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ABSTRACT

Data mining and information retrieval are two difficult tasks for various reasons. First, as the

volume of data increases tremendously, most of the data are complex, large, imprecise, uncertain

or incomplete. Furthermore, information retrieval may be imprecise or subjective. Therefore,

comprehensible and understandable results are required bythe users during the process of data

mining or knowledge discovery. Fuzzy logic has become an active research area because its

capability of handling perceptual uncertainties, such as ambiguity or vagueness, and its excellent

ability on describing nonlinear system.

The study of this dissertation is focused on two main paradigms. The first paradigm focuses

on applying fuzzy inductive learning on classification problems. A fuzzy classifier based on

discrete particle swarm optimization and a fuzzy decision tree classifier are implemented in this

paradigm. The fuzzy classifier based on discrete particle swarm optimization includes a discrete

particle swarm optimization classifier and a fuzzy discreteparticle swarm optimization classifier.

The discrete particle swarm optimization classifier is devised and applied to discrete data. Whereas,

the fuzzy discrete particle swarm optimization classifier is an improved version that can handle

both discrete and continuous data to manage uncertainty andimprecision. A fuzzy decision tree

classifier with a feature selection method is proposed, which is based on the ideas of mutual

information and genetic algorithms.

The second paradigm is fuzzy cluster analysis. The purpose is to provide efficient approaches

to identify similar or dissimilar descriptions of data instances. The shapes of the clusters is either

hyper-spherical or hyper-planed. A fuzzy c-means clustering approach based on particle swarm

optimization, which clustering prototype is hyper-spherical, is proposed to automatically determine

the optimal number of clusters. In addition, a fuzzy c-regression model, which has hyper-planed

clusters, has received much attention in recent literaturefor nonlinear system identication and

has been successfully employed in various areas. Thus, a fuzzy c-regression model clustering

algorithm is applied for color image segmentation.
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1. INTRODUCTION

In this current information age, a tremendous expansion in the volume of data is seen that

is being generated and stored. It is possible to collect, store, transfer and combine huge amounts

of data at very low costs. However, only a small amount of the data has been used. It turns out

to be very difficult to exploit information in the data in an intelligent way. The primary reasons

includes the volumes of data are too large to manage, the datastructures are too complicated to be

analyzed and there is a lack of tools that can efficiently and effectively analyze and reveal valuable

knowledge that is hidden.

The need to understand large, complex, information-rich data sets is common to all fields

of studies. The objective of the field of knowledge discoveryand data mining is the discovery

of knowledge that is not only correct, but also comprehensible. This chapter briefly describes

the background to the research topics investigated in this dissertation, brief descriptions of the

background are introduced in Section 1.1-1.4. The motivation of the work is discussed in Section

1.5. The contributions of the work is listed in Section 1.6 and the structure of the dissertation is

described in Section 1.7.

1.1. Data Mining

Data mining is called exploratory data analysis, among other things. It is an analytic pro-

cess designed to explore data. Data mining aims to search forconsistent patterns or systematic

relationships between variables. It then validates the findings by applying the detected patterns to

new subsets of data [1]. It is a statistical analysis processwhich can identify the clusters along

with collection of data. Data mining can be achieved by classification, association, prediction,

sequential pattern, similar time sequences and clustering[2].

The data mining tasks can be classified as unsupervised or supervised learning. Unsupervised

learning focuses on finding patterns describing the data that can be interpreted. On the other hand,

supervised learning involves using some features or fields of the data set to predict unknown or

future values of interest.
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The two primary goals of data mining can be classified aspredictionanddescription[3].

Prediction involves using some features or fields of the data set to predict unknown or future

values of interest, whereasdescriptionfocuses on finding patterns describing the data that can

be interpreted by humans. Several data mining techniques using prediction and description have

emerged that include classification, clustering, regression, dependence modeling, etc.

The classification technique is used to discover a predictive learning function that classifies

a data item into several predefined classes. It is also known as supervised classification, whereby

given class labels are ordered to objects in the data collection. In general, classification approaches

use a training set in which all objects are already associated with their corresponding class labels.

The classification algorithm then learns from the training set data and builds a model. This model

is then used to classify unseen data and to assign a class label to each data item.

1.2. Swarm Intelligence

Swarm Intelligence (SI) is a field of computer science, whichis inspired by the behavior

of real swarms, flocks, insect colonies to design and study efficient computational methods for

solving problems [4]. Two main areas of swarm intelligence are Ant Colony Optimization (ACO)

and Particle Swarm Optimization (PSO). Ant colony optimization [5] is inspired by the real ants

finding shortest paths from their nest to the food sources. Ants mark their paths to the food sources

via a pheromone trail along their way. Other ants can be led tothe food source by the pheromone

traces.

The coordinated search of food for bird flocking can be modeled with simple rules for

information sharing between individuals of the swarm. Basedon the analogy of the behavior of

flocks of birds, Kennedy and Eberhart [6] developed a method for function optimization referred

to asparticle swarm optimization. A particle swarm optimization algorithm includes a population

of particles denoted as the swarm. Each individual is calleda particle that represents a location

in the problem space. Each particle starts at a random location with a velocity and searches for

the optimum of a given objective function by moving through the search space. The movements
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of each particle depends on its velocity and the positions where good solutions have already been

found by the particle, named as personal best, or by other particles in the swarm, called global best.

Particle swarm optimization is a population-based optimization tool which is mainly applied

to solve various function optimization problems. Compare toGenetic Algorithm (GA) and Simu-

lated Annealing (SA), the main strength of PSO is the fast convergence. Typically, each particle

keeps track of the coordinates in the search space, which areassociated with the personal best and

the global best it has found so far. In each iteration, the velocity of the PSO algorithm is changed

towards the personal and global best with some random component. Though the main use of PSO

is for continuous function optimization, an increasing number of works have investigated the use

of discrete PSO to be applied to more complex discrete problems.

1.3. Fuzzy Rule Classification

Rule discovery is an important classification method that hasbeen attracting a significant

amount of researchers in recent years. It uses a set of IF-THEN rules to classify a class or category

in a natural way. A rule consists of antecedents and a consequent. The antecedents of the rule

consist of a set of attribute values and the consequent of therule is the class which is predicted by

that rule.

One possible application of fuzzy logic in data mining is theinduction of fuzzy rules to

interpret the underlying data linguistically. Fuzzy logiccan improve the classification system by

using fuzzy sets to define overlapping class definitions [7].The interpretability of the results can

be improved and more insight into the classifier structure and decision making process is provided

by the application of fuzzy IF-THEN rules [8]. Fuzzy rules are linguistic IF-THEN constructs

that have the general form “IF A THEN C”, where A and C are collections of propositions and

postpositions containing linguistic variables. A is called the antecedent, and C is the consequent of

the rule. In effect, the tolerance for imprecision and uncertainty is exploited through granulation in

soft data compression by using linguistic variables and fuzzy IF-THEN rules [8]. In this respect,

fuzzy logic has the feature of mimicking the essential ability of the human mind to summarize data
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and focus on decision-relevant information. In a more explicit form, theith rule has the following

form:

IF xi1 ∈ Am
1 AND .. AND xij ∈ An

j THEN ci ∈ Ck
i (1.1)

wherexij denotes thejth attribute of theith rule. Am
j denotes themth antecedent value of thejth

attribute.ci is the consequent of theith rule.

1.3.1. Fuzzy Decision Tree

Decision Tree (DT) mining is one of the frequently used classification methods that specify

the sequences of decisions that need to be made accompanied by the resulting recommendation.

DT mining typically uses a top-down strategy, and the measure of information gain is used as a

“goodness” criterion. DTs are intrinsic multi-class learners that scale comparatively well, some-

times even outperforming other state-of-the-art methods especially when they are used as part of

an ensemble method [9, 10]. DTs are comprehensible and interpretable and can handle different

types of attributes (e.g., numerical and categorical) [11]. Popular methods of decision trees are ID3

[12], C4.5 [13] and CART [14], which generate a tree structure through recursively partitioning

the attribute space until the whole decision space is completely partitioned into a set of non-

overlapping subspaces [15], which is also called hard discretization. Soft discretization on the

other hand is when the decision space is partitioned into a set of overlapping subspaces. The

classical crisp discretization can cause low classification accuracy since it can not analyze noisy

data using crisp cut points. Furthermore, crisp discretization can lead to misclassification of new

objects, which are close to the separating boundary betweendecision classes [16].

Researchers have attempted to combine some elements of symbolic and sub-symbolic ap-

proaches to decision tree induction. The fuzzy approach is one of such extensions. Due to its

ability of handling vagueness, ambiguity and reduction of complexity, fuzzy logic [7],[8] has

been widely applied in dealing with problems of uncertainty, noise, and inexact data. A DT

induction method using fuzzy set theory, in other words, Fuzzy Decision Tree (FDT), is becoming
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an increasingly popular method to solve classification problems. FDT, like classical DT, uses the

top-down strategy. In order to find the best so called “cut-point”, FDT is based on soft discetization

and follows the DT run recursively on each partition until the best cut point is found.

1.4. Fuzzy Clustering

Clustering analysis is one of the popular approaches and has been widely used in data mining.

Clustering analysis is a process to identify groups or clusters based on some similarity measures.

Most clustering algorithms can be categorized into two popular techniques known as hierarchical

and partitional clustering. The output of the hierarchicalclustering is a tree showing a sequence

of clusters with each cluster being a partition of the data set. Hierarchical clustering does not

specify the number of clusters, and the output is independent of the initial condition. However,

the hierarchical clustering is static, i.e., the data points assigned to a cluster cannot be reassigned

to another cluster. In addition, hierarchical clustering will fail to separate overlapping clusters

due to the lack of information regarding the global shape or size of the clusters. On the other

hand, partitioned clustering requires a fixed number of clusters to be specified a priori. Objective

functions such as square error function are used as a criteria in the optimization process of the data

partitioning. Partitioned clustering uses an iterative process to optimize the cluster centers, as well

as the number of clusters. However, it is a challenge to find the “optimum” number of clusters

since it always requires prior knowledge about the data. Theadvantages of hierarchical algorithms

are the disadvantages of the partitional algorithms and vice versa.

The goal of clustering involves the task of dividing data points into homogeneous groups

such that the data points in the same group are as similar as possible and data points in different

groups are as dissimilar as possible [17, 2]. The importanceof clustering is documented in pattern

recognition [18], machine learning, image analysis [19], information retrieval, etc. Depending

on whether a data point belongs to a single cluster or severalclusters with different membership

degrees, clustering methods can be categorized as either hard clustering [20, 21] or fuzzy clustering

[22]. Each data point of the data set belongs to exactly one cluster in hard clustering. Fuzzy set
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theory which was proposed by Zadeh [7] in 1965 is used to describe the membership degrees in

fuzzy cluster analysis. Therefore, each data point of the data set belongs to two or more clusters

with a membership degree between 0 and 1. Due to the capacity of handling uncertainty and

vagueness, the potential of fuzzy clustering to reveal the underlying structures in data with regard

to similarities or dissimilarities among them can be exploited [23].

One of the widely used methods in fuzzy clustering is Fuzzy C-Means clustering (FCM)

[24]. The FCM method attempts to partition a data set into a collection of c fuzzy groups. It

finds a cluster center in each group such that the intra-distance within the group is minimized and

the inter-distance between each group is maximized. All of the fuzzy clustering methods that have

been applied recently mostly use an extension of the FCM algorithm. As we have discussed before,

partitional clustering suffers from the following two drawbacks:

• The number of clusters needs to be specified in advance. Furthermore, it requires prior

knowledge or ground truth of the data.

• In most cases, data points in overlapping areas can not be categorized correctly.

1.5. Motivation and Problem Statement

Fuzzy logic and fuzzy set theory which were proposed by Zadeh[7, 8], have been widely

used in pattern recognition and fuzzy reasoning. Fuzzy logic, which works with reasoning rules,

is very close to the human way of thinking. Unlike classical logic, fuzzy logic allows us to define

values without specifying a precise value, which is not possible in classical logic.

In addition, fuzzy set theory makes it possible that an object can belong to one or more

sets with a certain degree. The interpretations of membership degrees are in terms of similarity,

preference, and uncertainty. In other words, the use of membership degrees can state how similar

an object is to a prototypical one, indicate preferences between suboptimal solutions to a problem,

and model uncertainty about the true situation. Generally,fuzzy reasoning is close to human

reasoning. The solution obtained using fuzzy approaches are easy to understand and to apply.
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Specially, fuzzy systems are the method of choice when linguistic, vague, or imprecise information

has to be modeled.

As data is accumulated at an unimaginable rate from a very wide variety of sources, the

difficulty of efficient analysis of the large amount of data isgrowing. Data mining, which is a

part of the Knowledge Discovery in Databases, is one of the main solutions for this problem.

Soft computing [25] techniques such as fuzzy theory, soft set, evolutionary algorithms and neural

networks have been successfully applied to data mining. Soft computing uses hybridization of

several computing paradigms such as fuzzy logic, neural networks and genetic algorithm. Soft

computing is more suitable for real world problems due to itstolerance of imprecision and the

ability of solving real world problems in reasonably less time. Fuzzy logic, which is one of

the principal constituents of soft computing, provides a useful mechanism for data mining or

knowledge discovery.

The main motivation of this research can be summarized as follows.

1. Fuzzy rule-based classification is one of the most popularapproaches used for classification

problems. The key motivation for capturing data behavior inthe form of fuzzy rules is

that fuzzy rules are easy to understand, verify, and extend.The fuzzy rule-based system

is comprehensible because each fuzzy rule is linguistically interpretable. However, it is a

challenge to automatically generate fuzzy rules from the data. In order to keep the resulting

rule base small and comprehensible, both classification performance and interpretability are

important. For this purpose, a PSO algorithm is used to develop a fuzzy classifier in an

iterative approach.

2. Fuzzy Decision Trees enable the user to take into account imprecise description or het-

erogeneous values in data mining. The key feature of FDT is the interpretability. The

rules obtained by FDT make it easier for the user to interact with the system. FDT have

been extensively used in recent years. However, feature selection in FDT is very compu-
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tationally expensive since joint entropy has to be calculated requiring the estimation of the

joint probability distributions. In order to reduce the computational complexity, a variable

selection based on genetic algorithm is proposed to addressthe combinatorial checking of

the variables.

3. Contrary to fuzzy-ruled based classification and fuzzy decision tree methods, fuzzy cluster-

ing is an unsupervised learning technique. Unlike traditional clustering, a point is assigned

to a single cluster. The use of fuzzy set theory allows a pointto be assigned to two or

more clusters. The Fuzzy C-means algorithm is one of the popular methods applied in

fuzzy clustering. However, the number of clusters in fuzzy c-means needs to be specified

in advance. A clustering approach based on Particle Swarm Optimization that automatically

determines the optimal number of clusters is proposed.

4. Due to the variety and complexity of images, image segmentation is still a very challenging

research topic. Various techniques have been introduced for object segmentation and feature

extraction. Although fuzzy c-means can partition the fuzzyspace efficiently, it does not

take linearity of the divided data into consideration. In contrast, the fuzzy c-regression

model clustering algorithm with hyperplane-shaped cluster prototypes returns results that

have much more explanatory power, especially due to its multivariate nature. An unsuper-

vised approach using the fuzzy c-regression model is applied and proposed for color image

segmentation.

1.6. Contributions

This dissertation makes several contributions towards fuzzy logic and hybrid algorithms

combined with Particle Swarm Optimization, and Fuzzy Decision Tree in solving data classifi-

cation or clustering analysis problems. The contributionsare:

1. A Particle Swarm Optimization based discrete classification implementation with a local

search strategy (DPSO-LS) was devised and applied to discrete data. In addition, a fuzzy
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DPSO-LS (FDPSO-LS) classifier is proposed for both discreteand continuous data in order

to manage imprecision and uncertainty. Experimental results reveal that DPSO-LS and

FDPSO-LS outperform other classification methods in most cases based on rule size, True

Positive Rate (TPR), False Positive Rate (FPR), and precision, showing slightly improved

results for FDPSO-LS.

2. A Fuzzy Decision Tree (FDT) classifier that is based on softdiscretization was proposed

and applied on feature selection. However, the data contains many redundant or irrelevant

features. These features provide no useful information in any context. In order to improve

the model interpretability and enhance the generalization, a Genetic Algorithm (GA) based

feature selector is applied. The performance evaluation conducted has shown that our FDT

classifier obtains in some cases higher values than other decision tree and fuzzy decision tree

approaches based on measures such as true positive rate, false positive rate, precision and

area under the curve.

3. A clustering approach based on Particle Swarm Optimization is proposed. This approach au-

tomatically determines the optimal number of clusters using a threshold vector that is added

to the particle. The algorithm starts by partitioning the data set randomly within a preset

maximum number of clusters in order to overcome the fuzzy c-means shortcoming of the

predefined cluster count. A reconstruction criterion is applied to evaluate the performance of

the clustering results of the proposed algorithm. The experiments conducted show that the

proposed algorithm can automatically find the optimal number of clusters.

4. A Fuzzy C-Regression Model (FCRM) has been proposed whose prototype is hyper-planed

and can either be linear or nonlinear allowing for better cluster partitioning. Thus, this

chapter implements FCRM and applies the algorithm to color segmentation using Berkeley’s

segmentation database. The results show that FCRM obtains more accurate results compared

to other fuzzy clustering algorithms.
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1.7. Dissertation Overview

This dissertation is a paper-based version, where each chapter has been derived from papers

published during the Ph.D. work. This is an overview of the remaining chapters of this dissertation:

In Chapter 2, a fuzzy discrete particle swarm optimization classifier for rule classification is

discussed. This chapter is derived from the publications:

• Min Chenand Simone A. Ludwig, “A Fuzzy Discrete Particle Swarm Optimization Clas-

sifier for Rule Classification.”International Journal of Hybrid Intelligent Systems: Special

Issue on NaBIC 2012.

• Min Chenand Simone A. Ludwig, “Discrete Particle Swarm Optimization With Local Search

Strategy for Rule Classification.”Proceedings of the Fourth World Congress on Nature and

Biologically Inspired Computing (IEEE NaBIC’12), November 2012, Mexico City, Mexico.

In Chapter 3, a fuzzy decision tree using soft discretizationis proposed and a Gentic Algo-

rithm based feature selection method is discussed. This chapter is derived from the publication:

• Min Chen and Simone A. Ludwig, “Fuzzy Decision Tree using Soft Discretization and

a Genetic Algorithm based Feature Selection Method.”Proceedings of the Fifth World

Congress on Nature and Biologically Inspired Computing (IEEE NaBIC’13), August 2013,

Fargo, ND, USA.

In Chapter 4, a novel fuzzy clustering using automatic particle swarm optimization is pro-

posed and discussed. This chapter is derived from the publication:

• Min Chenand Simone Ludwig, “Particle Swarm Optimization based Fuzzy Clustering Ap-

proach to Identify Optimal Number of Clusters.”Journal of Artificial Intelligence and Soft

Computing Research, 2014.

In Chapter 5, fuzzy c-regression model clustering whose prototype is hyper-planed is applied

in color image segmentation using Berkeley’s segmentation database.
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• Min Chenand Simone A. Ludwig, “Color Image Segmentation Using Fuzzy C-Regression

Model.” Submitted to International Journal of Fuzzy Systems.
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2. A FUZZY DISCRETE PARTICLE SWARM OPTIMIZATION

CLASSIFIER FOR RULE CLASSIFICATION

The need to deduce interesting and valuable information from large, complex, information-

rich data sets is common to many research fields. Rule discovery or rule mining uses a set of

IF-THEN rules to classify a class or category in a comprehensible way. Besides the classical ap-

proaches, many rule mining approaches use biologically-inspired algorithms such as evolutionary

algorithms and swarm intelligence approaches. In this chapter, a Particle Swarm Optimization

based discrete classification implementation with a local search strategy (DPSO-LS) was devised

and applied to discrete data sets. In addition, a fuzzy DPSO-LS (FDPSO-LS) classifier is proposed

for both discrete and continuous data sets in order to manageimprecision and uncertainty. A

Pittsburgh approach based particle swarm optimization is adopted and applied in classification rule

mining.

The remainder of the chapter is arranged as follows. Section2.1 describes related work. The

proposed two approaches DPSO-LS and FDPSO-LS are introduced and described in Section 2.2.

The experimental setup and results of the two approaches aredemonstrated in Section 2.3. Finally,

conclusions and future work are discussed in Section 2.6.

2.1. Related Work

Related work in classification rule mining using biology-inspired algorithms mainly include

evolutionary algorithms and swarm intelligence approaches. Genetic algorithm based concept

learning uses either the Pittsburgh approach or the Michigan approach [26]. For the Pittsburgh

approach, every individual in the GA is a set of rules that represents a complete solution to the

learning problem. For the Michigan approach, each individual represents a single rule that provides

only a partial solution to the overall learning task.

Genetic algorithm based concept learning has been widely used for rule mining. In [26], a

genetic algorithm based algorithm is proposed to discover comprehensive IF-THEN rules. It uses

a flexible chromosome encoding where each chromosome corresponds to a classification rule. In
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addition, a hybrid decision tree/genetic algorithm is usedto discover small disjunct rules in [27].

A decision-tree algorithm is used to classify examples belonging to large disjuncts, while a new

genetic algorithm is designed for classifying examples belonging to small disjuncts.

Evolutionary approaches for automated discovery of censored production rules, augmented

production rules and comprehensible decision rules are introduced in [28, 29, 30], respectively.

The proposed GA-based approaches, similarly, use a flexiblechromosome encoding, where each

chromosome corresponds to an augmented production rule, a comprehensible decision rule or a

censored production rule. An Evolutionary MultiobjectiveOptimization (EMO) algorithm is used

to search for a large number of non-dominated fuzzy rule-based classifiers in [31].

With regards to swarm intelligence approaches, a classification algorithm called Ant-Miner,

first introduced in [32], has been successfully applied to rule classification problems. PSO is

another approach inspired by nature. However, most of the swarm intelligence algorithms for rule

classification are based on the Michigan approach ([33, 34]).

Related work in fuzzy classification rule mining using the biology-inspired algorithms mainly

include evolutionary algorithms and swarm intelligence approaches. GA is a popular evolutionary

algorithm, which has been employed for the learning of fuzzyrules. GAs have been applied to

learn both antecedent and consequent of fixed or varying number of fuzzy rules [35, 36, 37]. Also,

GAs have been combined with other techniques like neural networks [38], Kalman filters [39], hill

climbing [40], and fuzzy clustering [38]. EMO algorithms, which generate a family of equally

valid solutions, have been introduced in [41].

Ant Colony Optimization (ACO), one of the swarm intelligence techniques, has been suc-

cessfully used to extract rule based classification systems. In [42], ACO is used to extract fuzzy

IF-THEN rules for the diagnosis of diabetes. A combination of ACO and fuzzy set theory, named

FACO-Miner, is applied to learn a set of fuzzy rules from labeled data in a parallel manner in [43].

An improved ACO technique using fuzzy inference rules is applied to image classification and

analysis in [44].

13



With respect to PSO, a Pittsburgh-based PSO fuzzy system forknowledge acquisition is

introduced in [45]. A modified PSO, called Mutation PSO (MPSO), is built and used to obtain an

optimal fuzzy rule-base. The algorithm generated a compactfuzzy rule base that works efficiently

for medical diagnosis problems [46]. In [47], a case study ofintrusion detection using a PSO

approach for evolutionary fuzzy rule learning is proposed.It is capable of detecting known

intrusive behavior in a computer network with an acceptableperformance.

PSO has been proven to be able to achieve a faster convergencethan the GA algorithm [45].

It has been experimentally shown that the PSO algorithm scales well and is not highly sensitive to

the population size [45]. As far as the authors’ knowledge isconcerned, due to the lack of flexibility

of the Pittsburgh approach [48], the Pittsburgh-based PSO algorithm on rule classification is rarely

used in literature. On the other hand, in order to avoid premature convergence of particles, the

Michigan approach usually requires some changes in the definition of the PSO algorithm to repel

a particle from its neighbor [48]. In addition, the Michiganapproach aims to optimize each rule’s

quality individually, and does not take the interaction between other rules into account [33]. In [45],

the knowledge acquisition with a Pittsburgh-based swarm-intelligence approach is introduced.

A learning strategy of a fuzzy-rule-based meta-scheduler is analyzed and compared with other

scheduling strategies. In our study, similarly, we proposea Pittsburgh-based swarm-intelligence

method, however, we improve the classification by applying alocal strategy to address PSO’s

convergences problem. Furthermore, in order for the methodto handle imprecision and vagueness

in data sets fuzzy logic is employed.

2.2. Proposed Approaches

Two classifiers are proposed and investigated: a DPSO-LS classifier and a fuzzy DPSO-LS

classifier (abbreviated as FDPSO-LS). The DPSO-LS classifier is designed to classify discrete data

sets. As we have mentioned above, the use of linguistic variables and fuzzy IF-THEN rules exploits

the tolerance for imprecision and uncertainty. In this respect, we extend the DPSO-LS classifier

to a fuzzy DPSO-LS (FDPSO-LS) classifier, which can classifyboth discrete and continuous data
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sets. In this section, we first describe the DPSO-LS algorithm followed by a detailed description

of the FDPSO-LS classifier.

2.2.1. Discrete Particle Swarm Optimization with Local Strategy

PSO was introduced by Eberhart and Kennedy [6] and is based onthe analogy of the behavior

of flocks of birds or schools of fish. Although the PSO algorithm was proposed for continu-

ous space problems, however, many real-world data sets use categorical data, and therefore, we

considered this within our classification task formulation. In classical PSO, swarm individuals are

called particles, and the population is called the swarm. Each particle has its own position, velocity

and historical information. The particles fly through the search space by using their own as well as

their neighbors’ historical information to steer toward the local or global optima.

In particular, a discrete PSO approach (DPSO-LS) for the classification rule mining problem

is proposed. A Rule Base (RB) as a whole represents a ‘particle’. Each RB is denoted as a

matrix, where each row describes a classification rule. The rules are IF-THEN rules consisting of

conjunctive antecedents and one consequent. Hence, theith particle is presented as follows:

Pi =




ai1,1 ai1,2 ... ai1,n ci1

ai2,1 ai2,2 ... ai2,n ci2

... ... ... ... ...

aim,1 aim,2 ... aim,n cim




(2.1)

whereaimn represents thenth antecedent in themth rule of theith particle.cim is themth consequent

of the ith particle.m is the number of rules, andn is the number of antecedents. Thus, a particle

consists ofm rules, where each rule hasn antecedents and 1 consequent.

The values of every antecedent are enumerated consecutively starting from 1. In this work,

an antecedent has 3 discrete values, it will be enumerated as{1, 2, 3}. In this way, 0 means the

antecedent is ignored. Thus, a rule with all its antecedentshaving a value of 0 is not allowed. In
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addition, the constraints of the swarm position updating process need to be considered since the

particle might fly outside the solution space:

aij,k ∈ [0, NFin], j ∈ {1, 2, ...,m} (2.2)

k ∈ {1, 2, ..., n} (2.3)

cij ∈ [1, NFout] (2.4)

whereNFin andNFout represent the number of discrete values for an antecedent and a consequent,

respectively. Theith particle’s velocity matrix is denoted as follows:

Vi =




vi1,1 vi1,2 ... vi1,n vi1,n+1

vi2,1 vi2,2 ... vi2,n vi2,n+1

... ... ... ... ...

vim,1 vim,2 ... vim,n vim,n+1




(2.5)

wherevij,k ∈ [Vmin, Vmax], j ∈ {1, 2, ...,m}, and the velocity matrix has the same dimension as the

position matrix.Vmin andVmax are the minimum and maximum values allowed for the velocity,

respectively. More specifically, we use a change vector~Vi, which is the change vector for theith

particle with the same dimension as the velocity matrix.

~Vi =




v̂i1,1 v̂i1,2 ... v̂i1,n v̂i1,n+1

v̂i2,1 vi2,2 ... vi2,n vi2,n+1

... ... ... ... ...

v̂im,1 v̂im,2 ... v̂im,n v̂im,n+1




(2.6)

The values of~Vi are randomly assigned to 1, 2 and 3, where 1, 2 and 3 are denotedas three

directions. 1 is denoted as the direction of the particle’s movement from the current position to
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the local best position (Pbest). 2 is denoted as the direction of the particle’s movement from the

current position to the global best position (Gbest). 3 is denoted as the direction of the particle’s

movement from the current position to another position at random within a specified range. The

three directions are randomly assigned by following the ratiosω1, ω2, andω3 (ω1 < ω2 < ω3). As

shown in Equation 2.7, the sum of the ratios should be equal toone. By adopting the concept of

change vector, the velocity of the particle can be updated byconsidering the local best position,

global best position and random changes. Precisely, as shown in Equation 2.8, for theith particle,

V1(t) is the difference between the local best position and the current position, while~Vi consist of

1s, and the rest of the values in the matrix are set to 0. Similarly, V2(t) is the difference between the

global best position and the current position, while~Vi consist of 2s. Values ofV3(t) are randomly

assigned within a specified range (see Equation 2.9), while values of~Vi consist of 3s at the same

positions.⊕ denotes a matrix addition.

ω1 + ω2 + ω3 = 1 (2.7)

V (t+ 1) = V1(t)⊕ V2(t)⊕ V3(t) (2.8)

V3(t) ∈ [Vmin, Vmax] (2.9)

After the velocity has been calculated, the particle’s position can be computed as follows:

P (t+ 1) = P (t)⊕ V (t+ 1) (2.10)

2.2.2. Definition of Overall Fitness

We propose a rule selection method where the number of classification rules included in each

rule set is fixed to a predefined number. That is, each rule set with a specific number of rules (a
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rule base) is a particle. Thus, the overall fitness function of the rule set can be defined as follows:

F (S) = Accuracy(Coverage) =
NCP (S)

|S| (2.11)

whereNCP (S) is the number of instances that have been correctly classified in the data setS, and

|S| is the number of instances in the data setS.

2.2.3. Local Mutation Strategy

Since PSO, in general, can easily get stuck in local optima, alocal strategy need to be devised

that is run after a certain number of iterations has elapsed.In particular, the local strategy that was

devised for DPSO-LS makes use of mutation. The proposed local strategy refines the worst rule of

the best rule base, i.e., the global best position, in order to improve the overall performance every

20 iterations. Thus, for each selected worst rule, we mutateone value of the antecedent randomly

within the constraints to see whether it improves the overall performance or not. If it improves

the performance, we stop and replace the worst rule with the new rule. Otherwise, we continue

mutating randomly until we have found a new rule or until we have mutated a maximum of 10

times.

The equation to measure the quality of every rule uses the Laplace-corrected precision [33]

equation, which is given as:

f =
1 + TP

1 + TP + FP
(2.12)

whereTP is the number of True Positives, andFP is the number of False Positives. The equation

is also used to prune the rules for which thef value is less than 0.1.

2.2.4. DPSO-LS Classifier

The proposed algorithm includes four main phases: data preprocessing phase, training phase,

DPSO phase and testing phase. As shown in Figure 1, the DPSO-LS classifier includes all the solid

rectangles and excludes the red dashed rectangles (these are only used for FDPSO-LS). The four

phases are described respectively as follows.
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Figure 1. Processes of DPSO-LS based classifiers.

1. Data Preprocessing Phase

In this phase, firstly, we need to remove instances that have unknown values since the

proposed system cannot handle these values. It is also knownthat the proposed system can

only handle numerical data, if the class labels are non-numerical data, we convert it into

numeric values. Then, the data set is randomly partitioned into 10 folds. 9 folds of the data

is training data, which is used in the training phase, and 1 fold of the data is testing data,

which is used in the testing phase.

2. DPSO-LS Phase

In this phase, the swarm is initialized. The velocity and position of each particle in the

swarm are calculated.GBest andPbest as described above are calculated, and their values
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are updated after the velocity and position have been updated accordingly. A local strategy

is applied every 20 iterations. If the stopping criterion has not been met,Gbest andPbest

are forwarded to the training phase to calculate the overallfitness (see Equation 2.11), and

individual fitness (see Equation 2.12). The DPSO-LS is stopped when the maximum number

of iterations is met. The finalGbest is forwarded to the testing phase.

3. Training Phase

A rule base which is forwarded by the DPSO-LS phase is used to classify the train-

ing data set. The overall fitness and individual fitness are calculated accordingly and are

forwarded to the DPSO-LS.

4. Testing Phase

The finalGbest forwarded by the DPSO-LS phase is used to classify the testing data set,

and the experimental measures are calculated.

2.2.5. FDPSO-LS Classifier

A modified classifier, called fuzzy DPSO-LS classifier (FDPSO-LS), is implemented for both

discrete and continuous data sets. A fuzzy partition with a simple fuzzy grid is adopted. Fuzzy

set theory and the concept of linguistic variables, which were proposed by Zadeh [7, 8], have been

widely used in pattern recognition and fuzzy reasoning. Theuse of the simple fuzzy partition

method on classification rule discovery has been introducedin [37]. Applications on the fuzzy rule

generation for control problems were proposed in [49]. Moreover, several fuzzy approaches for

partitioning a pattern space were discussed in [50, 51].

Specially, an example of using the simple fuzzy partition method is showing in Figure 2,

each attribute can be partitioned into three linguistic terms (denoted as L = low, M = medium, H =

high). Triangular membership functions are used for the linguistic terms. In the proposed method,

each linguistic term is viewed as a candidate 1-dimension fuzzy grid. Considering a two-class
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classification problem as in Figure 2, two antecedents with three membership functions can be

partitioned into 9 grids on a 2-dimension plane. The closed circles and open circles denote the

pattern in class 1 and class 2, respectively.

Figure 2. An example of fuzzy partition.

However, in the case of ann-dimensional classification problem, where each dimensionhas

m linguistic terms, the possible number of rules ismn. As the number of rules rises, an efficient

algorithm that can automatically find the fuzzy rules is important and necessary.

Normally, several rules of the rule base are fired in the fuzzyrule classification system. The

predicted class for a given instance is determined by the membership degree of the input variables.
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Specifically, for each classk,

βClass k= argmax
k

∑

1≤i≤n

∏

1≤j≤m

µij (2.13)

whereµij is the input membership degree of theith rule of thejth antecedent. The class that has

the largestβ value is selected as the predicted class. Moreover, unlike the DPSO-LS classifier, the

rule that has the smallestβ value is chosen as the worst rule.

As shown in Figure 1, FDPSO-LS has similar processes as DPSO-LS, however, all the

rectangles are used. The four main phases of data preprocessing, training, DPSO-LS and testing

are similar to DPSO-LS. In the data preprocessing phase, besides the removal of unknown values

and data partitioning processes, a data normalization process is used to normalize continuous data.

Each column of the data set is normalized between 0 and 1 usingEquation 2.14:

Xi =
Xi −Xmin

Xmax −Xmin

(2.14)

whereXi is theith value of the column.Xmin is the minimum value of the column, andXmax is

the maximum value of the column. The data set is partitioned into 10 folds. 9 folds of the data are

used as the training data set, and the remainder is used as thetest data set for the implementation.

The DPSO-LS phase is the same as for the DPSO-LS classifier. However, in the training

and testing phases, a fuzzy inference process is added for the fuzzy reasoning process. The Fuzzy

Inference System (FIS) is a popular computing system based on the concepts of fuzzy set theory,

fuzzy if-then rules, and fuzzy reasoning. It has been successfully applied to a wide variety of

fields, such as automatic control, data classification, expert systems, decision analysis, etc. Due to

its multidisciplinary nature, FIS is known by numerous other names. However, we only concentrate

on the concept of the fuzzy IF-THEN rules.

The basic structure of a fuzzy inference process consists ofthree modules: fuzzification,

fuzzy rule base and inference, and defuzzification. As shownin Figure 3, a crisp input is taken,
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the fuzzification module coverts the crisp input into a fuzzyinput using the fuzzy set theory. In the

second module, fuzzy rules are contained in a rule base and a reasoning mechanism that performs

the inference procedure is included. Finally, a method of defuzzification to extract a crisp output

that represents a fuzzy set is needed by the third module. Dueto the way outputs are determined,

there are two types of inference systems: Mamdani and Sugeno. Mamdani’s fuzzy inference

system was among the first control systems built using fuzzy set theory, which was proposed

in 1975 by Ebrahim Mamdani [52]. Sugeno, or Takagi-Sugeno-Kang, was introduced in 1985

[53]. It is similar to the Mamdani method in many respects, however, the main difference between

Mamdani and Sugeno is that the Sugeno output membership functions are either linear or constant.

In this approach, only the Mamdani style of defuzzification is considered.

Figure 3. Fuzzy inference process.

2.3. Experiments and Results

As mentioned above, the experiments are conducted for threeapproaches: DPSO (with-

out local strategy), DPSO-LS and FDPSO-LS. The experimental setup for both approaches are

described in the following subsection followed by the description of the experimental results of

23



both approaches. The results of DPSO-LS and FDPSO-LS are listed, respectively, followed by a

comparison.

2.3.1. Experimental Setup

The experiments of the two approaches are conducted on a number of data sets taken from

the UCI repository [54]. The experiments of the two approaches are evaluated on an ASUS desktop

(Intel(R) Dual Core I3 CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. All measurements of

the two approaches are tested 10 times using 10-fold cross validation [60]. Each data set is divided

into 10 random partitions. Nine partitions of the data set are used as the training data, and one

partition is selected as the test data.

2.3.2. Results of the DPSO-LS Approach

As far as the performance evaluation is concerned for the proposed DPSO-LS algorithm, a

comparison with other rule classification algorithms JRip, PART and decision tree algorithm J48 is

performed. These three algorithms have been implemented inWEKA (Waikato Environment for

Knowledge Analysis) [60]. The algorithms are summarized asfollows:

• JRip is a RIPPER rule learning algorithm [55]. JRip is based on association rules with re-

duced error pruning (REP), and integrates reduced error pruning with a separate-and-conquer

strategy. It is a very common and effective technique found in decision tree algorithms.

• PART is created by Frank and Witten [56] for a partial decision tree. PART combines the

separate-and-conquer strategy of RIPPER with the decision tree. It works by building a rule

and removing its cover until all the instances are covered.

• J48 is a decision tree implementation induced by the C4.5 algorithm, which is developed by

Quinlan [13]. It learns decision trees for the given data by constructing them in a top-down

way.

Table 1 shows the parameters and their values used for our DPSO, DPSO-LS and FDPSO-LS

algorithms. Usually, a large swarm size requires less iterations to reach convergence in PSO. In
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Table 1. Parameters and their values of the DPSO and DPSO-LS algorithms.

Parameters Values
Swarm Size 25

Maximum Iteration 100
(ω1, ω2, ω3) (0.2, 0.3, 0.5)
[Vmin, Vmax] [-1, 1]

our proposed algorithm, the swarm size is chosen as 25, and the maximum number of iterations for

each run is set to 100. The description of the selected data sets used are summarized in terms of

number of attributes, number of instances and number of classes as shown in Table 2. The 6 data

sets are listed alphabetically, where data setBreast-LandBreast-Ware abbreviations forLjubljana

Breast CancerandWisconsin Breast Cancer, respectively.

Table 2. Data sets used for the experiments.

Data Set Attributes Instances Classes
Balance-scale 4 625 3

Breast-L 9 286 2
Breast-W 9 699 2

Car 6 1728 4
Lymphography 18 146 4

Tic-Tac-Toe 9 958 2

Measured are the rule size, the weighted average True Positive Rates (TPRs) and False

Positive Rates (FPRs), as well as the precision.

As we mentioned before, the DPSO can easily get stuck in localoptima. In order to see the

performance improvements of the local strategy, we compareDPSO (without local strategy) with

DPSO-LS (with local strategy) by running them 10 times for 100 iterations each. The average

accuracy of the 10 runs is listed in Table 3. A corresponding two-tailed Student’s t-test with a

significance level of5% is applied. The results show that the proposed DPSO-LS can achieve

better accuracy in all cases. However, DPSO-LS only shows significant improvements in 3 of 6

cases.

25



Table 3. Average accuracy of DPSO and DPSO-LS for 100 iterations.

Data Set DPSO (%) DPSO-LS (%) Significance
Balance-scale 77.27± 3.72 83.39± 3.20 Yes

Breast-L 82.57± 2.63 86.71± 1.07 Yes
Breast-W 91.43± 4.25 94.20± 4.30 No

Car 94.92± 5.06 97.30± 4.40 No
Lymphography 76.23± 3.51 80.10± 3.60 Yes

Tic-Tac-Toe 100.00± 0.00 100.00± 0.00 No

In Figure 4, we see the accuracy of DPSO-LS compared to DPSO, JRip, PART and J48.

Error bars are shown on the histograms of the DPSO-LS and DPSO(for the other algorithms,

no variants were reported since they are not captured by WEKA). In most cases, the DPSO-LS

algorithm has a higher accuracy. Although the Breast-W data set does not show better results, the

values of the other four algorithms are very close.
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Figure 4. Accuracy of all algorithms.

For all rule mining algorithms it is necessary to test the average rule set size to indicate the

complexity of the rule set produced by each algorithm. Table4 lists the size of the rule set required

for DPSO, DPSO-LS, JRip, PART, and J48. As shown in the table, the JRip algorithm always

requires the least number of rules, while the PART algorithmrequires the most number of rules.

J48 uses by far the most number of rules with the exception of the Breast-L data set. The number
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of rules for the proposed DPSO-LS algorithm is less than the PART algorithm. Both DPSO-LS

and DPSO show comparable results in terms of rule size.

Table 4. Average rule size of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 12 47 52 26.01±3.10 24.70±2.66

Breast-L 3 20 4 15.25±4.50 17.00±3.50
Breast-W 6 10 14 6.05±3.01 7.13±2.08

Car 49 68 131 43.20±5.20 44.18±4.17
Lymphography 6 13 21 11.15±2.50 9.40±3.06

Tic-Tac-Toe 9 49 95 35.3±3.76 38.80±1.70

Table 5 lists the average weighted TPR, which is also referredto as sensitivity. As shown

in the table, the proposed algorithm, DPSO-LS, scores better than DPSO, JRip, PART and J48 in

terms of sensitivity.

Table 5. Average weighted TPRs (%) of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 80.8 87.5 76.6 80.20±3.12 87.40±2.30

Breast-L 71.0 71.3 75.5 81.80±2.22 89.50±3.70
Breast-W 95.4 93.8 94.6 92.36±4.30 97.27±2.10

Car 86.5 95.8 92.4 93.50±3.10 98.84±1.33
Lymphography 77.7 76.4 77.0 73.30±3.26 80.50±4.40

Tic-Tac-Toe 97.8 94.3 84.6100.00±0.00 100.00±0.00

The weighted average FRPs, which represent1-Specificity, are listed in Table 6. The FPRs

of DPSO-LS are less than the other algorithms except for the Lymphography data set.

The weighted average precision values are compared in Table7. The precision of the DPSO-

LS is always better than DPSO, JRip, PART and J48, showing the largest improvement on the

Breast-L data set.
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Table 6. Average weighted FPRs (%) of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 16.4 9.7 17.3 15.01±3.25 8.70±2.20

Breast-L 48.9 54.2 52.4 25.80±4.30 16.00±7.20
Breast-W 4.4 8.0 6.4 1.20±0.18 0.50±0.01

Car 6.4 1.6 5.6 5.27±2.30 1.04±0.05
Lymphography 21.6 21 18.7 30.11±5.60 22.00±3.40

Tic-Tac-Toe 3.10 7.6 19.1 0.00±0.00 0.00±0.00

Table 7. Average weighted precision (%) of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 74.5 83.3 73.2 79.95±3.80 85.40±3.20

Breast-L 68.8 68.2 75.2 83.16±3.30 89.50±3.60
Breast-W 95.5 93.8 94.6 92.35±4.10 96.59±2.15

Car 88.1 95.9 92.4 93.76±3.30 99.10±1.20
Lymphography 76.5 76.6 77.6 71.31±5.12 78.57±5.80

Tic-Tac-Toe 97.8 94.2 84.6100.00±0.00 100.00±0.00

2.4. Comparison and Results of DPSO-LS and FDPSO-LS for Discrete Data Sets

In order to compare the performance of DPSP-LS and FDPSO-LS on discrete data sets, a

corresponding two-tailed Student’s t-test with a significance level of5% is applied. As shown in

Table 8, only 2 of the 5 data sets show significant improvements.

Table 8. Average accuracy of DPSO-LS and FDPSO-LS for 100 iterations.

Data Set DPSO-LS (%) FDPSO-LS (%) Significance
Balance-scale 77.27± 3.72 77.13± 2.50 No

Breast-L 82.57± 2.63 86.71± 1.07 Yes
Breast-W 91.43± 4.25 93.20± 2.30 No

Car 94.92± 5.06 97.30± 4.40 No
Lymphography 76.23± 3.51 80.10± 3.60 Yes

In Figure 5, we see the average accuracy of the DPSO-LS compared to FDPSO-LS. Error

bars are shown on the histograms of both the proposed algorithms. In most cases, the proposed
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FDPSO-LS algorithm has a higher accuracy. Besides the Balance-scale data set, FDPSO-LS

achieves better results for the other four data sets.

Figure 5. Accuracy comparison of DPSO-LS and FDPSO-LS.

In Table 9, the average rule size of DPSO-LS and FDPSO-LS is compared. FDPSO-LS

requires less number of rules than DPSO-LS due to the usage ofthe linguistic variables.

Table 9. Average rule size of DPSO-LS and FDPSO-LS for 10 runs.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 24.70± 2.66 7.12± 2.10

Breast-L 17.00± 3.50 10.24± 3.07
Breast-W 7.13± 2.08 7.08± 2.30

Car 44.18± 4.17 14.12± 4.40
Lymphography 9.40± 3.06 5.60± 3.60

Table 10 shows the average weighted TPR of DPSO and FDPSO-LS.FDPSO-LS does not

show improvements compared to DPSO-LS for discrete data sets. FDPSO-LS scores slightly better

on 2 out of 5 data sets.

As shown in Table 11, FDPSO-LS has a smaller FPRs in most cases except for the Car data

set.

In terms of average weighted precision, FDPSO-LS does not show improvements compared

to DPSO-LS on the discrete data sets except for Lymphographyas shown in Table 12.
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Table 10. Average weighted TPRs of DPSO-LS and FDPSO-LS for 10runs.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 87.40± 2.30 88.13± 3.12

Breast-L 89.50± 3.70 86.71± 2.70
Breast-W 97.27± 2.10 95.7± 2.30

Car 98.84± 1.33 93.80± 3.45
Lymphography 80.50± 4.40 83.80± 2.60

Table 11. Average weighted FPRs of DPSO-LS and FDPSO-LS for 10runs.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 8.70± 2.20 1.65± 2.80

Breast-L 16.00± 7.20 7.42± 1.07
Breast-W 5.00± 1.20 4.10± 2.23

Car 1.04± 0.05 5.80± 2.18
Lymphography 22.00± 3.4 16.50± 2.34

Overall, with respect to discrete data sets, FDPSO-LS does not significant good improve-

ments in most cases. One reason is that it does not efficientlynormalize discrete data sets using

liguistic terms. Usually, it causes overfitting and decreases the accuracy. For example, for the

Balance-scale data set each attribute has either 3 or 4 discrete values, and FDPSO-LS uses 3

membership functions. When we normalize the attribute values into 3 membership function, the

data does not partition well for the attributes having smalldiscrete values.

2.5. Results of FDPSO-LS Approach for Continuous Data Set

As far as the performance evaluation for the proposed FDPSO-LS is concerned, a comparison

with other rule classification algorithm FURIA is performed.FURIA is short for Fuzzy Unordered

Rule Induction Algorithm which extends the well-known RIPPERalgorithm [57]. FURIA learns

unordered fuzzy rule sets instead of rule lists. It includesa number of modifications and extensions

to deal with uncovered examples.
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Table 12. Average weighted precision of DPSO-LS and FDPSO-LS for 10 runs.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 85.40± 3.20 82.10± 2.50

Breast-L 89.50± 3.60 85.71± 3.32
Breast-W 96.59± 2.15 96.70± 4.30

Car 99.10± 1.20 97.30± 2.40
Lymphography 78.57± 5.80 82.80± 3.41

The description of the selected data sets used are summarized in terms of number of at-

tributes, number of instances, and number of classes as shown in Table 13. The 5 data sets are

listed alphabetically.

Table 13. Datasets used for the proposed fuzzy rule-based system using DPSO-LS.

Data Set Attributes Instances Classes
Breast-W 9 699 2

Glass 10 214 7
Haberman’s Survival 3 306 2

Iris 4 150 3
Pima Indians Diabetes 8 768 2

Measured are also the rule size evolved, the weighted average TPRs and FPRs, as well as the

precision.

In order to observe the performance, we compared FURIA with FDPSO-LS by running both

algorithms 10 times for 100 iterations each. The average accuracy of the 10 runs is listed in Table

14. The corresponding two-tailed Student’s t-test with a significance level of5% was applied. The

results show that the proposed FDPSO-LS can achieve better accuracy in most cases except for the

glass data set. However, FDPSO-LS only shows significant improvements for 2 of the 5 data sets.

In Figure 6, we see the average accuracy of the proposed FDPSO-LS compared to FURIA.

Error bars are shown on the histograms of the proposed FDPSO-LS. For most data sets, the

proposed FDPSO-LS algorithm has a higher accuracy. Besides,for the glass data set FDPSO-

LS obtains higher accuracy for the other data sets.
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Table 14. Average accuracy of FURIA and FDPSO-LS for 100 iterations.

Data Set FURIA (%) FDPSO-LS (%) Significance
Breast-W 94.71 95.20±1.30 No

Glass 70.56 69.70±2.20 No
Haberman’s Survival 72.55 75.02±2.40 Yes

Iris 94.67 95.56±1.70 No
Pima Indians Diabetes 74.48 80.60±2.30 Yes
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Figure 6. Accuracy comparison of the proposed FDPSO-LS and FURIA.

Table 15 lists the size of the rule set required for FDPSO-LS and FURIA. As shown in the

table, the number of rules for the proposed FDPSO-LS is less than for the FURIA algorithm for

most data sets. The reason is that the proposed FDPSO-LS reduces the rule size since it uses the

local strategy. The values after± are standard deviations of the corresponding results.

Table 16 lists the average weighted True Positive Rates (TPRs), which are also referred to as

sensitivity. As shown in the table, the proposed algorithm,FDPSO-LS, scores better than FURIA

for most data sets in terms of sensitivity except for the Glass data set.

The weighted average FPRs, which represent1-Specificity, are listed in Table 17. The FPRs

of the proposed FDPSO-LS are less than FURIA, which indicatesthat FURIA has a higher false

positive rate.
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Table 15. Average rule size of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 15 7.12±2.10

Glass 16 9.40±3.20
Haberman’s Survival 4 7.20±2.40

Iris 5 4.00±1.70
Pima Indians Diabetes 5 7.70±2.30

Table 16. Average weighted TPRs of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 94.7 95.20±2.13

Glass 70.6 69.50±3.21
Haberman’s Survival 72.5 78.10±2.72

Iris 94.7 94.74±2.33
Pima Indians Diabetes 74.5 81.20±3.11

The weighted average precision values are compared in Table18. The precision of FDPSO-

LS is always better than FURIA, showing the largest improvement on the Haberman’s Survival

and Pima Indians Diabetes data sets.

2.6. Summary

In this study, we have proposed two classifiers: DPSO-LS and FDPSO-LS. Both classifiers

are based on the proposed DPSO-LS algorithm, which uses a rule base to represent a ‘particle’

that evolves the rule base over time. DPSO-LS is implementedas a matrix of rules, representing

IF-THEN classification rules, that have conjunctive antecedents and one consequent. In addition, a

local mutation search strategy was incorporated in order totake care of the premature convergence

of PSO. The DPSO-LS classifier was applied on discrete data sets based on the IF-THEN classifi-

cation rules, while the FDPSO-LS is based on the concept of fuzzy IF-THEN rules and is applied

to both discrete and continuous data sets.

Experiments were conducted using 6 discrete data sets and 5 continuous data sets that are

taken from the UCI repository. Our DPSO-LS algorithm was compared against DPSO, JRip,
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Table 17. Average weighted FPRs of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 6.7 4.70±3.23

Glass 13.1 7.80±3.81
Haberman’s Survival 57.3 33.80±5.20

Iris 2.7 2.58±1.20
Pima Indians Diabetes 36.7 23.30±3.70

Table 18. Average weighted precision of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 94.7 96.70±2.70

Glass 70.5 70.10±3.20
Haberman’s Survival 69 .0 77.80±3.13

Iris 94.7 95.10±2.40
Pima Indians Diabetes 73.7 80.23±3.61

PART and J48. In addition, FDPSO-LS was compared against FURIA. Measures used were rule

size, TPRs, FPRs, and precision. The experimental results revealed that DPSO-LS achieves better

performance for most data sets than FPSO-LS applied to discrete data sets. On the other hand,

FDPSO-LS obtains better performance when applied to continuous data sets compared to FURIA.
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3. FUZZY DECISION TREE USING SOFT DISCRETIZATION AND A

GENETIC ALGORITHM BASED FEATURE SELECTION METHOD

In data mining, decision tree learning is an approach that uses a decision tree as a predic-

tive model mapping observations to conclusions. The fuzzy extension of decision tree learning

adopts the definition of soft discretization. Many studies have shown that decision tree learning

can benefit from the soft discretization method leading to improved predictive accuracy. This

chapter implements a Fuzzy Decision Tree (FDT) classifier that is based on soft discretization by

identifying the best “cut-point”. The selection of important features of a data set is a very important

preprocessing task in order to obtain higher accuracy of theclassifier as well as to speed up the

learning task. Therefore, we are applying a feature selection method that is based on the ideas of

mutual information and genetic algorithms. The performance evaluation conducted has shown that

our FDT classifier obtains in some cases higher values than other decision tree and fuzzy decision

tree approaches based on measures such as true positive rate, false positive rate, precision and area

under the curve.

The contribution of this chapter is arranged as follows. Section 3.1 describes related work.

The proposed approach is introduced and described in Section 3.2. The experimental setup and

results are demonstrated in Section 3.3. Finally, conclusions and future work are discussed in

Section 3.4.

3.1. Related Work

Related work regarding the classification task in the area of data mining include neural

networks, naive Bayes classification, decision tree, genetic algorithm, etc. [58]. Neural networks

have become equally popular to decision trees due to its relative ease of application and abilities to

provide gradual improvements [59]. Neural networks are seen as data driven self-adaptive meth-

ods, which can adjust themselves to the data without any explicit specification of the underlying

model [60]. However, neural networks lack similar levels ofcomprehensibility as decision trees,

which is a problem when users want to understand or justify the decisions [59].
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Naive Bayes learning is one particular strategy belonging tothe category of learning meth-

ods. It is a statistical method for classification, which is based on applying the Bayes’ theorem with

the naive independence assumption [61]. Naive Bayes learning has been deployed in numerous

classification tasks due to its simplicity, effectiveness and incremental training ability. Naive

Bayes classifiers have widespread deployment in medical diagnosis [62], email filtering [63], and

recommender systems [64, 65]. Due to the independence assumption of Naive Bayes, a large

amount of research has been conducted on relaxing the Naive Bayes independence assumption in

machine learning. However, learning the tree structure is not trivial especially in the area of text

classification [66].

With respect to fuzzy decision trees applied to classification tasks, fuzzy decision trees have

been applied in the medical and financial fields [59], and havebeen used for ranking tasks [11], etc.

Fuzzy decision tree induction follows the same steps as thatof when building a classical decision

tree. [67] proposed a novel criterion on measurement of cognitive uncertainty, and [68] proposed

an alternative criterion based on fuzzy mutual entropy in the possibility domain.

Related work related to feature selection has shown that manysearch approaches have been

proposed. [69] aggressively reduce the document vocabulary in a naive Bayes model and a decision

tree approach using an information measure. A normalized mutual information feature selection

(NMIFS) [70] is proposed as a measure of redundancy among features. Two feature evaluation

metrics for the naive Bayes classifier have been applied on multi-class text data sets in [71].

Three new approaches to fuzzy-rough feature selection based on fuzzy similarity relation have

been proposed in [72] to provide robust solutions and advanced tools for data analysis.

In general, feature selection can improve the scalability,efficiency and accuracy of classi-

fiers. Therefore, our FDT approach makes use of a feature selection technique.

3.2. Fuzzy Decision Tree Classifier

The main difference between classical DT and FDT is using crisp or soft discretization

respectively. The classical DT uses crisp discretization while fuzzy decision tree is based on soft
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discretization. The decision space is partitioned into a set of non-overlapping subspaces using the

crisp discretization method. For soft discretiztion, the decision space is partitioned into a set of

overlapping subspaces. For both classical and fuzzy decision trees, each path from the root node to

a leaf node represents a classification rule. In a more explicit form, theith branch has the following

form:

IF xi1 ∈ Am
1 AND .. AND xij ∈ An

j THEN ci ∈ Ck
i (3.1)

wherexij denotes thejth attribute of theith branch.Am
j denotes themth antecedent value of the

jth attribute.ci is the consequent of theith rule.

The fuzzy decision tree has been extended in the possibilitydomain based on fuzzy set theory

[70]. A fuzzy setF is characterized by a membership functionF (a) : U → [0, 1]. F (a) is the

membership degree ofF taking a valuea ∈ U . LetV = {F1, F2, ..., Fm} be a family of fuzzy sets

of U . Then
m∑

i=1

Fi(a) = 1, ∀a ∈ U (3.2)

The cut-point is determined by the fuzzy set pairA1 andA2 such thatA1(a) + A2(a) = 1.

The fuzzy class entropy in a data setS is:

E(S) =
k∑

j=1

p(cj, S) log p(cj, S) (3.3)

wherep(cj, S) =
∑

ai∈cj(A1(ai) + As(ai)) is the fuzzy proportion of examples inS. The class

information entropy is calculated by the probability of fuzzy partition as follows:

E(S) =
NS1

NS
E(S1) +

NS2

NS
E(S2) (3.4)

E(Si) = −
k∑

j=1

p(cj, Si) log p(cj, Si), i = 1, 2 (3.5)
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p(cj, Si) =
NSicj

NSi
, i = 1, 2 (3.6)

whereNS =
∑|S|

n=1

∑2
i=1 Ai(an), NSi =

∑|S|
n=1 Ai(an), i = 1, 2.

A fuzzy discretization process mainly includes four phases(seen in Figure 7): sorting, eval-

uation, splitting and stopping. Since we are also considering feature selection as a preprocessing

step, it is the step to be performed before the other four phases are started.

Figure 7. A fuzzy discretization process.

3.2.1. Preprocessing Phase

Feature selection is a common technique in data mining in order to reduce the overall feature

set that is provided to the algorithm choosing the most important features to be used for the training

of the classifier. However, not only does the reduction of features contribute to a faster learning
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process, but it usually also improves the classification accuracy. For the feature selection task,

methods from information theory are frequently used. Feature selection involves the maximization

of the mutual information between features and the class label. However, this procedure is very

computationally expensive since the joint entropy has to becalculated requiring the estimation

of the joint probability distributions. In order to reduce the computational complexity, a variable

selection based on the principle of minimum-redundancy/maximum-relevance, which maximizes

the mutual information indirectly was proposed in [73]. However, since all possible combinations

of variables need to be checked, there is still a large computational portion involved, thus, a simple

method of incremental search, that obtains sub-optimal solutions has been proposed by previous

work [74]. The use of a genetic algorithm was proposed to address the combinatorial checking of

the variables, which our FTD classifier has adopted.

Algorithm 1 GA-based Feature Selection Method

Input: number of features
Input: feature vector
Input: class vector
Output: selected feature vector
genmax: maximum number of generations
Npop: population size
calculate entropy of each feature
calculate output entropy
calculate mutual information between feature and output
calculate mutual information between features
random initialization of population
for gen = 1 : genmax do

for index = 1 : Npop do
calculate maximum relevance
calculate minimum redundancy
calculate fitness by subtracting max. relevance from min. redundancy

end for
rank population according to their fitness
perform crossover
remove repeated features and features withentropy = 0

end for
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Algorithm 1 shows the steps involved in the feature selection process. The inputs are the

number of features of the data set, feature vector, and classvector. The output is a vector of

selected features. The first steps of the algorithm are the calculation of the entropy of each feature

vector and the class vector, as well as the calculation of themutual information between the feature

and class vectors and between the features. Once these values are calculated the GA process can

start by setting up a population of randomly initialized chromosomes. The first generation can

begin. While iterating over the population, the maximum relevance, minimum redundancy and

fitness value are calculated for each chromosome. Afterwards the population is ranked, crossover

is performed, and repeated features and features with an entropy of 0 are removed and another

generation is started. This process proceeds until the maximum number of generations is reached.

The feature vector found is the one used for the next steps in our proposed FDT approach.

1. Sorting Phase

The continuous values of a feature are sorted in either ascending or descending order.

This task can be computationally expensive if care is not taken when considering the sorting

algorithm. Quick-sort is one efficient sorting algorithm, which has a time complexity of

O(NlogN) [75].

2. Evaluation Phase

The next step after sorting is to find the best “cut-point”, which can split a range of

continuous values into two parts. In the proposed algorithm, the evaluation function used is

as given by Equation 3.4.

3. Splitting Phase

The intervals are split in a top-down strategy, which requires to evaluate “cut-points”. In

order to choose the best one and split the range of continuousvalues into two partitions, the

algorithm runs recursively for each part until a stopping criterion is satisfied.
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4. Stopping Phase

A stopping criterion specifies when the discretization process is stopped. Specifically, a

threshold valueθ ∈ [0.1, 0.2] is predefined. If the truth level of a branchN
S1

NS is greater than

θ, then the truth level of the branch belonging to thejth class is calculated as follows:

δi,j =

∑
ak∈cj Ai(ak)

NSi
, i = 1, 2 (3.7)

Another predefined maximum value ofδ calledµ ∈ [0.8, 0.9] is used as the stopping crite-

rion. If the maximumδ value is greater thanµ, the corresponding branch search is termi-

nated.

Generally, a FDT classifier starts by sorting the continuousvalues of a feature. It

then generates a possible candidate “cut-point”, and fuzzifies the “cut-point”. It uses an

entropy evaluation function to check whether the candidate’s “cut-point” is satisfied or not.

It recursively keeps checking until the best “cut-point” isfound, and repeats to generate the

soft discretization for the other attributes. When all attributes have been soft discretized, the

attribute of minimum value will be selected to generate two child branches and nodes. This

process repeats until the stopping criterion is met.

3.3. Experiments and Results

In order to investigate the performance of our FDT approach,experiments are conducted

comparing the effect of using all features of five chosen datasets, or using the preprocessing step

that reduces the feature set with the GA-based feature selection method as described earlier. The

experimental setup is described in the following subsection followed by the experimental results.

3.3.1. Experimental Setup

The experiments of all algorithms are conducted on a number of data sets taken from the

UCI repository [54]. The experiments of FDT are run on an ASUS desktop (Intel(R) Dual Core I3
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CPU @3.07 GHz, 3.07 GHz) of Java Version 1.6.0.25. A few data mining algorithms are used for

comparison provided by the Weka software (version 3.7.8). All experiments use the 10-fold cross

validation [60] technique. Each data set is divided into 10 partitions. Nine partitions of the data set

are used as training data and one partition is selected as test data.

3.3.2. Experimental Results

In order to compare our FDT classifier, two DT classifiers J48 and REPTree, and a fuzzy rule

classification algorithm FURIA were chosen. The algorithms are summarized as follows:

• J48 is a decision tree implementation induced by the C4.5 algorithm, which is developed by

Quinlan [13]. It learns decision trees for the given data by constructing them in a top-down

way.

• REPTree stands for Reduced Error Pruning Tree [60], which is a fast decision tree im-

plementation that builds a decision tree using informationgain as the splitting criterion. It

adopts a reduced-error pruning using top-down strategy. Ituses the C4.5 method to deal with

missing values and only sorts values of numeric attributes once.

• FURIA is short for Fuzzy Unordered Rule Induction Algorithm, whichextends the well-

known RIPPER algorithm [57]. FURIA learns unordered fuzzy rule sets instead of rule lists.

It includes a number of modifications and extensions to deal with uncovered examples.

Table 19. GA parameters of GA-based feature selection method.

Parameter Values
Population size 200×# of selected features

Maximum iteration 80
Selection Elitism

Crossover rate 1

Table 19 shows the parameters and their values used for FDT with the GA-based feature

selection. For the proposed algorithm, the population sizeis chosen as the product of 200 and
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number of selected features, and the maximum number of iterations is set to 80. An elitist selection

strategy is selected and the crossover rate is set to 1.

The description of the selected data sets used are summarized in terms of number of at-

tributes, number of instances and number of classes as shownin Table 20. The 5 data sets are

listed alphabetically. The values in brackets under the columnFeaturesis the reduced number of

features after the selection process is applied.

Table 20. Datasets used for experiments.

Data Set Features Instances Classes
Diabetes 8 (4) 768 2

Glass 10 (8) 214 7
Ionosphere 34 (18) 351 2
Pendigits 16 (9) 10992 10
Vehicle 18 (7) 946 4

Measured are the weighted average true positive rate (FPR) and the false positive rate (TPR),

as well as the precision. Experiments were run using the datasets as listed above on all algorithms,

first without the feature selection stage meaning that all features were used, and the second time

using the reduced feature set as determined by the GA-based feature selection method. All results

reported in the tables are reported by a number indicating all features were used from the data sets,

and the second value in brackets are results when the algorithms are run with the reduced feature

set. The values in bold are the best values comparing the results for with/without the GA-based

feature selection method.

In Table 21, the average weighted true positive rates (TPR) ofall algorithms are measured.

As shown in the table, FURIA and FDT using soft discretizationalways score better than the clas-

sical DT techniques, J48 and REPTree that use hard discretization. In addition, FDT with/without

the GA-based feature selection method scores slightly better than FURIA on most data sets.
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Table 21. Average weighted TPR (%) of all algorithms.

Data Set J48 REPTree FURIA FDT
Diabetes 73.8 (74.9) 75.3 (72.8) 74.5 (75.1) 76.2(76.8)

Glass 66.8 (71.5) 66.4 (69.2) 70.6(74.8) 70.6(75.1)
Ionosphere 91.5 (91.7) 89.5 (90.6) 91.2 (89.5) 91.6(91.9)
Pendigits 96.6 (93.9) 95.6 (92.9) 98.0(94.5) 96.8 (93.4)
Vehicle 72.5 (68.3) 72.3 (66.7) 70.6 (70.2) 72.6(72.1)

The average weighted false positive rate (FPR) is tabulated in Table 22. FURIA and FDT

achieve better results (smaller values) than J48 and REPTree. Furthermore, FDT scores slightly

better than FURIA in most of the cases.

Table 22. Average weighted FPR (%) of all algorithms.

Data Set J48 REPTree FURIA FDT
Diabetes 32.7 (32.3) 32.8 (34.8) 35.7 (36.2) 31.9(31.3)

Glass 13.0 (10.4) 13.8 (12.3) 13.1 (11.1) 12.4(10.2)
Ionosphere 12.5 (11.6) 13.2 (11.9) 12.3 (14.3) 11.9(11.2)
Pendigits 0.4 (0.7) 0.5 (0.9) 0.2 (0.6) 0.4 (0.8)
Vehicle 9.3 (10.7) 9.3 (10.2) 9.8 (11.1) 9.2 (10.1)

With respect to the average weighted precision (see Table 23), FURIA and FDT obtain better

results than J48 and REPTree. In most cases, FDT scored slightly better than FURIA.

Table 23. Average weighted precision (%) of all algorithms.

Data Set J48 REPTree FURIA FDT
Diabetes 73.5 (74.4) 74.7 (72.3) 73.7 (74.4) 75.7(76.5)

Glass 67.0 (71.5) 65.8 (69.0) 70.5(72.1) 68.5 (70.3)
Ionosphere 91.5 (91.8) 89.4 (90.6) 91.2 (89.4) 91.6 (91.8)
Pendigits 96.6 (93.9) 95.6 (92.3) 98.0(94.8) 96.8 (94.1)
Vehicle 72.2 (67.9) 71.1 (68.3) 68.8 (63.9) 73.8(71.2)

AUC is the area under the ROC curve. ROC stands for “Receiver Operation Characteristic”

which is part of a field called “Signal Detection Theory” developed during World War II for the

analysis of radar images [76]. Two different methods are used to calculate the AUC. J48, REPTree
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and FURIA use a parametric method using a maximum likelihood estimation to fit a smooth curve

to the data points since these algorithms are part of the WEKA software. Our FDT classifier

uses a non-parametric method based on the construction of a trapezoid under the curve as an

approximation of the area. In order to compare the performance of using the GA-based feature

selection method, the AUC of all the algorithms with/without the feature selection are measured.

J48-P, REPTree-P, FURIA-P and FDT-P are abbreviations for thealgorithms using the feature

selection preprocessing method.

In Figure 8, J48 when the GA-based feature selection method was applied achieved the same

or even better AUC values for 4 out of 5 data sets.

Figure 8. AUC of J48 and J48-P.

The AUC values when using REPTree with the reduced feature setare either the same or

even better than using REPTree when all features are used, thescore is 3 out of 5.

Evaluating AUC on the FURIA classifier shows that 4 out of 5 datasets have less AUC

values when the GA-based feature selection method is used. It seems that FURIA suffers from

over-fitting when using the GA-based preprocessing methods. The results are shown in Figure 10.

As shown in Figure 11, the AUC values of 4 out of 5 data sets showslight improvement

when using FDT with the GA-based feature selection method.
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Figure 9. AUC of REPTree and REPTree-P.

Figure 10. AUC of FURIA and FURIA-P.

Generally, most algorithms, except FURIA, achieve slightlyhigher AUC values when the

GA-based feature selection is used as the data preprocessing method.

3.4. Summary

In this chapter, we presented a fuzzy decision tree (FDT) approach using a GA-based feature

selection method. The FDT approach uses soft-discretization searching for the best cut-point in

order to improve the predictive accuracy. The soft-discretization works by partitioning the decision

space into a set of overlapping subspaces instead of using crisp discretization partitioning. Futher-

more, since the reduction of the feature space has shown to improve the accuracy of classifiers in

general, we investigated a GA-based feature selection method combined with our FDT approach.

Our FDT classifier was compared to J48, REPTree, and FURIA both with and without using

the GA-based feature selection method. Five continuous-valued data sets taken from the UCI
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Figure 11. AUC of FDT and FDT-P.

repository were used. Overall, the results revealed that the approaches using soft discretization

rather than hard discretization, such as FURIA and our FDT classifier, obtained better predictive

classification accuracy in terms of TPR, FPR, precision and AUC.Furthermore, our proposed

classifier achieved slightly better results than FURIA in most cases.
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4. PARTICLE SWARM OPTIMIZATION BASED FUZZY CLUSTERING

APPROACH TO IDENTIFY OPTIMAL NUMBER OF CLUSTERS

Fuzzy clustering is a popular unsupervised learning methodused in cluster analysis which

allows a data point to belong to two or more clusters. Fuzzy c-means is one of the most well-

known and used methods, however, the number of clusters needto be defined in advance. This

chapter proposes a clustering approach based on Particle Swarm Optimization. This approach

automatically determines the optimal number of clusters using a threshold vector that is added to

the particle. The algorithm starts by partitioning the dataset randomly within a preset maximum

number of clusters in order to overcome the fuzzy c-means shortcoming of the predefined cluster

count. A reconstruction criterion is applied to evaluate the performance of the clustering results

of the proposed algorithm. The experiments conducted show that the proposed algorithm can

automatically find the optimal number of clusters.

The rest of this chapter is organized as follows. In Section 4.1, fuzzy c-means and PSO are

introduced. The proposed algorithm is described in Section4.2. A list of validity indices is given

as well. The experimental results and analysis is describedin Section 4.4. We finally conclude this

chapter in Section 4.6.

4.1. Related Work

FCM was first developed by [77] in 1973, and was extended by [24]in 1981. Since then,

FCM is one of the best fuzzy clustering methods. Many different variants of FCM have been

introduced. For example, the Gustafson-Kessel (GK) algorithm [21] is a fuzzy clustering technique

which can estimate local covariance to partition data into subsets, which can be well fitted with

linear sub-models. However, since considering a general structure of the covariance matrix can

have a substantial effect on the modeling approach, the Gath-Geva algorithm [79] was proposed

to overcome this shortcoming. Another algorithm, called Fuzzy C-Varieties (FCV) [78] clustering

algorithm, is a fuzzy clustering method for which the prototype of each cluster is represented as

a multi-dimensional linear vector. The approach is similarto cluster analysis, however, it uses
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the statistical method of principal component analysis forthe clustering task. Another algorithm,

referred to as generalized FCM algorithm, is presented in [80], in which setting of the algorithm

parameters is being done automatically.

Related work lists many evolutionary computation methods that have been applied for clus-

tering. For example, a hybrid technique based on combining the k-means algorithm and Nelder-

Mead simplex search was applied for cluster analysis in [81]. Another algorithm based on the

combination of Genetic Algorithm (GA), k-means and logarithmic regression expectation maxi-

mization was introduced in [82]. In [83], a k-means algorithm that performs correct clustering

without preassigning the exact number of clusters was proposed. A genetic k-means algorithm for

cluster analysis was introduced in [84]. In [85], a GA based method to solve the clustering problem

and experiment on synthetic and real life data sets to evaluate the performance was proposed. A

GA algorithm that exchanges neighboring centers for k-means clustering has been introduced in

[86]. A combination of evolutionary algorithm with an ant colony algorithm for the clustering

problem was presented in [86, 87]. A clonal selection based method has been combined with FCM

in [88].

PSO has also been applied to data clustering. In particular,two methods called PSO-V

and PSOU are introduced in [89], whereby a reformulated objective function of fuzzy c-means is

minimized by the PSO algorithm for the cluster analysis task. Another PSO-based fuzzy clustering

algorithm is introduced to overcome the shortcomings of FCM in [90]. An ant colony clustering al-

gorithm is applied for solving the clustering task in [91]. The algorithm uses the global pheromone

update and heuristic information to find clustering solutions. In [92], a genetic fuzzy K-modes

algorithm for clustering categorical data is proposed, which uses a genetic algorithm to obtain

the global optimal clustering solution. A hybrid data clustering algorithm that uses the merits

of PSO and K-harmonic means is proposed in [93]. The hybrid algorithm helps to escape from

local optima, and thus overcomes the problem of slow convergence of the PSO algorithm. A

hybrid evolutionary algorithm, called FAPSO-ACO-K, is introduced in [94]. The hybrid algorithm

49



combines PSO, ACO and k-means applied to cluster analysis. Another method for dynamic

parameter adaptation in PSO is proposed in [95]. The proposed algorithm uses fuzzy logic to

improve the convergence and diversity of the swarm in PSO.

The high computational cost and the slow convergence rate severely limit the use of PSO

on clustering analysis. For these reasons, a chaotic map PSOwith an accelerated convergence

rate strategy was introduced in [96]. The algorithm works byadopting chaotic maps and adaptive

action to avoid local minima. In [97], a hybrid fuzzy clustering method based on FCM and FPSO

is proposed to overcome the shortcomings of PSO. Another modified version of PSO, known as

Multi-Elitist PSO (MEPSO), is proposed in [98]. This approach solves the hard clustering problem

by automatically determining the optimal number of clusters. This approach shows that PSO is

guaranteed to solve clustering problems automatically.

This chapter addresses the shortcoming of the FCM algorithm ,which is the predefined clus-

ter count. A clustering approach based on PSO [99] is proposed whose aim it is to automatically

determine the optimal number of clusters using a threshold vector. The algorithm partitions the data

set randomly (within a preset maximum number of clusters) and uses a reconstruction criterion to

evaluate the performance of the clustering results.

4.2. Fuzzy C-Means and Particle Swarm Optimization

4.2.1. Fuzzy C-means Clustering

Fuzzy clustering is a method of clustering which allows one piece of data to belong to two

or more clusters. The FCM algorithm is an iterative partitionclustering technique which was first

introduced by Dunn [77] and was extended by Bezdek [24]. FCM is apretty standard least squared

error model that generalizes an earlier and very popular non-fuzzy c-means model that produces

hard clusters of the data. An optimalc partition is produced iteratively by minimizing the weighted

within group sum of squared error objective function:

J =
n∑

i=1

c∑

j=1

(uij)
md2(yi, cj) (4.1)
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whereY = [y1, y2, ..., yn] is the data set in a d-dimensional vector space.n is the number of data

items.c is the number of clusters which is defined by the user where2 ≤ c ≤ n. uij is the degree

of membership ofyi in thejth cluster.m is a weighted exponent on each fuzzy membership.cj is

the center of clusterj. d2(xi, cj) is a square distance measure between objectyi and clustercj. An

optimal solution withc partitions can be obtained via an iterative process which isas follows:

1. Input(c, m,ǫ, data)

2. Initialize the fuzzy partition matrixU = [uij ]

3. Iteration starts and set t=1

4. Calculate thec cluster centers withU t:

ci =

∑n
i=1(uij)

myi∑n
i=1(uij)m

(4.2)

5. Calculate the membershipU t+1 using:

uij =
1

∑c
k=1(

dij
dkj

)
2

(m−1)

(4.3)

6. If the stopping criteria is not met,t = t+ 1 and go to Step 4.

4.2.2. Particle Swarm Optimization

PSO was originally designed and introduced by Eberhart and Kennedy [6]. The PSO is

a population search algorithm which intends to simulate thechoreography of a bird folk. Each

individual, called particle, within the swarm is represented by a vector in a multidimensional

search space. A velocity vector is assigned to each particleto determine the next movement of

the particle. Each particle updates its velocity based on the current velocity, best personal position

it has explored so far and the global best position explored by the swarm:
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The velocity and position of the particle at next iteration is updated as:

Vi(t+ 1) = w · Vi(t) + c1 · r1 · (X l
i(t)−Xi(t)) + c2 · r2 · (Xg −Xi(t)) (4.4)

Xi(t+ 1) = Xi(t) + Vi(t+ 1) (4.5)

for theith particle, wherew is the inertia weight,Vi(t) is the previous velocity in iterationt of ith

particle. c1 andc2 are coefficients. Generally,r1 andr2 are random numbers between 0 and 1.

(X l
i(t) − Xi(t)) is the difference between local bestX l

i of the ith particle and previous position

Xi(t). Similarly, (Xg − Xi(t)) is the difference between global bestXg and previous position

Xi(t).

4.3. Proposed Approach

The proposed algorithm is based on PSO and FCM. The particle encoding, velocity encod-

ing, decoding and clustering validation is described separately. The procedures of the proposed

algorithm are presented at the end of the section.

4.3.1. Particle Encoding

A particle is a2 × k matrix, wherek is the maximum number of clusters that is predefined.

The first row represents the centers. Each value in the secondrow controls the activation of each

center in the first row.

Xi =



xi
1,1 xi

1,2 ... xi
1,k

ti2,1 ti2,2 ... ti2,k


 (4.6)

wherexi
1,k represents theith particle’s position in clusterk. xi

1,k should be in the range of[xmin, xmax].

ti2,k is theith particle’s threshold value in the range of[0, 1]. If the threshold value is greater than

0.5, the center is activated. Otherwise, it is deactivated.

4.3.2. Velocity Encoding

The velocity matrix should have the same dimension as the position matrix with a range.

Suppose we set the range as[vmin, vmax], all values of the velocity matrix should be betweenvmin
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andvmax. Thus, theith velocity is denoted as:

Vi =



vix1,1 vix1,2 ... vix1,k

vit2,1 vit2,2 ... vit2,k


 (4.7)

Similarly, k is the maximum number of clusters. The first row is the velocity of the centers, and

the second row is the velocity of the threshold values.

4.3.3. Decoding

Y = (y1, y2, .., yn) is the data set withd dimensions. The cluster centers can be decoded as

C = (c1, c2, ...ck) using Equation 4.2.

4.3.4. Clustering Validation Techniques

The aim of clustering validation is to evaluate the clustering results by finding the best

partition that fits the underlying data. Thus, cluster validity is used to quantitatively evaluate

the results of clustering algorithms. Compactness and separation two widely considered criteria

for measuring the quality of the partitioning of a data set into different numbers of clusters.

Conventional approaches use an iterative approach by choosing different input values, and they

select the best validity measure to determine the “optimum”number of clusters. A list of validity

indices for fuzzy clustering is listed below.

1. Dunn’s Index (DI): the Dunn’s Index is proposed to identify the compactness and separation

of the clusters. The function that uses to calculate the result of the clustering is as follow:

DI = min{ min
j∈c,i 6=j

{ minx∈Ci,y∈Cj
d(x, y)

maxk∈c{maxx,y∈C d(x, y)}}} (4.8)

whered(x, y) is the distance of the two cluster centers. DI takes its minimum value when

the cluster structure is optimal.
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2. Weighted Inter-Intra (Wint) Index: the weighted inter-intra (Wint) measure is introduced by

Strehl [106] in 2002. It compares the compactness of the datato its separation.

Wint = (1− 2c

n
) · (1−

∑
i

1
n−|ci|

∑
j 6=i inter(ci, cj)∑

i
2

|ci|−1
intra(ci)

) (4.9)

whereintra(ci) is the average intra-distance within clusteri. inter(ci, cj) is the average

inter-distance between clusteri and clusterj. Wint obtains its maximum value when the

cluster structure is optimal.

3. Least Squared Error (SE) Index: the weighted within cluster sum of squared error function

is used [100]:

Jm =
n∑

i=1

c∑

j=1

um
ij ||yi − cj||2 (4.10)

whereyi is theith data point withd dimensions.cj is the value of thejth cluster, and||yi−cj||

is the Euclidean distance betweenyi andcj. Jm takes its minimum value when the cluster

structure is best.

4. Partition Coefficient (PC) Index: the partition coefficient(PC) is defined as [24]:

PC =
1

n

n∑

i=1

c∑

j=1

u2
ij (4.11)

PC obtains its maximum value when the cluster structure is optimal.

5. Partition Entropy (PE) Index: the partition entropy was defined as [78]:

PE = − 1

n

n∑

i=1

c∑

j=1

uijlogb(uij) (4.12)

whereb is the logarithmic base. PE gets its minimum value when the cluster structure is

optimal.
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6. Modified Partition Coefficient (MPC) Index: modification of the PC index, which can reduce

the monotonic tendency, is proposed by Dave in 1996 [101].

MPC = 1− c

c− 1
(1− PC) (4.13)

wherec is the number of cluster. An optimal cluster number is found by maximizing MPC

to produce a best clustering performance for a data set.

7. Fukuyama and Sugeno (FS) Index: Fukuyama and Sugeno proposed a validity function in

1989 [102]. It is defined as:

FS =
n∑

i=1

c∑

j=1

µm
ij ||xi − cj|| −

n∑

i=1

c∑

j=1

µm
ij ||cj − c̄|| (4.14)

wherec̄ =
∑c

j=1 cj/c. It measures the separation. The first term equals toJm which is the

least squared error. It measures the compactness. The best clustering performance for a data

set is found by maximizing the value of FS.

8. Xie-Beni (XB) Index: Xie and Beni proposed a validity function in 1991 [103], and later it

was modified by Bezdek in 1995 [104].

XB =
Jm

n×mini 6=j ||zi − zj||2
(4.15)

XB reaches its minimum value when the cluster structure is optimal.

9. Partition Coefficient and Exponential Separation (PCAES) Index: the partition coefficient

and exponential separation (PCAES) index [105] is defined as:

PCAES =
n∑

i=1

c∑

j=1

(uij)
2

uM

−
c∑

k=1

exp(−min
k 6=i

||zi − zk||2/βT ) (4.16)
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whereuM = min1≤j≤c{
∑n

i=1 u
2
ij} andβT = (

∑c
j=1 ||zj−z̄||2)/c. z̄ =

∑n
i=1(yi/n). PCAES

takes its maximum value when the cluster structure is optimal.

The procedure of the proposed algorithm is as follows:

Input : data setY = [y1, y2, ..., yn], number of clusterc, fuzzification coefficientm.

Output : an× c partition matrixU and corresponding centers.

1. Randomly initialize a swarm

2. Iteration starts and set t=1

3. Update the velocity of each particle using Equation 4.4

4. Update the position of each particle using Equation 4.5

5. Update the personal best and global best

6. Calculate the partition matrixU

7. If the stopping criterion is not met,t = t+ 1 and go back to Step 3)

8. The partition matrixU of the global best is used to reconstruct the original data

9. Calculate the reconstruction error. In order to use a consistent method to evaluate the eight

different indices, the reconstruction criterion (RC) [107] is used. The reconstruction criterion

uses the cluster prototypes and partition matrix to “reconstruct” the original data vectors. The

reconstructed version of the original data vectors,Ŷ = [ŷ1, ŷ2, ..., ŷn], is calculated as:

ŷi =

∑c
j=1 u

m
ij cj∑c

j=1 u
m
ij

(4.17)
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once the reconstruction has been finished, the squared errorof the reconstruction vectors and

original vectors are evaluated using Equation 4.18.

E =
n∑

i=1

||ŷi − yi||2 (4.18)

10. Select the partition matrix and centers corresponding to the minimum reconstruction error.

4.4. Experiments and Results

In this section, the experimental setup, datasets and experimental study are described respec-

tively.

4.4.1. Experimental Setup

The experiments are implemented and evaluated on an ASUS desktop (Intel(R) Dual Core I3

CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. All measurements of the proposed algorithm

are executed 30 times and the average is taken. The parameters required for the proposed algorithm

are listed in Table 24.

Table 24. Parameters and their values of the proposed algorithm.

Parameter Value
Maximum number of cluster 10

Maximum iteration 50
Swarm size 25

Maximum run 30
Fuzzification coefficient (m) 2

4.4.2. Datasets

The experiments are conducted on a number of datasets taken from the UCI repository [54],

and synthetic data sets were generated using Matlab. The datasets are described in Table 25.
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Table 25. Datasets used for the experiments.

Data Set Dimensions Instances Classes
Pinwheel 2 1000 2

Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2

Jain 2 373 2
Thyroid 5 215 2

Iris 4 150 3
DIM032 32 320 5
DIM064 64 320 5
DIM128 128 320 5
DIM256 256 320 5

4.5. Experimental Study

4.5.1. Use of Synthetic Data

In order to investigate the clustering performance with different numbers of clusters, we use

a synthetic data set, named pinwheel, to test the clusteringperformance using K-means [109], K-

medoid [110], FCM, Gustafson-Kessel (GK) and our proposed algorithm (FPSO). K-means is one

of the unsupervised learning methods that uses an iterativerefinement technique. The number of

desired cluster,k, is defined in advance. K-medoid is another unsupervised learning method related

to the K-means algorithm. Similarly, the K-medoid classifies the data set intok clusters. However,

K-medoid is more robust to noise and outliers as compared to K-means. Unlike K-means, the

medoid is defined as the data point whose average dissimilarity within the cluster is minimal.

K-means and K-medoid are traditional hard clustering techniques, while FCM, GK and

FPSO are soft clustering techniques. The nine validity indices listed in Equations 4.8-4.16 are

used.

The cluster performance of the pinwheel data set is displayed in Figure 12. The first figure

is the original data set. As can be seen, the cluster centers are different using Kmeans, K-medoid,

FCM, GK and FPSO, respectively.
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Figure 12. Synthetic data set

Figure 13 shows the performance of the pinwheel data set using the K-means algorithm.

Figure 14 shows the performance of the pinwheel data set using the K-medoid algorithm. Since

K-means and K-medoid are algorithms using hard partitioning, the DI index, Wint index and SE

index are used for validation.
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Figure 13. Kmeans using 3 different validity indices

In Figure 15, the performance of the pinwheel data set using FCM is given. Figure 16

shows the performance of the pinwheel data set using the GK algorithm. The performance of the

proposed algorithm (FPSO) is displayed in Figure 17. The correct number of clusters found for

the nine indices are listed in Table 26. The correct cluster number for the pinwheel data set is 2.

The correct number of clusters found measuring DI using the five different algorithms are 5, 5, 7,
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Figure 14. K-medoid using 3 different validity indices

Table 26. Index values with varyingc using pinwheel data set.

Indices Kmeans K-medoid FCM GK FPSO
DI 5 5 7 10 7

Wint 2 2 2 2 2
SE 10 10 10 10 10
PC - - 2 2 2
PE - - 2 2 2

MPC - - 2 2 2
FS - - 10 10 10
XB - - 10 7 10

PCAES - - 4 10 8

10, and 7, respectively. The correct number of clusters found applying Wint are consistent with the

correct cluster number. The correct number of clusters found by SE is consistent with 10. As the

number of clusters increases, the SE values decrease. PC, PE and MPC using the FCM, GK and

FPSO algorithms find the correct cluster number. Measuring FS using the FCM, GK and FPSO

algorithm are similar to SE. As the number of clusters increases, the FS values decrease. The

correct number of clusters found applying XB using the FCM, GKand FPSO algorithms are 10, 7,

and 10, respectively. The correct number of clusters found measuring PCAES using the FCM, GK

and FPSO algorithms are 4, 10, and 8, respectively. Overall,the Wint, PC, PE and MPC indices,

which outperform the other indices, find the correct number of clusters.
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Figure 15. FCM using 9 different validity indices

4.5.2. Use of Real-World Data

In this section, we investigate the behavior of the clustering results using nine different

validity measures listed before.

In Table 27, the reconstruction errors of the transfusion data set, wherec ranges from 2

to 9, have been calculated using the proposed algorithm by applying Equations 4.8-4.16. The

reconstruction errors can simply the results for comparison purpose. As shown by the results, the

values in bold identifying the minimum reconstruction errors with different cluster numbers for

each measure. 6 out of 8 cases show thatc = 2 is the correct number of clusters. This indicates

that the proposed FPSO can find the best number of clusters automatically.

Due to the stochastic nature of our proposed algorithm, we tested the proposed algorithm on

30 runs and calculated the average number of clusters as listed in Table 33. The standard deviation
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Figure 16. GK using 9 different validity indices

values are given as well. The correct numbers of clusters using different validity measures are

tabulated, respectively. In all the cases, the number of clusters predicted by FPSO is close to the

correct number of clusters. DI, SE, XB and PCAES do not find the correct number of clusters.

Wint can identify the correct number of clusters but only forlow-dimensional datasets. MPC

returns the correct number of clusters, but with larger standard deviation values. PC and PE find

the correct number of clusters consistently, however, as the number of dimension increases, the

accuracy decreases.

4.5.3. Visualization of Clustering Results

Since the validity measures reduce the overall evaluation to a certain number, therefore there

is some loss of information. In order to better analyze the results, a low-dimensional graphical

representation of the clusters is adopted. A toolbox implemented by [108] is used to visualize the
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Figure 17. FPSO using 9 different validity indices

cluster results using the proposed algorithm. Principal Component Analysis (PCA) projection,

Conventional Sammon Mapping (CSM), and Fuzzy Sammon Mapping (FSM) are used. The

dimensions of DIM032, DIM064, DIM128 and DIM256 are 32, 64, 128 and 256, respectively.

The correct number of clusters is 5. Figure 18 lists the performance of PCA, CSM and FSM using

the four data sets. The black cross represents the identifiedcluster centers. Obviously, the correct

number of clusters can be seen by looking at the figure. As the number of dimension increases, the

performance of the PCA, CSM and FSM decrease.
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Table 27. Reconstruction error with varyingc using transfusion data set.

c=2 3 4 5 6 7 8 9
DI 31.2 30.4 24.5 61.3 31.3 24.5 59.8 25.0

Wint 23.6 29.3 25.4 47.4 51.5 68.8 42.5 36.5
SE 23.6 25.6 26.5 23.6 28.7 33.7 24.3 25.9
PC 16.3 29.6 34.2 81.8 22.7 75.1 31.1 21.4
PE 26.3 85.0 26.0 57.0 24.9 39.316.9 30.3

MPC 17.0 44.8 24.6 60.4 93.312.2 166.7 12.5
FS 23.6 23.6 23.6 25.6 29.5 24.9 33.6 23.7
XB 23.6 43.0 25.1 36.1 27.1 61.3 68.8 63.1

PCAES 38.9 81.7 82.5 48.1 53.8 57.5 97.2 93.4
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Figure 18. Data sets using PCA projection, CSM and FSM, respectively.
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Table 28. Nine different indices using the proposed algorithm.

DI Wint SE PC PE MPC FS XB PCAESFPSO k
Transfusion 5.70 2.63 9.43 2.17 2.13 3.67 2.73 9.63 6.87 2.42 2

std. 1.84 0.49 0.86 0.38 0.35 2.15 1.05 0.56 2.29 0.58
Haberman 5.90 2.93 9.97 2.00 2.00 6.50 2.07 9.83 8.80 2.24 2

std. 0.55 0.25 0.18 0.00 0.00 1.50 0.25 0.75 2.51 0.15
Breast 6.13 3.00 8.43 3.27 2.17 5.30 2.13 9.77 6.83 2.64 2

std. 1.96 0.00 1.43 1.72 0.38 2.45 0.35 0.63 2.09 0.62
Jain 7.30 2.97 9.57 2.87 2.10 3.60 3.37 7.90 6.47 2.25 2
std. 1.64 0.56 0.68 0.82 0.31 1.52 2.75 2.20 2.22 0.15

Thyroid 4.27 2.83 9.90 2.10 2.03 4.27 2.00 9.53 8.10 2.24 2
std. 1.87 0.38 0.31 0.40 0.18 2.21 0.00 0.68 1.99 0.24
Iris 3.83 2.93 9.00 2.53 2.30 4.13 2.40 9.57 6.30 2.55 2
std. 1.58 0.52 1.62 0.94 0.47 2.06 0.89 0.57 2.58 0.7

DIM032 6.33 2.73 7.90 4.60 4.00 4.90 3.73 7.40 6.40 5.34 5
std. 1.07 0.64 1.83 1.43 1.91 1.44 1.10 1.30 2.04 2.08

DIM064 7.17 3.20 7.77 5.47 5.50 5.53 2.00 9.43 7.40 5.94 5
std. 2.63 1.92 1.83 1.33 1.41 1.46 0.00 1.01 1.92 1.50

DIM128 6.90 2.57 8.27 5.63 5.57 5.77 2.00 8.37 8.03 5.90 5
std. 2.02 0.57 1.55 1.25 1.38 1.04 0.00 1.97 1.35 1.24

DIM256 8.57 2.57 8.57 6.43 6.13 6.70 2.00 9.13 8.57 6.52 5
std. 1.19 0.50 1.43 1.65 1.72 1.56 0.00 1.07 1.33 1.16

The performance of the mapping are listed in Table 29. The mean square error of the re-

calculated membership values (P), two different original and re-calculated validity measures (F

and F*), and the Sammon stress coefficient (S) are listed in the parenthesis. As the number of

dimension increases, the FSM is better than PCA and CSM in termsof smaller P, F* and S values.

The performance of PCA, CSM and FSM are the same in terms of F values.

4.6. Summary

In this study, we proposed an algorithm to overcome the drawbacks of traditional partition

clustering, which is that the number of clusters needs to be predefined. The proposed algorithm

uses using PSO and FCM with a threshold vector to control and identify the optimal number of

clusters. The algorithm solves the clustering problem via an iterative fuzzy partition process.
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Table 29. Mapping using the proposed algorithm.

Datasets PCA CSM FSM
DIM032 (0.0030 0.983 0.9975 0.082)(0.0104 0.983 0.950 0.295)(0.0023 0.983 0.974 0.078)
DIM064 (0.0011 0.994 0.9995 0.133)(0.0005 0.994 0.993 0.055)(0.0005 0.994 0.992 0.056)
DIM128 (0.0008 0.996 0.9998 0.125)(0.0050 0.996 0.977 1.560)(0.0004 0.996 0.994 0.050)
DIM256 (0.0046 0.200 0.2010 0.114)(0.0262 0.200 0.208 34.28)(0.0044 0.200 0.200 0.048)

For the evaluation of our algorithm, we generated a synthetic dataset as well as used 6

datasets from the UCI repository. We compared our algorithm with hard clustering approaches

such as Kmeans and K-medoid as well as with fuzzy clustering algorithms such as FCM and GK.

Nine different validity indices were used to evaluate the performance. Furthermore, measures

such principal component analysis projection, conventional sammon mapping, and fuzzy sammon

mapping were used to visualize the clustering results.

Overall, the results show that the proposed algorithm can identify the correct number of

clusters on all the data set tested. However, due to the slow convergence and the stochastic nature

of the PSO algorithm, the prediction results of a single run vary and thus make it difficult to

predict the correct number of clusters. Unlike K-means and FCM, the proposed algorithm needs

to be executed repeatedly in order to find the correct solution. In addition, the maximum number

of clusters has to be predefined, and the iterative process toidentify the optimal number of clusters

is computationally expensive by comparing to K-means and FCM.
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5. COLOR IMAGE SEGMENTATION USING FUZZY C-REGRESSION

MODEL

Image segmentation is one important process in image analysis and computer vision, and

is a valuable tool that can be applied in fields of image processing, health care, remote sensing,

and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised

learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely

studied and successfully applied in image segmentation. Insituations such as limited spatial reso-

lution, poor contrast, overlapping intensities, noise andintensity inhomogeneities, fuzzy clustering

can retain much more information than the hard clustering technique. Most fuzzy clustering

algorithms have originated from Fuzzy C-Means (FCM) and have been successfully applied in

image segmentation. However, the cluster prototype of the FCM method is hyper-spherical or

hyper-ellipsoidal. FCM may not provide the accurate partition in situations where data consists

of arbitrary shapes. Therefore, in this chapter, a Fuzzy C-Regression Model (FCRM) has been

proposed whose prototype is hyper-planed and can either be linear or nonlinear allowing for

better cluster partitioning. Thus, this chapter implements fuzzy c-regression model clustering

algorithm and applies the algorithm to color segmentation using Berkeley’s segmentation database.

The results show that FCRM obtains more accurate results compared to other fuzzy clustering

algorithms.

The remainder of this chapter is organized as follows. Section 5.1 lists the related work

regarding fuzzy image partitioning. Section 5.2 describesthe fuzzy c-regression model and the

proposed approach applied to color image segmentation. Experimental results are presented in

Section 5.4, and conclusions are drawn in Section 5.7.

5.1. Related Work

Related work with regards to the use of fuzzy theory in image segmentation include rule-

based methods, fuzzy-geometrical methods, information theoretical methods, Type II thresholding

methods, and fuzzy clustering methods [111].
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Past research related to rule-based methods use fuzzy rulesto determine a threshold value

in image segmentation. Images are considered as typical nonstationary signals. Fuzzy rule-

based image processing techniques are applied to noise removal and edge extraction. A novel

approach for enhancing the results of fuzzy clustering for solving image segmentation problems is

introduced in [112]. A Sugeno-type rule-based system is developed to interact with the clustering

result obtained by the FCM algorithm. In [113], an approach which combines an associative

restoration algorithm with a fuzzy image enhancement technique is presented and is applied in

electronic portal images in radiotherapy. However, fuzzy rule based segmentation is sensitive to

both the structure of the membership functions and parameter value selections. Thus, a generic

fuzzy rule-based segmentation technique that tries to solve the problem of manual selection of the

parameters of the fuzzy membership is introduced in [114]. This proposed technique is application-

independent and incorporates spatial relationships between pixels. Fuzzy Rules for Image Seg-

mentation incorporating Texture features (FRIST) is proposed in [115]. The fractal dimension

and contrast features of texture are incorporated in FRIST byconsidering image domain specific

information.

Fuzzy-geometrical methods [116], which focus on local image information, minimize or

maximize fuzzy geometrical measures, such as compactness [117]. In [118], a new approach

to multidimensional data clustering is described. The approach developed a “Radar” diagram

shape matching methodology to accomplish the fuzzy geometric features technique for man-

machine expert systems. A new quantitative index for image segmentation using the concept of

homogeneity within regions is defined in [120]. The proposedindex shows that the fuzzy geometry

based thresholding algorithms produced a single stable threshold for a wide range of membership

variations. A semi-supervised FCM technique called GG-FCM isused to add geometrical infor-

mation during clustering [119]. The approach is not only based on spectral information obtained

by FCM, but also takes into consideration the geometrical relationship between neighboring pixels.
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Related work on information theoretical methods uses measurements such as fuzzy entropy,

index of fuzziness, and fuzzy divergence to minimize or maximize fuzzy information. In [121],

a new measure called divergence between two fuzzy sets is introduced and a tailored version of

the probability measure of a fuzzy event is also used for image segmentation. A complete method

can be viewed as a weighted moving average technique, greyness ambiguity being the weights

is introduced in [122]. An image thresholding approach based on the index of nonfuzziness

maximization of the 2-D grayscale histogram is introduced in [123], and has shown that the

approach is more robust when applied to noisy images.

Type II thresholding methods interpret image information as Type II fuzzy sets. These

methods use information-theoretical measures to locate a global threshold [111]. In [124], an

evolving fuzzy classifier approach that is able to adapt and evolve at an on-line machine vision

system is introduced. In [125], a new modified thresholding measures for MRI brain images using

type-1 and type-2 fuzzy sets is presented. An Interval Type 2(IT2) fuzzy entropy based approach

is used to compute optimum thresholds for multistage gray scale image segmentation in [126]. An

automatic leukocyte segmentation using intuitionistic fuzzy and interval Type II fuzzy set theory in

pathological blood cell images is presented in [127]. The use of intuitionistic fuzzy set and interval

Type II fuzzy set can consider more uncertainties and different types of uncertainty as compared

to basic fuzzy set theory.

Fuzzy clustering methods classify all image pixels into different segments. Up to now, FCM

is one of the most commonly used methods in image segmentation, and there have been many

variants of fuzzy clustering algorithms that originated from FCM. A modified fuzzy c-means

clustering algorithm for MR brain image segmentation is introduced in [128]. The proposed algo-

rithm extracts a scalar feature value from the neighborhoodof each pixel. It converges faster than

standard FCM in the case of mixed noise. An improved FCM algorithm for image segmentation,

which introduces a tradeoff weighted fuzzy factor and a kernel metric is introduced in [129]. The

proposed algorithm using a tradeoff weighted fuzzy factor can accurately estimate the damping
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extent of neighboring pixels. FCM is sensitive to noise in theimage since it ignores the spatial

information contained in the pixels. A novel fuzzy clustering algorithm with non-local adaptive

spatial constraints is presented in [130]. The approach uses an adaptive spatial parameter for

each pixel to guide the noisy image segmentation process. Reference [131] proposes the weighted

image patch-based FCM algorithm for image segmentation. Thealgorithm improves its robustness

to noise by incorporating local spatial information embedded within the segmentation process. In

color image segmentation, it is difficult to analyze the image on all of its colors. Soft computing

techniques namely FCM, possibilistic fuzzy c-means, and competitive neural networks have been

used to group likely colors [132]. A novel initialization scheme to determine the cluster number

and obtain the initial cluster centers for the FCM algorithm to segment color images is introduced in

[135]. The initialization scheme called hierarchical approach is proposed to integrate the splitting

and merging techniques to obtain the initialization condition for FCM. The proposed algorithm

can obtain the reasonable cluster number for any kind of color images. An Adaptive Neuro-Fuzzy

Color Image Segmentation (ANFCIS) approach is presented in [136]. The proposed algorithm

performs color image segmentation using multilevel thresholding, which consists of a multilayer

perceptron-like network.

Most fuzzy clustering algorithms have originated from FCM, and have been successfully

applied in image segmentation. However, the cluster prototype of the FCM method is either hyper-

spherical or hyper-ellipsoidal. FCM may not provide the accurate partition in situations where

data consists of arbitrary shapes. On the other hand, the prototype of the FCRM method is hyper-

planed and can either be linear or nonlinear. Thus, this chapter implements FCRM and applies it

to color segmentation of images. This is the first work applying the FCRM method to the color

segmentation. The results show that FCRM obtains more accurate results compared to other fuzzy

clustering algorithms. Furthermore, besides presenting FCRM’s competitiveness with respect to
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the other fuzzy clustering algorithms, FCRM’s practical value is demonstrated when applied to the

task of color image segmentation.

5.2. Proposed Approach

This section first describes the color space that is used for the proposed color segmentation

approach, followed by the proposed fuzzy c-regression model clustering approach, and the cluster

validation techniques used for the evaluation of the approach.

5.2.1. CIE-L*A*B* Color Space

Color space is a way of representing color information based on certain criteria. Color

perceived by human-beings combines primary colors which are R (red), G (green), and B (blue).

By using either linear or nonlinear transformations, other kind of color representations or spaces

can be derived from the R, G, and B representation [137]. Color spaces like RGB, HSV (Hue-

Saturation-Value) [138], and CIE-L*A*B* [139] have been successfully applied in color image

segmentation. In this chapter, the CIE-L*A*B* color space is selected and explored in color image

segmentation. CIE-L*A*B* is a color-opponent space with dimensions L, A, and B. L denotes as

lightness, and A and B are the color-opponent dimensions. The CIE-L*A*B* color space includes

all perceivable colors and it is device independent, which means that the colors are independent of

the device they are displayed on. Specifically, L with a rangebetween 0 and 100 represents the

lightness; 0 represents the darkest black, while 100 represents the brightest white. The red-green

opponent colors are represented by the A axis. The yellow-blue opponent colors are represented by

the B axis. Both A and B have negative and positive values. Negative values of A represent green

colors while positive values of A represent red colors. Similarly, negative values of B represent

yellow colors, and positive values of B represent blue colors. The range of A and B can be either

±100 or±128 depending on the specific implementation.

5.2.2. Fuzzy C-Regression Model Clustering

The fuzzy c-regression model clustering algorithm has become popular the past few years

since the resulting model can explain and describe complex systems in a human intuitive way.
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Takagi and Sugeno [140] introduced the well-known T-S fuzzymodel to describe a complicated

nonlinear system. A T-S fuzzy model consists of a set of fuzzyrules, each describing a local

input-output relation as follows.

Rulei: IF x1 is Ai
1 and ... andxM is Ai

M THEN

yi = θ0i + θ1i x1 + ...+ θMi xM (5.1)

whereX = [x1, ..., xM ] is the system input,M is the dimension of input vector,i = 1, ..., c is the

number of fuzzy rules,yi is theith output,θMi is the consequent parameter of theith output.

Fuzzy clustering as one of the soft computing techniques canallow the data points to belong

to more than one cluster. Fuzzy clustering has been successfully applied in data analysis, pattern

recognition, and image segmentation [132]. The shell clustering algorithms such as FCM have

been largely applied in image segmentation. The shell clustering algorithms detect the special

geometrical shapes like circles, rectangles, hyperbolas,and ellipses using the Euclidean distance

measure [132]. Unlike the shell clustering algorithms, theFuzzy C-Regression Model (FCRM)

[133, 134], which was introduced by Hathaway and Bezdek in 1993, assumes that the data is

drawn fromc different models instead of one single model. Thec different models representc

hyper-plane-shape clusters. The FCRM clustering algorithm is an affine T-S model with linear

prototypes.

Let S = (x(k), yk), k = 1, ..., N be a set of input-output sample data pairs, whereN is the

number of patterns,xk = [x1, x2, ..., xM ] ⊂ Rn is thekth input data vector,M is the number of

input variables,y is output vector,yk is thekth desired output forxk, andθi = [b0i , b
1
i , ..., b

M
i ] is

the parameter vector of the corresponding local linear model. Assume that the data pairs inS are

drawn fromc different fuzzy models. Theith hyper-plane-shaped cluster of thekth input can be

denoted as:
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yik = b0i + b1ixk1 + ...+ bMi xkM

= [xk, 1] · θTi , i = 1, ..., c

(5.2)

The cost function of the FCRM clustering algorithm is defined as:

J(S;U, θ) =
N∑

k=1

c∑

i=1

(µm
ik)E

2
ik(θi) (5.3)

where the distanceEik(θi) is defined as

Eik(θi) = |yk − [xk1] · θTi | (5.4)

m is fuzzy weighted exponent andµik is the membership degree ofxk to theith hyper-plane-

shaped cluster. The membership valuesµik have to satisfy the following constraints:

µik ∈ [0 1], i = 1, 2, ..., c; k = 1, 2, ..., N (5.5)

c∑

i=1

µik = 1, k = 1, 2, ..., N (5.6)

The fuzzy c-regression model clustering algorithm is summarized as follows [133, 134].

Given dataS, setm > 1 and specify the regression models, choose an error measure and a

termination thresholdǫ > 0, and initializeU (0) randomly.

1. Repeat forl = 1, 2, ...,∞

2. Calculate thec model parametersθ(l)i , which globally minimizes the cost function
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3. UpdateU (l) with Eik(θ
(l)
i ) to satisfy

U
(l)
ik =





[
∑c

j=1(
Eik

Ejk
)

2
m−1 ]−1, if Eik > 0 for 1 ≤ i ≤ c.

0, otherwise

(5.7)

4. Until ||U (l) − U (l−1)|| ≤ ǫ, then stop; otherwise,l = l + 1 and return to Step 1

In this chapter, the FCRM clustering algorithm is applied to color image segmentation. The

procedures of the proposed approach using FCRM in color image segmentation can be summarized

into four phases: image pre-processing, FCRM clustering, image reconstruction, and evaluation.

Image pre-processing: the images are converted from the RGB color space to the CIE-

L*A*B* color space during this phase. The *A and *B values, which are extracted from the RGB

color space, serve as the color markers in the A*B* space.

FCRM clustering: the A*B* space image data is given, and the number of clusters is fixed

during this phase. A FCRM clustering algorithm is used to partition the given data into a fixed

number of clusters.

Image reconstruction: the cluster results from the FCRM clustering step is used to recon-

struct the image in grayscale-level during this phase.

Evaluation: the performance of the cluster results is evaluated using the results from the

FCRM clustering process. The performance of the proposed algorithm is evaluated with three

validity indices (explained in the following section). In addition, two other measures commonly

used to access FCRM are calculated during this phase.

5.3. Clustering Validation Techniques

The aim of clustering validation is to evaluate the clustering results by finding the best

partition that fits the underlying data best. Thus, cluster validity is used to quantitatively evaluate

the results of clustering algorithms. Compactness and separation are two widely considered criteria

for measuring the quality of the partitioning of a data set into different numbers of clusters.
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Conventional approaches use an iterative approach by choosing different input values, and they

select the best validity measure to determine the “optimum”number of clusters. A list of validity

indices which have been introduced in Section 4.3.4 of Chapter 4 for fuzzy clustering are adopted.

There are the Partition Coefficient (PC) (see Eq. 4.11), Partition Entropy (PE) (see Eq. 4.12), and

Modified Partition Coefficient (MPC) (see Eq. 4.13), respectively. PC obtains its maximum value

when the cluster structure is optimal. PE achieves its minimum value when the cluster structure is

optimal. An optimal cluster number is found by maximizing MPC to produce the best clustering

performance for a data set.

5.4. Experiments and Results

This section describes the experimental setup used, and theresults obtained by the exper-

iments conducted. In particular, a comparison of the cluster performance in the *A*B space is

conducted applying FCM, GK (Gustafson-Kessel), and the proposed FCRM approach. Then, the

different validity indices are compared with, followed by acomparison of the mean square error

and the peak-signal-to-noise ratio. The last subsection shows the segmentation results.

5.5. Experimental Setup

The experiments are implemented and evaluated on an ASUS desktop (Intel(R) Dual Core

I3 CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. In order to evaluate the performance of

the proposed method, the algorithm has been tested using 15 images from Berkeley Segmentation

Database [141] for color image segmentation. In addition, the two other fuzzy clustering algo-

rithms, FCM and Gustafson-Kessel (GK), have been used to compare FCRM with. Table 30 lists

the required parameters used when running FCM, GK and FCRM.

5.6. Experimental Study

5.6.1. Comparison of cluster performance in *A*B space

The cluster performance of IMG1 (all fifteen images are denoted by their number) withc = 3

is displayed in Figure 19. The figure on the left is the original image. The remaining three figures

show the cluster centers in CIE-L*A*B* color space using FCM, GK, and FCRM, respectively.
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Table 30. Parameters and their values of the FCM, GK, and FCRM algorithms

Parameter Value

|U l − U l−1| < ǫ 10−3

Fuzzification coefficient (m) 2

Maximum number of clusters 10

Image data IMG1-15

The three hyper-spherical centers obtained by FCM and GK, andthe three hyper-plane-shaped

clusters obtained by FCRM are listed in Table 31.
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Figure 19. Original image, FCM, GK, and FCRM with c = 3 in *a*b color space

Table 31. FCM, GK, and FCRM using three different indices (PC, PE and MPC)

FCM GK FCRM

Cluster 1 (151.73, 168.49) (122.26, 146.33)y1 = 0.3297× (x− 80) + 171.243

Cluster 2 (103.24, 175.97) (114.69, 132.16)y2 = 1.1788× (x− 101.34) + 110

Cluster 3 (118.33, 144.69) (135.42, 158.93)y3 = 0.4578× (x− 80) + 142.315

As shown in Figure 19, the proposed FCRM partitions the image into 3 hyper-planed clusters,

while FCM and GK group the image into hyper-spherical clusters, respectively. The FCRM

method provides better results of the constructed fuzzy model as compared to FCM and GK.

5.6.2. Comparison using different validity indices

Table 32 lists the cluster performance of FCM, GK, and FCRM usingvalidity index PC,

PE, and MPC, respectively. As shown in the table, the values inbold denote the best values
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obtained from the three different validity indices. In mostcases, FCRM has the better performance

compared to FCM and GK.

Table 32. FCM, GK, and FCRM using three different indices (PC, PE and MPC)

PC PE MPC
FCM GK FCRM FCM GK FCRM FCM GK FCRM

IMG1 0.77 0.77 0.81 0.44 0.44 0.35 0.65 0.65 0.71

IMG2 0.79 0.82 0.78 0.38 0.34 0.39 0.68 0.73 0.68

IMG3 0.72 0.69 0.78 0.50 0.55 0.40 0.58 0.53 0.67

IMG4 0.68 0.70 0.80 0.57 0.53 0.35 0.51 0.54 0.70

IMG5 0.67 0.68 0.80 0.58 0.56 0.36 0.51 0.52 0.70

IMG6 0.66 0.83 0.81 0.56 0.32 0.35 0.50 0.75 0.71

IMG7 0.88 0.83 0.88 0.23 0.30 0.22 0.81 0.75 0.83

IMG8 0.77 0.77 0.82 0.42 0.41 0.33 0.66 0.65 0.73

IMG9 0.74 0.75 0.79 0.46 0.45 0.38 0.61 0.63 0.68

IMG10 0.69 0.72 0.78 0.55 0.48 0.39 0.54 0.58 0.67

IMG11 0.75 0.77 0.77 0.46 0.40 0.41 0.62 0.66 0.66

IMG12 0.75 0.74 0.80 0.46 0.46 0.37 0.62 0.61 0.69

IMG13 0.75 0.74 0.83 0.45 0.47 0.31 0.63 0.62 0.74

IMG14 0.85 0.84 0.87 0.28 0.30 0.25 0.77 0.76 0.80

IMG15 0.65 0.66 0.78 0.62 0.60 0.40 0.48 0.48 0.67

In addition, the best cluster number of FCM, GK, and FCRM obtained by using PC, PE, and

MPC are listed in Table 33. In most cases we can see that the best cluster number is 2 when using

PC, PE, and MPC as the validity index.
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Table 33. Best cluster number of FCM, GK and FCRM using PC, PE and MPC

PC PE MPC
FCM GK FCRM FCM GK FCRM FCM GK FCRM

IMG1 3 2 3 2 2 2 2 2 2

IMG2 2 2 2 2 2 3 2 2 7

IMG3 2 2 2 2 2 2 2 2 2

IMG4 2 2 2 10 10 10 2 2 10

IMG5 2 2 2 2 2 2 2 2 2

IMG6 2 2 2 3 3 3 2 2 2

IMG7 2 2 2 2 2 2 2 2 2

IMG8 2 2 2 3 2 3 2 2 3

IMG9 2 2 2 2 2 2 2 2 2

IMG10 2 2 5 2 2 2 2 2 2

IMG11 2 2 4 2 2 3 2 2 4

IMG12 2 2 2 2 2 2 2 2 2

IMG13 2 2 5 2 2 3 2 2 3

IMG14 2 2 2 2 2 10 2 2 2

IMG15 2 2 2 2 2 2 2 2 2

5.6.3. Comparison with MSE and PSNR

Mean Square Error (MSE) [142] and Peak Signal-to-Noise Ratio(PSNR) [143] are used as

the performance indices in fuzzy modeling, which are definedas:

MSE =
1

n

n∑

k=1

(yk − ŷk)
2 (5.8)

PSNR = 10× log10(255× 255/MSE) (5.9)
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Table 34. MSE (×104) using FCM with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 0.59 0.41 0.32 0.26 0.21 0.19 0.16 0.14 0.13

IMG2 0.37 0.26 0.19 0.16 0.13 0.12 0.10 0.09 0.08

IMG3 0.79 0.54 0.40 0.32 0.27 0.23 0.20 0.18 0.16

IMG4 1.05 0.70 0.50 0.42 0.34 0.29 0.26 0.23 0.21

IMG5 0.39 0.27 0.21 0.16 0.14 0.12 0.10 0.09 0.08

IMG6 0.48 0.41 0.33 0.28 0.23 0.20 0.17 0.15 0.14

IMG7 0.41 0.27 0.26 0.25 0.21 0.17 0.16 0.14 0.13

IMG8 0.50 0.34 0.25 0.20 0.17 0.14 0.13 0.11 0.10

IMG9 0.97 0.66 0.50 0.40 0.33 0.29 0.25 0.22 0.20

IMG10 0.99 0.69 0.56 0.46 0.39 0.33 0.29 0.26 0.23

IMG11 0.93 0.62 0.47 0.38 0.31 0.27 0.24 0.21 0.19

IMG12 0.79 0.55 0.43 0.41 0.34 0.30 0.26 0.23 0.21

IMG13 0.64 0.45 0.34 0.27 0.23 0.20 0.17 0.15 0.13

IMG14 0.73 0.49 0.37 0.24 0.19 0.17 0.15 0.13 0.13

IMG15 0.58 0.40 0.30 0.24 0.20 0.18 0.16 0.14 0.13
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Table 35. MSE (×104) using GK with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 0.62 0.42 0.31 0.26 0.21 0.18 0.16 0.14 0.13

IMG2 0.37 0.26 0.19 0.16 0.13 0.12 0.10 0.09 0.08

IMG3 0.79 0.54 0.40 0.32 0.27 0.23 0.20 0.18 0.16

IMG4 0.82 0.62 0.51 0.42 0.35 0.30 0.26 0.23 0.21

IMG5 0.39 0.26 0.20 0.16 0.14 0.12 0.10 0.09 0.08

IMG6 0.52 0.52 0.40 0.32 0.26 0.20 0.18 0.15 0.14

IMG7 0.41 0.27 0.29 0.24 0.20 0.17 0.14 0.13 0.12

IMG8 0.49 0.34 0.25 0.20 0.17 0.15 0.13 0.11 0.10

IMG9 0.97 0.66 0.50 0.40 0.34 0.29 0.25 0.22 0.20

IMG10 0.98 0.78 0.58 0.47 0.39 0.33 0.29 0.26 0.23

IMG11 0.92 0.62 0.47 0.38 0.31 0.27 0.24 0.21 0.19

IMG12 0.78 0.62 0.47 0.38 0.35 0.30 0.26 0.23 0.21

IMG13 0.68 0.42 0.34 0.27 0.23 0.20 0.16 0.14 0.14

IMG14 0.73 0.49 0.37 0.29 0.24 0.21 0.18 0.16 0.15

IMG15 0.59 0.40 0.30 0.25 0.21 0.18 0.15 0.14 0.13
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Table 36. MSE (×104) using FCRM with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 0.58 0.40 0.31 0.25 0.21 0.18 0.16 0.14 0.13

IMG2 0.37 0.25 0.19 0.16 0.13 0.12 0.10 0.09 0.08

IMG3 0.80 0.54 0.40 0.32 0.27 0.23 0.20 0.18 0.16

IMG4 1.05 0.70 0.52 0.42 0.35 0.30 0.26 0.23 0.21

IMG5 0.39 0.26 0.20 0.16 0.14 0.12 0.10 0.09 0.08

IMG6 0.48 0.44 0.36 0.28 0.24 0.21 0.18 0.16 0.15

IMG7 0.69 0.27 0.30 0.25 0.21 0.19 0.16 0.14 0.13

IMG8 0.50 0.35 0.26 0.20 0.17 0.15 0.13 0.12 0.10

IMG9 0.98 0.66 0.50 0.40 0.33 0.29 0.25 0.22 0.20

IMG10 0.98 0.80 0.60 0.48 0.40 0.34 0.30 0.27 0.24

IMG11 0.93 0.63 0.47 0.38 0.31 0.27 0.24 0.21 0.19

IMG12 0.80 0.61 0.52 0.42 0.35 0.30 0.26 0.23 0.21

IMG13 0.67 0.45 0.33 0.27 0.23 0.19 0.17 0.15 0.14

IMG14 0.73 0.49 0.37 0.29 0.24 0.21 0.18 0.16 0.15

IMG15 0.57 0.40 0.31 0.25 0.21 0.18 0.16 0.14 0.13
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Table 37. PSNR using FCM with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 19.41 12.79 9.49 7.59 6.31 5.40 4.73 4.20 3.78

IMG2 21.48 14.18 10.60 8.37 7.03 5.96 5.21 4.65 4.14

IMG3 16.74 11.11 8.38 6.70 5.58 4.79 4.19 3.72 3.35

IMG4 14.65 9.76 7.45 5.86 4.95 4.25 3.69 3.29 2.93

IMG5 21.58 14.27 10.63 8.49 7.07 6.06 5.30 4.71 4.24

IMG6 19.77 12.12 8.83 6.98 5.82 4.99 4.36 3.88 3.49

IMG7 20.77 13.83 9.57 7.25 6.05 5.32 4.54 4.03 3.59

IMG8 19.35 12.87 9.65 7.71 6.42 5.51 4.82 4.28 3.83

IMG9 15.52 10.27 7.69 6.14 5.12 4.38 3.83 3.41 3.07

IMG10 14.23 9.76 7.05 5.57 4.64 3.97 3.47 3.08 2.77

IMG11 15.29 10.17 7.62 6.10 5.08 4.35 3.81 3.39 3.05

IMG12 16.38 10.75 7.92 5.87 4.89 4.18 3.64 3.23 2.91

IMG13 17.82 11.61 8.70 6.95 5.79 4.94 4.32 3.84 3.52

IMG14 16.89 11.26 8.45 7.25 6.15 5.18 4.51 4.02 3.57

IMG15 18.60 12.26 9.17 7.29 6.07 5.19 4.53 4.03 3.62
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Table 38. PSNR using GK with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 19.15 12.74 9.55 7.59 6.32 5.40 4.73 4.20 3.77

IMG2 21.56 14.16 10.60 8.47 7.05 5.98 5.22 4.65 4.17

IMG3 16.76 11.10 8.32 6.65 5.56 4.78 4.18 3.71 3.33

IMG4 16.22 10.29 7.39 5.86 4.88 4.18 3.71 3.25 2.93

IMG5 21.65 14.35 10.67 8.50 7.07 6.06 5.30 4.71 4.23

IMG6 19.23 11.09 8.30 6.63 5.53 4.93 4.31 3.88 3.49

IMG7 20.79 13.84 9.31 7.34 6.13 5.26 4.73 4.10 3.69

IMG8 19.53 12.85 9.64 7.70 6.42 5.50 4.81 4.28 3.83

IMG9 15.55 10.31 7.69 6.14 5.11 4.38 3.83 3.40 3.06

IMG10 13.91 9.20 6.96 5.55 4.63 3.96 3.48 3.09 2.78

IMG11 15.36 10.18 7.62 6.10 5.08 4.35 3.81 3.39 3.05

IMG12 16.46 10.19 7.63 6.07 4.84 4.15 3.63 3.23 2.90

IMG13 17.46 11.93 8.71 6.94 5.76 4.94 4.44 3.95 3.47

IMG14 16.90 11.27 8.45 6.76 5.63 4.82 4.22 3.75 3.37

IMG15 18.49 12.22 9.13 7.29 6.06 5.20 4.54 4.03 3.62
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Table 39. PSNR using FCRM with different cluster number

c=2 3 4 5 6 7 8 9 10

IMG1 19.52 12.86 9.60 7.64 6.37 5.43 4.76 4.22 3.80

IMG2 21.48 14.19 10.57 8.44 6.98 5.97 5.22 4.63 4.15

IMG3 16.69 11.10 8.32 6.67 5.55 4.76 4.16 3.70 3.33

IMG4 14.66 9.78 7.33 5.86 4.88 4.19 3.66 3.25 2.93

IMG5 21.66 14.33 10.70 8.53 7.08 6.06 5.29 4.70 4.23

IMG6 19.85 11.89 8.64 6.91 5.74 4.91 4.28 3.80 3.42

IMG7 17.51 13.84 9.23 7.26 6.05 5.11 4.47 3.98 3.58

IMG8 19.31 12.73 9.54 7.71 6.36 5.45 4.77 4.24 3.81

IMG9 15.49 10.27 7.70 6.14 5.12 4.38 3.84 3.41 3.07

IMG10 15.02 9.15 6.85 5.48 4.56 3.91 3.42 3.04 2.74

IMG11 15.29 10.16 7.62 6.09 5.08 4.35 3.81 3.38 3.05

IMG12 16.32 10.25 7.28 5.81 4.84 4.15 3.63 3.22 2.90

IMG13 17.50 11.63 8.83 7.03 5.79 5.00 4.37 3.88 3.49

IMG14 16.91 11.26 8.44 6.75 5.62 4.82 4.22 3.75 3.37

IMG15 18.62 12.22 9.10 7.25 6.06 5.18 4.53 4.02 3.60
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Figure 20. Original image, grayscale image using FCM, GK, andFCRM are listed, respectively
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Figure 20. Original image, grayscale image using FCM, GK, andFCRM are listed,
respectively (continued)

86



Figure 20. Original image, grayscale image using FCM, GK, andFCRM are listed,
respectively (continued)
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Table 34, 35, 36 list the MSE of the 15 images using FCM, GK, and FCRM, respectively.

Table 37, 38, 39 list the PSNR of the 15 images obtained from FCM, GK, and FCRM, respectively.

The MSE and PSNR are measured with a cluster number varying from 2 to 10.

The results show that FCM, GK and FCRM show the same trend regarding MSE and PSNR.

As the number of clusters increase, the values of MSE decrease, and the values of PSNR increase

for the 15 tested images. In addition, FCRM has a better performance than FCM and GK both

in terms of MSE and PSNR. Therefore, FCRM has less partition errors and a more compact

representation than FCM and GK.

5.6.4. Comparison on segmentation results

The cluster results are used to reconstruct the image in grayscale level as shown in Figures

20 with c = 3. As show in the figures, the FCM, GK, and FCRM can segment the images clearly.

5.7. Summary

Most fuzzy clustering algorithms have been successfully applied in image segmentation.

However, the disadvantage they have is that the cluster prototype of FCM (Fuzzy C-Means) is

either hyper-spherical or hyper-ellipsoidal. Therefore,FCM may not provide accurate partitioning

in circumstances where data is better modeled by arbitrary shapes. Thus, a fuzzy c-regression

model clustering algorithm has been introduced whose prototype is hyper-planed and can either

be linear or nonlinear. In this chapter, the fuzzy c-regression model clustering algorithm has been

successfully applied to color image segmentation. Fuzzy c-regression model is an affine T-S model,

which has been successfully used in non-linear system. In addition, due to the complexity of

implementation, FCRM has never been used in color image segmentation and was thus explored

in this investigation.

The experiments conducted used 15 images that were taken from the Berkeley Segmentation

Database. The FCRM was compared against two comparison algorithms (FCM and GK) for color

image segmentation. Three validity indices have been used as well as MSE and PSNR were

measured. The images were reconstructed using the grayscale level. The experimental results
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revealed that FCRM achieves better results in most cases than the other approaches based on the

aforementioned measures.

As for future work, FCRM is similar to other fuzzy partition techniques, thus, cluster cen-

troids and the number of clusters should be decided in advance. However, for most unknown

environments, the appropriate and exact number of clustersis unknown in practice. A new cluster

validity criterion needs to be developed to determine the appropriate number of clusters. In

addition, FCRM is very sensitive to the initialization. A goodinitialization results in good quality

image segmentation, while an unsuitable initialization returns poor results. Thus, in future, a

new technique for automatically finding the exact number of clusters as well as obtaining good

initialization need to be investigated.
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6. CONCLUSION AND FUTURE WORK

In this current information age, a tremendous expansion in the volume of data is seen that

is being generated and stored. The need to understand large,complex, information-rich data sets

is common to all fields of studies. Given this tremendous amount of data, efficient and effective

tools need to be available to analyze and reveal valuable knowledge that is hidden. The objective

of the field of knowledge discovery and data mining is the discovery of knowledge that is not only

correct, but also comprehensible. In this dissertation, fuzzy approaches based on fuzzy set theory,

fuzzy inference system have combined with particle swarm optimization, decision tree and genetic

algorithm and have been applied to solve classification and clustering problems. This chapter

concludes the dissertation and is organized as follows. Theconclusions of the dissertation are

described in Section 6.1 and the future work is illustrated in Section 6.2.

6.1. Conclusions

The two primary goals of data mining can be classified aspredictionanddescription[3].

Prediction involves using some features or fields of the data set to predict unknown or future

values of interest, whereasdescriptionfocuses on finding patterns describing the data that can

be interpreted by humans. Several data mining techniques using prediction and description have

emerged that include classification, clustering, regression, dependence modeling, etc. The classi-

fication technique is used to discover a predictive learningfunction that classifies a data item into

several predefined classes. It is also known as supervised classification, whereby given class labels

are ordered to objects in the data collection. Clustering analysis is one of the popular approaches

and has been widely used in data mining, and is a process to identify groups or clusters based on

some similarity measures. The study of this dissertation isfocused on two main paradigms. The

first paradigm focuses on applying fuzzy inductive learningon classification problems. The second

paradigm is fuzzy cluster analysis.

Firstly, a discrete particle swarm optimization with a local strategy (DPSO-LS) for solving

the classification problem is proposed. The local search strategy helps to overcome local optima in
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order to improve the solution quality. The DPSO-LS uses the Pittsburgh approach whereby a rule

base is used to represent a ‘particle’. Furthermore, since DPSO-LS can only be applied to discrete

data, an additional classifier called Fuzzy DPSO-LS (FDPSO-LS) classifier is implemented for

both discrete and continuous data to tolerate imprecision and uncertainty.

Secondly, a decision tree induction method using fuzzy set theory, in other words, Fuzzy

Decision Tree (FDT), is becoming an increasingly popular method to solve classification problems.

FDT, like classical decision tree, uses the top-down strategy. In order to find the best so called “cut-

point”, FDT is based on soft discetization and follows the DTrun recursively on each partition until

the best cut point is found. The data contains many redundantor irrelevant features. These features

provide no useful information in any context. In order to improve the model interpretability and

enhance the generalization, a Genetic Algorithm (GA) basedfeature selector was applied in this

chapter. Mutual information is one suitable criterion for feature selection [73]. Mutual information

can reduce the uncertainty about the class labels and minimize a lower bound on the Bayes

classification error as investigated in [144]. Nevertheless, the estimation of mutual information

is not an easy task. Mutual information is a nonlinear measure used to quantify not only linear and

but also nonlinear correlations. The challenge of using mutual information for feature selection is

the estimation of this measure from the available data.

Thirdly, One of the widely used methods in fuzzy clustering is Fuzzy C-Means clustering

(FCM) [24]. FCM attempts to partition a data set into a collection ofc fuzzy groups. The algorithm

finds a cluster center in each group such that the intra-distance within the group is minimized, and

the inter-distance between each group is maximized. Most ofthe fuzzy clustering methods that

have been applied recently use an extension of the FCM algorithm. As we have mentioned before,

partitional clustering suffers from the following drawbacks:

1. The number of clusters needs to be pre-specified, and priorknowledge or ground truth is

required of the data.
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2. Most data points in overlapping areas cannot be categorized correctly.

In order to address these two shortcomings, we proposed a fuzzy c-means clustering approach

using a Particle Swarm Optimization (PSO) approach that is applied to clustering analysis.

Lastly, the Fuzzy C-Regression Model (FCRM) was introduced by Hathaway and Bezdek

[133, 134]. Due to their excellent capability of describingcomplex systems in a human intuitive

way, FCRM is capable of handling perceptual uncertainties anddescribing nonlinear system.

FCRM, which can be viewed as an extension of FCM, divides the dataset into a group of different

regression models. Unlike FCM, the clustering prototype of FCRM is a hyper-plane while FCM is

hyper-spherical.

However, because of the complexity of image segmentation and given that only partial prior

knowledge is provided, the segmentation result would be poor if a supervised method was adopted.

Thus, the unsupervised method is a better choice to solve such a problem. Although fuzzy theory

has been employed in image segmentation, the application ofFCRM to color images has been

limited. In this study, we have explored the applicability and soundness of FCRM in color image

segmentation. Although FCM can partition the fuzzy space efficiently, it does not take linearity of

the divided data into consideration. In contrast, the FCRM clustering algorithm with hyperplane-

shaped cluster prototypes has much more explanatory power,especially due to its multivariate

nature.

6.2. Future Work

Although the proposed approaches worked well in solving classification and clustering prob-

lems, this is just a beginning. There is still much work to be done in the field of data mining using

fuzzy approaches.

First, work described in Chapter 2 suffers from a large numberof runs to obtain a better

average result due to the stochastic nature of particle swarm optimization. Thus, it would be

interesting to improve the proposed algorithm to achieve more stable predictions in less runs. In

addition, the Pittsburgh approach suffers from bad qualityrules within the rule set when only the
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overall performance is considered, the quality of each ruleis not taken into account. Thus, it would

be interesting to compare the Pittsburgh approach with the Michigan approach. Moreover, FDPSO-

LS has shown improved results compared to FURIA, which could still be improved by minimizing

the number of rules and deleting replicated rules. Furthermore, the proposed FDPSO-LS can be

further improved by applying discrete data sets with largerranges of attribute values.

Second, work illustrated in Chapter 3 only used a genetic algorithm approach on feature

selection. The results revealed that the approaches using soft discretization rather than hard dis-

cretization, such as FURIA and our FDT classifier, obtained better predictive classification accu-

racy. The proposed classifier achieved slightly better results than FURIA in most cases. However,

FDT suffers lot execution time by comparing to FURIA. In future, we will investigate and compare

other feature selection techniques available in terms of improvements in accuracy but also in terms

of execution time.

Third, due to the slow convergence and the stochastic natureof the PSO algorithm, the

prediction results of a single run vary and thus make it difficult to prediction the correct number of

clusters using the work discussed in Chapter 4. Unlike K-means and FCM, the proposed algorithm

needs to be executed repeatedly in order to find the correct solution. In addition, the maximum

number of clusters has to be predefined, and the iterative process to identify the optimal number

of clusters is computationally expensive. As for future work, it would be interesting to improve

the proposed algorithm to achieve more stable predictions with fewer runs. Thus, a kernel based

technique and a new validity index would be interested to investigate to over come such problem.

Moreover, we are planning to explore the proposed algorithmwith big data sets, and therefore

parallelization techniques are necessary.

Fourth, FCRM described in Chapter 5 is similar to other fuzzy partition techniques, thus,

cluster centroids and the number of clusters should be decided in advance. However, for most

unknown environments, the appropriate and exact number of clusters is unknown in practice.

A new cluster validity criterion needs to be developed to determine the appropriate number of
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clusters. In addition, FCRM is very sensitive to the initialization. A good initialization results in

good quality image segmentation, while an unsuitable initialization returns poor results. Thus, in

future, a new technique for automatically finding the exact number of clusters as well as obtaining

good initialization need to be investigated.

Generally, the standard definition of knowledge discovery and data mining concentrate on

highly structured and precise data. The conventional methods like decision tree and neural network

are hardly adequate for mining image, sound, and textual data [145]. In the light of the capability of

handling uncertainty at various stages, fuzzy approaches can play an important role in data mining

especially in information mining [146].

Hence, the future work of this dissertation includes two directions. First, fuzzy logic can

improve the classification system by using fuzzy sets to define overlapping class definitions. The

interpretability of the results can be improved and more insight into the classifier structure and

decision making process would be provided by the application of fuzzy IF-THEN rules. In effect,

the tolerance for imprecision and uncertainty is exploitedthrough granulation in soft data compres-

sion by using linguistic variables and fuzzy IF-THEN rules.In future, classification tasks based

on fuzzy set theory is a direction to investigate which can translate computer representations into

human understandable knowledge or concepts. Second, clustering techniques have been widely

applied in science, engineering, business and economics, life sciences, biological and medical

disciplines [145]. Fuzzy clustering becomes quite prominent in the framework of clustering. In

future, theories and scalable techniques that can extract knowledge from large and dynamic data

sources need to be exploited and developed.

In conclusion, fuzzy set theory and fuzzy systems have been successfully applied to model

human expert knowledge which are comprehensive and easy to understand. Thus, we believe fuzzy

approaches will play a more prominent role in the area of datamining.
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