
TOWARDS SECURE CLOUD STORAGE SERVICES

A Dissertation

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Mazhar Ali

In Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:

Electrical and Computer Engineering

January 2015

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Towards Secure Cloud Storage Services

 By

Mazhar Ali

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Samee U. Khan

 Chair

Jacob S. Glower

Sudarshan K. Srinivasan

Ying Huang

 Approved:

 01/26/2015 Scott C. Smith

 Date Department Chair

iii

ABSTRACT

Cloud computing is anticipated to revolutionize the Information and Communication

Technology sector and has been a mainstream of research over the last decade. The cloud

computing, upsurges the capabilities of the hardware resources by optimal and shared utilization.

The above mentioned features encourage the organizations and individual users to shift their

data, applications and services to the cloud. However, the services provided by third-party cloud

service providers entail additional security threats.

Data being one of the prime assets of the organizations must be protected from all sorts of

security threats. The data in the cloud is much more vulnerable to risks in terms of

confidentiality, integrity, and availability in comparison to the conventional computing model.

The ever increasing number of users and applications leads to enhanced security risks. Violation

of integrity may also result from multi-tenant nature of the cloud. Employee of SaaS providers,

having access to information may also act as a potential risk.

Considering the paramount importance of data security in the cloud environment, we

propose methodologies towards the secure cloud storage services. We propose methodologies to

secure: (a) Single user data, (b) Group shared data, and (c) approach security and performance

collectively. We propose Data Security for Cloud Environment with Semi-trusted third party

(DaSCE) protocol, a cloud storage security system that provide key management, access control,

and file assured deletion. Parts of keys are stored at semi-trusted servers called key managers.

The key management is accomplished using (k, n) threshold secret sharing mechanism. Finally,

we present the DROPS methodology that collectively deals with the security and performance in

terms of retrieval time. The data file is fragmented and the fragments are dispersed over multiple

iv

nodes. The nodes are separated by means of T-coloring. The fragmentation and dispersal ensures

that no significant information is obtainable by an adversary in case of a successful attack.

v

ACKNOWLEDGEMENTS

First and foremost thanks to ALLMIGHTY ALLAH Who has helped me throughout the

course of my studies. All of my knowledge, strength, courage, health, and abilities are His

blessings upon me and there is no way to fulfill His right to thank Him.

Special thanks to Dr. Samee U. Khan, my advisor, for his help, guidance and innovative

ideas. I offer my sincere and deep hearted gratitude to my advisor who always encouraged me,

and persistently conveyed the spirit and guidance required for the research. Without his kind

guidance and continuous efforts, this disquisition would not have been possible.

Special thanks to my committee members, Dr. Jacob S. Glower, Dr. Sudarshan K.

Srinivasan, and Dr. Ying Huang for their support, guidance and helpful recommendations.

Thanks to the Electrical and Computer Engineering staff members Jeffrey Erickson, Laura D.

Dallman, and Priscilla Schlenker for all the unconditional help and favor.

I would like to thank my family. Their continuous support is always a source of

motivation and encouragement for me. I especially like to thank my father and mother, who are

the only and every reason for whatever I am today and whatever I achieved in my life. I also

would like to thank my loving wife and my son Abdullah, for their patience, time, and support.

They both have shown extreme patience and cooperation that resulted in successful completion

of this disquisition.

Finally, I owe my heartiest thanks to all my friends and colleagues here in the US and

Pakistan, who always helped me in the time of need.

vi

DEDICATION

I would like to dedicate this thesis to my family, especially to my parents, my wife, and my son

for all the inexplicable love, support, and motivation.

vii

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

DEDICATION ... vi

LIST OF TABLES .. x

LIST OF FIGURES ... xi

1. INTRODUCTION .. 1

1.1. Cloud Computing and Data Security ... 1

1.2. Motivation .. 5

1.3. Research Goals and Objectives .. 6

1.4. References .. 7

2. RELATED WORK ... 11

2.1. Securing Single User Data ... 11

2.2. Securing Group Shared Data ... 14

2.3. Security and Performance .. 16

2.4. References .. 17

3. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT WITH SEMI-TRUSTED

THIRD PARTY .. 20

3.1. Introduction .. 20

3.2. File Assured Deletion (FADE) .. 23

viii

3.2.1. File Upload.. 25

3.2.2. File Download ... 27

3.2.3. Policy Revocation ... 27

3.2.4. Policy Renewal ... 28

3.3. Analysis of FADE .. 28

3.3.1. File Upload.. 28

3.3.2. Policy Renewal ... 29

3.3.3. Attack Verification through Scyther ... 31

3.3.4. HLPN .. 31

3.3.5. SMT-Lib and Z3 solver .. 32

3.3.6. Verification through HLPN Model ... 32

3.3.7. Formal Verification ... 32

3.4. DaSCE ... 37

3.4.1. DaSCE Keys ... 38

3.4.2. File Upload.. 39

3.4.3. File Download ... 41

3.4.4. Policy Revocation ... 42

3.4.5. Policy Renewal ... 44

3.4.6. Analysis of DaSCE through the HLPN .. 44

3.5. Implementation and Performance Evaluation .. 50

ix

3.5.1. File Upload/Download with a Single Key Manager ... 51

3.5.2. File Upload/Download with Multiple Key Managers .. 53

3.5.3. Discussion ... 55

3.6. References .. 56

4. DROPS: DIVISION AND REPLICATION OF DATA IN CLOUD FOR OPTICAL

PERFORMANCE AND SECURITY .. 61

4.1. Introduction .. 61

4.2. Preliminaries .. 62

4.2.1. Data Fragmentation ... 62

4.2.2. Centrality... 63

4.2.3. T-coloring ... 65

4.3. DROPS ... 65

4.3.1. System Model ... 65

4.3.2. The Proposed Methodology (DROPS) ... 68

4.4. Discussion .. 72

4.5. Experimental Setup and Results .. 74

4.5.1. Comparative Techniques .. 74

4.5.2. Workload... 76

4.5.3. Results and Discussion ... 77

4.6. References .. 87

5. CONCLUSIONS .. 89

x

LIST OF TABLES

Table Page

3.1. Notations and their meanings………..………………………………………... 24

3.2. Data types used in FADE HLPN model………………………………………. 34

3.3. Mapping of data types and places…………….………………………………. 34

3.4. Data types for HLPN of DaSCE…………………………….………………... 46

3.5. Mapping of data types and places for HLPN of DaSCE………………..……. 46

4.1. Notations and their meanings……..………………………………………….. 66

4.2. Various attacks handled by DROPS………………………………………….. 72

xi

LIST OF FIGURES

Figure Page

1.1. Market size of public clouds…….……………………………………………. 5

3.1. Shamir’s (k, n) threshold scheme in DaSCE…………………………….……. 22

3.2. FADE (a) File upload, (b) File download, (c) Policy revocation, and (d) Policy

renewal (single key manager) [3.29]…..………..………………………….… 25

3.3. FADE file upload with multiple key managers [3.29].………………………. 26

3.4. File download using ABE with multiple key managers [3.29]……..………... 27

3.5. (a) Man-in-the-middle attack that causes encryption with the wrong keys (b)

Exploitation of policy renewal process ……………..………………………... 29

3.6. Man-in-the-middle with multiple key managers .……………………….…… 30

3.7. Scyther verification of FADE………………………………………………… 30

3.8. FADE HLPN model with intruder. …………………………………………... 35

3.9. Key management in DaSCE………………………………………………….. 38

3.10. DaSCE file upload with single key manager. ………………………..………. 39

3.11. DaSCE file upload with multiple key managers……………………….…….. 40

3.12. DaSCE file download with multiple key managers…………………….……. 41

3.13. DaSCE policy renewal. …………………………………………………...…. 43

3.14. HLPN for DaSCE……………………………………….……………….…… 45

3.15. Performance of file upload and download operations for DaSCE……...…… 52

3.16. File upload with multiple key managers. ……………………………….…… 53

3.17. File download with multiple key managers………………………………...... 54

3.18. Total upload/download time vs key establishment time………….……..…... 55

xii

4.1. The DROPS methodology. ………………………………………................ 62

4.2. (a) RC versus number of nodes (Three tier), (b) RC versus number of nodes

(Fat tree)……………………………………………………………………..

77

4.3. (a) RC versus number of nodes (Dcell), (b) RC versus number of nodes for

DROPS variations with maximum available capacity constraint (Three tier).

78

4.4. RC versus number of nodes for DROPS variations with maximum available

capacity constraints (a) Fat tree (b) Dcell……..………………………….…. 80

4.5. (a) RC versus number of file fragments (Three tier) (b) RC versus number of

file fragments (Fat tree)..………………....………………………………….. 81

4.6. (a) RC versus number of file fragments (Dcell) (b) RC versus nodes storage

capacity (Three tier)……………………….…………………………………. 82

4.7. (a) RC versus nodes storage capacity (Fat tree) (b) RC versus nodes storage

capacity (Dcell)……..…………………….…………………………………. 83

4.8. (a) RC versus R/W ratio (Three tier) (b) RC versus R/W ratio (Fat tree)...…. 84

4.9. RC versus R/W ratio (Dcell)…………………………………………………. 85

4.10. Fault tolerance level of DROPS……………………...………………………. 86

1

1. INTRODUCTION

1.1. Cloud Computing and Data Security

Cloud computing has emerged as a promising computing paradigm and has shown

tremendous potential in managing the hardware and software resources located at third-party

service providers. On-demand access to the computing resources in a pay-as-you-go manner

relieves the customers from building and maintaining complex infrastructures [1.1, 1.2]. Cloud

computing presents every computing component as a utility, such as software, platform, and

infrastructure. The economy of infrastructure, maintenance, and flexibility makes cloud

computing attractive for organizations and individual customers [1.3]. Despite benefits, cloud

computing faces certain challenges and issues that hinder widespread adoption of cloud. For

instance, security, performance, and quality are a few to mention [1.4, 1.5].

The development and operation of data storage sites is ongoing process in organizations.

Off-site data storage is a cloud application that liberates the customer from focusing on data

storage systems [1.4]. Representing system characteristics and capabilities as utility, causes the

user to focus on aspects directly related to data (security, transmission, processing) [1.6, 1.7].

However, moving data to the cloud, administered and operated by certain vendor requires high

level of trust and security. Multiple users, separated through logical barriers of virtual machines,

share resources including storage space. Multi-tenancy and virtualization generate risks and

underpins the confidence of users to adopt the cloud model [1.8, 1.9]. Armbrust et al. [1.1]

ranked data confidentiality and auditing at number three in the list of top ten obstacles impeding

widespread cloud adoption. Data can be used by the cloud service providers without

authorization [1.8, 1.10, 1.11] and can be accessed by other machines in cloud [1.10, 1.9].

2

Moreover, the loss of control over data and computation raises many security concerns for the

organizations that thwart the wide adoptability of the public cloud.

Data being the principal asset for organizations needs to be secured especially, when data

must enter a public cloud. To avoid unauthorized access to the cloud data, access control

mechanism must be enforced [1.12, 1.13]. Moreover, data leakage and data privacy strategies

must be employed so that only authorized users can access and utilize data. Refraining cloud

service providers from utilizing the customer data requires high preventive measures [1.9].

Encryption techniques provide a solution to ensure privacy and confidentiality of stored data.

However, key management becomes a prime issue in the case of encryption [1.14, 1.15].

Cryptographic keys need to be stored and protected. Compromise or failure of a key storage

facility may lead to the loss of data. Therefore, cryptographic keys must be stored in a robust

manner and a single point of failure should not affect the availability of data [1.15].

The data is usually encrypted before storing on to the cloud. The access control, key

management, encryption, and decryption processes are handled by the customers to ensure the

data security [1.16]. However, when data is to be shared among the group, the cryptographic

services need to be flexible enough to handle different users, exercise the access control, and

manage the keys in an effective manner to safeguard the data confidentiality [1.17]. The

data handling among the group has certain additional characteristics as opposed to a two-party

communication or the data handling belonging to the single user. The existing, departing, and

newly joining group members can prove to be an insider threat violating the data confidentiality

and privacy [1.17]. The insider threats can prove to be more devastating due to the fact that they

are generally launched by the trusted entities. Due to the fact that people trust the insider entities,

the research community focuses more on outsider attackers. Nevertheless, multiple security

3

issues can arise due to different users in the group. We discuss some of the issues in the

following discussion.

A single key shared between entire group members will result in the access of the past

data to the newly joining member. The aforesaid situation violates the confidentiality and the

principle of least privilege [1.18]. Likewise, a departing member can access the future

communication. Therefore, in a group shared data the inside members might generate the issue

of backward access control (new user accessing past data) and forward access control (departing

user access future data) [1.18]. The simple solution of rekeying (generating new key, decrypting

all the data and re-encrypting with the new key) does not prove to be scalable for

frequent changes in group membership [1.17].

A separate key for every user is a cumbersome solution. The data must be encrypted

separately for every user in such a scenario. The changes in the data require the decryption of all

of the copies of the users and encryption again with the modified contents [1.17]. Therefore, such

a methodology is required that encrypts the data only once while granting access to all of the

legitimate users.

The existing and legitimate group members might show illegitimate behavior to

manipulate the data [1.2]. The presence of the entire symmetric key with the user allows

malicious user to turn into an insider threat [1.2]. The data can be decrypted, modified, and re-

encrypted by the malicious insider within the group. Consequently, the legitimate user in the

group may access certain unauthorized files within the group [1.19]. On the other hand, it is

necessary for the user to possess a key to conduct various operations on the data. The possession

of the key also implicitly proves the legitimacy of the user to operate on the data [1.19].

4

Nevertheless, simultaneously dealing with both the issues related to the key is an important issue

that needs to be addressed effectively.

A cloud consists of numerous entities. For a cloud to be secure, all of the participating

entities must be secure. In any given system with multiple units, the highest level of the system’s

security is equal to the security level of the weakest entity [1.12]. The aforementioned fact can

bring the security level of other entities down to the level of the victim entity. The weakened

security of the victim entity becomes the gateway for an attacker to enter the system that, in turn,

puts the whole system and resources at risk. Therefore, in a cloud, the security of the assets does

not solely depend on an individual’s security measures [1.20]. The neighboring entities may

provide an opportunity to an attacker to bypass the user’s defenses.

The off-site data storage requires users to move data in cloud’s virtualized and shared

environment that may result in various security concerns. Pooling and elasticity of a cloud,

allows the physical resources to be shared among many users [1.21]. Moreover, the shared

resources may be reassigned to other users at some instance of time that may result in data

compromise through data recovery methodologies [1.21]. Furthermore, a multi-tenant virtualized

environment may result in a VM to escape the bounds of virtual machine monitor (VMM). The

escaped VM can interfere with other VMs to have access to unauthorized data [1.22]. Similarly,

cross-tenant virtualized network access may also compromise data privacy and integrity.

Improper media sanitization can also leak customer’s private data [1.20].

A cloud must ensure throughput, reliability, and security [1.23]. A key factor determining

the throughput of a cloud that stores data is the data retrieval time [1.24]. The cloud provider

ensures such a performance through Service Level Agreements (SLA). In large-scale systems,

the problems of data reliability, data availability, and response time are dealt with data

5

replication strategies [1.24]. However, placing replicas data over a number of nodes increases the

attack surface for that particular data. For instance, storing m replicas of a file in a cloud instead

of one replica increases the probability of a node holding file to be chosen as attack victim, from

1

𝑛
 to

𝑚

𝑛
 , where n is the total number of nodes. The higher the value of m, the higher the

probability that the node holding the data file will come under attack. Therefore, both security

and performance are critical for the next generation large-scale systems, such as clouds.

1.2. Motivation

Cloud is anticipated to be the next major paradigm shift in the ICT sector (ICT). Today,

contemporary society relies more than ever on the Internet and cloud computing. According to a

Gartner report published in January 2013, overall public cloud services are anticipated to grow

by 18.4 percent in 2014 into a $155 billion market [1.25]. Moreover, the total market is expected

to grow from $93 billion in 2011 to $210 billion in 2017. Fig. 1.1 depicts the public cloud market

size since 2009 and prediction for year 2017. We’ve seen cloud computing adopted and used in

almost every domain of human life, such as business, research, scientific applications,

healthcare, and e-commerce [1.26].

Fig. 1.1. Market size of public clouds.

6

The advent and rapid adoption of the cloud paradigm has brought about numerous

challenges to the research community and cloud providers, however. One of the major issues

posed by the cloud computing is security in general and data security in particular. According to

a survey conducted by the Microsoft Corporation 58% of general population, 86% of senior

business leaders are excited about cloud computing potential. However, 90% of the same are

concerned about the data security. The Cloud Security Alliance (CSA) in one of its survey states

that 80% of the users of cloud computing are concerned about the data security aspect.

Moreover, the ref. [1.1] ranks the data security amongst the top ten obstacles for cloud

computing.

The aforementioned discussion ratifies the apparent need and impetus for the data

security in cloud computing. Thus, the research that targets the development of data security

methods specialized for cloud computing paradigm is crucial for the future sustainability of

large, medium, and small cloud users across the globe. As a matter of fact, this kind of research

must continuously push the limits of what is possible in computing, and indeed in this case, is

leading edge in the development of data security methodologies.

1.3. Research Goals and Objectives

The objective of our research is to develop methodologies for securing data in the cloud

computing domain. Compared to the traditional ICT infrastructure, the cloud computing

paradigm exhibits different characteristics and baseline technologies, such as multi-tenancy,

virtualization, elasticity, resource pooling. The aforesaid characteristics demand for such

methodologies that are able to cope with security requirement originated due to the core

technologies used to provide aforesaid characteristics. Moreover, the data residing in the cloud is

mainly one of the two types, (a) single user data and (b) group shared data. Both of the

7

aforementioned data categories need different security methodologies due to different

operational requirements. Furthermore, as discussed in Section 1.1, security and performance are

critical for the next generation large-scale system, such as cloud. Consequently, the methodology

must approach security and performance collectively. Based on the aforesaid discussion,

following are the specific objectives of our research work.

 To propose a data security scheme for a single user data in cloud.

 To propose a data security methodology for group shared data in cloud.

 To propose a technique that collectively approaches the security and performance.

1.4. References

[1.1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Ktaz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoics, and M. Zaharia, “A View of Cloud Computing,”

Communications of the ACM, Vol. 53, No. 4, 2010, pp. 50-58.

[1.2] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile cloud

computing: a survey,” Future Generation Computer Systems, Vol. 29, No. 5, 2013, pp. 1278-

1299.

[1.3] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility,” Future Generation computer systems, Vol. 25, No. 6, 2009, pp. 599-616.

[1.4] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” In

proceedings of 24th International Conference on Advanced Information Networking and

Applications, pp. 27-33, 2010.

8

[1.5] D. Sun, G. Chang, L. Sun, and X. Wang, “Surveying and Analyzing Security, Privacy and

Trust Issues in Cloud Computing Environments,” Procedia Engineering, Vol. 15, 2011, pp. 2852

– 2856.

[1.6] Cloud Security Alliance,

https://downloads.cloudsecurityalliance.org/initiatives/cdg/CSA_CCAQIS_Survey.pdf (accessed

March 24, 2013).

[1.7] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Communications Surveys and Tutorials, 2013, 1-21.

[1.8] M. S. Blumenthal, “Is Security Lost in the Clouds?” Communications and Strategies, No.

81, 2011, pp. 69-86.

[1.9] C.Cachinand M.Schunter, "A cloud you can trust," IEEE Spectrum, Vol. 48, No. 12,

2011,pp. 28-51.

[1.10] M. Mowbray, and S. Pearson, "A client-based privacy manager for cloud computing," In

Proceedings of the Fourth International (ICST) Conference on COMmunication System

softWAre and middleware, ACM, p. 5, 2009.

[1.11] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina,

"Controlling data in the cloud: outsourcing computation without outsourcing control," In

Proceedings of the ACM workshop on Cloud computing security,pp. 85-90, 2009.

[1.12] M. Kaufman,”Data security in the world of cloud computing,” IEEE Security and

Privacy, Vol. 7, No. 4, 2009, pp. 61-64.

[1.13] K. M. Khan, and Q. Malluhi, "Establishing trust in cloud computing," IT

professional, Vol. 12, No. 5, 2010,pp. 20-27.

9

[1.14] H. Takabi, J. B. D. Joshi, and G. J. Ahn, "Security and privacy challenges in cloud

computing environments," IEEE Security and Privacy, Vol. 8, No. 6, 2010, pp. 24-31.

[1.15] W. Jansen and T. Grance, "Guidelines on security and privacy in public cloud

computing," NIST special publication, 800-144, 2011.

[1.16] D. Chen, X. Li, L. Wang, S. U. Khan, J. Wang, K. Zeng, C. Cai, “Fast and Scalable Multi-

way Analysis of Massive Neural Data”, IEEE Transactions on Computers, Vol. 63,

DOI:10.1109/TC.2013.2295806, 2014.

[1.17] A. N. Khan, M. M. Kiah, S. A. Madani, M. Ali, and S. Shamshirband, “Incremental proxy

re-encryption scheme for mobile cloud computing environment,” The Journal of

Supercomputing, Vol. 68, No. 2, 2014, pp. 624-651.

[1.18] Y. Chen and W. Tzeng, “Efficient and Provably-Secure Group Key Management Scheme

Using Key Derivation,” In IEEE 11th International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom), 2012, pp. 295-302.

[1.19] L. Xu, X. Wu, and X. Zhang, “CL-PRE: a certificateless proxy re-encryption scheme for

secure data sharing with public cloud,” In Proceedings of the 7th ACM Symposium on

Information, Computer and Communications Security, 2012, pp. 87-88.

[1.20] B. Grobauer, T.Walloschek, and E. Stocker, “Understanding cloud computing

vulnerabilities,” IEEE Security and Privacy, Vol. 9, No. 2, 2011, pp. 50-57.

[1.21] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future

Generation Computer Systems, Vol. 28, No. 3, 2012, pp. 583-592.

[1.22] W. A. Jansen, “Cloud hooks: Security and privacy issues in cloud computing,” In 44th

Hawaii IEEE International Conference on System Sciences (HICSS), 2011, pp. 1-10.

10

[1.23] A. N. Khan, M.L. M. Kiah, S. A. Madani, and M. Ali, “Enhanced dynamic credential

generation scheme for protection of user identity in mobile-cloud computing, The Journal of

Supercomputing, Vol. 66, No. 3, 2013, pp. 1687-1706 .

[1.24] M. Tu, P. Li, Q. Ma, I-L. Yen, and F. B. Bastani, “On the optimal placement of secure

data objects over Internet,” In Proceedings of 19th IEEE International Parallel and Distributed

Processing Symposium, pp. 14-14, 2005.

[1.25] Gartner, “Forecast Overview: Public Cloud Services, Worldwide,” 2011–2016, 4Q12

Update, 2013.

[1.26] K. Bilal, S. U. R. Malik, O. Khalid, A. Hameed, E. Alvarez, V. Wijaysekara, R. Irfan et

al. "A taxonomy and survey on green data center networks." Future Generation Computer

Systems, Vol. 36, 2013, pp. 189-208.

11

2. RELATED WORK

In this chapter we discuss some of the work that is related to the research we have

performed during Ph.D.

2.1. Securing Single User Data

Juels et al. [2.1] presented a technique to secure the cloud data that provides a number of

services, such as integrity, freshness, and availability. The authors employed a gateway

application in the enterprise to manage the integrity and freshness checks for the data. The Iris

file system is designed to migrate organization’s internal file system to the cloud. Moreover, a

Merkle tree is used by gateway, which ensures freshness and integrity of data by inserting file

blocks, MAC codes, and file version numbers at different levels of the tree. The gateway

application also manages the cryptographic keys for confidentiality requirements. Moreover,

Ref. [2.1] proposed an auditing framework that audits the cloud environment for ensuring the

freshness of the data, data retrievability, and resilience against disk failures. However, the

technique heavily depends on the user’s employed scheme for data confidentiality. Moreover,

data cannot be protected against service provider wholesale.

In [2.2], the authors presented a cryptographic file system that provides confidentiality

and integrity services to the outsourced data. The authors used hash based MAC tree for

providing the aforesaid services. Block-wise encryption is used for the construction of a MAC

tree. The file system at the client side interacts with the file system of the server and outsources

the encrypted blocks. Encrypted file blocks and cryptographic metadata are stored separately.

Nevertheless, the presence of cryptographic metadata on the storage side can be a potential

threat.

12

The authors in [2.3] proposed a virtual private cryptographic storage service to provide

confidentiality and integrity to user data within the cloud. The client application in the proposed

method has three modules: (a) data processor, (b) data verifier, and (c) token generator. The

client application generates a master key to be used for subsequent operations. The data

processor encrypts the file to be uploaded with keys generated from the master key and uploads

to the cloud. The data download involves the use of token generator that generates a token for the

user to download data. Token also contains identity of files to be downloaded. The data verifier

checks for the integrity of the data once the data is downloaded from the cloud. Attribute Based

Encryption (ABE) is used for encryption. However, the key in [2.3] resides at client side and

may be subject to a single point of failure.

The use of a trusted third party for providing security services in the cloud is advocated in

[2.4]. The authors used the public key infrastructure (PKI) to enhance the level of trust in the

authentication, integrity, and confidentiality of data and the communication between the

involved parties. The keys are generated and managed by the certification authorities. At the user

level, the use of temper proof devices, such as smart cards was proposed for the storage of the

keys. Similarly, Tang et. al. have utilized the public key cryptography and trusted third party for

providing data security in cloud environments [2.5]. However, the authors in [2.5] have not used

the PKI infrastructure to reduce the overheads. The trusted third party is responsible for the

generation and management of public/private keys. The trusted third party may be a single server

or multiple servers. The symmetric keys are protected by combining the public key cryptography

and the (k, n) threshold secret sharing schemes. Nevertheless, such schemes do not protect the

data files against tempering and loss due to issues arising from virtualization and multi-tenancy.

13

The authors in [2.6] approached the virtualized and multi-tenancy related issues in the

cloud storage by utilizing the consolidated storage and native access control. The Dike

authorization architecture is proposed that combines the native access control and the tenant

name space isolation. The proposed system is designed and works for object based file systems.

However, the leakage of critical information in case of improper sanitization and malicious VM

is not handled.

Wei et al. [2.7] presented SecCloud, a storage security protocol that not only secures the

user data uploaded into the cloud but also secures the computations performed on the user data.

The SecCloud uses encryption for achieving the storage security. The bilinear pairing (with

cyclic additive and multiplicative groups) is used to generate keys for the user, cloud, and a

trusted third party. The user gets the storage space from the CSP to store data. The data (divided

into m number of messages) is signed by the trusted third party (called the verification agency).

The data along with the verifiable signatures is sent to the cloud by encrypting with the session

key. The session key is calculated through Bilinear Deffie-Hellman both by the user and the

cloud. The cloud after receiving decrypts the data, verifies the signature and stores at the

designated partitions in the cloud. The computational security is ensured against partial

computation and use of invalid data to save computational cost. It also verifies that data is stored

at the correct partitions in the cloud. For the computation security the SecCloud utilizes Merkle

hash tree. The computational results are verified by the verifying agency by rebuilding the

Merkle tree. To reduce the computational redundancy, the verifier does not build the whole tree

but uses probabilistic sampling.

The author in [2.8] used a combination of established and specialized procedures besides

additional proposed steps to secure the data in the cloud. The proposed scheme allows the user to

14

rate the requirement of confidentiality, availability, and integrity between values of one to ten (1

- 10). The values are used to determine Sensitivity Rating (SR) of the user data. Based on the SR

value, the data is allotted space in one of the three proposed partitions in the cloud. The proposed

partitions are public, private, and limited access partitions. The SR value above eight assigns

data to limited access partition and below value three to public partition. The data is encrypted

with 128-bit SSL encryption and MAC is appended afterwards. An index is also prepared and

encrypted to employ searching capabilities over encrypted data. The data and index are sent to

the cloud where they are stored depending on the SR value. The download is allowed based on

user authentication that is carried out cooperatively by data owner and the cloud. The data in the

public partition needs no authentication. The data is transmitted over SSL in both the directions.

2.2. Securing Group Shared Data

The encryption of data before outsourcing to the cloud ensures the privacy of the data but

poses certain restriction. The restrictions are specific to the situations where data is to be shared

among the group and/or requires forwarding. Such an environment is accompanied with frequent

user revocations that require the re-encryption of data with changed keys for avoiding data

leakage to the revoked user. Liu et al. [2.9] proposed a time based proxy re-encryption combined

with Attribute Based Encryption (ABE) to support secure data sharing in group along with the

fine grained access control. The proposed scheme (TimePRE) ensures that data is securely

forwarded to the group users and deals with the user revocation. Unlike other proxy re-

encryption schemes, the TimePRE does not require the data owner to be online for user

revocation and generation of new re-encryption keys. The TimePRE associates the time period

with every user and upon expiration of the time period the user is automatically revoked by the

Cloud Service Provider (CSP). A pre-shared master key between the data owner and the CSP

15

allows the CSP to generate the re-encryption keys. The access control is ensured by use of ABE

that identifies user by set of attributes rather than identity. The ABE in TimePRE uses eligible

time periods for a user along with other attributes to identify a user. The proposed scheme

ensures privacy and availability of the data within the group. However, it does not focus on the

data integrity.

A cloud storage system based on secure erasure code is presented in [2.10]. The system

uses threshold key servers for storing a user’s key generated by a system manager. User encrypts

the data divided into blocks and stores every block on randomly selected multiple servers. The

system also provides the functionality of data forwarding by allowing any of the users to forward

the data to any other users without downloading. The authors used proxy re-encryption method

for forwarding the encrypted data. A similar scheme is presented by the same authors in [2.11]

with the difference that the later does not provide data forwarding. However, aforesaid schemes

require heavy implementation level changes on the cloud side.

To ensure the quality of the cloud storage, integrity and availability of data in the cloud,

authors in [2.12] proposed effectual methodology that supports on-demand data correctness

verification. The proposed methodology conducts the verification of the cloud data correctness

without explicit knowledge of the whole data. The erasure correcting code and homomorphic

tokens are used for the aforesaid purpose. The homomorphic token are pre-computed by the user

and data is fragmented and stored redundantly across the cloud servers. To verify data

correctness, a challenge containing random data blocks indices is transmitted to the cloud. The

cloud computes the response and sends back to the user where decision is made based on the

comparison of received result with the pre-computed tokens. Additionally, the proposed scheme

performs error localization by detecting the misbehaving server. Moreover, insertion, deletion,

16

modification, and appending of data blocks are supported in the proposed scheme. The proposed

scheme secures the cloud storage against integrity attacks, Byzantine failures, and server

colluding attacks. The authors in [2.13] utilized the concept of proxy re-encryption in addition to

erasure correcting codes to provide resident and forwarding data security.

2.3. Security and Performance

A secure and optimal placement of data objects in a distributed system is presented in

[2.14]. An encryption key is divided into n shares and distributed on different sites within the

network. The division of a key into n shares is carried out through the (k, n) threshold secret

sharing scheme. The network is divided into clusters. The number of replicas and their placement

is determined through heuristics. A primary site is selected in each of the clusters that allocate

the replicas within the cluster. The scheme presented in [2.14] combines the replication problem

with security and access time improvement. Nevertheless, the scheme focuses only on the

security of the encryption key. The data files are not fragmented and are handled as a single file.

Ref. [2.15] also approached the security and optimal data placement through

fragmentation and replication of the data objects. A data file is fragmented into small fragments,

encrypted, and placed in distributed fashion over the network. The replication is performed for

increased data availability and is done in a random manner by the aforesaid scheme. However,

the scheme does not deal with the replica placement and associated performance issues.

Similarly, the authors of [2.16] studied the problem of reasoning about the engineering

trade-offs inherent in data distribution scheme selection. The choice of an encoding algorithm

and its parameters positions a system at a particular point in a complex trade-off space between

performance, availability, and security. The authors are of the view that no single data

distribution scheme is right for all systems. Instead, the right choice for any particular system

17

depends on an array of factors, including expected workload, system component characteristics,

and desired levels of availability and security. Therefore, the authors of [2.16] proposed an

approach to selecting a better data distribution scheme to create a balance between security,

availability, and performance. At a high level, this new approach consists of three steps:

enumerating possible data distribution schemes (<algorithm, parameters>pairs), modeling the

consequences of each scheme, and identifying the best-performing scheme for any given set of

availability and security requirements. The aforesaid steps selects the best algorithms for data

distribution that optimally create a balance between security, availability, and performance.

2.4. References

[2.1] A. Juels and A. Opera, “New approaches to security and availability for cloud data,”

Communications of the ACM, Vol. 56, No. 2, 2013, pp. 64-73.

[2.2] A. Yun, C. Shi, and Y. Kim, “On protecting integrity and confidentiality of cryptographic

file system for outscored storage,” Proceedings of 2009 ACM workshop on cloud computing

security CCSA’09, pp. 67-76, 2009.

[2.3] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial Cryptography and

Data Security, Springer Berlin Heidelberg, 2010, pp. 136-149.

[2.4] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,” Future Generation

Computer Systems, Vol. 28, No. 3, 2012, pp. 583-592.

[2.5] Y. Tang, P. P. Lee, J. C. S. Lui, and R. Perlman, “Secure overlay cloud storage with access

control and assured deletion,” IEEE Transactions on Dependable and Secure Computing, Vol. 9,

No. 6, Nov. 2012, pp. 903-916.

18

[2.6] G. Kappes, A. Hatzieleftheriou, and S. V. Anastasiadis, “Dike: Virtualization-aware Access

Control for Multitenant Filesystems,” University of Ioannina, Greece, Technical Report No.

DCS2013-1, 2013.

[2.7] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A. V. Vasilakos, “Security and

privacy for storage and computation in cloud computing,” Information Sciences, Vol. 258, 2014,

pp. 371-386.

[2.8] S. K. Sood, “A combined approach to ensure data security in cloud computing,” Journal of

Network and Computer Applications, Vol. 35, No. 6, 2012, pp. 1831-1838.

[2.9] Q. Liu, G. Wang, and J. Wu, “Time-based proxy re-encryption scheme for secure data

sharing in a cloud environment,” Information Sciences, Vol. 258, 2014, pp. 355-370.

[2.10] H. Lin and W. Tzeng, “A secure erasure code-based cloud storage system with secure data

forwarding,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, June 2012,

pp. 995-1003.

[2.11] H. Lin and W. Tzeng, “A secure decentralized erasure code for distributed network

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 11, Nov. 2010, pp.

1586-1594.

[2.12] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, “Toward secure and dependable storage

services in cloud computing,” IEEE Transactions on Services Computing, Vol. 5, No. 2, 2012,

pp. 220-232.

[2.13] H.Y. Lin and W. G. Tzeng, “A secure erasure code-based cloud storage system with

secure data forwarding,” IEEE Transactions on Parallel and Distributed Systems, Vol. 23, No. 6,

2012, pp. 995-1003.

19

[2.14] M. Tu, P. Li, Q. Ma, I-L. Yen, and F. B. Bastani, “On the optimal placement of secure

data objects over Internet,” In Proceedings of 19th IEEE International Parallel and Distributed

Processing Symposium, pp. 14-14, 2005.

[2.15] A. Mei, L. V. Mancini, and S. Jajodia, “Secure dynamic fragment and replica allocation in

large-scale distributed file systems,” IEEE Transactions on Parallel and Distributed Systems,

Vol. 14, No. 9, 2003, pp. 885-896.

[2.16] J. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. W. Bigrigg, S. Oguz, K. Tew, C.

Williams, G. R. Ganger, and P. K. Khosla, “Selecting the right data distribution scheme for a

survivable storage system,” Carnegie Mellon University, Technical Report CMU-CS-01-120,

May 2001.

20

3. DASCE: DATA SECURITY FOR CLOUD ENVIRONMENT

WITH SEMI-TRUSTED THIRD PARTY

This paper is submitted to IEEE Transactions on Cloud Computing (TCC) and is in the

second round of review. The authors of the paper are Mazhar Ali, Saif U. R. Malik, and Samee

U. Khan.

3.1. Introduction

Cloud computing has emerged as a promising computing paradigm and has shown

tremendous potential in managing the hardware and software resources located at third-party

service providers. On-demand access to the computing resources in a pay-as-you-go manner

relieves the customers from building and maintaining complex infrastructures [3.1, 3.13]. Cloud

computing presents every computing component as a utility, such as software, platform, and

infrastructure. The economy of infrastructure, maintenance, and flexibility makes cloud

computing attractive for organizations and individual customers [3.32]. Despite benefits, cloud

computing faces certain challenges and issues that hinder widespread adoption of cloud. For

instance, security, performance, and quality are a few to mention [3.10, 3.27].

The development and operation of data storage sites is ongoing process in organizations.

Off-site data storage is a cloud application that liberates the customer from focusing on data

storage systems [3.10]. Representing system characteristics and capabilities as utility, causes the

user to focus on aspects directly related to data (security, transmission, processing) [3.6, 3.33].

However, moving data to the cloud, administered and operated by certain vendor requires high

level of trust and security. Multiple users, separated through logical barriers of virtual machines,

share resources including storage space. Multi-tenancy and virtualization generate risks and

21

underpins the confidence of users to adopt the cloud model [3.2, 3.3]. Armbrust et al. [3.1]

ranked data confidentiality and auditing at number three in the list of top ten obstacles impeding

widespread cloud adoption. Data can be used by the cloud service providers without

authorization [3.2, 3.23, 3.4] and can be accessed by other machines in cloud [3.23, 3.3].

Data being the principal asset for organizations needs to be secured especially, when data

must enter a public cloud. To avoid unauthorized access to the cloud data, access control

mechanism must be enforced [3.16, 3.17]. Moreover, data leakage and data privacy strategies

must be employed so that only authorized users can access and utilize data. Refraining cloud

service providers from utilizing the customer data requires high preventive measures [3.3].

Encryption techniques provide a solution to ensure privacy and confidentiality of stored data.

However, key management becomes a prime issue in the case of encryption [3.28, 3.31].

Cryptographic keys need to be stored and protected. Compromise or failure of a key storage

facility may lead to the loss of data. Therefore, cryptographic keys must be stored in a robust

manner and a single point of failure should not affect the availability of data [3.31].

The security concerns of outsourcing data to public clouds, serves as our motivation to

work for the development of data security technique. We aim for a technique capable of

addressing the aforementioned critical issues. We propose a data security scheme that uses key

manager servers for the management of cryptographic keys. Shamir’s (k, n) threshold scheme

[3.26] is used for the management of keys that uses k shares out of n to rebuild the key. Access to

key and data is ensured through a policy file that states policies under which access is granted to

the keys. The client generates random symmetric keys for encryption and integrity functions.

Symmetric keys are protected by the public key generated by the key manager(s) (Fig. 3.1). All

of the symmetric keys are deleted from the client afterwards. Encrypted data and keys are

22

 2, 6
 1, 5

 3

 4

2. Client:

 Breaks up symmetric key S into n shares (S1, S2, …, Sn).

 Encrypts ith share with public key of ith KM

 Deletes S

6. Reconstructs S from k shares according to Shamir’s strategy.

3. Upload all shares of S to cloud.
4. Client downloads all shares of key from

cloud.

Cloud

Key Manager 1

Key Manager 2

Key Manager n

Fig. 3.1. Shamir’s (k, n) threshold scheme in DaSCE.

1. Client receives public keys from all Key Managers (KM).

5. Client:

 selects k number of KMs randomly.

 sends ith share of S to ith KM.

 receives back decrypted ith share.

uploaded to the cloud. For downloading the data, client presents a policy file to cloud and

downloads the encrypted data and keys. Keys are decrypted by key manager(s). Thereafter, the

client decrypts the data.

We review the scheme presented in [3.29], called File Assured Deletion (FADE). The

FADE is a light-weight and scalable technique that assures deletion of files from cloud when

user asks for deletion. However, during our analysis, FADE fell short on issues of security of

keys and authentication of participating parties. Based on our analysis and issues identified with

FADE, we propose enhancements to the scheme and name it as Data Security for Cloud

Environment with Semi-Trusted Third Party (DaSCE) that enhances the security of keys and

authentication process. Moreover, to mitigate the man-in-the-middle-attack, we included

supplementary steps for the session key establishment process. The aforesaid steps augment the

security level and prohibit the malicious user to carry out the attack at slight performance

overheads. However, the results from our verification analysis revealed that DaSCE is more

secure than FADE when man-in-the-middle attack was introduced. Our major contributions

include:

23

• Development of a security scheme (DaSCE) for outsourced data to cloud that uses a

combination of symmetric and asymmetric encryption. The DaSCE ensures data

confidentiality at a cloud infrastructure, as long as it is in use by the client. It also

assures that data gets deleted and becomes unrecoverable after the user deletes it from

the cloud.

• Enforcing access control to both data and key through validity of policies and mutual

authentication between client and key managers, and client and cloud. Digital

signatures and variation of Diffie-Hellman is used for mutual authentication of parties.

Successful authentication and session key establishment results in access to asymmetric

keys that are used in subsequent cryptographic operations.

• Ensuring the integrity of data by use of symmetric key and message authentication

code and securing symmetric keys with asymmetric keys generated by third party key

managers.

• Formal modeling and verification of FADE and DaSCE by using High Level Petri Nets

(HLPN), SMT-Lib, Z3 solver, and Scyther.

• We implemented a prototype of DaSCE and evaluated the performance of DaSCE

based on time consumption parameters (file upload time, file download time,

cryptographic operations time).

3.2. File Assured Deletion (FADE)

The FADE protocol provides privacy, integrity, access control, and assured deletion to

outscored data. The FADE uses both symmetric and asymmetric keys. Symmetric keys are

protected by using Shamir’s (k, n) scheme to ample the trust level in the key. The FADE works

with a group of key managers (KM). Following keys are used by FADE protocol. The variable K

24

is termed as data key and is used to encrypt file F of the client and S as secret key that is used to

encrypt K. The public/private key pair generated by KMs is represented by (ei, di) and is used to

encrypt S. The K and S are symmetric keys. The operations supported by FADE are: (a) File

upload, (b) File download, (c) Policy Revocation, and (d) Policy Renewal. The aforementioned

operations are explained below. The notations used in the paper are presented in Table 3.1.

Notation Meanings

KM Key manager

F File

K A symmetric key

S A symmetric key.

ei Public key parameter.

ni Public key parameter.

di Private key parameter.

ej Modified/New public key parameter.

nj Modified/New public key parameter.

dj Modified/New private key parameter.

{F}K File encrypted with key K.

{K}S K encrypted with key S.

S
e
 S encrypted with public key e.

MAC Message Authentication code

HMAC Hash-based MAC

Pi Original policy file of client

Pj Modified policy file

HLPN High Level Petri Net

IK Integrity key for MAC calculation

ABE Attribute based encryption

AES Advance Encryption Standard

Table 3.1. Notations and their meanings.

25

3.2.1. File Upload

When data must be uploaded to the cloud, the client requests the KM to generate a

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to

the client. After receiving public key for Pi, the client performs the following cryptographic

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure

overwriting. The process of file upload is shown in the Figure 3.2(a).

When FADE works with full quorum of KMs, Si is divided into n shares and each share is

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s

Cloud Client Key manager

Pi

ei , ni

Pi, {K
}Si, Si

ei ,{F}K

(a)

Cloud Client Key manager

Pi,Si
eiR ei

SiR

Pi, {K}Si, Si
ei,{F}K

(b)
Client Key manager

Pi

[r]ABE

Hash(r)

ACK

Revoke control key
of Pi

Cloud

(c)

Cloud Client Key manager

SiR,ej , nj

Pj, Si
ej

Pi,Si
ei

Pi,Si
eiR ei,Pj

(d)

Fig. 3.2. FADE (a) File upload, (b) File download, (c) Policy revocation, and (d) Policy

renewal (single key manager) [3.29].

26

(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not

authenticate the client for the upload process. The process with multiple KMs is shown in Fig.

3.3. When data must be uploaded to the cloud, the client requests the KM to generate a

public/private key pair. The said is done by sending a policy file, Pi, to the KM. The KM

generates the key pair, associates that with the Pi, and sends the public part of the key (ei, ni) to

the client. After receiving public key for Pi, the client performs the following cryptographic

operations. The client encrypts F with K to generate {F}K (F encrypted with K). The K is then

encrypted with Si to get {K}Si. Subsequently, Si is encrypted with the public key generated by the

KM with Pi. The Si is encrypted using asymmetric encryption (Si
ei
 mod n). The Pi, {F}K, {K}Si, and

(Si
e
 mod n) are uploaded to the cloud afterwards. The hashed MAC (HMAC) of data file is also

uploaded with the encrypted file. The client deletes all of the symmetric keys through secure

overwriting. The process of file upload is shown in the Figure 3.2(a).

When FADE works with full quorum of KMs, Si is divided into n shares and each share is

encrypted with a public key generated by one of the KMs. The key is divided based on Shamir’s

(k, n) threshold scheme. To get back the Si, k shares are needed. The FADE protocol does not

authenticate the client for the upload process. The process with multiple KMs is shown in Fig.

3.3.

Cloud Client Key manager 1

Pi

ei1 , ni1

P i, {
K}S i, S

i1
ei1 ,…..,S iN

eiN ,{F}K

Key manager N

Pi

eiN , niN

Fig. 3.3. FADE file upload with multiple key managers [3.29].

27

3.2.2. File Download

The client requests the cloud for file and encrypted keys to download. The client checks

for the integrity of the file through the HMAC. Afterwards, the client generates a secret number

R and calculates R
ei
 and then generates Si

e
R

ei
 = (SiR)

ei
. The (SiR)

ei
is then sent to KM for

decryption. The KM decrypts (SiR)
ei

with corresponding di and sends back SiR. At this point,

ABE comes into the play. The KM sends SiR with ABE, where the attributes used for ABE are

based on Pi. The client extracts Si from the received message and decrypts K that is used to

decrypt F. The process is highlighted in Fig. 3.2(b). Similarly, the file download with multiple

KMs takes place according to the flow of messages shown in Fig. 3.4.

3.2.3. Policy Revocation

If Pi needs to be revoked, the client requests the KM by sending the Pi. The KM generates

a random number r and sends r to the client after encryption with ABE. The authentic client

decrypts r, calculates the hash value, and sends back to the KM. After verification the KM

revokes Pi and acknowledges the client as depicted in Fig. 3.2 (c).

Cloud Client Key manager1

Pi,Si1
ei1

R ei1

[Si1R]ABE

Pi, {K}Si, Si1
ei1

,…..,SiN
eiN

,{F}K

Pi,SiN
eiN

R eiN

[SiNR]ABE

Key manager N

Fig. 3.4. File download using ABE with multiple key managers [3.29].

28

3.2.4. Policy Renewal

If Pi needs to be renewed as Pj, the client downloads all of the keys and sends Pi and

encrypted Si to the KM along with Pj. The KM decrypts Si. Moreover, the KM sends new public

key parameters (ej, nj) to the client as outlined in Fig. 3.2 (d). We will now formally analyze

FADE in the following section.

3.3. Analysis of FADE

The FADE is a light weight protocol that does not require heavy modifications in cloud

architecture. The analysis of FADE identified the following issues.

3.3.1. File Upload

In file upload process of FADE we assume that there is a man-in-the-middle (intruder)

between client and KM. The intruder can intercept Pi and send Pj (modified Pi) to KM. In the

second step, the KM sends (ei, ni). The intruder intercepts (ei, ni) and sends the client modified

parameters (ej, nj). The client encrypts the keys with (ej, nj) and uploads to the cloud. The client

cannot verify that the received (ej, nj) is from KM or any other entity. The aforesaid issue is

highlighted in Fig. 3.5 (a).

In the original file upload process of FADE, independence of Step 1 and Step 2 allows

the intruder to carry out the attack. The policies received by the KM are neither from the client

nor does the client receive keys from the KM. However, both assume a valid data exchange with

each other. As a result, the client encrypts the Si with the (ej, nj). The encryption of data with the

intruder’s generated keys may result in any of the following scenarios:

3.3.1.1. Intruder Fetches the Data during Download Process

During the download process, the intruder can intercept the data. As Si is encrypted with

(ej, nj) that is generated by the intruder; therefore, after reviving Si
ej
 intruder can recover Si by

29

decryption with a corresponding dj as: Si = (Si
ej
)dj mod n. Once Si is decrypted, the intruder can

easily decrypt K and gather F.

3.3.1.2. Intruder Stays Aside during Download Operation

The client downloads the data from the cloud and sends Si to the KM for decryption. As Si

was encrypted by the public key that was originally generated by the intruder, the KM will not be

able to decrypt the correct Si. Therefore, access to the data will be denied. The denial of access

will result in the loss of data. The KM generates the keys based on ABE having policies defined

in Pi. During the attack, the KM generates the keys with Pj (modified Pi). Therefore, even the

attributes will not correspond to the original policies. Same attack flow can be modeled for

multiple KMs as shown in Fig. 3.6. As highlighted in Fig. 3.6, all Si’s are encrypted with keys

generated by the intruder and the corresponding di’s are held by the intruder. Therefore, the

intruder can generate Si. However, intruder must intercept k portions of Si.

3.3.2. Policy Renewal

Fig. 3.5 (b) shows how the intruder can exploit the policy renewal process of FADE for

denying access of data to a legitimate user. It is noteworthy to mention that the exploitation is

only possible if initially the attack depicted in Fig. 3.5 (a) is already carried out. The client after

Cloud Client Key manager

Pi

ej , nj

Pi,{F}K,{K
}Si,Si

ej

Pj

ei , ni

Intruder

(a)

Cloud Client Key manager

Pi, Si
ei

SiR,ej , nj

Pj, Si
ej

Pi, Si
eiRi

ei
,Pj

(b)

Fig. 3.5. (a) Man-in-the-middle attack that causes encryption with the wrong keys (b)

Exploitation of policy renewal process.

30

downloading Si from the cloud sends Si along with Pi to the KM. The intruder intercepts the data,

decrypts Si with the corresponding private key, generates a new pair of public/private key, and

sends it to the client. The client performs cryptographic operations (as it did earlier) and uploads

the data and keys to the cloud.

Cloud Client Key manager 1

Pj

ei1 , ni1

P i, {
K}Si, S

i1
ej1 ,..,

S iN
ejN ,{F

}K

Key manager N
Pi (for KM

1)

eiN , niN

Intruder

P
i (for KM N)

Pj

ej1 , nj1

ejN , njN

Fig. 3.6. Man-in-the-middle with multiple key managers.

Fig. 3.7. Scyther verification of FADE.

31

3.3.3. Attack Verification through Scyther

In this section, we verify the attack defined in the previous section using Scyther, which

is a graphical tool for analysis, verification, and falsification of security protocols [3.5]. We

modeled FADE in Scyther and verified whether Si and F remain secret under the setup or

otherwise. The verification is performed by a “claim” (see Fig. 3.7) that Si remains secret during

the process. The Scyther verified the validity of the claim and reported the attack that was

discussed in Section 3.3.1.

In Scyther, Charlie plays a role of a client, Bob as the KM, Alice as the cloud, and Eve as

the intruder. The Run# 1 of the Scyther is not an intercepted run while Run#2 is a run where

intruder plays the part. Eve intercepts the Pi and sends Charlie the generated public key pk(Eve).

Later on Eve can use corresponding private key sk(Eve) to decrypt the secret key of Charlie

(sk(Charlie)). In this model, sk(Charlie) is the same key as Si, in the explained model. Our claim

that Si will remain secret is falsified by Scyther by producing the counter attack.

3.3.4. HLPN

Petri Nets provide graphical and mathematical representation of the system and can be

applied to variety of systems for instance stochastic, deterministic, and asynchronous

computations [3.24]. A HLPN is a 7-tuple 𝑁 = (𝑃, 𝑇, 𝐹, 𝜑, 𝑅𝑛, 𝐿, 𝑀0), where P is set of places; T

refers to the set of transitions such that 𝑃 ∩ 𝑇 = ∅; Flow relations are defined by F such that 𝐹 ⊆

(𝑃 × 𝑇) ∪ (𝑇 ∪ 𝑃); 𝜑 maps places P to the data types. Rules for transitions are defined by Rn; L

is a label on F and M0 represents the initial marking [3.24]. In the above definition, the structure

of the Petri Net is given by P, T, and F; whereas, (𝜑, 𝑅𝑛, 𝐿) provide the static semantics of the

Petri Net model.

32

3.3.5. SMT-Lib and Z3 solver

SMT has roots in Boolean Satisfiability Solvers (SAT) [3.11, 3.12, and 3.22]. SMT-Lib

provides a common input platform and benchmarking framework that helps in the evaluation of

the systems. We use Z3 solver with SMT-Lib that is a theorem prover developed at Microsoft

Research. Z3 is an automated satisfiability checker. In addition, Z3 determines whether the set of

formulae are satisfiable in the built-in theorems of SMT-Lib [3.21].

3.3.6. Verification through HLPN Model

In this section, we formally analyze the man-in-the-middle attack on FADE protocol. We

use High Level Petri Nets (HLPN) and Z language [3.8, 3.11, 3.12, 3.22, 3.24, and 3.25] to

perform formal analysis. HLPN define mathematical properties for the system and simulate the

system to analyze the behavior. We verify HLPN model of FADE using Satisfiability Modulo

Theories Library (SMT-Lib) and Z3 solver. To verify the model, the Petri Net model is first

translated into SMT along with the specified properties. Subsequently, Z3 solver is used to

determine whether or not the properties hold.

3.3.7. Formal Verification

The verification process checks for the correctness of the system. In model checking: (a)

description of the system is provided stating properties or rules of the system, (b) system is

represented by a model, and (c) some verification tool is used to check whether the model holds

the specified properties or not. In this paper we use the bounded model checking to verify the

man-in-the-middle attack on FADE.

The HLPN model for FADE is given in Fig. 3.8. The model is given with the intruder

between the client and KM. The data types used in the model and their mappings are shown in

33

Table 3.2 and Table 3.3, respectively. All the rectangular black boxes in HLPN are transitions

and belong to the set T. The circles are places and belong to the set P.

The process starts with the client sending Pi to the KM. The file is intercepted by the

intruder. The file sending and receiving is performed on transitions Send_Pi and Rcv_Pi. Rule

(3.1) and Rule (3.2) are mapped to the aforesaid transitions.

𝑅(𝑆𝑒𝑛𝑑−𝑃𝑖) = ∀ 𝑥1 ∈ 𝑋1, ∀ 𝑥2 ∈ 𝑋2| 𝑥2 ≔ 𝑥1[1] ∧

𝑋2
′ = 𝑋2 ∪ {𝑥2},

(3.1)

𝑅(𝑅𝑐𝑣𝑃𝑖
) = ∀ 𝑥3 ∈ 𝑋3, ∀ 𝑥4 ∈ 𝑋4| 𝑥4 ≔ 𝑥3 ∧

𝑋4
′ = 𝑋4 ∪ {𝑥4}.

(3.2)

The intruder generates Pj and sends it to the KM. The transition Gen_fake is fired upon

interception of original Pi. Following are the three transition and the corresponding rules.

𝑹(𝐺𝑒𝑛𝑓𝑎𝑘𝑒) = ∀ 𝑥5 ∈ 𝑋5, ∀ 𝑥6[2] ∈ 𝑋6,

∀ 𝑥6[3] ∈ 𝑋6, ∀ 𝑥6[4] ∈ 𝑋6,

∀ 𝑥6[5] ∈ 𝑋6| 𝑥5 ↔ 𝑋6[2] ↔ 𝑋6[3] ↔ 𝑋6[4] ↔ 𝑋6[5] ∧

𝑋6
′ = 𝑋6 ∪ {𝑥5, 𝑥6[2], 𝑥6[3], 𝑥6[4], 𝑥6[5]},

(3.3)

𝑹 (𝑆𝑒𝑛𝑑𝑃𝑗
) = ∀ 𝑥7[2] ∈ 𝑋7, ∀ 𝑥8 ∈ 𝑋8|

 𝑥8 ≔ 𝑋7[2] ∧

𝑋8
′ = 𝑋8 ∪ {𝑥8},

(3.4)

𝑹 (𝑅𝑐𝑣𝑃𝑗
) = ∀ 𝑥9 ∈ 𝑋9, ∀ 𝑥10 ∈ 𝑋10| 𝑥10 ≔ 𝑋9 ∧

𝑋10
′ = 𝑋10 ∪ {𝑥10}.

(3.5)

The keys generated and sent by KM are intercepted by the intruder. The Following rules

(3.6) and (3.7) capture the above three transitions.

34

Types Description

Policy A string type for describing file access policy.

File A string type holding data to be protected.

K A string type representing symmetric key.

S A string type representing symmetric key.

e Public Key parameter.

n Public Key parameter.

d Private Key parameter.

{F}K File encrypted with key K.

{K}S K encrypted with key S.

S
e
 S encrypted with public key e.

Types Description

𝜑(a1) ℙ (Policy × File × K × S)

𝜑(c1) ℙ (Policy)

𝜑(I1) ℙ (Policy)

𝜑(I2) ℙ (Policy ×Policy × e × n × d × e × n)

𝜑(c2) ℙ (Policy)

𝜑(b1) ℙ (Policy)

𝜑(b2) ℙ (Policy × e × n × d)

𝜑(c3) ℙ (e × n)

𝜑(c4) ℙ (e × n)

𝜑(a2) ℙ (e × n)

𝜑(a3) ℙ (Policy ×{F}K × {K}S × Se)

Table 3.2. Data types used in FADE HLPN model.

Table 3.3. Mapping of data types and places.

3
5

a1 X1 c1

Send_Pi

X7

X17

X16

Pi

X3

Rcv_Pi

I1X4

Pi

X5

Gen_fake

I2

X6 Send_Pj

c2X8

Pj

X9

Rcv_Pj

X10 b1

X11

Gen_Keys

b2X13

Send_Key

c3 X14X15Rcv_Key

X18

Send_fake_Key
c4 X19X20

X12
Rcv_fake_Key

X21

a2

X2

X22

X23

a3

X25

Encr_data

Snd_data_to_cloud

Key ManagerClient Intruder

X24

X26

Fig. 3.8. FADE HLPN model with intruder.

36

The intruder generates and sends (ej, nj) to the client as depicted in (3.9) and (3.10).

𝑹(𝑆𝑒𝑛𝑑_𝑓𝑎𝑘𝑒_𝐾𝑒𝑦) = ∀ 𝑥18[3] ∈ 𝑋18, ∀ 𝑥18[4] ∈ 𝑋18, ∀ 𝑥19 ∈ 𝑋19|

𝑥19[1] ≔ 𝑋18[3] ∧ 𝑥19[2] ≔ 𝑋18[4] ∧ 𝑋19
′ = 𝑋19 ∪ {𝑥18[3], 𝑥18[4]},

(3.9)

(𝑅𝑐𝑣_𝑓𝑎𝑘𝑒_𝐾𝑒𝑦) = ∀ 𝑥20 ∈ 𝑋20, ∀ 𝑥21[4] ∈ 𝑋21|

𝑥21[1] ≔ 𝑋20[1] ∧ 𝑥21[2] ≔ 𝑥20[2] ∧

𝑋21
′ = 𝑋21 ∪ {𝑥21[1], 𝑥21[2]},

(3.10)

The client performs the cryptographic operations with (ej, nj) and sends all the encrypted data to

the cloud. This is represented by the following rules.

𝑹(𝐸𝑛𝑐𝑟_𝑑𝑎𝑡𝑎) = ∀ 𝑥21 ∈ 𝑋21, ∀ 𝑥22 ∈ 𝑋22, ∀ 𝑥23 ∈ 𝑋23, ∀ 𝑥24 ∈ 𝑋24|

𝑥24[1] ≔ 𝑥23[1] ∧ 𝑥24[2] ≔ 𝑥23[2]𝑒𝑛𝑐𝑟(𝑥23[3]) ∧ 𝑥24[3]

≔ 𝑥23[3]𝑒𝑛𝑐𝑟(𝑥23[4] ∧

𝑥24[4] ≔ 𝑥23[4]𝑒𝑛𝑐𝑟(𝑥21[1], 𝑥22[2]) ∧

(3.11)

𝑹(𝐺𝑒𝑛_𝐾𝑒𝑦𝑠) = ∀ 𝑥11 ∈ 𝑋11, ∀ 𝑥12[1] ∈ 𝑋12, ∀ 𝑥12[2] ∈ 𝑋12, ∀ 𝑥12[3] ∈ 𝑋12,

∀ 𝑥12[4] ∈ 𝑋12| ∀ 𝑥12[1] ≔ 𝑋11 ∧ 𝑥12[1] ↔ 𝑋12[2] ↔ 𝑋12[3] ↔ 𝑋12[4] ∧

𝑋12
′ = 𝑋12 ∪ {𝑥12[1], 𝑥12[2], 𝑥12[3], 𝑥12[4]},

(3.6)

𝑹(𝑆𝑒𝑛𝑑_𝐾𝑒𝑦) = ∀ 𝑥13[2] ∈ 𝑋13, ∀ 𝑥13[3] ∈ 𝑋13, ∀ 𝑥14 ∈ 𝑋14|

𝑥14[1] ≔ 𝑥13[2] ∧ 𝑥14[2] ≔ 𝑥13[3] ∧

𝑋14
′ = 𝑋14 ∪ {𝑥13[2], 𝑥13[3]},

(3.7)

𝑹(𝑅𝑐𝑣_𝐾𝑒𝑦) = ∀ 𝑥15 ∈ 𝑋15, ∀ 𝑥17[1] ∈ 𝑋17, ∀ 𝑥17[2] ∈ 𝑋17, ∀ 𝑥17[3] ∈ 𝑋17

∀ 𝑥17[4] ∈ 𝑋17∀ 𝑥17[5] ∈ 𝑋17∀ 𝑥17[6] ∈ 𝑋17∀ 𝑥17[7] ∈ 𝑋17|

𝑥17[2] ↔ 𝑋15[1] ↔ 𝑥15[2] ∧

𝑋16
′ = 𝑋16 ∪ {𝑥17[1], 𝑥17[2], 𝑥17[3], 𝑥17[4], 𝑥17[5], 𝑥15[1], 𝑥15[2]}.

(3.8)

37

𝑋24
′ = 𝑋24 ∪ {𝑥24[1], 𝑥24[2], 𝑥24[3], 𝑥24[4]},

𝑹(𝑆𝑛𝑑_𝑑𝑎𝑡𝑎_𝑡𝑜_𝐶𝑙𝑜𝑢𝑑) = ∀ 𝑥25 ∈ 𝑋25, ∀ 𝑥26 ∈ 𝑋26|𝑥26[1] ≔ 𝑥25[1] ∧

𝑥26[2] ≔ 𝑥25[2] ∧ 𝑥26[3] ≔ 𝑥25[3] ∧ 𝑥26[4] ≔ 𝑥25[4] ∧

𝑋26
′ = 𝑋26 ∪ {𝑥26[1], 𝑥26[2], 𝑥26[3], 𝑥26[4]}.

(3.12)

In the above, Encr_data is the most crucial transition. Security of data and the keys are

highly dependent on this transition. If the encryption is performed by using (ej, nj), then the data

security is compromised. In this context, the property that we verified using SMT-Lib and Z3 is

that: if the intruder is present, then the encryption operation is performed using the wrong keys.

The property of the model is described using a formal language called Computational Tree Logic

(CTL*). The CTL* uses numerous temporal operators to represent various operations [3.7, 3.20].

For instance, A represents “for all paths”, G denotes “globally”, and F characterizes “future

state”. The property specified in CTL* using temporal operators is given as: 𝐴𝐺(𝑎1 → 𝐴𝐹 𝑎3).

After translating the above model into SMT-Lib, we performed bounded checking using Z3

solver. The mentioned property was satisfied by the solver in 310 msec.

3.4. DaSCE

From Section 4, it is evident that the security of Si in FADE depends on the key exchange

between the client and the KM. If the key exchange is compromised, then Si is compromised, that

in turn, leaks all the keys and the data. We observed that the reason for the said attack is the

independence of communication steps between the client and the KM that allows the attacker to

launch the attack and subvert the whole process. In this section, we propose improvements in the

communication process between (a) client and the KM, and (b) client and the cloud. Our

proposed changes link the communication steps so as to avoid attacker to overtake the process.

38

We use the station-to-station (STS) protocol [3.9] and digital signature for authentication and

session key establishment before any other exchange takes place. The keys generated by the KMs

and policy files are exchanged using session keys. Some modifications are required in the

subsequent operations of the protocol as the session keys are introduced to the FADE. The

following subsections discuss the proposed mechanisms.

3.4.1. DaSCE Keys

The DaSCE makes use of both symmetric and asymmetric keys. The confidentiality and

integrity services for data are provided through symmetric keys that are secured by using

asymmetric keys. Asymmetric key pairs are generated by third party KMs. Out of the key pair,

only public key is transmitted to the client. For secure transmission of keys, a session key is

established between client and KM through STS protocol. To avoid man-in-the-middle attack,

both client and KM are authenticated by use of digital signatures. As a new session key is used

for every communication session between client and KM, the session key is exchanged through

key exchange process and is not randomly generated. This also avoids weakness of randomly

generated keys. The symmetric keys are generated once for data encryption by client and

 4, 6 1, 2, 3

 5

5. Client sends encrypted

keys to the cloud.

4. Client performs encryption operations

over data and symmetric keys

6. Deletes local copies of keys.

Cloud

Key Manager

Fig. 3.9. Key management in DaSCE.

1. Client initiates session establishment

and requests for asymmetric keys.

2. Client and KM authenticate each

other and establish session.

3. KM generates asymmetric keys and

sends public part to client

Client

39

encrypted by another symmetric key named Si. The Si is finally protected by the public key

received from KM. The encrypted keys are stored at cloud and client deletes the local copies of

the keys. For decryption purpose, client establishes a session with KM and sends Si to KM after

masking with random number R. The KM decrypts Si and sends back to client. The client

unmasks Si to get the symmetric keys. Fig. 3.9 depicts the key management process.

3.4.2. File Upload

For the establishment of session key, we assume that the parameters required are fixed

and publically available to all of the users. We call these parameters as α and p where, α is a

large number known as the primitive root and p is a large prime number. The process comprises

of following steps.

 The client generates a random number x and calculates α
x
 mod p and sends to the KM.

 The KM generates a random number y and calculates α
y
 mod p. The KM also calculates

(α
x
)

y
 as a session key, EK, between client and KM.

 The KM generates digital signature over {α
y
, α

x
} (SKM{α

y
, α

x
}) and encrypts it with the

generated session key to generate EK(SKM{α
y
, α

x
}).

 The KM sends (α
y
 , EK(SKM{α

y
, α

x
})) to the client.

Cloud Client Key manager

αx

Ek(ei,ni)

Pi, {K}si,{IK
}Si, Si

ei ,{F}K

α
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi)

Fig. 3.10. DaSCE file upload with single key manager.

40

 The client verifies the signature using the public key of the KM and calculates the session

key as (α
y
)
x
.

 The client calculates EK(SCli{ α
x
 , α

y
 }) and encrypts Pi with EK and sends both of the

calculated values to the KM. The sent message contains EK(SCli{ α
x
 , α

y
 }), EK(Pi).

 The KM verifies the signature of the client. Upon successful verification, the KM

decrypts Pi and generates (ei, ni) with Pi. The KM stores the decrypted Pi.

 The KM encrypts (ei, ni) with the EK to generate (EK(ei, ni)), which is sent to the client.

 The client encrypts the file F with key K, calculates MAC with IK; and encrypts K and IK

with Si. Afterwards Si is encrypted with ei. Subsequently, the client sends all the

encrypted data to cloud.

 The client erases all of the keys except public key parameters received from the KM.

The file upload process is shown in Fig. 3.10. The calculations for session key include mod p

operation which is not shown in the figure for clarity.

Cloud Client Key manager 1
αx

Ek1(ei1,ni1)

Pi, {K
}si,{IK

}Si, Si1
ei1 ,…,SiN

eiN ,{F}K

α
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),EK1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),EKN(Pi)

EkN(eiN,niN)

Fig. 3.11. DaSCE file upload with multiple key managers.

41

Similarly, the file upload process with multiple KMs is shown in Fig. 3.11. With multiple

KMs, Si is divided into n shares and each share is encrypted with the key from one of the

managers according to (k, n)-threshold scheme. The interdependencies between file upload steps

circumvent the man-in-the-middle attack. If higher level of security is required, then session key

can also be established between the client and the cloud to keep the Pi exchange secure.

3.4.3. File Download

The file download process of DaSCE is depicted in Fig. 3.12. The process starts with the

client downloading the data from the cloud. To decrypt F, we need K that is encrypted with Si.

The Si is encrypted with (ei, ni) received from KM. The client establishes the session key with the

KMs and during the process both the client and the KMs authenticate each other through digital

signatures. The process of key establishment and authentication is the same as discussed in

Section 3.4.2. In the third step, after verifying the authenticity of the KMs, the client generates a

random number R and encrypts it with the public key of the corresponding KM. The client then

calculates Si
ei
R

ei
 and sends it along with its own signature and encrypted Pi. We combine these

steps to minimize the communication overhead. The KM after verifying the digital signature of

Cloud Client Key manager 1

αx

Ek1(Si1R)

Pi, {K}si,{IK}Si, Si1
ei1,…,SiN

eiN,{F}K

α
y1 ,Ek1(SKM1{α

y1 ,α
x })

EK1(SCli{α
x,αy1}),Si1

ei1Rei1, Ek1(Pi)

αx

α yN,EkN(SKMN{αyN,αx})

Key manager N

EKN(SCli{α
x,αyN}),Si1

eiNReiN, EkN(Pi)

EkN(SiNR)

Fig. 3.12. DaSCE file download with multiple key managers.

42

the client decrypts Pi and checks whether the policy still holds or otherwise. If the policy is valid,

then the KM decrypts Si
ei
R

ei
 with the corresponding di to generate SiR. The purpose of R is to

mask the actual value of Si. The KM encrypts SiR with the session key, which is sent to the client.

It is noteworthy to mention that in FADE, SiR is returned by applying ABE. However, in

the DaSCE, we do not use ABE, instead session key is used to send SiR to the legitimate user.

Therefore, the access control is being managed by the aforementioned technique. The client after

receiving SiR extracts Si from SiR. It is important to remember that with multiple KMs, a share of

Si will be received from at least k KMs. Consequently k number of Sis will be used to generate Si.

The client decrypts K and IK using Si. It verifies the integrity of F using IK and decrypts F upon

successful verification.

3.4.4. Policy Revocation

The same process of key establishment, as discussed in Section 3.4.2, is used for the

policy revocation in DaSCE. The client encrypts Pi with the session key and sends to KM. The

KM after performing decryption on Pi revokes the keys generated with Pi. The deleted keys

include the private key di and associated prime numbers pi and qi. It also sends acknowledgement

to the client.

When di associated with Pi is deleted, the corresponding Si cannot be decrypted. This

results in logical deletion of F as K cannot be decrypted without Si. Therefore, we say that F is

assuredly deleted. It is noteworthy that assured deletion does not correspond to the physical

deletion of data. It is difficult to get the assurance of file deletion from the system outside the

administrative control of data owner. For assured deletion we used the concept introduced in

[3.34] and [3.35], where the inaccessibility of data is assured by deleting certain important

information from the system. The DaSCE ensures the inaccessibility of the keys to make the data

43

unrecoverable. Therefore, the main security property of file assured deletion is that even if a KM

does not remove the key from its storage, the data files remain encrypted and unrecoverable. The

concept of file assured deletion is also termed as self-destructing data in the literature. For details

about file assured deletion, readers are encouraged to see [3.34] and [3.35].

To boost the level of trust in the proposed scheme, the key generation and management is

not dependent on a single KM. Shamir’s secret sharing scheme is applied to counter any

malicious KM. Any malicious KM cannot get hold of Si independently. At least k number of KMs

needs to be compromised in order to get access of enough di’s that can be used to decrypt Si. It is

also noteworthy that for decryption process Si is sent to KM. However, Si is not sent in plain as

discussed in Section 5.3. The Si is masked by multiplication with R. Therefore, even if malicious

KM keeps the resultant decrypted information, the extraction of Si will remain a challenge.

Therefore, aforementioned case of malicious KM seems hard to be translated into successful

attack. If we build a case of a malicious user that somehow has got hold of some other user’s

encrypted Si, the malicious user has to go through the authentication process of at least k number

of KMs to decrypt the Si. We will see in Section 3.4.6 that KMs do not give access to the

unauthorized users.

Cloud Client Key manager

αx

Ek(SiR, ej,nj)

Pj, Si
ej

α
y ,Ek(SKM{α

y ,α
x })

EK(SCli{α
x,αy}),EK(Pi, Pj, Si

ei)

Pi, Si
ei

Fig. 3.13. DaSCE policy renewal.

44

3.4.5. Policy Renewal

The client downloads Si and Pi; establishes session key with the KM; and sends Pi, Si
ei
R

ei
,

and Pj to KM by session key encryption. The KM decrypts Si
ei
R

ei
 to obtain SiR and generates new

public/private key pair for Pj. Therefore, the KM sends SiR and new public parameters (ej, nj) to

the client. The client extracts Si and re-encrypts it with (ej, nj). Finally, the client sends Pj and

encrypted Si to the cloud. Fig. 3.13 shows the process with single KM. The Pi in Fig. 3.13 is

older policy file while Pj is the newer policy file.

3.4.6. Analysis of DaSCE through the HLPN

We use HLPN to verify that man-in-the-middle cannot forge the encryption keys

exchanged between the client and the KM. If the intruder intercepts the messages, then the

system would be able to identify the attack. The HLPN model for DaSCE is shown in Fig. 3.14.

We assume an intruder between the client and the KM to check the behavior of the protocol in

the attack scenario. The lines in Fig. 3.14 connecting (c1, c2) and (c3, c4) would be the

information flow of Xa and Xb, respectively, if there is no intruder between the client and KM.

Due to the space limitation and for simplicity we have not given the HLPN of the whole process.

Fig. 3.14 only depicts the process of KM authentication. Nevertheless, the next step

regarding authentication of client before exchanging keys will be the replication of the steps.

Therefore, next step will have similar verification results. The associated data types and the

mappings of places to data types are shown in Table 3.4 and Table 3.5, respectively. We assume

an intruder between the client and the KM to check the behavior of the protocol in the attack

scenario. The lines in Fig. 3.14 connecting (c1, c2) and (c3, c4) would be the information flow of

Xa and Xb, respectively, if there is no intruder between the client and KM. Due to the space

limitation and for simplicity we have not given the HLPN of the whole process.

4
5

x c1

Send_M1 Rcv_M1

I1

I4

Send_M1'

c2

Rcv_M1'

b1 b2

Encryt_M2

c3

Rcv_M2

c4

a2

X2

a4

 M1

Key ManagerClient Intruder

a1

z

M1'

I2

y

b3

Send_M2

I3

I_Cmpt_KIC

M2'_Sign

I5

Send_M2'Rcv_M2'

a3

Success

a6

I6

X47

X48

X29

I7

Encryt_M2

'
b4

X23

M2_Sign

Cmpt_KIKM

Cm
pt K

IC _D
ecr

I_
Cm

pt
 K

IK
M

X46

a5

Fig. 3.14. HLPN for DaSCE.

46

Types Description Types Description

𝜑(x) ℙ(x) 𝜑(b4) ℙ(M2×γa)

𝜑(a1) ℙ(M1) 𝜑(c3) ℙ(M2×γa)

𝜑(c1) ℙ(M1) 𝜑(I4) ℙ(M2×γa)

𝜑(I1) ℙ(M1) 𝜑(I5) ℙ(KIKM)

𝜑(I2) ℙ(M1’× KIC) 𝜑(I6) ℙ(M1’×di×γi× KIKM × KIC)

𝜑(I3) ℙ(M1’) 𝜑(I7) ℙ(M1’× γb)

𝜑(c2) ℙ(M1’) 𝜑(c4) ℙ(M1’× γb)

𝜑(b1) ℙ(M1’) 𝜑(a2) ℙ(M1’× γb)

𝜑(b2) ℙ(M2× KIKM) 𝜑(a3) ℙ(KIC× γb)

𝜑(b3) ℙ(M2×dKM×γs× KIKM) 𝜑(a4) ℙ(KIC× γb×eKM)

Types Description

X Big integer type random number for client

Α Big integer type number

Z Big integer type random number for intruder

Y Big integer type random number for key manager

M1 Big integer type number representing α power x

M1’ Big integer type number representing α power z

M2 Big integer type number representing α power y

di Private key of entity i from {Cli, Clo, KM}

ei Public key of entity i from {Cli, Clo, KM}

KIKM Session key between Intruder and Key Manager

KIC Session key between Intruder and Client

γs {M2, M1’}dKM [M2 and M1’ signed with dKM].

γa { γs } KIKM [γs encrypted with KIKM]

M2’ M1’,(γa)KIC [M1’ and γa encrypted with KIC]

γi { M1’, M1}di [M1’and M1 signed with di].

γb { γi } KIC [γi encrypted with KIC]

EM Error Message (Message not coming from valid KM)

Table 3.4. Data types for HLPN of DaSCE.

 Table 3.5. Mapping of data types and places for HLPN of DaSCE.

47

The process starts with the client requiring an upload of data to the cloud. The client

generates a random number x, calculates its parameters (as explained in Section 3.4.2), and sends

to KM. However, the intruder intercepts the messages. The aforementioned process is carried out

at transitions M1, Send_M1, and Rcv_M1. The rules for these transitions are:

𝑹(𝑀1) = ∀ 𝑥1 ∈ 𝑋1, ∀𝑥2 ∈ 𝑋2| 𝑥2 ≔ 𝑝𝑜𝑤(𝛼, 𝑥1) ∧

𝑋2
′ = 𝑋2 ∪ {𝑥2},

(3.13)

𝑹(𝑆𝑒𝑛𝑑_𝑀1) = ∀ 𝑥3 ∈ 𝑋3, ∀𝑥4 ∈ 𝑋4| 𝑥4 ≔ 𝑥3 ∧

𝑋4
′ = 𝑋4 ∪ {𝑥4},

(3.14)

𝑹(𝑅𝑒𝑐_𝑀1) = ∀ 𝑥5 ∈ 𝑋5, ∀𝑥6 ∈ 𝑋6| 𝑥6 ≔ 𝑥5 ∧

𝑋6
′ = 𝑋6 ∪ {𝑥6}.

(3.15)

The transition I_Cmpt_KIC is fired when the intruder successfully intercepts the message

that is originated for the KM. The intruder generates its own random number z and calculates a

key between the client and itself. The intruder also generates fake message for the KM at

transition M1’and sends it to the KM through transition Send_ M1’. Rules (3.16) – (3.19) are

mapped to following transitions.

𝑹(𝐼_𝐶𝑚𝑝𝑡_𝐾𝐼𝐶) = ∀ 𝑥7 ∈ 𝑋7, ∀𝑥9 ∈ 𝑋9, ∀𝑥10 ∈ 𝑋10| 𝑥10[1] ≔ 𝑝𝑜𝑤(𝛼, 𝑥7) ∧

𝑥10[2] ≔ 𝑝𝑜𝑤(𝑥9, 𝑥7) ∧

𝑋10
′ = 𝑋10 ∪ {𝑥10[1], 𝑥10[2]},

(3.16)

𝑹(𝑅_𝑀1′) = ∀ 𝑥11 ∈ 𝑋11, ∀𝑥12 ∈ 𝑋12| 𝑥12 ≔ 𝑥11 ∧ 𝑋12
′ = 𝑋12 ∪ {𝑥12}, (3.17)

𝑹(𝑆𝑒𝑛𝑑_𝑀1′) = ∀ 𝑥13 ∈ 𝑋13, ∀𝑥14 ∈ 𝑋14| 𝑥14 ≔ 𝑥13 ∧

𝑋14
′ = 𝑋14 ∪ {𝑥14},

(3.18)

𝑹(𝑅𝑒𝑐_𝑀1′) = ∀ 𝑥15 ∈ 𝑋15, ∀𝑥16 ∈ 𝑋16| 𝑥16 ≔ 𝑥15 ∧

𝑋16
′ = 𝑋16 ∪ {𝑥16}.

(3.19)

48

The KM assuming that the message comes from the client, calculates the session key by

the parameters sent by the intruder. The KM also signs the received and generated parameters by

the private key and sends to the client that is actually received by intruder. Following transitions

and rules correspond to the explained steps.

𝑅(𝐶𝑜𝑚𝑝𝑡_𝐾𝐼𝐾𝑀) = ∀ 𝑥17 ∈ 𝑋17, ∀𝑥18 ∈ 𝑋18, ∀𝑥19 ∈ 𝑋19|𝑥19[1] ≔ 𝑝𝑜𝑤(𝛼, 𝑥18) ∧

𝑥19[2] ≔ 𝑝𝑜𝑤(𝑥17, 𝑥18) ∧

𝑋19
′ = 𝑋19 ∪ {𝑥19[1], 𝑥19[2]},

(3.20)

𝑹(𝑀2_𝑆𝑖𝑔𝑛) = ∀ 𝑥20 ∈ 𝑋20, ∀𝑥21 ∈ 𝑋21, ∀𝑥48 ∈ 𝑋48|𝑥21[1] ≔ 𝑥20[1]

∧ 𝑥21[2] ≔ 𝑠𝑖𝑔𝑛(𝑥20[1], 𝑥48) ∧ 𝑥21[3] ≔ 𝑥20[2] ∧

𝑋21
′ = 𝑋21 ∪ {𝑥21[1], 𝑥21[2], 𝑥21[3]},

(3.21)

𝑹(𝐸𝑛𝑐𝑟𝑦𝑡_𝑀2) = ∀ 𝑥22 ∈ 𝑋22, ∀𝑥23 ∈ 𝑋23|𝑥23[1] ≔ 𝑥22[1] ∧

𝑥23[2] ≔ 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑥22[2], 𝑥22[3]) ∧ 𝑋23
′ = 𝑋23 ∪ {𝑥23[1], 𝑥23[2], 𝑥23[3]},

(3.22)

𝑹(𝑆𝑒𝑛𝑑_𝑀2) = ∀ 𝑥24 ∈ 𝑋24, ∀𝑥25 ∈ 𝑋25|𝑥25 ≔ 𝑥24 ∧

𝑋25
′ = 𝑋25 ∪ {𝑥25},

(3.23)

𝑹(𝑅𝑐𝑣_𝑀2) = ∀ 𝑥26 ∈ 𝑋26, ∀𝑥27 ∈ 𝑋27| 𝑥27 ≔ 𝑥26 ∧

𝑋27
′ = 𝑋27 ∪ {𝑥27}.

(3.24)

After receiving the message from the KM, the intruder generates the session key between

the KM and itself. At this stage, the intruder sets up the keys with both the client and the KM.

The intruder prepares a response for the client and sends the prepared response. The response

includes the signed parameters. The intruder uses its private key for the signing purpose. The

client accepts the response thinking it to be from KM. The following rules highlight the process.

49

𝑹(𝐼_𝐶𝑚𝑝𝑡_𝐾𝐼𝐾𝑀) = ∀ 𝑥28 ∈ 𝑋28, ∀𝑥29 ∈ 𝑋29, ∀𝑥8 ∈ 𝑋8| 𝑥29 ≔ 𝑝𝑜𝑤(𝑥28[1], 𝑥8) ∧

𝑋29
′ = 𝑋29 ∪ {𝑥29},

(3.25)

𝑹(𝑀2′_𝑆𝑖𝑔𝑛) = ∀ 𝑥30 ∈ 𝑋30, ∀𝑥31 ∈ 𝑋31, ∀𝑥32 ∈ 𝑋32, ∀𝑥49 ∈ 𝑋49|

𝑥32[1] ≔ 𝑥31[1] ∧ 𝑥32[2] ≔ 𝑠𝑖𝑔𝑛(𝑥31[1], 𝑥49) ∧ 𝑥32[3] ≔ 𝑥30 ∧ 𝑥32[4]

≔ 𝑥31[2] ∧

𝑋32
′ = 𝑋32 ∪ {𝑥32[1], 𝑥32[2], 𝑥32[3], 𝑥32[4]},

(3.26)

𝑹(𝐸𝑛𝑐𝑟_𝑀2′) = ∀ 𝑥33 ∈ 𝑋33, ∀𝑥34 ∈ 𝑋34| 𝑥34[1] ≔ 𝑥33[1] ∧

𝑥34[2] ≔ 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑥33[2], 𝑥33[4]) ∧

𝑋34
′ = 𝑋34 ∪ {𝑥34[1], 𝑥34[2]},

(3.27)

𝑹(𝑆𝑒𝑛𝑑_𝑀2′) = ∀ 𝑥35 ∈ 𝑋35, ∀𝑥36 ∈ 𝑋36| 𝑥36 ≔ 𝑥35 ∧

𝑋36
′ = 𝑋36 ∪ {𝑥36},

(3.28)

𝑹(𝑅𝑐𝑣_𝑀2′) = ∀ 𝑥37 ∈ 𝑋37, ∀𝑥38 ∈ 𝑋38| 𝑥38 ≔ 𝑥37 ∧

𝑋38
′ = 𝑋38 ∪ {𝑥38}.

(3.29)

The client after receiving the response completes the process of generating the session

key. However, the key generated is between the client and the intruder, instead of being between

the client and the KM. Following this, the client decrypts the received parameters and verifies the

digital signature over them. The verification is performed using a public key of the KM as the

client is supposedly interacting with the KM. The verification mechanism gives the false result

and the client terminates the process. However, if there is no intruder and the communication

takes place between the client and KM, then valid signatures will result in information flow

towards the place a6 and communication will proceed. Following are the transitions and rules for

aforesaid process at the client end.

50

𝑹(𝐶𝑚𝑝𝑡_𝐾𝐼𝐶_𝐷𝑒𝑐𝑟) = ∀ 𝑥39 ∈ 𝑋39, ∀𝑥40 ∈ 𝑋40, ∀𝑥41 ∈ 𝑋41|

𝑥41[1] ≔ 𝑝𝑜𝑤(𝑥38[1], 𝑥40) ∧ 𝑥41[2] ≔ 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑥38[2], 𝑥41[1]) ∧

𝑋41
′ = 𝑋41 ∪ {𝑥41[1], 𝑥41[2]},

(3.30)

𝑹(𝑉𝑒𝑟_𝑆𝑖𝑔𝑛_𝐾𝑀) = ∀ 𝑥42 ∈ 𝑋42, ∀𝑥43 ∈ 𝑋43| 𝑥43 ≔ 𝑣𝑒𝑟𝑖𝑓𝑦𝑠𝑖𝑔𝑛(𝑥42[2]) ∧

𝑋43
′ = 𝑋43 ∪ {𝑥43}.

(3.31)

The following properties are verified using the SMT-Lib and Z3 solver.

 During communication, if state I1 (see Fig. 7.14, intruder side) is achieved (that means

the intruder intercepts communication), then the control will terminate at state a5

which represents a failure to authenticate the KM and the process terminates. The

property in CTL* is represented as 𝐴𝐺 (𝐼1 → 𝐴𝐹 𝑎5)

 If there is no intruder and communication progresses on normal course (through lines

Xa and Xb in Fig. 7.13), then the control will flow until it reaches a6, which represents

success for authentication and secure exchange of the required key. CTL* property is

𝐴𝐺 (𝑎1 → 𝐴𝐹(¬𝐼1 ∪ 𝑎6))

Both of the properties are verified in SMT-Lib using Z3 solver that approximately took 321

msec.

3.5. Implementation and Performance Evaluation

We used C# for implementing a working prototype of DaSCE. The .Net cryptographic

packages were used for the involved cryptographic operations. Large prime numbers were

handled by using the BigInt class. Policies were uploaded as a separate file to the cloud and the

KM. The system consists of two servers (the cloud and the KM) and a client (work station).

Multiple policies were combined using OR and/or AND operations. The policy and data files

were not merged into a single file, to keep the policy renewal operation light weight. According

51

to the processes described in Section 3.4, we also implemented the client side software functions,

such as file upload, download, revocation, and renewal.

In our prototype, the client interacts with the KM (s) and the cloud for setting up the keys,

and uploading/downloading data. The KM sets up the keys, revokes, and/or renews policies and

manages the keys accordingly. We evaluated the DaSCE on the basis of: (a) Key(s)

establishment time, (b) Key Transmission time, (c) File transmission time, and (d)

Cryptographic operations time. It is noteworthy to mention that the time required for key

establishment is the time for setting up a session key between the involved parties. The

cryptographic operations time is the time taken by AES and MAC operations. Above given

parameters collectively make up total file upload/download time. Moreover, the aforesaid

parameters are evaluated using single KM and multiple KMs.

3.5.1. File Upload/Download with a Single Key Manager

We used files of nine different sizes (0.3 KB, 1 KB, 10 KB, 30 KB, 50 KB, 100 KB, 500

KB, 1 MB, and 10 MB) to measure the time consumption in file upload and download process.

The results are provided in Fig. 3.15. In general, the file transmission time increased with the

increase in file size. However, in some cases the change in file transmission time was small that

may be caused due to network conditions at various times. Nevertheless, file transmission time

was dependent on the network. In file upload case, cryptographic operations time varied between

0.037 sec and 0.201 sec. The cryptographic operations time increased with the increase in the file

size. In the case of 10 MB file, the cryptographic operations time makes 2.35% of total file

upload time and 2.45% of file transmission time. The time for session key establishment almost

remained constant (having slight changes). The largest time taken during the key establishment

was noted to be 0.0898 sec that constituted 2.67% of the total upload time.

52

The percentage for key establishment time was 2.39% for 10 MB file. Similarly, in case

of file download operations the cryptographic operations time varied from 0.039 sec to 0.211

sec. The cryptographic operations time was dependent on the size of the file; therefore, it

increased with the larger file size. However, it made lower percentage of total upload time and

file transmission time. The key establishment time does not depend on the file size; therefore, it

remains almost constant. Slight changes were possibly due to network transmission conditions.

The DaSCE and FADE takes same amount of time for cryptographic operations. However,

(a)

(b)

Fig. 3.15 Performance of file upload and download operations for DaSCE.

1 10 100 1,000 10,000
0.01

0.1

1

10

File Size (KB)

Ti
m

e
(s

ec
)

KeyEstablishment

CryptoOp

FileTransmission

KeyTransmission

1 10 100 1,000 10,000
0.01

0.1

1

10

100

File Size (KB)

Ti
m

e
(S

ec
)

KeyEstablishment

Key Transmission

CryptoOp

File Transmission

53

unlike FADE, we perform additional steps for key establishment in DaSCE that makes an

additional overhead. Therefore, key establishment process increases the time consumption of

DaSCE as compared to the protocols that run without establishing the session keys. It is

noteworthy that the increase in time consumption upturns the security level for policy files,

symmetric, and asymmetric keys used in the DaSCE. In the following section we will see the

impact of key establishment time with increase in number of KMs.

3.5.2. File Upload/Download with Multiple Key Managers

We evaluated the performance of DaSCE by using multiple KMs. The file sizes we used

were 0.3 KB, 1 KB, 10 KB, 50 KB, 100 KB, 500 KB, and 1MB. The number of KMs used was

one, three, five, seven, fifteen, 25, and 50. Fig. 3.16 revealed the key establishment time and the

cryptographic operation time for the aforementioned files sizes and the KMs. The key

establishment time increased with the increase in the number of KMs. This is because the client

had to complete all the message passing steps necessary to establish the key with all the KMs.

(a) Cryptographic operations

(b) Key establishment

Fig. 3.16 File upload with multiple key managers.

5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of key managers

C
ry

p
to

 o
p
e
ra

ti
o
n
s
 t
im

e
 (

s
e
c
)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of key managers

K
e
y
 e

s
ta

b
li
s
h
m

e
n
t
ti
m

e
 (

s
e
c
)

 0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

54

The key establishment time varies between 0.069 (single KM) seconds and 0.24 seconds

(50 KMs). It must be noted that there was slight increase in the key establishment up to ten KMs.

However, with higher number of KMs the increase followed a higher trend. As discussed earlier,

the increase in time consumption due to key establishment augments the security level.

Therefore, we say that user has to select the number of KMs judicially. A balance between

tolerate able time consumption and security level in needed while deciding the number of KMs.

In the coming discussion we will also see that the key establishment time constitutes low

percentage of total time. The cryptographic operation time remained constant for the file of same

size as final symmetric encryption is done on client with generated keys (symmetric key, K). Fig.

3.17 depicts the key establishment time and cryptographic operation time taken by file download

with multiple KMs.

It must be noted that the key establishment constituted a low percentage of the total

consumed time (see Fig. 3.17). Fig. 3.18 contains time comparisons of total upload/download

(a) Cryptographic operations

(b) Key establishment

Fig. 3.17 File download with multiple key managers.

5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of key managers

C
ry

p
to

 o
p
e
ra

ti
o
n
s
 t
im

e
 (

s
e
c
)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

5 10 15 20 25 30 35 40 45 50
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of key managers

K
e
y
 e

s
ta

b
li
s
h
m

e
n
t
ti
m

e
 (

s
e
c
)

0.3 KB

1 KB

10 KB

50 KB

100 KB

500 KB

1000 KB

55

0.00

0.05

0.10

0.15

0.20

0.25

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9

FT TUT

KE KT

CO

 0.3 1 10 30 50 100 500 1000 10000

Ti
m

e
(s

ec
)

Tim
e (sec)

File Size (KB)

0.00

0.05

0.10

0.15

0.20

0.25

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8 9

FT TDT

KE KT

CO

0.3 1 10 30 50 100 500 1000 10000

Ti
m

e
(s

ec
)

Tim
e (sec)

File Size (KB)

time with key establishment and other constituent times for single key managers with different

file sizes.

It can be noted that as the amount of data increases, the percentage of key establishment

time decreases to less significant number as compared to the total upload and download time, for

the file (see Fig. 3.18). Therefore, an increase in number of key managers will increase the

security as well as the time consumption due to key establishment.

3.5.3. Discussion

We present DaSCE that augments the security level by introducing additional steps for

the key establishment process. Because of the mutual exclusion of communication events

between the client and the KM, FADE fell short on issues of securing the keys and

authentication of participating parties. The DaSCE resolves the aforesaid issues by introducing

digital signature for the authentication and session key establishment process before any other

(a)

Upload time (b) Download time

Fig. 3.18 Total upload/download time vs key establishment time.

KE = key establishment time, KT= key transmission time, CO = cryptographic operations

time, FT= file transmission time, TUT= total upload time, TDT= total download time.

56

exchange takes place. Moreover, the concept of “assured file deletion” is used to make the file

inaccessible or unrecoverable by deleting important information (di). Comparing the

performance of FADE and DaSCE, FADE has less performance overheads as compared to

DaSCE. However, unlike FADE, the DaSCE provides high security standards and does not

compromise the keys under man-in-the-middle attack. It is noteworthy that DaSCE does not

introduce substantial performance and monetary overhead that can lead to higher management

cost. However, as compared to FADE, the performance overhead of DaSCE are slightly higher

because of the supplementary steps taken to increase the level of security for the keys that

upturns the security level for policy files, symmetric, and asymmetric keys used in the DaSCE.

3.6. References

[3.1] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Ktaz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoics, and M. Zaharia, “A View of Cloud Computing,”

Communications of the ACM, Vol. 53, No. 4, 2010, pp. 50-58.

[3.2] M. S. Blumenthal, “Is Security Lost in the Clouds?” Communications and Strategies, No.

81, 2011, pp. 69-86.

[3.3] C.Cachinand M.Schunter, "A cloud you can trust," IEEE Spectrum, Vol. 48, No. 12,

2011,pp. 28-51.

[3.4] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina,

“Controlling data in the cloud: outsourcing computation without outsourcing control,” In

Proceedings of the ACM workshop on Cloud computing security,pp. 85-90, 2009.

[3.5] C. Cremers, “The Scyther Tool: Verification, falsification, and analysis of security

protocols,” In Computer Aided Verification, Springer Berlin Heidelberg, 2008, pp. 414-418.

57

[3.6] Cloud Security Alliance,

https://downloads.cloudsecurityalliance.org/initiatives/cdg/CSA_CCAQIS_Survey.pdf (accessed

March 24, 2013).

[3.7] D.R. Dams, “Flat fragments of CTL and CTL*: spreading the expressive and distinguishing

powers,” Logic Journal of IGPL, Vol. 17, No. 1, 1999, pp. 55-78.

[3.8] J. Desel and J.Esparza, “Free Choice Petri Nets,” Cambridge Tracts in Theoretical

Computer Science, Vol. 40, Cambridge, UK: Cambridge Univ. Press, 1995.

[3.9] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and authenticated key

exchanges,” Designs, Codes and Cryptography, Vol. 2, No. 2, 1992, pp. 107-125.

[3.10] T. Dillon, C. Wu, and E. Chang, “Cloud Computing: Issues and Challenges,” In

proceedings of 24th International Conference on Advanced Information Networking and

Applications, pp. 27-33, 2010.

[3.11] N. En and N. Srensson, “An extensible SAT-solver,” Lecture Notes in Computer Science,

vol. 2919, Springer, 2003, pp. 502-518.

[3.12] C P. Gomes, H. Kautz, A. Sabharwal, and B. Selman, “Satisfia-bility solvers,” In

Handbook of Knowledge Representation, Elsevier, 2007.

[3.13] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards secure mobile

cloud computing: a survey,” Future Generation Computer Systems, Vol. 29, No. 5, 2013, pp.

1278-1299.

[3.14] A. Juels and A. Opera, “New approaches to security and availability for cloud data,”

Communications of the ACM, Vol. 56, No. 2, 2013, pp. 64-73.

[3.15] S. Kamara and K. Lauter, “Cryptographic cloud storage,” Financial Cryptography and

Data Security, Springer Berlin Heidelberg, 2010, pp. 136-149.

58

[3.16] M. Kaufman,”Data security in the world of cloud computing,” IEEE Security and

Privacy, Vol. 7, No. 4, 2009, pp. 61-64.

[3.17] K. M. Khan, and Q. Malluhi, "Establishing trust in cloud computing," IT

professional, Vol. 12, No. 5, 2010,pp. 20-27.

[3.18] H. Lin and W. Tzeng, “A secure decentralized erasure code for distributed network

storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 11, Nov. 2010, pp.

1586-1594.

[3.19] H. Lin and W. Tzeng, “A secure erasure code-based cloud storage system with secure data

forwarding,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 6, June 2012,

pp. 995-1003.

[3.20] M. Maidl, “The common fragment of CTL and LTL,” IEEE symposium on foundations of

computer science, pp. 643-652, 2000.

[3.21] S. U. R. Malik, S. K. Srinivasan, S. U. Khan, and L. Wang, “A Methodology for OSPF

Routing Protocol Verification,” 12th International Conference on Scalable Computing and

Communications (ScalCom), Changzhou, China, Dec. 2012.

[3.22] L. Moura and N. Bjrner, “Satisfiability Modulo Theories: An appetizer,” Lecture Notes in

Computer Science, Vol. 5902, Springer, 2009, pp. 23-36.

[3.23] M. Mowbray, and S. Pearson, "A client-based privacy manager for cloud computing," In

Proceedings of the Fourth International (ICST) Conference on COMmunication System

softWAre and middleware, ACM, p. 5, 2009.

[3.24] T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. IEEE, Vol. 77, No.

4, pp. 541-580, Apr. 1989.

59

[3.25] W. Reisig and G. Rozenberg, “Lectures on Petri Nets I: Basic Models,” Lecture Notes in

Computer Science, Berlin: Springer-Verlag, Vol. 1491, 1998.

[3.26] A. Shamir, “How to Share a Secret,” Comm. ACM, Vol. 22, No. 11, Nov. 1979, pp. 612-

613.

[3.27] D. Sun, G. Chang, L. Sun, and X. Wang, “Surveying and Analyzing Security, Privacy and

Trust Issues in Cloud Computing Environments,” Procedia Engineering, Vol. 15, 2011, pp.

2852 – 2856.

[3.28] H. Takabi, J. B. D. Joshi, and G. J. Ahn, "Security and privacy challenges in cloud

computing environments," IEEE Security and Privacy, Vol. 8, No. 6, 2010,pp. 24-31.

[3.29] Y. Tang, P. P. Lee, J. C. S. Lui, and R. Perlman, “Secure Overlay Cloud Storage with

Access Control and Assured Deletion,” IEEE Transactions on Dependable and Secure

Computing, Vol. 9, No. 6, Nov. 2012, pp. 903-916.

[3.30] A. Yun, C. Shi, and Y. Kim, “On protecting integrity and confidentiality of cryptographic

file system for outscored storage,” Proceedings of 2009 ACM workshop on cloud computing

security CCSA’09, pp. 67-76, 2009.

[3.31] W. Jansen and T. Grance, "Guidelines on security and privacy in public cloud

computing," NIST special publication, 800-144, 2011.

[3.32] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility,” Future Generation computer systems, Vol. 25, No. 6, 2009, pp. 599-616.

[3.33] A. R. Khan, M. Othman, S. A. Madani, and S. U. Khan, “A survey of mobile cloud

computing application models,” IEEE Communications Surveys and Tutorials, 2013, 1-21.

60

[3.34] R. Perlman, “File system design with assured delete,” In Third IEEE International

Security in Storage Workshop, pp. 6, 2005.

[3.35] R. Geambasu, T. Kohno, A. A. Levy, and H. M. Levy, “Vanish: Increasing Data Privacy

with Self-Destructing Data,” In USENIX Security Symposium, pp. 299-316. 2009.

61

4. DROPS: DIVISION AND REPLICATION OF DATA IN

CLOUD FOR OPTICAL PERFORMANCE AND SECURITY

The paper is submitted in IEEE Transactions on Cloud Computing (TCC) and has gone

through the first round of revisions. The authors of the paper are Mazhar Ali, Kashif Bilal,

Samee U. Khan, Bharadwaj Veeravalli, Keqin Li, and Albert Y. Zomaya.

4.1. Introduction

Outsourcing data to a third-party administrative control, as is done in cloud computing,

gives rise to security concerns [4.1]. The data compromise may occur due to attacks by other

users and nodes within the cloud [4.2]. Therefore, high security measures are required to protect

data within the cloud. However, the employed security strategy must also take into account the

optimization of the data retrieval time [4.3]. In this paper, we propose Division and Replication

of Data in the Cloud for Optimal Performance and Security (DROPS) that collectively

approaches the security and performance issues. In the DROPS methodology, we divide a file

into fragments, and replicate the fragmented data over the cloud nodes. Each of the nodes stores

only a single fragment of a particular data file that ensures that even in case of a successful

attack, no meaningful information is revealed to the attacker. Moreover, the nodes storing the

fragments are separated with certain distance by means of graph T-coloring to prohibit an

attacker of guessing the locations of the fragments. Furthermore, the DROPS methodology does

not rely on the traditional cryptographic techniques for the data security; thereby relieving the

system of computationally expensive methodologies. We show that the probability to locate and

compromise all of the nodes storing the fragments of a single file is extremely low. We also

compare the performance of the DROPS methodology with ten other schemes. The higher level

62

of security with slight performance overhead was observed. The working of the DROPS

methodology is shown as a high-level work flow in Fig. 4.1.

4.2. Preliminaries

Before we go into the details of the DROPS methodology, we introduce the related

concepts in the following for the ease of the readers.

4.2.1. Data Fragmentation

The security of a large-scale system, such as cloud depends on the security of the system

as a whole and the security of individual nodes. A successful intrusion into a single node may

have severe consequences, not only for data and applications on the victim node, but also for the

other nodes. The data on the victim node may be revealed fully because of the presence of the

whole file [4.4]. A successful intrusion may be a result of some software or administrative

vulnerability [4.4]. In case of homogenous systems, the same flaw can be utilized to target other

nodes within the system. The success of an attack on the subsequent nodes will require less effort

Fig. 4.1. The DROPS methodology.

63

as compared to the effort on the first node. Comparatively, more effort is required for

heterogeneous systems. However, compromising a single file will require the effort to penetrate

only a single node. The amount of compromised data can be reduced by making fragments of a

data file and storing them on separate nodes [4.4, 4.5]. A successful intrusion on a single or few

nodes will only provide access to a portion of data that might not be of any significance.

Moreover, if an attacker is uncertain about the locations of the fragments, the probability of

finding fragments on all of the nodes is very low. Let us consider a cloud with M nodes and a file

with z number of fragments. Let s be the number of successful intrusions on distinct nodes, such

that 𝑠 > 𝑧. The probability that s number of victim nodes contain all of the z sites storing the file

fragments (represented by P(s,z)) is given as:

𝑃(𝑠, 𝑧) =
(𝑠

𝑧
)(𝑀−𝑠

𝑠−𝑧
)

(𝑀
𝑠

)
 (4.1)

If M = 30, s = 10, and z = 7, then P(10, 7) = 0.0046. However, if we choose M = 50, s = 20, and

z = 15, then P(20, 15) = 0.000046. With the increase in M, the probability of a state reduces

further. Therefore, we can say that the greater the value of M, the less probable that an attacker

will obtain the data file. In cloud systems with thousands of nodes, the probability for an attacker

to obtain a considerable amount of data reduces significantly. However, placing each fragment

once in the system will increase the data retrieval time. To improve the data retrieval time,

fragments can be replicated in a manner that reduces retrieval time to an extent that does not

increase the aforesaid probability.

4.2.2. Centrality

The centrality of a node in a graph provides the measure of the relative importance of a

node in the network. The objective of improved retrieval time in replication makes the centrality

64

measures more important. There are various centrality measures; for instance, closeness

centrality, degree centrality, betweenness centrality, eccentricity centrality, and eigenvector

centrality. We only elaborate on the closeness, betweenness, and eccentricity centralities because

we are using the aforesaid three centralities in this work. For the remainder of the centralities, we

encourage the readers to review [4.6].

4.2.2.1. Betweenness Centrality

The betweenness centrality of a node n is the number of the shortest paths, between other

nodes, passing through n [4.6]. Formally, the betweenness centrality of any node v in a network

is given as:

𝐶𝑏(𝑣) = ∑
𝛿𝑎𝑏(𝑣)

𝛿𝑎𝑏
𝑎≠𝑣≠𝑏 , (4.2)

Where δab is the total number of shortest paths between a and b, and 𝛿𝑎𝑏(𝑣) is the number of

shortest paths between a and b passing through v. The variable 𝐶𝑏(𝑣) denotes the betweenness

centrality for node v.

4.2.2.2. Closeness Centrality

A node is said to be closer with respect to all of the other nodes within a network, if the

sum of the distances from all of the other nodes is lower than the sum of the distances of other

candidate nodes from all of the other nodes [4.6]. The lower the sum of distances from the other

nodes, the more central is the node. Formally, the closeness centrality of a node v in a network is

defined as:

𝐶𝑐(𝑣) =
𝑁 − 1

∑ 𝑑(𝑣, 𝑎)𝑎≠𝑣
, (4.3)

where N is total number of nodes in a network and d(v, a) represents the distance between node v

and node a.

65

4.2.2.3. Eccentricity

The eccentricity of a node n is the maximum distance to any node from a node n [4.6]. A

node is more central in the network, if it is less eccentric. Formally, the eccentricity can be given

as:

𝐸(𝑣𝑎) = 𝑚𝑎𝑥𝑏𝑑(𝑣𝑎, 𝑣𝑏), (4.4)

Where d(va, vb) represents the distance between node va and node vb. It may be noted that in our

evaluation of the strategies the centrality measures introduced above seem very meaningful and

relevant than using simple hop-count kind of metrics.

4.2.3. T-coloring

Suppose we have a graph 𝐺 = (𝑉, 𝐸) and set T containing non-negative integers

including 0. The T-coloring is a mapping function f from the vertices of V to the set of non-

negative integers, such that |𝑓(𝑥) − 𝑓(𝑦)| ∉ 𝑇, where (𝑥, 𝑦) ∈ 𝐸. The mapping function f

assigns a color to a vertex. In simple words, the distance between the colors of the adjacent

vertices must not belong to T. Formulated by Hale [4.7]; the T-coloring problem for channel

assignment assigns channels to the nodes, such that the channels are separated by a distance to

avoid interference.

4.3. DROPS

4.3.1. System Model

Consider a cloud that consists of M nodes, each with its own storage capacity. Let S
i

represents the name of i-th node and si denotes total storage capacity of S
i
. The communication

time between S
i
 and S

j
 is the total time of all of the links within a selected path from S

i
 to S

j

represented by c(i, j). We consider N number of file fragments such that Ok denotes k-th

66

Table 4.1. Notations and their meanings.

fragment of a file while ok represents the size of k-th fragment. Let the total read and write

requests from S
i
 for Ok be represented by 𝑟𝑘

𝑖 and 𝑤𝑘
𝑖 , respectively. Let Pk denote the primary

node that stores the primary copy of Ok. The replication scheme for Ok denoted by Rk is also

stored at Pk. Moreover, every S
i
 contains a two-field record, storing Pk for Ok and 𝑁𝑁𝑘

𝑖 that

represents the nearest node storing Ok. Whenever there is an update in Ok, the updated version is

sent to Pk that broadcasts the updated version to all of the nodes in Rk. Let b(i, j) and t(i, j) be the

total bandwidth of the link and traffic between sites S
i
 and S

j
, respectively . The centrality

measure for S
i
 is represented by ceni. Let 𝑐𝑜𝑙𝑆𝑖 store the value of assigned color to S

i
. The

Symbols Meanings

M Total number of nodes in the cloud

N Total number of file fragments to be placed

Ok k-th fragment

ok Size of Ok

S
i
 i-th node

s
i
 Size of S

i

ceni Centrality measure for S
i

𝑐𝑜𝑙𝑆𝑖 Color assigned to S
i

T A set containing distances by which assignment of fragments must be separated

𝑟𝑘
𝑖 Number of reads for Ok from S

i

𝑅𝑘
𝑖 Aggregate read cost for 𝑟𝑘

𝑖

𝑤𝑘
𝑖 Number of writes for Ok from S

i

𝑊𝑘
𝑖 Aggregate read cost for 𝑤𝑘

𝑖

𝑁𝑁𝑘
𝑖 Nearest neighbor of Si

holding Ok

c(i, j) Communication cost between Si
 and S

j

Pk Primary node for Ok

Rk Replication schema of Ok

RT Replication time

67

𝑐𝑜𝑙𝑆𝑖 can have one out of two values, namely: open_color and close_color. The value open_color

represents that the node is available for storing the file fragment. The value close_color shows

that the node cannot store the file fragment. Let T be a set of integers starting from zero and

ending on a pre-specified number. If the selected number is three, then T = {0, 1, 2, 3}. The set T

is used to restrict the node selection to those nodes that are at hop-distances not belonging to T.

For the ease of reading, the most commonly used notations are listed in Table 4.1.

Our aim is to minimize the overall total network transfer time or replication time (RT) or

also termed as replication cost (RC). The RT is composed of two factors: (a) time due to read

requests and (b) time due to write requests. The total read time of Ok by Si from NNk
i is denoted

by Rk
i and is given by:

The total time due to the writing of Ok by S
i
 addressed to the Pk is represented as

𝑊𝑘
𝑖 and is given as:

𝑊𝑘
𝑖 = 𝑤𝑘

𝑖 𝑜𝑘(𝑐(𝑖, 𝑃𝑘) + ∑ 𝑐(𝑃𝑘, 𝑗)).
(𝑗∈𝑅𝑘),𝑗≠𝑖

 (4.6)

The overall RT is represented by:

𝑅𝑇 = ∑ ∑(𝑅𝑘
𝑖 + 𝑊𝑘

𝑖)

𝑁

𝑘=1

𝑀

𝑖=1

 (4.7)

The storage capacity constraint states that a file fragment can only be assigned to a node, if

storage capacity of the node is greater or equal to the size of fragment. The bandwidth constraint

states that 𝑏(𝑖, 𝑗) ≥ 𝑡(𝑖, 𝑗)∀𝑖, ∀𝑗. The DROPS methodology assigns the file fragments to the

nodes in a cloud that minimizes the RT, subject to capacity and bandwidth constraints.

𝑅𝑘
𝑖 = 𝑟𝑘

𝑖𝑜𝑘𝑐(𝑖, 𝑁𝑁𝑘
𝑖). (4.5)

68

4.3.2. The Proposed Methodology (DROPS)

In a cloud environment, a file in its totality, stored at a node leads to a single point of

failure [4.4]. A successful attack on a node might put the data confidentiality or integrity, or both

at risk. The aforesaid scenario can occur both in the case of intrusion or accidental errors. In such

systems, performance in terms of retrieval time can be enhanced by employing replication

strategies. However, replication increases the number of file copies within the cloud. Thereby,

increasing the probability of the node holding the file to be a victim of attack as discussed in

Section 4.1. Security and replication are essential for a large-scale system, such as cloud, as both

are utilized to provide services to the end user. Security and replication must be balanced such

that one service must not lower the service level of the other.

In the DROPS methodology, we propose not to store the entire file at a single node. The

DROPS methodology fragments the file and makes use of the cloud for replication. The

fragments are distributed such that no node in a cloud holds more than a single fragment, so that

even a successful attack on the node leaks no significant information. The DROPS methodology

uses controlled replication where each of the fragments is replicated only once in the cloud to

improve the security. Although, the controlled replication does not improve the retrieval time to

the level of full-scale replication, it significantly improves the security.

In the DROPS methodology, user sends the data file to cloud. The cloud manager system

(a user facing server in the cloud that entertains user’s requests) upon receiving the file performs:

(a) fragmentation, (b) first cycle of nodes selection and stores one fragment over each of the

selected node, and (c) second cycle of nodes selection for fragments replication. The cloud

manager keeps record of the fragment placement and is assumed to be a secure entity.

The fragmentation threshold of the data file is specified to be generated by the file owner.

The file owner can specify the fragmentation threshold in terms of either percentage or the

69

number and size of different fragments. The percentage fragmentation threshold, for instance,

can dictate that each fragment will be of 5% size of the total size of the file. Alternatively, the

owner may generate separate file containing information about the fragment number and size, for

instance, fragment 1 of size 5,000 Bytes, fragment 2 of size 8,749 Bytes. We argue that the

owner of the file is the best candidate to generate fragmentation threshold. The owner can best

split the file such that each fragment does not contain significant amount of information as the

owner is cognizant of all the facts pertaining to the data. The default percentage fragmentation

threshold can be made a part of the Service Level Agreement (SLA), if the user does not specify

the fragmentation threshold while uploading the data file. We primarily focus the storage system

security in this work with an assumption that the communication channel between user and the

cloud is secure.

Once the file is split into fragments, the DROPS methodology selects the cloud nodes for

fragment placement. The selection is made by keeping an equal focus on both security and

performance in terms of the access time. We choose the nodes that are most central to the cloud

network to provide better access time. For the aforesaid purpose, the DROPS methodology uses

the concept of centrality to reduce access time. The centralities determine how central a node is

based on different measures as discussed in Section 4.2.2. We implement DROPS with three

centrality measures, namely: (a) betweenness, (b) closeness, and (c) eccentricity centrality.

However, if all of the fragments are placed on the nodes based on the descending order of

centrality, then there is a possibility that adjacent nodes are selected for fragment placement.

Such a placement can provide clues to an attacker as to where other fragments might be present,

reducing the security level of the data. To deal with the security aspects of placing fragments, we

use the concept of T-coloring that was originally used for the channel assignment problem [4.7].

70

Algorithm 4.1: Algorithm for fragment placement

Inputs and initializations:

Compute:

for each 𝑂𝑘 ∈ 𝑂 do

 select 𝑆𝑖|𝑆𝑖 ← indexof (max(𝑐𝑒𝑛𝑖))

 if 𝑐𝑜𝑙𝑆𝑖 = 𝑜𝑝𝑒𝑛_𝑐𝑙𝑜𝑟 𝑎𝑛𝑑 𝑠𝑖 ≥ 𝑜𝑘 then

𝑆𝑖′
← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑖 , 𝑇) ⊲ /* returns all nodes at distance T from

node 𝑆𝑖 and stores in temporary set 𝑆𝑖′ */

 end if

end for

__

end for

𝑂 = {𝑂1, 𝑂2, … , 𝑂𝑁}

𝑜 = {𝑠𝑖𝑧𝑒𝑜𝑓(𝑂1), 𝑠𝑖𝑧𝑜𝑓(𝑂2), … , 𝑠𝑖𝑧𝑒𝑜𝑓(𝑂𝑁)}

𝑐𝑜𝑙 = {𝑜𝑝𝑒𝑛_𝑐𝑜𝑙𝑜𝑟, 𝑐𝑙𝑜𝑠𝑒_𝑐𝑜𝑙𝑜𝑟}

𝑐𝑒𝑛 = {𝑐𝑒𝑛1, 𝑐𝑒𝑛2, … , 𝑐𝑒𝑛𝑀}

𝑐𝑜𝑙 ← 𝑜𝑝𝑒𝑛_𝑐𝑜𝑙𝑜𝑟 ∀ 𝑖

𝑐𝑒𝑛 ← 𝑐𝑒𝑛𝑖 ∀ 𝑖

𝑆𝑖 ← 𝑂𝑘

𝑠𝑖 ← 𝑠𝑖 − 𝑜𝑘

𝑐𝑜𝑙𝑆𝑖 ← 𝑐𝑙𝑜𝑠𝑒−𝑐𝑜𝑙𝑜𝑟

𝑐𝑜𝑙𝑆𝑖 ′ ← 𝑐𝑙𝑜𝑠𝑒−𝑐𝑜𝑙𝑜𝑟

We generate a non-negative random number and build the set T starting from zero to the

generated random number. The set T is used to restrict the node selection to those nodes that are

at hop-distances not belonging to T. For the said purpose, we assign colors to the nodes, such

that, initially, all of the nodes are given the open_color. Once a fragment is placed on the node,

all of the nodes within the neighborhood at a distance belonging to T are assigned close_color. In

the aforesaid process, we lose some of the central nodes that may increase the retrieval time but

we achieve a higher security level. If somehow the intruder compromises a node and obtains a

fragment, then the location of the other fragments cannot be determined. The attacker can only

keep on guessing the location of the other fragments. However, as stated previously in Section

71

4.2.1, the probability of a successful coordinated attack is extremely minute. The process is

repeated until all of the fragments are placed at the nodes. Algorithm 4.1 represents the fragment

placement methodology.

In addition to placing the fragments on the central nodes, we also perform a controlled

replication to increase the data availability, reliability, and improve data retrieval time. We place

the fragment on the node that provides the decreased access cost with an objective to improve

retrieval time for accessing the fragments for reconstruction of original file. While replicating the

fragment, the separation of fragments as explained in the placement technique through T-

coloring, is also taken care off. In case of a large number of fragments or small number of nodes,

it is also possible that some of the fragments are left without being replicated because of the T-

coloring. As discussed previously, T-coloring prohibits storing the fragment in neighborhood of

a node storing a fragment, resulting in the elimination of a number of nodes to be used for

storage. In such a case, only for the remaining fragments, the nodes that are not holding any

fragment are selected for storage randomly. The replication strategy is presented in Algorithm

4.2.

𝑆𝑖 ← 𝑂𝑘

𝑠𝑖 ← 𝑠𝑖 − 𝑜𝑘

𝑐𝑜𝑙𝑆𝑖 ← 𝑐𝑙𝑜𝑠𝑒−𝑐𝑜𝑙𝑜𝑟

𝑐𝑜𝑙𝑆𝑖 ′ ← 𝑐𝑙𝑜𝑠𝑒−𝑐𝑜𝑙𝑜𝑟

__

Algorithm 4.2: Algorithm for fragment’s replication
__

for each 𝑂𝑘 𝑖𝑛 𝑂 do

 select 𝑆𝑖 that has max(𝑅𝑘
𝑖 + 𝑊𝑘

𝑖)

 if 𝑐𝑜𝑙𝑆𝑖 = 𝑜𝑝𝑒𝑛_𝑐𝑜𝑙𝑜𝑟 𝑎𝑛𝑑 𝑠𝑖 ≥ 𝑜𝑘 then

𝑆𝑖′
← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑆𝑖 , 𝑇) ⊲ /* returns all nodes at distance T

from node 𝑆𝑖 and stores in temporary set 𝑆𝑖′ */

 end if

end for

__

72

To handle the download request from user, the cloud manager collects all of the

fragments from the nodes and re-assembles them into a single file. Afterwards, the file is sent to

the user.

Table 4.2. Various attacks handled by DROPS.

4.4. Discussion

A node is compromised with a certain amount of an attacker’s effort. If the compromised

node stores the data file in totality, then a successful attack on a cloud node will result in

compromise of an entire data file. However, if the node stores only a fragment of a file, then a

successful attack reveals only a fragment of a data file. Because the DROPS methodology stores

fragments of data files over distinct nodes, an attacker has to compromise a large number of

nodes to obtain meaningful information. The number of compromised nodes must be greater than

n because each of the compromised nodes may not give fragment in the DROPS methodology as

the nodes are separated based on the T-coloring. Alternatively, an attacker has to compromise the

authentication system of cloud [4.8]. The effort required by an attacker to compromise a node (in

systems dealing with fragments/shares of data) is given in [4.8] as:

Attack Description

Data Recovery Rollback of VM to some previous state. May expose previously stored

data. Cross VM attack Malicious VM attacking co-resident VM that may lead to data breach.

Improper media

sanitization

Data exposure due to improper sanitization of storage devices.

E-discovery Data exposure of one user due to seized hardware for investigations

related to some other users.

VM escape A malicious user or VM escapes from the control of VMM. Provides

access to storage and compute devices.

VM rollback Rollback of VM to some previous state. May expose previously stored

data.

73

𝐸𝐶𝑜𝑛𝑓 = min(𝐸𝐴𝑢𝑡ℎ, 𝑛 × 𝐸𝐵𝑟𝑒𝑎𝑘𝐼𝑛), (4.8)

 where EConf is the effort required to compromise the confidentiality, EAuth is the effort required to

compromise authentication, and EBreakIn is the effort required to compromise a single node. Our

focus in this paper is on the security of the data in the cloud and we do not take into account the

security of the authentication system. Therefore, we can say that to obtain n fragments, the effort

of an attacker increases by a factor of n. Moreover, in case of the DROPS methodology, the

attacker must correctly guess the nodes storing fragments of file. Therefore, in the worst case

scenario, the set of nodes compromised by the attacker will contain all of the nodes storing the

file fragments. From Equation (4.1), we observe that the probability of the worst case to be

successful is very low. The probability that some of the machines (average case) storing the file

fragments will be selected is high in comparison to the worst case probability. However, the

compromised fragments will not be enough to reconstruct the whole data. In terms of the

probability, the worst, average, and best cases are dependent on the number of nodes storing

fragments that are selected for an attack. Therefore, all of the three cases are captured by

Equation (4.1).

Besides the general attack of a compromised node, the DROPS methodology can handle

the attacks in which attacker gets hold of user data by avoiding or disrupting security defenses.

Table 4.2 presents some of the attacks that are handled by the DROPS methodology. The

presented attacks are cloud specific that stem from clouds core technologies. Table 4.2 also

provides a brief description of the attacks. It is noteworthy that even in case of successful attacks

(that are mentioned), the DROPS methodology ensures that the attacker gets only a fragment of

file as DROPS methodology stores only a single fragment on the node. Moreover, the successful

attack has to be on the node that stores the fragment.

74

4.5. Experimental Setup and Results

The communicational backbone of cloud computing is the Data Center Network (DCN)

[4.9]. In this paper, we use three DCN architectures namely: (a) Three tier, (b) Fat tree, and (c)

DCell [4.10]. The Three tier is the legacy DCN architecture. However, to meet the growing

demands of the cloud computing, the Fat tree and Dcell architectures were proposed [4.9].

Therefore, we use the aforementioned three architectures to evaluate the performance of our

scheme on legacy as well as state of the art architectures. The Fat tree and Three tier

architectures are switch-centric networks. The nodes are connected with the access layer

switches. Multiple access layer switches are connected using aggregate layer switches. Core

layers switches interconnect the aggregate layer switches.. The Dcell is a server centric network

architecture that uses servers in addition to switches to perform the communication process

within the network [4.10]. A server in the Dcell architecture is connected to other servers and a

switch. The lower level dcells recursively build the higher level dcells. The dcells at the same

level are fully connected. For details about the aforesaid architectures and their performance

analysis, the readers are encouraged to read [4.9] and [4.10].

4.5.1. Comparative Techniques

We compared the results of the DROPS methodology with fine-grained replication

strategies, namely: (a) DRPA-star, (b) WA-star, (c) AƐ-star, (d) SA1, (e) SA2, (f) SA3, (g) Local

Min-Min, (h) Global Min-Min, (i) Greedy algorithm, and (j) Genetic Replication Algorithm

(GRA). The DRPA-star is a data replication algorithm based on the A-star best-first search

algorithm. The DRPA-star starts from the null solution that is called a root node. The

communication cost at each node n is computed as: cost(n) = g(n) + h(n), where g(n) is the path

cost for reaching n and h(n) is called the heuristic cost and is the estimate of cost from n to the

75

goal node. The DRPA-star searches all of the solutions of allocating a fragment to a node. The

solution that minimizes the cost within the constraints is explored while others are discarded.

The selected solution is inserted into a list called the OPEN list. The list is ordered in the

ascending order so that the solution with the minimum cost is expanded first. The heuristic used

by the DRPA-star is given as h(n) = max(0, (mmk(n)g(n))), where mmk(n) is the least cost replica

allocation or the maxmin RC. Readers are encouraged to see the details about DRPA-star in

[4.11]. The WA-Star is a refinement of the DRPA-star that implements a weighted function to

evaluate the cost. The function is given as: f(n) = f(n) + h(n) + Ɛ(1 − (d(n)/D)h(n). The variable

d(n) represents the depth of the node n and D denotes the expected depth of the goal node [4.11].

The AƐ-star is also a variation of the DRPA-star that uses two lists, OPEN and FOCAL. The

FOCAL list contains only those nodes from the OPEN list that have f greater than or equal to the

lowest f by a factor of 1 + Ɛ. The node expansion is performed from the FOCAL list instead of

the OPEN list. Further details about WA-Star and AƐ-star can be found in [4.11]. The SA1

(suboptimal assignments), SA2, and SA3 are DRPA-star based heuristics. In SA1, at level R or

below, only the best successors of node n having the least expansion costs are selected. The SA2

selects the best successors of node n only for the first time when it reaches the depth level R. All

other successors are discarded. The SA3 works similar to the SA2, except that the nodes are

removed from OPEN list except the one with the lowest cost. Readers are encouraged to read

[4.11] for further details about SA1, SA2, and SA3. The LMM can be considered as a special

case of the bin packing algorithm. The LMM sorts the file fragments based on the RC of the

fragments to be stored at a node. The LMM then assigns the fragments in the ascending order. In

case of a tie, the file fragment with minimum size is selected for assignment (name local Min-

Min is derived from such a policy). The GMM selects the file fragment with global minimum of

76

all the RC associated with a file fragment. In case of a tie, the file fragment is selected at random.

The Greedy algorithm first iterates through all of the M cloud nodes to find the best node for

allocating a file fragment. The node with the lowest replication cost is selected. The second node

for the fragment is selected in the second iteration. However, in the second iteration that node is

selected that produces the lowest RC in combination with node already selected. The process is

repeated for all of the file fragments. Details of the greedy algorithm can be found in [4.12]. The

GRA consists of chromosomes representing various schemes for storing file fragments over

cloud nodes. Every chromosome consists of M genes, each representing a node. Every gene is a

N bit string. If the k-th file fragment is to be assigned to S
i
, then the k-th bit of i-th gene holds the

value of one. Genetic algorithms perform the operations of selection, crossover, and mutation.

The value for the crossover rate (µc) was selected as 0.9, while for the mutation rate (µm) the

value was 0.01. The use of the values for µc and µm is advocated in [4.13].The best chromosome

represents the solution. GRA utilizes mix and match strategy to reach the solution. More details

about GRA can be obtained from [4.13].

4.5.2. Workload

The sizes of files were generated using a uniform distribution between 10Kb and 60 Kb.

The primary nodes were randomly selected for replication algorithms. For the DROPS

methodology, the S
i
’s selected during the first cycle of the nodes selection by Algorithm 4.1

were considered as the primary nodes.

The capacity of a node was generated using a uniform distribution between (
1

2
𝐶𝑆)𝐶 and

(
13

2
𝐶𝑆)𝐶, where0 ≤ 𝐶 ≥ 1. For instance, for CS = 150 and C = 0.6 the capacities of the nodes

were uniformly distributed between 45 and 135. The mean value of g in the OPEN and FOCAL

77

lists was selected as the value of Ɛ, for WA-star and AƐ-star, respectively. The value for level R

was set to ⌊
𝑑

2
⌋, where d is the depth of the search tree (number of fragments).

The read/write (R/W) ratio for the simulations that used fixed value was selected to be

0.25 (The R/W ratio reflecting 25% reads and 75% writes within the cloud). The reason for

choosing a high workload (lower percentage of reads and higher percentage of writes) was to

evaluate the performance of the techniques under extreme cases. The simulations that studied the

impact of change in the R/W ratio used various workloads in terms of R/W ratios. The R/W

ratios selected were in the range of 0.10 to 0.90. The selected range covered the effect of high,

medium, and low workloads with respect to the R/W ratio.

4.5.3. Results and Discussion

We compared the performance of the DROPS methodology with the algorithms

discussed in Section 4.5.1. The behavior of the algorithms was studied by: (a) increasing the

number of nodes in the system, (b) increasing the number of objects keeping number of nodes

constant, (c) changing the nodes storage capacity, and (d) varying the read/write ratio. The

(a)

(b)

Fig. 4.2. (a) RC versus number of nodes (Three tier) (b) RC versus number of nodes (Fat tree).

78

aforesaid parameters are significant as they affect the problem size and the performance of

algorithms [4.11].

4.5.3.1. Impact of increase in number of cloud nodes

We studied the performance of the placement techniques and the DROPS methodology

by increasing the number of nodes. The performance was studied for the three discussed cloud

architectures. The numbers of nodes selected for the simulations were 100, 500, 1,024, 2,400,

and 30,000. The number of nodes in the Dcell architecture increases exponentially [4.9]. For

Dcell architecture, with two nodes in the Dcell0, the architecture consists of 2,400 nodes.

However, increasing a single node in the Dcell0, the total nodes increases to 30, 000 [4.9]. The

number of file fragments was set to 50. For the first experiment we used C = 0.2. Fig. 4.2 (a),

Fig. 4.2 (b), and Fig. 4.3 (a) show the results for the Three tier, Fat tree, and Dcell architectures,

respectively. The reduction in network transfer time for a file is termed as RC. In the figures, the

BC stands for the betweenness centrality, the CC stands for closeness centrality, and the EC

stands for eccentricity centrality.

(a)

(b)

Fig. 4.3. (a) RC versus number of nodes (Dcell) (b) RC versus number of nodes for DROPS

variations with maximum available capacity constraint (Three tier).

79

The interesting observation is that although all of the algorithms showed similar trend in

performance within a specific architecture, the performance of the algorithms was better in the

Dcell architecture as compared to three tier and fat tree architectures. This is because the Dcell

architecture exhibits better inter node connectivity and robustness [4.9]. The DRPA-star gave

best solutions as compared to other techniques and registered consistent performance with the

increase in the number of nodes. Similarly, WA-star, AƐ-star, GRA, greedy, and SA3 showed

almost consistent performance with various numbers of nodes. The performance of LMM and

GMM gradually increased with the increase in number of nodes since the increase in the number

of nodes increased the number of bins. The SA1 and SA2 also showed almost constant

performance in all of the three architectures. However, it is important to note that SA2 ended up

with a decrease in performance as compared to the initial performance. This may be due to the

fact that SA2 only expands the node with minimum cost when it reaches at certain depth for the

first time. Such a pruning for the first time might have purged nodes by providing better global

access time. The DROPS methodology did not employ full-scale replication. Every fragment is

replicated only once in the system. The smaller number of replicas of any fragment and

separation of nodes by T-coloring decreased the probability of finding that fragment by an

attacker. Therefore, the increase in the security level of the data is accompanied by the drop in

performance as compared to the comparative techniques discussed in this paper. It is important

to note that the DROPS methodology was implemented using three centrality measures namely:

(a) betweenness, (b) closeness, and (c) eccentricity. However, Fig. 4.2(a) and Fig. 4.2(b) show

only a single plot. Due to the inherent structure of the Three tier and Fat tree architectures, all of

the nodes in the network are at the same distance from each other or exist at the same level.

Therefore, the centrality measure is the same for all of the nodes. This results in the selection of

80

same node for storing the file fragment. Consequently, the performance showed the same value

and all three lines are on the same points. However, this is not the case for the Dcell architecture.

In the Dcell architecture, nodes have different centrality measures resulting in the selection of

different nodes. It is noteworthy to mention that in Fig 4.3(a), the eccentricity centrality performs

better as compared to the closeness and betweenness centralities because the nodes with higher

eccentricity are located closer to all other nodes within the network. To check the effect of

closeness and betweenness centralities, we modified the heuristic presented in Algorithm 4.1.

Instead of selecting the node with criteria of only maximum centrality, we selected the node

with: (a) maximum centrality and (b) maximum available storage capacity. The results are

presented in Fig. 4.3 (b), Fig. 4.4 (a), and Fig. 4.4 (b). It is evident that the eccentricity centrality

resulted in the highest performance while the betweenness centrality showed the lowest

performance. The reason for this is that nodes with higher eccentricity are closer to all other

nodes in the network that results in lower RC value for accessing the fragments.

(a)

(b)

Fig. 4.4. RC versus number of nodes for DROPS variations with maximum available

capacity constraints (a) Fat tree (b) Dcell.

81

4.5.3.2. Impact of increase in number of file fragments

The increase in number of file fragments can strain the storage capacity of the cloud that,

in turn may affect the selection of the nodes. To study the impact on performance due to increase

in number of file fragments, we set the number of nodes to 30,000. The numbers of file

fragments selected were 50, 100, 200, 300, 400, and 500. The workload was generated with C =

45% to observe the effect of increase number of file fragments with fairly reasonable amount of

memory and to discern the performance of all the algorithms. The results are shown in Fig. 4.5

(a), Fig. 4.5 (b), and Fig. 4.6 (a) for the Three tier, Fat tree, and Dcell architectures, respectively.

It can be observed from the plots that the increase in the number of file fragments reduced the

performance of the algorithms, in general. However, the greedy algorithm showed the most

improved performance. The LMM showed the highest loss in performance that is little above

16%. The loss in performance can be attributed to the storage capacity constraints that prohibited

the placements of some fragments at nodes with optimal retrieval time. As discussed earlier, the

DROPS methodology produced similar results in three tier and fat tree architectures. However,

from the Dcell architecture, it is clear that the DROPS methodology with eccentricity centrality

maintains the supremacy on the other two centralities.

(a)

(b)

Fig. 4.5. (a) RC versus number of file fragments (Three tier) (b) RC versus number of file

fragments (Fat tree).

82

4.5.3.3. Impact of increase in storage capacity of nodes

Next, we studied the effect of change in the nodes storage capacity. A change in storage

capacity of the nodes may affect the number of replicas on the node due to storage capacity

constraints. Intuitively, a lower node storage capacity may result in the elimination of some

optimal nodes to be selected for replication because of violation of storage capacity constraints.

The elimination of some nodes may degrade the performance to some extent because a node

giving lower access time might be pruned due to non-availability of enough storage space to

store the file fragment. Higher node storage capacity allows full-scale replication of fragments,

increasing the performance gain. However, node capacity above certain level will not change the

performance significantly as replicating the already replicated fragments will not produce

considerable performance increase. If the storage nodes have enough capacity to store the

allocated file fragments, then a further increase in the storage capacity of a node cannot cause the

fragments to be stored again. Moreover, the T-coloring allows only a single replica to be stored

on any node. Therefore, after a certain point, the increase in storage capacity might not affect the

performance.

(a)

(b)

Fig. 4.6. (a) RC versus number of file fragments (Dcell) (b) RC versus nodes storage

capacity (Three tier).

83

We increase the nodes storage capacity incrementally from 20% to 40%. The results are

shown in Fig. 4.6 (b), Fig. 4.7 (a), and Fig. 4.7 (b). It is observable from the plots that initially,

all of the algorithms showed significant increase in performance with an increase in the storage

capacity. Afterwards, the marginal increase in the performance reduces with the increase in the

storage capacity. The DRPA-star, greedy, WA-star, and AƐ-star showed nearly similar

performance and recorded higher performance. The DROPS methodology did not show any

considerable change in results when compared to previously discussed experiments (change in

number of nodes and files). This is because the DROPS methodology does not go for a full-scale

replication of file fragments rather they are replicated only once and a single node only stores a

single fragment. Single time replication does not require high storage capacity. Therefore, the

change in nodes storage capacity did not affect the performance of DROPS to a notable extent.

4.5.3.4. Impact of increase in the read/write ratio

The change in R/W ratio affects the performance of the discussed comparative

techniques. An increase in the number of reads would lead to a need of more replicas of the

fragments in the cloud. The increased number of replicas decreases the communication cost

(a)

(b)

Fig. 4.7. (a) RC versus nodes storage capacity (Fat tree) (b) RC versus nodes storage capacity

(Dcell).

84

associated with the reading of fragments. However, the increased number of writes demands that

the replicas be placed closer to the primary node. The presence of replicas closer to the primary

node results in decreased RC associated with updating replicas. The higher write ratios may

increase the traffic on the network for updating the replicas. Fig. 4.8 (a), Fig. 4.8 (b), and Fig. 4.9

show the performance of the comparative techniques and the DROPS methodology under

varying R/W ratios. It is observed that all of the comparative techniques showed an increase in

the RC savings up to the R/W ratio of 0.50. The decrease in the number of writes caused the

reduction of cost associated with updating the replicas of the fragments. However, all of the

comparative techniques showed some sort of decrease in RC saving for R/W ratios above 0.50.

This may be attributed to the fact that an increase in the number of reads caused more replicas of

fragments resulting in increased cost of updating the replicas. Therefore, the increased cost of

updating replicas underpins the advantage of decreased cost of reading with higher number of

replicas at R/W ratio above 0.50.

It is also important to mention that even at higher R/W ratio values the DRPA-star, WA-

star, AƐ-star, and Greedy algorithms almost maintained their initial RC saving values. The high

(a)

(b)

Fig. 4.8. (a) RC versus R/W ratio (Three tier) (b) RC versus R/W ratio (Fat tree).

85

performance of the aforesaid algorithms is due to the fact that these algorithms focus on the

global RC value while replicating the fragments. Therefore, the global perception of these

algorithms resulted in high performance. Alternatively, LMM and GMM did not show

substantial performance due to their local RC view while assigning a fragment to a node. The

SA1, SA2, and SA3 suffered due to their restricted search tree that probably ignored some

globally high performing nodes during expansion. The DROPS methodology maintained almost

consistent performance as is observable from the plots. The reason for this is that the DROPS

methodology replicates the fragments only once, so varying R/W ratios did not affect the results

considerably. However, the slight changes in the RC value are observed. This might be due to

the reason that different nodes generate high cost for R/W of fragments with different R/W ratio.

As discussed earlier, the comparative techniques focus on the performance and try to reduce the

RC as much as possible. The DROPS methodology, on the other hand, is proposed to

collectively approach the security and performance. To increase the security level of the data, the

DROPS methodology sacrifices the performance to certain extent. Therefore, we see a drop in

Fig. 4.9. RC versus R/W ratio (Dcell).

86

the performance of the DROPS methodology as compared to discussed comparative techniques.

However, the drop in performance is accompanied by much needed increase in security level.

Moreover, it is noteworthy that the difference in performance level of the DROPS

methodology and the comparative techniques is least with the reduced storage capacity of the

nodes (see Fig. 4.6 (b), Fig. 4.7 (a), and Fig. 4.7 (b)). The reduced storage capacity proscribes the

comparative techniques to place as many replicas as required for the optimized performance. A

further reduction in the storage capacity will tend to even lower the performance of the

comparative techniques. Therefore, we conclude that the difference in performance level of the

DROPS methodology and the comparative techniques is least when the comparative techniques

reduce the extensiveness of replication for any reason.

Due to the fact that the DROPS methodology reduces the number of replicas, we have

also investigates the fault tolerance of the DROPS methodology. If two nodes storing the same

file fragment fail, the result will be incomplete or faulty file. We randomly picked and failed the

nodes to check that what percentage of failed nodes will result in loss of data or selection of two

nodes storing same file fragment. The numbers of nodes used in aforesaid experiment were 500,

Fig. 4.10. Fault tolerance level of DROPS.

87

1,024, 2,400, and 30, 000. The number of file fragments was set to 50. The results are shown in

Fig. 4.10. As can be seen in Fig. 4.10, the increase in number of nodes increases the fault

tolerance level. The random failure has generated a reasonable percentage for a soundly decent

number of nodes.

4.6. References

[4.1] K. Hashizume, D. G. Rosado, E. Fernndez-Medina, and E. B. Fernandez, “An analysis of

security issues for cloud computing,” Journal of Internet Services and Applications, Vol. 4, No.

1, 2013, pp. 1-13.

[4.2] W. A. Jansen, “Cloud hooks: Security and privacy issues in cloud computing,” In 44th

Hawaii IEEE International Conference on System Sciences (HICSS), 2011, pp. 1-10.

[4.3] A. N. Khan, M.L. M. Kiah, S. A. Madani, and M. Ali, “Enhanced dynamic credential

generation scheme for protection of user identity in mobile-cloud computing, The Journal of

Supercomputing, Vol. 66, No. 3, 2013, pp. 1687-1706.

[4.4] A. Mei, L. V. Mancini, and S. Jajodia, “Secure dynamic fragment and replica allocation in

large-scale distributed file systems,” IEEE Transactions on Parallel and Distributed Systems, ol.

14, No. 9, 2003, pp. 885-896.

[4.5] M. Tu, P. Li, Q. Ma, I-L. Yen, and F. B. Bastani, “On the optimal placement of secure data

objects over Internet,” In Proceedings of 19th IEEE International Parallel and Distributed

Processing Symposium, pp. 14-14, 2005.

[4.6] M. Newman, Networks: An introduction, Oxford University Press, 2009.

[4.7] W. K. Hale, “Frequency assignment: Theory and applications,” Proceedings of the IEEE,

Vol. 68, No. 12, 1980, pp. 1497-1514.

88

[4.8] J. J. Wylie, M. Bakkaloglu, V. Pandurangan, M. W. Bigrigg, S. Oguz, K. Tew, C.

Williams, G. R. Ganger, and P. K. Khosla, “Selecting the right data distribution scheme for a

survivable storage system,” Carnegie Mellon University, Technical Report CMU-CS-01-120,

May 2001.

[4.9] K. Bilal, M. Manzano, S. U. Khan, E. Calle, K. Li, and A. Zomaya, “On the

characterization of the structural robustness of data center networks,” IEEE Transactions on

Cloud Computing, Vol. 1, No. 1, 2013, pp. 64-77.

[4.10] K. Bilal, S. U. Khan, L. Zhang, H. Li, K. Hayat, S. A. Madani, N. Min-Allah, L. Wang, D.

Chen, M. Iqbal, C. Z. Xu, and A. Y. Zomaya, “Quantitative comparisons of the state of the art

data center architectures,” Concurrency and Computation: Practice and Experience, Vol. 25, No.

12, 2013, pp. 1771-1783.

[4.11] S. U. Khan, and I. Ahmad, “Comparison and analysis of ten static heuristics-based

Internet data replication techniques,” Journal of Parallel and Distributed Computing, Vol. 68,

No. 2, 008, pp. 113-136.

[4.12] L. Qiu, V. N. Padmanabhan, and G. M. Voelker, “On the placement of web server

replicas,” In Proceedings of INFOCOM 2001, Twentieth Annual Joint Conference of the IEEE

Computer and Communications Societies, Vol. 3, pp. 1587-1596, 2001.

[4.13] T. Loukopoulos and I. Ahmad, “Static and adaptive distributed data replication using

genetic algorithms,” Journal of Parallel and Distributed Computing, Vol. 64, No. 11, 2004, pp.

1270-1285.

89

5. CONCLUSIONS

The cloud computing exhibits remarkable potential for providing cost effective, easy to

manage, elastic, and powerful resources on the fly over the internet. The cloud computing,

upsurges the capabilities of the hardware resources by optimal and shared utilization. The above

mentioned features encourage the organizations and individual users to shift their data,

applications and services to the cloud. Even the critical infrastructure, for example, power

generation and distribution plants are being migrated to the cloud computing paradigm.

However, the services provided by third-party cloud service providers entail additional security

threats. The migration of users’ assets (data, applications etc.) outside the administrative control

in a shared environment where numerous users are collocated escalates the security concerns.

Security is one of the biggest obstacles that hamper the widespread adoption of cloud

computing. Several business and research organization are reluctant in completely trusting the

cloud computing to shift digital assets to the third-party service providers. The conventional IT

infrastructure keeps the digital assets in the administrative domain of the organizations. All of

the processing, movement, and management of data/application are performed within the

organizational administrative domain. On the other hand, organizations do not enjoy

administrative control of cloud services and infrastructure. The security measures taken by the

cloud service providers (CSP) are generally transparent to the organizations. The presence of

large numbers of users that are not related to the organizations, aggravate the concerns further.

The users might be trusted by the CSP but they may not be of trust to each other. The

aforementioned reasons keep the customers under uncertainties about their digital assets located

at the cloud resulting in reluctance to adopt cloud computing.

90

Data being one of the prime assets of the organizations must be protected from all sorts of

security threats. The data in the cloud is much more vulnerable to risks in terms of

confidentiality, integrity, and availability in comparison to the conventional computing model.

The ever increasing number of users and applications leads to enhanced security risks. In a

shared environment, the security strength of the cloud equals the security strength of its weakest

entity. Not only the malicious entity collocated with the victim data, but also any non-malicious

but unsecure entity can result in breach of data. A successful attack on a single entity will result

in unauthorized access to the data of all the users. Violation of integrity may also result from

multi-tenant nature of the cloud. Employee of SaaS providers, having access to information may

also act as a potential risk.

In Chapter 3, we proposed the DaSCE protocol, a cloud storage security system that

provide key management, access control, and file assured deletion. Assured deletion was based

on policies associated with the data file uploaded to the cloud. On the revocation of policies,

access keys were deleted by the KMs that result in halting of the access to the data. Therefore,

the files were logically deleted from the cloud. The key management was accomplished using (k,

n) threshold secret sharing mechanism. We modeled and analyzed FADE. The analysis

highlighted some issues in key management of FADE. The DaSCE improved the key

management and authentication processes. The working of the DaSCE protocol was formally

analyzed using HLPN, SMT-Lib, and Z3 solver. The performance of the DaSCE was evaluated

based on the time consumption during file upload and download. The results revealed that the

DaSCE protocol can be practically used for clouds for security of outsourced data.

Chapter 4 presented the DROPS methodology, a cloud storage security scheme that

collectively deals with the security and performance in terms of retrieval time. The data file was

91

fragmented and the fragments are dispersed over multiple nodes. The nodes were separated by

means of T-coloring. The fragmentation and dispersal ensured that no significant information

was obtainable by an adversary in case of a successful attack. No node in the cloud, stored more

than a single fragment of the same file. The performance of the DROPS methodology was

compared with full-scale replication techniques. The results of the simulations revealed that the

simultaneous focus on the security and performance caused increased security level of data

accompanied by a slight performance drop.

