
AN INTERACTIVE VISUALIZATION SYSTEM FOR A MULTI-LEVEL VIEW OF

OPINION MINING RESULTS

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Karan Chitkara

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Software Engineering

October 2014

Fargo, North Dakota

North Dakota State University
Graduate School

Title

An interactive visualization system for a multi-level view of opinion mining

results

By

Karan Chitkara

The Supervisory Committee certifies that this disquisition complies with

North Dakota State University’s regulations and meets the accepted standards

for the degree of

MASTER OF SCIENCE

SUPERVISORY COMMITTEE:

Wei Jin

Chair

Gursimran Walia

Na Gong

Approved:

10/24/2014 Brian Slator

Date Department Chair

iii

ABSTRACT

Products are purchased and sold on a daily basis and people tend to critique on products

they purchase. Those who want to buy a product will read reviews on that product given by

others before buying; likewise those who have already bought a product will write a review on it.

This paper presents a technique for visualizing data that comes from reviews given online for

different products. My contribution to this project is to create a tool and process the tagged files

generated with the help of machine learning.

This project also focuses on the implementation of Semantic matching which reduces

redundancy by grouping similar data together. Semantic matching helps put all the synonyms of

the data together. Implementation of Semantic matching is supported by the implementation of

error correction technique. Error correction improves data quality by correcting spelling mistakes

made by people while writing reviews.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Wei Jin for the opportunity to work with her. She

taught me everything about opinion mining and gave me real data which helped me a lot to test

my application. Under her guidance and support I was able to improve my tool both qualitatively

and quantitatively. I also express my sincere regards and gratitude to the committee members Dr.

Na Gong and Dr. Gursimran Walia.

Lastly I would like to thank my friends Aakanksha, Akshay and Saumya for their

motivation and inspiration.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER 1. INTRODUCTION ... 1

1.1. Overview .. 1

1.2. Problem Statement ... 3

CHAPTER 2. BACKGROUND ... 5

2.1. Overview .. 5

2.2. Related Work .. 8

2.3. Existing Work .. 9

CHAPTER 3. DESIGN ... 12

3.1. Overview .. 12

3.2. Use Case Diagrams .. 13

3.3. Database ... 15

3.4. Semantic Matching ... 16

3.5. Error Correction ... 19

CHAPTER 4. IMPLEMENTATION.. 21

vi

4.1. Development Overview.. 21

4.2. Windows Form Application ... 22

4.3. Application Logic ... 25

4.4. Working of the Application .. 29

CHAPTER 5. PERFORMANCE .. 36

CHAPTER 6. CONCLUSION AND FUTURE WORK .. 43

6.1. Conclusion .. 43

6.2. Future Work ... 44

CHAPTER 7. REFERENCES .. 45

vii

LIST OF TABLES

Table Page

1. Basic tag set and its corresponding entities .. 5

2. Pattern tags set and its corresponding pattern ... 6

3. Performance of application ... 37

4. Wrongly spelled words and system provided ... 39

5. Semantically equivalent words detected ... 39

6. All words in sample dataset .. 40

7. Semantically equivalent (missed) ... 41

8. Error detection (missed) .. 41

9. Precision and recall ... 42

viii

LIST OF FIGURES

Figure Page

1. Interaction among various components .. 2

2. Use case diagram of application’s interface ... 13

3. Use case diagram of business logic .. 14

4. ER diagram ... 15

5. Main interface ... 28

6. Browse for folder .. 28

7. Main interface ... 29

8. Main interface with validations .. 30

9. Main interface after generating results ... 32

10. Expand/collapse feature on main interface ... 33

11. GridView feature on main interface ... 34

12. Statistics on main interface ... 35

1

CHAPTER 1. INTRODUCTION

1.1. Overview

From needle to a house, products are bought and sold on daily basis. With an increasing

number of reviews given by different people on different products it becomes hard to judge

which product is best rated. Sometimes a rating of four or 5 star for a product is just not enough

and we need to know more than that.

While buying a product one can go online and read all the reviews given by different

people for a particular product and make a decision of whether to buy it or not. But this process

of reading all the reviews is very time consuming and you might not get the information you

need or the information would be later in the reviews that it would take hours to get to that piece

of information that you desire. This was the biggest motivation of opinion mining.

My contribution to this paper includes: (1) creating a tool that parses all the XML tagged

review files and provide the user with a visual representation of all the reviews in a tree and grid

format; (2) applying semantic matching technique to group all the similar keywords along with

the review sentences together; (3) complementing Semantic Matching by implementing Error

Correction technique which will correct the misspelled keywords so that all the relevant

information stays together.

In their work on OpinionMiner, Wei et al. used machine learning to create unique XML

tags for the reviews [23]. This information was used as a base to create this tool which can

effectively extract all the information from these XML tags and segregate them as positive and

negative reviews. It can organize the product reviews of any given product in turn helping the

customer make a decision while making a purchase. This application follows basic client-server

2

communication where the client is the WFA user interface; server is the code which runs it and

the database.

Figure 1 shows the interaction among various components showing how client interacts

with interface and database.

Figure 1. Interaction among various components

The rest of this paper is organized as follows: First chapter gives an overview and

description of my contribution to this paper and the problem statement. Second chapter discusses

the background of why the application is developed and the existing work which has been done

in regards to this application. Third chapter discusses the Application Design which is explained

through Unified Modeling Language (UML) which creates visual models to aid understanding of

process flow. This chapter also discusses the implementation of database used to store the

application data and the way it increases the application’s performance. Fourth chapter discusses

the implementation of the application by giving an overview of how it was implemented using

WFA and how semantic matching was implemented in the application using an external website.

Fifth chapter discusses the performance of the application and how it increases as the application

runs increase. Sixth chapter concludes with why this application is needed and how is it helpful

to many around us. This chapter also discusses some future work.

3

1.2. Problem Statement

With the help of machine learning all the reviews given for a particular product were

processed and tagged files were generated out of them, each file representing an individual

review that have XML tags in them. Each tag is responsible for carrying a particular kind of

information including, if a review was a positive one or a negative one. After each review is

tagged using machine learning the next step was to process all the tags in a review for all the

reviews for a particular product and represent them visually in a display that is easy to

understand. After looking at it anyone should be able to generate a conclusion about the product

being sold or purchased.

The tool serves three major purposes:

1. The user won’t have to read all the reviews in order to come to a conclusion whether

to buy a product or not as it is very time consuming.

2. The user will be able to see all the positive and negative aspects for every feature

mentioned in the reviews and, the user does not have to remember them while

comparing with other features of the same product.

3. This tool eliminates information that is not required i.e. the user can instantly see the

total number of positive and negative reviews given for any feature for that product

and if wanted can also read the review sentences pertaining to that feature.

Most of the times when the user goes online to read the reviews for a particular product

given by different people, the user can get confused after reading all the reviews as many talk

about the same thing but with different words. This application also takes care of that by

implementing Semantic Matching (SM) which will be explained later in the Application Logic

section.

4

The most important issue that was addressed while creating this application was to save

user’s time as much as we can by visually representing the data in such a way that the user does

not have to read all the reviews before drawing a conclusion.

In order to achieve this, after processing the XML tagged files the data is represented in a

tree format which can be expanded or collapsed to its roots/features thereby providing the user

with necessary and important information.

The objective of creating a client side WF was to allow the user to be able to upload all

the processed XML tagged review files for a particular product and get qualitative results. These

results can help the user decide whether the product was a success or a failure.

5

CHAPTER 2. BACKGROUND

2.1. Overview

Over the years people have been buying products online or by going to the store. Because

of many different companies selling same kind of products it can be hard to decide which

company’s product is better. Most of the companies give star rating on a scale of one to five for

their products, five being excellent and one being poor. This does not help a consumer in

deciding certain functionality i.e. if a certain feature of that product is good or bad.

Most of the companies allow people to write descriptive comments on the product, their

likes and dislikes. Anyone can write comments about the product and each comment is

considered as a review. For this project, each review written by customers of that product is

tagged through XML tags with the help of machine learning.

Table 1 shows the basic tag set and its corresponding entities.[23]

Table 1. Basic tag set and its corresponding entities

6

Table 2 shows pattern tags set and its corresponding pattern [23]

Table 2. Pattern tags set and its corresponding pattern

XML tags have a beginning and an ending tag and anything in between the start and the

end of a tag is considered as tag’s information. For example: <PROD_PARTS> battery

</PROD_PARTS>, the start of the tag is <PROD_PARTS> and the end is </PROD_PARTS>

and the information in between this tag is useful and is extracted by this application, so in this

case the product part will be “battery”.

C# was used as a design language over Java since it is a much better design language

than Java. C# has a wide range of in-built functions as compared to Java which makes

application development much easier. Also, it has a lot of tutorials available which further ease

development in this language.

Access database was used over other databases because Access can interact very well

with C#. Also, since this project involved very less tables, hence using larger databases was not

required in this context. Besides, maintaining Access database is relatively easier than other

RDBMS.

This application is not cross-platform because designing a cross platform application

brings its own unmanageable issues or defects. Awareness of all the issues related to deploying

an application on multiple platforms and effectively dealing with them was outside the scope of

7

this project. Since, the only platform choice made for this application was for it to be just a

windows-based application, all the possible known issues were taken care of.

The software engineering design principles that were used for providing convenient

access to the user are –

 Scalability – Both the application user interface and the database were scalable as they

can accommodate any new keywords or any new files very well. Even when a synonym

for a new keyword does not exist in the database, the application can locate the synonym

online and feed it to the database for future reference.

 Reliability – The application is reliable in a way that if the database does not contain

information similar to the data and the keywords uploaded to the system through files, the

application will look for relevant information online and provide appropriate results to

the user based on their query.

 Extensibility – The application conforms to the reusability standards since the

implementation is based on tabs functionality to represent features. Hence, additions of

other features can be easily implemented in forms of new tabs without disrupting

previous feature functionalities.

 Performance – Performance was been taken care of as a key factor in the implementation

of this application. Since, the keywords entered into the application via the uploaded files

are first compared to the existing data in the database through the use of hash maps,

instead of online comparisons, the performance is greatly increased. Further information

on performance is covered in performance section of this paper.

8

 2.2. Related Work

To my knowledge, the design of this system cannot be second with any other existing

system with even similar functionalities. The size and width of the window selection was made

such that it is neither too large nor too small. Larger window sizes or maximize window option

would lead to data being scattered while much smaller window size would make data look too

congested and compressed. Also, the design choice was made in accordance to the windows

based application standards.

Other review comparison tools applications are mostly web-based applications,

functionalities and design standards of which are based on web-application’s design standards.

For instance, Amazon’s product review feature functionality works with product reviews and

basically just combines and count all the reviews in the ratings of 1 to 5. They apply minimal to

none semantic matching approaches to group all the reviews together. For example, if we

compare the reviews of canon digital camera on Amazon, the reviews are based on the ratings of

1 to 5. The tool I created uses Semantic Matching with Error Correction techniques which not

only helps segregate positive and negative reviews but also takes of the spelling mistakes people

make while writing these reviews. Unlike the review classification from the websites like

Amazon and eBay, this tool puts all the positive reviews and the negative reviews together in

their own separate sections in their respective branches. This eases the review based product

selection process for the customers since all the information will lie in the tree-view or grid-view

based hierarchy. Even being a windows based application, this tool possesses the capability of

showcasing the positive and the negative reviews to its entirety; irrespective of their number; to

the customer. This in itself is a feature very different from the other web based applications since

9

they only highlight a few positive reviews about a product for the customers to view and hide all

of the negative reviews.

Another aspect in which this tool is better than other web-based review comparison

applications is its ability to separate the reviews on the basis of product features. Product reviews

are first separated and put into different product feature categories and further separated into

positive and negative reviews within those individual categories. For example, product reviews

for canon digital camera will be first separated and put into different categories such as lens,

picture quality, image resolution, optical zoom, etc. After the reviews are being separated and

placed in these feature categories, there are further processed and separated into positive reviews

and negative reviews. This tool ensures that all the positive reviews and negative reviews are

available for the customer to view keeping in mind that these are just the review sentences and

not the complete reviews. These features make this tool stand out since websites like Amazon

and eBay does only highlight very few uncategorized positive reviews.

Again, since Amazon is a web-based application, amount of content and its placement on

the web-page is designed according to web-based applications standards. Since, my application

is strictly a window based application, it has its own content amount and placement restrictions

according to the windows based application standards.

2.3. Existing Work

There have been a lot of ongoing projects for Natural Language Processing (NLP) and

one of them is OpinionMiner by Wei Jin, Hung Hay Ho and Rohini K. Srihari where they talk

about how to tag the reviews with XML tags discussed in the earlier section of this paper. The

motivation to build this application came from this paper where they efficiently tag the reviews

with relevant information on relevant tags which are processed through this application.

10

In their paper on Mining the Peanut Gallery, Dave et al., rated the sentence from the

review to determine if it is positive or negative and scored them. They, then, decided the quality

of the review on the basis of scores [24]. In this application, a similar ideology was adopted;

instead, keywords were used and processed on the basis of its positivity and negativity. Also in

their paper, Dave et al., inferred that since a lot of people have a tendency of writing reviews for

a particular product either in blogs or on other websites. Hence, they extracted product reviews

from several websites and separated them in positive and negative reviews. They took the

reviews per product and could not separate them according to specific features or parts of a

particular product. Since the tool I developed takes the XML tagged reviews from the research

work done by Jin et al., it will accept the data from several sources as well. Besides, all the data

which comes from different sources will be further sent to different product categories / product

features / product parts which are not being handled by the work done by Dave et al. This is a

unique functionality which is being handled by my tool. My tool has the capability of taking all

the reviews and putting them in separate product features. After the data is processed by the

system, all the keywords are separated in positive and negative reviews, the review sentences are

displayed in tree view. Each and every feature / part of a product will display how many reviews

were positive and how many were negative. It will also display positive review sentences and

negative review sentences. Also, since all of the reviews are being saved in the database and can

be emailed, a user can have the freedom to view these results at any given point of time.

Related work has been going on for creating client side application using VS as

Integrated Development Environment (IDE), .NET as platform and C# as language. But as far as

databases are concerned it depends on the application’s functionality and how it will be used.

The decision to choose a database actually depends on the relationship of data.

11

Riloff et al. used bootstrapping algorithms to exploit extraction patterns to learn about

subjective nouns to be used to develop a system which can effectively differentiate subjective

sentences from objective sentences [26]. They created a subjective classifier which takes

subjective nouns with the help of bootstrapping algorithm and then trained a Naïve based

classifier using these extracted subjective nouns. Their bootstrapping algorithm learned 1000

subjective nouns and used extraction pattern to learn subjective nouns. While they used

extraction pattern, I used HTTP get request to extract the synonyms from thesaurus.com. The

extracted synonyms are then further stored in the database for future use for enhancing the

performance which none of the references mentioned in this paper are using.

12

CHAPTER 3. DESIGN

3.1. Overview

There are many ways for designing an application which aid in understanding how an

application should work and, most importantly, how it actually works. If a design is good then it

helps in understanding the logic, purpose and need for creating any application.

For this project in order to provide a better understanding of the application different

types of diagrams have been created in Microsoft Visio which provides a better explanation by

giving a visual flow of the application explaining the internal functioning as well as a high level

overview of the application.

There can be different types of diagrams created in Visio but for this project a specific

type of diagrams were created known as Unified Modeling Language (UML) diagrams. UML

can be used to create various kinds of diagrams made but for this project we have restricted our

self to only those UML diagrams which are relevant to this project and which will provide a

better and clear understanding of the application.

The UML diagram used for this application is a Use Case diagram which first gives a

high level design overview and, later UML diagrams provide the core logic and functionality of

the application.

In order for the design to be complete, a database diagram was also created for this

application to make it is easier to understand the importance of database for this project and how

the database helped in achieving performance and optimization. The database diagram was also

created in Visio which is also a part of UML diagrams explaining how external entity interacts

with the database and how the database responds.

13

3.2. Use Case Diagrams

A Use Case Diagram (USD) is a diagram specifically designed to understand the flow of

system and how different entities interacts with each other to meet desired goals. Use case

diagram is different from other UML diagrams as it does not focus on either the timeline of the

application or how an activity of an application is carried. It just focuses on behavior of each

component and how it interacts with both within the boundary and from inside of the boundary

to outside.

The following figure is a base use case diagram that explains the high level overview of

the application. User interacts with the interface by uploading the main directory and the

processed directory is uploaded automatically. The files are then sent to the server for processing

and the processed data is displayed on the interface.

Figure 2. Use case diagram of application’s interface

The following figure provides a detailed explanation of how server interacts with the

interface for processing the files and generating results. The user interacts with the interface by

14

uploading the files. The files are then sent to the server for processing. The server has a file

parser that extracts the important information from the files uploaded to generate results and also

load existing information from the database if any.

If the server does not have a specific keyword found from uploaded files then it looks for

that keyword over the internet on www.thesaurus.com and with the help of HTTP GET request

retrieves all the related synonyms and stores them into the database. Server with all the collective

information then generates results and displays it on the interface.

Figure 3. Use case diagram of business logic

15

3.3. Database

Database is an essential part of the application as it increases performance by not letting

the application to go to the Internet and search for the synonym every time. Instead it looks for

the synonyms in the database first.

The corrected table in the database stores the keyword and corresponding to the keyword

is the corrected word. If a keyword is not found in the synonyms table then the application looks

in corrected table and if it’s not there then it goes to the Internet to search for synonyms.

Figure 4 shows how with the use of database the processing is optimized.

Figure 4. ER diagram

16

3.4. Semantic Matching

Semantic Matching (SM) is a most commonly used technique to control redundancy.

While creating an application for visualization of data, the data needs to be as less redundant as

possible.

A clear understanding of the concept of redundancy is a key to understand semantic

matching. Data can be redundant in many forms

 Duplicate data - same data represented more than once

 Data in disguise - Something that can have more than one word to describe them. They

are known as synonyms. A synonym can be a word or phrase that may mean exactly the

same like some other word. For example: Photo is a synonym of Picture and vice-versa is

also true.

When creating an application for visualization, it is important to not show redundant

information. This is because increased reading is cumbersome and nobody wants to go through

the same information over and over again.

For the purpose of this project, since it deals specifically with keywords that may have a

lot of synonyms, implementation of SM deemed important as it could reduce redundancy and put

all the relevant information together.

SM helps keep information in order. For example if we create two folders viz. photos and

pictures respectively. Both of them have same kind of contents i.e. images and same information

about images. Since in English they are both synonyms to each other and have the same

meaning, this example very well explains SM in terms of its ability to help organize all the

relevant information together.

17

A better understanding of how SM has reduced redundancy, improved readability and

increased performance can be explained through the way this application works.

When SM was not implemented in the process of creating this application, then it was

observed that there were many sentences that referred to about the same thing but were

categorized differently. For Example: first sentence goes ‘The quality of the picture taken from

this camera is superb’, while the second sentence says- ‘The images when transferred from

camera to computer looks even better’. In this example both of the sentences were referring to

the same keyword ‘picture’. The word ‘picture’ and ‘image’ are synonyms to each other but the

tool could not recognize it before SM was implemented; it instead considered it as 2 different

keywords and hence, did not group the information together.

The example clearly demonstrated the significance and importance of SM. It also

explains that with the use of SM, both the sentences could be grouped under one keyword either

images or picture instead of having two keywords or each keyword having one sentence under it.

Now let’s consider a case where we have hundreds of keywords and thousands of

sentences. If the information is not grouped properly, it can create a problem for the user as the

sentences they might want to read would be distributed under different keywords. This would

result in them taking more time to read all of the relevant information. Since this is visualization

of data, it is important that the data is as compact as possible. This is where SM became very

helpful.

Another reason behind implementing SM in this project was the presence of large

amounts of data. The application would have survived without SM if the data was too small

meaning few reviews for each product, but in reality there can be hundreds and thousands of

online reviews for each product. Now let’s consider a scenario where a product is to be launched

18

worldwide. In this case some may like it and some won’t. Hence there would be a wide variety

of reviews written for this product by different people who may have a tendency of using

different words to describe the same thing. In this situation the tree of keywords would become

too large if there is no SM implemented. Since, then, the information would be scattered all over

under many different keywords, this application’s purpose towards better understanding of the

results won’t be solved.

For example: Let us consider a new product that has recently came to the market and it

has been few weeks. There are 10,000 total reviews given so far and out of which let’s say

keyword photo has 20 synonyms. It has 2500 positive reviews and 1000 negative In this

situation, if there is no SM implemented then all 3500 sentences would be distributed under 20

keywords and the user would have to add all these relevant keywords by themselves which

nobody would like to do. If SM is implemented which it is, in this project, then all of the 3500

sentences would come under one keyword separating positive and negative reviews.

The implementation of SM in this project is explained through an example review file

which has following text of tags that shows the XML tagged review information. Each

review/file has XML tags, the three important tags from which we get the keywords are

<PROD_FEAT>, <PROD_PARTS> and <PROD_FUNCTION>. Any text inside the start and

end of these tags are the keywords. When the keywords have been identified, the code written in

C# extracts all these keywords and creates lists for storing them. If the database has any keyword

then that keyword along with its synonyms are loaded in a hash table. Each keyword which was

one by one extracted from the review file is then compared with the keyword and synonym from

the hash table. If it already exists in the hash table then we don’t look any further and proceed

with the other keyword. If a keyword is not found in the hash table then the application looks for

19

that keyword on www.thesaurus.com and if it has any synonyms it gets those synonyms and

stores them in the database along with other synonyms and keywords. We check for each

keyword if it’s a synonym of some other keyword coming from the review file. By doing this we

only create a list of keywords that are not synonym of each other there by controlling redundancy

and keeping all the relevant information together. It ensures every keyword is unique and all the

sentences are grouped together.

<BG>a</BG><OPINION_POS_EXP>terrific</OPINION_POS_EXP><PROD_PARTS>camera

</PROD_PARTS>

<OPINION_POS_EXP-BOE>easy</OPINION_POS_EXP-BOE><OPINION_POS_EXP-

EOE>to</OPINION_POS_EXP-EOE><PROD_FEAT>use</PROD_FEAT>

<BG>no</BG><BG>more</BG><BG>wasted</BG><BG>film</BG>

<BG>i</BG><BG>love</BG><BG>everything</BG><BG>about</BG><BG>it</BG>

3.5. Error Correction

People make errors while writing English sentences. Everyone has their own way of

writing words. Some use correct English grammar and some use slang to represent their opinion.

Here SM alone cannot help reduce redundancy. There should be a mechanism that has a control

over most of this discrepancy. There may be situations where the person writing the review

accidently writes incorrect word and that happens to be the keyword in our case. In order to deal

with these kinds of situations we have implemented Error Correction (EC) in our project.

In order to understand this mechanism properly lets go over the mechanism of SM again.

In SM we extract all the keywords from review files and check one by one if it already exists in

the database or not. The database also has a table that stores corrected words corresponding to

the keywords, so if a keyword is incorrectly spelled its correction will be in the correction table.

20

Also, if a keyword is correctly spelled then also it would be in correction table with corrected

word as the keyword itself.

If a wrongly spelled word is not found in the database then the application goes over the

internet to www.thesaurus.com with that incorrect keyword. If the application gets a response

that the keyword might be incorrect, then the website gives a ‘did you mean’ phrase suggestion

followed by the keyword. This way we find the corrected word corresponding to wrongly spelled

keyword. There may be situations where even the website also can’t recognize the incorrectly

spelled keyword and only in that situation the keyword is taken as is since the application could

not recognize it as an English word.

EC technique has helped this application deal with the situations where a keyword is

spelled wrongly and it does not create multiple keywords. For example: a person wrote a review

with sentence that included the keyword battery and most of the reviews are talking about this

product part and someone also writes in their review about battery by spelling “battery” as

“bttery”. In this situation if the EC technique is not implemented then the application will

consider them as separate keywords and group the information accordingly. This helps in

improving readability as well.

21

CHAPTER 4. IMPLEMENTATION

4.1. Development Overview

Over the years, software was developed either as windows stand-alone applications or

browser applications. Windows stand-alone applications not only included Microsoft Office

Suite, Notepad++ and NetBeans but were also extended to applications such as Skype, google

chat, yahoo messenger, etc. Browser applications included websites, ranging from commercial

sites to personal sites.

These browser applications were not just limited to websites; they also included web-

based applications such as US Bank web-based application or the Excel Energy web-based

application. These web-based applications are user-friendly and allow the user to perform a wide

variety of actions and tasks.

For instance, US Bank application allows the user to securely log into a user’s bank

account, check account balance, pay bills, etc. Some browser applications also incorporate their

own stand-alone windows based applications. Examples of these applications include Gmail and

Yahoo mail which include their own messengers as part of their web-based applications; which

however, may also be installed as stand-alone messenger applications on a machine.

This paper talks about the design of a Windows Form Application (WFA). As mentioned

earlier the development was done in C# language using .NET as the platform and VS as the IDE.

Creating an application for visualization is always a challenge as one should be wary of the size

of the window. Information may become discrete if the application’s window is too large or it

can become too cluttered it the window is too small.

22

When creating a WFA there are certain things that should be kept in mind:

1. Application’s window size and the appearance of the interface shouldn’t be too

fancy. A user may get distracted from the main context. It shouldn’t be too dull

either that the user has no interest in using it.

2. Reduce scrolling by providing features like expand/collapse. It gives the user the

ability to manipulate display according to user’s needs.

3. One other important thing is try not to have too many irrelevant redirections of

displays. It can confuse a user.

4. Speed is definitely the most important of all.

All the points mentioned above are important when creating a WFA and this project has

implemented all of them. While creating this application there were other things that were

implemented to enhance user experience. We will walk through them in the later sections of this

chapter.

4.2. Windows Form Application

WFA is a Graphical Application Programming Interface (API) through which we can

access Microsoft Windows Interface (MWI). The API is a part of the .Net framework developed

by Microsoft. Windows forms (WF) are built using Windows API.

An application created using WFA can only be used on Windows operating system (OS)

and not on any other OS like Mac or Linux because of platform dependencies. Also that WFA

uses MWI which could only be found in Windows OS.

The purpose of creating an application for this project in WFA is to build an interactive

and rich interface which takes all the parameters into account such as its length, width, color,

23

application logo, etc. An application is built in WFA ensures that the processing is more towards

client side than the server side.

Most of the time when an application is built using WFA the intent is to perform most of

the processing on the client side and send the response to the server so that the server does not

get crowded with all the client processing. For this project client, server and database all are on

client system.

Usually a WFA on the client side does all the work by filling in the form and all the data

is transported to the server using the Internet. This relationship of client and server is called

Client-Server Architecture.

In client-server architecture, a client sends request to the server using internet, then the

server depending on the application sends a request to the database. The database then sends the

response back to the server and then the server finally sends a response to the client with

information rendered from the database. For this project all client, server and database resides in

the same location.

The most common languages that are used for creating WFA are C# and Visual Basic.

For this project the application was built using C# language .NET framework.

The three main components for building this project are:

1. C Sharp (#) – C# is an object oriented language developed by Microsoft. It first

appeared in 2000 and was used alongside .Net to implement the concepts of object

oriented programming also known as OOPS.

Memory can also be managed using c# with the help of ‘using’ keyword which will free

up the memory as soon as the work of that variable or a function is done and is known that it

24

won’t be used anymore. By freeing up the memory during runtime, the application increases

performance as more memory can be utilized as the application runs.

There are many inbuilt functions that the programmer does not need to define all the time

which helps in saving time of the developer developing the application data structures. Linked

lists, stacks and queues are some of the examples.

2. .Net – It is a framework developed by Microsoft that was first released on 13

February 2002. This framework provides interoperability across several programming

languages. It makes the development easy by providing a user interface that can be

manipulated by a user according to the user’s requirement.

Applications built through this framework use Common Language Runtime (CLR) which

is a virtual machine that protects memory by managing the memory and also by handling

exceptions.

Memory management is one of the biggest advantages of using .Net framework as the

developer developing the application does not have to worry about freeing up the memory since

the automatic garbage collector frees up the memory periodically. It works by having 2 separate

threads; one for the application and the other for the garbage collector which does not interfere

with the main application thread.

3. Visual Studio (VS) – It is an Integrated Development Environment (IDE) developed

by Microsoft in C# programming language. This application was built in Visual

Studio 2012. There are, however, newer versions for VS available in the market, the

latest version among them is Visual Studio 2013.

Developers use this IDE to create many kinds of applications such as web-based, WFA

etc. OS required to run VS is Windows OS. Apart from developing applications in C#, VS

25

allows the developer to work with many different languages such as Hyper Text Markup

Language (HTML), C, C++, VB.Net, F# and many more.

Code written in VS is managed so that everything is grouped and has a specific location.

For example, if we create a WF using VS then the code can be viewed under Solution Explorer

tab on the right and by double clicking a file can be viewed. Every form file will have two

additional files-

a. CS file – This file is responsible for all the code that runs in the backend and which

manipulates the form by having triggers and events. This is the file where C# code is

written corresponding to the form. For this project most of the development was done

in this file.

b. Designer file – This file manages the design part of the form i.e. it will have all the

buttons, textbox or any other GUI components.

4.3. Application Logic

The user interacts with the interface by uploading the main directory which will contain

two file types .txt and .pos for each review. File with .txt extension would contain unprocessed

reviews which are simple plain English sentences, whereas, file with .pos extension would

contain processed reviews. Processed reviews correspond to the reviews processed with help of

machine learning. Since we will not require processed file for this project, we won’t be

uploading it.

When the user uploads the main directory then the processed directory is automatically

uploaded provided that both the directories have same name and the processed directory would

have _processed at the end of the directory name to distinguish among the two directories.

26

The processed directory will also have .txt and .fo file types, both of them combined

would represent a single review. File with extension .txt will contain XML processed reviews

and file with extension .fo file will contain the feature orientation of the review i.e. what part of

review is positive and what part is negative.

The application logic is divided into three major layers:

1. Interface – It refers to the GUI created in VS on which the user interacts. The

interface was made as simple as possible so that anyone who has the access to the

application can easily generate results. The visualizations generated from the results

are easy to understand too.

The interface was built using .NET framework in VS and all the attributes like length,

width, color etc. were kept in mind while creating the application’s interface. Since the

application is for visualization of data, all the dimensions of the interface like length, width and

height were given importance and therefore lot of testing was done in order for the interface to

occupy the appropriate space.

If the interface was too large then the focus of the user will be diverted as information

would be scattered all over the screen. And, if the interface was too small then the user would

have to do a lot of scrolling in order to get to the results the user desires.

Various tabs have been created in the interface to separate related results generated by

processing inputted files.

2. Business logic – This is the core logic of the application where all the processing

takes place, files are uploaded through the interface which are processed using C#

code.

27

After files are uploaded successfully and important information is extracted and grouped,

the C# code for each keyword extracted from the uploaded files checks if it is in the database or

not and whether it has a synonym or not. If the keyword does not exist in the database it goes to

www.thesaurus.com to retrieve all the synonyms for the keyword and inserts them in the

database.

If the keyword is not found at the website then it checks whether the keyword is wrongly

spelled. The application would then try to find the correct keyword and if found it would be

inserted in the database as corrected keyword. The code makes another attempt of finding

synonyms for the corrected keyword to ensure integrity of the application.

If a keyword is a synonym of another keyword already processed then only one keyword

is considered to avoid redundancy. This process is called Semantic Matching (SM).

3. Database – The database for this project has 2 tables: synonyms and corrected.

Synonym table contains three columns: ID, keyword and synonym where ID column

is a unique identifier, keyword column stores all the keywords processed from

uploaded files and the third column synonym stores the synonyms of each keyword.

As there can be multiple synonyms for each keyword, there are multiple rows for

each keyword in the table representing multiple synonyms.

Corrected table on the other hand also contains 3 columns: ID, keyword and

correctedkeyword where ID column is a unique identifier, keyword column stores all the

keywords processed from uploaded files and the third column correctedkeyword stores the

keyword that was corrected. If a keyword does not have any spelling errors then both keyword

and correctedkeyword column will have same value for that keyword.

28

Figure 5 and Figure 6 below is the design that was created on the basis of which interface

was developed. This is just a design to give the look and feel of the interface.

Figure 5. Main interface

Figure 6. Browse for folder

29

4.4. Working of the Application

In the previous sections we have discussed how SM and EC has helped us in reducing

keywords, there by optimizing the screen space for better readability and understanding of the

results. Now we will further discuss how the application works as a whole.

Figure 7 shows how the application looks like when the application’s interface is opened

for the first time. Upon clicking the text box for select directory, trigger is enabled to open the

popup box for browsing and uploading the data files.

Figure 7. Main interface

The user only uploads the unprocessed directory and the processed directory is

automatically uploaded as the processed directory has _processed concatenated at the end of

30

unprocessed directory. Path for both the directories (processed and unprocessed) can be seen on

the text boxes in front of the labels: “Select directory” and “Processed directory”.

After the files are successfully uploaded the user will click on the read button to process

all the uploaded files. In this process if the user does not upload anything and clicks on read

button or uploads incorrect format files then a validation is also provided so that the user knows

what is going wrong. Following screen shot shows the validation:

Figure 8. Main interface with validations

When correct files are uploaded and the user clicks on read button the application starts

processing all the files uploaded by the user. Time for processing all the files can be seen on the

top right corner of the interface where the user gets an estimate of how much time has passed in

31

processing the files. The user also gets the privilege of viewing how many files have been

processed by looking at the long processing bar below the processed directory label which shows

how many files have been processed and what’s the total number of files that are being

processed.

The interface has three tabs: Tree View, Grid View and Statistics. Initially all three tabs

are grayed out which means that the results are not generated yet and the user cannot select

anything or choose any option while the files are being processed. Once the processing is

completed the processing bar turns fully green and shows that all the files have been processed

and the results have been generated.

Once all the files are processed and results are generated, all three tabs are populated with

results and the user can maneuver over the interface to see their desired section of results. At the

very bottom of the interface there are two buttons: “Export to Excel” and “Email”, both of which

are also grayed out during the processing of the files but are activated as soon as all the files are

processed successfully. Export to Excel would export all the data from grid view to excel spread

sheet where the user can store the results and can infer to them whenever they want to without

running the application again. Email button is for emailing the results from the grid.

Figure 9 shows how the interface looks like when the user has successfully uploaded the

files and all the files have been processed successfully with results.

32

Figure 9. Main interface after generating results

The three major sections where the output is displayed on the interface are:

1. Tree View: This is the first view that the user looks at the when all the processing is

completed. It has three major segments: PROD_PARTS, PROD_FEAT and

PROD_FUNCTION. Each segment can be expanded and collapsed by the user to the

view they desire. Each segment can be further expanded to provide relevant

information. Figure 10 shows on expanding how the interface looks like and what all

results are included in it.

33

Figure 10. Expand/collapse feature on main interface

2. Grid View: The user has the option for viewing all the information in the form of a

Grid where they can do analysis in terms of a matrix. Following figure shows the

Grid View. The Grid View was designed so that the user has freedom of just looking

at how many were positive and negative reviews for a particular feature so that they

can do a better analysis on the part of the product which is most liked and/or disliked.

This part of the interface also shows user what type they are looking at so that if they

want they can sort the results by clicking on the header.

34

Figure 11. GridView feature on main interface

3. Statistics: This section of the interface shows the qualitative analysis of the generated

results i.e. total number of keywords that were found, the keywords that were

corrected by EC technique, corrected but were synonym, corrections that were found

in the database and lastly how many keywords are uncorrectable.

By looking at these statistics the user can infer about the data i.e. how much mistakes

people generally make while writing reviews online and also get a broad picture of the quality of

the application. Following figure shows the screen shot:

35

Figure 12. Statistics on main interface

 In order for this application to work fast, it required a strong internet connection;

stronger the internet connection, faster the processing of all the files. We will see how the speed

of an internet connection is responsible for the faster delivery of the results in the Performance

section.

36

CHAPTER 5. PERFORMANCE

Application’s performance is the key to developing a good application as no one wants to

sit and watch a file get processed or opened. Performance was kept in mind while building this

application. As mentioned in the chapters above, we are using SM and EC techniques to improve

the quality of the application thereby reducing redundancy, optimizing screen space and making

results more readable. But using SM and EC has its toll as it degrades the performance by

increasing the processing time because the application has to go back and forth between the

Internet and process all the GET requests.

If there was no SM and EC in the application, then the results would have been generated

quickly but the quality of the results would have been compromised. In order to avoid that, we

included database that would store all the keywords along with the synonyms and their

corrections. There are lots of factors that are responsible for improving efficiency but the

strongest factor in our application was to include the database.

Database helped us in achieving efficiency as in order for SM and EC to work it needs

synonyms and correct words which the application gets from the HTTP GET request. We load

the keywords, corrected keywords and synonyms of keywords that were processed earlier, from

the database into a hash table and then allow the application to look into the hash table before

going over the Internet. If a keyword is found in the hash table then we take that keyword and

place it in the list for further processing of the results and if not then it goes to the Internet to

search for synonyms or misspelled keywords.

The best case scenario would be if the files that need to be processed have all the

keywords already in the database. The processing time is almost reduced up to one fifth of the

time it would have taken if there was no data in the database or if there was no database at all.

37

The worst case scenario would be if the file that needs to be processed has none of its

keywords in the database and that none of the keywords have any synonym keywords in reviews.

For each keyword the application would have to look up on the internet for synonyms or

correcting misspelled keywords.

The time taken to read 100 reviews with an internet speed of 5.51 Mbps and no data in

the database i.e. the worst case scenario, is approximately 9 minutes and 18 seconds. Total

keywords that found were 506.

Time taken to read the 50 files with an internet speed of 4.29 Mbps with no data in the

database i.e. the worst case scenario is approximately 6 minutes and 50 seconds. Total keywords

that found were 275.

For the best case scenario, time taken to read 100 reviews with an internet speed of 4.99

Mbps is approximately 2 minutes and 13 seconds. Total keywords that found were 506.

Time taken to read 50 reviews with an internet speed of 4.69 Mbps is approximately 1

minute and 22 seconds. Total keywords that found were 275 and all of them were found in the

database.

Table 3 represents the performance in tabular form.

Table 3. Performance of application

Total Keywords
Keywords found

on web

Keywords found

in database

Processing

Time

Internet

Speed

(Mbps)

Total

number of

reviews

506 506 0
9 minutes and

18 seconds
5.51 100

275 275 0
6 minutes and

50 seconds
4.29 50

506 0 506
2 minutes and

13 seconds
4.99 100

275 0 275
1 minute and

22 seconds
4.69 50

38

When we talk about performance we usually ask how good the testing was. If testing was

not done then we wouldn’t know if there was any room for improvement. While testing the

application it came to attention that the performance needs to be improved thereby implementing

database. There were three kinds of testing done to test this application:

1. Unit Testing: It is done by testing individual units of the source code and for this

application all the functions were tested and the response was recorded and analyzed

to confirm appropriate results. In total, there are 30 functions defined and all of them

were tested individually and as a whole. Since, not all the methods can be tested

individually so some of them were tested with other functions and some were tested

along with the application.

2. Black Box Testing: This is a very common type of testing where we test the

application in terms of the way it is supposed to function. In order to achieve this kind

of testing, the application was executed many times by increasing and reducing total

number of files to be processed, there by generating different sets of results which

could be easily analyzed.

3. Functional Testing: This type of testing is a kind of black box testing but is

input/output specific where we have examined when we have input in the application

and after processing what is the output.

Table 4 represents the keywords which were identified by the system and were incorrect

which were corrected by it. Phrases, keywords with more than one word, cannot be accounted for

as the system cannot identify them as equivalent.

39

Table 4. Wrongly spelled words and system provided

Keyword Correction

joy pad Joypad

view finder Viewfinder

moive mode movie mode

aa batteries aa batteries

Table 5 represents keywords and semantically equivalent words detected by the system.

Table 5. Semantically equivalent words detected

Keyword Equivalent

Aspect Aspects

Upload Uploading

Usability Use

Video Videos

lay out laid out

Control Controls

Image Images

Perform Performs

Setting Settings

Button Buttons

Photos Pictures

Photos Picture

Style Styling

Look Looking

Viewfinder view finder

Capability Capabilities

Battery Batteries

Effect Results

start up start-up

Joypad joy pad

Portrait Portraits

Highlight Highlights

40

Table 6 represents the sample dataset from which all the keywords were extracted. These

keywords are distinct in the table.

Table 6. All words in sample dataset

Manage red-eye

removal

shooting

modes

joy pad Video manual

settings

digital

camera

burst mode lithium

batteries

lcd screen memory

card

Noise moive mode indoor

photos

movement

stabilizer

Shutter focusing

system

Operated macro

shots

viewing

screen

Iso

optical

viewfinder

lcd display second-

curtain flash

zoom

setting

Controls flash photos Camcorde

r

Download Transfer Worked Detail Screen Details default

standard

setting

start-up Use Handle Usability Looking Transfering Price

Fetures Feature landscape

mode

Lcd night

photos

Performs Features

video

settings

flash

setting

digital zoom quality of

the pictures

Value Auto quality of

pictures

Vivid Capabilitie

s

Photos aa battery Viewfinde

r

battery

cover

image

quality

Money Flash Obtain lag time Exposure Product Contrast

Focus battery

compartme

nt

optical

zoom

ease of

transferring

the pictures

Control Flexibility Battery

Bring Settings battery

charger

between-

shot times

movie

mode

Body optical

viewer

Uploading Works owners

manual

Working Products Pictures Batteries

View Performanc

e

video

recorder

Program video

shots

automatic

white

balance

quality of

the photos

battery life Processor Videos double-a

batteries

Zoom Results ease of

use

aa batteries Evening Software Images Learn shutter lag laid out

Macro Sound Hold digital and

optical

zooms

anti-blur

feature

Pics

41

Table 6. All words in sample dataset (continued)

face-

detection

metering

system

view finder Size auto setting Buttons shot finder

Camera transfer

pics

Colors close-up

mode

manual

mode

Color

audio/movi

e

flash power menu tree start up Snap set up

Aspects Portraits Effect Grip auto red

eye

correction

Weight

Highlights Shot Shots movie

capabilities

shutter

cover

picture

quality

Resolution Picture Design Quality Service

aa bateries auto mode purple

fringe

Styling Work

Table 7 represents the keywords and their semantically equivalent words that were

missed by the system.

Table 7. Semantically equivalent (missed)

Keyword Equivalent

Pics Photo

Color Colors

Work Works

Feature Features

Work Working

Snap Photo

Table 8 represents the keywords that the system could not correct

Table 8. Error detection (missed)

Keyword Correction

fetures Features

Semantically equivalent detected = 22

Semantically equivalent (not counting phrases) = 28

42

Errors detected and corrected = 4

Actual Errors = 5

Final table i.e. Table 9 shows precision and recall calculated from the above tables.

Table 9. Precision and recall

Precision (%) Recall (%)

Error Correction 100 80

Semantic Matching 100 78.5

Precision for Error Correction is 100% as the system was able to detect all the incorrect

words and correct all of them and recall is 80% ((4/5)*100) as on manually reading all the

keywords I found that there was 1 error that the system couldn’t detect so it couldn’t correct.

Similarly, precision for Semantic Matching is 100% as the system was able to identify all the

semantically equivalent keywords and recall is 78.5% ((22/28)*100) as the system couldn’t

semantically equate 6 keywords.

43

CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1. Conclusion

People will always buy products whether they purchase online or by going to the shop,

one thing that they will never stop doing is to give their opinion about the product they bought or

sold i.e. to provide a detailed description of what they liked about the product or what they

disliked.

Everyone wants to retain lot of information without having to sacrifice time and memory.

In other words when we have to process a lot of information we store it and use it again and

again, but the more efficiently we monitor data we make more improvement in the area of data

storage and data retrieval.

Upon looking at same kind of data, different people can interpret it differently. In order to

avoid confusion and to have everyone understand the meaning behind data, machine learning

came into existence and with the help of machine learning it became easy to understand data.

There was, however, still a need for data visualization.

Taking the advantages and power of machine learning, this application has visualized

data in such a way that different kinds of users on reading the results will have a common

conclusion about the data. The application will also allow user to understand the data in depth,

comparing the results and hence reaching a fair conclusion to data and on the product it

generated results for.

Hence this application will make everyone’s life easier by visualizing data in such a way

that anyone looking at the results can easily figure out the opinions given by hundreds of people

in a short amount of time.

44

6.2. Future Work

I haven’t seen any application where an improvement cannot be made so it goes the same

with this application too. Currently this application is only supported by windows OS so an

option to make this application platform independent could be a possible area of future work.

Also, currently this application can only be used by those who have the specific data files

needed by this application, so creating this application as a web-based application could also be a

good idea that can be looked into. As this project is data specific, creating a web-based

application that could store results and update them dynamically can be looked forward to.

The results generated from this application can be used as live feed for many

applications. Also, various mobile apps can also be considered so that the user can look at the

results on their phone or even generate their own results.

The statistics section can also be improved by adding timestamps and storing all the

results generated in the course of execution of the project where the user can look at the dates

and compare results for different time, different date and different products.

Another area of improvement could be to use a stronger database. Currently the

application uses Access database but due to increase in data, a stronger relational database could

be used such as Oracle, SQL Server or even MySQL.

By implementing these features in this application it would become more powerful in

terms of processing as well as understanding.

45

CHAPTER 7. REFERENCES

[1] Windows Forms: Definition – What does Windows Forms mean,

http://www.techopedia.com/definition/24300/windows-forms-net

(Last accessed on 20 August 2014)

[2] Windows Forms: Windows Forms Overview,

http://msdn.microsoft.com/en-us/library/8bxxy49h(v=vs.110).aspx

(Last accessed on 20 August 2014)

[3] How to: Create a C# Windows Forms Application,

http://msdn.microsoft.com/en-us/library/360kwx3z(v=vs.90).aspx

(Last accessed on 20 August 2014)

[4] Semantic matching and Error Correction,

http://thesaurus.com/

(Last accessed on 20 August 2014)

[5] UML Use Case Diagrams: Tips,

http://www.andrew.cmu.edu/course/90-754/umlucdfaq.html

(Last accessed on 20 August 2014)

[6] XML Introduction – What is XML?,

http://www.w3schools.com/xml/xml_whatis.asp

(Last accessed on 20 August 2014)

[7] UML 2 Diagrams Tutorial,

http://ima.udg.edu/~sellares/EINF-ES2/uml2_diagrams.pdf

(Last accessed on 20 August 2014)

[8] Introduction to UML 2 Use Case Diagrams,

http://www.agilemodeling.com/artifacts/useCaseDiagram.htm

(Last accessed on 20 August 2014)

[9] How to: Make Requests to HTTP-Based Services,

http://msdn.microsoft.com/en-us/library/cc197953(v=vs.95).aspx

(Last accessed on 20 August 2014)

[10] Access Database: Database basics,

http://office.microsoft.com/en-us/access-help/database-basics-HA010064450.aspx

(Last accessed on 20 August 2014)

[11] Database: Building an Access database From the Ground Up,

http://databases.about.com/cs/tutorials/a/widgetmenu.htm

(Last accessed on 20 August 2014)

http://www.techopedia.com/definition/24300/windows-forms-net
http://msdn.microsoft.com/en-us/library/8bxxy49h(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/360kwx3z(v=vs.90).aspx
http://thesaurus.com/
http://www.andrew.cmu.edu/course/90-754/umlucdfaq.html
http://www.w3schools.com/xml/xml_whatis.asp
http://ima.udg.edu/~sellares/EINF-ES2/uml2_diagrams.pdf
http://www.agilemodeling.com/artifacts/useCaseDiagram.htm
http://msdn.microsoft.com/en-us/library/cc197953(v=vs.95).aspx
http://office.microsoft.com/en-us/access-help/database-basics-HA010064450.aspx
http://databases.about.com/cs/tutorials/a/widgetmenu.htm

46

[12] Walkthrough: Connecting to Data in Access Database (Windows Forms),

http://msdn.microsoft.com/en-us/library/ms171893.aspx

(Last accessed on 20 August 2014)

[13] Semantic Matching: Semantic Matching,
http://semanticmatching.org/semantic-matching.html

(Last accessed on 20 August 2014)

[14] Semantic Matching: Semantic Matching

http://eprints.biblio.unitn.it/381/1/013.pdf

(Last accessed on 20 August 2014)

[14] Semantic Matching: Semantic Matching in Search

http://www.hangli-hl.com/uploads/3/1/6/8/3168008/ml_for_match-step2.pdf

(Last accessed on 20 August 2014)

[15] Error Correction: Error Correction and detection,

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Error_detection_and_correction.html

(Last accessed on 20 August 2014)

[16] Error Correction: Error Correction and detection,

http://www.tutorialspoint.com/data_communication_computer_network/error_detection_and_cor

rection.htm

(Last accessed on 20 August 2014)

[16] Error Correction: ECC (Error Correction Code or Error Checking and Correcting),

http://searchnetworking.techtarget.com/definition/ECC

(Last accessed on 20 August 2014)

[17] Testing: Unit Testing,

http://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx

(Last accessed on 20 August 2014)

[18] Testing: Black Box Testing,

http://softwaretestingfundamentals.com/black-box-testing/

(Last accessed on 20 August 2014)

[19] Testing: Functional Testing,

http://www.techopedia.com/definition/19509/functional-testing

(Last accessed on 20 August 2014)

[20] Visual Studio: Visual Studio 2012,

http://msdn.microsoft.com/en-us/library/vstudio/dd831853(v=vs.110).aspx

(Last accessed on 20 August 2014)

http://msdn.microsoft.com/en-us/library/ms171893.aspx
http://semanticmatching.org/semantic-matching.html
http://eprints.biblio.unitn.it/381/1/013.pdf
http://www.hangli-hl.com/uploads/3/1/6/8/3168008/ml_for_match-step2.pdf
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Error_detection_and_correction.html
http://www.tutorialspoint.com/data_communication_computer_network/error_detection_and_correction.htm
http://www.tutorialspoint.com/data_communication_computer_network/error_detection_and_correction.htm
http://searchnetworking.techtarget.com/definition/ECC
http://msdn.microsoft.com/en-us/library/aa292197(v=vs.71).aspx
http://softwaretestingfundamentals.com/black-box-testing/
http://www.techopedia.com/definition/19509/functional-testing
http://msdn.microsoft.com/en-us/library/vstudio/dd831853(v=vs.110).aspx

47

[21] XML: Extensible Markup Language,

http://www.w3.org/XML/

(Last accessed on 20 August 2014)

[22] Amazon: Customer Reviews,

http://www.amazon.com/Canon-Digital-Camera-18-135mm-Lens/product-

reviews/B00DMS0LCO/ref=cm_cr_dp_qt_see_all_top?ie=UTF8&showViewpoints=1&sortBy=

byRankDescending

(Last accessed on 6 September 2014)

[23] Jin, Wei, Ho, Hung Hay, Srihari, Rohini K., OpinionMiner: A Novel Machine Learning

System for Web Opinion Mining and Extraction, KDD’09 Proceedings of the 15
th

 ACM

SIGKDD international conference on Knowledge discovery and data mining, 2009; 1195-1204

[24] Dave, Kushal, Lawrence, Steve, Pennock, David M., Mining the Peanut gallery: opinion

extraction and semantic classification of product reviews, Proceeding WWW ’03 Proceedings of

the 12
th

 international conference on World Wide Web; 519-528

[25] Pang, Bo, Lee, Lillian, Opinion Mining and Sentiment Analysis, Foundations and Trends in

Information Retrieval, 2008; 2(1-2):1-35

[26] Riloff, Ellen, Wiebe, Janyce, Wilson, Theresa, Learning subjective nouns using extraction

pattern bootstrapping, CONLL’03 Proceedings of the seventh conference on Natural language

learning at HLT-NAACL 2003:4:25-32

[27] Hu, Minqing, Liu, Bing, Mining and summarizing customer reviews, KDD’04 Proceedings

of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining;

168-177

http://www.w3.org/XML/
http://www.amazon.com/Canon-Digital-Camera-18-135mm-Lens/product-reviews/B00DMS0LCO/ref=cm_cr_dp_qt_see_all_top?ie=UTF8&showViewpoints=1&sortBy=byRankDescending
http://www.amazon.com/Canon-Digital-Camera-18-135mm-Lens/product-reviews/B00DMS0LCO/ref=cm_cr_dp_qt_see_all_top?ie=UTF8&showViewpoints=1&sortBy=byRankDescending
http://www.amazon.com/Canon-Digital-Camera-18-135mm-Lens/product-reviews/B00DMS0LCO/ref=cm_cr_dp_qt_see_all_top?ie=UTF8&showViewpoints=1&sortBy=byRankDescending

