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ABSTRACT

Nanoscale polymer films have numerous potential applications such as protective

coatings, flexible electronics, energy harvesting devices, and drug delivery systems. For

realization of these potential applications, the mechanical properties of these materials and

the underlying physics need to be understood.

This dissertation focuses on understanding the responses of nanoscale films to me-

chanical deformations. In this regard, an elastic instability was exploited to locally bend

and impart a local tensile stress in a nanoscale polystyrene film, and directly measure the

resulting residual stress caused by the bending. Our results indicate that the onset of perma-

nent deformation for thin polystyrene films is an order of magnitude smaller than what has

been reported for the bulk value. In addition, not only is the onset of failure strain found to

be small but also it increases with increased confinement. Using similar processing tech-

niques, the yield strain of a more complex material - poly(styrene-b-divinylpyridine) - was

studied. Similar to the polystyrene films, failure in polystyrene-b-poly(2-vinylpyridine) is

also initiated at extremely low strain and is influenced by thin film confinement effects. In

addition, we have demonstrated that internal nanostructure of self-assembled polystyrene-

b-poly(2-vinylpyridine) affects the onset of failure strain.

Having introduced an idealized heterogeneity to a sample through ultraviolet/ozone

treatment, we have created samples ranging from continuous thin films to sets of isolated

plates. We demonstrated that, when subjected to mechanical deformation, the unbounded

plates form isotropic undulations that persist even beyond high strain. In contrast, isolated

plates undergo non-isotropic undulations in the range of high strains. The non-isotropic

undulation shape has been described through a simple numerical modeling subjected to

controlled boundary conditions. The agreement between experiment and numerical mod-

eling is remarkable.
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Finally, through an integrated experimental methods and theoretical modeling, the

response of discrete colloidal layers to mechanical deformations have been exploited. The

buckling profiles measured experimentally demonstrate a great insight that the continuum

model may not be able to predict the response of discrete systems. Theoretically, a gran-

ular model was constructed and structural stability analysis was investigated to predict the

experimental observations. The overall agreement of the experiment and the modeling was

good.
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1. INTRODUCTION

1.1. Research Motivation

In the past several decades, the electronics industry has been dominated by inor-

ganic films (silicon technology). In recent years, polymer films have been gaining more

attention in the electronics industry. This is due, in part, to newly emerging polymer

thin film technologies such as flexible electronics (e.g. wearable computers, E-paper, and

flexible displays), energy harvesting, drug delivery, protective coating, etc. Despite their

wide potential technological applications, the mechanical properties of thin polymer films

are not yet well studied, particularly when the film thickness approaches nanometer scales.

Hence, it is essential to understand and improve the mechanical limits of these materials.

1.2. Research Objective

The research objective of this dissertation is to experimentally investigate the me-

chanical response of nanoscale polymeric materials to mechanically induced deformation.

The nanoscale films are made from two systems of model materials: 1.) continuum

systems which include homopolymers, block copolymers, ultraviolet/ozone oxidized poly-

dimethylsiloxane surfaces and 2.) discrete systems (colloidal particle layers). Studying the

mechanical response of these systems will bridge the gap between scientific communities

independently involved in the studies of the continuum and discrete materials. Throughout

this study, surface characterization techniques such as laser scanning confocal microscopy,

atomic force microscopy and optical microscopy are used. The wide range of thin film

applications and the importance of mechanical behavior to the function of the material gives

reason to anticipate that this thesis will have a profound impact on thin film technology.
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1.3. Outline of the Research

This dissertation discusses four projects investigated experimentally and is orga-

nized along these lines. Chapter one contains a brief introduction to the concepts of me-

chanical deformation of materials, the fundamentals of buckling instabilities and polymers

- the cornerstones of the projects described in this thesis. Following the introduction,

subsequent chapters present the methodologies, the findings and the conclusions of each

project.

The first project, discussed in the second chapter, was designed to explore how

to quantify the onset of failure in thin films made from an amorphous, glassy polymer

that is generally rigid and relatively inexpensive - polystyrene. In the effort of reducing

the size of functional devices, the thickness of polymeric materials has reached values

smaller than the size of unperturbed molecule. When the film thickness is comparable to

the characteristic length scale of the unperturbed molecule, interesting phenomena emerge.

For example, the glass transition temperature, the inter-chain entanglement density and

the elastic modulus of thin polymer films are now known to deviate from their bulk

measurement as confinement increases [60, 106, 70]. While these deviations, as film

thickness approaches zero, are well documented,very little work has centered on failure

processes under confinement. Here, we make use of an elastic instability to locally bend

a nanoscale polymer film made from homopolymer in order to induce local stress and

experimentally quantify failure strain and the influence of thin film confinement on the

onset of plastic deformation.

Motivated by the significant observations made in the first project - coupled with

our quest to investigate more complex thin film materials - we pursued the response of

thin films made from diblock copolymers to external stress. This work is presented in the

third chapter. Block copolymers are a class of material made up of two or more than two

chemically different homopolymers that are covalently bonded together to form a larger
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and more complex macromolecule. The simplest block copolymers is a diblock copolymer

which is made from two homopolymers connected by a covalent bond. Diblock copolymers

are known to self-assemble into a variety of micro-phase separated morphologies depend-

ing on the relative volume fractions of the components, the number of statistical segment,

and the degree of miscibility between the monomers of the two blocks [4, 5, 72, 48, 77].

Here we study the effect of such nano-structures on the plastic deformation of lamellar

and cylinder forming polystyrene-b-poly (2-vinylpyridine) thin films. An important result

emerging from this work is that a thin film with lamellar nanostructures will stretch further

before failure compared to as cast films made from the same material.

In chapter four, we study how idealized, spatially heterogeneous thin films respond

to mechanical deformations. The idealized/patterned surface layers are created by selective

ultraviolet/ozone treatment of the top surface of polydimethylsiloxane (PDMS) using TEM

grid as a mask. By controlling the exposure time of UV/O3, samples ranging from

continuous thin films to sets of isolated small plates were created. When subjected

to externally applied strains, each region responds in a very different way due to the

inhomogeneity of the surfaces. While the continuous regions maintain periodic undulations

(even at high strains) the patterned regions show strong localization as the applied strain

increases. Often time localized deformations are associated to non-homogeneous strain

fields in the materials. In this project, we investigate variation of the responses of each

region as a function of globally applied and local strains. Furthermore, we develop a simple

model that qualitatively describes the deformation profile heights of each region by using

appropriate boundary conditions.

The final major topic of this thesis concerns colloidal layers and is presented in

chapter five. In this chapter, the response of thin films made from nanoscopic colloidal

particles subjected to external stress is investigated. This system is also observed to buckle

out of plane forming a sinusoidal topography when a threshold stress is reached. This
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is a common elastic instability seen in continuum films. In the continuum system, it has

previously been shown that the threshold wavelength of wrinkling instability is directly

proportional to the film thickness and the cubic root of the ratio of the elastic moduli of

the film and substrate, respectively. Our finding suggests that the critical wavelength of

colloidal buckling instability is independent of the particle modulus and directly related to

the radius of the films.

Finally, an overall summary of the results discovered and conclusion will be

presented in chapter six of the dissertation.

1.4. Mechanical Deformation

Mechanical behavior of a material is characterized by how it deforms when an

external force is applied. When a sufficient force is applied to any material, it will cause the

material to change shape (deform) [67]. Under certain conditions, an equilibrium state can

be achieved after applying a stress (stress, denoted by σ , is defined as the magnitude of the

applied force (F) divided by the area (A) over which the force is applied. Mathematically,

σ = F/A.). Often, equilibration takes time. Time dependent deformation can also give

important insights.

In order to understand the differences, it is useful to consider how atomic dis-

placement takes place under an applied stress. At static equilibrium, each atom prefers

occupying a position that minimizes its free energy. When a stress is applied, atoms move

from their initial stable state because the free energy has been changed by the applied

stress. If the stress is small, then only small displacement will occur and eventually the

motion will cease. Upon removal of the stress, atoms will return to their original positions.

This type of recoverable deformation is known as elastic deformation. In contrast, when a

large stress is applied, then the material responds to the stress not only at short times but

also through delayed, time dependent deformation. In this situation, a fraction of strain
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is often no longer recoverable (strain, denoted by ε , is the change in length (∆L) of a

material relative to the initial length (L0). It is a measure of by how much a material departs

from its natural configuration. Mathematically, ε = ∆L/L0 = (L f −L0)/L0 in 1D, where

L f denotes the final length.). Microscopically speaking, the nonrecoverable deformation

occurs when the atomic motion is so large that atoms move over a potential hill, to the

next local free energy minima. Once atoms move over the potential hill, then even if the

stress is removed, they may not have enough energy to go back to their original positions.

This kind of deformation is irreversible and said to be plastic deformation. The stress

at which the material ceases elastic deformation and starts showing plastic deformation

is termed the yield point or yield stress or the point of the onset of plasticity whereas

the corresponding strain is termed yield strain. The yield point is a material dependent

property. i.e. every material possesses a distinct yield point value. For example, it was

documented that the yield strain of bulk polystyrene varies between 1% to 2.5% [1, 74]

using traditional bulk techniques. However, common techniques such as tensile tests,

nanoindentation are limited when attempting to characterize polymer thin films due to their

relative softness and fragility. Thus, it is essential to develop a better technique to fill this

gap. In this thesis, a surface buckling instability based metrology is used to overcome these

experimental difficulties and to determine the onset of plasticity of glassy polymer thin

films.

1.5. Buckling Instabilities

1.5.1. Buckling of Thin Plate

Suppose a thin plastic ruler is picked up and held at the two ends and gently

compressed. The ruler will not buckle out plane at first. It absorbs any displacement

by compressing in plane. Next, the ruler responds by buckling out of plane when a
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characteristic threshold compressive force is achieved. Buckling instabilities typically

occur when the applied compressional force exceeds the material yield stresses. According

to Euler-buckling theory [114], the deflection, y(x), of thin rod of length L from its flat axis

is related to the applied load, F, through the differential equation

ĒI
d2y(x)

dx2 +Fy(x) = 0 (1.1)

where Ē is the reduced elastic modulus of the material (i.e. Ē = 1/(1− ν
2) where ν is

the poisson ratio), I is the second moment of area for the buckling cross-section. Solving

this equation with fixed edge boundary conditions (i.e. y(0) = y(L) = 0), gives F = π
2ĒIn2

L2 ,

where n is the mode of deformation. Since n=1 is the minimum, it corresponds to the

critical applied force, Fc, required to buckle a simply supported columnar elastic material

of a specified cross-sectional geometry. This leads to

Fc =
π

2ĒI
L2 . (1.2)

The moment of inertia, I, varies with the geometry of plates considered. For example, a

plate of rectangular cross-section with width b and thickness h has the moment of area:

I = bh3/12 and hence the critical buckling load will be

Fc =
π

2Ēbh3

12L2 . (1.3)

Until the applied force reaches this threshold value (Fc), the plate absorbs elastic energy and

then buckles out of plane when the critical force is attained to release the stored/absorbed

energy. Beyond this critical force, the system responds by undergoing periodic undulations.

In general, the mechanism behind the formation of periodic surface buckling insta-

bilities lies in the competition between bending and stretching deformation modes [2, 32].

In the framework of Hookean elasticity, which is valid for small strain (a strain that allows
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one to consider that the elastic response of a given material is linear) in general, the elastic

energy, Eelastic, of the plate reads [2]:

Eelastic =
1
2

∫ ∫
dxdy

∫ h/2

−h/2
dz(σi jεi j) (1.4)

where x and y denote coordinates along the center surface of the plate, while z is in the

transverse direction. Notice that in the stress, σi j, has two indices - the first index refers

to the plane on which the stress is acting while the second one refers to the direction of

the stress on this plane. For pure bending (bending that doesn’t involve twisting), also

known as isometric deformation, the lengths along the center surfaces are not changed upon

deformation. Any out-of-plane component of the stress on the top and bottom surfaces

are zero because the surfaces are assumed free boundaries. As a result, the implicit sum

in equation 1.4 runs only over the in-plane indices i, j = α,β ∈ {x,y} which reduces

equation 1.4 to

Eelastic =
1
2

∫ ∫
dxdy

∫ h/2

−h/2
dz(σαβ εαβ ). (1.5)

By approximating the in-plane components of strain, εαβ , which are responsible for

bending, as εαβ ∼ z/R, (which will be discussed below), and the constitutive equation,

σαβ = Eεαβ , where R is the radius of curvature of the neutral axis of the plate, equation 1.5

reduces to the expression of plate bending:

Ebending ∼
1
2

∫ ∫
dxdy

E
R2(x,y)

∫ h/2

−h/2
z2dz. (1.6)

Integrating over z, the bending energy becomes [2]

Ebending ∼
1
2

∫ ∫
dxdy

Eh3

12

(
1

R(x,y)

)2

, (1.7)
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or simply

Ebending ∼ Eh3
. (1.8)

In order to approximate the stretching energy, an assumption made is that the dependence

of the energy density on the transfer coordinate (z running from -h/2 to h/2) is isotropic.

This essentially means that the stress is averaged over the whole thickness implying that,

in contrary to the assumption made for bending energy approximation, the plate involves

stretching (or compression) at the outer and inner edges, respectively, does not hold.

Estretching =
1
2

∫ ∫
dxdy(σαβ εαβ )

∫ h/2

−h/2
dz. (1.9)

Integrating over z gives the elastic (stretching) energy along the center line [2] given as

Estretching =
1
2

∫ ∫
dxdyh(σαβ εαβ ). (1.10)

By introducing the constitutive equation, σαβ = Eεαβ , equation 1.10 reduces to

Estretching ∼ Eh
∫ ∫

dxdy(εαβ )
2
, (1.11)

or

Estretching ∼ Eh. (1.12)

In order to realize the response of geometrically different plates to similar external

stress, let us compare equations 1.8 and 1.12. The bending energy scales as ∼ h3 while

the stretching energy scales as ∼ h. Consequently, for very thin plates, the energy of

pure bending deformations (no twisting) is much lower than those involving significant

stretching. From this comparison it is clear that the thickness of the plate plays a crucial

role in determining which mode of deformation (bending or stretching) is preferable (see

Fig. 1.1). When a thin, stiff material and a thick, soft material are subjected to an externally
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Figure 1.1. Illustration of how different material geometries are responding to an applied
compressive stress, σ : a) a thick bulk material ; b) a thin plate. While thick plate prefers
stretching, thin plates prefer bending to stretching upon uniaxial compressional stress. The
width of the sample denoted by b is shown into the page and h denotes the thickness.

applied compression (see Fig. 1.1), the thick material prefers stretching (see Fig. 1.1a)

while the material with small thickness will bias the deformation towards bending as shown

in Fig. 1.1b. The low energy obtained in a pure bending deformations can be explained in

what we experience on a daily basis. For instance, if we pick up a sheet of paper and try to

deform it into cylindrical or spherical shape, we know from every day experience that it is

much easier to bend a sheet of paper into shapes such as conical or cylindrical than to pull

(or stretch) it onto a spherical shape [123].

Now that we have established how each plate responds to mechanical deformation

when treated separately, a composite of the two materials, a thick bulk solid and a thin

plate, is considered. When the two materials are laminated together, they prevent each other

from attaining their preferred state of deformation. At small strains, the energy required

for simple compression is smallest, however as compression increases, buckling the thin
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Figure 1.2. Schematic illustrations of: a) a thin film of thickness h and length L bound
to a softer substrate (PDMS). When subjected to uniaxial compression, σ , the composite
first responds by undergoing b) surface wrinkling with periodicity of λ and amplitude of
A. Further compression may lead to c) delamination of width ω and amplitude A or to d) a
more focused deformation (localization).

film becomes more favorable (Fig. 1.2). Ultimately compressing the composite leads to a

periodic instability, wrinkling, which combines aspects of both bending and stretching.

1.5.2. Buckling of Thin Plate Coupled with Soft Foundation

A material can respond to an applied stress in a variety of ways. For example,

when a thin plate described in the previous section is bound initially to a stress free

elastic substrate is subjected to a compressive uni-axial stress, the plate will initially be

compressed in-plane. As compression increases, the plate will buckle out of plane in

a repetitive sinusoidal pattern (known as surface wrinkling) [110, 20] when a critical

wrinkling stress is reached. Increasing the applied stress further may result in either

delamination or folding or both [31, 81, 118].
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1.5.2.1. Wrinkling Mechanics

Surface wrinkling can be modeled mathematically through a force balance or an

energy balance [21, 43] in order to obtain equations that govern the deformation of the plate.

In this thesis we follow the force balance approach used by Timoshenko [114]. Consider

a beam bending under a distributed lateral load q(x) (i.e. the restoring force of an elastic

foundation) whose intensity varies with x along the beam and axial load F as shown in Fig.

1.3. We will assume a Hookean substrate such that q(x) = Ky(x) where K is Winkler’s

modulus (the reaction force per unit area of the elastic foundation or substrate) [126] given

by (K = Esbπ/λ (1−ν
2
s ) = Ēsbπ/λ ) with the variables s, ν , b and λ referring respectively

to substrate, Poisson ratio, width of the plate (film) and the wavelength of the distortion.

Consider an element of length dx between two cross sections taken normal to the original

(undeflected) axis of the beam as indicated in Fig. 1.3. Assume that the lateral load remains

constant over the distance dx and positive in the positive y direction. Furthermore, the

shearing force V and the bending moment M acting on the sides of the element are assumed

positive in the directions shown.

The balance of forces acting on the beam along the y directions is

−V +qdx+(V +dV ) = 0. (1.13)

The balance of moments acting around point n, assuming small deflection, is

M+qdx
dx
2
+(V +dV )dx− (M+dM)+F

dy
dx

dx = 0 (1.14)

From equation 1.13,

q =−dV
dx

. (1.15)

11



Figure 1.3. Beam bending under a distributed load. A beam bent under a distributed
load q(x) and an axial load F with inset representing a differential element of the beam
in equilibrium. Redrawn inspired from [114].

12



Plugging for dV from equation 1.13 into equation 1.14 and neglecting higher order terms

(i.e. neglecting terms containing (dx)2), the shear force will be:

V =
dM
dx
−F

dy
dx

. (1.16)

The curvature of the axis of a beam is related to the bending moment [114], M, by

Ē f I
d2y
dx2 =−M (1.17)

where I = wh3/12, w and h are respectively the moment of inertia, the width and thickness

of the film and Ē f is the reduced modulus related to the modulus and Poisson ratio of the

film, ν f , by Ē f = E f /(1− ν
2
f ). Combining equations 1.15,1.16 and 1.17, along with the

definition of q(x) = Ky(x), yield:

Ē f I
d4y(x)

dx4 +F
d2y(x)

dx2 +Ky(x) = 0. (1.18)

In equation 1.18, the first and third terms refer to the classical Euler-Bernoulli beam-

bending equation where as the second term consists of the effect of the applied force F. If

the thin plate is not bound to an elastic foundation(i.e. the third term in equation 1.18

is zero) equation 1.18, reduces to the equation governing the buckling of a column (see

equation 1.1).

Assuming the instability causes a sinusoidal vertical displacement of the surface of

the form y(x) = Asin(kx), the minimization of the force (i.e. ∂F(x)/∂λ = 0) leads to the

determination of critical wavelength

λ = 2πh
(

Ē f

3Ēs

) 1
3

. (1.19)
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Equation 1.19 is independent of the applied strain and is the basis for surface

wrinkling metrology [84, 21]. Furthermore, the critical stress and strain required to trigger

the instability will be

σcw =
Fc

hb
=

(
9
64

Ē f Ē2
s

) 1
3

(1.20)

and

εc =
σcw

Ē f
=

1
4

(
3Ēs

Ē f

) 2
3

(1.21)

respectively. Since λ is independent of the applied strain, amplitude of the wrinkling is

derived by assuming that the release of tensile strain in the system is the same as the

over-strain ( the difference between the applied strain and the strain required to cause the

instability):

ε− εc =
1
λ

∫ λ

0

√
1+
(

dy(x)
dx

)2

dx−1. (1.22)

Equation 1.22 represents the contour length of a wrinkle over one period. To show this,

suppose a length L0 went into a buckling wavelength under a small angle approximation

(i.e. L0 ∼ λ ). After buckling, the new length (x-component) will be L. This L will be

obtained from the contour length through L =
∫ L0

0 dscos(θ) where ds =
√

(1+ ẏ2)dx and

θ is the angle made between the displaced plate and the horizontal and ẏ is derivative with

respect to x. Then, the released tensile strain will be ∆L/L0 = L/L0− 1. Assuming small

deflection of the plate, cos(θ)∼ 1 to the first order (small angle approximation). Equating

the strain-released with the over-strain, as assumed earlier, it becomes ε − εc = L/L0− 1.

Substituting for L gives equation 1.22 which after integration yields

ε− εc =
π

2A2

λ
2 . (1.23)
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Combining equations 1.19 and 1.21 with equation 1.23 gives

A = h
√

ε

εc
−1. (1.24)

These three parameters defined in equations 1.19, 1.21 and 1.24 represent the fundamental

measurable features of the surface instability: the wavelength of the instability, the critical

strain where the instability occurs and the evolution of the amplitude with the applied strain.

1.5.2.2. Delamination

The delamination-buckling of thin films refers to a buckled film when it is partly

debonded from the substrate [54]. Delamination is mostly dictated by the strength of

adhesion between the film and the substrate as well as the balance of the mechanical strain

energy (i.e. delamination takes place when the wrinkling energy exceeds the adhesion

energy between the film and the substrate). Many early studies of buckle-delamination

assume fixed-end conditions at the edge of delamination, which essentially neglect the

effect of elastic deformation in the film at the edges. That is, the deflection and slope of

the delaminated film are both zero at the clamped (fixed-end) edge (i.e. y(x) and ∂y(x)/∂x

are both zero at the delamination front). With these clamped boundary conditions and the

assumption that the buckling displacement remains reasonably small, the displacement of

the delaminated film is given by y = A/2(1+ cos(π/b)x) in the post-buckling. The stress

necessary to cause the delaminated thin film to buckle is predicted by the classical Euler

buckling theory to be [130, 16]

σcd =
π

2

3

(
h
ω

)2

Ē f , (1.25)

where h is the thickness of the film, b is half the width of the delamination and ω is the

width of the delamination. According to Hong-Hui Yu and John W. Huchinson [130], the
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Figure 1.4. Illustration of pure bending deformation of thin plates. For pure bending
deformations, the length along the center surface remains the same while the inner and
outer edges are compressed and stretched, respectively.

stress, σcd , is independent of the substrate modulus, but depends on the relative sizes of the

delamination at the interface of film and substrate, h/w.

1.5.2.3. Bending

The surface instabilities (such as buckle-delamination and buckle-wrinkling) in-

duced mechanically in a thin polymer film bound to a soft substrate have one thing in

common: the bending of the film under consideration. When the system is subjected to

compression, the thin film eventually undergoes a buckling instability resulting in bending.

Bending changes the geometry of the film.

Although the delamination of a compressed thin film has been studied both the-

oretically [123] and experimentally [87] for many years, very little work has focused on

the study of the effects caused by locally bending thin films (i.e. delamination) such as
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the onset of plastic deformation. Consider a film delamination as if it were a clamped

plate under uniaxial compression. In this case, the delaminated-buckled film takes on

a geometry as dictated by the general solution to the equilibrium plate equation. When

the clamped boundary conditions (same as the classical Cauchy boundary condition) (i.e.

y(x = ±b) = 0 and ∂y(x)/∂x |x=±b= 0) are applied to the buckled film, the post buckled

shape of the delaminated film becomes [130, 118]:

y(x) =
A
2

(
1+ cos(

πx
b
)
)
, (1.26)

where A and b refer to the amplitude and half the width of the delamination, respectively,

assuming that the buckling displacement remains reasonably small. The curvature of the

film at the crest of the delamination can be quantified as a function of the amplitude and

width of the delamination as

κ ∼ ∂
2y(x)
∂x2 ∼ A

ω
2 . (1.27)

In order to estimate the strain induced by the bending, a classical beam bending ap-

proach [114, 2] in which an initially flat plate of length L undergoes stretching (at the

outer most edge) and contraction (at the inner most edge) by a small amount ∆, yet leaves

a neutral (an unstretched) region at the center of the plate (See Fig. 1.4) is considered.

Under bending, the final length of the plate at any distance z from the neutral axis will

be l f = θ(R(x,y)+ z), whereas at R(x,y) (or z = 0), the neutral axis will be l0 = θR(x,y)

where R(x,y) is the radius of curvature of the neutral axis which is related to curvature,κ ,

as R(x,y) = 1/κ and θ is the angle that subtends the curved plate as show in Fig. 1.4.

Thus the strain induced in the film at a distance of z from the neutral axis will be
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(l f − l0)/l0 = z/R(x,y) = zκ . At the crest of the delamination, z = h/2, the surface strain,

in terms of its curvature, becomes

εs = z
∂

2y(x)
∂x2 |z=h/2∼ κh. (1.28)

Having quantified the localized strain, one can find the stress the film is undergoing due

to bending. This implies that localized bending leads to a type of stress localization in the

film.

1.5.2.4. Stress Localization

In order to understand the concept of stress localization, consider a large spherical

container with a piece of paper inside. When the volume of the container is reduced, the

paper first deforms smoothly and then develops sharp points and bends. The resulting

sharp structures are commonly described as crumpling and represent a form of energy

focusing [123]. Initially, the elastic energy of the piece of paper is smoothly distributed.

As the container shrinks, the piece of paper’s smoothly distributed elastic energy becomes

more nonuniform and concentrated within strongly bent regions. The thinner the initial

sheet, the more pronounced the stress concentration and strongly bent regions become.

Likewise, in polymer thin films, this kind of deformation where much distortion is focused

within a narrow region of surface is termed as folding. Folding is considered a characteristic

feature of nonlinearity and is commonly observed in films deposited on water [93] or

foam [96] substrates. Similarly, when a film is deposited on elastic substrate, as has already

been described, the surface of the film initially forms arrays of wrinkles (unless the film

is ultra thin [31]) as the applied stress exceeds the critical stress required for the onset of

wrinkling [110, 20]. However, upon further compression, a few wrinkles will eventually

develop into delamination as shown in Fig. 1.2(c) or to a more focused deformation known

as localization (see Fig. 1.2(d)). These kinds of deformations are an indication of energy
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focusing. Such localized buckling amounts to the gathering of energy from the entire

surface into a small region. It is noteworthy that stress focusing usually leads to failure

of materials such as delamination, crazing, shear deformation zone, fracture.

1.6. Brief Introduction to Polymers

1.6.1. The Structure of Polymers

Polymeric materials are everywhere; they are found in objects that human beings

come across on a daily basis such as the cars we drive, the computers we use, the packaging

materials we use in food courts and grocery stores, etc. What is a polymer, anyway? A

polymer is a very large molecule made up of smaller repeating units called monomers

which are joined sequentially with covalent bonds forming a chain. Polymer can be clas-

sified as naturally occurring or synthetic. Proteins, DNA, starches and cellulose are some

examples of naturally occurring polymers. Examples of synthetic polymers are plastics and

elastomers. Materials that are commonly termed plastics such as polystyrene, polyethylene

are synthetic polymers. Most polymers are synthesized through polymerization process as

illustrated in Fig. 1.5. The figure illustrates examples of polymerization of polystyrene and

poly (2-vinyl pyridine) - polymers mainly used in this thesis. The former one is made from

styrene while the latter one is from 2-vinyl pyridine monomers, respectively. The degree of

polymerization depends on the number of monomers N in a chain. Notice that the double

bonds in the monomers must break for the addition polymerization to take place. It is

also worth noting that the two polymers shown in the figure (polystyrene and poly (2-vinyl

pyridine)) similar in their physical sizes as can be seen from their chemical structures. The

only distinct feature is in the presence of the nitrogen atom in the side groups of the poly

(2-vinyl pyridine).

The molecular architecture of a polymer is determined by how monomers are

assembled during polymerization. For example, a polymer chain can be synthesized
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in a wide variety of architectures such as linear, branched, networked, etc. (Fig. 1.6).

The simplest molecular architecture is a linear (Fig. 1.6(a)) molecule that consists of

identical monomer units connected end-to-end while branched (Fig. 1.6(b)) and cross-

linked (Fig. 1.6(c)) polymers contain, respectively, branches bonded covalently to the main

chain and monomers of one chain bonded to the monomers of a chemically different chain

through covalent bonds.

One distinguishing feature of most synthetic polymers is that they are polydisperse

(i.e. all the polymer chains in the sample have different number of monomers). If all the

polymers in a given sample are made up of the same number of monomers, then the sample

is monodisperse and all molecules have a molecular weight simply given as M = NM0,

where M0 denotes the molecular weight of a monomer that appears in the chain. Practically,

number averaged and weight averaged molecular weights are used to estimate the size of

a polymer. Number averaged and weight averaged molecular weights are mathematically

defined, respectively, as Mn =∑
∞

i NiMi/∑
∞

i Ni and Mw =∑
∞

i NiM
2
i /∑

∞

i NiMi where Ni is the

number of polymers with molecular weight Mi. The ratio Mw/Mn, known as polydispersity

index, measures the distribution of polymer sizes in a sample. Monodisperse samples have

a polydispersity index of one while larger polydispersity index corresponds to samples with

broader chain distributions.

Polymers can also be classified depending on the chemical type of the monomer

units constituting the chains. These are homopolymers and copolymers. When a polymer

is made by joining only one type of N small monomer units with covalent bonds, it is termed

as homopolymer (see Fig. 1.7(a)). The chemical formula for such polymer is -(A)N-, where

A is the monomer and the integer N represents the number of monomers that constitute

the chain. By combining different monomers, another class of macromolecule called

heteropolymers with unique properties will be formed. For example, macromolecules con-

taining two different monomers are called copolymers with a variety of architectures such
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Figure 1.5. a) Example of polymerization of the two polymers mainly used in the thesis: a)
polystyrene and poly(2-vinylepyridine). b) schematic illustration of polystyrene at different
length scales. The red line in the circle of (b) denotes the polystyrene chain in part (a). The
characteristic length over which segment correlation is lost (Kuhn length) is shown in (c)
and the actual molecule is shown in the blow up as illustrated in (d) with monomer size of
a.

as random copolymers, alternating copolymers, block copolymers, etc. Block copolymers,

for example, are made by covalently bonding two or more than two polymer blocks together

to form a larger and more complex macromolecule. Block copolymers containing two,

three and multi blocks connected together are known as diblock, triblock and multiblock

copolymers, respectively (see Fig. 1.7(b-e)).

Figure 1.6. Examples of polymer architectures: a) linear, b) branched molecule and c)
cross-linked network.
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Figure 1.7. Schematic representation of common AB block copolymer architectures: a)
homopolymer A & B b) diblock, c) triblock, d) graft block and e) four arm starblock.

Structurally, polymeric materials can be amorphous (see Fig. 1.8(a)) or semi/par-

tially crystalline (see Fig. 1.8(b)). Amorphous polymers have chains arranged in a com-

pletely random manner and lack order whereas semi-crystalline polymers have partially

ordered crystalline structures [99]. In order to understand the difference between these two

types of polymers, one can imagine amorphous polymers as plateful of boiled spaghetti

which are entangled and coiled up in a random fashion. On the other hand, a crystalline

polymer can be visualized as uncooked spaghetti where all the chains are highly oriented

and well-ordered in the same direction. In reality, a complete crystallinity is impossible

to achieve. More often, polymers are semi-crystalline. Semi-crystalline polymers are

those composed of both amorphous and crystalline regions as shown in the schematics

of Fig. 1.8(b). The typical examples of amorphous and semicrystalline polymers are,

respectively, atactic polystyrene and isotactic polystyrene. Atactic polystyrene have the

functional groups attached to the back-bone in a random fashion. Since this random
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Figure 1.8. a) Amorphous polymer with entangled chains, b) Semicrystalline polymer.

positioning prevents the chains from aligning with sufficient regularity, atactic polystyrene

cannot be crystalline and thus they are amorphous. In the isotactic polymers, the functional

groups are attached from one side of the back-bone polymer. These polymers usually make

semicrystalline structures.

The differences in crystallinity of polymeric materials lead to differences in physi-

cal properties. For example, the variation of relaxation modulus (defined as the stress divide

by strain as recorded after 10s of constant straining) as a function of temperature of both

semicrystalline and amorphous polystyrene is illustrated in Fig. 1.9. The figure comprises

of five main regions denoted as I, II, III, IV and V which correspond, respectively to, the

glassy, glass transition, rubbery plateau, rubbery flow and liquid flow regions. In region

I, the modulus of the polymer is surprisingly constant. In this glassy state, the molecular

motions are largely restricted to vibration and short-range rotational motions which implies

that there is very little segmental mobility.

In the glass transition region, the modulus of polystyrene (the glass transition

temperature of polystyrene is ∼100 ◦C)1 drops by a factor of 1000. The behavior of the

polymer is described as leathery. In this region, long-range, coordinated molecular motion

1discussed in detail in chapter two
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Figure 1.9. The logarithm of the relaxation modulus as a function of temperature for
semi-crystalline (isotactic) polystyrene and fully amorphous (atactic) polystyrene in three
versions: low molar mass uncross-linked, high molar mass uncross-linked and cross-linked.
Note that isotactic are polymers having functional groups attached on the same side of
the chain whereas atactic are polymers whose functional groups are completely random).
(adapted from [41]).

begins [41, 109]. Above the glass transition region (region III), the modulus becomes

almost constant once again. The width of the ’plateau’ depends on the molecular weight

of the polymer; it is much longer for a high N polymer compared to a low N polymer,

as illustrated in Fig. 1.9. Also, compared to the cross-linked polymer, the uncross-linked

polymers show a pronounced drop in modulus at high temperature.

The semicrytalline polystyrene (isotactic polystyrene) shows a weak (slow drop)

glass transition at 100◦C due to softening of the amorphous component of the two phase

(amorphous and semicrystalline) polymer. When the crystalline component (which is un-

changed by Tg) [41] of the semicrystalline polymer melts, the modulus shows a pronounced

drop as can be seen from Fig. 1.9.

1.6.2. Polymer Conformations

A polymer chain moves continuously from one state to another in solution or the

melt (i.e. absence of solvent) due to thermal energy and relatively low barrier to rotations
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about single bonds. As a result, it changes its shapes incessantly. The instantaneous shape

of a polymer chain in a melt or solution is called a conformation [113]. For a linear

polymer of N monomers and a bond vector of ~a, the end to end vector is given by the

sum of the individual bond vector, ~RN = ∑
N
i ~a. If a polymer is in its extended state, the

maximum length will be R = Na. However, the more realistic view of a polymer molecule

in a melt (or solution) is the random coil picture (i.e. a polymer exhibits a Gaussian

random coil or move in a random walk fashion in a melt state). In such configuration,

there is no preferred bond orientation implying that < ~RN >= 0, where the ensemble

average, < >, is over all possible states of the system. Thus, the overall size of the coil for

linear polymers can be characterized by the root mean square end-to-end distance, REE =〈
~R2

N

〉1/2
=
〈

∑
N
i ~ai.∑

N
j ~a j

〉1/2
=

(
∑

N
i ∑

N
j

〈
~ai.~a j

〉)1/2

=

(
a2

∑
N
i ∑

N
j

〈
cosθi j

〉)1/2

. For

the freely jointed chain model (a type of model with a constant bond length a = |~a| and no

correlations between the directions of different bond vectors), 〈cosθi j〉 = 0 for i 6= j and

1 for i = j. Hence, REE = aN1/2, where N is the size of the polymer chain and a = |~a| is

the size of the monomers (or the bond length between consecutive C-C atom on the back

bone of the polymer) constituting the chain (see Fig. 1.5(b)). The root mean square end-

to-end distance, REE , is the measure of the average distance between the two ends of a

polymer chain [111]. However, for branched polymers, REE is not well defined, because

they have too many ends. Hence, the ideal way of characterizing the size of such polymers

is radius of gyration, Rg. The square radius of gyration is defined as the average square

distance between monomers in a given conformation and the center of mass of the polymer

(R2
g = 1/N ∑

N
i (
~Ri− ~Rcm)

2, where ~Ri and ~Rcm denote the position vector and the center of

mass position vector, respectively, of a given polymer conformation). For an ideal linear

chain Rg is related to REE as Rg = REE/
√

6; implying that a polymer molecule can be

described by length scales ranging from the size of monomer, a, to the overall size of the

coil, REE [99] (see Fig. 1.5b).
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Another equally important length scale often used in describing the size of a

polymer chain is Kuhn length, a characteristic distance over which correlations are lost

between segments of a freely jointed chain. Here, instead of considering the local bond

lengths of the chemical structure itself, an effective bond length b is constructed such

that N freely jointed segments of bend length b constitute the actual polymer. The newly

constructed equivalent chain has two unique properties: it has the same maximum end

to end distance, Rmax, and the same mean-square-end-end distance, 〈R2〉, as the actual

polymer [99]. Mathematically, the contour length of this equivalent freely jointed chain is

Rmax = bN, and its mean-square and-to-end distance is 〈R2〉= Nb2 = bRmax.

1.6.3. Polymer Thin Films

The demand for miniaturized functional devices is consistently growing. The

production of such products requires components with structure sizes in micro/nanometer

range. This is accomplished by the reduction of one of the dimensions of the raw materials

to nanometer or micrometer scale compared to the remaining two dimensions. A material

with one dimension in a nano/micrometer length scale is known as a thin film. A typical

example is polymer thin film. Polymer thin films are made from polymer solutions in a

variety of ways. The most common one is spin coating, where a dilute solution in a solvent

is made to a glassy state through evaporation of the solvent.

Thin films are used for a wide range of emerging applications including flexible

electronics (like wearable computers, E-paper, and flexible displays) [19, 62], energy

harvesting [115], protective coatings (e.g. drug delivery) [112], adhesive [3], etc. Many

previous studies of polymer thin films focused mainly on understanding of varieties of

phenomena associated with reduced dimensionality (thickness). For example, variation of

glass transition temperature, reduction of inter-chain entanglement density and variation of

elastic modulus of thin polymer films are well studied as the film thickness is decreased.
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The mechanical aspects of thin polymer films are not yet well studied, particularly when

the film thickness approaches nanometer scales. Hence, it is essential to understand the

mechanical limits of thin polymer films.

1.7. Introduction to Colloids

What are colloids? "Colloids" refer to homogeneous suspension/dispersion of small

solid particles in a fluid medium [8, 124]. The typical examples of colloidal suspensions

include milk, paints (filled with particles which stick to surface when they dry), blood

(filled with blood cells) and polystyrene and silica spheres in water. The size of colloidal

particles can vary from nanometers to micrometers. The fraction of volume occupied by

these particles (also referred to as packing fraction) is the key control parameter of the

colloidal suspension. For example, at low volume fraction, colloids can easily diffuse and

behave like a gas and undergo simple Brownian motion. However, sufficiently large volume

fraction leads to a transition from being a gas, simple Brownian motion to a jammed state,

where their movement is highly constrained [53]. Researchers propose the idea of jamming

as a way of understanding the glass transition in colloids [9, 53].

Colloids are often unstable systems because, given time, the initially homogeneous

suspension tends to sediment to the bottom due to gravity (in fact this depends on the

size of the particles) or tends to float to the top surface if they are less dense than the

dispersing fluid. The individual small colloidal particles stay in suspension only when the

Brownian forces are strong enough to prevent such segregation. However, when colloidal

particles come in contact, they may stick together permanently. As time evolves, more

and more particles may stick together in a process known as aggregation [56]. Once they

aggregate, sedimenting will take place. In order to maintain the dispersed state of colloids,

the attractive force between the particles is modified through processes such as charge

stabilization (a process in which the layers of counterions in the fluid are attracted to the
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surface of colloids by electrostatic fields, produce repulsive force) or steric stabilization

(coating the colloids by polymer layer which increase osmotic pressure, causing the

repulsive force).

Colloidal particles which are not aggregated are often likened to simple hard-

spheres. Hard spheres, which are idealizations of billiard balls in free space, behave as

free particles in which the particles neither attract nor repel over distances beyond their

diameter and hence don’t aggregate together.

It is not our intention to describe the jamming process or the phase behavior of col-

loidal suspensions. Instead, we will use these brief introductory remarks as a starting point

for our study of the response of colloidal layers to mechanical deformation as presented in

chapter 5. In this regard, 2D monolayers of colloidal arrays will be constructed under the

assumption of hard spheres, thus no interaction between the colloids is anticipated.
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2. ONSET OF PLASTIC DEFORMATION IN NANOSCALE

POLYSTYRENE FILMS

2.1. Background

In this chapter we present the results of our experimental investigation of the onset

of plastic deformation in nanoscale polystyrene films. Polystyrene (abbreviated as PS) is

an amorphous, glassy polymer that belongs to the group of thermoplastics. Thermoplastics

are types of polymers that can be melted and cooled back to solid multiple times (like

butter) unlike thermosets which remain in a permanent solid state (like rubber). Other

thermoplastics include polyethylene, polypropylene, poly(vinyl chloride). Polystyrene is a

comprehensively studied, glass-forming polymer with well-known bulk material properties

which makes it ideal model material for studying certain behavior of polymers. The main

focus of the current chapter is to present a new approach that was developed in order to

quantify the magnitude of the yield strain in nanoscale films.This chapter is intended to

answer several questions: 1.) How big/small is the yield strain just before the film starts

failing? 2.) How does the yield strain evolve with the change in film thickness? 3.) Is the

yield strain dependent on the entanglement density, the glass transition temperature or other

extensive properties? Before delving into the experimental descriptions, a brief review and

discussion of some background ideas pertaining to the topic will be presented.

2.1.1. Deformation and Failure in Bulk Glassy Polymers

The term glass has a broader definition. It encompasses every solid that possesses

a non-crystalline (i.e. amorphous) atomic-scale structure. Glasses commonly used for

0Andrew Croll and Bekele Gurmessa designed and conducted the experiment in this chapter in close
cooperation. The work in this chapter is published in [46].
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window panes, tableware, etc. are made from silica (main constituents of sand). The lighter

alternatives to silica glasses are made from polymers (e.g. laboratory safety glasses, CD

cases). Glassy polymers are ubiquitous materials belonging to the group of thermoplastics

that are widely used in our daily life and industry. The most common glassy polymers

are Polystyrene (PS), Poly(methyl methacrylate) (PMMA), Poly(vinyl chloride) (PVC)

and Polycarbonate (PC) [82, 108]. These materials show rich behavior when subjected

to mechanical deformation. For example, they exhibit an initial stress-strain response

for small deformation (Hookean regime) that is approximately linear. This is followed

by a crossover to often-complex nonlinear behavior. Under compression, the non-linear

behavior is characterized by onset of plastic deformation (yield), strain softening and

strain hardening. The terms strain softening and strain hardening refer, respectively, to

noticeable reduction in stress for small change in strain and monotonically growing in

mechanical stress for small change in strain. The softening and hardening regions can

lead to large deformations before finally ending with sample failure. In the linear region,

the material recovers its initial shape if the applied stress is removed. As the stress-

strain behavior crosses over to non-linear, removing the applied stress may not bring the

sample back to its initial shape (zero strain). This can mean the material has undergone

permanent plastic deformation. Several researchers have demonstrated these properties,

particularly for bulk polymers, both through computer simulations [18, 119] and through

experiment [1, 94, 102]. Experimentally, standard techniques such as compression and

tensile testing are used to study the response of such bulk materials. The traditional

methods require the specimen to be in a bulk form. If the sample is in nanoscale size,

the standard technique may not be applicable. In this regard, it is essential to develop a new

technique that allows us to quantify the magnitude of yield strain in nanoscale films.

It is important to note that the deformation of polymers is highly dependent on

temperature. At low temperatures, a polymer may be glass-like with large Young’s modulus
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while at high temperatures it may be rubber-like with reduced Young’s modulus. There is

an intermediate temperature range called glass transition range in which the polymer is

neither glassy nor rubber-like with an intermediate modulus [13, 109] and has viscoelastic

properties.

2.1.2. Glass Transition Temperature in Bulk Polymers

When a liquid sample is sufficiently cold and the cooling occurs rapidly, the

microscopic dynamics of the particles constituting the sample cease. This sudden arrest

of the dynamics is called the glass transition. This phenomenon is best described by a

fundamental parameter called glass transition temperature, (Tg), where a material shows a

viscous liquid like behavior above this temperature and solid like behavior below Tg [38].

In the bulk, glass transition temperature can be measured experimentally by us-

ing standard techniques such as Differential Thermal Analysis (DTA) and Differential

Scanning Calorimetry (DSC). In DSC, two samples are considered: a reference sample

with predetermined heat capacity and a sample under experiment. Both samples will be

subjected to the same temperature throughout the experiment while the amount of heat

absorbed/released by the sample under experiment is measured. When the Tg is reached,

there will be a sudden jump in the heat absorbed/released by the sample. DTA is similar to

DSC except the heat flow to both the reference sample and the sample under investigation

remains the same instead of the temperature. Because heat is now supplied to the two

holders at the same rate, a difference in temperature between the sample and the reference

develops, which is recorded by thermocouples embedded in the sample and reference.

Measuring physical properties such as heat capacity, coefficient of thermal expansion,

enthalpy, specific volume, etc. with any standard method will show a sudden jump which

is attributed to the glass transition [109]. The temperature at this point is the experimental

glass transition temperature.
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The glass transition temperature is not a true thermodynamic phase transition [42]

(note that in a true thermodynamic phase transition the nth order transition is considered

as one in which all the (n− 1) derivatives of the free energy are continuous and the nth

derivatives of the free energy are discontinuous). This is because of its dependence on the

rate of cooling. For example, if the specific volume of a glass forming liquid is measured

as a function of temperature, the expected result can be shown schematically as in Fig. 2.1.

When the specific volume in the glassy state is extrapolated toward the specific volume

in the liquid state, a specific point where the two lines intersect corresponds to the glass

transition temperature. A material that is cooled faster will have larger Tg compared to the

same material during a slow cooling. When a material is cooled faster, the molecules of the

liquid do not have enough time to rearrange and the system is trapped in a less stable high-

energy state (far from true equilibrium). In contrast to fast cooling, the system will have

enough time to explore deeper, minimum energy (equilibrium state) in the slow cooling

rates [42].

2.1.3. Glass Transition in Polymer Thin Films

The concept of a glass transition is not yet perfectly understood in bulk materi-

als [39, 41]. Even less is known about how reduced dimensionality of a material affects

the glass transition temperature. For example, despite more than 20 years of research,

there is still no consensus of why the values of glass transition temperature of thin films

do not agree with that of the bulk polymers’ values. In the effort of understanding the fun-

damental features of the glass transition in nanoscale materials, a variety of experimental

techniques have been developed over the past few decades. The most common ones are

ellipsometry, x-ray reflectivity, positron annihilation lifetime spectroscopy and Brillouin

light scattering [57, 30, 39]. These approaches directly or indirectly probe the coefficient of

thermal expansion or change of polymer density (index of refraction) of the sample as the
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Figure 2.1. Schematics of volume V versus Temperature T of a glass forming material for
two different cooling rates. When a material is cooled faster, it undergoes a larger Tg as
shown in glass 1 and slower cooling rate results in a lower Tg value as in glass. Redrawn
inspired from ref [30].

.

temperature is increased or decreased. Despite the different techniques employed, many

researchers [60, 57, 30, 39, 98] have shown that the glass transition temperature of thin

films do not agree with their corresponding values in the bulk as the confinement increases

(see subsection 2.1.3.1).

In order to explain the variation of the glass transition temperature with film

thickness, Keddie and his coworkers [60] developed a phenomenological model termed

a layer model based on the notion of cooperativity. The model makes the assumption that,

when annealed, the film consists of a high mobility surface layer (fluid like layer) on top of

the less mobile bulk like layer; which together constitute the overall thickness of the film.

The phenomenological equation they developed to fit their data is given as

Tg(h) = Tg(bulk)

[
1−

(
`

h

)δ]
, (2.1)
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where h is the film thickness, ` is the near surface mobile layer ∼ 3nm and the exponent

δ ∼ 1.8. There are two main reasons reported as to why the surface layer is more mobile

when the sample is annealed: an increase in the number fraction of chain ends (that act

as a plasticizer for the Tg of the polymer) and reduction of entanglement density (due to

the limitation imposed by the boundary) at the free surface [117, 106]. In addition, Keddie

and coworkers [60] applied the bilayer model to their study of the coefficient of linear

thermal expansion of polymer thin films in the glassy and melt states. In this study the

researcher found that the coefficient of expansion significantly increases with increasing

film confinement. By assuming the coefficient of thermal expansions of the mobile layer

and the bulk to follow simple additive relations, the researchers showed the best curve

fitting to the data as

α = `/h(αL−αB)+αB, (2.2)

where ` is the thickness of the fluid layer, αL and αB are, respectively, the expansion

coefficients of the layer and the bulk and h is the over all thickness of the film. In thinner

films the expansivity of the mobile layer is dominant over the thicker films’; in which case

the over all expansivity tends to remain finite.

Further attempts to understand the effects of thin film confinement on the glass

transition temperature have been focused on the importance of interfacial interactions:

interaction between film and substrate and film and air. This prompted two different thin

film geometries. These are supported films and free-standing films.

2.1.3.1. Supported Film

This geometry refers to a thin film supported by a substrate from the bottom and air

from the top. The study of glass transition temperature variation in supported polystyrene

thin films was first carried out by Keddie et al., in 1994 [60]. Since the first investigation by

Keddie, there have been many studies of the glass transition temperature of polystyrene on
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different substrates using a variety of experimental techniques [39, 57, 61, 125]. Although

a variety of techniques have been used by many researchers, the conclusion was amazingly

similar - the glass transition value for polystyrene reduces below the bulk value as a func-

tion of thin film thickness and this decrement becomes more pronounced as the confinement

increases. Forrest et al. [39] took a step further to summarize the overwhelming conclusions

reported by different researchers and documented the result as illustrated in Fig.2.2, where

the solid line is the best to the data using equation 2.1. As can be inferred from the figure,

there is apparent reduction of the glass transition temperature below the bulk value as the

film thickness decreases below 100 nm. It is also worth noting that the effect is essentially

independent of the molecular weight of the polymers [57]. On the other hand, there are

studies reporting increasing Tg as the film confinement increases. For example, poly(2-

vinylpyridine) (P2VP) and poly(methyl methacrylate) (PMMA) supported on native-silicon

oxide coated substrates revealed increment in Tg with reduced thickness. The former one

showed a very strong increase [90] while the latter one showed small increase [120]. These

increase of Tg on silicon substrate was attributed to the fact that both polymers (P2VP and

PMMA) possess a repeat unit structure that can hydrogen bond with the hydroxyl groups

on the silica substrate. In contrast, by replacing the silicon substrate by a gold substrate,

Keddie et al. showed that Tg suppression similar to polystyrene [61, 125] was observed

using ellipsometry. Despite an apparent controversies, it is a fact that there are no reports

for the glass transition temperature values for polystyrene films to show increases as the

confinement increases.

2.1.3.2. Free Standing Film

When the glass transition temperature measurements for supported polystyrene

films were first reported, there were controversies about the effects of the substrate [120, 61,

125]. In particular, the scattered data collected from the different measurement techniques

35



Figure 2.2. Compilation of all measured Tg values for supported PS films. "Republished
with permission of ELSEVIER , from ref [39]. Copyright (2001)."

.

as compiled in Fig. 2.2 and the controversial report of results for the same polymer but

different substrates were attributed to the interaction between the film and the substrate.

Motivated by the controversial reports (i.e. some researchers report the Tg increases [120]

yet others report Tg decreases [61, 125] for the same polymer but different substrates),

researchers designed a free standing experiment using Brillouin light scattering (BLS).

Free standing film refers to a thin film bounded by air front and back without a substrate.

In this case, the sample is placed on a circular sample holder (washer) with a hole of a

certain mm scale diameter. The results of the free standing polystyrene films were first

reported by Forrest and coworkers [38], which removed the complication imparted by the

substrate. Firstly, there is analogy in the way the Tg reduction below the bulk value takes

place between the two systems: supported and free standing, albeit the reduction is more

pronounced in the case of free standing films. Unlike the supported films, however, it

has been conclusively shown that a molecular weight dependence of the glass transition

temperature exists in the free standing Tg measurement [26, 25, 39]. Glass transition
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Figure 2.3. Measured glass transition temperature values for free standing PS films.
"Republished with permission of ELSEVIER, from ref [39]. Copyright (2001)."

.

temperature varies both linearly (for Mw ≥ 575k) and non-linearly (for120k ≤Mw ≤ 378k)

as a function of thickness as shown in Fig. 2.3.

2.1.4. Polymer Chain Entanglement

In the bulk melt state, polymer chains exhibit Gaussian conformational properties

which represent random walks of the backbone chain. As discussed in chapter one, an

average lengthscale is commonly expressed by the root-mean-squared end-to-end distance,

Ree ∼ aN1/2, where N is the number of monomers per chain and a is the size of the

monomer. Due to random thermal motions, an ideal polymer chain explores a pervaded

volume proportional to R3
ee. In this volume, there will be interactions of the chain under

consideration with itself (interachain) and with other chains (interchain). Some of these

interactions restrict the mobility of a polymer chain through entanglements. Entanglements

are considered as the cornerstone of many unique polymeric properties such as very high

melt viscosity, toughness and rubber viscoelasticity [40, 73, 106].
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In a highly confined geometry, the thickness of the film can become comparable

to (or even less than) the characteristic length scale, Ree. When it does, the interchain

entanglement density decreases because segments from other chains are excluded from a

specific chain’s pervaded volume. The overall entanglement density remains fixed since

the self-entanglement density increases [106].

When subjected to mechanical strain, a thin film responds by creating shear defor-

mation zone (a thinning or neck that forms in the film) and/or crazing (small nanoscopic

voids formed due to the strain) based on the magnitude of the applied strain. One of the

properties describing shear deformation zone (SDZ) and crazing is maximum extension

ratio, λ . The theoretical definition of λ is the ratio of the distance between two entangle-

ment points for ideal Gaussian chains before and after a strain and is ∼ M1/2
e as defined

by Kramer [66]. Me refers to a molecular weight between entanglement cross links. In

their recent publication, Lun Si et al. extended this definition to thin films undergoing SDZ

and showed that λ is related to the ratio of the initial thickness, h, of the film that went

into forming the deformation to the thickness, hc, of the deformed region after an applied

strain by assuming conservation of volume in the neck and the film region [106]. They then

inferred the effective entanglement molecular weight Me f f by measuring λ as illustrated in

the inset of Fig. 2.4. From this measurement Me f f in the thinest films is seen to be greater

than in the thicker films. This implies that thiner films can stretch further before failure due

to the loose entanglement networks in the thin film. Thus, interchain entanglement also

decreases as the film thickness reduces below ∼ 100nm.

2.1.5. Mechanical Properties

Another interesting observable which may be related to film thickness is the

mechanical properties of the film. Similar to the Tg, Lee and his colleagues have shown

that polymer thin films exhibit reduced elastic modulus as compared to their counterparts in
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Figure 2.4. Variation of the ratio of the neck thickness,hc, to the film thickness, h as
a function of thickness for three different molecular weights. The inset illustrates the
replotted data of Me f f normalized to the bulk value. "Adapted from ref [106] with
permission. Copyright (2005) American Physical Society."

bulk by using surface wrinkling metrology [70]. They concluded that polystyrene thin films

have a markedly reduced elastic modulus compared to their bulk values as demonstrated

in Fig. 2.5. The justification these researchers give for the reduction of the modulus as

the thickness decreases is related to the reduction of inter-chain entanglement density near

the free surface. As pointed out earlier, reduced entanglement density would enhance the

molecular mobility but reduce the intermolecular forces; and hence the reduction of the

modulus.

Most recently, another group of researchers reported a controversial result on the

mechanical properties of polystyrene films [22]. These researchers performed nanoinden-

tation experiment of a series of glassy polymer films on silicon substrates using AFM and

found that the moduli of PS, PMMA, and PC increase while that of PVC remains the same

as the film thickness decreases as shown in Fig. 2.6. This result contradicts with what has

been reported by Lee’s group for PS films. The enhancement of the moduli, as the film
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thickness is reduced, is attributed to the interaction between indentation induced stress on

the film and stiff supporting substrate. These controversial reports stem, in part, from lack

of well established methods of probing the mechanical properties of polymer thin films,

especially when the film thickness approaches zero.

Figure 2.5. Elastic modulus as a function of thickness of polystyrene film. The solid line
denotes a best fit to the data using bilayer model. "Adapted from ref [70] with permission.
Copyright (2007) American Chemical Society."

Figure 2.6. Effective elastic moduli as a function of thickness of a series of glassy polymer
films. The dashed lines are guides for the eyes. "Adapted from ref [22] with permission.
Copyright (2014) American Chemical Society."
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2.2. Experimental Procedures

In the past several decades, there have been numerous theoretical models [123, 15]

and experimental approaches [87, 93, 110, 20] describing pattern formation due to buckling

surface instabilities. However, the validation of the effect of residual stress caused by local

bending during buckling of polymer thin films are still lacking. In the following sections,

the procedures used to investigate the role of local stress induced by bending thin films and

the results found will be presented.

2.2.1. Substrate Preparation

Proper substrate preparation is the most important step in order to achieve a

successful experiment. In our experiment, the substrate is made from cross linked poly-

dimethylsiloxane (PDMS). PDMS is a Si based organic polymer that is a highly viscous

liquid in its raw form and optically transparent. A curing agent and PDMS prepolymer

(Dow chemical Corning, Sylgard 184) are thoroughly mixed in different weight ratios such

as 1:10, 1:20, 1:30. Thorough mixing for about ten minutes is needed in order to make sure

that the curing agent is uniformly distributed. While mixing, the mixture will be filled with

air bubbles. These bubbles need to be removed (degassed) before curing by placing the

sample in a vacuum oven (Napco 5831 Vacuum Oven) and close and release the vacuum

valve for sometimes until the trapped bubbles are fully removed. After degassing, the

polymer mixture is poured into a 9.6 cm x 9.6 cm petri dish to a thickness of about 3 mm

and cured at 85◦C for two hours in a vacuum oven and then are cooled in the oven for the

next 12-15 hours. After cooling, the PDMS substrate is cut into a rectangular sections of

1.2 cm x 7 cm x 0.3 cm. Furthermore, the elastic modulus of this substrate is measured

by tensile test (Instron 5545 Tensile Tester: 100N load cell, environmental chamber). The

average modulus measured are 0.113MPa and 0.094MPa for the 1:20 and 1:30 weight ratio,

respectively.
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2.2.2. Polymer Solution Preparation

In order to prepare the thin films, the polymer should be dissolved or dispersed in

a solvent. In this chapter, different homopolymers and a block copolymer were used as

listed in table 2.1 (Polymer Source Inc.). The polymer is dissolved in toluene (Anhydrous

99.8%, Sigma-Aldrich Inc.) with concentration varying from 0.5% to 3% by weight. Once

mixed, the solution will be kept at room temperature for two to three days for a complete

dissolution before use. Finally, the solution will be filtered through a micro-pore system

(pore size 0.482 µm, Cadence Science Inc.) before spin coating.

2.2.3. Thin Film Preparation

Once the solution is ready, various methods can be used for the preparation of thin

polymer films. Among others, spin coating is one of the most commonly used method [91,

69, 45]. In order to spin coat, a drop or two (depending on the required thickness) of the the

solution prepared is dispensed atop a solid substrate, a freshly cleaved piece of mica that is

fixed to a glass microscope slide by capillary force. Mica is used due to its uniform flatness.

Next, the glass slide is placed on a stationary spin-coater (a machine used for spin coating)

disk. The microscope slide is then rotated at high speed (ranging from 500 rpm- 6000 rpm)

based on the thickness required. The film then spreads uniformly by centrifugal forces on

the mica, and the volatile solvent is rapidly driven off. Higher polymer concentrations or

viscosities result in thicker films, and higher angular velocities of the disk result in thinner

films.

The coated thin film is cut into approximately 1 cm x 1 cm pieces (see Fig. 2.7)

and transferred to a clean deionized water surface (Milli-Q) through a process known as

flotation. Finally, a piece of floating film is lifted up and transfered on to a stress free flat

polydimethylsiloxane (PDMS) substrate by using a very smooth, piece of mica held with a

tweezer.
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Figure 2.7. Schematics illustrating the procedures of making freely floating thin films: a) a
drop of solution is placed on mica attached to glass slide; b) spin-coating a thin layer of the
solution on a mica and c) cut the uniform thin film into a desired size; d) immerse the glass
slide aslant into water and the film is detached from the mica substrate; e) the film freely
floats on the surface of water.

2.2.4. Mechanism of Compression

The arrays of wrinkles and delaminarions are obtained through homogeneous in-

plane compressive stress applied externally as explained in the previous sections. The

in-plane compressive stress is exerted to the bilayer (film and substrate) by a custom built

strain stage. The strain stage allows careful control of strain which results in arrays of

wrinkles and delaminations perpendicular to the direction of strain. It consists of two grips

(one fixed and the other one moving) in order to strain the substrate. The strain stage also

posses a locking groove that is useful in order to maintain an applied strain when separating

the stage from its base and motor for various purposes such as drying the loaded sample in

vacuum oven.
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Table 2.1. List of the molecular details of the polymers used in the chapter.

Samples MN(kg/mol) PS MN(kg/mol) P2VP PDI

PS 1100 - 1.10

PS 115 - 1.00

PS-b-P2VP 40.5 40.0 1.10

2.2.5. Mechanism of Inducing Reversible Deformation

Previous experimental studies of the mechanics of wrinkling and delamination [83,

20, 110, 59, 52] have utilized compression-induced stresses from a prestrained substrate.

In our study, we utilize stresses induced from a nominal tension, not compression. That

is, the substrate-film composite is loaded into a uni-axial extension strain stage and then

placed under extension along its long axis. As extension is increased, the incompressible

nature of the rubber leads to a Poissonian contraction in the sample’s other dimensions.

This compression induces buckling, and eventual delamination of the thin polymer film.

Most importantly, the stress can then be removed returning the sample in its initially flat

configuration. As illustrated in Fig. 2.8a, a flat film subjected to a uniaxial compression

results in several wrinkles and a tall delamination. When the compression is completely

removed, the film returns to the initially flat state.

2.2.6. Measurement Tools

In all cases, we make use of atomic force microscopy (AFM-DI Dimension 2100)

and Laser Scanning confocal microscopy (LSCM-Olympus Fluoview 1000) in order to

collect and analyze our data. Both AFM and LSCM provide the topography of the films

(i.e.they are both surface characterizing tools). AFM is primarily used for high resolution

images and thickness measurements. On the other hand, LSCM is used to measure

the wrinkle wavelengths and delamination widths. More importantly, through optical
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Figure 2.8. Schematic illustration of the two stage experiment. a) Stage 1:Preannealing: a
thin polymer film is placed on a soft elastomer substrate, uniaxial compression is added and
finally removed. The sample is left in a measurably flat state. b) Stage 2: Postannealing:the
sample, after all applied stress has been removed, is placed on a hot-stage and annealed.
During annealing, "bumps" form at locations correlated with high curvature during the
compression stage of the experiment.

sectioning, we also determine the height of each pixel along the delamination. Additionally,

confocal microscopy provides a significant imaging improvement over conventional (or

light) microscopes. It creates sharper images by incorporating the ideas of point-by-point

illumination of the sample and rejection of out-of-focus light via pinhole at confocal point

(i.e. by having the pinhole, the microscope can efficiently reject out of focus light). The

light that passes through the pinhole is measured by a detector i.e. photomultiplier tube

(PMT). The detector is attached to a computer which builds up the image, one pixel at a

time, gives more detailed 2D images, and allows collection of data in three dimensions.

2.2.7. Measurement Methods

In order to examine what happens to the surface of the film corresponding to

the initial delamination spot, two independent approaches have been used to scan the

topography of the film after the film has been relaxed. These methods are termed direct

and indirect. The former refers to a method of scanning the topography of the relaxed
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(in its flat state) film with AFM in order to detect any signs of damage as a result of the

preceding bending. However, because of the smallness of the amplitude of the damaged

film and the scan size of AFM, it requires stitching many separate AFM images together;

and for that reason this method is error-prone. Also, the softness of the substrate along with

the rigidity of the film make imaging through the direct method difficult due to probe/film

interactions. In order to alleviate these problems, we devised an alternative method termed

the indirect method. This method is used to measure the surface of the film after the relaxed

film has been annealed above the glass transition temperature of the polymer making up

the rigid film. It has a benefit of increasing the amplitude of the bump height. Furthermore,

LSCM alone can be used to measure independently the curvature and the extent of plastic

deformation. This approach cancels out calibration differences that may occur between the

two instruments.

2.3. Modeling of the Flow of Thin Film

In this section we derive a simple scaling model that will help to understand how

the thin film flows in response to the local residual stress when annealed above the glass

transition temperature of the bulk polymer. Films annealed above the Tg, changes to fluid

(flowing film). Since the density of the film (fluid) is not expected to change (because

to change the density, high pressure is required; which we don’t apply), the film can be

considered as an incompressible (constant density). In the incompressible Newtonian fluid,

σ = ηγ̇ , where σ = force/area, η is constant viscosity and γ̇ is the local velocity gradient.

Hence, the flow of the film (fluid) can be described by the principles of hydrodynamics of

incompressible Newtonian fluids.
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2.3.1. Hydrodynamics

In hydrodynamics, the equations of motion of an incompressible, Newtonian fluid

are given by the Navier-Stokes equations. The Navier-Stokes equations state that an

infinitesimal volume element moving with flowing fluid is accelerated due to the forces

acting on it [68]. Mathematically,

ρ

(
∂u
∂ t

+(u.∇)u
)
=−∇p+η∇

2u+ρg, (2.3)

where u is the average velocity and ρ is the density, p is the pressure within the film. Since

our film has large aspect ratio (L/h), the flow of the film will be restricted to the lateral

direction (x-axis). Hence, rewriting equation 2.3 along x-coordinate, explicitly yields
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2u
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+ρg, (2.4)

with the velocity vector expanded as u =
(
ux,uy,uz

)
.

2.3.2. The Lubrication Approximation

By considering the fact that polymer melts have high viscosity, equation 2.4,

further reduces to the lubrication approximation; a simplified version of the Navier-Stokes

equation designed for use with thin films. More importantly, the velocity of polymer melt is

considered to be small; because of the large viscous forces resulting from the small length

scales in the problem. In this regard, the inertial terms of the Navier-Stokes equations can

be neglected since they are proportional to V 2/L, where L is the characteristic length and

V is the characteristic velocity (small due to high viscous forces caused by small length

scales) [86, 64]. Neglecting velocities in the y and z directions, equation 2.4 reduces to
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∂ p
∂x

= η
∂

2u(x,z, t)
∂ z2 . (2.5)

2.3.3. Modeling of Curvature and Total Thickness

Liquid surface almost never stays completely flat. The residual stress induced by

the initial bending will have a wavelength of λ and amplitude δ (t) as illustrated in Fig. 2.9.

Therefore, the surface stress due to the bending curvature (see Fig. 2.10) can be defined as

Figure 2.9. General schematics of a supported, fluidized polymer thin film of its initial
thickness of h0 and the new thickness, h(x, t), which varies with the formed bump denoted
by δ after the film is annealed above its glass transition temperature.The annealing tem-
perature and the pressure due to bending induce capillary surface wave with a wavelength
denoted by λ .

Figure 2.10. Illustration of the stress distribution of a thin plate under isometric deforma-
tions. In such deformations, the length of the plate along the center surface remains the
same before and after deformation while the inner and outer edges are compressed and
stretched, respectively.
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p = p0 cos(kx) (2.6)

with

p0 =
A

ω
2

(
z− h0

2

)
Ē f . (2.7)

As a result of the perturbation due to the residual stress-coupled with thermal

motion, the total thickness of the film (or the z-coordinate as a function of x and time)

can be defined by

h(x, t) = h0 +δ (t)cos(kx), (2.8)

where k = 2π/ω is the wave vector of the undulation, δ (t) is the amplitude of the undu-

lation of the perturbed film at the free surface. Two boundary conditions are considered.

First, we assume that there is no slip-condition at the film-substrate interface. That is at

the bottom of the film, where the fluid meets the solid, the velocity of the fluid film is zero.

Secondly, we assume that there is no shear at the film-air interface (i.e. at the top surface of

the fluid film the derivative of the horizontal velocity with respect to z is zero) [64, 58, 129].

In this case, we obtain the thin film horizontal velocity profile (along the x-direction) from

equations 2.5,2.6,2.7, and 2.8 as

u =
AkE f

ηλ
2

(
h0z2

4
− z3

6

)
sin(kx) (2.9)

where η is the viscosity of the flowing fluid film and h0 is the initial film thickness. By

conservation of volume, the amount of film material flowing along the x axis (∆Q) must

be the same as the amount of the volume decrease in the perpendicular direction (∆T )

(i.e. volumetric flow in the x direction is equal to volumetric decrease in the z direction).

Mathematically, ∆Q = ∆T , where
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∆Q =
∫ h(x)

0
udz (2.10)

and

∆T =−∂h(x)
∂ t

dx, (2.11)

in [x, x+dx]). Integrating equation 2.10 yields,

∆Q =
E f Akh4

0

24ηω
2 sin(kx). (2.12)

Equating equations 2.11 and 2.12 results in

−∂h(x, t)
∂ t

=
∂ (∆Q)

∂x
. (2.13)

Finally, using equations 2.8 and 2.12 in equation 2.13 gives the bump height in terms of the

material property, Ē f , as

δ (t)∼C
(

A
ω

4

)
, (2.14)

where A and ω are respectively the amplitude and width of the initial delamination. The

parameters in C =

(
tĒ f
6η

h4
0

)
with h0 being the initial thickness of the film, t the time the

flowing film takes to totally equilibrated (no more flowing) when annealed above Tg, Ē f

the Yong’s modulus of the film, and η the viscosity of the flowing fluid film, are assumed

to be fixed.

2.4. Results and Discussion

We have made significant progress in investigating the effect of locally bending

and relaxing polystyrene thin films. As discussed earlier, under compression the film will

typically first wrinkle and then form several delaminations whose profile can be measured

as described in the previous sections. Each delamination has large amplitude at the sample

50



Figure 2.11. Pre-annealing experiment. a) confocal microscope image of wrinkles (low
curvature) and a delamination (high curvature) near a sample edge. Scale bar indicates 32
µm. b) The same location after removal of stress - there is no observable change in the
film. c) Cross sections through the delamination illustrating its variable amplitude (inset:
an AFM micrograph of a segment of delamination).

edge, which slowly decreases as the delamination crest is followed orthogonally to the

sample edge. Figure 2.11 illustrates results of the initial part of the experiment (pre-

annealing experiment). It shows a typical confocal microscopy image of wrinkles (low

curvature) and a delamination (high curvature) near a sample edge (see Fig. 2.11a). A

cross section of a segment of the delamination of the film under compression is shown in

Fig. 2.11b as obtained from AFM micrograph (see the inset). This figure clearly illustrates

that both the amplitude and wavelength of the delamination vary as one moves away from

the crack/sample edge of the film toward the tip of the delamination, implying that there

is high residual stress near the crack edge. The same location is scanned after removal of

stress. As indicated in Fig. 2.11c, there is no observable change in the film’s topography

suggesting that the film has remained in the elastic limit of deformation.
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2.4.1. Formation of Bumps

A closer look at the samples under investigation leads to the observation of slowly

emerging bumps correlating to the initial delamination spot. This is possible by annealing

the relaxed and now flat film above Tg of its bulk. As a result of annealing, numerous

thickened regions (called bumps and denoted by δ , see Fig. 2.8b) emerge following the

initial delamination spots. The results of this post-annealing experiment is shown in

Fig. 2.12. The sample shown in Fig. 2.12a is the same sample shown in Fig. 2.11c

after compressional stress is removed. The thermal annealing experiment is carried

out by using a hot-stage (Linkam TMS94, Linkam Scientific Instrument, ltd) set to

predetermined temperatures ranging from 165oC to 200oC depending on the specific thin

film thickness under examination. In particular, we set the hot stage to a temperature

of 165oC for the film shown in Fig. 2.12a. In the course of annealing time of 15 to

30 minutes, the surface morphology of the film is closely monitored through out the

experiment with Charge Coupled Device (CCD) camera mounted on an Olympus

Microscope. Initially, the film surface is smooth and featureless. As the annealing time

progresses, material begins building up at specific locations and measurable bumps start to

gradually develop. After it has fully been annealed, the sample shown in Fig. 2.12a is

transferred to silicon wafer for further imaging. Interestingly, the formed bumps (the

localized brightest regions) are clearly observable and measurable by LSCM as illustrated

in Fig. 2.12b and evidence to the flow of thin film. The bumps correlate with the locations

of high curvature that occur when the sample is in the deformed state. The thickening can

occur if and only if there exists flow of material from neighboring regions. The flow

is dictated by the residual stress stored in the film due to the initial curvature of the

delamination. Figure 2.12c shows a segment of an AFM image of the resulting bump

structure along with the cross sectional measurement indicating the variation of the height

and width of the bump formed. Again, we note that the variation of the bump height and
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Figure 2.12. Post-annealing experiment. a) the same film shown in Fig. 2.11 after
compression. Scale bar indicates 32 µm. b) After annealing at 140◦C for approximately 10
minutes. The sample has been transferred to silicon for imaging. c) AFM of the resulting
structure.

width follow the same pattern as its preceding delamination.

2.4.2. Evolution of the Bump Amplitude

The thickness inhomogeneity described earlier will not take place instantaneously.

It takes a finite time for the material to flow. In order to characterize its time dependence,

the following procedures are followed. First, a sample in a mechanically relaxed state (with

initial film thickness of 299 nm), is loaded on a hot stage and annealed to a temperature

of 60◦C and allowed to equilibrate under observation by confocal microscope (∼ 10 min).

At this point, the surface temperature of the sample remains somewhere below the bulk

Tg of the sample as 60◦C is much lower than the Tg of the bulk polystyrene (note that

the glass transition temperature of glassy bulk polystyrene is ∼ 100◦C) [105]. Next, the

temperature is raised above Tg to 140◦C with a rate of 50 deg/min in order to allow the

film to flow. The film is repeatedly imaged under illumination of a wavelength of 405
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Figure 2.13. This figure illustrates time evolution of the bump formation. a) Prestrain (b)
4.4% copressive strain, c) Relaxed state at room temperature, d) Annealed for 2.4 min at
160◦C, e) Annealed for 5.1 min at 160◦C and f) Annealed for 11.1 min at 160◦C.

nm for the next 30 min. The typical representative response of this annealing is shown

in Fig. 2.13. Finally, the ratio of intensities of a laser reflected from center of the bump

and from the non-deformed film surface have been measured and plotted as a function of

time (see Fig. 2.14). This ratio is related directly to the films thickness because of thin

film interference. Initially, the thickness inhomogeneity is not observed as evidenced by

a uniform light intensity. As annealing progresses, the bump starts forming and the ratio

of intensities gradually deviates from one. Eventually, the flow ceases, the bump reaches

its maximum height, and the intensity ratio no longer changes. The data is well described

by defining an exponential function f (t) = A×Exp(−t/τ)+B. The best fit to the data is

obtained for A = 0.06 and B = 0.98 which gives a relaxation time of τ = 2.33 min.

2.4.3. Correlation Between Curvature and Bump Height

Figure 2.15 shows the curvature and bump height as a function of distance from the

crack/sample edge, illustrating the high degree of correlation between the two variables,
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Figure 2.14. Time evolution and growth of the bump height. This figure illustrates the
ratio of the intensities of monochromatic laser reflected from center of the bump and from
the non-deformed film surface. Initially, the thickness inhomogeneity is not observed as
evidenced by a uniform light intensity. As annealing progresses, the bump starts forming
and the ratio of intensities gradually deviates from 1 and δ reaches maximum and the ratio
of intensities no longer change. The solid line is a curve fitting which gives a relaxation
time of τ = 2.23 min with A = 0.06 and B = 0.98.

curvature and bump height. The correlation between the curvature at the peak of the

delamination and δ , the height of the thickened region, is evident upon comparison of

the topography along the long axis of the feature, as shown in Fig. 2.15 (κ indicates

curvature). As the width of the delamination is approximately equal to the intrinsic spacing

of the wrinkling instability which precedes it, the decreasing amplitude means that the

curvature at the delamination’s peak is also decreasing away from the sample edge. Similar

experiments were conducted with films of different thicknesses and the correlation between

the bump height and curvature is shown as in Fig. 2.16. Although they do not collapse onto

a master curve, the data show linear correlation for each thicknesses.

2.4.4. Onset of Plastic Deformation

In the previous subsection, we have shown that there is a strong correlation between

peak curvature of a film under compression and the corresponding bump height formed

after the sample is transferred to a silicon substrate. This correlation was investigated by
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Figure 2.15. Curvature and bump height as a function of position, illustrating the high
degree of correlation between the two variables: bending curvature is indeed the cause for
the formation of the thickness variation in the film.

Figure 2.16. Correlation between bump height and curvature for a number of PS film
thicknesses and a symmetric block copolymer(Red).This correlation has an implication
that the bump height is thickness dependent. Also, note that the data with unfilled circles
was obtained on a stiffer substrate.
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considering the complete topographies along the long axes of delaminations and the bumps

formed. To make the measurement more quantitative, we now switch from considering

the complete topography to considering only the critical point of the onset of plastic

deformation (the yield strain). The critical point is taken at the strain localization where

damage is no longer visible. This change significantly reduces measurement error because

the focus is now a measurement of a large length scale (the distance from δ = 0 to

the sample edge, ∼ 40 µm see Fig. 2.18). To locate where the critical strain occurs,

the micrograph of a post annealed sample is taken. Then a line is drawn across the

formed bump starting from the crack edge until crossing the tip of the bump. This yields

intensity versus distance from the crack edge. Similarly, another intensity versus distance

is generated from an undeformed region (see the solid line in Fig. 2.18)(a). Here, since

the thickness of the film remains uniform, the intensity does not change. Plotting the two

intensities versus distance data together clearly show where the critical point occurs on the

post-annealing micrograph. This is shown by the merging of the intensity line beyond the

critical point (see Fig. 2.17).

In order to quantify the magnitude of the critical strain, the image of the sample

taken when the sample was under compression is also required to first determine the

curvature corresponding to the critical point. Once the critical point is determined from

the intensity graph, using IMAGEJ (a free NIH software) (see Fig. 2.18(a)), that spot must

be mapped onto the delamination as shown in Fig. 2.18(b) (here, it is worth mentioning

that extra care must be considered in using appropriate microscope conversion factors when

measuring the lengths if the two samples are not captured by identical microscope lenses).

This will help to obtain the curvature of the sample under compression at the specific

spot. Knowing the curvature and the thickness of the film yield the critical strain for a

particular film. Our measurements, in this regard, yield several observations. For example,

the onset of plasticity measured for thin polystyrene film shown in Fig. 2.11 yields εp in
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the order of 0.1%, an order of magnitude smaller than the bulk value reported in literature

for bulk polystyrene [1, 65, 49]. In addition to the small value of the critical strain, our

measurements show that critical strain increases for film thickness less than ∼ 100 nm as

illustrated in Fig 2.19 for various film thicknesses.

Figure 2.17. Method of precisely locating where the critical strain takes place on optical
micrograph. This was possible by obtaining the variation of intensity along the bump and a
certain distance away parallel to the bump. As one moves away from the crack edge along
the bump, the intensity decreases gradually while the intensity taken from a line parallel to
the bump remains the same; because there is no thickness change along that line. At the
critical point the two intensities merge together (see Fig. 2.18). The red is from the bump
whereas the black is from the undeformed region.

Several anomalous measurements (such as markedly reduced elastic modulus

compared to the corresponding bulk material, reduction of glass transition temperature,

reduction of the inter-chain entanglement density) have been reported for polymer thin

films of thickness less than ∼ 100 nm as described in the beginning of the chap-

ter [60, 34, 85, 95, 10, 78, 70, 97]. The change we observe here as the film thickness drops

below ∼ 100 nm could be related to a reduction of inter-chain entanglements [14, 106],

or to a change in the glass transition temperature of the film [60, 36, 34, 95, 85, 11].
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Figure 2.18. Method of mapping the location where the critical strain takes place on a)
optical micrograph to b) laser scanning confocal microscopy image. The (a) image is
captured in the post-anneling stage whereas the (b) is captured while the sample is under
compression. The broken line on the (a) corresponds to where the intensity across the
bump is taken from whereas the solid line refers to where the intensities are taken from
(the undeformed area).

Bending gives the opportunity to make a clear distinction between the two possibilities (i.e.

reduction of the glass transition temperature and reduction of the inter-chain entanglement

density). This is because bending preferentially probes a film’s free surface and the applied

strains can be accurately measured in the vanishingly small strain limit. Small strain

ensures that the network of polymer chains is not deformed significantly, and therefore

the entanglements themselves cannot play a large role in the overall effect (this is not

common in most failure measurements [106, 70]). As evidence for our contention, we

duplicate the experiment with PS films of an order of magnitude larger molecular weight.

Fig. 2.19 shows no observable effect of molecular weight on the location or magnitude of

the upturn. We conclude that the critical strain for the onset of plastic deformation must

then be related to the same mechanism behind reductions in the glass transition. While

suggested by the simulations of Böhme and de Pablo [11], a relationship between the glass

transition depression and plasticity has not yet been fully examined. Qualitatively, the

glass transition is reduced due to a region of increased mobility near the free surface of the

polymer film (operating over a length scale of (∼ 10nm). In this region, a larger strain is
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needed before stress can be stored as stress can more easily relax away. A trivial layered

model, similar to that has been described in section 2.1.3 for thermal expansion coefficient

of polymer films, can be written as

εp(h) = (l/h)(εp− ε
◦
p)+ ε

◦
p (2.15)

where l is the size of the soft layer and εp, ε
◦ refer to the surface strain of the

liquid-like layer and bulk (remaining part of the film) strain respectively. A fit to our data

in Fig. 2.19, assuming a typical lengthscale l = 10 nm, gives εp = .017± 0.002 and ε
◦
p = 0

.001± 0.001. We measure the critical surface strain for stress storage in polystyrene films

to be in the order of 10−3, which is notably below strains at which yielding is noted in bulk

polystyrene [11, 74]. We will repeat similar measurement with a spin-cast polystyrene-

b-poly (2 vinyl pyridine) block copolymer film in order to show the versatility of our

technique (see chapter 3 below). This implies that we are measuring a material specific

property as expected for a yield point. However, it must be realized that this material

specific property changes as the film thickness goes below a 100nm as can be seen in

figure 2.19. In other words, the critical strain becomes a function of film thickness for PS

films below a thickness of approximately 100nm.

2.4.5. The Model

The simple scaling model described in section 2.3 demonstrates the flow of thin

film after after the film has been annealed above its glass transition temperature. It shows a

qualitative description of the flow of the fluidized film and makes predictions with respect

to the scale of the thickening (bump height) in the PS film. The data of Fig. 2.16 can be

rescaled by equation 2.14 as illustrated in Fig. 2.20. Although the scaling expression has

large exponents, the qualitative collapse of the data is remarkable and AFM measurements
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Figure 2.19. The figure shows variation of critical strain of PS films as a function of film
thickness. The data were gathered from two molecular weights differing by an order of
magnitude. Although molecules differing by an order of magnitude are considered, there
is no significant difference observed. This has an implication that the increment of the
yield strain as film thickness decreases below ∼ 100nm is not related to the reduction of
inter-chain entanglement density. The solid line is a fit to the layer model.

of the thickening are consistent with this simple theory, backing up our primary conclusion:

bending causes stress storage in thin PS films.

2.5. Summary

In this chapter, we developed a novel technique of characterizing threshold strain

for nanoscale polymer films. Using this unique method, we demonstrated that the onset

of plastic deformation for thin polystyrene films is an order of magnitude smaller than

what has been reported for the bulk value. Furthermore, the onset of failure strain εp

is in the order of 0.1%. In addition to the small value of the critical surface strain, our

measurements show that critical strain increases for film thickness less than ∼ 100 nm.

Similar to several anomalous measurements (such as markedly reduced elastic modulus

compared to the corresponding bulk material, reduction of glass transition temperature,

reduction of the inter-chain entanglement density) that have been reported for polymer

thin films of thickness less than ∼ 100 nm, our measurement also show that the variation
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Figure 2.20. This figure illustrates scaling plot of bump height by equation 2.14 as a
function of the control parameters for a number of PS film thicknesses and a symmetric
block copolymer (Orange) indicated in Fig. 2.16. Although the scaling expression has
large exponents, the qualitative collapse of the data is remarkable.

of yield strain is pronounced when the thickness reaches below ∼ 100 nm. Our initial

hypothesis was that the change we observe could be related to a reduction of inter-chain

entanglements, or to a change in the glass transition temperature of the film. Through our

experiment, however, we not only clearly demonstrated that the reduction of inter-chain

entanglement density is not contributing to the increment of the yield strain as the film

confinement is increased, but also verified that the onset of plastic deformation could be

related to the same mechanism behind reductions in the glass transition.

We have also showed a simple scaling model that describes the flow of thin film

after annealing above its glass transition temperature. The model shows a qualitative

description of the flow of the fluidized film and makes predictions with respect to the scale

of the thickening (bump height) in the PS film. Although the scaling expression has large

exponents, the qualitative collapse of the data is remarkable. Furthermore, the atomic force

microscopy measurements of the thickening are consistent with this simple theory, backing

up our primary conclusion: bending causes stress storage in thin PS films.
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3. EFFECT OF NANOSTRUCTURAL ORDERS OF DIBLOCK

COPOLYMER FILMS ON YIELD STRAIN

3.1. Background

The previous chapter was devoted to exploring the qualitative estimation of the

onset of plasticity in nanoscale polystyrene films. Motivated by the significant observations

presented in the previous chapter coupled with the goal of investigating more complex

thin film materials, the mechanical response of thin films made from diblock copolymers

was explored. Diblock copolymer is a polymer made from two blocks of homopolymers

connected by covalent bonds. In the past, significant attention was given to the study of

block copolymers due to their ability to phase separate (self-assemble) into well ordered

nanometer scale structures [5, 6, 47, 48, 103]. The easy assemble of nanostructure put

block copolymers at the forefront of potential applications in technologies ranging from

lithography to high density storage devices. In order to realize these emerging applications,

the mechanical properties and the underlying physics of block copolymers need to be

understood.

Over the last several decades, the mechanical behavior of bulk block copolymers

such as crazing and fracture have been extensively studied both experimentally [121, 101]

and theoretically [76]. Unlike in homopolymers, these behaviors depend highly upon

the response of the constituent blocks. Most importantly, the difference in mechanical

properties [76], chain orientations relative to applied stress in a nanoscale self-assembled

structure [50], degree of incompatibility [51] of the blocks can significantly change the

materials’ response. For example, by using a molecular dynamics simulation model,

0Andrew Croll and Bekele Gurmessa designed and conducted the experiment in this chapter in close
cooperation. The work in this chapter is submitted to macromolecules for publication.
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Makke et al. [76] concluded that large buckling deformation is first accommodated by

the softer layer, when a layered (stack of soft and hard layers of) copolymer (rubber-

glassy) is subjected to a tensile stress whereas the hard, glassy layer resists bending.

Similarly, it has been shown experimentally that crazing processes are confined to a single

microdomain (rubber domain) in the rubber-glassy bulk copolymers (e.g. polystyrene-b-

polybutadiene) [121]. Lee and his colleagues have extended this concept to thin films and

studied the effect of lamellar microstructural order of poly(styrene-b-2-vinylpyridine) on

the crazing process [71]. They concluded that lamellar microstructure in self-assembled

poly(styrene-b-2-vinylpyridine) thin films results in slower craze growth rate.

Although, the mechanical properties of bulk copolymers are studied extensively,

there is still little known about the mechanical response of these materials in the limit of

nanoscale thickness. Specifically, the response of microphase separated block copolymer

thin films to mechanical deformation is still lacking. In this chapter, an experimental

investigation of the effect of microstructural order of diblock copolymers on the onset of

damage will be presented. The chapter begins with a brief review of thermodynamics of

polymer phase separation in both bulk and confined materials followed by the experimental

procedures used, the results found and discussion.

3.1.1. Phase Behavior in Diblock Copolymers

The phase state of a given system is usually described by a balance between

enthalpic (defined as H = U + PV , where U, P, and V stand for the systems internal

energy, pressure and volume, respectively) and entropic contributions that together make

up the Gibbs free energy, G, of the system written as G = H − T S [5] with S and T

being the entropy and temperature of the system. Phase separation between two species

takes place when the magnitude of the enthalpic contribution to the free energy of mixing

exceeds the magnitude of the entropic contribution. For example, in a blend of two
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homopolymers A and B, the phase behavior is governed by the relative lengths of each

block (degree of polymerization N), the composition volume fraction), f, and A-B Florry-

Huggins interaction parameter, χ . According to the Florry-Huggins formulation, the

change in free energy (∆G) per segment (monomer) associated with mixing homopolymers

on an incompressible lattice ( fA + fB = 1) is approximated as

∆G
kBT

=
1

NA
ln fA +

1
NB

ln fB + fA fBχAB (3.1)

where kB is the Boltzmann constant, T is the temperature, fA = NA/(NA +NB) and fB =

NB/(NA +NB) are the volume fractions of polymer A and B respectively. NA and NB are

the degree of polymerization of chain A and B. The first two terms in equation 3.1 have

entropic origin which always promote mixing because mixing always increases system

randomness. These terms are usually controlled by changing the overall size of the polymer

chains and the fractions of the chains A and B during polymerization [4]. The last term

in equation 3.1 corresponds to the enthalpy of mixing (has energetic origin), which can

increase or decrease ∆G depending on the sign of χAB. The Flory-Huggins interaction

parameter, χAB, is a dimensionless parameter defined to characterize the differences in

interaction energies between the blocks of an A-B diblock copolymer. Mathematically, it

is defined as

χAB ≡
z

kBT

(
εAB−

εAA + εBB

2

)
, (3.2)

where εAA,εBB and εAB are the interaction energies of the A−A,B−B and A−B contacts

of the blocks, z is a coordination number of a given lattice (the number of nearest neighbor

monomers to a copolymer configuration cell). In the vast majority of cases, χAB is positive.

Positive χAB indicates repulsion between the A and B monomers whereas a negative value

signifies mixing of unlike monomers (in which case single phase mixture is favorable).

Moreover, χAB usually varies inversely with temperature. Empirically, the Florry-Huggins
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parameter is associated with the A-B monomer interactions and generally decreases with

temperature [111, 99] as

χAB
∼= a+

b
T
. (3.3)

The constants a (referred to as the entropic part of χAB) and b (b/T is called the enthalpic

part of χAB) are unique for different blends and are experimentally obtained.

As with any system at equilibrium, the diblock copolymer chains will be arranged

such that their free energy will be minimized. This free energy configuration can be

disturbed by increasing χAB (this is often accomplished by reducing temperature). Con-

sequently, the chains segregate into distinct phases. Unlike phase separation of mixtures

of homopolymers, block copolymers are known to self-assemble into varieties of micro-

phase separated morphologies such as spheres, hexagonally packed cylinders, lamellae,

and bicontinuous ‘gyroid’ structures as shown in Fig. 3.1(a) [5, 111]. Micro-phase

separation is a phenomenon similar to that of immiscible blends of homopolymers. Unlike

homopolymers, the blocks cannot demix macroscopically as the two blocks are covalently

bonded to one another. In essence, the bond highly reduces the entropic contribution by

prohibiting the monomer units from independently occupying the entire space. Hence,

in microphase separation each block forms nanometer-sized domains. It has been well

documented that, the sizes of the domains formed and their morphologies are determined

by the relative lengths of each block (degree of polymerization, NA and/or NB) and the

composition, (fA and/or fB) [5, 77, 111]. For example, highly different block lengths

form spheres of nanometer size of the first block in a matrix of the second. When the

length of the blocks becomes more of symmetric, a hexagonally packed cylinder will be

formed. Furthermore, blocks of similar lengths form alternating layers of one block after

the other (often called lamellae) [6, 47]. On the other hand, the ordered phases can be

disordered by rising the entropy of the system, for example, by reducing χAB or the degree

of polymerization, N. Since the entropic component∼N−1 and the enthalpic component is
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Figure 3.1. Phase behavior of AB diblock copolymer: a) Example of a linear AB
diblock copolymer and the equilibrium morphologies in the bulk: spheres (S), cylinders
(C), bicontinuous gyroids (G), and lamellae (L). b) Theoretical phase-diagram of AB
diblocks predicted by self consistent mean-field theory depending on the volume fraction
(f ) of the blocks and the segregation parameter, χABN. c) Experimental phase-digram
of poly(styrene-block-isoprene) (PS-PI) copolymers, in which fA represents the volume
fraction of polyisoprene, PL denotes perforated lamellae. "Reproduced with permission
from ref. [5]. Copyright (1991), American Institute of Physics.”

∼ χAB (see equation 3.1), the product χABN is the quantity that dictates the phase behavior

of block copolymer.

3.1.2. Phase Diagram of Diblock Copolymers

A number of researchers have reported the phase behavior of bulk block copolymers

in both theory [4, 72] and experiment [4, 77] by plotting the segregation product, χABN,

versus the composition of the copolymers. Often times, the product χABN, that expresses

the entropic-enthalpic balance, is used along with the composition of block copolymers to

parametrize the block copolymer phase behavior. For example, let’s consider the theoretical

(Fig. 3.1(b)) and experimental (Fig. 3.1 (c)) phase diagram of poly(styrene-isoprene) (PS-

PI) demonstrated by Bates and co-authors [5].
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3.1.2.1. Theoretical

In both theories and experiments dealing with the phase behavior of block copoly-

mers, there are two segregation limits considered in terms of χABN: strong segregation

and weak segregation limits. Since there are no well-defined criteria for separating these

regimes, they are mostly discussed in vague terms; the earlier one corresponds to a regime

where χABN > 100 while the latter one corresponds to χABN ∼10 - the critical segregation

limit for symmetric diblock copolymers as estimated by Mark. et al [77]. It has been

shown that Rg ∼ N1/2 in the limit of χN� 10 implying that chain stretching is negligible

and hence the chain statistics (confirmation) takes the unperturbed Gaussian distribution,

Rg ∼ N1/2. On the other hand, Rg ∼ N2/3 in the strong segregation limit. At such a

transition, the amplitude of the lamellar pattern grows continuously from zero on lowering

the temperature [77].

Theoretically, the phase diagram of block copolymer spanning these two segrega-

tion limits can be obtained by self-consistent mean field theory as shown in Fig. 3.1b [5,

48, 77]. The diagram indicates two fundamental transitions: order-to-order transitions

and order-to-disorder transitions. In one hand, increasing the composition of the volume

fraction of block A to block B from 0 to 1 in the strong segregation limit at a fixed

χABN, the order-to-order transition begins from closely packed spheres (CPS), which comes

immediately after the disordered state, and passes through body-centered cubic spheres (S)

followed by hexagonally packed cylinders (C), bicontinuous gyroids (G) (which becomes

unstable as the segregation product increases as can be seen from the diagram) and lamellae

(L) phase (with alternating layers of the constituent blocks). It is also worth noting that as

we move from left to right on the phase diagram of the block copolymers, the composition

of the volume fraction of B reduces while that of A increases. In such cases, there exist

inversion of morphologies from B dominant to A dominant as can be noted from the equi-

librium morphologies of Fig. 3.1(a) where S, C and G are replaced by S’, C’ and G’. On the
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other hand, with decreasing χABN (this is possible by increasing temperature) at a particular

composition the entropic contribution which always favors mixing, increases implying that

the incompatibility between each block decreases. As a result, the copolymers show order-

to-disorder transition (ODT) and become homogeneously mixed (disordered). There is a

particular transition temperature at which the order-to-disorder transition takes place. This

particular temperature is often termed as TODT [77]. For example, on the segregation limit

versus composition phase diagram shown Fig. 3.1, ODT takes place at χN = 10.5 for the

theoretical diagram and χN ∼ 18.5 for the experimental prediction, although these values

vary with the polymer size.

3.1.2.2. Experimental

The experimental study of the phase behavior demands annealing of the sample

above its glass transition temperature (Tg) for a predefined time followed by rapid quench-

ing below Tg. During annealing the polymer structure is controlled by thermodynamics.

When the sample is quenched, the polymer structure is found to be kinetically frozen

(becomes immobile) due to the extremely low mobility of the chains. The morphology

observed after rapid quenching, captures the essential features of the material at the

higher annealing temperature. Figure 3.1(c) shows the experimental phase diagram of

polyisoprene-block-polystyrene copolymers (Bates and coworkers) [77]. This experimen-

tal phase diagram shows a qualitative similarity with the theoretical diagram shown in

Fig. 3.1(b).

The block copolymer phase diagram is constructed experimentally by first de-

termining the temperature dependent χAB through measuring the ODT for a series of

polymers. At ODT, the dynamic shear elastic modulus (G’) is found to drop dramatically

during the heating process. Once the ODT is determined, the microstructures are mostly
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characterized through the combinations of small angle x-ray scattering (SAXS), small angle

neutron scattering (SANS) and transmission electron microscopy (TEM) [48, 77].

3.1.3. Confinement In Diblock Copolymers

Unlike in the bulk, where polymer chains exhibit a typical random Gaussian

orientation, polymer chains (whether co/homopolymer) - although not ordered - show a

stretched configuration beyond the Gaussian chains in the as-cast and confined geometry.

This chain stretching is attributed to considerable hydrodynamic shearing effect that oc-

curs at the interface of film and substrate and solvent swelling during spin-casting [79].

However, other than chain stretching, the overall distribution is homogeneous as illustrated

schematically in the blow up of Fig. 3.2(a).

When annealed, block copolymers undergo microphase separation and self-

assemble into nanoscale morphologies with a well defined periodicities in both bulk and

thin film geometries. As pointed out in the previous section, the phase behavior of bulk

block copolymer is dictated by three main factors: the interaction between monomers,

χAB, the degree of polymerization, N, and the relative composition of block A and B, fAB

[5, 103]. In addition to these factors, constraints such as commensurability between the

periods of the block copolymer (i.e. the relationship between the repeat period of the

copolymer to the over all thickness of the film) and the film thickness, the tendency of

specific blocks to go to one of the two interfaces preferentially (i.e. interfacial interaction

between both blocks and the substrate) play huge roles on the morphologies in block

copolymer thin films [122, 100]. In this perspectives, there are two possible wetting

conditions: symmetric and antisymmetric wetting. The former refers to a situation where

an identical block (say block A or B but not both) wets both substrate/air interfaces whereas

the later refers to another situation where different blocks preferentially interact with one

of the interfaces. When equilibrium is reached, nanodomains, which may be symmetric
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Figure 3.2. Schematics of the structural orientation of a diblock copolymer in a confined
geometry. a) The as-cast thin film shows homogeneously mixed (disordered) chains
orientation. b) Controlling χAB, fAB and N help the chains self-assemble into a variety
of nanodomains. Furthermore, the presence of the boundaries (air/substrate) make the
nanodomains align in a particular orientation to the substrate surface such as lamella
parallel or perpendicular, cylinders parallel or perpendicular, hexagonally packed spheres.

or asymmetric, are formed with a particular orientation relative to the substrate plane. For

example, lamella parallel or perpendicular, cylinders parallel or perpendicular, hexagonally

packed spheres are formed as illustrated in the schematics of Fig. 3.2(b). If the film

thickness and the step height, L0 are commensurable, the total film thickness, h, becomes

h =


nL0, symmetric wetting

(n+1/2)L0, antisymmetric wetting

where n = 1, 2, 3, .... When these conditions are met, smooth or flat films of thickness

h = (n+ 1/2)L0 or h = nL0 are observed. If the periods of the block copolymer and the

film thickness are incommensurate, then the surface of the film becomes unstable and is

decorated by terraces ( islands and/or holes with step height or depth of L0) [6, 100, 127].

In this chapter, we study the effect of lamellar and cylindrical microstructures

on the plastic deformation of diblock copolymer thin films. In order to understand how

these ordered microdomains affect the onset of plasticity, we make use of thin films made
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from symmetric polystyrene-b-poly(2-vinylpyridine) (PS-P2VP) as a model material. This

polymer was chosen due to similarities in the mechanical properties (such as glass transition

temperature, entanglement molecular weight, and elastic modulus) of the two blocks -

polystyrene and poly(2-vinylpyridine). Previous studies have shown that reducing the

thickness of a polymer film to nanoscopic dimensions results in the changes to the glass

transition temperature [60, 34, 36, 85, 95, 10, 78], reduction in the number of entanglements

between chains [14, 106], and changes in the mechanical properties (such as crazing,

shear yielding) [71, 22] of the film. Remarkably, few studies have considered how failure

processes might be altered in thin films, or how plasticity might alter a film’s response to

other stimuli. Therefore, it is important to understand how the yield strain in a thin film with

microstructural domains compares with both disorganized diblock copolymers as well as

the individual blocks in homopolymer form. In this regard, an elastic instability-discussed

in the previous chapters- will be exploited again to locally bend and impose a local tensile

stress in thin PS-b-P2VP films and directly measure the resulting residual stress caused

by the bending. Direct measurements of the damage caused by the bending leads to the

identification of a critical strain for plasticity.

3.2. Experimental Procedures

Most of the procedures used in the current chapter will be the same as the ones

described in the previous chapter. The mechanism of inducing stress, measurement meth-

ods and tools, were explained in chapter two and will not be repeated here. Therefore, in

this section we provide only the additional procedures needed to complement the previous

ones; starting with the description of our model material and sample preparation, followed

by results and relevant discussions, and a summary of the main observation of the current

project.
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3.2.1. Materials

Monodisperse, symmetric and asymmetric polystyrene-b-poly(2-vinylpyridine)

(PS-b-P2VP) were purchased from Polymer Source Inc. and used as received. The

symmetric PS-b-P2VP has a PS block of molecular weight Mn = 40 kg/mol and a P2VP

block of Mn = 40.5 kg/mol. The polydispersity index (PDI) of the diblock is 1.02. The

second molecule considered was a cylinder forming PS-b-2VP with PS block of Mn = 56

kg/mol and a P2VP block of Mn= 21 kg/mol, and has PDI of 1.06. The two molecules

were chosen to have differing microphases but similar total molecular weight. In addition,

polystyrene homopolymer of molecular weights Mn = 1.3Mg/mol and Mn = 1.2kg/mol

with PDI of 1.15 and 1.04 respectively and Poly(2-vinylepyridine) (P2VP) homopolymer

of molecular weight Mn = 135kg/mol and PDI of 1.06, also purchased from polymer source

Inc., were used in the experiment as summarized in table 3.1.

Table 3.1. List of the molecular details of the polymers used in this chapter. The numbers
following the sample names (e.g. PS-1) are added just to easily distinguish the samples
with the same names but different Mw, MN and PDI.

Samples MN (kg/mol) PS MN (kg/mol) P2VP PDI

PS-1 1100 - 1.15

PS-2 115 - 1.04

P2VP - 135 1.06

PS-b-P2VP-1 40.5 40.0 1.10

PS-b-P2VP-2 56 21 1.06

3.2.2. Substrate and Film Preparation

We use 3 mm × 12 mm × 70 mm substrates of cross linked polydimethylsiloxane

(PDMS). Curing agent and PDMS prepolymer (Dow chemical Corning, Sylgard 184) are

thoroughly mixed in a 1:20 weight ratio, respectively. After degassing, the polymer mixture
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is poured into a petri dish, cured at 85 ◦C for two hours and then left in vacuum oven for

the next 12-15 hours.

A series of polymers listed in table 3.1 were dissolved in toluene (Anhydrous

99.8%, Sigma-Aldrich Inc.) in concentrations ranging from 0.5% - 3% by weight. Then the

solution of polymer/toluene was filtered through a micro-pore system (pore size 0.482 µm,

Cadence Science Inc.) and spin coated at variable speeds ranging from 500rpm - 3000rpm

onto a freshly cleaved mica substrate bound to a glass slide.Varying the concentration of

the solution and speed of rotation help to vary the thicknesses of the films.

For the PS-b-P2VP, two sets of films are made. The first set is used as spin

coated (which are in a disordered state) whereas the second set undergo additional steps of

annealing to enable self-assemble. In order to initiate the self-assembly process, samples

were annealed at temperatures ranging from (165◦C - 185◦C) all well above the glass

transition temperature of the bulk PS-b-P2VP (∼ 100◦C). The second set is called the

ordered set. Finally, both series are transferred to a clean deionized water surface (Milli-

Q) and subsequently become ready for the next procedure (the mechanics step). In all

cases, the films are imaged with Laser Scanning Confocal Microscopy (LSCM - Olympus

Fluoview 1000) or with Atomic Force Microscopy (AFM - DI Dimension 2100).

3.2.3. Thickness Measurement

Film thickness is one of the dominant geometric properties related to bending and

must be measured carefully. Atomic Force Microscopy (AFM - DI Dimension 2100) is

used to image and locally measure a film thickness. The as-cast and flat surface films

present little challenge in analysis; films are scratched near the feature of interest and

AFM section analysis gives the film thickness. Unlike the as-cast films, the surface of

ordered block copolymer films will be decorated by terraces (islands or holes) when the

as-cast thickness is not commensurate with a lamellar thickness. Under such conditions,
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using AFM cross-section analysis alone is insufficient to completely determine a thickness;

instead an average thickness must be contrived from the density of surface features, f , the

lamellar thickness L0 and the number of complete layers below the surface, n. In other

words, average thickness is obtained from volume conservation. In this regard, having

measured the lamellar spacing (L0), the volume of the sample with full of terraces will

be the sum of the volume of the terraces and the volume of the material constituting the

flat thickness just beneath the terraces. At equilibrium, the height/depth of the lamella

spacing becomes L0. The volume of the features becomes
(
total feature area x L0

)
whereas

that of the flat film beneath the features becomes x0y0nL0), where n = 1,2,3... (nL0 is

the total number of lamella stack of the flat film with dimensions x0, y0 and nL0). Then,

another (ideally) flat film of the same x-y dimension as in the film with terraces, with a new

thickness (say havg), is created by "smearing" the extra materials on the entire surface of

the sample using a "butter knife". From conservation of volume, volume before smearing

the extra materials = volume after smearing the extra materials (i.e.
(
total feature area

x L0 + x0y0nL0
)

= x0y0havg. Dividing by x0y0 yields, the required average thickness.

Mathematically,

havg = f ×L0 +n×L0. (3.4)

where f = (total feature area)/x0y0). As an alternative, the largest thickness (n+ 1)L0 and

thickness of only complete layers, nL0 was considered in analysis. Neither resulted in

significant changes in the overall trends observed. For the polymer used here, we find

L0 =∼ 42±0.7 nm in agreement with other measurements [55, 71]. Notice that the area of

the features and the counting of the number of features is done with the help of imagej.
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3.2.4. Mechanics

In order to do the mechanics, one of the now floating films will be picked up with

a piece of clean mica held with a tweezer and transferred to a PDMS substrate loaded on a

strain stage. Subsequently, a compressional strain is imparted with the custom built strain

stage. When under compression, the film buckles out of plane forming a sinusoidal pattern

in a process known as wrinkling [15, 43, 12, 110, 20]. As compression is increased, the

sinusoidal pattern evolves to eventually form a complex collection of delamination blisters

or sharp localized bends [46, 80, 31]. A typical LSCM micrographs of an as-cast PS-b-

P2VP film of thickness h = 71 nm under: zero-strain (3.3a), compression (3.3b), relaxed

(3.3c) and transferred to a silicon substrate (3.3d) is illustrated in Fig. 3.3. A smooth and

flat surface is observed while no strain is applied which eventually evolves into wrinkles

and delaminations (brightest wrinkle peaks) as compressive stress beyond the critical strain

for wrinkling, and delamination [31] is imposed. Confocal imaging of the sample while it

is under compression, allows delamination width to be easily measured. More importantly,

the heights of each pixel can be determined through LSCM’s optical sectioning, from which

the amplitude of the delamination [46] can be determined. Thus, we will have a very careful

and complete measurement of the films location in three dimensional space at all stages of

compression and relaxation. The measurement can easily verify the predicted post-buckled

shape of the delamination topography defined as g(x) = (A/2)(1+ cos(2πx/ω)), where

g(x) is the surface, A is an amplitude and ω is the width of the delamination [118]. By

employing g(x), coupled with Euler-buckling theory, it is possible to give an estimate of the

surface strain along the delamination crest as εs ∼ κh, where h is the thickness of the film

and κ ∼ ∂
2g(x)/∂x2 ∼ A

ω
2 is the peak curvature of the delaminated film. The delamination

amplitude decreases as one moves from the crack edge to the tip of the delamination [46].

There is a strong correlation between delamination curvature and the the amount of damage
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remaining once film is transferred to a flat silicon substrate. The most relevant feature

exploited here is the critical point of the onset of plastic deformation (the yield strain).

3.3. Results and Discussion

In chapter two, the measurement of the onset of plasticity in polystyrene thin

films was presented in detail. In that work, several observations were made: i) the onset

of plasticity occurs at low strain, of the order of ∼ 10−3, ii) critical strain for plastic

failure remains flat in the bulk region but rises as the film confinement increases, iii) the

confinement induced increase of the yield strain begins as the film thickness drops below

about (∼ 100 nm). In the current chapter, a similar method is used to study the onset of

yield strains of a series of films composed of P2VP, as-cast PS-b-P2VP and ordered PS-b-

P2VP with variable thicknesses. The critical point is taken at the strain of the localization

where damage is no longer visible. In the following subsections, the yield strain measured

for each polymer mentioned earlier will be discussed in the following order: P2VP, as-cast

PS-b-P2VP and ordered PS-b-P2VP. In all cases, comparison is made with the PS data we

obtained in chapter two.

3.3.1. Yield Strain in P2VP

The yield strain of poly(2-vinylpyridine) (P2VP) shows similar behavior to PS

films. Both polymers have flat critical strain in the bulk region that dramatically increases

as confinement increases. Notably, P2VP has critical strains of ∼ 0.4% greater than PS

over the entire range of measurement as illustrated in Fig 3.4. The implication is that thin

films made from P2VP can stretch further than PS before failure.

The best curve fittings to our data in Fig. 3.4 were made by exploiting the concept of

a layer model discussed in chapter two. This model assumes enhanced molecular mobility

(liquid-like layer) near the free-surface (over a few lengthscale) than in the bulk polymer.
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Figure 3.3. Typical surface morphologies of as-cast PS-b-P2VP films at every stages of
the mechanics. A confocal microscope image of a) prestrain state. b) the same film under
compression with lots of wrinkles and a couple of delaminations.c) the spot of the relaxed
film corresponding to the previous delaminations and d) the same film after it has been
relaxed and annealed above the glass transition temperature of PS-b-P2VP.

Many researchers, especially in the glass transition community, have made use of this

model. For example, several authors [60, 36, 34, 95, 85, 11] have shown that the glass

transition temperature of thin polystyrene films reduce significantly compared to the bulk

value as confinement increases. With this argument in mind, we have adapted the layer

model to our system that can be written as

εp(h) = (`/h)(εp− ε
◦
p)+ ε

◦
p, (3.5)

where ` is the size of the soft layer and εp and ε
◦
p refer to the surface and bulk strain,

respectively. The idea of defining the yield strain as a layer model stems from the fact that

a larger strain is needed in the liquid-like layer before stress can be stored; since the stress

can more easily relax away in the liquid layer than in the bulk layer. In this regard, fitting

to our data in Fig. 3.4 give εp = 0.012± .001, ε
◦
p = 0.001± .001, and εp = 0.50931± .001,

ε
◦
p = 0.26283± .001, respectively, for PS and P2VP, assuming a typical lengthscale ` =

10 nm.
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Figure 3.4. Comparison of the evolution of yield stain of PS and P2VP as a function of
confinement. The two polymers reveal similar pattern in yield strain except the upward
shifting of the yield strain in P2VP implying that P2VP might stretch further before failure
compared to PS.

Now that the behavior of yield strains of each of the blocks (PS and P2VP)

constituting our model material (PS-b-P2VP) is established, it is natural to ask how the

diblock copolymer would respond to similar mechanical deformation. First, we focus on

the as-cast PS-b-P2VP films (disordered state) followed by the ordered PS-P2VP films.

3.3.2. Yield Strain in As-cast PS-b-P2VP Films

The yield strain of as-cast PS-b-P2VP not only shows a small value - of the order

of 0.1%- but also increases when the thickness decreases below 100 nm as shown in Fig.

3.5. The value of the critical strain for the as-cast PS-b-P2VP overlaps with the PS data for

thicknesses above ∼ 100 nm. However, a more exaggerated increasing of the yield strain

was detected as shown in Fig. 3.5. It is believed that there is a possibility for a ultra thin

films, which are inherently in a disordered state while in the bulk, transition to an ordered

phase only due to spin coating under a certain degree of confinement [17]. Therefore,
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Figure 3.5. Critical strain as a function of film thickness of as-cast and PS films fitted to
the layer model described in the text.

the disordered to ordered transition might be the reason why there is a highly pronounced

increase of yield strain in the as-cast film with increasing confinement. We notice that

disordered films are not well fit by the equation of the layer model.

3.3.3. Yield Strain In Ordered PS-b-P2VP Films

In the foregoing discussions, we have established the behavior of yield strains for

PS, P2VP and disordered PS-b-P2VP as a function of film confinement. Interestingly, there

is no noticeable difference in the pattern of the yield strains measured in all the polymers

- the yield strain remains flat in the bulk and dramatically increases in the confined region.

We now turn to the response of ordered PS-b-P2VP films to similar mechanical deformation

and investigate how the microstructural orders affect the onset of plasticity. For the diblock

copolymer to undergo the self-assembly process and form the microstructural order we

are interested in, it is essential to initiate the process. In the mean time, the surface
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morphological evolution as well as the variation of yield strain as a function of annealing

temperature will be investigated.

3.3.3.1. Surface Morphological Evolution as a Function of Temperature

In order to probe how the microstructural order affect the onset of plasticity in or-

dered PS-b-P2VP films, we first initiate the self-assembly process of the diblock copolymer

into distinct microstructural orders. This is carried out by, among other methods, thermal

annealing [37, 75] and solvent annealing [44]. In our case here, we use thermal annealing

approach on a freshly cleaved mica substrate. In thermal annealing the copolymer is heated

past its glass transition temperature, (Tg∼ 100◦C for PS and P2VP), for a predetermined

time followed by quenching the sample down to room temperature (below Tg). During

annealing, the polymer chains become mobile and rearrange toward thermodynamic equi-

librium structure [4, 77]. When the sample is rapidly quenched below its glass transition

temperature, the polymer structure is kinetically frozen due to the extremely low mobility of

the chains. Given the composition of the block copolymer considered (PS block of Mn = 40

kg/mol and a P2VP block of Mn = 40.5kg/mol), alternating PS and P2VP layers (lamella)

parallel to the mica substrate is formed at equilibrium. As it has already been demonstrated

for the model polymer under consideration [55], PS block has a lower surface energy

compared to P2VP and prefers to reside at the free surface; yielding lamella (alternating

layers of PS and P2VP) parallel to the substrate.

For the realization of such microstructural order (alternating layers of PS and

P2VP), series of samples of similar thicknesses were annealed to temperatures ranging from

165◦C - 185◦C under variable environments (open air, glove box filled with dry nitrogen).

When annealed to a temperature above the glass transition of the polymer for an appropriate

time, the surface of the block copolymer thin film is decorated by terraces (holes, islands,

bi-continuous) when the film thickness is not commensurate with the lamellar spacing. For
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Figure 3.6. Surface morphologies of samples annealed at 175◦C for the annealing times in-
dicated on the pictures. All of the samples are decorated by holes of lamella spacing 42µm.
The observed morphologies depend on the commensurability of the film thickness with the
lamellar spacing. Scale bar in all the images is 20µm.

example, Fig 3.6 illustrates the surface morphological evolution observed as the samples

of similar thicknesses are annealed at a temperature of 175◦C on Linkham hot stage for

different annealing times. As time progresses, the domain sizes coarsen as expected (see

Fig. 3.6). It is apparent from Fig. 3.6 that there will be self assembly of the polymer

chains into periodic microdomains even at short annealing times (see samples in Fig. 3.6

annealed for 1-2 hours). Although the true thermodynamic equilibrium takes a long time

to be reached, the fact that the surface terraces are not altering significantly upon further

annealing (see samples in Fig. 3.6 annealed for 3-6 hours) could be an indication that an

equilibrium may have been achieved [107].

3.3.3.2. Yield Strain as a Function of Annealing Temperature

For better understanding of how the microstructural orders contribute to yield strain,

we then conducted an experiment of yield strain measurement with microphase separated
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Figure 3.7. Surface morphologies of ordered PS-b-P2VP films at various stages of the
experiment. A confocal microscope image of a) prestrain state. b) the same film under
compression with lots of wrinkles and a couple of delaminations.c) the spot of the relaxed
film corresponding to the previous delaminations and d) the same film after it has been
relaxed and annealed above the glass transition temperature of PS-b-P2VP.

PS-b-P2VP samples using the same procedures outlined above for as-cast films. The pre

and post buckling state of the sample is illustrated in Fig. 3.7.

Similar to the as-cast films, smooth and flat surface is observed while no strain is

applied and eventually evolves to wrinkles and delaminations (brightest wrinkle peaks) as

compressive stress beyond the critical strain for wrinkling and delamination is applied. In

order to measure the yield strain, several samples of similar thicknesses were annealed at

different temperatures for different annealing times. Measuring the yield strain of these

microphase separated samples, we observe that the critical strain increases only for short

annealing times and eventually relaxes to a finite value for lamella forming molecules as

can be seen in Fig. 3.8. For the cylinder forming molecules, however, no significant change

was noticed with varying annealing treatment. The inset in Fig. 3.8 makes it more apparent

how the yield strain relaxes to a finite value as annealing temperature increases. Within our

experimental error, the data plateau in the time scales ranging from 4h-8h. This observation

has the implication that annealing a sample to a temperature more than 175◦C and above

4 hours has no significant effect on the yield strain measured as can be seen in Fig. 3.8.
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Figure 3.8. Evolution of yield strain of annealed block copolymer films as the annealing
time increases. The figure shows that the yield strain, regardless of annealing temperature,
relaxes to a finite value after short annealing time . The inset illustrates variation of the
yield strain normalized to the respective equilibrium values as annealing time progresses.

The solid lines are the best curve-fitting to the data with an exponential function of f (t) =

B−A×Exp(−t/τ) where the best fit parameters A,B and τ are different for each sample.

This relaxation to the plateau region of each sample’s data can be shown by the relaxation

time versus annealing temperature extracted from f (t) and plotted in Fig. 3.9, where the

solid line is included to guide the eye of the viewer.

3.3.3.3. Yield Strain as a Function of Confinement

In light of our observations that annealing a sample to a temperature exceeding

175◦C for more than 4 hours has insignificant effect on the yield strain, we chose a

temperature of 175◦C and annealing time of 4 hours for the next experiment. At this

temperature, we carried out an investigation of how the yield strain varies with thin film

confinement. Consequently, we notice that there is a remarkable shift in yield strain in

samples with microstructural orders as compared to the previously described system - as-

cast PS-b-P2VP- as illustrated in Fig. 3.10. This increase of the yield strain for the self-
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Figure 3.9. Illustration of the relaxation time versus annealing temperature extracted from
f (t) described in the text. In the fitting the outlying cylinder forming data is not included.

assembled samples is attributed to the internal microstructural orders. In addition, our

careful measurement and analysis of these systems not only indicate that the value of the

critical strain is very small - of the order of 0.1%- but also the yield strain increases when

the thickness decreases below 100 nm.

3.3.4. Comparison of Yield Strains In PS, P2VP, As-cast and Ordered PS-b-P2VP

While all the polymers considered in here reveal similar interesting patterns (such

as low critical strain, flat critical strain in the bulk region, critical strain increases when

confinement increases, upturning of the critical strain starts when film thickness ∼ 100

nm) in the yield strains, each has a different magnitude of yield strains (see Fig. 3.11).

This differences have an implication that we are measuring a material specific property.

Specifically, PS is found to be the one with the lowest yield strain (0.1%) whereas P2VP

with the highest yield strain (0.4%) compared to all the three systems considered (PS, as-

cast and ordered P2VP). Although the difference between the yield strain of PS and as-cast

is not significant, still the as-cast PS-b-P2VP shows a tendency of being higher than PS.
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Figure 3.10. Yield strain as a function of film thickness of both as-cast and ordered films
fitted to the layer model described in the text.

Since PS-b-P2VP is constituted from two homopolymers (PS and P2VP), it may be the case

that the phenomenon we observe (yield strain of the copolymer lies in between the yield

strains of PS and P2VP) stems from the fact that yield strain is measured for a material made

from two different materials with its own properties. The implication is that PS-b-P2VP

shares some properties from each constituents and hence its yield strain falls in the middle

of the individual homopolymers’ strain. On the other hand, there is a noticeable increase in

the yield strain of ordered PS-b-P2VP compared to the as-cast PS-P2VP as microstructural

order takes place. Fitting the layer model defined in equation 3.5 to our data in Fig. 3.11,

gives εp = .2886± .001, ε
◦
p = .15916± .001 for self assembled PS-b-P2VP films.
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Figure 3.11. Comparison between the yield strains as a function of film thickness of
polystyrene, as-cast and ordered block copolymer films fitted to the layer model described
in the text.

3.4. Summary

The purpose of the present research was to investigate how the onset of strain is af-

fected by the microstructural order formed when block copolymers undergo self-assembly.

We focused only on symmetric PS-b-P2VP which has a strong Flory interaction parameter

between the two individual blocks and their relative interaction with air/substrate. Thin

films made from this block copolymer has the ability to self-assemble into well-aligned

lamellar domains parallel to the substrate if the total film thickness is commensurate with

the step height L0. For better understanding of the response of such films to mechanical

deformation, we first studied how the individual blocks (PS and P2VP) constituting our

model material (PS-b-P2VP) respond to mechanical deformations followed by how both

the as-cast and self-assembled films made from PS-b-P2VP respond. Poly(2-vinylpyridine)

(P2VP) shows similar pattern with the yield strain of PS films we measured. Although both
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polymers have flat yield strain in the bulk region and dramatically increase as confinement

increases, there is noticeable upward shift of the yield strain in P2VP (by 0.4%) as

compared to PS. This has an implication that thin films made from P2VP can stretch further

before failure as compared to PS films.

Our measurements in the yield strains of both the as-cast and ordered PS-b-P2VP

are also consistent with the yield strain of polystyrene we measured. The results are

significant in three respects: 1) the trend of the yield strain follows the same pattern as

the function of confinement (see Fig. 3.11), 2) the up turning of the yield strains start

nearly at about the same film thicknesses (∼ 100 nm) and increases significantly with

increasing confinement, and 3) the yield strain occurs at much lower strains, of the order

of 0.1%, albeit it causes the material to deform plastically. In addition, self-assembled

PS-b-P2VP films and films decorated with terraces (islands, holes and bi-continuous) show

higher yield strain as compared to as-cast PS-b-P2VP and polystyrene films, suggesting

that the microstructures slightly increase the failure strain of the films. This implies that

films with microstructural orders require high strain to break. It is essential to emphasis

here that such measurement has implications for many current experimental investigations

of the elastic properties of thin polymer films, particularly in experiments attempting to

probe the far from threshold elastic behavior.
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4. LOCALIZATION IN AN IDEALIZED HETEROGENEOUS

ELASTIC SHEET

4.1. Background

When a system consisting of a thin film bound to an elastic substrate is subjected

to a compressive stress, the film will initially be compressed in-plane. As compression

increases, the film will buckle out of plane by forming a repetitive sinusoidal pattern

(also known as surface wrinkling) when a critical wrinkling stress is reached [110, 20].

If the compression is stopped, the film remains wrinkled. However, when confined

beyond the wrinkling threshold stress, focusing (localized) deformation in the film can

occur [31, 81, 118]. Often times such deformation is associated to a form of energy

focusing. In the limit of small strain, an elastic energy of the system is smoothly

distributed throughout the surface of the film. In the large strain limit, however, the initially

smoothly distributed elastic energy becomes more nonuniform and concentrated within

certain strongly bent regions (region with high curvature). One of the simplest examples to

consider in demonstrating the heterogeneous energy distribution in a system is to look at

the response of a crumpled piece of paper. In a crumpled piece of paper, there arise highly

deformed ridges and flat planes throughout the surface of the paper that is strongly confined

or localized implying the non homogeneous energy distribution causing the mixed states

(flat planes and highly deformed ridges) [123, 128].

Localized deformation is ubiquitous in many natural and engineering materials.

For example, the development of chaotic fluid motion into turbulence, where the kinetic

energy injected uniformly into a fluid becomes progressively concentrated in regions of

0Andrew Croll and Bekele Gurmessa designed and conducted the experiment in this chapter in close
cooperation. The work in this chapter is in preparation for publication.
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strong vorticity in space and strong intermittency in time (alternately ceasing and beginning

again), strong mechanical forcing of a solid that leads to fracture [123].

In their recent publications, Pocivavsek et al. [93] showed the transition of uniform

undulations to localizations of a homogeneous system (polymer thin film) bound to an elas-

tic foundation or on a water substrate when a uniaxial stress is applied. They demonstrate

that such transitions occur when ∆∼ 1/3L where ∆ is the lateral displacement of the system

due to compression and L is the length of the sheet on a foundation. Furthermore, Croll

and his colleagues [23] have also shown similar transition by considering a heterogeneous

system (self-assembled block copolymers). Their finding suggests that the transition take

place when the lamella spacing of the block copolymer becomes the same as the natural

buckling wavelength of the film. These demonstrations provide a great insight for systems

with a uniform stiffness through out its surface. The natural question one could raise here is

how a similar system with a non-uniform stiffness would respond when subjected to similar

mechanical deformation (uniaxial stress).

In this chapter, we discuss the response of nanoscale films with idealized, non-

homogenous stiffness subjected to uniaxial compression. The idealized/patterned surface

layers are created by selective ultraviolet/ozone (UV/O3) treatment of the top surface of

polydimethylsiloxane (PDMS) using a mask. By controlling the exposure time of UV/O3,

samples ranging from continuous thin films to sets of isolated small plates were created.

Despite studying of surface modification of PDMS during the UV/O3 exposure [33, 88, 7],

no one has yet used such heterogeneous systems to a controlled study of localized defor-

mation. To this end, the goal of the current chapter is to investigate how the modified

heterogeneous surface layers respond to mechanical deformation. First, the chemical

details behind the creation of a rigid layer on PDMS with UV/O3 will be discussed.

Following this, the experimental approach used and the results will be discussed.
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4.1.1. Interaction of Ultra-violet/Ozone with Air

Exposing a sample of PDMS to UV/O3 is carried out in air at atmospheric pressure

(as opposed to vacuum) in a UV/O3 Chamber (Jelight Company, Inc., Model 42). This

results in an interaction between UV radiation and air. Ultraviolet (UV) radiation is part

of the electromagnetic spectrum whose wavelengths lie in the range of 10nm-400nm as

illustrated in Fig. 4.1. This wavelength range is shorter than visible light, and it is invisible

to the naked eye. The chamber contains a sample holder and the UV/O3 source called low

pressure mercury lamp. The low pressure mercury lamp emits radiation strongly at two

wavelengths, 184.9 nm and 253.7 nm. The two wavelengths emitted by the UV source

have unique functions. The first wavelength is absorbed by oxygen molecules in the air

and leads to the generation of ozone while the second wavelength is absorbed by ozone,

not by molecular oxygen. As absorption is followed by dissociation, the molecular oxygen

at 184.9 nm dissociates to form atomic oxygen as indicated in 4.1 below. Eventually,

the atomic oxygen reacts with molecular oxygen to form ozone (see 4.2 below). On the

other hand, the 254.7 nm wavelength is strongly absorbed by ozone which dissociates into

molecular oxygen and atomic oxygen as indicated in 4.3 below [88, 7].

hν(185nm)+O2 −−→ O+O (4.1)

O2 +O−−→ O3 (4.2)

hν(254.7nm)+O3 −−→ O+O2 (4.3)

The absorption of 254.7 nm by ozone is considered as the reason for the continuous

destruction of ozone in the chamber [88].
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Figure 4.1. Electromagnetic spectrum of radiation. Redrawn from [104]

Figure 4.2. Illustration of the chemical structure taken from the surface of a PDMS before
treatment ( left) and after UV/O3 treatment (right). After the methyl groups are removed by
the absorption of UV/O3 radiation, atomic oxygen combines with the silioxane component
remaining behind and hence silicon oxide layer is formed on the surface of the PDMS.
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4.1.2. Interaction of Ultra-violet/Ozone with the Sample

It has already been documented that the surface of a PDMS is chemically modified

when it is exposed to UV/O3 radiation [33]. The process involves photo-sensitized

oxidation. That is, the molecules of the PDMS are excited or dissociated by the absorption

of short-wavelength UV radiation resulting in free radical formation. Berdichevsky et

al. [7] and Ouyang et al. [88] have demonstrated that both oxygen and ozone can react

with organic materials. When polymers and organic materials absorb UV/O3 radiation,

there will be formation of free radicals which eventually react with the atomic oxygen

and ozone to form some bi-products such as carbon dioxide (CO2) and water (H2O).

In a polydimethylsiloxane (PDMS), which is a silicon containing polymer as shown in

Fig. 4.2, treated with UV/O3, the methyl groups are dissociated by the absorption of UV/O3

radiation. This desorption of the organic portion (methyl group) leaves the siloxane (silicon

backbone) component behind. As a result, oxide layer is formed on the surface of the

PDMS when atomic oxygen combines with the silicon remaining behind. This silicon

oxide layer is what we call thin film. It has been demonstrated that the thickness of the

layer is directly proportional to the duration of treatment [35].

4.2. Experimental Approach

4.2.1. Sample Preparation

Cross-linked polydimethylesiloxane (PDMS) was made by mixing a 40:1 by weight

ratio of pre-polymer and cross-linker (Dow chemical Corning, Sylgard 184). PDMS is a

Si based organic polymer that is highly viscous liquid at room temperature and is optically

transparent. Thorough mixing for about ten minutes is needed in order to ensure the curing

agent is uniformly distributed. Mixing introduces air bubbles thats need to be removed

(degassed) before curing. To do so, the sample is placed in a vacuum oven (Napco 5831
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Figure 4.3. Schematic illustration of ultraviolet-ozone(UV/O3) treatment of the surface of
PDMS for pattern transferring. A pre-stretched PDMS (a) loaded with a TEM grid mask
(b) was irradiated to UV/O3 light (c). As a result of the UV/O3, the surface of the PDMS is
patterned (d). Re-exposing the sample to UV/O3 (f) creates additional layer on the already
exposed regions and new thinner layer on the previously covered region. After removing
the compressive stresses, how will each sample (d and f) respond?

Vacuum Oven). Then the valve of the oven will be closed and released in certain time

intervals until the trapped bubbles are fully removed. After degassing, the polymer mixture

is poured into a 9.6 cm x 9.6 cm petri dish with a thickness of about 3 mm and cured at

85◦C for two hours in the vacuum oven and then are kept in the oven for the next 12-15

hours. After cooling, the PDMS is cut into a rectangular sections of 1.2 cm x 7 cm x 0.3

cm.

4.2.2. Surface Patterning

In order to create a controlled surface pattern, the strategy depicted in Fig. 4.3 has

been used. First, an initially flat, un-patterned PDMS is stretched to a pre-determined strain

(see Fig. 4.3a). Then, the PDMS is loaded with Transmission Electron Microscopy (TEM)

grid used as a mask (see Fig. 4.3b). Finally, the pre-stretched PDMS loaded with the grid

is placed in a UV/O3 Chamber (Jelight Company, Inc., Model 42) and exposed to UV/O3
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(see Fig. 4.3c). The chamber consists of a low pressure mercury lamp designed to emit

radiation strongly at 184.9 nm and 253.7 nm wavelengths. Ultraviolet/ozone treatment of

the top layer of the PDMS this way yields four distinct regions: 1.) bulk region - a region

which is not covered by the mask, 2.) ring region - a region covered by the wide edge

of the mask and is not initially exposed to UV/O3, 3.) plate region - a region exposed

to the UV/O3 through the hole of the mask, and 4.) the in between plates region - a

region protected from UV/O3 by the bar of the mask and is confined between two treated

plates. For future convenience, the first two regions are termed as continuous regions while

the last two as patterned regions. Although the continuous sheet of the bulk region and

the isolated plates are exposed to the same dose of UV/O3, they differ in plate-size and

boundary conditions. The bulk regions are considered infinite in length and unbounded

whereas the plates are confined by untreated strips of PDMS. Notably, this boundary can

be manipulated through a second UV/O3 exposure once the mask has been removed. In

the first route (see Fig. 4.3d), both the ring and the in between regions are not exposed to

UV/O3 in the experiment. They are protected by the mask. When the sample is re-oxidized

during a second exposure time after the mask has been removed (see Fig.4.3f), thinner

layers of SiOx will be created between the plates. Of course, the thickness of the plates will

also increase. Doubly exposed samples are termed "connected" whereas singly exposed

samples are termed "unconnected". Typical examples of continuous (ring and bulk) and

patterned (In between and plate) surfaces are shown in Fig. 4.4.

4.2.3. Buckling Mechanics

The idealized inhomogeneous surface, with its surface patterned into regions with

variable stiffness, is slowly released from the pre-strain (the global strain). This releasing

of the pre-strain of the PDMS results in buckling of the SiOx layer. While the pre-strain is

released, the Poisson effect induces tensile stress in the perpendicular direction of the pre-
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Figure 4.4. Illustration of part of the TEM grid used (left) and the four regions formed
during surface patterning (right). The squares of the grid are 205µm X 205µm and a bar of
45µm wide. The confocal microscopy image of a sample under a pre-strain state is shown
to the right. Ideally the plates and the in between regions take the size of the hole and the
bar width at a prestrain state.

strain. It is important to note that all regions will not respond to the compressive stress at the

same time due to differences in stiffness (see Fig. 4.5). They respond only when the critical

stress of each region is attained. Once the critical stress of each region is reached, the layer

buckles out of plane in order to relieve of the compressive stress. The corresponding width

and depth of the undulations are controlled via controlling the UV/O3 treatment time as

well as the amount of the globally applied pre-strains.

4.3. Results and Discussion

4.3.1. Buckling Profiles as a Function of Treatment Time

The mechanical response of idealized inhomogeneous elastic sheet with different

layer (film) thickness and mechanical stiffness (Young’s modulus) was studied. The first

thing we have looked into was how the buckling profiles change as a function of exposure
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Figure 4.5. Typical laser scanning confocal microscopy images of unconnected plates (top
row) and connected plates (bottom row) under the same mechanical strains of 13.94%,
22.38% and 28.15%, respectively, from left to right). For each sample, the same spot is
scanned for three times under three different strains. Both the connected and unconnected
plates are treated for the same amount of treatment time of total 9 minutes.

time. To study this, arrays of masked PDMS samples were considered and exposed to

different exposure times ranging from 1 minutes - 8 minutes. Previous studies have also

shown that large exposure time increases not only the stiffness of the PDMS surface but

also the thickness of the silicate layer (SiOx) created [128]. Here, the dependence of the

buckling profiles (amplitude and wavelength) on the exposure time of UV/O3 and on the

pre-strain level have been systematically studied for continuous samples. The result shows

that both the wavelength and amplitude increase linearly as exposure time increases as

illustrated in Figs. 4.6. All the samples for this measurement were subjected to the same

global strain of 31%.

Next, the response of each region to variable applied strain have been explored

by exposing the sample to a fixed total UV/O3 exposure time of 9 minutes. Our results

indicate a clear difference between how the continuous regions (bulk and ring) and the

patterned regions respond to the applied compressive stress.
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Figure 4.6. Evolution of the buckling wavelength and amplitude as a function of various
ultraviolet/ozone (UV/O3) exposure time. As the exposure time is increased, the buckling
profiles increase.

4.3.2. Continuous Region

Continuous region refers to the bulk and ring regions. In a singly exposed sample,

out of the two regions, only the bulk region form uniform undulations when the pre-strain

is relaxed. Nothing happens to the ring area regardless of the magnitude of the compressive

stress imposed. This is because the ring region does not have an SiOx layer on its surface.

Hence, its surface remains as the initial elastomer as shown in the top row of Fig. 4.5.

When the sample is re-oxidized during a second exposure time, after the mask has been

removed, thinner layer of SiOx is created in the ring region. Moreover, the thickness of the

bulk region increases during the second exposure. When placed under compression, now

both the bulk and the ring regions respond to the compression (see the bottom row of Fig.

4.5). They form isotropic undulations under compressive stress. Under a small strain limit,

observing such uniform undulation is not surprising. What is more intriguing is that these

regions remain wrinkled even in the limit of our maximum global (and local) strains used

here, as illustrated in Fig. 4.7.
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Figure 4.7. 3D cross sectional view of the continuous regions (bulk (left) and ring (right))
of a sample under mechanical strains of (0,0)%, (21.5, 11.0)%, (24.9, 15.0)% and (28.2,
19.7) % from top to bottom, respectively). The numbers in the parenthesis represent the
global and local strains, respectively.

4.3.3. Patterned Region

The patterned region consists of plates and the in between plates regions. In a

small strain limit, the patterned region also responds to mechanical deformation similar

to the continuous region. That means, both the plates and the in between plates regions

form uniform undulations when low strain is applied. In the large strain limit, however,

the response of the patterned region gets more complicated. This is due, in part, to the

inhomogeneity of the sample’s stiffness. As the strain increases, there is a transition from

isotropic undulation to localization, a behavior that is never observed in the continuous

region over the strain range used in this experiment. To have a better understanding of

the response of the patterned region, the following questions must be answered: how is a

globally applied strain distributed across each region? how does each region respond to its

local strain?
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4.3.3.1. Unconnected Plates (Singly Exposed Sample)

Unconnected plates are part of the patterned region whose lateral dimensions are

confined by boundary conditions that arise due to the untreated soft regions of the PDMS

surfaces. Similar to the continuous region, such plates also show periodic undulation in low

strain limits. When the applied strain is increased, however, the uniform undulations slowly

transition to a single dominant localization, often at the middle of the plates, whose depth

increases at the cost of the neighboring wrinkles as indicated in the cross sectional view of

Fig. 4.8. To understand the response of the plates, it is essential to consider how a globally

applied strain is distributed in the patterned region. Since the patterned region is not a

homogeneous solid, strain should not be expected to be uniform. One way to quantify this

effect is through measuring strains locally. To this end, a 3D LSCM picture is taken before

every increment of the global strain and the width of the plates and the in between regions

are measured. As indicated in Fig. 4.9, the local strains measured for the unconnected

plates as well as the bulk regions are similar. Even though, these regions experience similar

local and global strains, their topographies are notably different (compare Figs. 4.7(left)

and 4.8(right)). In addition, we measured the amplitude of the crest that develops into a

dominant localization and the average wavelength as the global and local strains are varied

(Fig 4.10). The amplitude of the bulk region grows as a square root of strain (A ∼ ε
1/2),

as expected, with both global and local strains (see the top row of Fig 4.10). In contrast to

the bulk region, however, the amplitude of the plates grows monotonically (see the bottom

row of Fig 4.10) with the strains. In addition, when the wavelengths of the bulk and plates

are compared, we observe that they decrease with both global and local strains (see the top

left of Fig 4.10). More importantly, the different wavelengths collapse to a master curve

when plotted as a function of local strains implying that the small plates do not significantly

impact the wavelength (see the top right of Fig 4.10).
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Figure 4.8. Laser scanning confocal microscopy images of a sample with unconnected
plates (left column) and the corresponding 3D cross sectional view of a particular plate
(right column) under mechanical strains of (0,0)%, (21.5, 11.0)%, (24.9, 15.0)% and (28.2,
19.7) % from top to bottom, respectively). The numbers in the parenthesis represent the
global and local strains, respectively.

Figure 4.9. Local strains of all the four regions of a sample with unconnected plates as a
function of the global strain.

101



Figure 4.10. Variation of the wavelength of undulation and depth of the bulk region and
unconnected plate as a function of the corresponding global and local strains.

4.3.3.2. Connected Plates (Doubly Exposed Sample)

Our initial hypothesis of the reason why the two systems (bulk and isolated plates)

subjected to identical treatment conditions (treatment time, global and local strains, thick-

ness) respond differently was plate-size and boundary conditions. To further validate our

assumption, we have repeated another similar experiment where the boundary conditions

are changed through re-oxidizing a sample under identical treatment times. The plate

created in this way is termed as connected plates. In contrast to unconnected plates, the

boundary conditions of the connected plates arise due to small thickness oxide/silicate

layers formed by re-exposing the already treated sample with UV/O3 radiation after the

mask has been removed. The bottom row of Fig. 4.5 illustrates the confocal microscopy

images of a sample re-oxidized for the same amount of time as the unconnected plates

(9 minutes) and subjected to the same mechanical strains of 13.94%, 22.38% and 28.15%,

respectively, from left to right. Again, similar to the continuous region, the patterned region

also undergo uniform wrinkling for small strain limit and eventually evolves to localization
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Figure 4.11. Laser scanning confocal microscopy images of a sample with connected plates
(left column) and the corresponding 3D cross sectional view of a particular plate (right
column) under mechanical strains of (0, 0)%, (13.94, 11)%, (22.4 19.7)% and (28.15,
21.7)%, from top to bottom, respectively). The numbers in the parenthesis here represent
respectively the global dna local strains.

as the applied strain is increased. Unlike the localization observed in the unconnected

plates, however, the connected plates form two symmetric localizations as illustrated in

Fig. 4.11. This could be due to change in the boundary condition, otherwise, it would

have been similar to the morphology observed for the unconnected plates. This has an

implication that if the thickness of the in between region were the same as the plate, the

result would be a continuous sample which undergoes uniform undulations as described

in the continuous region. In the unconnected plates, the majority of the global strains

are absorbed by the "in between plates region" (softer region) and hence the plate will be

subjected only to reduced local strains only.

When the local strains of each region of the doubly exposed samples were mea-

sured, similar strain behavior as in the singly exposed samples was observed as the global

strain is increased. This is shown in Fig. 4.12. Despite the similarities in local strains of

the two regions, connected and unconnected plates, the response of the two regions are
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Figure 4.12. Illustration of how local strains of all the four regions of a sample with
connected plates evolve as a function of global strains.

not morphologically the same (compare Figs. 4.8 and 4.11). Furthermore, the buckling

amplitude and wavelength of the response were measured as a function of both global

and local strains. As the strain increases, the amplitude increases whereas the wavelength

decreases as illustrated in Fig. 4.13. The solid line in the amplitude is curve fits to the

square root of the corresponding strains. Plotting the different region’s wavelength as a

function of local strain collapses onto a master curve as shown in the top right of Fig. 4.13.

This collapse imply that each region moves proportionally (i.e. if one region shrinks more,

there will always be a region which shrinks less) when the global strain is applied.

Based on what has been observed in the previous sections, a phase map (state

diagram) is constructed for each regions change of states as in Fig. 4.14. As discussed

earlier, the transition of each region from unbuckled state to wrinkled requires a threshold

strain which vary for all the regions. The phase map clearly shows that the continuous

regions remain wrinkled, even under large compressions. However, the patterned regions

undergo both unbuckled to wrinkled and then wrinkled to localized states. Considering the
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Figure 4.13. Summary of buckling profiles of samples with connected plates: The top row
is wavelength as a function of global (left) and local (right) strains of each region whereas
the bottom row amplitudes of the same samples as a function of global and local strains.
The solid lines are curve fitting to square roots of the corresponding strains.

onset of wrinkling and localization, we observe that the "in between plates region" buckles

first, followed by the bulk, the plate and finally the ring region.

4.3.3.3. Simple Scaling: Spring Model

Previously, we have measured the buckling profiles and local strains of isolated

plates by exposing the plate boundaries to a fixed total exposure time. For a better

understanding of how the buckling profiles of isolated plates are affected by a change in

the boundary conditions, local strains of plates have been monitored (see Fig. 4.15). As

can be seen in the figure, the increase in local strain is directly proportional to the exposure

time of the boundary layers at a particular global strain. As the exposure time of the "in

between plates" region increases, the local strain of the plates also increases. This has an

implication that, the in between plates region is no more taking a large amount of global

strain as when it was softer. As a result, the plate gets large local strain as opposed to when
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Figure 4.14. State diagram depicting the onset of buckling as a function of global
strains.The symbols indicate: nothing happens (stars), wrinkles (circles) and localization
(triangles). Comparing how quickly each region localizes, we notice that the patterned
region undergoes localization as well whereas the continuous region remains wrinkled
within the range of strain applied ,30%.

the "in between plate" is soft to absorb a majority of the global strains. When the ratio of

local strains to the global strains is plotted as a function of the inverse of the exposure time

ratio of the plates to the in between plates region (i.e. the exposure time of the in between

plates to the total exposure time of the plates (9 min)), the data collapses to one master

curve, as shown in Fig. 4.17. In an effort to modeling the data, a simple system of two

springs connected in series is hypothesized.

The model consists of two springs having spring constants k1 and k2 representing,

respectively, the plate and the in between plates region. Initially, the springs are assumed

to have zero displacement and width of x1 and x2, and the total of x1 +x2. Once deformed,

the total length of the springs change as:

∆X = ∆x1 +∆x2. (4.4)
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Figure 4.15. Variation of local strain as a function of global strain of a connected plate as
oxidation time of the in between region increases. The ratio, R, denotes the ratio of the
total exposure time of the plates (9 minute) to the variable exposure time of the in between
plates region (1min-6min). The data shown in the inset indicate the collapse of the data in
the main panel when plotted as a function of R−1.

Multiplying each terms by 1 yields

X(∆X)

X
=

x1(∆x1)

x1
+

x2(∆x2)

x2
. (4.5)

With ∆X/X = εG, ∆X1/X1 = εL1
and ∆X2/X2 = εL2

where εG, εL1
and εL2

are, respectively,

the global strain, local strain of the plate and local strain of the in between regions, equation

4.5 becomes

εGX = εL1
x1 + εL2

x2. (4.6)

Under an assumption of small strain (Hook’s law ), the restoring forces are of the

form εL1
E1 = εL2E2 where the E1 and E2 are the modulus of each region. The equality of
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the forces here stems from the fact that two springs connected in series experience identical

forces. From this, εL2
= εL1E1/E2. Thus, equation 4.6 becomes,

εL1
εG

=
X

x1 + x2(E1/E2)
. (4.7)

As discussed earlier, large exposure time increases not only the layer thickness but also the

stiffnesses of the PDMS surface. In this context, assumptions have been made such that

E1 ∼ t1 and E2 ∼ t2 as the oxidation times of each region increases. Hence, equation 4.7

can be approximated as
εL1
εG

=
X

x1 + x2R
, (4.8)

where R ∼ t1/t2. When fitted to the data of Fig. 4.15, we get reasonable fit, especially

in the limits of large exposure times of the boundary regions as illustrated in the inset of

Fig. 4.17.

Figure 4.16. Schematics showing the different variables used in the two springs connected
in series to model a simple scaling relationship between local and global strains and the
ratio of the treatment time of the plates to the in between regions. The X’s are the values of
the pre-strain width of the plates and the in between regions.
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Figure 4.17. Illustration of the data in Fig. 4.15 where the inset is now fitted with equation
4.8, obtained from the simple model for εL1/εG as a function of R−1. It is important to
mention here that when the exposure time of the boundary is small, local strain of the
plate is small implying that the majority of the global strain goes to the in between soft
region than to the plate. In contrast, if the boundary is treated for a long time, the plate’s
local strain grows since the in between plate region is now stiffer to absorb as much global
strain.

4.3.4. Numerical Modeling

Many researchers have demonstrated the transition of uniform undulations to lo-

calizations of thin polymer films having homogeneous stiffness experimentally [93, 23],

numerically [28] and analytically [29]. These studies focused on considering thin films

that are bound to substrates such as elastic and fluid substrates and characterized how the

deformation profile height evolves under uniaxial stresses. These demonstrations provide a

great insight for systems with a uniform stiffness and in the limit of plate-sizes approaching

to infinity [28]. In fact, most recently, a group of researchers [89] have investigated

the response of a laterally confined thin elastic system lying on a fluid substrate and

subjected to mechanical deformation both numerically and analytically. They concluded

that localization can take place in a finite sheet as well; similar to the infinitely long system,

except that it takes place at a single spot in the confined sheets.
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In this section, we consider - following the notion of Diamant [29] - a series of

elastic sheets of plate-sizes ranging from a few micrometers to infinitely long sizes that

represent, respectively, the plates in the patterned and continuous regions described in the

previous sections. The aim is to numerically analyze the effect of plate sizes and boundary

conditions on the buckling profiles. To this end, consider a 2D plate of length L, width

w, bending modulus B and bound to an elastomer foundation with effective stiffness K.

The plate is created by curing the surface of a stretched PDMS using UV/O3. The two

parameters, K and B are related to the buckling wavelength as K ∼ Es/λ and B ∼ λ
3Es.

When the system is uniaxially compressed along x-axis by ∆, it deforms in the xy-plane.

However, this deformation costs energy. The overall energetic cost of the system comes

from plate bending, UB, substrate deformation, US, and the work of the external horizontal

force per unit length, P, as shown in Fig. 4.18. In this regard,

UB =
B
2

∫ L/2

−L/2
dsθ̇

2 (4.9)

where B is the bending stiffness of the plate and θ is the angle between a tangent line at a

given arc length and the x-axis as illustrated in Fig. 4.18. The dot denotes differentiation

with respect to the arc length s (note that the derivative of the angle with respect to arc

length gives the curvature). The foundation is assumed to consist of a large number of

elastic springs tied to the plate and anchored at infinity so that they remain normal to the

neutral axis of the plate as it deflects. The strain (stretching) energy stored in these springs

is then given exactly by the expression

Us =
K
2

∫ L/2

−L/2
dsh2

, (4.10)
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Figure 4.18. Schematic view of buckling of thin plate on an elastic foundation. The angle
θ gives the position of the tangent line as a function of arc length. The deflection profile is
expressed as h(s).

with K representing the substrate stiffness. The corresponding horizontal deflection, ∆, of

the axial load is given by

∆ =
∫ L/2

−L/2
ds(1− cosθ). (4.11)

From the geometry of the profile one can infer the relationship between deformation height

and slope angular profiles as ḣ(s) = sinθ(s).

The total potential energy of the system is then given as

U =UB +Us−P∆ (4.12)

which can further be rewritten with the help of the relation between the height and the angle

the tangent line makes with x axis at a particular arc length as

U =
∫ L/2

−L/2
ds

(
B
2

ḧ2

1− ḣ2 +
K
2

h2−P
(

1−
√

1− ḣ2
))

. (4.13)

In order to reduce equation 4.9 to h(s) dependence, the advantage of geometrical relation,

ḣ(s) = sinθ(s), is considered. Differentiating both sides with respect to the arc length

(ḧ(s) = cos(θ)θ̇(s)) and considering cos(θ) =
√

1− sin2
θ yield θ̇

2 = ḧ2/(1− ḣ2).
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Minimizing the functional in equation 4.13 with respect to h(s) and setting it equal

to zero (δU = 0) yields the deformation height profile, h(s), at equilibrium for a particular

compressional displacement, ∆. The result of the minimization gives

Khd3
+B
(

....
h d2

+4ḣḧ
...
h d + ḧ3d−4ḣ2ḧ3d +8ḣ2ḧ3

)
+Pḧd3/2

= 0, (4.14)

where d = 1− ḣ2. Rearranging equation 4.14 yields:

....
h =

4ḣ2ḧ3

1− ḣ2 −
(

K
B

)
h
(
1− ḣ2)− 4ḣḧ

...
h

1− ḣ2 −
ḧ3

1− ḣ2 −
8ḣ2ḧ3(

1− ḣ2)2 −
(

P
B

)
ḧ(

1− ḣ2)1/2 , (4.15)

After rewriting the fourth order differential equation in (4.15) as four systems of first

order differential equations (see Appendix A), it is possible to solve for the deformation

profile (h(s)) numerically by providing appropriate boundary conditions. In this regard,

four boundary conditions are required for both the continuous and patterned regions. The

boundary conditions used for the continuous systems were: h(−L) = h(L) = constant,

ḣ(−L) = ḣ(L) = 0. In the patterned regions, different boundary conditions were re-

quired for the connected and unconnected plates, as expected. For the connected plates:

h(−L/2) = constant, h(0) = h0, and ḣ(−L/2) = ḣ(0) = 0. Similarly, for the unconnected

plates: h(−L/2) = constant, h(0) = −h0, ḣ(0) = 0 and ḧ(−L/2) = 0. In both connected

and unconnected plates, the assumption that the profile is even (h(s) = h(−s)) as observed

in our experiment, is taken into account (i.e. the integration is made from -L/2 to 0

and followed by reflection due to symmetry). The constants and h0 are supplied from

experimental outcome.

In all the cases, there is remarkable agreement between the data obtained from

experiment and numerical modeling, especially in the low strain limit. As confinement
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Figure 4.19. Comparisons of the experimental (black) and numerical modeling (red) of the
deformation height profile, h(x), of the ring region and connected plate under mechanical
strains of 19.72%, 22.38% and 28.15%, respectively. Note the experimental and numerical
data are not matching for the bulk region (top right). That is because the L for the numerical
is set to a large number to account for the unbound plate for the bulk compared to the
experimental data which is constrained by the image size captured. The scale bar represents
20µm.

Figure 4.20. Comparisons of the experimental (black) and numerical modeling (red) of the
deformation height profile, h(x) of the bulk region and unconnected plate under mechanical
strains of 19.72%, 22.38% and 28.15%, respectively. Note that the experimental and
numerical data are not matching for the ring region (top right). That is because plate
length is set to a large number to account for the unbound plate for the ring compared
to the experimental data which is constrained by the image size captured. The scale bar
represents 20µm.

increases, the fitting starts to deviate for the connected plates. This might be due to the

broken symmetry in the localization of connected plate.

4.4. Summary

In this chapter, the mechanical response of idealized inhomogeneous elastic sheet

with patterned regions of different thicknesses and stiffnesses, to mechanical deformation

is studied. The idealized/patterned surface layers are created by selective ultraviolet/ozone
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(UV/O3) treatment of the top surface of polydimethylsiloxane (PDMS) using TEM grid

mask. By controlling the exposure time of the UVO, samples ranging from continuous

thin films to sets of isolated small plates were created. Large exposure time increases not

only the stiffness of the PDMS surface but also the thickness of the silicate layer (SiOx)

created. Our results indicate that the amplitude of the continuous regions (bulk and ring)

grow according to A∼ ε
1/2 while that of the plates, both connected and unconnected, show

monotonically increasing amplitudes, while no significant difference was observed in the

wavelengths of each region. Although uniform undulation occurs in both the continuous

and patterned regions, in the limit of small strains, high localization is observed only in

the confined small plates, as opposed to the continuous regions. For a better understanding

of how the buckling profiles of isolated plates are affected by a change in the boundary

conditions, local strains of plates have been monitored. A simple scaling model which

consists of two springs having spring constants k1 and k2 representing, respectively, the

plate and the in between plates have been developed which reasonably fit our experimental

observation, especially in the limits of large exposure times of the boundary regions. By

creating variable boundary conditions of the plates, the deformation height profile has also

been estimated through numerical modeling.
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5. THE BUCKLING OF COLLOIDAL LAYERS

5.1. Background

This chapter focuses on the responses of discrete systems (colloidal layers) to

mechanical deformations. Combined experimental methods and theoretical modeling

will be exploited for the better understanding of the responses. Experimentally, the

colloidal layers are made on a freshly cleaved mica from polystyrene and silica particles of

variable sizes (diameters ranging from 3nm-10µm) and transferred to an elastic substrate,

polydimethylsiloxane (PDMS) before subjected to a compressive stress. The buckling

profiles measured, when the system is under compression, demonstrate a great insight that

the continuum model may not be able to predict such discrete systems. Theoretically, a

granular model is constructed and structural stability analysis was investigated in both the

pre-buckling and post-buckling regimes in order to predict the experimental observations.

The agreement of the experimental and theoretical observations is remarkable. In the

following sections, a brief review of continuum model (in the limit of small strain), the

experimental methods, summary of the theoretical modeling, and the results found will be

presented.

5.1.1. Continuum Model

Continuum model, in this context, refers to the model developed to describe the

responses of continuum thin films to mechanical deformation [110]. In the continuum

model, as discussed in the previous chapters, a thin film bound to an elastic substrate

0The work in this chapter is done in collaboration with Antoinette Tordesillas and David Carey. Andrew
Croll and Bekele Gurmessa designed and conducted the experiment in close cooperation whereas the
numerical modeling was done independently by Antoinette Tordesillas and David Carey. The work in this
chapter is published in refs. [24, 116].
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undergoes an in-plane deformation until a threshold strain is attained when subjected to

compressive stress. As compression increases beyond the threshold, the film will buckle out

of plane forming a repetitive sinusoidal pattern (also known as surface wrinkling) [110, 20].

The mechanism behind the formation of periodic surface buckling instabilities lies in

the competition between bending energy of the thin film and stretching energy of the

foundation. Minimization of the total energy yields intermediate (critical) pattern spacing,

given as [110, 20, 63]

λc = 2πh(Ē f /3Ēs)
1/3

, (5.1)

where h is the film thickness and E f (s) is the reduced film (substrate) modulus; while the

buckling amplitude is given as

A = h(ε/εc−1)1/2
, (5.2)

with ε and εc being the applied strain and the threshold strain, respectively.

Many previous experimental studies have demonstrated that, once buckled out

of plane, the buckling wavelength and amplitude evolve as illustrated in Fig. 5.1 and

Fig. 5.2 [110, 20, 63]. As shown in Fig. 5.1, the sample remains flat at low strains

and then increases non-linearly beyond the critical strain. Similarly, the data in Fig. 5.2

demonstrate that the buckling wavelength increases monotonically with film thickness

while the modulus of the film remains unchanged for film thickness greater than ∼ 100nm.

These experimental observations were qualitatively predicted through the continuum mod-

els shown in equations 5.1 and 5.2. Specifically, the threshold wavelength of wrinkling is

directly proportional to the film thickness and the cubic root of the ratio of the elastic

moduli of the film and substrate, respectively whereas the buckling amplitude is not

explicitly dependent on material properties. The natural question that arises is whether

the continuum model can predict the buckling of a discrete system as well. Throughout
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this chapter, we are guided by the following questions: First, can a continuum model

really predict the response of a particle layer (discrete system)? Second, how would the

wavelength and amplitude of the buckling instability in the discrete system depend on the

size of the colloids, the modulus of the colloids, and the strain imposed on colloidal layers?

Third, is it possible to numerically model and predict the experimental observations?

Figure 5.1. Demonstration of AFM to detect both the critical strain for wrinkling as well
as the amplitude of the wrinkle pattern. a) AFM images showing the transition from a flat
film to a wrinkled surface as compressive strain is increased. b) Amplitude as a function
of applied strain, showing both the critical strain and the amplitude increasing non-linearly
with strain. Adapted by permission from [20], copyright (2011) Macmillan Publishers Ltd.
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Figure 5.2. Illustration of the wrinkling wavelength and stiffness of polystyrene film as a
function of film thickness. Adapted by permission from [20], copyright (2011) Macmillan
Publishers Ltd.

5.2. Experimental Procedures

5.2.1. Substrate Preparation

Elastic substrates were formed with a commercial two part polydimethylsiloxane

(PDMS) elastomer (Sylgard 184, Dow Corning) in different weight ratios. The cured

PDMS has fair adhesion to the colloidal particles and its modulus can be easily controlled

over several orders of magnitude by mixing various ratios of polymer and prepolymer.

After mixing, the PDMS is poured into a form such that many 1 cm ×8 cm ×0.5 cm

pieces were fabricated in each batch. Forms were placed in a vacuum oven, degassed, and

annealed at 70◦C for 1 hour and subsequently aged an additional 12 hours before use.

5.2.2. Formation of 2D Arrays of Colloidal Spheres

Two-dimensional colloidal monolayers were formed on freshly cleaved mica sub-

strates through a typical drop drying method from colloidal solutions created by mixing
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dry colloids with pure (Milli-Q) water [27]. Colloids shipped in water solution were used

as received. Occasionally, samples were cooled in a refrigerator in order to slow down the

water evaporation and crystal formation process. In order to make the two dimensional

layers, a drop or two of the colloidal suspension is dispensed on a clean, freshly cleaved

mica sheet and kept in a room temperature environment until all the water evaporate (at

least for about 24 hours). When water evaporates from the colloid suspension, the colloids

remain behind often making a hexagonally packed layer as shown in Fig. 5.3. The figure

shows snapshots of drying colloidal solutions at different times as captured by optical

microscope (a and b). After fully dried, the particle monolayer is transferred to a PDMS

substrate by light compression and imaged by a high resolution confocal microscopy as

shown in Fig. 5.3(c). The removal of the mica sheet during the transfer is aided by putting

a drop of milli-Q water at the PDMS/mica contact line. Once again, after transferred to

the PDMS substrate, the sample is allowed to dry at room temperature before mechanical

compression is imposed.

Figure 5.3. Snapshots of a drying 3.2µm monodispered polystyrene colloidal spheres at a)
early stage, b) intermediate stage and c) after fully dried as captured by optical microscopy
and confocal microscopy respectively. During the early and intermediate stages the colloids
are unstable and move around until the water is evaporated. After the water is fully
evaporated the colloids remain behind making nice hexagonally packed colloidal layers.
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5.2.3. Mechanics

Once transferred to a pre-strained PDMS as described in the previous subsection,

a home-made strain-stage is used to apply a compressive stress in the composite of the

film and substrate as indicated in Fig. 5.4. Fig. 5.4(a) shows a film made of colloids of

diameter 3.2µm loaded on to a pre-strained PDMS substrate mounted on a strain stage.

At this point, the sample is free from any strain and hence it remains a perfectly ordered,

hexagonally packed monolayer (see Fig. 5.4(b)). When the composite of the monolayer

and the soft foundation is compressed to a strain that exceeds a critical value, despite the

absence of bending energy, the layer responds by making a uniform undulation. This is

shown in Fig. 5.4(c) for the same sample as in part (b) but under a strain of 10.43%. In all

of the experimental measurements in this chapter, image acquisition is made through the

use of Olympus Flouview 1000 laser scanning confocal microscopy to trace the positions

of each particle in three dimensions that enabling the measurement of accurate peak-valley

(amplitude) and peak-peak (wavelength) positions.

Figure 5.4. a) Photograph of the mechanical strain stage used in these experiments. The
stage compression is driven by a motor (Left of image), and a PDMS substrate is shown
clamped into the stage. The highlighted region shows a typical sample. b) A Laser
Scanning Confocal Microscope (LSCM) image of an uncompressed monolayer particle
(radius R=1.6 µm polystyrene spheres). c) The same particle layer under a compressive
strain of 10.4%, showing out-of-plane buckling.
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5.3. Modeling

In order for forces to be transmitted from one particle to the next in a granular

materials, there must be contacts between the particles. Granular materials refer to

collections of macroscopic particles such as sand piles, which are visible to the naked

eye. Over the past few decades, researchers have observed that, when subjected to load, the

majority of particles in a granular material carry less than the average force [92, 131]. The

particles bearing forces less than the average load are termed ’the weak networks’. The

weak network particles surround and provide lateral stability to another group of particles

which form strong network of forces and carry above average load. The strong network of

forces are carried through chainlike particle groups referred to as force chains. Consider a

force chain model consisting of N+2 chains of identical spherical particles, each of radius

R. The chain of particles, here assumed to be bound to an elastic foundation, is subjected

to compressive force. Figure. 5.5(a) is a schematics of undeformed initial configuration

of a thin monolayer bound on a very thick elastic substrate. When subjected to uniaxial

compressive force, the particle layer will be constrained not only to the axially applied force

but also to the forces and moments stemming from the interactions between the particles.

As a consequence, the total potential energy stored in the buckled particle layer (see Fig.

5.5(b)) is described by the summation of energy contributions from: the lateral support of

the elastic foundation, the tangential (sliding) force between two neighboring particles, the

contact (rolling) moment that occur between two neighboring particles, and from the work

done by the applied axial load F . Mathematically, the total potential energy function for

the complete system is given as

V =
k f R2

2

N+1

∑
i=0

q2
i +

ks

2

N

∑
i=0

d2
i +

krR2

2

N

∑
i=0

ψ
2
i −F

N

∑
i=0

∆i, (5.3)
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Figure 5.5. Illustration of a) initial undeformed configuration of thin monolayer on a
very thick substrate (only top part depicted), showing particle chain in layer under axial
compression. b) Buckled configuration of chain showing adjacent particles i and i+ 1.
c) From top left in clockwise direction: particles i and i+ 1 in initial undeformed plane,
and spring resistances to relative particle displacement (sliding) in direction tangential to
the contact plane, vertical displacement from undeformed axis of chain (due to the elastic
foundation), and relative particle rotation (rolling), shown with relevant spring stiffness
parameters ks,k f ,kr, respectively.

where the stiffness parameters, k f ,ks,kr denote, respectively, 1.) the resistance to out of

plane deformation by the elastic foundation, 2.) the resistance to sliding (tangentially)

between the contact particles and 3.) the resistance to rolling (again tangentially) between

the contact particles as depicted schematically in Fig. 5.5(c). Furthermore, the tangentially

sliding distance, the rolling angle between consecutive particles (ith and (i+1)th) and the

axial compressional displacement (end-shortening) are denoted, respectively by

di = R
[

2arcsin
(

qi+1−qi

2

)
−ωi+1−ωi

]
, (5.4)

ψi = ωi+1−ωi, (5.5)
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∆i = 2R

1−

√
1−
(

qi+1−qi

2

)2
 . (5.6)

Figure 5.6. Depiction of the undeformed a) and deformed b) configurations of a force chain
showing the variables defined in equations 5.4, 5.5 and 5.6. Note that the measurement is
made with respect to the undeformed doted axis.

In order to determine the critical buckling wavelength (mode), the authors exploit

linear analysis approach. Notably, by performing the necessary substitutions and taking

first-order expressions for the arcsines in the sliding distance between adjacent particles,

di and the square roots in the axial compression displacement (end shortening) during

deformation, ∆i, shown in equations 5.4 and 5.6, the linearized potential function becomes:

Vlin =
1
2

k f R2
N+1

∑
i=0

q2
i +

1
2

krR2
N

∑
i=0

(ωi+1−ωi)
2
+

1
2

ksR2
N

∑
i=0

(qi+1−qi−ωi+1−ωi)
2

− 1
4

FR
N

∑
i=0

(qi+1−qi)
2 (5.7)

≡V (q0,q1, ...,qN+1,ω0,ω1, ...,ωN+1). (5.8)
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By introducing the unknown parameters qi and ωi as diagonalizing transformations or

Fourier modes (which produce a set of N orthogonal modes with wave number m and

amplitudes um and φm )

qi =
N+1

∑
m=0

um sin
(

imπ

N +1

)
, (5.9)

ωi =
N+1

∑
m=0

φm cos
(

imπ

N +1

)
, (5.10)

the linearized potential energy has been written in another form as a function of the modal

amplitudes um and φm:

W =W (u1, ...,uN ,φ0,φ1, ...,φN+1). (5.11)

Obtaining a diagonalized form of the potential function (W ) with N degrees of freedom by

providing appropriate boundary conditions (pin-ended boundary condition such that q0 = 0

and qN+1 = 0 which are satisfied by equation 5.9) allows for the elimination of u0 and uN+1

in equation 5.11. The second derivative of the diagonalized function (potential) with respect

to the modal amplitudes (um), results in N stability coefficients. The critical load, FC
m

was obtained by setting the stability coefficients to be zero from which the corresponding

characteristic buckling mode (mmin) and hence the wavelength (λ = 2(N +1)/mmin) were

obtained.

In order to further examine the behavior of buckling under the limit of large

strains (in the post buckling regime), the non-linearized potential function defined in

equation 5.3 was solved with AUTO (a non-linear-solver) [116]. As a result, the post

buckling configurations were determined. In the post buckling regime, the buckling profiles

(amplitude and wavelength) as a function of strain were calculated for a fixed stiffness

constants of (k f = ks = kr = 400) kN/m as opposed to the variable stiffnesses considered
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in the pre-buckling regime. The reason behind the choice of these stiffness constants to be

identical is that both the sliding and the rolling distances are not negligible as compared to

the vertical displacement (note that in the linear-analysis the spring constants for the contact

forces were bigger than that of the foundation; but here all are set to be the same.). This

value is chosen to be in the same order as the experimentally measured Young’s modulus.

5.4. Results and Discussion

Despite the absence of bending energy, the colloidal layers buckle out of plane,

forming a sinusoidal topography - a behavior typical of an elastic, continuum plate (see

Fig. 5.4(c)). In order to study the differences and similarities between how continuum and

discrete films respond to imposed compressive stress, we focus on measuring two emerging

length scales: the buckling wavelength and amplitude.

5.4.1. Buckling Wavelength

When subjected to a uniaxial stress, similar to the continuum system, the colloidal

particle layer also responds by making periodic patterns. A typical sample response under

compressional stress is shown as in Fig. 5.4(c). The figure shows a 3D laser scanning

confocal microscopy image of a sample under a compressive strain of 10.4%. From the

3D images, each particle is located in 3D space. The buckling wavelength is measured

from peak-to-peak of the buckled sample in the compression direction and is denoted by

λ . The data presented in Fig. 5.7(a) demonstrates the evolution of the wavelength of the

colloidal layer made of both silica and polystyrene particles as a function of the applied

strain. The buckling wavelength in all the samples considered here decrease monotonically

with increasing compression. Furthermore, colloidal layers made from colloids with larger

size not only have longer wavelength but also require larger applied strain in order to

buckle (see the left hand side of Fig. 5.7). This clearly shows that the different colloids
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have different onset of buckling strain, as expected. How are these buckling wavelengths

compared with the continuum model’s prediction ?

5.4.2. Comparison with Continuum Model

The buckling wavelengths presented in Fig. 5.7 (left) were obtained from the

responses of colloidal layers made from polystyrene and silica - particles with significantly

different material properties. When scaled by the particle size (diameter), however, the

data collapses to one master curve as indicated in Fig. 5.7 (right). It is important to note

that particles of significantly different modulus (polystyrene and silica) also collapse onto

one master curve. This phenomenon has an implication that the buckling wavelength in

the discrete system is independent of the modulus of the particles. In order to connect

this observation to the continuum system, an assumption that the modulus of a continuum

film is associated with the modulus of particles in the colloidal layer is considered. Under

this assumption, our observation (see Fig. 5.7 (right)) and the prediction of continuum

theory (λ ∼ E1/3
f (f denotes film)) are compared, which clearly show that there is no

agreement between the two. Another sign of the fact that continuum theory my not be

able to predict the discrete system appears when the buckling wavelength is plotted as

a function of Young’s modulus and the substrate modulus is varied. To this end, the

buckling wavelength of a set of particle layers bound to substrates which vary with an

order of magnitude have been measured. Our result indicates that the wavelength remains

essentially constant (see Fig.5.8). This result also reveals the fact that our observation

disagrees with the continuum theory’s prediction which states that the buckling wavelength

varies as λ ∼ E−1/3
s (s denotes substrate). Finally, when the buckling wavelength is plotted

as a function of the size (diameter) of each particle, the data collapses to a linear curve as

can be seen from Fig. 5.8 (right). This has an implication that the underlying mechanism

is granular (discrete such that the particles are undeformable ) in nature not continuum.
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Figure 5.7. Evolution of the buckling wavelength as measured for several particles (left)
and scaled by particle size (right) as a function of applied strain. When the average of
the normalized wavelengths in (right) is extrapolated to the zero strain limit, it yields a
value that corresponds to a normalized critical wavelength (5.3±0.4). Notice that the data
collapse to one master curve when scaled by the diameter of each colloid implying that the
wavelength is independent of the material properties like Young modulus of the colloids.

Figure 5.8. Critical wavelength (obtained by extrapolating the measured wavelengths to
zero strain) as a function of substrate modulus (left). It shows that the wavelength remains
the same, though the modulus is varied by an order of magnitude. Compare this with
λ ∼E−1/3

s as predicted by continuum theory. The figure to the right hand side is wavelength
as a function of 2R; an example showing the dependence of the buckling wavelength on
the radii of the colloidal particles at a particular applied compressive strain (12%); and has
a slope of 4).
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Figure 5.9. Model prediction of the variation of the buckling wavelength as a function of
particle diameter. The wavelength shows linear dependence on the particle size as shown
experimentally in Fig. 5.8. Adapted from [116].

A direct comparison of an experimental observation and a numerical modeling of

critical wavelength varying with the diameter of the particles are shown in Fig.5.8 (right)

and Fig.5.9. In order to measure the critical wavelength experimentally, a monolayer of

colloidal particles is considered. While varying the applied strain, we closely monitor the

response of the sample under a microscope. The critical wavelength is measured from a

micrograph captured when the sample buckles out of plane for the first time as it becomes

optically visible. On the other hand, the full potential function is differentiated twice to find

the critical buckling force from which a minimum buckling mode and critical wavelength

is found. As shown in the figure, the two have remarkable matching.

5.4.3. Buckling Amplitude

When performing buckling experiments, it is essential to give close attention to

the mode of deformation: elastic deformation or plastic deformation. In particular, when

dealing with significantly sensitive material systems like our thin films, it is possible that
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Figure 5.10. Model prediction of the critical buckling wavelength as a function of chain
length. The wavelength initially shows oscillation but rapidly decays as the chain length
increases implying the linear dependence of the particle size as shown experimentally in
Fig. 5.8 (right). Adapted from [116].

plastic deformation can take place easily. In this regard, we consider a strain loop (forward

and reverse) and measure the buckling wavelength and amplitude. When strain is increased

gradually, the resulting amplitudes and wavelengths of the colloidal layers take the form of

Fig. 5.11 (denoted by red color). Reversing the direction of the strain to zero or unloading

does not incur change in the peak-valley or spacing of the patterning as shown by the

overlapping data in Fig. 5.11; revealing the absence of hysteresis in the loading/unloading

deformation processes. This indicates that the deformation during the forward and reverse

loading in the buckling wavelength and amplitude is under purely elastic deformation, not

plastic deformation.
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Figure 5.11. Experimental results of a) amplitude b) wavelength as a function of the
forward and reverse direction of applied strain of 3.2µ of polystyrene sphere. There is
little effect of hysteresis loop in both cases. This observation has an implication that the
material is not undergoing plastic deformation in the range of our applied strain. Adapted
from [24].

Figure 5.12. Comparison between experimental observation and model predictions of the
buckling amplitude and wavelength of particle system. In our experiment, polystyrene
colloids of diameter 3.2µm were considered as shown in the forward strain loop where as
the model prediction was made for N+2 = 35 particles. Adapted from [116].
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5.4.4. Model Versus Experiment

Our experimental observations and theoretical predictions show good agreement

in capturing the essential features of investigated systems. Specifically, our experimental

observation of the collapsing threshold wavelength normalized by the size of the particles

illustrated in Fig. 5.7 (right) was verified through the numerical modeling conducted

independently by our collaborators (see Fig. 5.10). They used the physics of force chain

buckling as presented in detail in references [24, 116] and summarized above. The

result of the threshold buckling wavelength was calculated for variable stiffness constants

(k f = 400,ks = 1,100 and kr = 1,000)kN/m. These values were chosen based on the

fact that the relative slips and rotation of neighboring particles in the experiment were

assumed to be insignificant compared to the large vertical displacement implying that the

spring constants for the contact forces are large compared to the resistance of the lateral

foundation. As can be seen in Fig.5.10, there is good agreement of the threshold wavelength

with our experimental observation. It is noteworthy that the threshold wavelength, although

it oscillate for small chain lengths, rapidly approaches a finite value as the chain length

increases.

The monotonically increasing (decreasing) of the buckling amplitude (wavelength)

observed in our experimental measurements were also predicted to be in a reasonable

agreement with the numerical modeling. In contrast to the linear-regime, the buckling

profiles (amplitude and wavelength) plotted as a function of strain in Fig. 5.12 were

calculated for a fixed stiffness constant of (k f = ks = kr = 400) kN/m in the post-buckling

regimes. Although not perfectly matching, there is qualitative agreement between the

model and the experimental observation as presented in Fig. 5.12. The small deviation

observed between the experimental and numerically predicted amplitude is attributed to

the differences in the substrates used in the two approaches: experiment and model. In

the former, the substrate used is made from elastic continuum (PDMS) while in the later,
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it is made from discrete springs. As a result, the continuum substrate will drive down the

buckling amplitude more than the spring stiffness does.

5.5. Summary

In this chapter, the response of colloidal particle layers to mechanical deformation

was studied by a combination of experimental and theoretical methods. Experimentally,

micron scale colloidal particles bound to an elastic foundation were subjected to a uniaxial

stress. Beyond a threshold strain, the layer undergo out of plane buckling by forming

periodic undulations similar to wrinkling in the continuum system. As a result, several

observations have been made: 1.) the buckling wavelength is independent of the modulus

of the particles studied, 2.) the threshold buckling wavelength and the radius of the particles

are directly proportional and 3.) the threshold wavelength normalized to the size of the

particles relaxes to a finite value (λC/2R∼ 5.3±0.4) as the applied strain increases. These

observations provide great insights leading to the sign of failure of continuum theory to

predict discrete systems. Theoretically, a granular model of this system was considered. In

the model, structural stability analysis in both small and large stain limits were employed

to predict the results observed experimentally. Specifically, by considering the small

strain limit (linear-analysis), the threshold buckling wavelength observed experimentally

(λC/2R ∼ 5.3) has been remarkably predicted. On the other hand, by analyzing the large

strain limit (non-linear analysis to post-buckling regime), both the buckling wavelength and

amplitude evolutions as a function of increasing strain were also successfully predicted by

the model which again is qualitatively in fair agreement with the experimental observations.
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6. CONCLUSION

In this chapter, a brief summary of the entire thesis will be provided. This

thesis focused on understanding the response of nanoscale polymer films to mechanical

deformation. In order to realize this goal, surface elastic instability is exploited. An

elastic instability is useful in creating localized deformation in nanoscale films through

bending. Through the application of this method, we were able to: 1.) develop a novel

strategy for characterizing the response of nanoscale films to mechanical deformation, 2.)

investigate how microstructural orders in self-assembled block copolymers contribute to

yield strain, 3.) demonstrate how idealized, spatially non-homogeneous thin films respond

to mechanical deformation and 4.) show that continuum theory fails to predict the buckling

of discrete systems (colloidal particles).

In chapter 2, we developed a novel method of quantifying the strain at which a

nanoscale polymer film starts permanent deformation. For a bulk material, the conventional

method of measuring such deformation is through instron tensile/compression test. This

method is not applicable for nanoscale films for two main reasons: first, the tensile test

requires the test specimen to be in a bulk form in order to fit to the grips, and second,

the nanoscale films are so sensitive that they can break very easily during the process. In

our approach, the specimen is not required to be thick. Thus, even very delicate specimen

which is as thin as 10 nm, can be processed through the current approach due, in part, to

the support it gets from the substrate. The composite of film and substrate is subjected to

uniaxial compression until part of the film debonds from the substrate. After debonding, it

is possible to measure the width and height of the delamination of a micrograph through

optical sectioning of confocal microscopy. Finally, knowing the width and amplitude,

together with the thickness of the film, which can be measured using AFM, will enable

to measure the surface strain via Euler buckling theory. The yield strain for the onset of
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permanent deformation corresponding to the surface strain beyond which no permanent

deformation.

Next, using lessons from the technique we developed in the study of the response

of homopolymer to mechanical deformations, coupled with our quest to examine the

mechanical response of more complex material system, another experiment has been

designed to investigate how the onset of strain is affected by the microstructural orders

formed when block copolymers undergo the self-assembly processes. To this end, poly

(styrene-b-divinylpyridine) (PS-b-P2VP) has been chosen as our model material. Thin

films made from this block copolymer has the ability to self-assemble into well-aligned

lamellar domains parallel to the substrate if the total film thickness is commensurate with

the step height L0. For a better understanding of the response of such films to mechanical

deformation, we first studied how the individual blocks (PS and P2VP) constituting our

model material (PS-b-P2VP) respond to mechanical deformations followed by how both

the as cast and self-assembled films made from PS-b-P2VP respond. Poly(2-vinylpyridine)

(P2VP) shows similar behavior to the yield strain of PS films. Notably, both polymers

have flat yield strain in the bulk region and dramatically increase as confinement increases.

However, some differences exist between the yield strains measured for PS and the P2VP.

There is noticeable upward shift of the yield strain in P2VP as compared to PS. This has an

implication that thin films made from P2VP can stretch further before failure as compared

to PS films. Our measurements in the yield strains of both the as cast and ordered PS-b-

P2VP are also consistent with the yield strain of polystyrene we measured. The results are

significant in three aspects: 1.) the trend of the yield strain follows the same pattern as the

function of confinement (see Fig. 3.11), 2.) the up turning of the yield strains start nearly

at about the same film thicknesses (∼ 100 nm) and increases significantly with increasing

confinement, and 3.) the yield strain occurs at much lower strains, of the order of 0.1%.

In addition, self-assembled PS-b-P2VP films and films decorated with terraces (islands,
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holes and bi-continuous) show higher yield strain as compared to as cast PS-b-P2VP and

polystyrene films, suggesting that the microstructure significantly increase the failure strain

of the films. This implies that films with microstructural orders require high strain to break.

It is essential to emphasis here that such measurement has implications for many current

experimental investigations of the elastic properties of thin polymer films, particularly in

experiments attempting to probe the far from threshold elastic behavior.

The use of idealized/patterned surface layers created by selective ultraviolet/ozone

treatment of the top surface of polydimethylsiloxane (PDMS) using TEM grid mask was

a good approach to characterize the response of non-homogeneous system to mechanical

deformations. This approach creates variable strain fields in the materials. In this project,

by controlling the exposure time of UV/O3, we created samples ranging from continuous

thin films to sets of isolated small plates and observed that the continuous regions form

isotropic undulations upon compression, even beyond high strain where the patterned

regions localize, whereas the patterned films show much more complex behavior. For a

better understanding of how the buckling profiles of isolated plates are affected by a change

in the boundary conditions, we studied local strains of plates as the boundary condition

is changed. A simple scaling model have been developed by using the concept of two

springs connected in series. The ratio of local strain of a plate to the global strain is plotted

as a function of the exposure time of the "in between plates" which reasonably fit our

experimental observation, especially in the limits of large exposure times of the boundary

regions. In addition, the patterned regions provide interesting behavior in how the isolated

films can localize their strains as the applied strain increases. In order to understand this

behavior, an equilibrium shape of the deformation height profile was modeled numerically

by a simple model that made use of certain local boundary conditions. The agreement

between our experimental and numerical height profile is remarkable.

135



Finally, the responses of discrete systems (colloidal layers) to mechanical defor-

mations have been exploited in the last chapter. Here, a combined experimental methods

and theoretical modeling has been designed and used for the better understanding of the

responses. Experimentally, the colloidal layers were made on freshly cleaved mica from

polystyrene and silica particles of variable sizes (diameters ranging from 3nm-10µm) and

transferred to an elastic substrate, polydimethylsiloxane (PDMS) before subjected to a

compressive stress. The buckling profiles measured, when the system is under compres-

sion, demonstrate a great insight that the continuum model may not be able to predict

such discrete systems. Theoretically, a granular model was constructed and structural

stability analysis was investigated in both the pre-buckling and post-buckling regimes in

order to predict the experimental observations. Specifically, by considering the small

strain limit (linear-analysis), the threshold buckling wavelength observed experimentally

(λC/2R ∼ 5.3) has been remarkably predicted. On the other hand, by analyzing the large

strain limit (non-linear analysis to post-buckling regime), both the buckling wavelength and

amplitude evolutions as a function of increasing strain were also successfully predicted by

the model. The agreement of the experimental and theoretical observations was remarkable.
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