
SMART TASK SCHEDULING FOR A TRUCK COMPANY

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Pooja Gautam

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Software Engineering

November 2014

Fargo, North Dakota

North Dakota State University

Graduate School

Title

SMART TASK SCHEDULING FOR A TRUCK COMPANY

 By

Pooja Gautam

 The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted standards

for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Wei Jin

 Chair

Dr. Saeed Salem

Dr. Na Gong

 Approved:

 11/20/14 Dr. Kenneth Magel

 Date Department Chair

iii

ABSTRACT

The truck scheduling system is a web-based application which will facilitate online truck

activities. The objective of the application is to provide the truck system with an automated

computerized tool, which will be helpful for the associated users to manage their requirements to

find the shipper’s best routes and alternative routes from the available carriers. The system will

be a highly robust and user-friendly tool that aims to achieve maximum user satisfaction.

Text mining has been used to extract the data from email, i.e., an unstructured data

source, and to store the data in a structured form, i.e., in RDBMS, and to apply the data-mining

technique to discover knowledge from the data.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my adviser Dr. Wei Jin for her continuous

guidance, support, patience, encouragement and motivation. I would also like to thank all my

committee members for their support.

I also thank my family and my friends for their continuous support.

v

DEDICATION

I dedicate this paper to my father, Mr. Ramesh Prasad Gautam, my mother, Mrs. Sabita Gautam;

and my husband, Mr. Pranav Raj Sharma, for being the inspiration of my life.

vi

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

1. INTRODUCTION .. 1

1.1. Paper Organization.. 5

2. RELATED WORK ... 6

2.1. Valley Logistics Member Services ... 6

2.2. Click Software .. 9

2.3. K Means Clustering Algorithm ... 10

2.3.1. Algorithm .. 11

2.3.2. Finding the Best-Route Algorithm for Shippers 12

3. SYSTEM DESIGN ... 14

3.1. Design ... 14

3.1.1. Used Technologies .. 14

3.1.2. Designing the Best and Alternative Routes .. 15

3.1.3. Use Case Diagram... 16

3.1.4. Activity Diagram .. 17

3.1.5. Database Design.. 18

3.2. Development ... 19

vii

3.2.1. Read Email Message ... 19

3.2.2. Development of the Best and Alternative Routes 25

3.2.3. Excel File to the Database Table .. 28

4. EVALUATION... 29

4.1. Testing... 36

4.2. Time Response .. 39

4.3. Alternative Technology .. 41

4.4. Challenges Faced .. 41

5. CONCLUSION AND FUTURE WORK ... 42

5.1. Conclusion .. 42

5.2. Future Work .. 43

6. REFERENCES ... 44

viii

LIST OF TABLES

Table Page

1. Differences between Valley Logistics and the Truck scheduling system 9

2. Differences between Click software and the Truck scheduling system 9

3. Test1 .. 37

4. Test2 .. 38

5. Test3 .. 38

6. Test4 .. 39

7. Response timetable ... 40

ix

LIST OF FIGURES

Figure Page

1. Truck dispatcher main screen ... 7

2. Add carrier information .. 7

3. View each load .. 8

4. Click software’s features... 10

5. Shortest route .. 13

6. Overall picture of the application ... 14

7. Finding the best route.. 16

8. Use case diagram for the application .. 17

9. Activity diagram finding the best routes for each requesting shipper route 17

10. Activity diagram for reading and storing email data .. 18

11. Database design .. 19

12. Pseudo code-from email message to database table ... 20

13. From the Brakebush Company’s email to the database table ... 21

14. From the Loadstar Company’s email to database table .. 22

15. From the Schwan's Global’s email to the database ... 23

16. From the Northland Company’s email to the database table .. 24

17. Finding good and best routes for each requested route ... 25

18. Pseudo code- finding the best route .. 26

19. Shortest route calculation .. 28

20. Pseudo code- from excel file to database table ... 28

x

21. Home page .. 29

22. Registration page .. 29

23. Login page .. 29

24. Email with matching subject line but non-registered user .. 30

25. From the emails to MS SQL tables: “Email” and “EmailSubject” 31

26. Admin index page ... 31

27. General user index page .. 32

28. Admin page ... 32

29. Available route .. 33

30. Request route .. 33

31. Map view .. 34

32. Suggestion page .. 34

33. Suggestion page 2 ... 35

34. Upload file .. 35

35. Best route view page ... 36

36. NUnit test screen shot ... 37

37. Time vs the number of email .. 40

1

1. INTRODUCTION

Data-mining is the process of analyzing a large amount of data and finding meaningful

information that can be understood by people and that can be used to analyze business growth,

web analytics, research and development, etc. It is a process of automatically extracting

knowledge from a large amount of data (stored data, warehouse data, or information repositories)

where new patterns can be found using several of data-mining tools [1].

Data-mining is the process of analyzing a large amount of data and finding meaningful

information that can be understood by people and that can be used to analyze business growth,

web analytics, research and development, etc. It is a process of automatically extracting

knowledge from a large amount of data (stored data, warehouse data, or information repositories)

where new patterns can be found using several of data-mining tools [1].

Emails are essential for communication and cooperation; they contain a large amount of

data sources. An email is the most used service on the internet. Recent research shows that,

generally, people send and receive about 133 emails a day and spend 21% of the work time on

email management. It is important to manage emails efficiently because we are spending a lot of

our work time on emails. Email data could be very noisy because they contain headers,

signatures, quotations, program codes, line break, extra spaces, special characters, badly cased

words, spelling mistakes, etc. Within text mining, it is a challenge to extract accurate information

from the noisy text data [1, 2].

The data can be stored as various types, such as flat files, spreadsheets, database tables,

email storage system, etc. The data have to be collected, cleaned, transformed, and stored to

make better decision making. Relational databases have structured data (a tabular database)

2

which can mismatch when a program written in an object oriented programming language is

trying to access, which is known as “impedance mismatch.”[3] The ADO.NET Entity

Framework can reduce impedance-mismatch issues because of the following reasons:

1) The entity model (EDM) defines the entity framework which operates entity SQL

on the instances of the entity model.

2) The model supports bidirectional mapping (EDM-Relational), queries, and

updates.

3) The model provides object-relational mapping (ORM) functionality.

4) The Entity Framework has Microsoft’s new language integrate query (LINQ)

technologies that extend programming to reduce impedance mismatch for the

application [3].

Web applications for scheduling truck routes have been built to automate the

transportation-decision process. It enables the users to access the system through email and to

obtain a response quickly as per the shipper’s requirements and the carrier’s availability. The

system only allows registered users to utilize it so that the shared information is private. The

application’s purpose is to automate the system so that users spend less time querying for various

possibilities. An auto-generated solution gives the best solution and alternative solutions based

on the requirements provided by shippers and the availability of carriers.

In this paper, we provide the software-development process for the truck scheduling

system and explain the application’s importance as well as how the application could be used to

make transportation decisions. The application automates the email data and schedules the truck

route based on the shipper’s requirements and the carrier’s availability. We discuss how we did

3

the email mining for the registered user (shippers and carriers). Then, we illustrate how we

cleaned the unstructured (emails) data to create structured data by using a regular expression

(pattern matching) technique and stored result into the database tables. Furthermore, we discuss

how the data-mining technique can be used to find meaningful information about multiple

dimensions to give suggested routes (Good routes/alternative routes are the acceptable routes,

and the best route is the best solution among the acceptable routes). We also explained how the

extracted information is converted into a human-readable format, such as map view and tabular

view, using the jQuery and JavaScript libraries.

For a truck dispatch company to save time and costs, it is important to automate emails

when the primary means of communication is through emails. Throughout each day, a lot of

emails are received by the truck scheduling system. To study the email data, the web application

is developed as a graphical user interface (GUI) based solution that automates the emails from

different users (shippers or carriers) and extracts the information and store it in the Microsoft

SQL server database tables. With the help of the ADO.NET Entity Framework, LINQ queries

could be performed to extract the information, providing the best route and the acceptable routes

in map view and tabular view, for the customer based on various scenarios. The web application

automates the registered users’ process of reading emails, it filters the emails as being from the

carrier or shipper based on the email subject; then, it reads the email body or attachment extracts

the information, and stores the information in the appropriate database tables, and creates queries

that give the best and alternative solutions in the tabular and map-view format.

Given that the system requirements are all met, the user can interact with the system

using a GUI. The system shall be able to read the email’s subject and filter as available (carriers)

4

or request (shippers) or irrelevant emails. For example, the table named “SubjectEmail” contains

the synonyms for “request the service”; the system checks to see if the subject of email occurs in

the database, and if the subject matches a synonym for “request the service” in the database, then

the email would be tagged as “request route.” The system shall be able to read the email’s body

for messages sent from registered users. The system is currently able to filter email sent by the

following companies: a) Brake Bush, b) Schwan's Global Supply Chain, c) Lodestar Transport

Services, and d) Northland Express Transport.

The system shall be able to extract information from the message and be able to change

the abbreviations to full descriptions used in the message, storing final data in the database. For

example, if the message has “RGN”, the acronym would be converted into its full form,

“Removable Goose Neck.” The distance can be found between two coordinates (available and

request) to find the best and alternative carriers and to convert the geo coordinates into addresses.

The application shall get and store the list of good routes (the match between available

(carrier) routes and requested routes that is queried based on distance, start date, load type,

clearance height, mileage, required equipment, etc.) for each requesting shipper. The application

computes and stores the best route (the best among the good route options). The user shall be

able to register, login, and see the available or requested routes on the truck scheduling system.

Hence, the user should be able to see the best and alternative routes for each requested service.

In addition to these user-interface design requirements, the truck scheduling system has

several other desired functionalities, such as the administrator user being able to add Excel

format abbreviation files to the system and the information from the excel is stored in the

database.

5

1.1. Paper Organization

Chapter 1 introduces the topic and the objective of this paper. Chapter 2 provides some

related work and background of the motivation of this project. Chapter 3 describes the details of

system’s design and implementation. Chapter 4 presents the system’s evaluation, and is followed

by the conclusion and future work.

6

2. RELATED WORK

The truck scheduling system is a web-based application which will facilitate truck

scheduling activities. The system’s objective is to provide automate, computerized tool which is

helpful for the users who manage the shipper’s requirements with carrier’s availability. The

system allows the users to be able to keep track of the truck routes and to give suggestions for

the request for availability for tracking the nearest possible route. The application gives the best

route and alternative routes. The related works for developing the application are discussed in

this chapter.

2.1. Valley Logistics Member Services

Valley Logistics is a freight and equipment management company which offers

transportation and logistics services. It works as a bridge between shippers and carriers which

are, in fact, a highly fragmented industry. The company claims to have solved challenges in the

trucking industry by bridging the gap between carriers and shippers [4]. Some of the features

they provide are as follows:

• Main Screen (Figure 1) shows the list of trucks in the system and adding rules.

Each truck will have a Truck ID, company name, start address, truck type, etc.

According to the business rule the list gets modified as per the requirement.

• Add Carrier Information (Figure 2) shows how carriers and shippers input their

information into the system which gets saved in the database

• View load (Figure 3) that was added to the system.

7

• Manually assign carrier to a shipper or vice versa (Figure 4) shows how a carrier

is assigned to the shipper.

Figure 1. Truck dispatcher main screen

Figure 2. Add carrier information

8

Figure 3. View each load

Valley Logistics works as a bridge between shippers and carriers where each shipper is

manually assigned to carrier. They do not have a system to automate request sent by a shipper to

automatically assign it to the available carrier. A lack of those features for the Valley Logistics

system causes their web application not to be very functional. This is the motivation of

development of our truck scheduling system that automatically finds the best possible route for

the shipper’s request with respect to the available carrier’s information, as well as giving sub-

optimal alternative routes. We expect the application would be helpful for the end user as the

best route and alternative routes are given to the end user by the system. Table. 1 shows the

difference between Valley Logistics’ System and our developed truck scheduling system.

9

Table 1. Differences between Valley Logistics and the Truck scheduling system

Valley Logistics Truck Scheduling System

• Does not automate email

• User has to manually input the data in

the database tables.

• User has to manually input queries

according to business logic.

• Does not give the best route and the

alternative routes.

• Output the results in tabular format.

• Email data are parsed and stored in the database.

• Automatic extraction of email data and import

to the database tables.

• System auto-generates the best and alternative

routes.

• Gives the best route and the alternative routes.

• Output the result in map view and tabular

format.

2.2. Click Software

Click software is a flexible scheduling system for any small-to-big business to make

advanced decisions. It has mobile and chatting service, creating schedules based on various

criteria. It works online and offline. The software can be used for various scheduling industries,

such as oil and gas, retail, insurance, etc. Scheduling information is provided by the users, and

based on the information provided, the system give the solution and performance [5].

Table 2. Differences between Click software and the Truck scheduling system

Click Software Truck Scheduling System

• Does not automate email.

• Manually populated manually

database.

• Can work for any user provided

scheduling request.

• Gives the visualization in map view.

• Email data are parsed and stored in the

database.

• Automatic extraction of email data and

import to the database tables.

• Specific to truck scheduling.

• Gives the visualization in map view.

10

Figure 4. Click software’s features

2.3. K Means Clustering Algorithm

The approach for the truck routing system to find the best routes has been influenced by

K means clustering. Cluster analysis, or clustering in data-mining, refers to identifying groups or

clusters of similar objects. It is non-supervised learning in which we do not know the

characteristics that will determine to which clusters the object should belong because there are no

labels associated with the objects. We do not have pre-defined classes in clustering [6, 7].

The K means clustering algorithm is a partitioning algorithm that is used to divide the

dataset into different parts. The objects are separated into k clusters, where k is a number which

is known a priori. We partition the dataset into clusters such that each member of the dataset is

assigned to some cluster. There is no item in the dataset which is not assigned to any cluster, and

each item is assigned to exactly one cluster. The concept of centroid, or the center of gravity, is

introduced which the arithmetic mean of the objects in that cluster. Each point is assigned to the

closest cluster based on the defined distance measure. To measure the distance between the

object and the centroid, we can use the Euclidean Distance Formula or any other distance

formula [6, 7].

11

• Centroid: The centroid, or the center of gravity, is the arithmetic mean of the

objects in that cluster.

• Each point in the cluster is closer to the centroid of that cluster than to the

centroids of the other clusters.

2.3.1. Algorithm

Input

We need a dataset that needs to be partitioned, D, containing n objects and the number of

clusters to be formed, k, as input to the algorithm

Output

 Output would be k clusters satisfying the partitioning objective (similar to objects within

the cluster and dissimilar to objects from other clusters).

Method

The “centroid” is the variable that first stores the seed value along with the mean value

for the objects within the cluster in the following steps:

(1) Arbitrarily choose k objects from D as the initial cluster centers or seeds;

(2) Centroid = seed;

(3) For each of the k clusters

a) (Re) allocate each object to the cluster to which the object is the most similar, based

on the centroid value in the cluster;

b) Update the cluster centroid, i.e., compute the mean value of the objects and assign

that value to the centroid.

(4) If there is change in the centroid value, Go to step (3); [6, 7]

12

2.3.2. Finding the Best-Route Algorithm for Shippers

To find the best route, we have followed some ideas motivated from the K-means

algorithm. Because the raw data had multiple dimensions, Euclidian distance was calculated.

On an n-dimensional Euclidian space, let vectors x = (x1, x2, ..., xn) and y= (y1, y2, ..., yj)

The formula to find multi-dimensional distance is as follows:

���, ����	���, �� = ���1 − �1�� + ��2 − �2��……+ ��� − ����	

Input

We need carrier’s dataset (x) that contains n objects and, k clusters which is equal to

number of shippers as well as a shipper’s dataset (y) with j objects

Output

 The output is the shortest distance between dataset (x) and dataset (y)

Method

The following steps are implemented for the dataset (x) and dataset (y)

1) For each of dataset(y)

2) For each of dataset(x)

3) Match Criteria of y with x

4) IF Matched

5) Get distance ���, ����	���, �� = ���1 − �1�� + ��2 − �2��……+ ��� − ����

6) Store the distances for each y

7) For each of the distances of each y

8) Find the Min value

13

Figure 5. Shortest route

In Figure 4, r1 is the shipper (y), and a1, a2, a3, and a4 are the dataset for the carrier (x).

The shortest path is r1-a4, which is the best route.

In the next chapter, truck scheduling system design and development are discussed in

detail.

14

3. SYSTEM DESIGN

According to the Standish Report, one of the major reasons that projects fail is due to a

lack of user involvement as well as incomplete requirements and specifications [8]. It is very

important that projects are flexible enough for user input and changes during the software

lifecycle. We choose an agile methodology because it promotes user input during the different

phases of software development and would be flexible with requirement changes.

Figure 6. Overall picture of the application

3.1. Design

3.1.1. Used Technologies

Microsoft Visual Studio is an integrated development environment (IDE) for C# and

related web technologies. The ASP.NET Model View Controllers (MVC) framework is defined

and supported in the System.Web.Mvc and System.Web namespace for creating web

applications [9].

On MVC where Model is the part of the application implements the domain’s data logic.

Model objects retrieve information from the database which can be operated and updated. On

MVC, View displays the application’s user interface (UI) which is populated from the model

15

data. On MVC, Controller handles the business logic and; user interaction, and renders the

selected view to display the user interface [9].

 The truck scheduling system was created using Microsoft Visual Studio 2012 and the

database used was MS SQL Server 2014. With the help of various C# libraries and web

technologies, the application was developed. The application is built on the .NET framework,

ASP.NET provides the application programming interface (API) and uses Microsoft’s Internet

Information Services (IIS) as a platform. The truck scheduling system application runs on several

operating systems: Windows, Linux/Unix and Mac OS on these web browsers: Chrome, Firefox,

and Internet Explorer.

3.1.2. Designing the Best and Alternative Routes

After the email is read and parsed by the system, it is then stored in the database table

named “Email.” The matching requirements for each shipper such as difference days (<=15),

distance (<=500 miles), mileage, clearance height, required equipment, load type, and etc are

found by querying between shippers and carriers. The found matches are called “good routes”

and are saved in the database table named “DistanceCalculator.” Null values for carriers are

considered as adjustable values; for example, the shipper needs a clearance height of 50 feet, and

the carrier has not specify any clearance height (null), which means that the carrier can give a

truck that meets shipper’s height requirements. From these good routes for each shipper, the

Euclidian distance between carrier and shipper is calculated. Let carrier has (x1, x2, ..., xn)

dimension and shipper have (y1, y2, ..., yn) dimension and between shipper and carrier is as

D (x,y) or d(y,x) = ���1 − �1�� + ��2 − �2��……+ ��� − ����.

16

From the calculated distances, the shortest distance is called the “best route” for each

shipper. Other than the best route, other good routes are called “alternative routes” for the

shipper. Shortest Euclidian distance between shipper and carriers give the best route for the

shipper.

Figure 7. Finding the best route

3.1.3. Use Case Diagram

The use-case diagram (Figure 8) shows the interaction between operations and actors in

the truck scheduling system’s application. Actors are the system’s user and admin user. Admin

users have special privileges such as adding abbreviation to the database table.

17

Figure 8. Use case diagram for the application

3.1.4. Activity Diagram

The activity diagram (Figure 9) and (Figure 10) show the activity of filtering emails and

storing it in the database and finding the best and alternative routes for the shipper.

Figure 9. Activity diagram finding the best routes for each requesting shipper route

18

Figure 10. Activity diagram for reading and storing email data

3.1.5. Database Design

An MS SQL database was used for persistent data storage with Microsoft Internet

Information Services (IIS) as the web server. This web-based application was designed in

19

ASP.NET; .Net platform was used as a programming environment with C# as the programming

language. The tables schema used in the project are as shown in (Figure 11).

Figure 11. Database design

3.2. Development

This section describes each step of the general workflow of the application using pseudo

code, block diagrams and examples. Read Email message describes how the emails is read and

stored in the database tables, development of best and alternative routes describe the process of

getting the best and the alternatives routes, and finally it also describes how the Excel file is

saves in the database table.

3.2.1. Read Email Message

When the registered user logs in with a valid credential, the system checks for the new

email messages, and if there are any new emails, then it checks the messages’ subject. If the

subject of the email message matches the one in the database table, the system checks to see if

the email is being sent by a registered user. If the email is not sent by a registered user, then the

20

system sends a response to the email sender that he/she needs to register before the sending

request. If the email is sent by a registered user, the system checks which email pattern the

message belongs to and also checks to see if the message has attachment.

INPUT: EmailMessages

BEGIN

 FOREACH message in EmailMessage

 SET EmailSubject to be message subject

 DECLARE List of string as availableSubLine

 DECLARE List of string as RequestSubLine

 SET availableSubLine to be SubjectLine.AvailableSubjects()

 SET RequestSubLine to be SubjectLine.RequestSubjects()

 IF availableSubLine count > 0 or RequestSubLine count > 0

 IF Any availableSubLine contains EmailSubject

 SET requestType to be 1 this is to set

the message as carrier

 CALL Filteration.FilterEmails with message,

requestType

 ELSE IF Any RequestSubLine contains

EmailSubject

 SET requestType to be 2this is to set

the message as a shipper

 CALL Filteration.FilterEmails with message,

requestType

 END IF

 END IF

 END LOOP

 END

FilterEmails(message, requestType)

{

 SET string SenderEmail to message.From.Email

 SET User user to context.Users where emailaddress is equal to

SenderEmail

 IF user != null

 SET int messageAttCount to be attachment count

 SET int userID to be user.UserID

 IF messageAttCount > 0

 CALL WithAttachment with msg, userID, and requestType

 ELSE

 CALL WithoutAttachment with msg, userID, and

requestType

 END IF

 ELSE

 CALL sendEmailToUnregisteredUser("You are not registered

to the system")

 END IF

}

Figure 12. Pseudo code-from email message to database table

21

3.2.1.1. Email from the Brakebush Company to Database Table. An email from

Brakebush Transportation is shown in Figure 13.a. It’s subject is “Remaining trucks” with the

key word “remaining” which matches the data in the database table shown in Figure 13.c. with

“EmailTypeID” equals 1 which means that the email is from a carrier about truck availability .

The company, “Brakebush Transporataiton, Inc.,” is a registered user which is shown in Figure

13.b. with “UserType” equals 2 which means that the email is from a general user. The email

body, as shown in Figure 13.a. has a repetitive text pattern of “address”, “date”, and “time”

example “DURANT OK 9/24 @ 1000” from the email text, which was send on the date

10/26/2014. Here, the starting address is “Durant OK”, the date is “9/24”, and the time is 10:00

am. From the starting address, the geo coordinates are generated as a latitude of 33.9924186 and

a logitude as -96.3971233. To the extracted information from email is stored in the database

table as shown in Figure 13.c.

Figure 13. From the Brakebush Company’s email to the database table

22

3.2.1.2. Email from Lodestar Transportation Services to the Database Table. Email text

from Lodestar Transportation Services is shown Figure 14.a. It has subject as “Available

Equipment”, with the key word “available” which matches data in the database table shown in

Figure 14.c. “EmailTypeID” equals 2 which means that the email is from the carrier about the

truck availability. The company “Lodestar Transportation Services” is a registered user which is

shown in Figure 14.b. “UserType” equals 2 which means that the email is from a general user.

On the email body as show in Figure 14.a. has a repetitive text pattern of “date”, and,

“addresses” example “Thursday 9/20 and following lines “Elkton, FL”, “Haines City, FL” and

“Albuquerque, NM” which was sent on the 10/26/2014 as shown in Figure 14.a. Here, the

starting address is “Elkton, FL” and the date is “9/20.” From the starting address, geo coordinates

are generated as a latitude of 29.7829858 and a logitude of -81.4258833. The extracted

information from the email was stored in the database table as shown in Figure 14.d.

Figure 14. From the Loadstar Company’s email to database table

23

3.2.1.3. Email from Schwan’s Global Supply Chain to the Database Table. Email text

from Schwan’s Global Suppy Chain is shown in Figure 15.a. The email has the subject as

“Greenwood, WI to Florence, KY -- need help Please!”, with the key words “need help” which

match the data in the database table shown in Figure 15.c with “EmailTypeID” equals 1 which

means that the email is from the shipper and is about the truck request. The company “Schwan’s

Global Suppy Chain” is a registered user as show in Figure 15.b. “UserType” equals 2 which

means the email is from a general user. On the email body, as shown in Figure 15.a has folowing

information:“Load #”, “start date or pickup date”, “delivery date”, “source or starting address”,

“final desitination”, “mileage”, “load type such as refrigerated”, and “rate quote.” The “Load #”

was “7774418”, the “start date or pickup date” was “10/1”, the delivery date was “10/2”, the

“source or starting address”was “Dairy Concepts in Greenwood, WI”, the “final desitination”

was “Florence, KY”, the” mileage” was “592”, and “load type” was “refrigerated”, which was

send on the date 08/26/2014. Here the starting address was “Dairy Concepts in Greenwood, WI”

and date is “10/2.” From the starting address, geo coordinates are generated a latitude of

44.7702406 and a logitude of -90.5993076. The extracted information from the email was stored

the database table as shown in Figure 15.d.

Figure 15. From the Schwan's Global’s email to the database

24

3.2.1.4. Email From Northland Express Transport Company to the database table.

Email text from Northland Express Transport is shown in Figure 16.a. The email has the subject

as “Northland - OR Available Loads.” The key word “available” matches data in the database

table shown in Figure 16.c. “EmailTypeID” equals 2 which means the email is from the carrier

and is about the available trucks. “Northland Express Transport” is a registered user as show in

Figure 16.b. with “UserType” equals 2 which means that the email is from a general user. The

email body, as shown in Figure 16.a. has pattern text pattern and has folowing information of

“start date or load date,” “Net ID,” “P/U,” “loading point or starting address,” “delivery point or

final desitination,” “mileage,”and “required equipment.” For example, the following data are

extracted “start date or load date” is “9/28,” “Net ID,” is null, “P/U” is 1 “loading point or

starting address” is “Portland OR,” “delivery point or final desitination” is “Lyons, NE,”

“mileage” is 1662, and “required equipment” is “R-53” that means refrigerated and clerance

height as 53 feet. From starting the address geo coordinates are generated as a latitude of

45.5234515 and a logitude of -122.6762071. So the extracted information from email was stored

the database table as show in Figure 16.d.

Figure 16. From the Northland Company’s email to the database table

25

3.2.2. Development of the Best and Alternative Routes

After the email is read and parsed by the system, it is stored in the database table named

“Email.” Matching requirements for each shipper such as difference days (<=15), distance

(<=500 miles), mileage, clearance height, required equipment, load type, and etc are found by

querying between shippers and carriers. These matching shippers are the “good” routes for the

carrier.

Figure 17. Finding good and best routes for each requested route

The matches are called “good routes” and are saved in the database table named

“DistanceCalculator.” From these good routes, the best routes and alternative routes are

generated by calculating the shortest distance for carrier and shipper information using the

Euclidean distance explained in the Pseudo code, block diagram and example.

26

// Pseudo code to calculate the distance between the available and requested

routes.

BEGIN

 DECLARE List of type EmailEntity.Email as available

 SET available to be context.Emails.Where EmailTypeId == 1

 DECLARE List of type EmailEntity.Email as request ==

context.Emails.Where(i => i.EmailTypeId == 2 && i.StartDate >= dt).ToList()

 DECLARE List of type List of type EmailEntity.DistanceCalculator as

DistanceCal

 FOREACH var x in available

 SET NewDistanceCalculator to be new EmailEntity.DistanceCalculator()

 SET double x1 to 0.0

 SET double y1 to 0.0

 FOREACH var y in request

 SET x1 to be y.StartLat

 SET y1 to be y.StartLong

 SET TimeSpan span to be y.StartDate.Subtract(x.StartDate)

 SET double calDays to be Math.Abs(span.TotalDays)

 SET double startdis to be CALL Distance(x1, y1, x.StartLat,

x.StartLong)

 SET bool CheckGoodRoute to be getGoodOnces(match criteria)

 if CheckGoodRoute == true

 Save y.EmailID, x.EmailID,startdis, sqlFormattedDate,calDays

to the database tableDistanceCalculators

 END If

 END LOOP

 END LOOP

 CALL BestResult(maxDistance, daysdifference)

END

// Pseudo code to good routes for each available route. This method gives

all good routes which //match available and request and day difference

within +/- 15 days and geographical distance //less than 500 miles and the

good routes are stored in the database table named //DistanceCalculator.

getGoodOnces(with various parameters)

 Delclare List<Results> as GoodList

 SET DateTime To to be RStartDate.AddDays(daysdifference);

 SET DateTime To be RStartDate.AddDays(-daysdifference);

 SET bool Isgood = false;

 If (matched)

 Isgood = true

 return Isgood

// Pseudo code to get the best route from the list of good routes for each

request route.

BestResult(maxDistance, daysdifference)

 DECLARE List to be Results Mylist

 DECLARE List to be Results newlist

 DECLARE List to be Results Bestlist

 FOREACH var x in GoodList

 SET var y = context.Emails.Where EmailID == x.ForID

 SET TimeSpan span = y.StartDate.Subtract(x.startDate);

 SET double diff = span.TotalDays / diffdays;

 SET double dis = x.Distance / maxDistance;

 SET double cal = Math.Sqrt(Math.Pow(diff, 2) + Math.Pow(dis, 2));

 CALL Mylist.Add(new Results(cal,x.EmailID, x.ForID, x.DistanceID))

 END LOOP

 SET newlist = Mylist.GroupBy EmailID.Select(OrderBy Distance).ToList()

good routes

 SET Bestlist = newlist.GroupBy ForID.Select(OrderBy Distance).ToList()

best routes

 CALL SaveTODatabaseTable with newList and Bestlist

Figure 18. Pseudo code- finding the best route

27

Figure 19.a shows the database table where email informaitons is stored. Here, the

“EmailID” 2072 is a shipper that is requesting a truck starting at Dairy Concept in Greenwood,

WI on 2015/10/01, mileage more than 592; load type is null; and “netid” is null. The truck needs

to be refrigerated as required equipment; the starting latitude is 44.7702406 and starting

longitude is -905993076, and the truck does not need any clearance height.

Good matches were found based on requirements such as mileage more than 592 ,

equipment being refrigerated, days less than or equal to 15, and distance less than or equal to 500

miles from the shippers. Matching routes were called “good routes” and were stored in the

database table as shown in Figure 19.c. The geographical distance was within 500 miles, and the

day’s difference was within 15. Besides day differences and geographical distance, all the other

requirements needed an exact match. To find the best route the Euclidian distance was calculated

d(x,y) or d(y,x) = ���date	difference/15�� + �geographical	difference/500��� ∗ 100

The shortest distance was considered as the shipper’s best route. For example, “EmailID”

2072 had good routes or matching routes, such as 2078, 2081, 2084, 2085, 2089, and 2093; from

all these good routes, the best route available was “EmailID” 2089 as shown in Figure 19.c. the

best route has the Euclidean distance of 59.21 (based on days and miles), the shortest distance

among the all routes. “EmailID” 2089 had starting address as Alexandria MN, and the start date

as 2015/09/26, all other criteria were null. We knew our system assumes that if it does not have

criteria then we have considered shipper is flexible to match any criteria as shown in Figure 19.b.

“EmailID” 2089 was considered the best route while 2078, 2081, 2084, 2085 and 2093 were

considered as alternative routes. The best route and alternative routes is visible on the suggestion

page, which can be accessed by the registered users.

28

Figure 19. Shortest route calculation

3.2.3. Excel File to the Database Table

The admin user can upload the abbreviation Excel file; which is stored in the database

and used while reading the email body, if abbreviations are converted to full description. The

admin user upload an Excel file, that is read by the system and the abbreviation and its

description is stored in the database table.

//Pseudo code will read the file input(Excel file) from the user and

store it so that it can be //read by the AddAbbreviations (Userid,

path) method

INPUT : Userid,file

BEGIN

 IF (file.ContentLength > 0)

 SET var fileName = Path.GetFileName(file.FileName)

 SET var path =

Path.Combine(Server.MapPath("~/Uploadedfiles"),fileName)

 SET var path1 = "somepath" + file.FileName

 file.SaveAs(path)

 SET string added = AddAbbreviations(Userid, path)

END

Figure 20. Pseudo code- from excel file to database table

29

4. EVALUATION

This chapter demonstrates how the truck scheduling system would handle various

criteria, such as login, logout, routes view, etc. When the application starts, the customer either

logs in or registers via the system. The layout is shown in Figure 21, Figure 22, and Figure 23.

The user can register with an email, company name and password. After registration the

user can log in with an email and password. If the login credentials are correct, then the system

directs the user to index page otherwise, the user is redirected to the Login page.

Figure 21. Home page

Figure 22. Registration page

Figure 23. Login page

30

When the user logs in to the truck scheduling system with valid credentials, the system

reads all the new emails sent to the system and checks for the emails’ subject lines. If the email

subject matches data in the database table named “emailSubject,” then the email is categorized as

carriers or shippers. If the email is sent by non-registered user and has a matching subject an

email response is sent to the user as show in Figure 24.

Figure 24. Email with matching subject line but non-registered user

If any new email is sent by a registered user and has email subject that matches an email

subject in the database table named “emailSubject”, then the email is categorized into shippers or

carriers, after which the email attachments are counted. If the email message contains no

attachment then the email body is read by the system; otherwise, the attachment is saved in the

location machine, and the attachment is read by the system. From the email text the attachment,

the information is gathered and stored it in the database table named “Email” as shown in Figure

25. Figure 25 also shows how an abbreviation is converted to a full description. For example, R-

53 is converted to “R as Refrigerated and 53’ for clearance height.” Based on the shipper’s

request and the carrier’s availability, the best possible routes are listed. From the gathered good

routes, Euclidean distance between the shippers and carriers is calculated based on the date and

geographical distances.

31

Figure 25. From the emails to MS SQL tables: “Email” and “EmailSubject”

Then, the user is directed to the Index page. If the user is the admin user, the view is as

shown in Figure 26 if the user is a general user, the view is as shown in Figure 27. Both Index

pages have map view, request route , available route and logout buttons. The admin user has an

admin button to view and modify the user and abbreviation lists.

Figure 26. Admin index page

32

Figure 27. General user index page

The admin user can view and modify the userlist. The user can also view and upload

abbreviations and descriptions which should be in an Excel format. The uploaded file is stored in

the database table named “Abbreviation” using entity framework and C# programming. The lists

are ordered by default as in the database table as shown in Figure 28.

Figure 28. Admin page

When the request route is clicked, all the shipper’s information is listed in tabular format.

The list is obtained from the database table named “Email” which has the attribute

“EmailtypeId” equals 2 as shown in Figure 30. Similary, when available route is clicked, all the

carriers’ information is listed in tabular format. The list is obtained from the database table

“Email” which has the attribute Emailtype equals 1 as shown in Figure 30.

33

Figure 29. Available route

Figure 30. Request route

When the user clicks on the Map view button, the Map view page is displayed. This page

shows all the requested routes (shippers) and available routes (carriers) in map view and tabular

view. The green markers represent requests and two-headed pins represent available routes as

shown in the Figure 31. When the user clicks on each request route, the Suggestion page for the

route is displayed. The page shows alternative routes and the best route in tabular view as well as

map view as shown in Figure 32. If there are no suggestions, the Suggestion page will display

the message as shown in the Figure 33.

34

Figure 31. Map view

Figure 32. Suggestion page

Pins with two heads: All suggest best routes

Green Pin: Available Route

35

Figure 33. Suggestion page 2

The admin user logs into the system and adds an Excel file for abbreviation. The user has

to follow certain steps to obtain the desired result. This query result is as shown in Figure 34.

Figure 34. Upload file

Suppose the user logs into the system to find the best route. The user has to follow certain

steps to obtain the desired result. This query result is shown in Figure 35 to display Suggestion

Page.

36

Figure 35. Best route view page

4.1. Testing

NUnit test cases were developed in Visual Studio and tested in Unit UI. All possible

inputs were provided to determine if the software works properly when subject to different

37

inputs. The main testing goal for this paper to make sure that the development works properly

with different scenario and displays the correct output. The approach used was Test Driven

Development (TDD). NUnit test cases have consisted of four main testing scripts:

1. “EmailCollectionTesting.cs” to test if the system is reading emails, and to test if

the subject is read correctly and attachments are counted.

2. “CheckParsingEmailMessage.cs” to check if the email body or attachments are

read by the system and stored in the database

3. “FromAddressToCoordinatesTesting.cs” to test if the from the address correct

latitude and longitude can be received.

4. “DistanceCalculationTesting.cs” to test if the good distance and the best route is

saved in the database table.

Figure 36. NUnit test screen shot

Table 3. Test1

TestCaseMethod Test Process Purpose

1

calculateDistanceTestandCountG

ood()

Check to see if the distance

calculation is correct.

The test was done to check

if the distance calculation

gave the correct output.

38

Table 4. Test2

TestCaseMet

hod

Test Process Purpose

1

firstPatternTest() Check to see if the “firstPattern()”

reads emails from the “brakebush”

company, extracts the information,

and saves it to the database

The test was done to see if the

text pattern was read properly,

extracted the information, and

stored it to the database.

2

secondPatternTest() Check to see if the

“secondPattern()” reads emails

from the “Schwan” company,

extracts the information, and saves

it to the database.

The test was done to see if the

text pattern was read properly

and extracted the information

to store in the database.

3

thirdPatternTest() Check to see if the thirdPattern()

reads emails from the “Lodestar”

company, and extracts the

information, and saves it to the

database.

The test was done to see if the

text pattern was read properly

and extracted the information

stored it to the database.

4

fourthPatternTest() Check to see if the

“fourthPattern()” reads emails with

attachments (Excel) and extracts

the information, and saves it to the

database.

The test was done to see if the

text pattern was read properly

and extracted the information,

storing it to the database.

Table 5. Test3

TestCaseMethod Test Process Purpose

1

GetCoordinatesTesting() Check to see if the string

address was input; the system

would give correct output as the

latitude and longitude.

The test was done to check if

the correct latitude and

longitude were delivered

when a string address was an

input.

39

Table 6. Test4

TestCaseMethod Test Process Purpose

1

OpenEmailandFilterEmail

Testing()

Check to see if the

counting on the email

was correct.

The test was done to see if the email

count was correct. The test passed

when the correct parameters were

sent.

2

CheckhasSubject() Check to see if the email

subject was read

properly.

The test was done to see if the

system read the subject properly. e.g.

the subject as “Northland - OR

Available Loads.” was read as

available shipper.

3

CheckHasattachment(int[]

ids, Mailbox inbox)

Check to see if the email

attachment was read

properly.

This test was done to see if the

system read the email with an

attachment properly.

4.2. Time Response

The response time was calculated based how much time each page took to load. If the

user is not registered already, the user has to register first. The registration page or the login

page’s response time is 3-5 seconds. It takes 6-25 seconds to log in to the system. During the

login process, email data are read and stored in the database.

After the user logs in, there are 5 options from which to choose from: Available Route,

Admin, Requested Route, Map View, and LogOff. To upload an Excel file on the Admin page, it

takes 4-7 seconds. Loading Available Route page, takes 3-5 seconds. To load the Requested

Route page, it takes 3-5 seconds. Loading the Map View page, it takes 4-7 seconds. Each

40

Requested Route has a suggestion link; which takes 4-7 seconds to load the page. It takes 3-5

seconds to log out of the system and 6-25 seconds to load index page.

Table 7. Response timetable

Serial Number Step Time taken in

seconds

1 Login page 3-5

2 Registration page 3-5

3 Available route 3-5

4 Admin 5-7

5 Requested route 3-5

6 Map View 4-7

7 Log Out 3-5

8 Index page 6-25

Figure 37. Time vs the number of email

Figure 37 shows the execution time to load the index page, while this page is loading; at

the backend the email messages are read by the system. We can see that the time increases with a

0

5

10

15

20

25

30

0 1 2 3 4 5

t
im

e

Number of emails

time

41

higher number of email messages. Time increases if the email has an attachment; we can see that

there is an increase in the slope from email 3 to email 4 because time taken increases from 15

seconds to 25 seconds. Email 4 has an attachment.

4.3. Alternative Technology

For this project the technologies used are as follows: C#, MS SQL Server, HTML,

JavaScript, Razor and CSS. We could have used another object oriented programming language

such as Java and Relational database management system such as MySQL.

4.4. Challenges Faced

This project was both learning and implementing experience. Some challenges were

faced during the project, such as implementing the Entity Framework (ORM) with C#. Also,

parsing the data on the server side was challenging.

42

5. CONCLUSION AND FUTURE WORK

5.1. Conclusion

With this project, we have designed and developed a web application for a truck

scheduling system. We have used C# as an object oriented programming language; MS SQL

server as the database management system; and web technologies such as HTML, JavaScript,

Razor, and CSS, to create the GUI. Various frameworks and libraries have been used to parse

text data, to read and manipulate Excel files, to get latitude and longitude, and to access the

database. LINQ expression has been used to query from the database, and the best and

alternative routes have been provided. Each shipper requests a route or carrier that advertised for

availability, sending an email to the truck scheduling system with the predefined email pattern

style. The system reads emails with an attachment that should be in Excel format. Here, the

unstructured email data are transformed to the structured data to store in the database. To find

meaningful information, such as the best and alternative routes, several queries have been done.

Nunit is utilized to test module using unit test cases.

To test the web application, four emails were sent to the system; the email subjects

contained “available”, “remaining” and “need help.” During the test phase, emails from the

carrier had subjects such as “available” or “remaining” and emails from the shipper had subjects

such as “request,” “need help,” etc. Also, emails were sent with or without attachments.With the

help of regular expression, the emails were parsed and information was stored in the database

tables. Then data analysis was done to find the best route and alternative routes for the carrier.

After that the result was given to the end user in the tabular format as well as map view.

43

5.2. Future Work

The truck scheduling system currently gives the best and alternative routes for the

carriers and the shippers according to our preset search criteria. We plan to extend it to allow

more flexible search condition combinations and involve users in this selection process, in order

to provide more user-centered solutions for possible truck scheduling.

44

6. REFERENCES

[1] Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques (2nd ed.). Morgan

Kaufmann publications.

[2] Introduction to Information Retrieval, Cambridge University (2008) by Christopher D.

Manning, Prabhakar Raghavan and Hinrich Schütze,

[3] Atul Adya, José A. Blakeley, Sergey Melnik, and S. Muralidhar. 2007. Anatomy of the

ADO.NET entity framework. In Proceedings of the 2007 ACM SIGMOD international

conference on Management of data (SIGMOD '07). ACM, New York, NY, USA, 877-888.

[4] Retrieved Oct 15, 2014 from Valley Logistics Website:

http://valleyexplogistics.com/services.html

[5] Retrieved Oct 15, 2014 from Click Software Website:

http://www.clicksoftware.com/workforce-planning-software-solutions

[6] Jie Tang, Hang Li, Yunbo Cao, and Zhaohui Tang. 2005. Email data cleaning. In Proceedings

of the eleventh ACM SIGKDD international conference on Knowledge discovery in data

mining (KDD '05). ACM, New York, NY, USA, 489-498.

[7] Clustering by means of medoids by Leonard Koufman & Peter J. Rousseeuw.Vojtech Juhász.

2012. Full-text search in email archives using social evaluation, attached and linked resources.

In Proceedings of the 21st international conference companion on World Wide Web (WWW '12

Companion). ACM, New York, NY, USA, 857-860.

[8] Retrieved Oct 15, 2014 from The Standish Group Website:

http://www.versionone.com/assets/img/files/CHAOSManifesto2012.pdf

45

[9] Retrieved Oct 15, 2014 from Microsoft Corp Website: http://msdn.microsoft.com/en-

us/library/dd381412(v=vs.108).aspx

[10] Retrieved Oct 15, 2014 from Microsoft Corp Website: http://msdn.microsoft.com/en-

us/library/hs600312(v=vs.110).aspx

	cover
	Smart

