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 ABSTRACT  

Fusarium head blight (FHB) is a devastating fungal disease of both durum and common 

wheat. Multiple sources of FHB resistance have been found in common wheat, but not in durum 

wheat. Lack of effective FHB resistance sources and complex inheritance of FHB resistance 

genes in durum limit the development of FHB-resistant durum varieties. This research aimed to 

map FHB resistance genes and to understand the inheritance of the hexaploid wheat-derived 

FHB resistance genes in durum. Molecular mapping positioned the wild emmer wheat (Triticum 

dicoccoides)-derived FHB resistance QTL Qfhs.ndsu-3AS to a chromosomal interval of 5.2 cM 

flanked by the molecular marker Xwgc501 and Xwgc510 on the short arm of chromosome 3A 

(3AS). This study reduced the linkage drag associated with Qfhs.ndsu-3AS and developed new 

molecular markers to assist its selection breeding. The FHB resistance genes in common wheat 

‘Sumai 3’ were normally expressed in the F1 with hexaploids, but not in the F1 with durum. The 

common wheat PI 277012-derived FHB resistance gene(s) exhibited complete dominance in the 

F1 with durum. In addition, ‘Langdon’ (LDN) chromosomes 2B, 3A, 3B, 4A, 4B, 5B, 6A, 6B, 

and 7A were found to contain genes that suppress expression of the Sumai 3-derived FHB 

resistance genes in the F1, and 4A, 6A, and 6B contain genes required for expression of the PI 

277012-derived FHB resistance genes in the F1. Apparently, Sumai 3-derived FHB resistance 

genes exhibited a more complex inheritance pattern than PI 277012 in durum. Evaluation of 

LDN-‘Chinese Spring’ (CS) D-genome disomic substitution lines and LDN-Aegilops tauschii D-

genome addition lines for FHB resistance indicated that LDN chromosome 5A and CS 

chromosome 6D may contain genes for FHB susceptibility and/or suppression of FHB resistance. 

LDN chromosome 2B and Ae. tauschii 5D may carry genes for FHB resistance. Addition of the 

entire D genome to LDN increased susceptibility to FHB. Multiple LDN durum and D-genome 
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chromosomes were identified to have either negative/suppression or positive/enhancement 

effects on FHB resistance. Thus, special genetic manipulation is needed to eliminate the genes 

with negative/suppression effects and to ensure normal expression of FHB resistance genes in 

durum.  
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CHAPTER 1. GENERAL INTRODUCTION 

Durum wheat is an important cultivated wheat species worldwide. Durum production has 

been greatly threatened by Fusarium head blight (FHB), a serious fungal disease in wheat and 

barley, due to the lack of effective FHB resistance. Outbreaks of FHB may result in significant 

economic losses because of reduced grain yield and quality caused by the contamination of 

deoxynivalenol (DON). Host resistance has been recognized as the most economic and efficient 

means to manage FHB. 

Wild relatives of durum wheat as a potential gene pool for FHB resistance have been 

screened and accessions with acceptable FHB resistance have been identified (Oliver et al. 2007, 

2008). Resistance QTL have been identified and mapped using molecular markers in some of the 

FHB-resistant accessions. A major FHB resistance QTL, designated Qfhs.ndsu-3AS, was 

identified and mapped on chromosome 3A of Triticum dicoccoides accession Israel-A (Otto et al. 

2002; Stack et al. 2002). Saturation mapping positioned this QTL to an 11.5 cM chromosomal 

interval by Chen et al. (2007). However, molecular marker density within this QTL region 

remained low, making it difficult to precisely tag the QTL for marker-assisted selection in durum 

breeding. Thus, further saturation and fine mapping of Qfhs.ndsu-3AS will elucidate the exact 

location of the QTL and facilitate its use in wheat breeding. The comparative mapping strategy 

has proven to be an effective approach to saturate a genomic region with molecular markers in 

cereal crops (Faris et al. 2000; Liu and Anderson 2003; Liu et al. 2006; Qin et al. 2011) 

Introgression of hexaploid wheat-derived FHB resistance genes into durum wheat could 

be an alternative approach to improve its FHB resistance. Hexaploid wheat ‘Sumai 3’ with a high 

level of FHB resistance has been widely used in common wheat breeding and many common 

wheat cultivars with comparable resistance as ‘Sumai 3’ have been developed from this 
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resistance source worldwide. However, Sumai 3-derived FHB resistance has not been 

successfully introgressed into durum. Multiple genetic factors in either Sumai 3 or durum wheat 

backgrounds or both could hamper this introgression (Rudd et al. 2001). Recently, another 

hexaploid wheat accession PI 277012 has been identified highly resistant to FHB. It seemed that 

FHB resistance genes in PI 277012 could be expressed in the durum wheat background (Chu et 

al. 2011). Genetic analysis of the expression of Sumai 3- and PI 277012-derived FHB resistance 

in durum and influence of hexaploid wheat-harbored genetic factors such as D-genome 

chromosomes on FHB resistance in the durum background should enhance utilization of 

hexaploid-derived FHB resistance sources in durum improvement. 

Literature Cited 

Chu C, Niu Z, Zhong S, Chao S, Friesen TL, Halley S, Elias EM, Dong Y, Faris JD, Xu SS 

(2011) Identification and molecular mapping of two QTLs with major effects for 

resistance to Fusarium head blight in wheat. Theor Appl Genet 123:1107-111 

Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot 

region in wheat. Genetics 154:823-835 

Liu S, Anderson JA (2003) Targeted molecular mapping of a major wheat QTL for Fusarium 

head blight resistance using wheat ESTs and synteny with rice. Genome 46:817-823 

Liu S, Zhang XL, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex 

microcolinearity among region harboring a major QTL for resistance to Fusarium head 

blight in wheat. Funct Integr Genomics 6:83-89 

Oliver RE, Stack RW, Miller JD, Cai X (2007) Reaction of wild emmer wheat accessions to 

Fusarium head blight. Crop Sci 47:893-899 
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Oliver RE, Cai X, Friesen TL, Halley S, Stack RW, Xu SS (2008) Evaluation of Fusarium head 

blight resistance in tetraploid wheat (Triticum turgidum L.). Crop Sci 48:213-222 

Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major 

Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625-632 

Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE (2011) 

Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew 

resistance gene in wheat. Theor Appl Genet 123:207-218 

Rudd JC, Horsley RD, McKendry AL, Elias EM (2001) Host plant resistance genes for Fusarium 

head blight: sources, mechanisms, and utility in conventional breeding systems. Crop Sci 

41:620-627 

Stack RW, Elias EM, Mitchell FJ, Miller JD, Joppa LR (2002) Fusarium head blight reaction of 

Langdon durum- Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637-

642 
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CHAPTER 2. LITERATURE REVIEW 

Infection of Wheat by the FHB Pathogen 

Fusarium head blight (FHB), also known as scab, is a destructive fungal disease in wheat 

and barley worldwide (Parry et al. 1995; McMullen et al.1997; Stack 1999). At least 17 

Fusarium species could cause FHB with production of various mycotoxins (Parry et al. 1995; 

Bottalico et al. 1998; Bottalico and Perrone 2002). F. graminearum Schwabe 

[teleomorph:Gibberella zeae (Schw.) Petch]  and  F. culmorum (W.G. Smith) Sacc. (teleomorph 

unknown) are frequently encountered species associated with FHB infection in wheat (Parry et al. 

1995; Wilcoxson et al. 1998; Siranidou et al. 2002 ). F. graminearum is a predominant species 

associated with FHB epidemics of wheat in the US (Parry et al. 1995; McMullen et al. 1997). 

Wilcoxson et al. (1998) collected 23,726 isolates from 24 counties in the state of Minnesota and 

75% of them belonged to F. graminearum.  

Outbreak of FHB is favored by high humidity and warm temperature during the 

flowering stage of host plants. Rossi et al. (2001) observed the development of four fungal 

species in wheat plants at temperatures ranging from 10 °C to 35 °C, and concluded that F. 

graminearum exhibited the highest infection frequency at 28-29 °C. Brennan et al. (2005) 

compared the influence of two different temperatures (i.e. 16 °C and 20 °C) on FHB severity in 

wheat, and observed that the temperature of 20 °C led to a greater yield loss than 16 °C. Siou et 

al. (2014) studied the infection of eight isolates from F. graminearum, F. culmorum, and F. poae 

in wheat, and found that wheat plants were most vulnerable to fungal infection at anthesis. Hence, 

a temperature from 15 °C to 30 °C and  humidity equal or greater than 90% during anthesis 

would favor FHB fungal infection and disease development (De Wolf et al. 2003; Cowger et al. 

2009).  
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Infection of the Fusarium fungus starts from the extruded anthers and subsequently the 

caryopsis, floral bracts, and rachis. Afterwards, symptoms can spread through the rachis to the 

close spikelets. The infected spikelets are prematurely bleached (Nakajima 2010). Infection of F. 

graminearum in wheat spikes reduces kernel number and weight, and causes contamination of 

grain by the pathogen-produced deoxynivalenol (DON). DON is harmful to human and livestock 

health when diseased grains are consumed (Snijders and Perkowski 1990; Brennan et al. 2005; 

Pestak 2007). In the USA, it is recommended that the DON content of human food should be less 

than 1ppm 

(http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/Fusarium.aspx). This 

disease has caused tremendous economic losses to wheat growers and industries due to reduced 

yield and quality of wheat grain. For instance, wheat production was reduced up to about 25% 

(2.72 million metric tons) due to epidemics of FHB over 11 states in the USA in 1991 

(McMullen et al. 1997). Serious outbreaks of FHB occurred during the 1990s in the Northern 

Great Plains and central region where durum wheat was mainly produced (McMullen et al. 1997).  

Management of FHB Disease 

Several strategies have been investigated and applied to control FHB. Rotation and tillage 

approaches can be used to reduce the infection from survived F. graminearum in crop residue 

(McMullen et al. 1997). However, the wide range of hosts for the Fusarium fungi makes these 

methods less effective (Bai and Shaner 1994; Parry et al. 1995). Fungicide application is another 

option to reduce FHB risk. However, this does not always provide effective control of FHB 

(Horsley et al. 2006; Nakajima 2010). Moreover, the usefulness of spraying is greatly influenced 

by the application time and cost. Also, there are environmental and food safety concerns 

associated with the extensive application of fungicide in crop production. Thus, FHB 

http://www.apsnet.org/edcenter/intropp/lessons/fungi/ascomycetes/Pages/Fusarium.aspx
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management cannot rely only on fungicide application in wheat (Bai and Shaner 1994; Nakajima 

2010).  

Host resistance has been considered the most effective method to control FHB. Variation 

in the susceptibility of wheat to FHB was first observed in the late 1800s (Bai and Shaner 1994). 

Since then, great efforts have been made to identify FHB resistance sources. The existence of a 

gene for gene relationship between a resistance gene in host and an avirulence gene in the 

parasite was first proposed by Flor (1956, 1971), and was found to apply to many plant-pest 

interactions. This was followed by the formulation of the concepts of vertical and horizontal 

resistance in hosts. Mesterhazy et al. (1999) showed that no host specificity existed in F. 

graminearum and F. culmorum isolates through evaluation of the interaction between 45 wheat 

genotypes with different levels of resistance and 15 isolates of F. graminearum and F. culmorum. 

Toth et al. (2008) observed similar FHB reactions of 20 wheat genotypes to different isolates of 

F. graminearum. Thus, FHB resistance is neither race-specific nor species-specific in wheat. As 

a result, it was proposed that FHB resistance in wheat has a horizontal nature (Snijders and van 

Eeuwijk 1991; van Eeuwijk et al. 1995; Mesterhazy et al. 1999). 

Types of FHB Resistance  

Generally, resistance to FHB has been classified into two categories: physiological 

(active) or morphological (or passive) (Miedaner 1997; Rudd et al. 2001). Wheat morphological 

traits including height, presence of awns, peduncle length, opening of the flower, heading time, 

and spikelet compactness were investigated for their contribution to FHB resistance (Mesterhazy 

1995; Paillard et al. 2004; Gilsinger et al. 2005; Schmolke et al. 2005; Chu et al. 2007; Klahr et 

al. 2007). However, no clear relationships between these morphological traits and FHB 
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resistance have been observed (Miedaner 1997; Holzapfel et al. 2008). Thus, selection of FHB 

resistance based on morphological traits is not preferable in wheat.  

Two types of physiological resistance to FHB were proposed by Schroeder and 

Christensen (1963): (I) resistance that impedes the initial infection by the pathogen, and (II) 

resistance that delays the spread of the pathogen in the infected plant organ. Further studies 

revealed great variation among wheat accessions in their ability to degrade and tolerate the 

secondary metabolite DON during infection by F. graminearum. Miller et al. (1985) analyzed 

the ratio of ergosterol, a biomarker for fungal biomass, to DON. It was observed that the ratio 

was higher in FHB resistant wheat accessions than in susceptible ones, suggesting resistant 

wheat had greater ability to degrade DON. Miller and Arnison (1986) observed the suspension 

cultured wheat ‘Frontana’ degraded 18% of DON 72 hr post-inoculation, which partly accounted 

for FHB resistance identified in Frontana. These results indicated that the synthesis and 

metabolism of DON were related with FHB resistance in wheat. Analysis of coleoptile 

development under different concentrations of DON in 14 spring wheat accessions indicated that 

FHB-resistant wheat accessions tolerated higher concentrations of DON than susceptible 

accessions (Wang and Miller 1988). In addition, resistance to kernel infection and yield tolerance 

were also identified associated with genotypes in wheat (Mesterhazy 1995; Mesterhazy et al. 

1999). As a result, five types of FHB resistance were proposed:  (I) resistance to initial infection, 

(II) resistance against fungus spread within the spike, (III) resistance against kernel infection, (IV) 

yield tolerance, and (V) decomposition of mycotoxins in the infected spikes.  

FHB Inoculation and Evaluation 

Multiple inoculation methods have been developed and used to evaluate the five types of 

FHB resistance in wheat. Single-floret and spray inoculation methods are commonly used in the 
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greenhouse and field for FHB resistance evaluation (Buerstmayr et al. 2009). In the single-floret 

inoculation method, 5-10 µl of inoculum with a concentration typically ranging from 10,000 to 

100,000 conidiospore mL-1 is injected into the central floret in a spike at anthesis (Rudd et al. 

2001; Stack et al. 2002; Rosyara et al. 2009). The single-floret inoculation method provides the 

same amount of inoculum for each inoculated spike and reduces variation in FHB infection due 

to different amounts of inoculum. Afterwards, the inoculated spikes are kept under a high level 

of humidity for 72 hr with a plastic bag or misting system to favor infection. FHB severity is 

scored 14 days and 21 days post-inoculation. Time and labor requirements are the major 

shortcomings of this method. 

The spray inoculation method is also commonly used for its convenience. In this method, 

the inoculum with a concentration of 50,000 conidiospore mL-1 is sprayed at the mid-anthesis 

stage, and the treatment is repeated two or three days later (Somers et al. 2003; Steiner et al. 

2004; Yang et al. 2005; Chen et al. 2006). After inoculation, a mist-irrigation system is used to 

maintain a high humidity for three days to favor disease development. FHB severity is scored 21 

days post-inoculation. This method is widely used for large-scale evaluations in the field due to 

its convenience, but it is greatly influenced by environmental conditions, especially the 

temperature. 

Grain spawn is another large-scale evaluation method widely used in the field. In this 

method, the inoculum is carried by grain such as wheat or corn. The grain spawn is usually 

prepared in a laboratory and is evenly distributed in the field about three weeks prior to the 

flowering stage. Field plots are misted for disease development after spawn application (Chu et 

al. 2007). FHB is usually assessed 21 or more days post anthesis depending on disease 

development.   
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FHB resistance can be assessed as FHB spread, FHB severity, FHB incidence, disease 

index, Fusarium damaged kernels (FDK), and DON content (Buerstmayr et al. 2009). The 

percentage of infected spikelets in each spike can be visually scored as a value of FHB spread 

with a scale from 0 to 100% (Kumar et al. 2007). This value is usually used to evaluate 

resistance to pathogen spread (Type II) along the rachis of infected spikes. For convenience of 

scoring, a modified scale was proposed with the assumption of 13 to 14 spikelets in a spike 

(Stack and McMullen 1998). The scale was classified into ten infection types (0%, 7%, 14%, 

21%, 33%, 50%, 66%, 79%, 90%, and 100%). The value 7%, 14%, and 21% represent one, two 

and three infected spikelets in a spike, respectively, and 33%, 50%, and 66% are for 1/3, 1/2, and 

2/3 of spikelets being infected in a spike. FHB severity is a mean value of the percentage of 

diseased spikelets per unit and has been used for the evaluation of Type II resistance (Paul et al. 

2005; Buerstmayr et al. 2009). The percentage of infected spikes per unit is scored as incidence. 

It is used to determine Type I resistance (Chen et al. 2006). The disease index is calculated by 

multiplying incidence by FHB severity (Stack and McMullen 1998). Positive correlation was 

observed among incidence, FHB severity, and disease index (Paul et al. 2005; Oliver et al. 2008; 

Kollers et al. 2013). However, negative correlation between incidence and FHB severity was also 

reported in some genotypes (Gilbert and Woods 2006). FDK is estimated by calculating the 

percentage of diseased kernels in a random sample (Chu et al. 2007; Cowger et al. 2009). DON 

content (mg kg-1) of kernels is determined using gas chromatograph-mass spectrometry (GC-

MS), enzyme-linked immunosorbent assay (ELISA) or other chromatographic methods (Hart et 

al. 1998; Zhou et al. 2002; Chu et al. 2007). Among the above evaluation methods, visual 

measurement of FHB spread and severity for Type II resistance has been widely adopted for 

FHB disease evaluation in wheat (Buerstmayr et al. 2009). 
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Sources of FHB Resistance 

Extensive screening of FHB resistance has been performed in the primary, secondary, 

and tertiary gene pools of wheat since the discovery of variation in FHB resistance among 

different genotypes (Snijders 1990a; Cai et al. 2005; Oliver et al. 2007, 2008). The widely used 

sources of FHB resistance are categorized into three groups: (1) winter wheat from Europe, (2) 

spring wheat from China/Japan, (3) spring wheat from Brazil (Schroeder and Christensen 1963; 

Snijders 1990a). In addition, new sources of resistance to FHB have been identified from the 

germplasm pools derived from other parts of the world (Rudd et al. 2001; Zhang et al. 2008; Liu 

and Anderson 2013). Most of the resistance sources exhibit moderate resistance to FHB (Rudd et 

al. 2001; Liu et al. 2013). 

 ‘Sumai 3’, a widely used FHB resistance source of Chinese origin, has played an 

important role in wheat breeding for FHB resistance worldwide. It was developed from the cross 

of two FHB susceptible accessions ‘Funo’ and ‘Taiwan Xiaomai’ and released in the early 

1970’s in China (He et al. 2001). As a cultivar derived from transgressive segregation, Sumai 3 

exhibited a high level of FHB resistance. However, minor genetic variations have been observed 

among the Sumai 3 accession from different countries (Niwa et al. 2014). A number of Sumai 3-

derived cultivars such as ‘Ning 7840’, ‘Een 1’, and ‘Alsen’ have been released in China and the 

USA and exhibited good levels of FHB resistance (http://www.ag.ndsu.nodak.edu/alsen.htm; He 

et al. 2001). Another Chinese landrace ‘Wangshuibai’ has also been identified possessing 

moderate Type II resistance to FHB. This resistance source has not been used as widely in wheat 

breeding as Sumai 3 (Zhou et al. 2004; Lin et al. 2004). PI 277012 is a newly reported spring 

wheat accession with a similar level of FHB resistance as Sumai 3 (Chu et al. 2011). Other FHB 

resistance sources such as Frontana from Brazil (Steiner et al. 2004), ‘Arina’ from Switzerland  

http://www.ag.ndsu.nodak.edu/alsen.htm


11 

 

(Paillard et al. 2004), and ‘Nobeokabozu’ from Japan (Steiner et al. 2004) have been reported.  

  Complete resistance to FHB has not been found in wheat and its relatives although 

tremendous efforts have been made to search for new sources of FHB resistance. In addition, 

FHB resistance gene introgression into adapted genotypes has been a challenge due to complex 

inheritance and poor understanding of FHB resistance genes in wheat. Sumai 3-derived common 

wheat cultivars exhibited moderate resistance and introgression of FHB resistance from Sumai 3 

into durum wheat has been hampered by unknown genetic factors. Therefore, identification of 

novel genes for FHB resistance remains essential in wheat, especially in durum. Extensive 

attention has been placed on searching for FHB resistance genes from wild relatives of wheat. 

FHB resistance has been identified in several wheat-related genera including Aegilops, 

Agropyron, Hystrix, Elymus, Kengyilla, Secale, and Thinopyrum in the tribe Triticeae, and even 

higher levels of FHB resistance than that in Sumai 3 were observed in some wild species (Cai et 

al. 2005). These wild species represent a promising gene pool for wheat improvement with 

regard to FHB resistance. However, linkage drag associated with alien chromatin/genes and 

presence of the presence of Ph gene that inhibits homoeologous recombination in wheat makes 

the introgression of alien genes into wheat more difficult than to use native FHB resistance genes 

(Wang et al. 1977; Cai et al. 2008). Accessions from different species in the genus Triticum have 

been evaluated for FHB resistance, and some accessions of T. timopheevii, T. karamyschevii, T. 

dicoccum, and T. dicoccoides have been identified with FHB resistance. FHB resistance 

identified in T. dicoccoides has become an important source in durum breeding (Otto et al. 2002; 

Stack et al. 2002; Chen et al. 2007). Various methods have been developed to overcome the 

obstacles in the utilization of alien FHB resistance genes in wheat breeding. Embryo rescue 

makes it possible to recover hybrids between alien species and wheat. Meiotic pairing and 
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recombination between homoeologous chromosomes of wheat and related wild species have 

been enhanced using a mutant Ph gene, i.e. ph1b mutant (Wang et al. 1977; Sharma and Ohm 

1990). In addition, a number of wheat-alien species derivatives with FHB resistance have been 

developed and identified. They are ideal ‘bridge’ materials for alien gene introgression from wild 

species into wheat. 

Genetic and Molecular Analysis of FHB Resistance Genes 

The quantitative nature of inheritance conferred by minor or major genes for FHB 

resistance has been reported in various studies (Snijders 1990b; Van Ginkel et al. 1996; 

Holzapfel et al. 2008). FHB resistance is mainly controlled by additive genetic effects, but non-

additive genetic effects such as dominance or epistasis are also observed. Snijders (1990b) found 

that both additive and dominance genetic effects were associated with FHB resistance, but 

additive genetic effects were more important. Predominant additive effect in FHB resistance was 

also reported in other studies (Ottler et al. 2004; Yang et al. 2005). In addition, dominance effect 

was found to play a major role in FHB resistance in some crosses (Snijders 1990c).    

Due to strong genotype by environment interaction, wide-range heritability of FHB 

resistance was observed for different genotypes. Snijders (1990b) analyzed broad-sense 

heritability of ten winter genotypes in F2 populations and observed large variation from 0.05 to 

0.89 for individual F2 families derived from different genotypes. Fakhfakh et al. (2011) 

calculated heritability of 0.42 and 0.84 for FHB severity and FDK at 21 days post-inoculation, 

respectively. This result illustrated the effectiveness of scoring these two traits at three weeks 

after inoculation. Transgressive segregants for FHB resistance were observed in many 

segregating populations (Buerstmayr et al. 2002; Steiner et al. 2004). Sumai 3 was selected from  

the transgressive segregants of the cross between two FHB-susceptible cultivars (He et al. 2001).  
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Genomic resources and tools have been widely used to identify and characterize FHB 

resistance genes in wheat. Quantitative trait loci (QTL) mapping has been frequently performed 

to detect and locate the genes for FHB resistance. Several types of molecular markers including 

restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism 

(AFLP), simple sequence repeat (SSR), sequence tagged site (STS), target region amplification 

polymorphism (TRAP), diversity arrays technology (DArT), sequence tagged microsatellite 

(STM), and single nucleotide polymorphism (SNP) have been employed in the molecular 

mapping of FHB resistance QTL in wheat (Waldron et al. 1999; Zhou et al. 2002; Liu  and 

Anderson 2003; Chen et al. 2007; Basnet et al. 2012; Bernardo et al. 2012; Buerstmaryr et al. 

2013). Recombinant inbred lines (RILs) and doubled haploids (DHs) are commonly used 

populations for FHB resistance QTL mapping because of their nature of true breeding and utility 

in the replicated FHB evaluation experiments at multiple locations and seasons (Waldron et al. 

1999; Chen et al. 2007; Buerstmaryr et al. 2009).  

All 21 wheat chromosomes have been found to contain FHB resistance QTL. Many 

wheat accessions harbor multiple QTL on different chromosomes (Buerstmaryr et al. 2009; 

Cativelli et al. 2013). Sumai 3 has FHB resistance QTL on chromosome 2B, 3B, 6B, and 7A 

(Zhou et al. 2002). The major QTL on 3BS in Sumai 3, designated Qfhs.ndsu-3BS or Fhb1, has 

been verified in different studies (Waldron et al. 1999; Anderson et al. 2001; Buerstmayr et al. 

2002; Zhou et al. 2002). A high-density linkage map of Fhb1 was constructed using a 

comparative mapping strategy. Efforts toward map-based cloning of Fhb1 have been made; 

however, no functional gene has been identified (Liu et al. 2006; Liu et al. 2008). Zhuang et al. 

(2012) proposed that the genes in Sumai 3 could possibly confer FHB resistance by reducing the 

susceptibility of Sumai 3 rather than expressing an active FHB resistance reaction. It was 
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identified that the Chinese landrace Wangshuibai harbors FHB resistance genes on chromosomes 

2A, 3A, 5A, 7A, 1B, 3B, 4B, 5B, 6B, 2D, 3D, 5D, and 7D explaining 5.0% to 37.3% of the 

phenotypic variation (Lin et al. 2004; Zhang et al. 2004; Zhou et al. 2004; Jia et al. 2005; Mardi 

et al. 2005; Lin et al. 2006; Ma et al. 2006; Yu et al. 2008; Zhang et al. 2010). Frontana was 

identified to contain FHB resistance QTL on chromosomes 3A, 5A, 7A, 2B, and 6B (Steiner et al. 

2004; Mardi et al. 2006). Two FHB resistance QTL were identified on the short and long arms of 

chromosome 5A, respectively, in the common wheat accession PI 277012 (Chu et al. 2011). The 

nature of the polygenic inheritance makes the introgression and breeding for FHB resistance a 

challenge in wheat.  

A number of FHB resistance genes have been identified from various sources. Some of 

them have been successfully utilized in the development of superior wheat cultivars. However, 

genes for FHB susceptibility should not be ignored. Manipulating those genes may be another 

approach to improve resistance of wheat to FHB. Zhou et al. (2002) developed a set of ‘Chinese 

Spring’ (CS)-Sumai 3 disomic substitution lines where a pair of CS chromosomes was 

substituted by a pair of homologous chromosomes from Sumai 3. FHB evaluation of these 

substitution lines revealed that Sumai 3 chromosomes 1B, 2D, and 4D contained genes for DON 

accumulation. Also, FHB-susceptible genotypes may contain FHB resistance genes that are not 

normally expressed due to genetic suppression. Basnet et al. (2012) identified three FHB 

resistance QTL on chromosomes 3B, 6B, and 2D in a population derived from the cross of 

Sumai 3 with a susceptible Tibetan landrace, Y1193-6. The QTL on chromosome 2D originated 

from the susceptible parent, Y1193-6. Shen et al. (2003) and Handa et al. (2008) also identified 

FHB resistance genes on chromosome 2D from susceptible wheat accessions. 
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FHB Resistance in Durum Wheat 

Multiple sources of resistance to FHB have been identified in common wheat (Triticum 

aestivum L., 2n = 6x = 42, genome AABBDD). Some of them have been successfully utilized in 

cultivar development. Several tetraploid relatives of durum wheat (T. durum Desf., 2n = 4x = 28, 

genome AABB) and durum landraces exhibited improved FHB resistance compared to current 

durum cultivars (Otto et al. 2002; Kumar et al. 2007; Ghavami et al. 2011; Talas et al. 2011). 

However, a source of resistance to FHB comparable to the widely used hexaploid resistance 

source Sumai 3 has not been found in durum and its tetraploid relatives. Moreover, introgression 

of FHB resistance from hexaploid wheat including Sumai 3 into durum wheat has not been very 

successful. It has been postulated that, 1) the D-genome chromosomes possibly play a role in the 

expression of Sumai 3-derived FHB resistance; 2) the complete set of FHB resistance genes in 

Sumai 3 is difficult to recover; 3) suppressors of the Sumai 3-derived FHB resistance genes exist 

in the durum wheat background (Gilbert et al. 2002; Liu and Anderson 2003; Rudd et al. 2011; 

Basnet et al. 2012).  

Both cultivated and wild tetraploid relatives of durum wheat were screened to identify 

novel FHB resistance genes for durum wheat improvement (Oliver et al. 2007, 2008). Evaluation 

of 376 accessions under five cultivated tetraploid wheat sub-species related to durum identified a 

few FHB resistant accessions in Persian wheat and Poulard wheat (Oliver et al. 2008). Oliver et 

al. (2007) evaluated 416 wild emmer wheat accessions in the greenhouse, observed tremendous 

variation in FHB resistance, and identified accessions with significant resistance to FHB. Several 

FHB resistance QTL have been detected and mapped to specific chromosomes in several 

tetraploid species including T. dicoccoides, T. dicoccum, T. cathlicum, and T. durum (Otto et al. 

2002; Somers et al. 2006; Stack and Faris 2006; Kumar et al. 2007; Buerstmayr et al. 2012). 
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Among these QTL, Qfhs.ndsu-3AS conferring Type II resistance from T. dicoccoides accession 

Israel-A has been further characterized through molecular mapping (Otto et al. 2002; Stack et al. 

2002; Chen et al. 2007; Zhu et al. 2013). It was positioned to a chromosomal interval of 11.5 cM 

flanked by the markers Xfcp401 and Xfcp397.2 on chromosome 3A by Chen et al. (2007). 

Further saturation and high-resolution mapping were performed in this study to better understand 

this QTL and develop effective molecular markers for marker-assisted selection in durum 

breeding. 

Conclusions 

Fusarium head blight disease in terms of pathogen infection, disease evaluation and 

control, inheritance pattern of host resistance, and identification and development of resistant 

germplasm have been extensively studied in wheat. Significant progress has been made in the 

management of FHB especially by improving host resistance in common wheat. The lack of an 

effective resistance source has limited improvement of FHB resistance in durum. In addition, 

complex inheritance of FHB resistance genes in durum makes it difficult to incorporate 

hexaploid wheat-derived FHB resistance genes into durum. It is essential to have a better 

understanding of the expression and inheritance of FHB resistance genes in durum. This will 

facilitate utilization of the FHB resistance sources currently available in hexaploid and tetraploid 

wheat to improve FHB resistance of durum.  
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CHAPTER 3. TOWARD A BETTER UNDERSTANDING OF THE CHROMOSOMAL 

REGION HARBORING FUSARIUM HEAD BLIGHT RESISTANCE  

QTL QFHS.NDSU-3AS IN DURUM WHEAT 

Abstract 

 Comparative mapping has been an efficient strategy for molecular mapping of the wheat 

genome, especially with respect to saturation and fine mapping, by taking advantage of the 

genomic collinearity of wheat with other species in the grass family. In this study, the genomic 

region harboring Fusarium head blight (FHB) resistance quantitative trait locus (QTL) 

Qfhs.ndsu-3AS on wheat chromosome 3A was saturated with 42 newly developed sequence 

tagged site (STS) and simple sequence repeat (SSR) markers. They spanned a genetic distance of 

232 cM on the short arm of chromosome 3A. The STS and SSR primers were designed from the 

wheat ESTs identified based on the micro-collinearity of this QTL region with the corresponding 

rice and Brachypodium genomic regions. Qfhs.ndsu-3AS was mapped to a chromosomal interval 

of 7.4 cM flanked by Xbcd1532/Xbarc45 and Xwgc510. Moreover, the map resolution of the 

QTL region was improved by genotyping 372 F2 individuals derived from the cross of the 

recombinant line RICL#10 containing Qfhs.ndsu-3AS in the shortest T. dicoccoides 

chromosomal fragment with ‘Langdon’ (LDN) durum. As a result, five co-segregating markers 

in the QTL region mapped to three loci proximal to Xgwm2. The other four STS markers 

(Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301) mapped further proximal to the above 

markers in a higher resolution. Five homozygous recombinant lines with smaller T. dicoccoides 

chromosomal fragments have been selected for FHB evaluation using the molecular markers in 

the F3, F4, and F5 generations. Qfhs.ndsu-3AS was further mapped to a 5.2-cM interval flanked by 

marker Xwgc501 and Xwgc510 in the advanced populations. This has reduced the T. dicoccoides 
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chromatin around Qfhs.ndsu-3AS and minimized the linkage drag associated with the alien 

chromatin, making this alien FHB resistance QTL more useful in durum breeding.    

Introduction 

Fusarium head blight (FHB), caused mostly by Fusarium graminearum Schwabe 

[telomorph:Gibberella zeae (Schw.) Petch], is a destructive fungal disease of wheat. Epidemic 

infection of FHB is accelerated by warm and humid conditions (Stack and McMullen 1985; Xu 

et al. 2008). Outbreak of FHB can cause severe losses in grain yield and quality in both common 

wheat (Triticum. aestivum L., 2n=6x=42, genome AABBDD) and durum wheat (T. durum Desf., 

2n=4x=28, genome AABB) (McMullen et al. 1997). Multiple genes for FHB resistance have 

been identified and successfully deployed in common wheat cultivars (Liu  and Anderson 2003; 

Liu et al. 2006, 2008; Buerstmayr et al. 2009; Chu et al. 2011). However, FHB remains a major 

threat to durum wheat production due to the lack of effective resistance sources in durum (Oliver 

et al. 2007). Incorporation of FHB resistance genes from common wheat into durum has not been 

very successful because of complex inheritance of hexaploid-derived FHB resistance in the 

durum background (Buerstmayr et al. 2012; Zhu et al. 2012). 

Sources of FHB resistance have been found in durum wheat and its tetraploid relatives 

even though they are not as effective as those in common wheat (Stack et al. 2002; Buerstmayr et 

al. 2003; Cai et al. 2005; Oliver et al. 2007, 2008; Ghavami et al. 2011; Talas et al. 2011; Ruan et 

al. 2012). Molecular mapping has identified several wild emmer wheat (T. dicoccoides)-derived 

FHB resistance QTL, including Qfhs-ndsu-3AS on chromosome 3A (Otto et al. 2002), Qfhs.fcu-

7AL on 7A (Kumar et al. 2007), and another one on 6B (Stack et al. 2006). Also, FHB resistance 

QTL has been detected in the durum-related tetraploids T. cathlicum (Somers et al. 2006) and T. 

dicoccum (Buerstmayr et al. 2012; Zhang et al. 2014). In addition, extensive screening of durum 
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accessions for FHB resistance has identified several durum landraces with detectable resistance 

to the disease over the last few years (Ghavami et al. 2011; Talas et al. 2011; Zhang et al. 2014). 

Some of these tetraploid-derived FHB resistance QTL have been mapped to the same genomic 

regions as those identified in hexaploids, suggesting collinearity of the resistance gene loci in 

tetraploids and hexaploids.  

Qfhs.ndsu-3AS is a wild emmer-derived FHB resistance QTL located on the short arm of 

chromosome 3A (Otto et al. 2002; Stack et al. 2002). It is the first FHB resistance QTL identified 

in tetraploid wheat and confers moderate resistance in the durum background. Saturation 

mapping positioned Qfhs.ndsu-3AS to a chromosomal interval of 11.5 cM flanked by the 

molecular markers Xfcp401 and Xfcp397.2 on 3AS (Chen et al. 2007). Wheat chromosomes in 

homoeologous group 3 are collinear to rice chromosome 1 and Brachypodium chromosome 2 

(Moore et al.1995; the International Brachypodium Initiative 2010; Sehgal et al. 2012; Luo et al. 

2013). Wheat researchers have been taking advantage of the collinearity to characterize the large 

and complex polyploid genome of wheat using the genomic resources available in these two 

grass models, rice and Brachypodium (Liu  and Anderson 2003; Liu et al. 2006; Foote et al. 2004; 

Kumar et al. 2009). This study aimed to utilize the micro-collinearity of the chromosomal region 

harboring Qfhs.ndsu-3AS with rice chromosome 1 and Brachypodium chromosome 2, and to 

precisely identify the position of Qfhs.ndsu-3AS within a smaller chromosomal region. This will 

facilitate understanding of the genomic region harboring the FHB resistance QTL Qfhs.ndsu-3AS 

and provide effective molecular markers to assist selection of this resistance QTL in wheat 

breeding.  
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Materials and Methods 

Mapping Populations  

Eighty-three recombinant inbred chromosome lines (RICLs) developed by Joppa (1993) 

from the cross between durum wheat cultivar ‘Langdon’ (LDN) and disomic LDN-T. 

dicoccoides Israel-A (ISA) substitution line 3A [LDN (DIC-3A)] were employed for saturation 

mapping in this study. RICL#10, having the shortest T. dicoccoides chromosomal fragment 

harboring Qfhs.ndsu-3AS, was crossed with LDN to generate additional meiotic recombinants 

within the chromosomal region for fine mapping of the QTL. A large F2 population (n>1,800) 

segregating only in the QTL region was developed from that cross for fine mapping. The F2 

individuals with smaller T. dicoccoides chromosomal fragments than RICL#10 were screened to 

develop recombinants homozygous at the marker loci within the Qfhs.ndsu-3AS region. 

Homozygous recombinants were evaluated for FHB resistance to further map Qfhs.ndsu-3AS to a 

smaller chromosomal interval. 

Comparative Analysis and Molecular Marker Development 

An initial comparative analysis was performed to develop additional EST (expressed 

sequence tag)-derived STS (sequence tagged site) and SSR (simple sequence repeat) markers for 

saturation mapping of the Qfhs.ndsu-3AS QTL region based on the collinearity of the QTL 

region with the genomic regions on rice chromosome 1. The EST sequences of BE517736 and 

BF484475, from which the STS markers Xfcp402 and Xfcp399 flanking the QTL region were 

developed (Chen et al. 2007), were used as queries to perform BLASTn against rice and 

Brachypodium genomic sequences and to identify the collinear counterparts of the QTL region 

on rice chromosome 1 and Brachypodium chromosome 2 in the J. Craig Venter Institute (JCVI) 

wheat genome database (http://blast.jcvi.org/euk-blast/index.cgi?project=tae1) and 

http://blast.jcvi.org/euk-blast/index.cgi?project=tae1
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Brachypodium database (http://www.brachypodium.org/gmod/alignment/blast_finders/new), 

respectively. A threshold of an expected (E) value equal to or less than e-15 was adopted in the 

BLAST searching and comparative analysis. The rice and Brachypodium bacterial artificial 

chromosome (BAC)/P1-derived artificial chromosome(PAC) clones hit in the BLAST search 

were used as anchor points to identify the rice and Brachypodium genomic regions collinear to 

the QTL region (http://www.ebi.ac.uk/ena/data/view/GCA_000005425.2; 

http://ensembl.gramene.org/Brachypodium_distachyon/Info/Index?db=core;r=2:1-4999). Then 

the rice and Brachypodium genomic sequences collinear with the QTL region and the adjacent 

rice and Brachypodium sequences outside of the anchor points were used as queries to search for 

wheat ESTs through BLASTn in the JCVI wheat genome database. The corresponding tentative 

sequences (TCs) (http://compbio.dfci.harvard.edu/cgi-bin/tgi/est_ann.pl?gudb=wheat) or contigs 

in GrainGenes 2.0 (http://wheat.pw.usda.gov/GG2/index.shtml) for the identified ESTs were 

adopted to eliminate redundant EST sequences. The STS and SSR primers were designed from 

the EST sequences using Primer 3 (http://biotools.umassmed.edu/bioapps/primer3_www.cgi).  

Molecular Marker Analysis and Genetic Mapping 

All EST-derived STS and SSR primers were screened for polymorphisms between LDN 

and LDN (DIC-3A). The polymorphic markers were employed to genotype 83 RICLs. PCR 

amplification was carried out in a 20-µl mixture containing 40 ng genomic DNA, 0.5 µM each of 

forward and reverse primers, 1x PCR buffer, 1.5 mM MgCl2, 0.25 mM dNTP and 0.25 U of Taq 

DNA polymerase. PCR was performed according to the following protocol: 94 oC for 3 min; 45 

cycles of 94 oC for 1 min, 52~60 oC (varied with specific primer pairs) for 1 min and 72 oC for 

1.5 min; then with a final 72 oC for 7 min. PCR products were separated on 8% polyacrylamide 

gel and visualized by ethidium bromide staining or separated on 5% denaturing polyacrylamide 

http://www.brachypodium.org/gmod/alignment/blast_finders/new
http://www.ebi.ac.uk/ena/data/view/GCA_000005425.2
http://ensembl.gramene.org/Brachypodium_distachyon/Info/Index?db=core;r=2:1-4999
http://compbio.dfci.harvard.edu/cgi-bin/tgi/est_ann.pl?gudb=wheat
http://wheat.pw.usda.gov/GG2/index.shtml
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
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gel and visualized by silver staining (Liu and Anderson 2003; Chen et al. 2007). Additional 

molecular marker techniques used in this study included cleaved amplified polymorphism (CAP) 

(Chen et al. 2003), single-strand conformation polymorphism (SSCP) (Kumar et al. 2006), and 

heteroduplex analysis (Mohamed et al. 2004). The genetic maps were constructed by using 

Mapmaker 2.0 for Macintosh as described by Lander et al. (1987). All the newly developed 

molecular markers in this project were designated Xwgc followed by a number.  

FHB Disease Evaluation 

 All homozygous recombinant plants were grown in 6-inch plastic pots randomly 

arranged on the bench in the greenhouse with one plant in each pot. The control RICL #10 was 

planted in three pots with two plants in each pot in each greenhouse environment. FHB 

resistance was evaluated with the point inoculation method following the procedure described by 

Stack et al. (2002). A single floret from a central spikelet was inoculated at first anthesis using 

10 µl of conidiospore suspension. The inoculum was prepared from four spcies of F. 

graminearum and concentrated to 1 × 105 conidiospores per mL. The temperature in the 

greenhouse was kept at approximately 25 oC with 16 hr photoperiod during the disease 

development stage. To facilitate disease development, high humidity was maintained for 72 hr 

with the inoculated spikes covered by a plastic bag. At 21 days post inoculation, the percentage 

of infected spikelets in a spike was scored. For each pot, the average percentage of all spikes (5 

to 10) was calculated as FHB severity for each individual homozygous recombinant. With regard 

to the control, the mean value of three pots was recorded as FHB severity.  
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Results 

Identification and Analysis of Micro-Collinearity  

The wheat ESTs BE517736 (Xfcp402) and BF484475 (Xfcp399) mapped proximally and 

distally to the FHB resistance QTL Qfhs.ndsu-3AS on 3AS, respectively (Chen et al. 2007; 

Figure 3.1). The contig sequences of BE517736 (Ta.9622.1.S1_x_at) and BF484475 

(Ta.1999.3.S1_a_at) were used as queries to BLAST rice genomic sequences. One rice PAC 

(AP003282) and one rice BAC (AP004225) were hit by the contig ‘Ta.9622.1.S1_x_at’ with 

lowest E values of 3.2e-144 and 6.8e-90, respectively. AP003282 is located on the short arm of rice 

chromosome 1, while AP004225 occurs on the long arm. Since Qfhs.ndsu-3AS mapped to the 

short arm of wheat chromosome 3A (3AS), AP003282 was selected as the anchoring point of 

BE517736 on rice chromosome 1. BLASTing with the contig ‘Ta.1999.3.S1_a_at’ identified 

three PACs (AP003610, AP002969, and AP003727) on rice chromosome 1 with similar E values, 

i.e. 5.4e-40, 5.8e-40, and 8.0e-40, respectively. Sequence alignment of the three PACs in NCBI 

indicated that AP003610 was part of AP003727 and 84% of AP002969 was included in 

AP003727. Thus, AP003727 was considered the anchoring point of BF484475 on rice 

chromosome 1. Therefore, the rice genomic region from AP003727 to AP003282 was considered 

collinear with the wheat genomic region spanning Qfhs.ndsu-3AS on 3AS. BLASTing the 

Brachypodium genome with BE517736 identified a genomic region from 3,139,341 bp to 

3,141,007 bp on chromosome 2 with an E value of 1.4e-131, while BF484475 identified a 

genomic region from 2,644,263 bp to 2,644,440 bp with an E value of 4.7e-53 on the same 

chromosome. So, the Brachypodium genomic region from 2,644,263 bp to 3,141,007 bp on 

chromosome 2 was considered collinear with the wheat genomic region spanning Qfhs.ndsu-3AS 

on 3AS.     
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Saturation Mapping 

A total of 793 pairs of STS primers and 42 pairs of SSR primers were designed from the 

wheat EST singletons, TCs, and contigs identified according to the micro-collinearity of the 

chromosomal interval harboring Qfhs.ndsu-3AS with corresponding genomic regions of rice and 

Brachypodium. Forty-eight pairs of STS primers and three pairs of SSR primers amplified 

polymorphisms between the two parents of the mapping population. Forty-two STS/SSR markers 

mapped to a genomic region of 232 cM on chromosome 3A (Figure 3.1; Table 3.1). Twenty-two 

of the 42 markers mapped within or near the QTL region. Five co-segregating STS markers, 

Xwgc501, Xwgc716, Xwgc1143, Xwgc1188, and Xwgc1204, mapped 0.6 cM proximal to Xgwm2. 

A new marker locus has not been detected between Xgwm2 and Xbcd1532/Xbarc45 (Figure 3.1). 

Twelve new EST-derived markers mapped closely distal to the Xbcd1532/Xbarc45 locus. Ten of 

them, Xwgc1238, Xwgc1240, Xwgc1248, Xwgc1241, Xwgc1244, Xwgc901, Xwgc1263, 

Xwgc1254, Xwgc1100, and Xwgc1094, co-segregated in the mapping population. Another cluster 

of 14 markers, which spanned a chromosomal interval of 11.0 cM, mapped distally to the QTL 

region. This chromosomal region is collinear with the region harboring the major FHB resistance 

gene locus Fhb1 on the short arm of wheat chromosome 3B (Chen et al. 2007; Figure 3.1).  

Fine Mapping  

A large F2 population (n>1,800) was developed from the cross between LDN and one of 

the 83 RICLs, RICL#10 which retained the shortest chromosomal fragment from T. dicoccoides 

harboring Qfhs.ndsu-3AS. A total of 372 random individuals from the population were used in 

fine mapping of the QTL. Nine co-dominant STS markers (Xwgc1188, Xwgc716, Xwgc1143, 

Xwgc501, Xwgc1204, Xwgc1226, Xwgc1296, Xwgc1301 and Xwgc510) and two SSR markers 

(Xbarc45 and Xgwm2) previously mapped to the QTL region (Figure 3.1) were used to genotype 
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Figure 3.1. Comparative analysis of the genomic region harboring Qfhs.ndsu-3AS on wheat 3AS,  

 the distal region of rice 1S, and the distal region of Brachypodium 2S 

Rice PACs/BACs: A-AP003727; B-AP002882; C-AP002747; D-AP002541; E-AP002868; F-

AP002487; G-AP003046; H-AP003233; I-AP002538; J-AP002872; K-AP002540; L-AP002522; 

M-AP003045; N-AP003225; O-AP002521; P-AP003209; Q-AP003301; R-AP003339; S-

AP003282; T-AP003215; U-AP002523; V-AP002903; W-AP002524; X-AP003118; Y-

AP003047;Z-AP002484 

 

 

 

Physical map of the distal 

region (4,360 kb) of rice 1S  

Distal region of 

Brachypodium 2S  
Genetic map of the distal 

region of wheat 3AS  
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Table 3.1. Primer sequences of STS/SSR markers mapped on chromosome 3A 

 

Marker Forward primer sequence(5'-3') Reverse primer sequence(5'-3') Source* 

Xwgc500 ATATTGGAGTTGCTGTGGAC 
TACGCCTACATGTTCTCCT

T 
TC253371 

Xwgc501 CTGGGGCAACTACTTCTACT 
AGAAACAAGCCTCAACCA

C 
TaAffx.516.1.S1_at 

Xwgc502 
TAGGAAGAGAAACGCGATA

G 

GTACTGGGTGACGTTGGT

AT 
TC237031 

Xwgc503 CGCCTCCACCATTCTTCTT 
GTAGAGCGTGATCACCGT

GG 
BF293133 

Xwgc504 CTGGGTCTACTCCTGTATGG 
CGTGGAGGCAAAGATATA

AG 
TC252511 

Xwgc510 GCATACCTCCCTCTCATGTA 
TTACAAACATCGTCTGTCC

A 
TC242060 

Xwgc547 CTTTATTTCCGCCACCAC 
TCCAGACCCAGCTTAGTA

GA 
TC254174 

Xwgc609 GCAAGTTCTGCTCCCACTTC 
ACGACCCAAGAGCATCAA

GT 
TC267460 

Xwgc632 
GACCTCAACACCATCGAAG

C 

GAGCAGGCTGATGTCGAA

CT 

TaAffx.93289.1.S1_

at 

Xwgc716 CATCTGCTGCAATCCTTGAA 
GCTCGGATATCAAACCTC

CA 
TC255907 

Xwgc761 
AGGCAGAACCTCAGACACT

A 

AGGAGAAAGTGGAAAGG

AAG 
CJ573891 

Xwgc774 
TGAAGATGGTGAGGATGAT

G 

TGGAGTGCTCTTCTGACA

AA 
TC254977 

Xwgc796 ATGACAGGCCGACAATGAG 
TCAACCAATTAAGCAGTT

GGAG 
TC257223 

Xwgc802 
AAGAGCGAGGAGAAGAAGA

C 

ACACACACAACTCGAAGA

CA 
TC238553 

Xwgc803 GGCACGTGTCCTTCTCCTAC 
CGCTGCCAATACAGCTAA

CA 
TC263447 

Xwgc810 
CAGGAACTCTGTGAAGAAG

G 

GAATCGGAGGAGAAAAG

AAT 
TC259639 

Xwgc811 
AGAGCTCGCTCAAGGACAA

G 

GTAGTCGGCCGTCAACAT

TT 
TC248298 

Xwgc819 GGTACCTCGAGTACAGCATC 
CTCCACCAAGAAAGAAAA

TG 
TC242796 

Xwgc826 
GGCTGTCGTGGAAGAAGAA

G 

AAGGCGATGAACACCAAA

AC 
TC254539 

Xwgc858 GTTGGGGGAGAGCATGAAG 
CCTGTTGTGATGCGAAAA

TG 
CJ795235 

Xwgc883 
TGCAAGAAGACGACACAAG

G 

GGATGAAGCCAATCTTCC

AA 
DR734177 

Xwgc901 CTTTCCCTCCGGCCTACTAC 
CAACATTCGGCACGAGAC

TA 
CJ807010 

Xwgc929 
CGGACGAGAAGAAGCTCAA

G 

GCTACAATCCAGGGACCA

AA 
TC268280 

Xwgc969 ATCCGTGTTACCCAAATGGA 
GCAACAGCTGCAAATCGT

AA 

TC265006 

 

http://wheat.pw.usda.gov/cgi-bin/graingenes/report.cgi?class=sequence;name=TaAffx.93289.1.S1_at
http://wheat.pw.usda.gov/cgi-bin/graingenes/report.cgi?class=sequence;name=TaAffx.93289.1.S1_at
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/tc_report.pl?tc=TC268280&species=Wheat
http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/tc_report.pl?tc=TC265006&species=Wheat
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Table 3.1. Primer sequences of STS/SSR markers mapped on chromosome 3A (continued) 

 

*The GenBank wheat EST accession number, the TC number of the TIGR Triticum aestivum 

      gene index and the GrainGenes 2.0 accession contig number 

 

 

 

 

Marker Forward primer sequence(5'-3') Reverse primer sequence(5'-3') Source* 

Xwgc1094 CTGGTGTCCGTTGTTTCCTT 
CACATTGGTCCTCCACAC

AG 
TC264939 

Xwgc1100 
GGGCAACCAAAAAGACAAG

A 

TTTCAACCCGCTTCTCAAA

G 
BE412385 

Xwgc1143 TTCCAGATCACTCCTCTCC 
TGCATGAAACAAAACAAC

AT 
TC273545 

Xwgc1144 TATGCAACCATTGATCTTGA 
AACACCAGGAAACTTGAC

AC 
TC247145 

Xwgc1188 TCTCGCAACTTGTGATGAAA 
GGGTACCAGTAGCTGAAG

CA 
TC326279 

Xwgc1204 TCCTTTCTCTCCAGCAGCAT 
CTCCGGTTATCTTCCACCA

A 
TC260079 

Xwgc1226 
CACTTGGCAGAGCTCAACA

G 

AGGAGCAGGAGGAGGATC

AC 
TC258122 

Xwgc1229 GCAGGCTGTAAACTCCTTGA 
TAACCGGATCAGGATACG

AA 
TC354664 

Xwgc1231 
ATGCCAACAGGAAGGTCTT

G 

CAGCATGCAAATCTCTGG

AC 
TC288309 

Xwgc1238 CGTCAAGACCATTGCTGAGT 
CGACACATTCAACATCTC

CA 
TC278865 

Xwgc1240 
GTGATTGGGAAGCCAGACA

T 

ATATTGGAGGCCTTGTGT

GC 
TC294980 

Xwgc1241 GTTCATCACCCGAGCTCATT 
TGTGTGGCTTTCTGCACTT

C 
TC246390 

Xwgc1244 
GTAGTGCAAGACCCCAAGG

T 

GACAGCTCCCTCGTCTGA

G 
CJ670128 

Xwgc1248 
CTACCACCAGGAGCAGGAA

G 

AGATTCAAGGAGGAGCGA

CA 
TC247595 

Xwgc1254 
AGATGTACCCGGAGACGAA

G 

GACAGCGTAGCAGCATGT

TT 
TC344003  

Xwgc1263 
TTCATCAAGAGGCACGACA

G 

GCTTTGCCATGTTTCACAG

A 
TC307328  

Xwgc1296 
TGGTGACTGATGGGATGGT

A 

GCTGGGGGAAAGGGTAAA

T 
TC278201 

Xwgc1301 AACATCGCCCAGCAGAAC 
CGTCGCAGTGTATTTCATT

TG 
TC252087 

    

http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/tc_report.pl?gudb=Wheat&tc=TC344003
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the population. Xwgc774, co-segregating with Xwgc1226, was not included because it is a 

dominant marker and could affect mapping accuracy in an F2 population (Jiang and Zeng 1997). 

Xbarc45, a dominant SSR marker, was used to identify homozygous recombinants rather than 

for fine mapping. Xwgc716 and Xwgc1188 still co-segregated and mapped 0.8 cM proximal to 

Xgwm2 in the F2 population. Xwgc1143 and Xwgc1204 also co-segregated and mapped 0.1 cM 

proximal to Xwgc716/Xwgc1188 (Figure 3.2). The other five STS markers, including Xwgc501,  

Xwgc1226, Xwgc510, Xwgc1296, and Xwgc1301, mapped further proximal to the above markers 

in a higher resolution (Figures 3.1-2). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Comparative analysis of the high-resolution map of the QTL region with common  

   wheat ‘Chinese Spring’ pseudomolecule HG670306.1 on chromosome 3B 

 

 

 

 

High-resolution map of the QTL region 

  

‘Chinese Spring’ pseudomolecule 

HG670306.1 on chromosome 3B 
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Identification and Evaluation of Recombinants for FHB Resistance 

Three F2 individuals (3AS07-39-17, 3AS07-42-26, and 3AS07-53-16) were identified to 

have recombination in the QTL region and contained a shortened T. dicoccoides 3AS fragment 

harboring the QTL (Chen et al. 2007; Figure 3.1; Table 3.2). 3AS07-39-17 was a homozygous 

recombinant designated Type I recombinant, whereas 3AS07-42-26 and 3AS07-53-16 were 

heterozygous for a recombination in the QTL region (Table 3.2, 3.3). Two homozygous 

recombinants with the same genotype at the marker loci were identified from the 10 F3 progenies 

of 3AS07-42-26, and designated Type II recombinants (Table 3.3). One of the two Type II 

recombinants was used to develop an F4 family for further FHB evaluation (Table 3.4). Three 

heterozygous recombinants with different sized fragments from T. dicoccoides were developed 

from 3AS07-53-16 in the F3 generation. Forty F4 individuals derived from each of these three 

heterozygous recombinants were screened to recover homozygous recombination in the QTL 

region. Eleven individuals were identified as homozygous recombinants in each of two F4 

families and designated Type III and Type IV recombinants (Table 3.2, 3.3), respectively. Nine 

homozygous recombinants derived from the third F4 family were designated Type V 

recombinants (Table 3.2, 3.3). In total, five types of homozygous recombinants harboring 

shortened T. dicoccoides fragments were identified within the QTL region (Table 3.3).  

FHB evaluation of the five types of homozygous recombinants was carried out in three 

greenhouse seasons (Table 3.4). Homozygous recombinant plants for FHB evaluation in each 

season were either selected from a segregating population at early generations by markers (PSM), 

or derived from a homozygous recombinant with unknown reaction to FHB (PDU) or with 

resistance to FHB (PDR) at later generations. Ten plants in the PDU family and 20 plants in PDR 

were employed for FHB evaluation. The observed number of the plants for FHB evaluation less  
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Table 3.2. Genotypes of LDN, RICL#10, and three F2 individuals at the marker loci within the 

   QTL region 

 

* ‘A’ refers to homozygous LDN genotype, ‘B’ refers to homozygous T. dicoccoides genotype,  

      and ‘H’ refers to heterozygous genotype 

 

 

 

Table 3.3. Genotypes of five homozygous recombinants selected in the Qfhs.ndsu-3AS region 

 

* ‘A’ refers to homozygous LDN genotype, and ‘B’ refers to homozygous T. dicoccoides  

   genotype 

  

 Xbarc

45 

Xgwm 

2 

Xwgc 

716 

Xwgc 

1188 

Xwgc 

1204 

Xwgc 

1143 

Xwgc 

501 

Xwgc 

1226 

Xwgc 

510 

Xwgc 

1296 

Xwgc 

1301 

LDN A* A A A A A A A A A A 

RICL#10 B B B B B B B B B B B 

3AS07-

39-17 
A A A A A A A B A A A 

3AS07-

42-26 
B H A A H H H A A A A 

3AS07-

53-16 
A H H H H H A H A A A 

Recom

binant 

types 

F2 

sources 

Xbar

c45 

Xgwm 

2 

Xwgc

716 

Xwgc

1188 

Xwgc

1143 

Xwgc

1204 

Xwgc

501 

Xwgc

1226 

Xwgc

510 

Xwgc

1296 

Xwgc

1301 

I 
3AS07-

39-17 
A* A A A A A A B A A A 

II 
3AS07-

42-26 
B B A A B B B A A A A 

III 
3AS07-

53-16 
A A A B B A A B A A A 

IV 
3AS07-

53-16 
A A B B B A A B A A A 

V 
3AS07-

53-16 
A B B B B B A B A A A 



 
 

 

 

 

 

Table 3.4. FHB evaluation of homozygous recombinants in three seasons 

 

 

 

 

 

 

 

 

 

 

 

          PPLC: Percentage of plants with FHB severity lower than the control (RICL#10)  

          PDU: A family in which plants derived from a homozygous recombinant with unknown FHB resistance level 

          PIM: A family in which homozygous recombinant plants were identified based on marker genotype 

          PDR: A family in which plants derived from a homozygous recombinant with known FHB resistance level (bracketed scores  

                   are FHB severity for the recombinants) 
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3
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Figure 3.3. Graphical genotypes of three RICLs and five homozygous recombinants. Alleles  

   from T. dicoccoides and LDN were represented by the black and open boxes, respectively. The 

recombination breakpoints were assumed to be in the middle of the interval flanked by two  

markers. Qfhs.ndsu-3AS was placed within a 5.2cM interval flanked by markers Xwgc501 and 

    Xwgc510 

 

 

than 10 in PDU family or that of initially identified recombinants in PIM family resulted from 

the death of plants or the plants saved for the development of advanced seeds in some cases 

(Table 3.4). FHB evaluation results indicated that 33.3% to 70% homozygous recombinants in 

either PIM or PDU families exhibited a resistance level higher than or similar to the control, 

RICL#10, for the four types of recombinants (I, III, IV, V). However, no homozygous 

recombinants with lower FHB severity than RICL#10 was observed in one PDU family of Type 

I recombinant in the spring of 2014 (Table 3.4). High percentage of resistant plants (80% to 90%) 

was identified in three PDR families of Type I, III and V recombinants. No resistant plants were 

identified in two PDU families derived from the same homozygous F3 individual of Type II 

recombinants. 
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Comparative Analysis  

Complex collinearity has been revealed among wheat chromosome 3A, rice chromosome 

1, and Brachypodium chromosome 2 through comparative analysis. The chromosomal interval 

proximal to Xgwm2 harbors two groups of co-segregating markers and three other closely linked 

markers within the QTL region. The co-segregating markers, including Xwgc501, Xwgc716, 

Xwgc1143, Xwgc1188, and Xwgc1204, are 0.6 cM away from Xgwm2. These five EST-derived 

STS markers identified a collinear region of ~154 kb on the short arm of rice chromosome 1 (1S) 

and ~100 kb on the short arm of Brachypodium chromosome 2 (2S) (Figure 3.1). The other two 

co-segregating markers, Xwgc774 and Xwgc1226, is 1.2 cM proximal to the five co-segregating 

markers. These two markers identified a collinear region of ~78 kb and ~50 kb on rice 1S and 

Brachypodium 2S, respectively. The orientation of the chromosomal interval harboring these two 

groups of co-segregating markers on 3AS are inverted to the corresponding collinear regions on 

rice 1S and Brachypodium 2S. The three markers proximal to the two co-segregating markers, 

Xwgc1296, Xwgc1301, and Xwgc510, detected a collinear region of ~339 kb on rice 1S and ~330 

kb on Brachypodium 2S. Both are located proximally to the collinear regions identified by the 

five co-segregating markers (Figure 3.1). The chromosomal interval distal to the QTL region, 

defined by Xwgc1229 and Xgwc500, shows good collinearity with a genomic region of ~340 kb 

on rice 1S and ~300 kb on Brachypodium 2S. A group of ten co-segregating markers distal to 

Xwgc1229 detected two collinear regions on rice 1S and Brachypodium 2S, respectively. Two of 

the ten markers Xwgc901 and Xwgc1263, identified a collinear region of ~13 kb on rice 1S and 

~10 kb on Brachypodium 2S. This collinear region on rice 1S is about 2,658 kb away from the 

terminal end of this chromosome arm. The other eight co-segregating markers detected a 

collinear region of ~141 kb near the terminal end of rice 1S. However, the collinear region 
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identified by these eight markers on Brachypodium 2S (~90 kb) is located 2,600 kb away from 

the terminal end of the chromosomal arm and ~150 kb proximal to the collinear region detected 

by Xwgc901 and Xwgc1263 on Brachypodium 2S. The collinear regions on rice 1S and 

Brachypodium 2S are in inverted orientations (Figure 3.1). Fifteen marker loci were identified 

within a chromosomal region of 18.6 cM farther distal to the QTL region. Some of them co-

segregated in the mapping population. The fifteen markers residing within this chromosomal 

region detected a collinear region of 244 kb on rice 1S, which is about 910 kb away from the 

terminal end of the chromosomal arm. The collinear region identified by these 15 markers is 

about 320 kb long on Brachypodium 2S. Greater collinearity has been found within these 

genomic regions, in terms of order and chromosomal locations of the marker loci in the 

respective genomes (Figure 3.1). Apart from the inversion of marker loci, deletions of marker 

loci on the Brachypodium chromosome were also observed. For example, the TC sequence of 

Xwgc501 and Xwgc1301 has an orthologous sequence on rice chromosome 1, but not on 

Brachypodium chromosome 2 (Figure 3.1). 

To predict the possible physical size of the QTL region, comparative analysis between 

the refined QTL region and the released ‘Chinese Spring’ chromosome 3B pseudomolecule was 

performed. In this process, EST singletons, TCs or contig sequences corresponding to the 

markers in the refined QTL region were used as queries to perform BLASTn against the Chinese 

Spring chromosome 3AS-specific survey sequence database to identify the corresponding 

contigs  (https://urgi.versailles.inra.fr/blast/blast.php) with a threshold E value equal to or less 

than e-15 (Sehgal et al. 2012). The 40-bp primer sequence of Xgwm2, an SSR marker closely 

linked to the Qfhs.ndsu-3AS QTL peak (Chen et al. 2007), was used as query to search for the 

potential representative sequence in the wheat database through BLASTn in NCBI. Two 
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identical T. durum microsatellite sequence clones, Dwm213 and Dwm2, were identified. The 

microsatellite sequence of Xgwm2 was used as a query of BLASTn against the 3AS-specific 

survey sequence database to identify the corresponding contigs 

(https://urgi.versailles.inra.fr/blast/blast.php) with a threshold E value equal to or less than e-15. 

Then the identified contig sequences with the lowest E value were used as queries to BLASTn 

against Chinese Spring chromosome 3B pseudomolecule HG670306.1 in NCBI. Six markers 

(Xgwm2, Xwc1188, Xwgc716, Xwgc1143, Xwgc501, and Xwgc1226) around the QTL region 

were identified to have anchor points in the 3BS pseudomolecule. Comparative analysis 

identified a ~3.4Mb region (75.7 Mb to 79.1 Mb) in the pseudomolecule collinear with the 

chromosome interval flanked by Xwgc501 and Xwgc1226 (Figure 3.2). A ~38.8Mb genomic 

region in the pseudomolecule was found to be collinear with the chromosome interval flanked by 

Xwgc1226 and Xwgc510. Moreover, a ~8.0Mb region (75.8 Mb to 83.8 Mb) in the 

pseudomolecule was collinear with the region harboring the QTL on 3AS (Figure 3.2). However, 

there was discrepancy in the orders of the markers on 3AS and their collinear regions in the 3BS 

pseudomolecule, indicating complex collinearity between these two homoeologous regions on 

chromosome 3A and 3B.  

Discussion 

The T. dicoccoides-derived FHB resistance QTL Qfhs.ndsu-3AS was positioned within 

the chromosomal interval flanked by two targeted region amplification polymorphism (TRAP) 

markers Xfcp401 and Xcfp397.2, but only three markers, Xbcd1532, Xbarc45 and Xgwm2, 

mapped within this region in a previous study by Chen et al. (2007). In the present study, this 

chromosomal interval was saturated by adding 22 newly developed markers, which further 

narrowed the location of Qfhs.ndsu-3AS to a smaller chromosomal region. Based on the 
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graphical genotypes of two RICLs, LDN-DIC3A-15 (susceptible to FHB) and LDN-DIC3A-49 

(resistant to FHB), Qfhs.ndsu-3AS was placed within a 7.4 cM chromosome interval flanked by 

markers Xbcd1532/Xbarc45 and Xwgc510 (Figure 3.3).  

Some of the 22 newly developed markers within the QTL region co-segregated in the 

RICL population. Five of these co-segregating markers were near Xgwm2, the most significant 

marker for Qfhs.ndsu-3AS (Figure 3.1). Thus, a larger mapping population was needed to resolve 

the co-segregating markers within the QTL region. Here, an F2 population consisting of 372 

individuals derived from the cross of LDN with RICL#10 (with the shortest T. dicoccoides 

fragment harboring Qfhs.ndsu-3AS) was developed for fine mapping of the chromosome region 

around Xgwm2. As a result, the map resolution was greatly improved and five co-segregating 

markers 0.6 cM proximal to Xgwm2 were resolved into three marker loci. Moreover, five types 

of homozygous recombinants with shortened T. dicoccoides fragments were identified through 

the selection of marker alleles. Various levels of FHB resistance ranging from resistant to 

susceptible among the plants in the family of Type I, III, IV, and V recombinants suggested that 

Qfhs.ndsu-3AS was not co-segregating with these markers, and was possibly harbored in the 

genomic region flanked by two of these markers. The percentage of plants with high levels of 

FHB resistance in the later generations was higher than in the early generations in Type I, III, IV, 

and V homozygous recombinants, which could be caused by the segregation of heterozygous 

alleles at the Qfhs.ndsu-3AS locus over generations. No resistant plants were identified in Type II 

homozygous recombinants indicating the possible absence of the QTL in this type of 

recombinant. The T. dicoccoides fragment flanked by Xwgc501 and Xwgc510 was shared by 

Type I, III, IV, and V recombinants but was absent in Type II recombinants, which suggested 

that the QTL resides within this 5.2 cM genomic region flanked by Xwgc501 and Xwgc510 
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together with the analysis of the graphical genotypes of three RICLs reported in Chen et al. 

(2007) (Figure 3.1, 3.3). No co-segregation of Xwgc1226 with Qfhs.ndsu-3AS suggests that 

Qfhs.ndsu-3AS is possibly flanked either by Xwgc501 and Xwgc1226 or by Xwgc1226 and 

Xwgc510.  

The chromosomal interval harboring Qfhs.ndsu-3AS was found to be collinear to a large 

physical distance (~38.8Mb) on the 3B pseudomolecule. This shows why more precise mapping 

of Qfhs.ndsu-3AS would be necessary for a better understanding of the sequence information of 

the QTL. Although there is complex micro-collinearity between chromosomes 3A and 3B, the 

chromosome interval flanked by Xgwm2 and Xwgc510 exhibited good collinearity to the 3B 

pseudomolecule with regard to the content of marker loci. This suggests that the CS 3B 

pseudomolecule sequence could be a better reference sequence for further fine mapping of 

Qfhs.ndsu-3AS.  

Extensive collinearity among the genomes of cereal crops has been revealed (Moore et al. 

1995). Wheat homoeologous group 3 chromosomes are collinear to rice chromosome 1 and 

Brachypodium chromosome 2 (Moore et al. 1995; the International Brachypodium Initiative 

2010; Sehgal et al. 2012; Luo et al. 2013). In this study, almost all mapped STS/SSR marker 

sequences have orthologous sequences on both rice chromosome 1 and Brachypodium 

chromosome 2 (Figure 3.1). Rice chromosome 1 exhibited more conserved collinearity with 

Brachypodium chromosome 2 than with wheat chromosome 3 in terms of the orientation of 

marker loci. However, the similarity between the genomic sequences of wheat and 

Brachypodium is higher than between Brachypodium and rice based on the higher E value 

obtained following BLASTn of the wheat sequence against the Brachypodium genomic sequence 

than against the rice genomic sequence (data not shown). Thus, Brachypodium is more closely 
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related to wheat than rice, which agrees with previous studies (Catalan and Olmstead 2000; 

Draper et al. 2001; Foote et al. 2004; the International Brachypodium Initiative 2010; Zhang et al. 

2013). Although in the present study the association wheat-Brachypodium was more productive, 

there are instances where the wheat-rice comparison is more useful. In this study, the deletions of 

marker loci on wheat chromosome 3A were detected on Brachypodium chromosome 2 instead of 

on rice chromosome 1. Faris et al. (2008) found that the collinearity was more conserved 

between wheat and rice than between wheat and Brachypodium with regard to the Q gene region. 

To date, many genes in wheat have been well characterized through comparative analysis with 

rice and Brachypodium genomic sequences (Liu et al. 2003, 2006; Bossolini et al. 2007; Faris et 

al. 2008; Somyong et al. 2011; Zhang et al. 2013). In these studies, complex micro-collinearity 

has been revealed among wheat, rice, and Brachypodium. Thus, utilization of multiple genomic 

sequences from different species to characterize wheat genes could be more efficient than the use 

of only one genomic sequence. 

In summary, this study determined the location of Qfhs.ndsu-3AS within a smaller 

chromosomal interval. Germplasm with shortened T. dicoccoides introgressed regions harboring 

Qfhs.ndsu-3AS was developed, and thus the linkage drag from T. dicoccoides was further 

reduced in LDN background. In addition, the genomic region on the CS 3B pseudomolecule 

collinear to Qfhs.ndsu-3AS was identified. These results will facilitate continued detail analysis 

of the Qfhs.ndsu-3AS regions and its utilization in wheat breeding. 
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CHAPTER 4. EFFECTS OF DURUM WHEAT BACKGROUND ON THE EXPRESSION  

OF HEXAPLOID WHEAT-DERIVED FUSARIUM HEAD BLIGHT  

RESISTANCE GENES 

Abstract 

Hexaploid wheat-derived Fusarium head blight (FHB) resistance exhibits a complex 

inheritance pattern in durum wheat background. This study aimed to characterize how the durum 

genetic background modifies the expression of hexaploid wheat-derived FHB resistance genes. 

Evaluation the FHB infection of the F1 of ‘Sumai 3’ with durum and hexaploid wheat indicated 

that FHB resistance genes from Sumai 3 were normally expressed in the F1 hybrids with other 

hexaploids, but not in the F1 with durum wheat. The hexaploid wheat PI 277012-derived FHB 

resistance gene(s) exhibited complete dominance in the F1 of PI 277012 with durum. FHB 

evaluation of the F1 of Sumai 3 and PI 277012 with LDN D-genome substitution lines suggested 

that chromosomes 2B, 3A, 3B, 4A, 4B, 5B, 6A, 6B, and 7A may contain genes that suppress 

expression of the Sumai 3-derived FHB resistance genes in the F1, and 4A, 6A, and 6B may 

contain genes required for the expression of the PI 277012-derived FHB resistance genes in the 

F1. A wide range of segregation for FHB severity (10-90%) was observed in the F2 generation of 

crosses of Sumai 3 with durum varieties ‘Langdon’ (LDN) and ‘Divide’. The distribution of 

FHB severity in F3 families derived from the most resistant F2 segregants was skewed towards 

the more susceptible end. A similar segregation trend was observed in the F4 generation. In the 

crosses of PI 277012 with durum, resistance also seemed to be slightly diluted over successive 

generations, but multiple resistant segregants were recovered in each generation of these crosses. 

Thereby, durum wheat may contain multiple genes on different chromosomes that positively 
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and/or negatively regulate the expression of hexaploid wheat-derived FHB resistance genes. This 

has made FHB resistance introgression from hexaploids into durum a challenging task. 

Introduction 

Fusarium head blight (FHB), also called scab, is one of the major devastating diseases in 

wheat worldwide. It is mainly caused by the fungus Fusarium graminearum. The major 

epidemic regions of FHB in the USA are in the mid-western and eastern states including North 

Dakota (Stack 1999). Host resistance is considered the most efficient approach to reduce yield 

and quality losses caused by FHB compared to other management tactics, such as rotation and 

chemical control (McMullen et al. 1997; Rudd et al. 2001). However, an effective source of 

resistance to FHB has not been found in durum wheat (Oliver et al. 2007). Therefore, there is an 

urgent need to identify and implement effective FHB resistance in durum wheat.  

 To date, the commonly used FHB resistance sources are all derived from hexaploid wheat. 

‘Sumai 3’, a Chinese common wheat cultivar, has been a widely used source of resistance to 

FHB in wheat breeding worldwide. Chromosomes 2B, 3B, 6B, and 7A have been identified 

harboring FHB resistance genes in Sumai 3 (Yao et al. 1997; Waldron et al. 1999; Zhou et al. 

2002; Liu and Anderson 2003). Among these genes, the major gene on 3B, designated 

Qfhs.ndsu-3BS (Fhb1), explains 15.4-60.0% of the phenotypic variation (Buerstmayr et al. 2002, 

2009; Jayatilake et al. 2011), and many other genes contribute minor resistance to FHB (Bai et al. 

1989; Van Ginkel et al. 1996). Moreover, both Type II (resistance to the spread of the pathogen) 

and Type V (low accumulation of mycotoxins) resistance were identified in Sumai 3 (Jayatilake 

et al. 2011). Preliminary studies of the candidate functional gene for Fhb1 were carried out and a 

diagnostic molecular marker UMN10 was developed by Liu et al. (2008). FHB resistance of 

Sumai 3 has been successfully introgressed into many hexaploid wheat germplasm and cultivars 
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worldwide (Waldron et al. 1999; He et al. 2001; Mergoum et al. 2006, 2008; Teresa et al. 2013; 

http://www.extension.umn.edu/agriculture/small-grains/cultivar-selection-and-

genetics/docs/freyr-wheat.pdf). In the 1980s, two hexaploid cultivars ‘Een 1’ and ‘Yangmai 4’ 

with moderate resistance to FHB were first developed from Sumai 3 and released in China (He et 

al. 2001). In the USA, the first FHB resistant cultivar, ‘Alsen’, derived from Sumai 3 was 

released in the late 1990s (Frohberg et al. 2006). After that, many more FHB-resistant cultivars, 

including ‘Faller’, ‘Glenn’, and ‘Freyr’ were developed from Sumai 3 (Mergoum et al. 2006, 

2008; http://www.extension.umn.edu/agriculture/small-grains/cultivar-selection-and-

genetics/docs/freyr-wheat.pdf). 

Recently, another hexaploid spring wheat accession PI 277012 with high level of FHB 

resistance was identified (Chu et al. 2011). It has a level of FHB resistance similar to Sumai 3. 

Molecular mapping identified two FHB resistance QTL located on chromosome arms 5AS and 

5AL, respectively, in PI 277012 (Chu et al. 2011). Moreover, it appeared that the PI 277012-

derived FHB resistance genes could normally express in durum wheat and could be very useful 

in durum wheat breeding (Chu et al. 2011). 

To identify novel FHB resistance sources in tetraploid wheat, extensive screening of wild 

relatives of durum wheat has been carried out (Cai et al. 2005; Oliver et al. 2007, 2008; 

Buerstmayr et al. 2012; Ruan et al. 2012). Several FHB resistance QTL have been identified in 

wild emmer wheat (T. dicoccoides) accessions (Otto et al. 2002; Stack and Faris 2006; Kumar et 

al. 2007). However, most of the identified QTL confer moderate to low levels of resistance to 

FHB (Fakhfakh et al. 2011). Of these QTL, Qfhs-ndsu-3AS located on the short arm of 

chromosome 3A has been more extensively characterized than others (Otto et al. 2002; Chen et 

al. 2007). The poor understanding of the chromosome region involved and associated linkage 
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drag of undesirable genes in the wild relatives makes it difficult to utilize these FHB resistance 

QTL directly in durum wheat breeding.  

One of the strategies to improve FHB resistance of durum wheat is to transfer hexaploid 

wheat–derived FHB resistance genes into durum wheat. However, progress in the introgression 

of FHB resistance from Sumai 3 into durum wheat has been very limited. The possible 

mechanisms of hindering the progress may include: 1) the single configuration of the gene 

combination in Sumai 3 is difficult to be recovered during the introgression (Liu and Anderson 

2003; Basnet et al. 2012); 2) the wheat D genome, which is absent in durum wheat, possibly 

harbors genes that affect expression of FHB resistance genes (Rudd et al. 2001; Fakhfakh et al. 

2011); 3) durum may contain genes that suppress expression of Sumai 3-derived FHB resistance 

(Rudd et al. 2001; Gilbert et al. 2002).  It has been found that there are suppressor genes to 

tetraploid wheat-derived rust resistance on D-genome chromosomes in bread wheat. This has 

become an obstacle in the introgression of rust resistance genes from durum wheat to bread 

wheat (Kerber and Green 1980; Bai and Kbitt 1992). Therefore, dissection of the genetic factors 

influencing expression of FHB resistance genes in durum wheat may facilitate utilization of 

hexaploid wheat-derived resistance genes in durum breeding. The objective of this study is to 

investigate the effects of durum background on the expression and inheritance of FHB resistance 

genes from Sumai 3 and PI 277012. 

Materials and Methods 

Wheat Germplasm and Crosses 

Four durum wheat cultivars ‘Langdon’(LDN), ‘Grenora’, ‘Alkabo’, ‘Divide’ were used 

as female parents to cross with Sumai 3 and PI 277012, two highly FHB-resistant common wheat 

accessions. The F1 hybrids along with their parents were evaluated for FHB severity in four 
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greenhouse seasons (Fall 2011, Fall 2012, Spring 2013, and Spring 2014). Four highly FHB-

susceptible hexaploid wheat accessions (‘2398’, ‘Choteau’, ‘AC Vista’, and ‘AC Lillian’) were 

used as female parents to develop F1 with Sumai 3, and these F1 were evaluated for FHB 

resistance in two greenhouse seasons (Spring 2013 and Fall 2013). 

A complete set of LDN-‘Chinese Spring’ (CS) D-genome substitution lines, developed 

by the USDA-ARS Cereal Crops Research Unit, Fargo, ND, were crossed with Sumai 3 and PI 

277012. In each substitution line, a pair of homologous A- or B-genome chromosomes in LDN 

was substituted by a pair of its corresponding homoeologous D-genome chromosomes from CS. 

The F1 of these crosses were evaluated for FHB resistance in either three (Spring 2013, Fall 2013 

and Spring 2014) or two greenhouse seasons (Spring 2013 and Fall 2013). 

F1 hybrids in all crosses were confirmed by visual inspection of seed morphology and 

molecular marker analysis. Some of the F1 were further verified by spike morphology 

comparison. True F1 were employed for the evaluation of FHB resistance and advanced to the 

subsequent generations for inheritance studies.  

Inheritance Analysis  

FHB evaluation was performed from the F2 to F4 generations for the crosses of Sumai 3 

with LDN and Divide, and PI 277012 with LDN. One spike of each plant was self-pollinated to 

derive the next generation. The advanced families were formed by the bulked seeds from 

resistant segregants in the previous generation. 

Experimental Design and FHB Evaluation  

All plants were grown in 6-inch plastic pots with one plant per pot for F1, and two plants 

per pot for parental controls and LDN-CS D-genome substitution lines. Five to ten spikes in each 

pot were inoculated. The pots were randomly arranged on the greenhouse benches. Each pot was 
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regarded as one replicate. The number of replicates for each entry in each experiment ranged 

from two to five depending on the germination of the F1. A completely randomized design (CRD) 

with unbalanced data was used for statistical analysis using SAS version 9.3 (SAS Institute 

2011). The data obtained in different environments were pooled for combined analysis if the 

Bartlett's homogeneity test of error variance was not indicative of significant difference (P=0.05).  

The greenhouse temperature was kept around 16 °C and 18 °C at night and daytime, 

respectively, with a 16 hr photoperiod in the greenhouse before anthesis. During the inoculation 

period, the temperature was increased to around 25 °C. The single-floret inoculation method was 

used to infect plants with the inoculum as described by Stack et al. (2002). An inoculum 

suspension was prepared from four species of F. graminearum with a concentration of 1 × 105 

conidiospores per milliliter. For inoculation, 10 µl of inoculum was injected into a central floret 

of each spike during anthesis. The inoculated spikes were covered with plastic bags that were 

water-misted on the inside to maintain a relatively high humidity for disease development for 72 

hr. At 21-day post inoculation, the percentage of diseased spikelets was recorded for each spike 

to evaluate Type II resistance, and the mean percentage of FHB severity over all spikes in each 

pot was calculated as the value of one replicate.  

Results 

Production of F1 Hybrids 

Initially, the morphology of F1 hybrid seeds from all crosses was visually studied. True 

hybrid seeds derived from the crosses of 2398, Choteau, AC Vista, and AC Lillian with Sumai 3 

and PI 277012 were significantly smaller than the normal self-pollinated seeds of their female 

parents (Table 4.1; Figure 4.1). The true F1 seeds from the crosses of Sumai 3 and PI 277012 

with durum wheat and LDN D-genome substitution lines were shriveled compared to the plump 
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seeds of their female durum parents (Figure 4.2). Molecular marker analysis is a more reliable 

method to verify F1 hybrids (Ballester and de Vicente 1998). In this study, all the F1 of Sumai 3 

with durum wheat and LDN D-genome substitution lines were verified at the seedling stage with 

the molecular marker UMN10. The durum wheat and LDN D-genome substitution lines did not 

have any amplicons at the UMN10 locus, and PCR amplification of true F1 produced the same 

amplicon as Sumai 3 at the UMN10 locus (Figure 4.3). In addition, spike morphology was used 

to verify F1 derived from the crosses involving PI 277012. Spikes of true F1 exhibited speltoid 

(spear-shaped) morphology, since PI 277012 has the q gene on chromosome 5A (Chu et al. 2011; 

Figure 4.4). 

 

 

 

 

 

                    

Figure 4.1. Seed morphology of Choteau (a) and its F1 hybrid with Sumai 3 (b) 

                          

                            

 

Table 4.1. Seed morphology of three hexaploid wheat and their F1 hybrids with Sumai 3 

       

      *Mean± Standard deviation 

Entry 
Sample 

size 

Means of seed 

width (mm) 

Means of seed 

length (mm) 

2398 39 3.04±0.27* 5.97±0.39 

(2398×Sumai 3) F1 50 2.76±0.28 4.34±0.41 

Choteau 50 2.88±0.31 5.42±0.43 

(Choteau×Sumai 3) F1 50 2.39±0.22 4.14±0.35 

AC Vista 27 2.8±0.31 6.5±0.52 

(AC Vista×Sumai 3) F1 34 2.43±0.26 4.8±0.40 

a b 
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Figure 4.2. Seed morphology of a) LDN, b) (LDN×Sumai 3) F1, c) (LDN×PI 277012) F1, d)  

    Divide, e) (Divide×Sumai 3) F1, and f) (Divide×PI 277012) F1 

 

 

 

 

 

 

 

 

 

Figure 4.3. PCR amplification products (UMN10 and Xwgc1079 marker loci ) produced in 

      durum wheat, LDN-CS D-genome substitution lines, and the F1 of LDN×Sumai 3 (F1-1), 

      Divide×Sumai 3 (F1-2), LDN1D(1A)×Sumai 3 (F1-3), and  LDN2D(2A)×Sumai 3 (F1-4) 
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Figure 4.4. Spike morphology of a) PI 277012, b) (Divide×PI 277012) F1, c) Divide, d) 

        (LDN×PI 277012) F1, and e) LDN 

 

FHB Resistance in the F1 Hybrids of Sumai 3 with Durum and Hexaploid Wheat 

All F1 of Sumai 3 with durum wheat LDN, Divide, Grenora and Alkabo exhibited a 

resistance level similar to or lower than their durum parents in 1-3 greenhouse seasons (Table 

4.2). The F1 of Divide with Sumai 3 exhibited a FHB severity of 38.7% that was significantly 

higher than 28.0% for Divide (α=0.05). Statistical analysis indicated that the FHB severity of  

LDN, Grenora, and Alkabo were not significantly different from their respective F1 with Sumai 3. 

The F1 of Sumai 3 with four highly FHB-susceptible hexaploid wheat accessions 

exhibited a resistance level intermediate to their parents (Table 4.3). FHB severity of the four 

hexaploids ranged from 73.6 % for AC Vista to 91.7% for 2398. All four F1 exhibited around 40% 

FHB severity while the FHB severity for Sumai 3 was less than 20% in all greenhouse 

environments. A combined data analysis was not performed with the spring wheat line 2398 due 

to hoterogeneity of the error variance over the two greenhouse environments for this line. 2398 

exhibited a high FHB severity (91.7%) in one greenhouse environment, which was consistent 

with the report by Mergoum et al. (2008). However, this line had a significantly lower FHB 

severity (40.2%) in another greenhouse environment.  

a b c d e 
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Table 4.2. FHB severity of F1 hybrids between Sumai 3 and durum wheat  

 

 

 

 

 

 

 

 

 

*Means followed by different letters in this column are significantly different at α=0.05 level 

 

Table 4.3. FHB severity of F1 hybrids between Sumai 3 and hexaploid wheat 

 

 

 

 

 

 

 

 

 

*Means followed by different letters in this column are significantly different at α=0.05 level 

 

Most of the LDN-CS D-genome substitution lines and their F1 with Sumai 3 were 

evaluated for FHB resistance in 2-3 greenhouse seasons. Three of the substitution lines, 

including LDN2D(2A), LDN2D(2B), and LDN7D(7B), and their F1 with Sumai 3 were 

Entry FHB severity (%)  Evaluation environment  

Sumai 3 18.4a* 
Fall 2011; Spring 2013; Spring 2014 F1 59.1b 

LDN 60.7b 

Sumai 3 17.1a 
Fall 2011; Fall 2012 F1 38.7c 

Divide 28.0b 

Sumai 3 11.7a 
Fall 2011 F1 31.4b 

Grenora 22.3ab 

Sumai 3 11.7a 
Fall 2011 F1 32.9b 

Alkabo 29.7b 

Entry FHB severity (%) Evaluation environment  

Sumai 3 10.3a* 

Fall 2013 F1 36.5b 

2398 91.7c 

   
Sumai 3 14.3a 

Spring 2013; Fall 2013 F1 39.9b 

Choteau 77.0c 

   Sumai 3 14.3a 

Spring 2013; Fall 2013 F1 39.3b 

AC Lillian 74.3c 

   Sumai 3 14.3a 

Spring 2013; Fall 2013 F1 38.1b 

AC Vista 73.6c 
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evaluated in only one greenhouse season due to seed shortage (Table 4.4). Substitutions of 2D 

for 2B, 3D for 3A and 3B, 4D for 4A and 4B, 5D for 5B, 6D for 6A and 6B, and 7D for 7A all 

augmented resistance in the F1 of these substitution lines with Sumai 3. Statistical analysis 

indicated that FHB severity of all these F1 was significantly lower than that of their 

corresponding LDN D-genome substitution lines. However, the F1 of LDN1D(1A), LDN1D(1B), 

LDN2D(2A), LDN5D(5A), and LDN7D(7B) with Sumai 3 showed a resistance level similar to 

or higher than their corresponding substitution lines (Table 4.4).  

FHB Resistance in the F1 Hybrids of PI 277012 with Durum 

The F1 of PI 277012 with durum wheat exhibited a resistance level comparable to PI 

277012 (Table 4.5). FHB severity of all these F1 was significantly lower than their durum parents 

and not significantly different from PI 277011 (α=0.05), indicating complete dominance of the 

resistance genes in PI 277012 over the susceptible alleles in durum. The F1 of PI 277012 with the 

LDN D-genome substitution lines LDN4D(4A), LDN6D(6A), and LDN6D(6B) had significantly 

higher FHB severity than LDN×PI 277012, whereas the F1 of all other LDN D-genome 

substitution lines exhibited similar levels of resistance as LDN×PI 277012 (Tables 4.5 and 4.6).  

Inheritance Analysis  

A total of 57 F2 plants from the cross of LDN with Sumai 3 were evaluated for FHB 

resistance. (1) The seed harvested from two F2 plants with an FHB severity of 14.8% and 15.8%, 

respectively, were bulked to form an F3 family consisting of 36 plants (Table 4.7). (2) Seed set 

on two F3 plants with an FHB severity of 13.8% and 17.9%, respectively, were bulked to form an 

F4 family consisting of 38 plants. Similarly, an F2 population of 37 plants from the 

Divide×Sumai 3 cross were evaluated for FHB resistance. (1) An F3 family consisting of 52 

plants was derived from four F2 plants with FHB severity ranging from 7.4% to 16.3%. 
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Table 4.4. FHB severity of F1 hybrids between Sumai 3 and LDN-CS D-genome substitution 

    lines 

*Means followed by different letters in this column are significantly different at α=0.05 level 

Entry FHB 

severity 

(%) 

Evaluation 

environment 

Entry FHB 

severity 

(%) 

Evaluation 

environment 

Sumai 3 15.4a* 
Spring 2013; 

Fall 2013; 

Spring 2014 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

F
1
 42.0b F

1
 42.6b 

LDN1D(1A) 40.1b LDN4D(4B) 55.5c 

LDN 58.6c LDN 58.6c 

  
  

  
  

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

F
1
 55.4b F

1
 52.8c 

LDN1D(1B) 52.9b LDN5D(5A) 30.2b 

LDN 58.6b LDN 58.6c 

  
 

   
 

 

Sumai 3 21.8a 

Spring 2014 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

F
1
 87.6c F

1
 38.0b 

LDN2D(2A) 91.2c LDN5D(5B)  67.7c 

LDN 67.2b LDN 58.6c 

  
 

   
 

 

Sumai 3 19.3a 

Spring 2013 

Sumai 3 20.4a 

Spring 2013; 

Spring 2014 

F
1
 52.2b F

1
 65.9b 

LDN2D(2B) 85.0c LDN6D(6A) 84.4c 

LDN 52.4b LDN 56.9b 

  
 

   
 

 

Sumai 3 20.4a 

Spring 2013; 

Spring 2014 

Sumai 3 15.4a 
Spring 2013;  

Fall 2013; 

Spring 2014 

F
1
 57.6b F

1
 62.2b 

LDN3D(3A)  69.0c LDN6D(6B)  82.4c 

LDN 56.9b LDN 58.6b 

  
 

   
 

 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

F
1
 40.0b F

1
 41.2b 

LDN3D(3B) 55.3c LDN7D(7A) 59.9c 

LDN 58.6c LDN 58.6c 

  
   

 
 

Sumai 3 15.4a 
Spring 2013; 

Fall 2013; 

Spring 2014 

Sumai 3 21.8a 

Spring 2014 
F

1
 45.7b F

1
 66.0b 

LDN4D(4A)  62.6c LDN7D(7B)   60.0b 

LDN 58.6c LDN 67.2b 
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Table 4.5. FHB severity of F1 hybrids between PI 277012 and durum wheat  

 

 

 

 

 

 

 

 

 

 

*Means followed by different letters in this column are significantly different at α=0.05 level 

 

(2) Twenty-two seeds from one F3 plant with an FHB severity of 12.9% were used to establish an 

F4 family of the Divide×Sumai 3 cross. Forty-one F2 plants form the cross of LDN with PI 

277012 were employed for FHB evaluation. (1) Seeds set on two F2 plants that had FHB severity 

of 6.8% and 8.4%, respectively, were bulked to form an F3 family of 59 plants. (2) Seeds from 

two plants with an FHB severity of 12.9% and 15.0% in F3 family were combined to form an F4 

family of the LDN×PI 277012 cross. 

A wide variation in FHB severity was observed in the F2 population of the LDN×Sumai 3 

cross. About 53% of the individual plants exhibited FHB severity less than 30% and 3.5% of the 

individuals were identified with FHB severity lower than 10% (Figure 4.5). All other segregants 

had an FHB severity ranging from 30% to 90%. However, only 22.2% and 2.6% of plants in the 

F3 and F4 families, respectively, were identified with an FHB severity of less than 30% in the 

cross of LDN×Sumai 3 (Figure 4.5). Individuals with an FHB severity of less than 20% were not 

observed in the F4 family. Over 50% and 80% individuals in the F3 and F4 families, respectively, 

Entry FHB severity (%) Evaluation environment 

PI 277012 12.2a* 

Fall 2011; Spring 2013 F1 15.1a 

LDN 57.9b 

    

PI 277012 12.2a 

Fall 2011; Spring 2013 F1 15.3a 

Divide 41.0b 

    

PI 277012 9.4a 

Fall 2011 F1 12.2a 

Grenora 22.3b 

   

PI 277012 9.4a 

Fall 2011 F1 14.4a 

Alkabo 29.7b 
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Table 4.6. FHB severity of F1 hybrids between PI 277012 and LDN-CS D-genome substitution 

  lines 

 

*Means followed by different letters in this column are significantly different at α=0.05 level 

 

 

Entry FHB 

severity 

(%) 

Evaluation 

environment 

Entry FHB 

severity 

(%) 

Evaluation 

environment 

PI 277012 11.1a* 

Spring 2013; 

Fall 2013 

PI 277012 11.1a 

Spring 2013; 

Fall 2013 

F
1
 15.9a F

1
 15.1a 

LDN1D(1A) 45.1b LDN4D(4B) 62.8b 

LDN 56.4c LDN 56.4b 

    
 

    
 

PI 277012 11.1a 

Spring 2013; 

Fall 2013 

PI 277012 12.2a 

Spring 2013 
F

1
 15.5a F

1
 23.2a 

LDN1D(1B)  57.7b LDN5D(5A) 21.4a 

LDN 56.4b LDN 52.4b 

    
    

PI 277012 12.2a 

Spring 2013 

PI 277012 11.1a 

Spring 2013; 

Fall 2013 

F
1
 16.9a F

1
 17.1a 

LDN2D(2A) 53.9b LDN5D(5B) 62.7b 

LDN 52.4b LDN 56.4b 

   
    

 
PI 277012 12.2a 

Spring 2013 

PI 277012 11.1a 

Spring 2013; 

Fall 2013 

F
1
 22.0a F

1
 19.9b 

LDN2D(2B) 85.0c LDN6D(6A) 96.0d 

LDN 52.4b LDN 56.4c 

   
    

 
PI 277012 12.2a 

Spring 2013 

PI 277012 11.1a 

Spring 2013; 

Fall 2013 

F
1
 16.7a F

1
 24.8b 

LDN3D(3A) 69.3c LDN6D(6B) 78.9d 

LDN 52.4b LDN 56.4c 

   
    

 
PI 277012 11.1a 

Spring 2013; 

Fall 2013 

PI 277012 10.4a 

Fall 2013 

F
1
 15.4a F

1
 10.9a 

LDN3D(3B) 54.6b LDN7D(7A) 50.4b 

LDN 56.4b LDN 62.3c 

   
    

PI 277012 12.2a 

Spring 2013 

PI 277012 

 
Missing 

F
1
 27.7b F

1
 

LDN4D(4A) 68.8d LDN7D(7B) 

LDN 52.4c LDN 
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Table 4.7. Number of plants evaluated in F2 populations, and F3 and F4 families of three crosses 

  and selected plants for seed combination in the next generation 

 

 

 

 

 

 

 

were identified with an FHB severity higher than 50% (Figure 4.5). It was apparent that the F3 

and F4 families segregated toward higher susceptibility compared with the F2 population. 

Similar segregation patterns to the LDN×Sumai 3 cross were observed in the F2, F3, and 

F4 generations of the cross of Divide×Sumai 3. A little over 25% of the individuals were 

observed with an FHB severity of less than 20% in the F2 population. However, over 80% of the 

individuals exhibited an FHB severity higher than 50% in the F3 and F4 families (Figure 4.6).  

The cross of LDN×PI 277012 showed a segregation pattern of FHB severity similar to 

the LDN/Divide×Sumai 3 crosses in the F2 generation with about 40% individuals having an 

FHB severity less than 20%. However, FHB severity in the F3 and F4 of LDN x PI 277012 

segregated differently from the LDN/Divide×Sumai 3 crosses. The F3 and F4 families of 

LDN×PI 277012 maintained a high frequency (~55% in F3 and ~85% in F4) of individuals with 

an FHB severity less than 30% (Figure 4.7).  

Discussion 

Utilization of hexaploid-derived FHB resistance in durum wheat breeding has achieved 

limited success. It has been proposed that expression of hexaploid-derived FHB resistance genes 

Population/Family No. plants No. selected plants (FHB severity %) 

(LDN×Sumai 3) F2 57 2 (14.8% and 15.8%) 

(LDN×Sumai 3) F3 36 2 (13.8% and 17.9%) 

(LDN×Sumai 3) F4 38  

(Divide×Sumai 3) F2 37 4 (7.4%, 8.2%, 14.5%, and 16.3%) 

(Divide×Sumai 3) F3 52 1 (12.9%) 

(Divide×Sumai 3) F4 22  

(LDN×PI 277012) F2 41 2 (6.8% and 8.4%) 

(LDN×PI 277012) F3 59 2 (12.9% and 15.0%) 

(LDN×PI 277012) F4 60  
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Figure 4.5. FHB severity in the F2, F3, and F4 of the LDN×Sumai 3 cross 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6. FHB severity in F2, F3, and F4 of the Divide×Sumai 3 cross 
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Figure 4.7. FHB severity in the F2, F3, and F4 of the LDN×PI 277012 cross 

 

may be influenced by genetic factors present in durum (Rudd et al. 2001; Fakhfakh et al. 2011). 

In this study, all F1 of Sumai 3 with FHB susceptible hexaploid wheat exhibited a level of FHB 

resistance intermediate to the two parents. However, the F1 of Sumai 3 with durum exhibited 

levels of FHB severity similar to or higher than durum. Similar results were also reported in the 

F1 hybrids of other tetraploid wheat with FHB-resistant hexaploids including Sumai 3 (Gilbert et 

al. 2002). Obviously, Sumai 3-derived FHB resistance genes were normally expressed in the F1 

with hexaploids, but not in the F1 with durum. The intermediate FHB resistance level in the F1 of 

Sumai 3 with hexaploid wheat is consistent with polygenic inheritance in the hexaploid 

background. It was proposed that non-expression of Sumai 3-derived resistance genes in 

tetraploid wheat was caused by suppressor genes in the tetraploid wheat background (Gilbert et 

al. 2002). However, PI 277012-derived FHB resistance genes are normally expressed in the F1 of 

durum wheat with PI 277012 (Table 4.5). Apparently, FHB resistance genes in PI 277012 are 

completely dominant over the susceptible alleles in durum wheat.  
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The F1 of Sumai 3 with LDN2D(2B), LDN3D(3A), LDN4D(4A), LDN4D(4B), 

LDN5D(5B), LDN6D(6A), LDN6D(6B) and LDN7D(7A) had significantly lower FHB severity 

than their substitution line parents, suggesting that LDN chromosomes 2B, 3A, 3B, 4A, 4B, 5B, 

6A, 6B, and 7A may contain genes that suppress expression of the Sumai 3-derived FHB 

resistance genes. No significant increase of FHB resistance was observed in the F1 of  

LDN1D(1A), LDN1D(1B), LDN2D(2A), LDN5D(5A), and LDN7D(7B) with Sumai 3, 

indicating that LDN chromosomes 1A, 1B, 2A, 5A, and 7B may not influence expression of 

Sumai 3-derived FHB resistance genes. The F1 of LDN4D(4A), LDN6D(6A) and LDN6D(6B) 

with PI 277012 exhibited a resistance level lower than PI 277012, whereas the F1 of PI 277012 

with other substitution lines had a similar resistance level as PI 277012. These results suggested 

that LDN chromosomes 4A, 6A, and 6B likely contain genes required for the expression of the 

PI 277012-derived FHB resistance. Also, these expression results demonstrated that there might 

be different mechanisms underlying the Sumai 3- and PI 277012-derived FHB resistance genes. 

Zhuang et al. (2012) suggested that FHB resistance in Sumai 3 could be conferred by reducing 

the susceptibility rather than producing an active resistance reaction.  

Wide variation of FHB severity was observed in the F2 populations, F3 and F4 families of 

the crosses of Sumai 3 with LDN and Divide. Also, the frequencies of individuals with high 

levels of FHB resistance decreased from the F2 to the F4 generation. However, a high frequency 

of plants with high levels of FHB resistance was retained over the F2 to F4 generations in the 

cross of PI 277012 with LDN. The difference in inheritance pattern of Sumai 3- and PI 277012- 

derived FHB resistance could be caused by several factors. Firstly, FHB resistances QTL have 

been identified on several chromosomes including 7A, 2B, 3B and 6B in Sumai 3 (Yao et al. 

1997; Waldron et al. 1999; Zhou et al. 2002; Liu and Anderson 2003). However, two FHB 
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resistance QTL were mapped on the same chromosome 5A in PI 277012 (Chu et al. 2011). Thus, 

Sumai 3-derived FHB resistance QTL segregate more frequently than those in PI 277012. 

Secondly, it was identified that introgression of a single FHB resistance gene from Sumai 3 

could not provide a FHB resistance level comparable to Sumai 3 (Mergoum et al. 2006, 2008; 

http://www.extension.umn.edu/agriculture/small-grains/cultivar-selection-and-

genetics/docs/freyr-wheat.pdf). However, one of the two QTL in PI 277012 could provide a level 

of FHB resistance comparable to PI 277012 in other FHB susceptible wheat genetic backgrounds 

(http://www.uky.edu/Ag/Wheat/wheat_breeding/New%20Folder/Steve%20Xu.pdf). Thirdly, the 

present study found that expression of Sumai 3-derived resistance genes was possibly suppressed 

by multiple genes on different durum chromosomes. However, PI 277012-derived FHB 

resistance can be completely expressed and the expression is possibly influenced by few genes in 

durum.  

In conclusion, the expression of hexaploid-derived FHB resistance genes was influenced 

by multiple genes on different chromosomes in the durum genetic background, which make it 

difficult to utilize FHB resistance genes in durum improvement. The expression difference of 

Sumai 3- and PI 277012-derived FHB resistance illustrated that proper selection of the hexaploid 

FHB resistance donor source could provide an opportunity to improve FHB resistance in durum. 
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CHAPTER 5. INFLUENCE OF D-GENOME CHROMOSOMES ON FUSARIUM HEAD 

BLIGHT RESISTANCE IN DURUM WHEAT 

Abstract 

 Durum wheat (Triticum durum, 2n=4x=28, genome AABB) lacks the D sub-genome that 

common wheat (T. aestivum, 2n=6x=42, genome AABBDD) has. It has been anticipated that D 

genome may play a role in conditioning FHB resistance in wheat. The objective of this study was 

to elucidate the effect that the absence/presence of D-genome chromosomes might have on the 

expression of FHB resistance in durum backgrounds. Evaluation of a complete set of ‘Langdon’ 

(LDN) durum-‘Chinese Spring’ (CS) D-genome disomic substitution lines (DSLs) and a series of 

LDN-Ae. tauschii D-genome addition lines for FHB resistance indicated that LDN chromosome 

5A and CS chromosome 6D possibly contain genes for FHB susceptibility and/or suppression of 

FHB resistance. LDN chromosome 2B and Ae. tauschii 5D could possibly carry genes for FHB 

resistance. Chromosome 1D may harbor a genetic factor(s) augmenting the 5D-derived FHB 

resistance. The high FHB severity of synthetic wheat illustrated that expression of D genome 

genes for FHB resistance could be suppressed by the presence of other D genome chromosomes 

in the durum backgrounds. It was also revealed that chromosome 2D could carry a gene(s) for 

FHB susceptibility and that LDN chromosome 6A and 6B may carry genes for FHB resistance.  

Introduction 

Fusarium head blight (FHB), mainly caused by Fusarium graminearum Schwabe 

[teleomorph Gibbberella zeae (Schwein) Petch], has been a serious disease in wheat and barley 

worldwide. It is a severe threat to wheat production, especially in durum wheat due to the lack of 

effective FHB resistance in durum cultivars (McMullen et al 1997; Stack et al. 2002). In 

hexaploid wheat, multiple sources of FHB resistance, such as ‘Sumai 3’, ‘Wangshuibai’, and PI 
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277012, have been identified and successfully used in variety development (He et al. 2001; Chu 

et al. 2011). It has been observed that some Sumai 3-derived hexaploid wheat cultivars exhibited 

good levels of FHB resistance (He et al. 2001; Buerstmayr et al. 2009). To date, a durum 

accession with a high level of FHB resistance comparable to Sumai 3 has not been found (Oliver 

et al.2007, 2008), but a FHB resistance genes have been identified in wild emmer wheat (T. 

dicoccoides) (Otto et al. 2002; Kumar et al. 2007; Oliver et al. 2007). A major FHB resistance 

QTL, Qfhs-ndsu-3AS, identified from the wild emmer wheat accession Israel-A has been further 

characterized and used in durum breeding (Otto et al. 2002; Stack et al. 2002; Chen et al. 2007). 

Lack of effective resistance to FHB in durum wheat has prompted durum geneticists and 

breeders to utilize hexaploid wheat-derived resistance sources in durum breeding. However, little 

progress has been made with the introgression of FHB resistance from hexaploids to durum 

(Rudd et al. 2001; Oliver et al. 2008).  

It has been anticipated that either the hexaploid resistance source, such as Sumai 3, or 

durum may contain genetic factors that account for the difficulties of deploying hexaploid-

derived resistance genes in durum wheat (Rudd et al. 2001). The lack of a D genome in durum 

has been considered a major factor that limits the success of FHB resistance gene introgression 

from hexaploids to durum. Gilbert et al. (2000) studied the influence of the D genome from three 

FHB-resistant hexaploid wheat genotypes, Sumai 3, Ning8331, and 93FHB21 on FHB resistance 

in crosses of the hexaploids with tetraploid wheat. They observed variation of FHB severity in 

the pentaploid-derived F2 plants harboring diverse combinations of D-genome chromosomes. 

However, a clear relationship could not be revealed between D-genome chromosomes and FHB 

resistance in that study. 
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Wheat has a variety of aneuploid stocks with various chromosome constitutions, such as 

amphiploids, chromosome addition, substitution, and translocation lines (Sears 1969). These 

aneuploids are very useful in the characterization and identification of genomes, individual 

chromosomes, and genes in wheat and its relatives. Both alien chromosome addition and 

substitution lines dissect an alien genome into individual chromosomes in the wheat genetic 

background. They have been commonly used to investigate the effect of specific alien 

chromosomes on various agronomic traits in wheat (Bai and Kbitt 1992; Watanabe et al. 1994; 

Law and Worland 1996; Stack et al. 2002; Zhou et al. 2002a; Faris et al. 2008; Chumanovaa et al. 

2014; Du et al. 2014). For instance, ‘Langdon’ (LDN)-‘Chinese Spring’ (CS) D-genome 

substitution lines (LDN-CS DSLs) where one pair of LDN A- or B-genome chromosomes were 

substituted by one pair of homoeologous D-genome chromosomes have played an important role 

in the characterization of durum A and B genomes (Watanabe et al. 1994; Joppa LR and 

Williams 1988; Li et al. 2006; Klindworth and Xu 2008; 

http://wheat.pw.usda.gov/ggpages/GeneticStocks/Fargo_ARS_genetic_stocks.html). The 

advantage of LDN-CS DSLs lies in their isogenic background of LDN except of the substituted 

chromosomes. Wantanabe et al. (1994) investigated photosynthesis rates of LDN-CS DSLs and 

concluded that chromosome 1B and 3B contained the genes functionally decreasing 

photosynthesis. That conclusion was made base on the differences of photosynthesis rate 

between LDN1D(1A) and LDN1D(1B), and between LDN3D(3A) and LDN3D(3B), and their 

differences from LDN. In another study involving LDN-CS DSLs, Bai and Kbitt (1992) 

observed that LDN chromosomes 1B, 2B, and 7B carried the genes conferring stem rust 

resistance and CS chromosome 1D and 3D harbored suppressor genes for leaf rust resistance in 

LDN. Several other tetraploid substitution lines were developed and employed in durum genetic 

http://wheat.pw.usda.gov/ggpages/GeneticStocks/Fargo_ARS_genetic_stocks.html
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studies in addition to LDN-CS DSLs. Stack et al. (2002) evaluated a complete set of LDN 

durum-T. dicoccoides chromosome disomic substitution lines [LDN (DIC)] where a pair of 

chromosomes from T. dicoccoides accession Israel-A substituted a pair of the corresponding 

homologous chromosomes in LDN for FHB resistance. Chromosome 3A of Israel-A was found 

to contain FHB resistance genes that are normally expressed in LDN background, but not in 

Israel-A. Based on this result, the FHB resistance QTL, Qfhs-ndsu.3AS, was identified and 

mapped to the short arm of chromosome 3A (Otto et al. 2002; Chen et al. 2007). Zhou et al. 

(2002a) evaluated a set of CS-Sumai 3 substitution lines and identified several chromosomes of 

Sumai 3 conferring accumulation or decomposition of mycotoxin deoxynivalenol (DON), a 

major metabolic product of F. graminearum, in CS background.  

LDN-CS DSLs, LDN D-genome chromosome addition lines, and LDN durum-Aegilops 

tauschii (2n=2x=14, genome DD) amphiploids (i.e. synthetic hexaploid wheat) are ideal 

materials to characterize the effect of the D genome and individual D-genome chromosomes on 

various agronomic traits in LDN durum background. In this study, a complete set of LDN-CS 

DSLs were employed to investigate the effect of individual durum (A and B genome) and D-

genome chromosomes on the expression of FHB resistance genes. Also, several durum-Ae. 

tauschii amphiploids (2n=6x=42, genome AABBDD) and a series of LDN-Ae. tauschii D-

genome chromosome addition lines were developed and used to determine whether additions of 

the complete D genome and individual D-genome chromosomes to LDN background affect 

expression of FHB resistance genes.  
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Materials and Methods 

LDN-CS DSLs, Durum, and Ae. tauschii Accessions  

Fourteen LDN-CS DSLs were employed for FHB evaluation over seven greenhouse 

seasons [Fall 2011-Greenhouse1 (G1), Spring 2012-G1, Spring 2012-G2, Spring 2013-G1, 

Spring 2013 -G3, Fall 2013-G3, and Spring 2014-G3]. This set of substitution lines were 

developed through crossing the CS nullisomic-tetrasomic series to durum wheat LDN and 

backcrossing 12 times to LDN 

(http://wheat.pw.usda.gov/ggpages/GeneticStocks/Fargo_ARS_genetic_stocks.html). As a result, 

one pair of A or B genome chromosomes in LDN were substituted by one pair of homoeologous 

D genome chromosomes from CS. Due to the 12 cycles of backcrossing, each substitution line is 

isogenic with LDN except for the pair of substituted D genome chromosomes. 

Three durum cultivars (‘Lebsock’, ‘Divide’, and LDN) with moderate susceptibility to 

FHB ( Elias et al. 2001; Stack et al. 2002; Elias and Manthey 2007; Royo et al. 2009), an FHB-

resistant Tunisian durum line Tunisian 7 ( Tun 7) (Huhn 2008), and a FHB-resistant LDN-ISA 

substitution line 3A [LDN(3A)] where a pair of 3A chromosomes from T. dicoccoides accession 

Israel-A was substituted for the corresponding LDN durum chromosome (Joppa 1993) were 

included in this study. The Ae. tauschii accession RL5286 (2n=2x=14, DD) was used to develop 

synthetic hexaploid wheat in this study. CS nulli-tetrasomic lines where a pair of homologous 

chromosomes were substituted by a pair of homoeologous chromosomes (Sears 1966), and 

LDN-CS DSLs were used to identify D-genome chromosome-specific molecular markers. 

Crosses, Chromosome Doubling, and Embryo Rescue 

Crosses were made between tetraploid wheat accessions [Lebsock, Divide, LDN, Tun 7, 

and LDN (3A)] and RL5286 to develop triploid F1 plants. The chromosomes of the triploid F1 
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plants were doubled at the 3- to 4-tiller stage with colchicine. Plants were removed from the soil 

with roots rinsed with tap water, and put into a beaker containing colchicine solution with the 

knots of tillers submerged in the solution for 6-8 hr at room temperature in the dark. Mild 

aeration was applied to increase the oxygen concentration in the solution. The colchicine solution 

contained 0.5 g L-1 colchicine, 20 mg L-1 dimethyl sulfoxide (DMSO), 100mg L-1 gibberellic 

acid (GA3) and 0.3mL L-1 Tween 80. Subsequently, the plants were rinsed under running tap 

water for 3 hours and kept in water overnight. Then, the plants were transplanted into soil and 

kept in a growth chamber at 16 oC with 16-hour photoperiod. After that, the plants were moved 

into the greenhouse for crosses and seed production. 

Molecular Marker Analysis 

PCR amplification was carried out in a 20-µl mixture containing 40 ng genomic DNA, 

0.5 µM each of forward and reverse primers, 1x PCR buffer, 1.5 mM MgCl2, 0.25 mM dNTP 

and 0.25 U of Taq DNA polymerase. PCR was performed as follows: 94 oC for 3 min; 45 cycles 

of 94 oC for 1 min, 55 oC for 1 min and 72 oC for 1.5 min; with a final 72 oC for 7 min. PCR 

products were separated on 8% polyacrylamide gel and visualized by ethidium bromide staining 

(Chen et al. 2007).  

FHB Evaluation  

The FHB evaluation experiments were set up in a completely randomized design (CRD) 

with 3-5 replications. All materials were planted in 6-inch plastic pots with 1-2 plants in each pot 

in a greenhouse. Each pot of a line was considered a replicate. The pots were randomly arranged 

on the bench in the greenhouse where the temperature was set at 16 °C at night and 18 °C during 

daytime with a 16 hr photoperiod. The temperature was increased to 25 °C during inoculation. 

Four species of F. graminearum were used to prepare the inoculum suspension with a 
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concentration of 1 × 105 conidiospores per milliliter. The single-floret inoculation method 

described by Stack et al. (2002) was used for inoculation during anthesis. After inoculation, high 

humidity was kept for 72 hr by covering spikes with a plastic bag water-misted on the inside. 

FHB severity was evaluated at three weeks post-inoculation. The percentage of infected spikelets 

per spike was calculated as FHB severity. Statistical analysis was carried out with SAS version 

9.3 (SAS Institute 2011). Fisher’s protected least significant difference (LSD) was used to 

determine the mean separation at α=0.05 level. Bartlett's homogeneity test of error variance 

(P=0.05) was performed before doing a combined analysis of variance over greenhouse seasons.   

Results 

Production of Durum-Ae. tauschii Amphiploids and LDN D-Genome Addition Lines 

Four durum wheat accessions (Lebsock, Tun 7, LDN, and Divide) and the LDN-ISA 

substitution line 3A [LDN(3A)], were crossed with Ae. tauschii accession RL5286 to develop 

durum-Ae. tauschii amphiploids (i.e. synthetic hexaploid wheat; 2n=6x=42, genome AABBDD). 

Five amphiploids involving these four durum accessions and substitution line and  Ae. tauschii 

RL5286 were developed. The LDN-Ae. tauschii amphiploid was used as male parent to 

backcross to LDN. Consequently, a pentaploid (2n=5x=35, genome AABBD) in LDN 

background was produced. The pentaploid was self-pollinated to produce LDN D-genome 

addition lines with various D-genome chromosomes in each line (Figure 5.1). 

Identification of D-Genome Chromosome-Specific Molecular Markers 

Common wheat has three homoeologous sub-genomes A, B, and D. One molecular marker 

usually could detect three homoeoalleles from homoeologs in the three sub-genomes. A total of 

93 simple sequence repeat (SSR) or sequence tagged site (STS) markers previously mapped on 

the D genome (~10-20 markers for each D-genome chromosome) were screened to identify D-
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genome chromosome-specific markers (Roder et al. 1998; Pestsova et al. 2000; Guyomarch et al. 

2002; Liu and Anderson 2003; Paillard et al. 2003; Sourdille et al. 2004; Somers et al. 2004; 

Song et al. 2005; Dobrovolskaya et al. 2011). Initial screening was carried out with CS and the 

seven CS nulli-tetrasomic lines each with a D-genome chromosome under nulli condition. For 

example, CS nulli1D-tetra1B (CSN1DT1B) contains four copies of chromosome 1B, but 

completely lacks chromosome 1D. The marker alleles amplified in CS, but absent in the specific 

D-genome nulli-tetrasomic lines were pre-selected as potentially D genome-specific. After that, 

the pre-selected D genome-specific markers were validated using CS, RL5286 (source of D 

genome for producing D-genome chromosome addition lines), durum parent LDN and other 

durum accessions (Divide, Tun 7, and Lebsock), CS D-genome nulli-tetra lines, and LDN-CS 

DSLs. 

 

 

 

 

 

 

 

 

Figure 5.1. Scheme of development of LDN D-genome addition lines 

 

One chromosome-specific SSR/STS marker was identified for each of the seven D-

genome chromosomes (Figure 5.2; Table 5.1). Of the seven D-genome chromosome-specific 

LDN D-genome addition lines   
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Colchicine treatment 

Triploid wheat (ABD) 

♀LDN (AABB)  ♂RL5286 

(DD) 

X  

Marker selection  



87 
 

markers, Xcfd76 for chromosome 6D amplified different sizes of PCR fragments for CS and 

RL5286, indicating a difference between the two alleles at this marker locus (Figure 5.2). All 

seven markers amplified D-genome chromosome-specific PCR bands in CS, RL5286, and LDN 

D-genome addition lines, but not in durum and the critical CS nulli-tetrasomic lines (i.e. the 

nulli-tetrasomics without the critical D-genome chromosome). For example, chromosome 1D-

specific  SSR marker Xcfd63 amplified one clear PCR band from CS, as well as RL5286, 

LDN1D(1A), and LDN1D(1B) (Figure 5.2). However, that band was absent in CS nulli1D- 

tetra1B and durum wheat accessions, indicating Xcfd63 is chromosome 1D-specific (Figure 5.2). 

Table 5.1. Markers used to identify specific D genome chromosomes 

 

Identification of LDN D-Genome Addition Lines (LDALs) 

Wheat D genome-specific molecular markers were used to identify D-genome 

chromosomes in the progeny of the pentaploids (Figure 5.1). A total of 385 individuals from the 

progeny were genotyped with D genome-specific markers. Of the 385 individuals, 313 were 

found to contain D-genome chromosomes. Seventy-two individuals were identified to contain a 

single D-genome chromosome of 1D through 7D. Some of them contained the same D-genome 

chromosome, which were identified from the progeny of the pentaploid in the different 

greenhouse environments (Table 5.2). In addition, 54 addition lines were identified to contain 

double D-genome chromosomes in different combinations, designated LDN D-genome double 

Chromosome Marker Reference 

1D Xcfd63 Somers DJ et al. (2004); Paillard S et al. (2003) 

2D Xgwm257 Somers DJ et al. (2004); Paillard S et al. (2003); Roder MS 

et al. (1998)  

3D STS3B-54 Liu S et al.(2003) 

4D Xgdm129 Pestsova E et al. (2000) 

5D Xgpw5238 Dobrovolskaya O et al.(2011) 

6D Xcfd76 Guyomarch H et al. (2002) 

7D Xgdm86 Pestsova E et al. (2000) 
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addition lines. Thus, a total of 126 LDN D-genome addition lines with 1-2 (non-homologous) D-

genome chromosomes were identified with markers (Table 5.2). 

FHB Severity of LDN-CS D-Genome Disomic Substitution Lines 

LDN-CS D-genome disomic substitution lines (LDN-CS DSLs), where a pair of 

homologous A-genome or B-genome chromosomes were substituted by a pair of homoeologous 

D-genome chromosomes, dissect the CS D genome into individual chromosomes in LDN durum 

background. A complete set of DSLs (n=14) were employed to determine the effect of individual  

D-genome chromosomes on FHB resistance in LDN.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2. Gel images of D genome specific markers 
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Table 5.2. Number of plants with D-genome chromosomes identified with markers in three 

     greenhouse environments 

 

Fourteen LDN-CS DSLs were evaluated for Type II resistance at three greenhouse 

locations (G1, G2, G3) in five seasons (Fall 2011, Spring 2012, Spring 2013, Fall 2013, Spring 

2014). Homogeneity test indicated there was no significant difference in the error variance 

among these seven greenhouse environments (P=0.2958>0.05), thus combined statistical 

analyses were performed. LDN exhibited a mean FHB severity of 55.9%. The mean FHB 

severity for each of the 14 DSLs over the seven greenhouse environments ranged from 29.3% for 

the DSL LDN5D(5A) to 80.4% for LDN6D(6A) (Table 5.3). FHB severity of LDN5D(5A) was 

significantly lower than LDN and other DSLs, including LDN5D(5B). On the other hand, 

LDN6D(6A), LDN6D(6B), and LDN2D(2B) exhibited significantly higher FHB severity than 

LDN. Also, FHB severity of LDN2D(2B) was significantly higher than LDN2D(2A) (Table 5.3).  

FHB Severity of Durum-Ae. tauschii Amphiploids (Synthetic Hexaploid Wheat) 

Five durum-Ae. tauschii amphiploids (i.e. synthetic hexaploid wheat) were evaluated at 

two greenhouse locations (G1 and G3) in three seasons (Fall 2012, Spring 2013, and Fall 2013). 

The test of homogeneity did not detect significant differences among the environments 

(P=0.0797>0.05). Therefore, combined statistical analyses were carried out with FHB data of the 

amphiploids and their durum parents. FHB severity of five amphiploids, ranging from 59.1% to 

73.4%, was significantly higher than that of their corresponding durum parents (Table 5.4). Thus, 

Seasons No. plants No. plants with 

D-genome 

chromosome(s) 

No. plants with 

single D-genome 

chromosome 

No. plants with 

double D-genome 

chromosomes 

Fall 2013 162 110 32 24 

Spring 2014 183 169 30 21 

Summer 2014 40 34 10 9 

Total 385 313 72 54 
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presence of the D genome from Ae. tauschii accession RL5286 in the durum background 

increased FHB susceptibility. 

FHB Severity of LDN D-Genome Addition Lines (LDALs)   

A total of 126 LDALs with 1-2 diverse D-genome chromosomes were employed for FHB 

evaluation in three greenhouse seasons (Fall 2013, Spring 2014, and Summer 2014). However, 

FHB evaluation data were obtained only from 98 plants with the missing data being due to 28 

weak plants. There was less disease pressure in the greenhouse season of Spring 2014 than in the 

Fall 2013 and Summer 2014 (Table 5.5). The single D-genome chromosome addition lines 

LDAL-1D and LDAL-5D consistently exhibited lower FHB severity than LDN and other single 

chromosome LDALs consistently in the three greenhouse seasons. In addition, the double 

chromosome addition lines LDAL13F-1D+5D and LDAL14S-1D+5D that contained 

chromosome 1D and 5D had the lowest FHB severity among LDN and other LDALs in the 

greenhouse seasons of Fall 2013 and Spring 2014 (Table 5.5). 

Apparently, both concurrent and separate addition of chromosome 1D and 5D to LDN 

enhanced FHB resistance. Also, some of the other double addition lines involving chromosome 

1D or 5D, such as LDAL13F-1D+2D and LDAL13F-1D+7D, exhibited lower FHB severity than  

LDN, but this was not the case for other double addition lines involving chromosome 1D or 5D.  

Single addition of chromosomes 2D, 4D, 7D to LDN consistently increased FHB severity in all 

three greenhouse seasons. Chromosomes 3D and 6D showed an inconsistent effect on FHB 

resistance in LDN background in the three greenhouse seasons. It seemed that most of the double 

addition lines with other combinations of D-genome chromosomes exhibited a lower FHB 

severity than LDN even though a clear pattern for those double addition lines on FHB resistance 

could not be revealed (Table 5.5) 
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Table 5.3. Mean FHB severity of LDN and LDN-CS D-genome substitution lines in seven 

      greenhouse environments 

 

 

 

 

 

 

 

 

 

*Means in this column followed by different letters are significantly different at α=0.05 level 

 

 

 

 

 

 

Table 5.4. Mean FHB severity of five durum-Ae. tauschii amphiploids with their durum parents 

  in five environments 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Means in this column followed by different letters are significantly different at α=0.05 level 

  

Line FHB severity (%) 

LDN5D(5A) 29.3a* 

LDN1D(1A) 46.6b 

LDN4D(4B) 50.9bc 

LDN1D(1B) 54.0bcd 

LDN 55.9bcd 

LDN7D(7B) 57.0bcd 

LDN7D(7A) 58.5cd 

LDN3D(3B) 59.3cd 

LDN4D(4A) 61.0cd 

LDN3D(3A) 61.5cd 

LDN5D(5B) 61.7d 

LDN2D(2A) 64.8de 

LDN6D(6B) 73.8ef 

LDN2D(2B) 78.4f 

LDN6D(6A) 80.4f 

Entry FHB severity (%) Pedigree 

LDN(3A) 31.7a*  

Tun7 36.5ab  

Lebsock 42.4bc  

Divide 42.6bc  

LDN 49.4c  

Syn3 59.1d Lebsock/Ae. tauschii RL5286 

Syn4 63.0de Tun 7/ Ae. tauschii RL5286 

Syn5 64.4def LDN(3A)/ Ae. tauschii RL5286 

Syn1 72.8ef LDN/ Ae. tauschii RL5286 

Syn2 73.4f Divide/ Ae. tauschii RL5286 



 
 

Table 5.5. FHB severity of LDN D-genome addition lines 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

             *1D chromosome was identified in this LDAL 
                   Φ All seven D-genome chromosomes were identified in this LDAL 

 

Fall 2013-G3  Spring 2014-G3  Summer 2014-G3 

LDALs 
No. 

plants 

Mean FHB 

severity (%) 

 
LDALs 

No. 

plants 

Mean FHB 

severity (%)  

 
LDALs 

No. 

plants 

Mean FHB 

severity (%)  

LDAL13F-1D* 6 47.1  LDAL14S-2D 12 34.3  LDAL14Su-1D 1 42.1 

LDAL13F-2D 4 74.6  LDAL14S-5D 2 23.0  LDAL14Su-2D 1 84.8 

LDAL13F-3D 3 55.0  LDAL14S-6D 3 50.5  LDAL14Su-3D 4 70.2 

LDAL13F-4D 6 74.5  LDAL14S-7D 2 76.3  LDAL14Su-4D 1 76.9 

LDAL13F-6D 2 62.7  LDAL14S-1D+5D 1 12.1  LDAL14Su-5D 1 46.4 

LDAL13F-7D 5 74.6  LDAL14S-2D+3D 2 24.4  LDAL14Su-7D 2 83.1 

LDAL13F-1D+2D 1 33.2  LDAL14S-2D+4D 2 71.6  LDAL14Su-2D+3D 1 84.3 

LDAL13F-1D+4D 2 69.5  LDAL14S-2D+5D 2 27.3  LDAL14Su-2D+4D 1 73.3 

LDAL13F-1D+5D 1 24.9  LDAL14S-2D+6D 4 59.8  LDAL14Su-3D+4D 1 70.5 

LDAL13F-1D+7D 1 53.9  LDAL14S-2D+7D 2 57.0  LDAL14Su-3D+5D 2 70.7 

LDAL13F-2D+3D 2 85.9  LDAL14S-3D+5D 1 24.7  LDAL14Su-5D+6D 1 80.3 

LDAL13F-2D+4D 2 85.5  LDAL14S-3D+6D 1 51.4  LDAL14Su-5D+7D 1 98.4 

LDAL13F-2D+5D 2 76.2  LDAL14S-4D+6D 1 65.2  LDAL14Su-6D+7D 1 83.7 

LDAL13F-2D+6D 1 61.8  LDAL14S-all D 3 89.8  LDAL14Su-all D 1 83.9 

LDAL13F-2D+7D 2 49.0  LDN 6 28.5  LDN 6 66.2 

LDAL13F-3D+7D 1 100.0         

LDAL13F-4D+5D 2 86.7         

LDAL13F-5D+6D 1 86.1         

LDAL13F-5D+7D 1 34.2         

LDAL13F-all DΦ 4 74.5         

LDN 5 70.2         

9
2
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Discussion 

Few studies have reported on the effect of D-genome chromosomes on FHB resistance in 

durum (Gilbert et al. 2000). Characterization of such effect will lead to a better understanding of 

the expression of hexaploid wheat-derived FHB resistance genes and facilitate utilization of such 

resistance source in durum wheat. In the current study, substitutions of CS chromosome 5D for 

LDN chromosome 5A and 5B exhibited different levels of FHB resistance. FHB severity of 

LDN 5D(5A) and LDN5D(5B) is significantly lower than and similar to LDN, respectively. 

These results indicated that the augmented resistance level in LDN5D(5A) could be caused by 

the absence of 5A instead of the presence of 5D. Due to the loss of chromosome 5A, LDN5D(5A) 

exhibited a lax spike type, however, the spike morphology of LDN5D(5B) was similar to LDN 

due to the good compensation of 5D for the loss of 5B (Joppa and Williams 1988). The increased 

rachis length of LDN5D(5A) possibly increased the spread time of the fungus from the infected 

spikelet to other spikelets along the rachis, which resulted in a lower FHB severity. Thus, the 

gene(s) on 5A might be associated with FHB susceptibility in LDN. The LDN-Ae. tauschii 5D-

addition line also exhibited lower FHB severity, which was apparently caused by the expression 

of genes on chromosome 5D. Thereby, chromosome 5D from Ae. tauschii RL5286 likely 

harbored FHB resistance gene(s) that were expressed in the LDN background. It seemed that 

chromosomes 5D from CS and Ae. tauschii RL5286 contained different alleles at the FHB 

resistance gene loci. The genomic difference of chromosome 6D from CS and Ae. tauschii 

RL5286 was observed at the marker Xcfd76 locus (Figure 5.2). The role of chromosome 5D from 

CS in LDN needs to be evaluated further due to the smaller number of LDAL-5D plants 

evaluated. Chromosome 1D from both CS and Ae. tauschii RL5286 conferred positive effects on 

FHB resistance in LDN. The concurrent addition of 1D and 5D in LDALs resulted in the lowest 
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FHB severity and suggested that gene(s) on chromosome 1D might complement the Ae. tauschii 

5D-derived FHB resistance in LDN background. Susceptibility of synthetic wheat to FHB also 

illustrated that expression of 5D-derived FHB resistance could be suppressed by other D-genome 

chromosomes. 

Susceptibility to FHB conferred by D-genome chromosomes in LDN background was 

observed in some LDN-CS DSLs. Both substitutions of 6D for 6A and 6B exhibited a FHB 

resistance level significantly lower than LDN, suggesting that chromosome 6D possibly harbors 

a gene(s) for FHB susceptibility and/or suppression of FHB resistance in LDN or that 6A and 6B 

contain a gene(s) for FHB resistance in LDN. LDN2D(2B) exhibited significantly higher FHB 

severity than LDN, whereas LDN2D(2A) had FHB severity similar to LDN. This indicated that 

chromosome 2B might contain genes for FHB resistance in LDN. High FHB susceptibility 

contributed by chromosome 2D was observed in the LDN D-genome addition lines. Although 

FHB severity of LDN2D(2A) was not significantly higher than that of LDN, it was the fourth 

hightest value among the 14 LDN-CS DSLs (after LDN6D(6A), LDN6D(6B), and LDN2D(2B)). 

Thus, chromosome 2D might also harbor a gene(s) for FHB susceptibility. 

In summary, LDN durum chromosomes 2B, 5A, 6A and 6B, and D-genome 

chromosomes 1D, 2D, 5D, and 6D possibly contain genes associated with FHB resistance in the 

LDN background. In previous studies, QTL associated with FHB resistance on these 

chromosomes were mainly identified in hexaploid wheat accessions, and few in tetraploid wheat. 

FHB resistance QTL on chromosome 2B have been widely identified in wheat accessions from 

Asia, North America, and Europe (Zhou et al. 2002b; Gervais et al. 2003; Paillard et al. 2004; 

Schmolke et al. 2005; Somers et al. 2006; Liu et al. 2007). However, FHB resistance QTL on 

chromosomes 5D and 6A were reported only in a few studies (Anderson et al. 2001; Schmolke et 
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al. 2005; Yang et al. 2005). Most of the FHB resistance QTL identified on chromosome 6B 

originated from hexaploid wheat accessions from China (Waldron et al. 1999; Shen et al.2003; 

Lin et al. 2004). Basent et al. (2012) concluded that chromosome 2D in Sumai 3 harbors a QTL 

for FHB susceptibility. Susceptibility genes on chromosome 5A and 6D have not been reported. 

In conclusion, FHB severity of LDN could be influenced positively or negatively by multiple 

chromosomes, and proper manipulation of these chromosomes is needed to improve FHB 

resistance in durum wheat.  
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CHAPTER 6. GENERAL CONCLUSIONS 

To date, durum wheat with acceptable FHB resistance has not been identified. FHB 

resistance QTL Qfhs.ndsu-3AS identified from Triticum dicoccoides has been regarded as a 

promising source to improve FHB resistance in durum wheat. In this study, complex micro-

collinearity was observed among wheat chromosome 3A, rice chromosome 1, and Brachypodium 

chromosome 2 within the QTL Qfhs.ndsu-3AS region and the information was utilized to develop 

a new set of molecular markers. Employing these markers, the chromosomal interval spanning 

Qfhs.ndsu-3AS could be narrowed down from 11.5 cM in a previous study to 7.4 cM in the 

current study. Moreover, the map resolution was improved with a large F2 population developed 

from the cross of RICL#10 harboring the shortest fragment from T. dicoccoides spanning 

Qfhs.ndsu-3AS with LDN. Evaluation of homozygous recombinants developed from the F2 

population further narrowed the location of the QTL to a 5.2 cM genomic interval flanked by 

Xwgc501 and Xwgc510. In addition, recombinants with shortened T. dicoccoides chromosomal 

fragments surrounding Qfhs.ndsu-3AS were identified. Comparative analysis identified a 

~42.2Mb genomic region on the common wheat ‘Chinese Spring’ (CS) chromosome 3B 

pseudomolecule that is collinear to the 5.2cM genetic region on 3AS spanning the QTL. These 

results will benefit continued fine mapping of Qfhs.ndsu-3AS and its utilization in durum 

improvement. 

Problems associated with the introgression of FHB resistance from hexaploid to durum 

wheat were explored in this study. The F1 of two hexaploid resistance sources (‘Sumai 3’ and PI 

277012) with durum, four susceptible hexaploid wheat, and 14 LDN-CS D-genome substitution 

lines (LDN-DSLs) were evaluated for FHB resistance. The results indicated that expression of 

FHB resistance genes from Sumai 3 was possibly suppressed by genes on durum chromosomes 
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2B, 3A, 3B, 4A, 4B, 5B, 6A, 6B, and 7A. Chromosomes 4A, 6A, and 6B may contain genetic 

factors required for the expression of the PI 277012-derived FHB resistance genes in durum 

wheat. Suppression of Sumai 3-derived resistance and complete dominance of PI 277012-derived 

FHB resistance over susceptible alleles in durum wheat background was observed. Segregation 

within resistant-individual-derived families from the F2 to F4 generations in the cross of Sumai 3 

with durum was skewed towards susceptibility, but a high frequency of resistant plants was 

retained over generations in the cross of PI 277012 with durum wheat. These results suggest that 

proper selection of the resistance source will be important for the introgression of hexaploid-

derived FHB resistance into durum. 

Evaluation of a complete set of LDN-DSLs and a series of LDN-Ae. tauschii D-genome 

addition lines (LDALs) for FHB resistance indicated that multiple chromosomes from  LDN, CS, 

and Ae. tauschii had either negative or positive effects on FHB resistance. LDN chromosome 5A 

and CS chromosome 6D possibly harbor genes for FHB susceptibility. LDN chromosome 2B 

and Ae. tauschii chromosome 5D may carry genes for FHB resistance. Chromosome 1D possibly 

harbors a genetic factor(s) that augments the chromosome 5D-derived FHB resistance. It 

appeared that chromosome 2D may carry genes for FHB susceptibility whereas LDN 

chromosomes 6A and 6B may carry genes for FHB resistance. Thus, proper manipulation of 

these chromosomes is needed to ensure normal expression of FHB resistance genes in durum 

wheat. 

 


