
	
  
	
  

CRITICAL INFORMATION RETRIEVAL FROM EMAILS 
 

 
 

A Paper 
Submitted to the Graduate Faculty 

of the 
North Dakota State University 

of Agriculture and Applied Science 
 

 

 
By 

 
Souvik Sen 

 

 

In Partial Fulfillment of the Requirements  
for the Degree of 

MASTER OF SCIENCE 
 

 

Major Department: 
Computer Science 

 

November 2014 

 

Fargo, North Dakota 

 



	
  
	
  

North Dakota State University 
Graduate School 

 
Title 

 
CRITICAL INFORMATION RETREIVAL FROM EMAILS 

 

  

  
  By   
  

Souvik Sen 
  

     
    
  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  
    
  

Dr. Juan (Jen) Li 
 

  Chair  
  

Dr. Jun Kong 
 

  
Dr. Gursimran Walia  

 

  
Dr. Ying Huang 

 

    
    

  Approved:  
   
 11/19/2014   Dr. Brian M. Slator     
 Date  Department Chair  
    



	
  

iii 
	
  

ABSTRACT 

With efficiency being a driving force in today’s ecommerce, emails have become a major 

form of communication. However, deciphering information from these emails has been a be-

labored task. With every email containing proprietary information, handling this information has 

become an arduous task that requires money, time and effort.  To tackle this ecommerce 

problem, a computerized solution is important to expedite the extraction of information.  In this 

paper, we have applied Named Entity Recognition, different rules and algorithms to extract 

important information from emails. The proposed solution tackles challenges revolving around 

tabular and natural language formats, which are the largest formats used for email 

communication. Use of this solution makes business easier to navigate through a variety of 

attachments: PDF, Word, and Excel. The proposed application has been applied on a dataset 

supplied by a Transportation company by which the results have been captured.  

  

 

 

 

 

 

 

 

 

 

 

 



	
  

iv 
	
  

ACKNOWLEDGEMENTS 

I wish to express my deep sense of respect, and indebtedness to my adviser, Dr. Juan 

(Jen) Li, for her valuable suggestions, and ceaseless encouragement during the project work. I 

would also like to thank the committee member. I have had a great pleasure in expressing my 

sincere thanks to my advisory committee members Dr. Jun Kong, Dr. Gursimran Walia, Dr. 

Ying Huang, for their valuable support. Last but not least, I would like to thank my fiancé 

Olimpiya, my caring parents, my other family members and my friends for their inspiration, 

encouragements, everlasting blessing, and abundant love for me for the successful completion of 

this achievement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  

v 
	
  	
  

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

CHAPTER 1. INTRODUCTION ................................................................................................... 1 

1.1. Email Sender Analysis .................................................................................................... 2 

1.2. Email Categorization ....................................................................................................... 3 

1.3. Email Content Types ....................................................................................................... 4 

1.4. Content Analysis and Extraction from the Emails .......................................................... 4 

CHAPTER 2. BACKGROUND AND RELATED WORK ........................................................... 5 

2.1. Natural Language Processing: Named Entity Recognition ............................................. 5 

2.1.1. Named Entity Recognition ................................................................................... 5 

2.2. Key Value Pair Based Information Extraction ................................................................ 7 

2.3. Dictionary Matching ........................................................................................................ 8 

2.4. Related Work ................................................................................................................... 9 

CHAPTER 3. SYSTEM DESIGN ................................................................................................ 11 

3.1. Domain Knowledge and Ontology ................................................................................ 11 

3.2. Email Preprocessing ...................................................................................................... 12 

3.2.1. Sender Extraction and Analysis ......................................................................... 12 



	
  

vi 
	
  

3.2.2. Subject Extraction, Analysis and Categorization .............................................. 14 

3.2.3. Attachments Extraction and Format Conversion ............................................... 17 

3.2.3.1. PDF to Text Conversion ......................................................................... 18 

3.2.3.2. EXCEL to Text Conversion ................................................................... 20 

3.2.3. Email Body Extraction and Format Conversion ................................................ 20 

3.3. Information Extraction .................................................................................................. 21 

3.3.1. Challenges .......................................................................................................... 21 

3.3.1.1. Date Format ............................................................................................ 21 

3.3.1.2. City and States ........................................................................................ 22 

3.3.1.3. Source Destination Discrimination ......................................................... 23 

3.3.2. Table Data Processing ....................................................................................... 23 

3.3.3. Named Entity Recognition ................................................................................. 26 

3.3.4. Dictionary Matching .......................................................................................... 29 

3.5. Storage ........................................................................................................................... 30 

CHAPTER 4. EXPERIMENT AND RESULT ............................................................................ 31 

4.1. Dataset ........................................................................................................................... 31 

4.2. Experiment .................................................................................................................... 31 

4.3. Result  ............................................................................................................................. 31 

4.4. Application Run Time: .................................................................................................. 35 

CHAPTER 5. CONCLUSION AND FUTURE WORK .............................................................. 36 



	
  

vii 
	
  

5.1. Conclusion ..................................................................................................................... 36 

5.2. Future Work ................................................................................................................... 36 

5.2.1. Email Signature Removal .................................................................................. 36 

5.2.2. Encountering Unknown Formats ....................................................................... 37 

5.2.3. Images and Other Icons Handling ..................................................................... 37 

5.2.4. Incorrect Spelling ............................................................................................... 37 

5.2.5. Microsoft Word Files as Attachments ............................................................... 37 

REFERENCES ............................................................................................................................. 39 

  



	
  

viii 
	
  

LIST OF TABLES 

Table                                                                                                                                           Page 

1: Example Tables for Truck and Load Delivery Company ......................................................... 11 

2: Different Possible Date Formats for Emails ............................................................................. 22 

3: Example Table Data for Processing .......................................................................................... 24 

4: Email Entry Fields for Extraction ............................................................................................. 27 

5: Shows Precision and Recall for the Experiment ....................................................................... 35 

 

 

 

 

 

 

 

  



	
  

ix 
	
  

LIST OF FIGURES 

Figure                     Page 

1: Example of a Label Consistency Problem from CoNLL 2003 English Dataset ........................ 7 

2: Pattern Matching Example .......................................................................................................... 9 

3: Example of Hierarchical Ontology of Email Categorization .................................................... 12 

4: Example Email Fields ............................................................................................................... 13 

5: System Diagram for Flow of the Processes in the System ....................................................... 15 

6: Attachment Processing Flow .................................................................................................... 18 

7: Sample Email Body as Natural Language ................................................................................ 32 

8: Output for an Email with Email Body as Natural Language .................................................... 32 

9: Sample PDF Attachment with Table in It ................................................................................. 33 

10: Sample Output from PDF Table ............................................................................................. 34 



	
  

1 
	
  

CHAPTER 1. INTRODUCTION 

The concept of email came about 50 years ago; it was MIT’s “Compatible Time-Sharing 

System, which has been built for multi users, who had the ability to login into a centralized 

system to store and share important documents for remote access [12]. Since then the popularity 

of email has been increased in a rapid manner. Over the past five decades, Email has become one 

of the easiest and reliable modes of communication, mainly because of its efficiency, low cost 

and support for wide range of information [1]. Recent studies show that email is still number one 

online activity though there are new concepts like social networking [3]. When it comes for the 

corporate users, radicate surveys say that corporate users send and receive about 110 messages 

[5] per day in average and out of them one third are messages sent. Those statistics are quite 

constant and has not been changed too much in last decade [6]. A report from 2003 [7] shows 

that about 80% of the business users prefer email communication over others for their work 

purpose. A report from 2008 [8] says that 62% of the employees in United States can be 

considered as Networked Workers as they use internet and email on their work on daily basis.  

Information generated by business entities can be considered as highly useful asset based on how 

well it is managed. Email is not different here [9]. Email is now essential for many of the 

common industrial [9, 10, 11] functions like task management, collaboration, generating alerts, 

archiving and interoperability.  

It is pretty common for many of the organizations to receive product or service requests 

via email. These emails are required to be read and collect significant information to process that 

request. The processing of those requests will be correct, it essential information will be 

collected in a correct manner. Companies receive thousands of such important emails every day. 

Hence to process them in a short time with maximum efficiency, an automated system is really 



	
  

2 
	
  

essential. This program will extract and save the featured information in a database which will be 

consulted to provide the necessary service. For example: a computer servicing company receives 

piles of emails form the customers related to their computer hardware or software issues. To 

serve the clients better and faster, the company needs to know the details about the requested 

services on time and with correct information. The details about the service the customer is 

looking for can be like what the service is related to, where the service is required, when the 

service required etc. Email information extraction program will extract all of this information as 

correctly as possible and will save them in the company database for further service. Company 

then uses the database entries to figure out the necessary solution for that. Time is another issue 

here; some services are really important and required urgently. Manual reading emails and 

providing service can take a long time and user can suffer because of that. Hence an automatic 

email extraction procedure will surely solve that time delay issue.   

Many ecommerce companies record email receipts of online transactions which are full 

of essential product information including product category, price, date of purchase etc. If this 

information can be extracted and saved in a good manner, it can be used for several purposes 

including a recommendation system [2]. If the system can identify the type of product a specific 

user is buying, then the system can suggest further products to that user using extracted 

information. 

1.1.  Email Sender Analysis  

In email analysis, it is very important to analyze the sender of the email first. It is pretty 

common in internet world to get spam emails. Lots of people and organizations try to fraud 

others via emails. Hence highly secured industries need a trusted email data handling process; 

otherwise it will be easy to cheat them with false service request. Sometime it is essential to band 



	
  

3 
	
  

certain emails and email senders for specific purpose and hence email sender information 

analysis is of high importance here. As an example we can say, suppose some customers (person 

or organization) are known for their false claims about the company product service and quality. 

Full processing all those false emails is waste of resource for the organization.  So it is important 

for the company to black list those people or organizations for farther misconduct and wrong 

complain about the company. In another case sender analysis will help to serve the customer 

faster. Often a particular organization sends email only for a specific kind of service. Company 

can make a list of well-known customers and that will help them to identify them at front by 

sender email addresses. Email service processing will become easy for them. In our project we 

have used Dictionary matching on email addresses to get a match with the Blacklisted or well-

known email addresses and domains.   

1.2.  Email Categorization 

Categorization of emails becomes really essential when the number of emails someone is 

getting is huge [1]. Proper email categorization can help a company to do their work much 

smoother and organized way. Lack of proper email categorization can create massive negative 

effect on personal and company performance; proved by Dabbish and Kraut in 2006 [1]. Hence 

automatic email categorization can be really productive for farther processing of emails. Based 

on the email categories, different processing can be done on the emails in the system. For 

example: in a Truck allocation company, it will be really helpful if they can know whether a 

specific request is for asking truck availability or asking a load. If that can be figured out, then 

serving that request will be much easier.     

 

 



	
  

4 
	
  

1.3.  Email Content Types 

Email content can be of various types: normal textual data, tabular data and no specific 

format. Textual data are mainly Natural Languages i.e. formal English sentences and I am 

mainly focusing on this in my project. Some emails contain attachments like pdf, word files, 

excel files etc. These pdfs, word files or excel files can contain important information for the 

organizations, so processing them are required. In my project I have created a system which 

extracts Pdf and excel attachments from the email, pre-processes them and then extracts 

information from them. To make the email extraction process simple, I have converted all these 

files in one text format and then used Named Entity Recognition and Decision-Tree Algorithms. 

1.4.  Content Analysis and Extraction from the Emails  

There are different challenges in extraction of exact texts in email content. Sometimes 

emails are neither written following proper grammatical rules not spellings. So to get the 

information correctly we have to handle them properly defining different rules in our project. 

Apart from that emails contain emails dates, locations, times, some numeric values etc. in 

different and multiple formats. So processing all of them and extract them correctly is a 

challenge and we have countered them in our project. For example: 08/20/2014 and 20 Aug, 

2014 are same dates however they have appeared in different formats, so they are required to be 

extracted and filled up in the database with a single format.    

Here in this project, I have used a set of emails from a company named ValleyExpress as 

our dataset. ValleyExpress is a nationwide freight company specializing in temperature control 

shipments, managing a fleet of more than 130 units. They receive tons of emails, requesting 

allocation of trucks for available loads or vice-versa. I have taken a set of emails with Natural 

Language body content and PDF or excel as attachment to test my system. 



	
  

5 
	
  

CHAPTER 2. BACKGROUND AND RELATED WORK 

2.1. Natural Language Processing: Named Entity Recognition 

Natural Language Processing is a machine learning or specifically statistical machine 

learning technique [14]. With the help of NLP we can analyze, understand, and generate 

languages that humans use naturally. Hence we will be able to address any computer as though 

we are addressing another person with that generated language.  

In Information Extraction (IE), there are several advanced systems available, like GATE 

[17], KIM [18], C-PANKOW [19] etc. which can perform data extraction quite efficiently. 

However C-PANKOW [36] or knowItAll [37] works well on general information domain like 

web but this is not applicable to the enterprise specific content. So to get the best result in 

information data extraction, Natural Language is really essential. NLP techniques decompose the 

sentences and tag the parts of speech like noun, verb, adjective, and pronoun. Then different 

information retrieval techniques can be applied on the result. A point to remember is that NLP 

techniques are easily available in language like English but not in other languages. Areas where 

domain specific knowledge is important, Natural Language Processing is difficult to use [20]. 

There are many well-known parts of NLP in Computer Science like Morphological 

segmentation, Word sense disambiguation, but for this project our interest is in Named entity 

recognition.   

2.1.1. Named Entity Recognition 

“Named entity recognition is a subtask of Information extraction” [15]. Named entities 

are phrases which contains a person’s name, company name, location etc. For example: “Mr. 

Andrew works for Medtronic since July 21, 2010”. 



	
  

6 
	
  

The above sentence contains 3 named entities “Mr. Andrew” a Name, “Medtronic” and 

organization and “July 21, 2010” a time. 

This Named Entity Recognition or NER is the process of information extraction which 

tries to find elements in the text into pre-defined categories like person name, company name, 

location, date, time, numerical value etc. [15]. NER performs surface parsing, delimiting 

sequences of tokens that answer questions like “who”, ”where”, ”how much” in a sentence to 

determine answers for person or organization name, locations and quantities from that sentence. 

NER can be used as the first step in a chain of processes. Next level of processing could relate 

two or more NEs or even give semantics to that relationship using a verb [16]. Named Entity 

Recognition is a kind of Statistical Machine learning modeling and it requires a large amount of 

annotated training dataset. Hence a dataset needs to be annotated using some Annotator and that 

has to be feed into NER model as a training dataset. There are lots of pre-annotated dataset 

already available in the web and those can be used as training dataset as well. The performance 

and accuracy of the techniques depends upon the quality of the training data that has been 

provided to the parser.   

In NER and NLP is an open research area and multiple research is still running. In past 

and even now most of the statistical analysis in Natural Language Processing has been performed 

using local structure for a dataset. For example Hidden Markov Models (Leek, 1997; Freitag and 

McCallum, 1999), Conditional Markov Model (Borthwick, 1999), and Conditional Random 

Fields (CRFs) (Lafferty et al. 2001) are recent applications in Information Extraction and all of 

these are based on Markov property; which says that the state at a particular position in a 

sequence depends on a local window. However in a research in Stanford University NLP group, 

they have used non-local processing [21] to get better result in most of the cases as Natural 



	
  

7 
	
  

Language contains a great deal of non-local structure. Here they have used a simple Monte Carlo 

algorithm “Gibbs sampling”. This is perfect for inference in any factored probabilistic model, 

including sequence models. They have provided an example given in Figure#1and demonstrated 

benefit of non-local processing in NLP through that. In example showed in Figure 1, the 2nd 

occurrence of the token “Tanjug” is mislabeled by CRF based NER techniques. The 1st 

occurrence of the field shows that “Tanjug” is an Organization however based on the local 

processing of data; the system gets confused whether “Tanjug” is an Organization or a person’s 

name. In this paper the author proved that this can be determined using non-local processing of 

NLP. 

 

Figure 1: Example of a Label Consistency Problem from CoNLL 2003 English Dataset 

For our project as we want to find specific information from emails and Named Entity 

Recognition is best suited here. We have used Stanford’s Named Entity Recognition (NER) to 

extract important information like Person Name, Organization Name, and Date-Time etc. as this 

gives good result for this domain and easily usable.     

2.2. Key Value Pair Based Information Extraction 

This is one of the most common used techniques in Information Extraction. The main 

concept key-value pair is, there will be a key (an object type) and an associated value (Matched 

text) for that key [9]. A gazetteer is a geographical dictionary or directory used in conjunction 



	
  

8 
	
  

with a map or atlas [23]. This gazetteer is used to extract key-value pairs from a text. For 

example:  

“Mr. Andrew has a shipment to send from Minneapolis, MN to Omaha, NE on 5th July, 

2014” 

Here key: person name and the corresponding value is Mr. Andrew,  

Key: Location Value: Minneapolis, Omaha,  

Key: Date Value: 5th July, 2014  

We can extract all possible key-value pairs from a text using defined words and 

gazetteers and these key-value pairs can be used for farther processing. In our project we have 

set many rules based on the key-value pairs and keywords to get more complicated information 

from a text. Based on some of these rules we can detect which location is source and which one 

is destination. 

2.3. Dictionary Matching 

Dictionary matching is a commonly used operation in Information Extraction [24]. A 

predefined dictionary is used to find different important keywords in a set of strings. For 

example Dictionary matching can be used to find Months of a calendar year, States etc. String 

searching is used to match with Dictionary entries. Aho-Corasick string matching algorithm is an 

algorithm which helps finding elements of a Dictionary of strings within an input text. Let us 

posit that we have to locate any pattern from a set P = {P1,…, Pk}, in a target set T[1…m]. Now 

let us consider n = |Pi|!
!!!  . It works in time O (n + m + z), where z is number of pattern 

occurrences in T [25]. In this Algorithm, the system generates a finite state machine and that is 

like a keyword tree or known as a tree. This tree is constructed with patterns P. 

1. Each edge of the tree is a character 



	
  

9 
	
  

2. Every two edges out of a node have separate labels 

Label of a node v = concatenation of edge labels = L(v) 

3. for every pattern in P, there exists a node v as L(v) = P 

4. L(v) of any leaf v = p belongs to pattern set 

For example a keyword tree {he, she, his, hers} [25] 

 

Figure 2: Pattern Matching Example  

Keyword lookup: The lookup starts from the root of the tree. Then follow the route 

labeled by characters of P as long as possible. In Figure 2 we have presented an example of 

pattern matching tree. 

• If a route is found that leads to an identifier then that pattern belongs to that set of 

identifier.   

• If the route finishes before the pattern completes, then that pattern does not belong to that 

Dictionary.  

2.4. Related Work 

As we have discussed earlier that emails are very common medium of electronic 

communication for almost last 40 years, a considerable amount of research has been done on this 

field to get benefit from those email data. In a paper about extracting product information from 



	
  

10 
	
  

Emails Receipts, author has presented an efficient algorithm based on Markov Logic [26]. 

Markov logic is combination or probability and logic. In this work they have encountered many 

challenges like E-receipts can be generated from different templates. So making a generalized 

rule is always challenging. Maximum of the E-receipts are based on plain text instead of HTML 

tagging and that makes the process of information extraction much more complex as data 

representation is irregular. They have created a corpus of unlabeled E-receipts and they have 

identified all possible templates by jointly clustering all those E-receipts [27].  

In another study in University of Ottawa, Canada, [28] people have used semantic 

tagging and domain knowledge for the enterprise to extract information form an outgoing email 

in a company. These extracted data they are using for the purpose of detecting the privacy risk of 

the organization by matching them against a set of Compliance rules.  

In 2010 in Institute of Informatics Slovak Academy of Science, people presented a paper 

[9], which highlighted Email Analysis for Enterprise Benefit. They have proposed a light-weight 

process using different NLP techniques like Named Entity Recognition (NER), Coreference 

Resolution (CO), Template Element Construction (TE), Template Relation Construction (TR) 

and Scenario Template Production (ST), then Key-Value pair based information extraction to get 

the important information regarding enterprise emails. Now those extracted information has been 

processed using Semantic Trees, Email Social Networks, and Graph Inference to get the job 

done. On the other hand Email protocols and Email server have been used in this process.    

  



	
  

11 
	
  

CHAPTER 3. SYSTEM DESIGN 

3.1. Domain Knowledge and Ontology 

Prior to the inception of email information extraction and subsequent processing, it is 

essential to acquire a concrete domain knowledge which basically captures specific information 

about the structure of the organization, nature of the users who will be using the system and their 

corresponding expectations. An intensive analysis of the company database elicits deep domain 

knowledge. This domain knowledge can be used in training our Named Entity Recognizer 

models and also in creating rules to extract information. For example a University consists of 

students, professors, office staff and many other members. In the University the students can be 

characterized by some well-defined attributes some of which can be Student_Id, Student_Name, 

and Department. Hence the domain knowledge is really important in order for the system to 

handle emails related to a University more efficiently and predict accurate results. We can 

acquire Domain knowledge from two sources- first from Organization Databases and 

Dictionaries and next from Domain ontology. The latter is required to represent items in a tree or 

a hierarchical structure [28]. In Table 1, we have presented some Tables for email categories and 

attributes of the Tables.  

Table 1: Example Tables for Truck and Load Delivery Company 

Objects Attributes 

Blacklisted emails Senders Name, email id, email domain 

Load emails Load Type, Source Location, Destination Location, Date 

Truck emails Truck Type, Available location, Available Date 

 



	
  

12 
	
  

The Domain ontology is a hierarchical organization of roles from a database [28].  There 

is a clear Mapping between entries in the database and the roles represented in a hierarchical 

Ontology.  In Figure 3 we have given a hierarchical ontology of email categorization based on 

the Database tables shown in Table 1.  

3.2. Email Preprocessing 

An email contains multiple parts in Figure 4 has displayed all those possible models with 

an example email. We are processing each module at a time to extract important information 

from each of them. The process flow for the entire system has been depicted in Figure 5. 

 

Figure 3: Example of Hierarchical Ontology of Email Categorization 

3.2.1. Sender Extraction and Analysis 

The email client receives emails from different email addresses which are being 

preserved by the email client for future references. Now the first part of our process is Email 

sender extraction. In our work we have considered that the email client already does this 

extraction and the sender email address is available to us.  

Emails	
  

Black	
  Listed	
  
Emails	
  

Remaining	
  
Email	
  

Load	
  Emails	
   Truck	
  Emails	
  From	
  Email	
  
Address	
  

From	
  Email	
  
Domain	
  

No 
Information 



	
  

13 
	
  

Figure 4: Example Email Fields 

We perform some specific processing steps on the email addresses gathered from the 

email client. Based on the organizations, we can have a collection of blacklisted email senders. 

Blacklisted email senders refer to people or organizations who have been identified as unwanted 

by the organization under consideration. We posit that the company already possesses this list 

and it is accessible to us. If we find any match with the blacklisted email addresses while 

processing the received email addresses, we ignore those emails without further processing.  

In course of processing email addresses, we split them by “@” and then extract the email 

domain to determine blacklisted email domains. We use simple string matching techniques to 

find out the match with the Dictionary of blacklisted email domains or email addresses.  For 

example, we have a blacklisted email domain as “factory.com”. The company might have 

received an email from james_dube@Factory.com. When we process this email and split it by 

the character “@”, we get that the Domain name is Factory.com. In this case a positive hit is 

encountered during the process of extracted keyword comparison with the blacklisted email 

domains as a consequence of which we skip the particular email. 

Email	
  date	
  
Sender 

Subject 

Attachment 

Email body 



	
  

14 
	
  

This preprocessing of the emails before processing their email body or attachments saves 

a lot of CPU processing time and resources. This also contributes towards enhancing the security 

features of organizations by safeguarding their internal operations from the attacks of fraudulent 

users with malicious intent.  

3.2.2. Subject Extraction, Analysis and Categorization 

Email subject plays a significant role in knowing the purpose of the emails. In this work 

we obtain the email subjects from the email clients in the form of strings. We use different rules 

on the subject lines of the emails to know their purpose. We use those rules to construct a 

decision-tree based categorization algorithm to categorize emails. We apply domain knowledge 

of the organization to create specific rules attributed towards identifying the differences between 

emails. For instance we conducted an elaborate study with the emails related to a Freight 

Delivery company. Based on the email subjects, we try to detect whether the email has been 

received from a client who wants a truck or from a company which has trucks available to 

transfer loads. This email categorization is really important before further processing. Based on 

the type of organization we are working with, it can be a required information that has to be 

provided. Apart from that if we can categorize the emails first, then we can use category specific 

algorithms for further processing. This approach has the advantage of saving considerable CPU 

processing time thus making the email extraction process to be executed in a much faster time. 



	
  

15 
	
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: System Diagram for Flow of the Processes in the System 

	
  

	
  

	
  	
  	
  	
  	
  Email	
  Client	
  

	
  

E

  

Emails 

Email	
  

Preprocessing	
  

Email	
  Information	
  Extraction	
  

Database	
  

Sender	
  Extraction	
  &	
  Analysis	
  

Subject	
  Extraction	
  &	
  Analysis	
  

Email	
  Body	
  Extraction	
  &	
  Format	
  

Conversion	
  

Attachment	
  Extraction	
  &	
  Format	
  

Conversion	
  

PDF	
  to	
  Text	
   Excel	
  to	
  Text	
  

Table	
  Processing	
  

Named Entity Recognition 

Dictionary Matching 



	
  

16 
	
  

A challenge in this approach emerges from the fact that some emails do not include email 

subjects or even if they do, the subjects fail to succinctly represent the information in the email 

that can be used to separate it from the others. In such cases analyzing the entire email text 

becomes essential to categorize them. In this context we have created a set of rules based on 

some training sample emails and domain knowledge. We use these rules first on the email 

subject content and attempt to identify the purpose of the email and if we can categorize it based 

upon the result. In cases where the application of these rules on the subject content fails to 

achieve classification, we apply similar rules on the email body content or attachment contents. 

Based on the study of the sample emails in our used dataset, in more than 90% of the cases we 

were able to find the purpose of the email and could achieve email categorization successfully.      

Rules for decision-tree based categorization can be constructed from domain specific 

keywords. We accumulated a set of emails from the company which has built our training 

dataset. A careful study of these emails in the next step generated specific categories for them. 

This study revealed a list of keywords in combination with their specific orders for 

categorization. From the integration of the keywords and their orders we were able to generate 

the set of rules. In the subsequent step we map these rules to their specific email categories. This 

implies that if rule a matches to a particular email, then it can be concluded that it belongs to 

category A.      

Based on the above discussions, we can describe algorithm of decision-tree based 

categorization of the emails in the form of the following sequential steps of processes: 

Algorithm: Email Categorization 

1. START 

2. Gather Domain knowledge and study sample emails for the organization 



	
  

17 
	
  

3. Generate list of keywords 

4. Create rules based on those keywords and their order of appearance in the text 

5. Create set of categories for the emails 

6. Create a Mapping between rules and categories 

7. Study email subjects and apply these rules 

8. If Category received then 

9.      Done. Go for next level of processing 

10. Else  

11.      Apply rules on the email body content or email attachments 

12.           If Category received then 

13.                Done. Go for next level of processing 

14.           Else  

15.                Categorization failed. 

16.           End if 

17. End if  

18. END 

3.2.3. Attachments Extraction and Format Conversion 

Email client extracts the attachments, saves it in a memory location and sends the link to 

the system. It is considered that we have access to all these file paths. We can separate these 

email attachments based on their file extension. In our work we have encountered PDF files and 

excel files as attachments with the emails in this system. If received emails have attachments of 

types Excel or PDF we are able to process them. Attachment processing initiates from 



	
  

18 
	
  

identifying the type of the available attachment. According to their types successive processing is 

performed. In the Figure 6 we have depicted the flow of the process. 

 

Figure 6: Attachment Processing Flow 

3.2.3.1. PDF to Text Conversion 

We have encountered two kinds of PDF files in our project. One kind of PDF files 

contains Natural Language content and another kind contains tabular data in it. This makes it 

difficult to extract and convert the format of PDF files to text forms by following a single 

process. Hence we have adopted two different algorithms to process these two formats.  

We apply table processing algorithm first in order to determine which algorithm should 

be applied on a PDF file. If the content of the PDF is Table then it returns the Text format of the 

PDF. If the content is not table then it notifies the system about it after which the next algorithm 

is applied for processing. 

Plain Text: For Plain Text PDF files, we have used Apache’s PDFBox [29] library 

methods to convert the PDF files to text files. We have used the PDModel concept here. 

Email	
  

Attachment	
  

Convert	
  to	
  text	
  

format	
  

Information	
  

Extraction	
  



	
  

19 
	
  

PDModel helps creating and manipulating PDF Documents [35]. PDDocument class in 

PDModel represents the in-memory representation of a PDF file. By using this PDDocument 

class we were able to access the attributes of a PDF Document.  

We have extracted the text from the PDF by regions. Using PDFBox library, we have 

converted the PDF attachment file to an accessible PDDocument. Then we have started further 

processing of the PDF file page by page. We created PDF Rectangles which represents different 

areas or regions of the document for every page. Next we have created a 

PDFTextStripperByArea which extracts text from a specified region in the PDF. We have added 

these PDF Rectangles to this PDF Text Stripper for extraction of the text. 

PDFTextStripperByArea class also has been used to format the converted PDF text for ease of 

the further processing of the data. In this aspect we have added proper new line characters into 

the text and added tabs after each word. This format will help in extracting important information 

from the Text. After setting up this PDF Text Stripper with PDF Rectangles, New Line Character 

and word separators, we have used a method called GetTextForRegion which converts the whole 

file and returns the text version of the PDF. This is an efficient procedure and it has been found 

that this PDF text extraction by regions is useful for most of the PDFs. 

Table Format: Often PDF files contain tabular data in it. We can use the same procedure 

that we have used for Normal Text using PDFBox for PDFs with Tables as well. However it will 

not keep the tabular data in a well-structured format and this will create obstacles in further 

processing of that file content. Hence keeping that problem in mind, we have used a separate 

procedure using PDFReader library to convert PDF with Tables to text format. It first converts 

the whole PDF file into HTML format. Then it reads the HTML formatted data by TAGs. If an 

<HTML> TAG is obtained a table in text is created which is being closed on encountering a 



	
  

20 
	
  

</HTML> tag. In between if it finds a <TR> tag which implies a TABLE ROW, it adds a new 

line character to the text. When a <TH> or <TD> tag is retrieved which respectively denotes the 

tag representation for a  TABLE HEADER or TABLE DATA then it adds tabs to separate them 

from each other in the text. Inside a <TH> and </TH> or <TD> and </TD> the procedure looks 

for paragraph tags <P> and </P> because paragraphs contains the main content of a cell. 

Whatever the system gets inside a pair of paragraph tags, it adds that to the text. This text 

becomes the final converted form of the PDF.   

We have used a predefined format to represent a table in plain text after conversion from 

PDF to the text. This specific format helps in further processing. For example, we can place new 

line characters after every row of the Table and can put tab characters after each column in a 

row.  

3.2.3.2. EXCEL to Text Conversion 

Excel attachments have been converted into Text using Java Excel API. We have created 

Work Book for each excel file, extracted the text and saved them in a String. First we start 

reading the Excel file from the top. We read the file on a line by line basis and visit each and 

every cell inside that row. We add the cell contents to the text file in the sequence that they have 

been visited. Whenever we go to a new line in the Excel sheet, we add a new line character to the 

text and when we go from one cell to another we add a tab in the text. We use this specific 

format to represent a table inside the text to make further processing of that text easier. 

3.2.3. Email Body Extraction and Format Conversion 

Our email client receives the emails, extracts the main body part and makes it available 

for further processing. Most of the emails are of HTML format. Hence the email client converts 



	
  

21 
	
  

the HTML into plain text format regardless of the Tables and other High level HTML contents. 

Our work of text parsing for Information Extraction starts after that point. 

3.3. Information Extraction 

After we have retrieved both the email attachment and email body in their respective text 

formats, we begin processing those using different rules and algorithms to extract important 

information. We have observed different format of data representation in text like Tabular data, 

Natural Language and unformatted data. At the same time we had some other challenges which 

are discussed below: 

3.3.1. Challenges 

3.3.1.1. Date Format  

In emails there are different date formats. People are conversant with different date 

formats while writing emails. Some of the commonly used date formats are represented as 

“Month-Date-Year” and “Date-Month-Year”. We have discovered many possible date formats 

after a careful survey of many emails which are described in following table.  

In Table 2 we have presented different possible date formats that can be found from 

emails. These formats have been captured after consulting numerous emails from different 

company datasets. During email extraction in our program we have examined all these formats to 

determine dates. We have converted all the dates from String to DateTime format using different 

rules. As a result of parsing different emails, we obtain date in one specific format. We are 

saving that format in the database. There are multiple advantages of converting all the dates into 

one single format. A company database can be defined in a specific DateTime format and as a 

result of this processing a perfect alignment can be achieved between the DateTime format of the 

user emails and that of the company database. Moreover a company might require all the emails 



	
  

22 
	
  

to follow a single format for the purpose of further processing of the emails information in which 

case our processing comes really handy.   

Table 2: Different Possible Date Formats for Emails 
 

Date Format Example 

Date-Month-Year 21-10-2013 

Month-Date-Year 09-23-2014 

Date/Month/Year 21/10/2013 

Month/Date/Year 09/23/2014 

Date.Month.Year 21.10.2013 

Month.Date.Year 09.23.2014 

Date Month,Year 21st January, 2013 

Date Month,Year 20th Jan, 2014 

Month Date, Year Jan 20, 2015 

Month Date, Year January 20th, 2013 

 

3.3.1.2. City and States  

In the emails that an organization receives, often cities and states are clearly mentioned. 

For example we have taken a dataset of a freight company. They receive emails about truck 

transportation requests. Those emails contain information about the source city and the 

destination city. Based on the requirements of the organizations, it is required to find out the 

cities and states. In our algorithm we have used a Dictionary matching algorithm to find out all 

mentioned states in the email by matching them with a List of states. Here we have worked with 

only USA and Canada states as the company has operational units only in USA and Canada. We 



	
  

23 
	
  

have prepared a list of all states in USA and Canada. Based on the organization and its 

requirements, we can change the Dictionary entries for the states and we can search them in the 

emails. Once we achieve a match with any of the dictionary entries, we tag them as states. Later 

as described in the following section, we discriminate between source and destination locations 

and mark those states as source state or destination state.    

3.3.1.3. Source Destination Discrimination  

In our dataset of emails, we have observed emails where companies request for trucks to 

send a load from a source to a destination location. Using Named Entity Recognition, we were 

able to tag locations in the text. However it was a challenge to know which of them are 

destination and which are source. So we have implemented a set of rules using some keywords to 

discriminate between them. For example: there is a text like 

“I have a shipment ready for delivery from Minneapolis, MN to Seattle, WA” 

Here Minneapolis, MN is the source and Seattle, WA is the destination. We can find out 

that Minneapolis is the source city because it is followed by the keyword “from” and Seattle is 

the Destination city because it is followed by the keyword “to”. So here we have jot down a 

bunch of these kind of keywords that can be helpful to find out the Source and Destination 

locations. Now after using Named Entity Recognition, as locations are marked, we are using 

Dictionary matching for those keywords and finding out the Source city, state and Destination 

city, state.       

3.3.2. Table Data Processing 

In different organization, we have encountered many emails that contains tabular data. 

Like a Pdf file can contain information which is organized in a table format or we can encounter 

excel file. Now as mentioned earlier, we have pre-processed all of these files and has generated 



	
  

24 
	
  

text files. In text files for tabular data representation, we have created a format. We have given a 

special character after each new line i.e. starting of a new row and another special character after 

each entry i.e. each column entry. For example: bellow Table 3 represents a table with some 

student information. 

Table 3: Example Table Data for Processing 
 

No. Student Name Student Address Student Phone No 

01. Nick St. Paul (780) 432-2839 

02. Brad Dallas (432) 120-2390 

 

Now if we will convert this table into our previous described text format, it will become 

like following 

No. <col> Student Name <col> Student Address <col> Student Phone No <row> 01. 

<col> Nick <col> St. Paul <col> (780) 432-2839 <row> 02. <col> Brad <col> Dallas <col> 

(432) 120-2390 <END>   

Now when we are processing, we are reading the whole text and based on those special 

characters, we are getting those entries for the table. In tabular data processing the first main job 

is to find out the Table header information like here in this example No, Student Name, Student 

Address, Student Phone No. Here in our algorithm, we have created a list of possible table 

headers for our expected data entries that we need to extract for a specific organization. To 

extract those table headers first. We start reading the whole text and look for a row with some 

header matching. After we get that header row. We start reading other rows and enter those 

column values under their respected column header. So, for the above example, when we find the 

Header row, we read second row and put 01 under No, put Nick under Student Name etc. We 



	
  

25 
	
  

continue this work until we get the end of the file or we get another Table header, means starting 

of another table. We use a Map to map Table headers to our required information name. So here 

we want Name of the Students so, we are looking for Table column name like “Student Name”, 

“Name”, “Student First Name”, “Student Last Name” etc. Based on those matching we extract 

and save table entries.   

Algorithm: TableTextExtractor ( String EmailText) 

This function takes an Email Text which is was generated from Table content and parses 

it. Then it extracts all important data from that content. 

1. START 

2. String[] Linei  set to <- Split the EmailText based on New Line character 

3. LineCount set to number of lines in the Linei 

4. for all the line-s in Linei do 

5.      String[] Wordj set <- Split the Linei based on Tab character 

6.      for all the word-s in Wordi  for line do 

7.           Match word with Dictionary of Keys Table Headers 

8.           if Match found do 

9.                Map that Column of the word to that Category (from the Dictionary of Keys) 

10.                Save them as TABLE HEADERs with their column numbers 

11.           end if 

12.      end for 

13. end for 

14. Now we have the Table Headers 

15. for all the line-s in Linei after the TABLE HEADER do 



	
  

26 
	
  

16.      Create an EmailEntry for line 

17.      for all the word-s in Wordi  for line do 

18.           Map the word to the TABLE HEADER 

19.           if Match found do 

20.                Enter the word to the EmailEntry with its corresponding TABLE HEADER 

21.             end if                 

22.      end for 

23.      Add the EmailEntry to a EmailEntry List 

24. End For 

25. Return the EmailEntry List 

26. END 

3.3.3. Named Entity Recognition  

Most of the emails that we encounter are written in Natural Language, so no doubt this is 

the most important and challenging part of the project. Here we have used Stanford’s Named 

Entity Recognizer algorithm and library function [21]. As discussed earlier, in this algorithm 

they have used non-local information in information extraction using Gibbs sampling.  

We have used different annotators like “tokenizer”, “ssplit”, “parts of speech”, “lemma”, 

“Named Entity” to annotate the email text. Now we have gone through all the sentence and 

tokenized them, then we have used Text annotation to get the words, Parts of speech annotation 

to get Parts of speech and Named Entity Tag Annotation to get Named entities. We have used 

some training dataset to train the NER Model. Here the NER model is trained with multiple 

datasets. We have used Stanford NER’s default trained model. This model is trained with  



	
  

27 
	
  

CoNLL – 2002 and CoNLL -2003 (British newswire) and it supports Multiple languages 

like Spanish, Dutch, English and German. It contains 4 named entities: Person, Location, 

Organization and Misc. 

MUC -6 and MUC -7 (American newswire) and it supports 7 named entities: Person, 

Location, Organization, Time, Date, Percent, and Money. 

ACE which supports 5 named entities: Location, Organization, Person, FAC, GPE. 

This NER model gives pretty much good result in our project. 

Now we have used all of those annotated words to figure out our required information 

from the text. In our project we have taken a data set for Truck and load Assignment Company. 

Table 4: Email Entry Fields for Extraction 

Field Type 

Package Weight Double 

Package type String 

Origin City String Array 

Destination City String Array 

Origin State String Array 

Destination State String Array 

Available Date Time Date Time 

Delivery Date Time Date Time 

Required Trailer Type String 

Description String 

Price Double 

 



	
  

28 
	
  

We have used Date Time, Location, Person, Money Named entities to get required information 

for the project. In our project we are trying to find out following information listed in Table 4  

After we have tagged all the locations, we have used dictionary matching to find out the 

States and then used some rules to determine the source and destination from them. We have 

described earlier about the rules that we have used to find out destination and source. Now 

comes Date Time; as discussed earlier we have used many techniques to convert any format of 

date to a standard Date Time format to record that for father processing in the system. We often 

use words like today, tomorrow, Day after today, day after tomorrow or even we use like coming 

Monday or last Saturday. In this project we have used multiple rules to figure out the actual date 

for those days and has entered them into our database for farther processing. We have created 

conditions for keywords like “today”, “tomorrow”, “day after tomorrow” etc. and whenever we 

find them we calculate their date from today’s system date. We have created a Dictionary of 

Days (Sunday, Monday,..) and assigned a number to each of these days. Now whenever we get 

one of this Dictionary entry in the email text, we consult the Dictionary to get the corresponding 

day number for that. Now we take the current date from system clock and do some calculation to 

find out the date of that day which is coming. For example today’s date is 10/16/2014 and day is 

Thursday. I received an email today and they are pointing out on coming Monday. Now we use 

the Dictionary to find out the day number for today =4 and Monday =1. Then we calculate the 

day difference from today to Monday using that day number = -3. Now when the difference goes 

bellow 0 then add 7 to that as total number of days in a week is 7. So now the difference 

becomes 4. Now we add that difference to today’s date and it gives the date of coming Monday 

as 10/20/2014 (16 + 4). 

 



	
  

29 
	
  

3.3.4. Dictionary Matching 

We have used dictionary matching in our algorithm a lot. We have created multiple 

dictionaries in the project like State Dictionary, Keywords Dictionary etc. Here I should mention 

that though we have NER implemented in our project, but it does not detect all the items 

correctly. For example some time, NER does not detect States correctly or sometimes it marks 

them incorrectly. So it is an easier solution to use a dictionary matching for those fields and 

because of that we have incorporated dictionary matching here. For dictionary matching 

sometimes we have used normal string matching and sometimes we have used Lingpipe [36] 

library functions. In some occasion we have already tokenized sentences, so we have used those 

tokens to match with Dictionary entries using basic java string matching.  

For example we have extracted States from the email text using Dictionary matching with 

normal string matching in our project  

Otherwise we have used LingPipe dictionary chunker to find out matches with the text. 

For example when we started processing Email body in our project, for dataset of Truck and 

Load allocation, we first search for the kind of trailer they are asking. So, here before we used 

Stanford NER on the text, we used LingPipe Dictionary chunker to find out the trailer type.  

Algorithm: DictionaryChunk (String text, Dictionary dictionary) 

This algorithm finds whether any of the Dictionary word exists in the text or not. If any 

exists then it finds and returns. 

1. START 

2. Prepare the Chunker from PipeLine 

3. DictionaryChucker <- Create ExactDictionaryChunker using dictionary and 

IndoEuropeanTokenizer 



	
  

30 
	
  

4. String output set to null 

5. Chunking <- Chunker.chunk (text) 

6. ChunkSet <- get ChunckingSet from Chunking 

7. for each chunki in ChunkSet do 

8.      int CHUNKSTART set to chunki.Start 

9.      Int CHUNKEND set to chunki .End 

10.      Output <- text . Substring (CHUNKSTART, CHUNKEND) 

11. end for 

12. Return Output 

13. END 

3.5. Storage 

After processing all these data from the emails we are now we can save the extracted 

important information into a repository for company’s further work. In our project we have 

created individual XML files to save featured data for each individual emails that we have read 

from the email client. For our project we have worked on a dataset of Truck and Load allocation. 

So for emails asking for a truck we have extracted information about the kind of truck they are 

looking for and other relative information then we have saved them in an XML file that can be 

utilized to allocate a truck for that client. 

 

 

  



	
  

31 
	
  

CHAPTER 4. EXPERIMENT AND RESULT 

4.1. Dataset 

For our experiment we have taken a dataset of a company named ValleyExpress who 

allocates trucks and loads. We have taken 231 of emails which contains Natural language email 

body content, PDF or Excel files as attachments. All these emails have information regarding the 

source and destination locations for the load transfer, dates and times for the transfer etc. We are 

running our application on this set of emails. 

4.2. Experiment 

I am using an Email Client which receives all the emails come to the Company and gives 

my program following information 

Senders email address, Emails Subject, Email body in text format and downloaded 

attachments. Emails body text comes in a .txt file and Email Client sends the link to the system. 

My system starts working from there; it reads all those files from the link and starts processing.  

4.3. Result 

In the Figure 7 we have shown a sample email that we have used in our system and has 

processed in the category of Natural Language for email body. 

Sample email: 



	
  

32 
	
  

 

Figure 7: Sample Email Body as Natural Language 

This email does not have any subject and does not have any attachments associated with 

it. I have applied this to my system and got the following result shown in Figure 8 bellow. 

Output:  

Kind of load is unknown here. 

 

Figure 8: Output for an Email with Email Body as Natural Language 

Now we have presented an email which has a PDF attachment which gives all the details 

about the load transfer as shown in Figure 9 



	
  

33 
	
  

 

Figure 9: Sample PDF Attachment with Table in It  

Now we have extracted the attachment and fit into our system. Our system has converted 

the PDF into text with the Table first and then has processed the file to extract required fields of 

information. Output for the email with PDF attachment is shown in Figure 10. 

We have used our system on 110 emails as Natural Language as email body, 54 emails 

with PDF with Text as attachment, 42 emails as PDF with tables as attachment and 25 emails as 

Excel files as attachment. We have counted the number of Desired Fields that appears in the 

email content and the number of fields that we have managed to capture. Based on the result 

found in the project, we have calculated Precision and Recall, which have been presented in the 

flowing Table 5.  

 



	
  

34 
	
  

 

Figure 10: Sample Output from PDF Table 

 



	
  

35 
	
  

Precision: Precision represents fraction of retrieved items which are relevant i.e. the number of 

correct results delivered divided by the number of all items retrieved.  

 

Recall: Recall represents fraction of relevant items that has been retrieved i.e. number of correct 

results achieved divided by the number of correct results that were supposed to be returned. [38] 

 

Table 5: Shows Precision and Recall for the Experiment 

Type of 
Document 

Avg. Number 
of Fields 
Present 

Avg. Number 
of Correct 

Fields 
Retrieved 

Avg. 
Number of 

Fields 
Retrieved 

Precision Recall 

NATURAL 
LANGUAGE 

5.24 
 

4.19 
 

5.02 83.4 % 79.9 % 

PDF as 
TEXT 

5.18 4.01 5.06 79.24 % 77.42 % 

PDF as 
TABLE 

6.45 5.29 6.81 77.7 % 82.1 % 

EXCEL 6.23 5.11 6.72 76.04 % 82.03 % 

 

4.4. Application Run Time:  

Application running time varies upon whether we are doing batch processing or single 

email processing. As we have to load lots of Library functions, it takes some time to load all of 

them. However once they have been loaded, then processing emails does not take too much of 

time. As estimated for single email processing it might take 20 sec to process the content and 

return the result.  



	
  

36 
	
  

CHAPTER 5. CONCLUSION AND FUTURE WORK 

5.1. Conclusion 

Emails are really important in our daily personal life as well as in the industries. There 

are numerous examples of industries where emails are the only way of communication between 

them and their clients. Service based companies provide services through emails. So it is really 

necessary to get all the information from the emails clearly and correctly.   

In our project we have implemented a system of encountering these emails; especially for 

industries. We have implemented rules and algorithms in our system which deals with all these 

emails received in the email client. Our system pre-process the emails, finds out sender 

information, subjects, separates all the attachments and then process all of them including the 

email body to extract necessary data from it. It handles lots of other difficulties about email 

formats and text formats to produce best possible result.  

We have seen, if the emails have similar structures or has been generated from a same 

template, the system works very well. Whereas with vastly different formats in the emails, the 

performance of the system goes down a little bit.  

5.2. Future Work 

5.2.1. Email Signature Removal 

Often emails are associated with signatures based on the industry we are dealing with. 

Sometimes email signature information create confusion in the information data extraction. 

Sometimes signature information gets extracted as part of the service information and that is not 

desired. So it is significant to remove the email signature before we start information extraction 

from the email.  This will produce better result. 



	
  

37 
	
  

5.2.2. Encountering Unknown Formats 

Here in our project we have encountered and has implemented the logic to deal with the 

emails that have Natural Language in the body or Tabular information in the body. However 

sometimes emails do not contain information is a specific format, instead of that information is 

little bit messy. We have not encountered them here. This can be done in future for better 

performance and better result with many emails. 

5.2.3. Images and Other Icons Handling  

Many emails contain images or other icons. As part of important information extraction, 

these icons and images are often not required. These unnecessary icons can be removed during 

the pre-processing of the emails. This will keep the information extraction process simple and 

easy. 

In some aspect, images or icons can appear into the required information that the 

organization wants to extract. Then processing and extracting those icons, images and storing 

them will be required. 

5.2.4. Incorrect Spelling 

Emails often contain incorrect spellings and it creates problem to extract those 

information correctly. Here we can use a spelling correcting algorithm to correct all those 

incorrect spelled words before we start the process of extraction of information. 

5.2.5. Microsoft Word Files as Attachments 

We have implemented extraction of pdf and excel file attachment from the emails and we 

have process of converting them to a normal text format to process them for extracting 



	
  

38 
	
  

information. Microsoft word files or some other format files can be implemented as part of this 

system as well.  



	
  

39 
	
  

REFERENCES 

[1] Tang, G., Pei, J., & Luk, W. S. (2013). Email mining: tasks, common techniques, and 

tools. Knowledge and Information Systems, 1-31.  

[2] Kok, S., & Yih, W. T. (2009). Extracting product information from email receipts using 

markov logic. In Proceedings of the Sixth Conference on Email and Anti-Spam, Mountain View, 

California, USA. 

[3] “Pew Internet Report: Online Activities 2010”. Pew Research Center. May 2010. Web. Aug 

2014. <http://tinyurl.com/ pewOnline10> 

[4] “Jones, J.: Gallup: Almost All E-Mail Users Say Internet, E-Mail Have Made Lives Better.” 

Gallup. July 2001. Web. Aug 2014. <http://tinyurl.com/Gallup01> 

[5] “The Radicati Group, Inc.: Email Statistics Report, 2010.” Editor: Sara Radicati. The 

Radicati Group Inc. 2010. Web. Aug 2014. <http://tinyurl.com/RadicatiEmail10> 

[6] “Taming the Growth of Email – An ROI Analysis (White Paper).” HP, The Radicati Group, 

Inc. Mar 2005. Web. Sept 2014. <http://tinyurl.com/RadicatiEmail05> 

[7] “80 % of Users Prefer E-Mail as Business Communication Tool.” META Group Inc. 2003. 

Web. Sept 2014. <http://tinyurl.com/MetaEmail03> 

[8] “Networked Workers. PewInternet report” Madden, M.—Jones, S. Pew Research Center. 

Sept 24, 2008. Web. Sept 2014. <http://tinyurl.com/pewNetWrks08> 

[9] Laclavík, Michal, et al. "Email analysis and information extraction for enterprise 

benefit." Computing and informatics 30.1 (2012): 57-87. 



	
  

40 
	
  

[10] Whittaker, Steve, and Candace Sidner. "Email overload: exploring personal information 

management of email." Proceedings of the SIGCHI conference on Human factors in computing 

systems. ACM, 1996. 

[11] Fisher, D.—Brush, A. J.—Gleave, E.—Smith, M.A.: Revisiting Whit-taker&Sidner’s 

“Email Overload” Ten Years Later. In CSCW2006, New York ACM Press 2006. 

[12] Corbató, F. J., Merwin-Daggett, M., & Daley, R. C. (1962, May). An experimental time-

sharing system. In Proceedings of the May 1-3, 1962, spring joint computer conference (pp. 335-

344). ACM. 

[13] “Natural Language Processing.” Wikipedia, the free encyclopedia. Wikimedia Foundation, 

Inc. 26 October 2014. Web. 27 October 2014. 

<http://en.wikipedia.org/wiki/Natural_language_processing> 

[15] “Named Entity Recognition.” Wikipedia, the free encyclopedia. Wikimedia Foundation, 

Inc. 26 October 2014. Web. 27 October 2014. <http://en.wikipedia.org/wiki/Named-

entity_recognition> 

[16] Zhou, GuoDong, and Jian Su. "Named entity recognition using an HMM-based chunk 

tagger." proceedings of the 40th Annual Meeting on Association for Computational Linguistics. 

Association for Computational Linguistics, 2002. 

[17] Cunningham, H.—Maynard, D.—Bontcheva, K.—Tablan, V.: GATE: A Framework and 

Graphical Development Environment for Robust NLP Tools and Applications. Proceedings of 

the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL ’02), 

Philadelphia. 



	
  

41 
	
  

[18] “Se-mantic Annotation, Indexing, and Retrieval. Elsevier’s Journal of Web Semantics, Vol. 

2, 2005, No. 1.” Kiryakov, A.—Popov, B.—Terziev, I.—Manov, D.—Ognyanoff, D. Ontotext. 

2005. Web. Sept 2014. <http://www.ontotext.com/kim/semanticannotation.html> 

[19] Cimiano, P.—Ladwig, G.—Staab, S.: Gimme’ the Context: Context-Driven Automatic 

Semantic Annotation With C-Pankow. In WWW’05: Proceedings of the 14th international 

conference on World Wide Web, New York, NY, USA. ACM Press. ISBN 1-59593-046-9, 

2005, pp. 332–341. 

[20] Laclavík, Michal, et al. "Email analysis and information extraction for enterprise 

benefit." Computing and informatics 30.1 (2012): 57-87.  

[21] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating Non 

local Information into Information Extraction Systems by Gibbs Sampling. Proceedings of the 

43nd Annual Meeting of the Association for Computational Linguistics (ACL 2005), pp. 363 

370. <http://nlp.stanford.edu/~manning/papers/gibbscrf3.pdf> 

[23] “Gazetteer.” Wikipedia, the free encyclopedia. Wikimedia Foundation, Inc. 01 August 

2014. Web. 20 October 2014. < http://en.wikipedia.org/wiki/Gazetteer> 

[24] Aho, Alfred V, Corasick, Margaret J. (June 1975). "Efficient string matching: An aid to 

bibliographic search". Communications of the ACM 18 (6): 333–340. 

doi:10.1145/360825.360855. 

[25] “Bio sequence Algorithms, spring 2005 Lecture 4: Set Matching and Aho-Corasick 

Algorithm.” Kilpelainen, Pekka. 2005. Sept 2014. 

<http://www.cs.uku.fi/~kilpelai/BSA05/lectures/ slides04.pdf >  



	
  

42 
	
  

[26] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62:107–136, 

2006. 

[27] Kok, Stanley, and Wen-tau Yih. "Extracting product information from email receipts using 

markov logic." Proceedings of the Sixth Conference on Email and Anti-Spam, Mountain View, 

California, USA. 2009. 

[28] Boufaden, Narjes, et al. "PEEP-An Information Extraction base approach for Privacy 

Protection in Email." CEAS. 2005. 

[29] “Apache PDFBox – A Java Pdf Library.” The Apache Software Foundation. 2014. Web. 

Sept2014. <https://pdfbox.apache.org/> 

[30] Wasi, Shaukat, et al. "Event Information Extraction System (EIEE): FSM vs HMM."  

[31] Saleem, Ozair, Latif, Seemab. “Information Extraction from Research Papers by  Data 

Integration and Data Validation from Multiple Header Extraction Sources.” WCECS 2012, 

October 24-26, 2012, San Francisco, USA. 

<http://www.iaeng.org/publication/WCECS2012/WCECS2012_pp215-219.pdf > 

[32] Chiticariu, Laura, et al. "SystemT: an algebraic approach to declarative information 

extraction." Proceedings of the 48th Annual Meeting of the Association for Computational 

Linguistics. Association for Computational Linguistics, 2010.       

[33] Almgren, Magnus, and Jenny Berglund. "Information extraction of Seminar 

information." CS224N: Final Project (2000): 1-12.  



	
  

43 
	
  

[34] Black, Julie A., and Nisheeth Ranjan. "Automated event extraction from email."Final 

Report of CS224N/Ling237 Course in Stanford: http://nlp. stanford. edu/courses/cs224n/2004/, 

Spring (2004).  

[35] “Apache PDFBox 1.8.6 API.” The Apache Software Foundation. 2014. Web. Oct 2014.  

http://pdfbox.apache.org/docs/18.6/javadocs 

[36] Cimiano, Philipp, Günter Ladwig, and Steffen Staab. "Gimme'the context: context-driven 

automatic semantic annotation with C-PANKOW." Proceedings of the 14th international 

conference on World Wide Web. ACM, 2005. 

[37] Etzioni, O.—Cafarella, M.—Downey, D.—Kok, S.—Popescu, A.—Shaked, T.—Soderland, 

S.—Weld, D.—Yates, A.: Web-Scale Information Extraction in Knowitall (Preliminary Results). 

In WWW’04, 2004, pp. 100–110, http://doi.acm.org/10.1145/988672.988687. 

[38] “Precision and Recall.” Wikipedia, the free encyclopedia. Wikimedia Foundation, Inc. 29 

October 2014. Web. 31 October 2014. < http://en.wikipedia.org/wiki/Precision_and_recall> 

 


