 

evaluated and tested against the Krill herd algorithm to validate its method. 

The test case 1, with the fixed number of iteration provides the best, average and standard 

deviation values. In test case 2, with the varying dimension, the function objective values are 

calculated and plotted. It was observed as the dimension increases, the performance of the 

algorithm decreases. In the test case 3 and 4, with varying number of iterations for 25 

independent runs and one independent run, the function objective values are calculated and 

plotted. And as expected, the performance of the algorithm increased with the increase in number 

of iterations. The results from the experiments performed show that the algorithm efficiently 

solves the optimization problems. 

In the future, we plan to incorporate the crossover and mutation genetic operators to 

make the existing krill herd algorithm more effective. Also, the algorithm can be tested by 

changing various KH parameters like t, Ct, etc. Additionally, the algorithm can be applied to 

various real world optimization problems. 
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