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ABSTRACT

Data mining and information retrieval are two difficult tadkr various reasons. First, as the
volume of data increases tremendously, most of the dataocanelex, large, imprecise, uncertain
or incomplete. Furthermore, information retrieval may bwiecise or subjective. Therefore,
comprehensible and understandable results are requiréoebysers during the process of data
mining or knowledge discovery. Fuzzy logic has become aiveacesearch area because its
capability of handling perceptual uncertainties, suchrabiguity or vagueness, and its excellent
ability on describing nonlinear system.

The study of this dissertation is focused on two main paradigrhe first paradigm focuses
on applying fuzzy inductive learning on classification gesbhs. A fuzzy classifier based on
discrete particle swarm optimization and a fuzzy decisree tlassifier are implemented in this
paradigm. The fuzzy classifier based on discrete particlrsvwoptimization includes a discrete
particle swarm optimization classifier and a fuzzy discpedicle swarm optimization classifier.
The discrete particle swarm optimization classifier is gegtliand applied to discrete data. Whereas,
the fuzzy discrete particle swarm optimization classifieamn improved version that can handle
both discrete and continuous data to manage uncertaintyngmreécision. A fuzzy decision tree
classifier with a feature selection method is proposed, wigcbased on the ideas of mutual
information and genetic algorithms.

The second paradigm is fuzzy cluster analysis. The purpdsegrovide efficient approaches
to identify similar or dissimilar descriptions of data iastes. The shapes of the clusters is either
hyper-spherical or hyper-planed. A fuzzy c-means clusgeapproach based on particle swarm
optimization, which clustering prototype is hyper-sphatl;jis proposed to automatically determine
the optimal number of clusters. In addition, a fuzzy c-regren model, which has hyper-planed
clusters, has received much attention in recent literafiorenonlinear system identication and
has been successfully employed in various areas. Thus,zg firegression model clustering

algorithm is applied for color image segmentation.
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1. INTRODUCTION

In this current information age, a tremendous expansiohenvblume of data is seen that
is being generated and stored. It is possible to collecte steansfer and combine huge amounts
of data at very low costs. However, only a small amount of thadhas been used. It turns out
to be very difficult to exploit information in the data in artefligent way. The primary reasons
includes the volumes of data are too large to manage, thesttatdures are too complicated to be
analyzed and there is a lack of tools that can efficiently dfet&vely analyze and reveal valuable
knowledge that is hidden.

The need to understand large, complex, information-ridia dats is common to all fields
of studies. The objective of the field of knowledge discovangl data mining is the discovery
of knowledge that is not only correct, but also comprehdasiiIhis chapter briefly describes
the background to the research topics investigated in tissedation, brief descriptions of the
background are introduced in Section 1.1-1.4. The motwatif the work is discussed in Section
1.5. The contributions of the work is listed in Section 1.6 d@ime structure of the dissertation is
described in Section 1.7.

1.1. Data Mining

Data mining is called exploratory data analysis, amongratmiags. It is an analytic pro-
cess designed to explore data. Data mining aims to searatofistent patterns or systematic
relationships between variables. It then validates tharfgslby applying the detected patterns to
new subsets of data [1]. It is a statistical analysis proedssh can identify the clusters along
with collection of data. Data mining can be achieved by df@sdion, association, prediction,
sequential pattern, similar time sequences and clustging

The data mining tasks can be classified as unsupervisedemnssgd learning. Unsupervised
learning focuses on finding patterns describing the datactrabe interpreted. On the other hand,
supervised learning involves using some features or fidldseodata set to predict unknown or

future values of interest.



The two primary goals of data mining can be classifiegrsliction and description[3].
Prediction involves using some features or fields of the data set to gresiknown or future
values of interest, whereaescriptionfocuses on finding patterns describing the data that can
be interpreted by humans. Several data mining techniqueg psediction and description have
emerged that include classification, clustering, regoessiependence modeling, etc.

The classification technique is used to discover a predidgarning function that classifies
a data item into several predefined classes. It is also knevsuervised classification, whereby
given class labels are ordered to objects in the data cliedn general, classification approaches
use a training set in which all objects are already assatiaith their corresponding class labels.
The classification algorithm then learns from the trainiagdata and builds a model. This model
is then used to classify unseen data and to assign a classdaaeh data item.

1.2. Swarm Intelligence

Swarm Intelligence (SI) is a field of computer science, wh&imspired by the behavior
of real swarms, flocks, insect colonies to design and stufigiexit computational methods for
solving problems [4]. Two main areas of swarm intelligence Ant Colony Optimization (ACO)
and Particle Swarm Optimization (PSO). Ant colony optinia [5] is inspired by the real ants
finding shortest paths from their nest to the food sourcess fark their paths to the food sources
via a pheromone trail along their way. Other ants can be lédedood source by the pheromone
traces.

The coordinated search of food for bird flocking can be matielgh simple rules for
information sharing between individuals of the swarm. Basedhe analogy of the behavior of
flocks of birds, Kennedy and Eberhart [6] developed a metboduinction optimization referred
to asparticle swarm optimizationA particle swarm optimization algorithm includes a popiaia
of particles denoted as the swarm. Each individual is callgarticle that represents a location
in the problem space. Each particle starts at a random tocatith a velocity and searches for

the optimum of a given objective function by moving througle search space. The movements



of each particle depends on its velocity and the positionsrerigood solutions have already been
found by the particle, named as personal best, or by oth&clesrin the swarm, called global best.

Particle swarm optimization is a population-based optatian tool which is mainly applied
to solve various function optimization problems. Compar&ametic Algorithm (GA) and Simu-
lated Annealing (SA), the main strength of PSO is the fasveaence. Typically, each particle
keeps track of the coordinates in the search space, whicdsaoeiated with the personal best and
the global best it has found so far. In each iteration, theaisi of the PSO algorithm is changed
towards the personal and global best with some random coempofhough the main use of PSO
is for continuous function optimization, an increasing tn@mof works have investigated the use
of discrete PSO to be applied to more complex discrete pnadle
1.3. Fuzzy Rule Classification

Rule discovery is an important classification method thatlesen attracting a significant
amount of researchers in recent years. It uses a set of INTHdIES to classify a class or category
in a natural way. A rule consists of antecedents and a corseqU he antecedents of the rule
consist of a set of attribute values and the consequent atitbas the class which is predicted by
that rule.

One possible application of fuzzy logic in data mining is thduction of fuzzy rules to
interpret the underlying data linguistically. Fuzzy logian improve the classification system by
using fuzzy sets to define overlapping class definitions Thie interpretability of the results can
be improved and more insight into the classifier structucedetision making process is provided
by the application of fuzzy IF-THEN rules [8]. Fuzzy rulesdmguistic IF-THEN constructs
that have the general form “IF A THEN C”, where A and C are cditats of propositions and
postpositions containing linguistic variables. A is cdltae antecedent, and C is the consequent of
the rule. In effect, the tolerance for imprecision and utairty is exploited through granulation in
soft data compression by using linguistic variables andyuE-THEN rules [8]. In this respect,

fuzzy logic has the feature of mimicking the essential §bdf the human mind to summarize data



and focus on decision-relevant information. In a more ediorm, thei*" rule has the following
form:

IF 2, € A" AND .. AND 1;; € A” THEN ¢; € C¥ (1.1)
1 J 7 1

wherez;; denotes thg'" attribute of thei' rule. A”* denotes then'" antecedent value of thg"
attribute.c; is the consequent of thé' rule.
1.3.1. Fuzzy Decision Tree

Decision Tree (DT) mining is one of the frequently used dfasgion methods that specify
the sequences of decisions that need to be made accompariieel iesulting recommendation.
DT mining typically uses a top-down strategy, and the measf@iinformation gain is used as a
“goodness” criterion. DTs are intrinsic multi-class learsithat scale comparatively well, some-
times even outperforming other state-of-the-art methegeaally when they are used as part of
an ensemble method [9, 10]. DTs are comprehensible angbretable and can handle different
types of attributes (e.g., numerical and categorical).[Pbjpular methods of decision trees are ID3
[12], C4.5 [13] and CART [14], which generate a tree structlweugh recursively partitioning
the attribute space until the whole decision space is caedglgartitioned into a set of non-
overlapping subspaces [15], which is also called hard eligation. Soft discretization on the
other hand is when the decision space is partitioned intat @fseverlapping subspaces. The
classical crisp discretization can cause low classificagiccuracy since it can not analyze noisy
data using crisp cut points. Furthermore, crisp discretimacan lead to misclassification of new
objects, which are close to the separating boundary betdeesion classes [16].

Researchers have attempted to combine some elements of lgyt sub-symbolic ap-
proaches to decision tree induction. The fuzzy approacmésad such extensions. Due to its
ability of handling vagueness, ambiguity and reduction @mplexity, fuzzy logic [7],[8] has
been widely applied in dealing with problems of uncertginigise, and inexact data. A DT

induction method using fuzzy set theory, in other words Zyu2ecision Tree (FDT), is becoming



an increasingly popular method to solve classification lgrois. FDT, like classical DT, uses the
top-down strategy. In order to find the best so called “cut{3pFDT is based on soft discetization
and follows the DT run recursively on each partition unté tiest cut point is found.

1.4. Fuzzy Clustering

Clustering analysis is one of the popular approaches anddegmstidely used in data mining.
Clustering analysis is a process to identify groups or ctedtased on some similarity measures.
Most clustering algorithms can be categorized into two pexpiechniques known as hierarchical
and partitional clustering. The output of the hierarchidaktering is a tree showing a sequence
of clusters with each cluster being a partition of the data $&erarchical clustering does not
specify the number of clusters, and the output is indepenofetie initial condition. However,
the hierarchical clustering is static, i.e., the data oagsigned to a cluster cannot be reassigned
to another cluster. In addition, hierarchical clusteringl fil to separate overlapping clusters
due to the lack of information regarding the global shapeize sf the clusters. On the other
hand, partitioned clustering requires a fixed humber oftehgsto be specified a priori. Objective
functions such as square error function are used as a ariitettie optimization process of the data
partitioning. Partitioned clustering uses an iterativegesss to optimize the cluster centers, as well
as the number of clusters. However, it is a challenge to fied‘tptimum” number of clusters
since it always requires prior knowledge about the data.allvantages of hierarchical algorithms
are the disadvantages of the partitional algorithms anel wécsa.

The goal of clustering involves the task of dividing dataneiinto homogeneous groups
such that the data points in the same group are as similarssibpoand data points in different
groups are as dissimilar as possible [17, 2]. The importahckistering is documented in pattern
recognition [18], machine learning, image analysis [18fpimation retrieval, etc. Depending
on whether a data point belongs to a single cluster or seehrsters with different membership
degrees, clustering methods can be categorized as eititlslbatering [20, 21] or fuzzy clustering

[22]. Each data point of the data set belongs to exactly omgteal in hard clustering. Fuzzy set



theory which was proposed by Zadeh [7] in 1965 is used to desthe membership degrees in
fuzzy cluster analysis. Therefore, each data point of tha slet belongs to two or more clusters
with a membership degree between 0 and 1. Due to the capdditgnalling uncertainty and
vagueness, the potential of fuzzy clustering to reveal tigetlying structures in data with regard
to similarities or dissimilarities among them can be exgldi23].

One of the widely used methods in fuzzy clustering is Fuzzy €ahs clustering (FCM)
[24]. The FCM method attempts to partition a data set into éectbn of ¢ fuzzy groups. It
finds a cluster center in each group such that the intrardistavithin the group is minimized and
the inter-distance between each group is maximized. Ahefftizzy clustering methods that have
been applied recently mostly use an extension of the FCM ighgor As we have discussed before,

partitional clustering suffers from the following two drbacks:

e The number of clusters needs to be specified in advance. dfotine, it requires prior

knowledge or ground truth of the data.
¢ In most cases, data points in overlapping areas can not bgaraed correctly.

1.5. Motivation and Problem Statement

Fuzzy logic and fuzzy set theory which were proposed by Z4deB], have been widely
used in pattern recognition and fuzzy reasoning. Fuzzycloghich works with reasoning rules,
is very close to the human way of thinking. Unlike classicgit, fuzzy logic allows us to define
values without specifying a precise value, which is not fmesn classical logic.

In addition, fuzzy set theory makes it possible that an dbjan belong to one or more
sets with a certain degree. The interpretations of memlpedsygrees are in terms of similarity,
preference, and uncertainty. In other words, the use of nreeship degrees can state how similar
an object is to a prototypical one, indicate preferencesédeh suboptimal solutions to a problem,
and model uncertainty about the true situation. Generalgzy reasoning is close to human

reasoning. The solution obtained using fuzzy approache®asy to understand and to apply.
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Specially, fuzzy systems are the method of choice when igtiguvague, or imprecise information
has to be modeled.

As data is accumulated at an unimaginable rate from a verg wadiety of sources, the
difficulty of efficient analysis of the large amount of datagi®wing. Data mining, which is a
part of the Knowledge Discovery in Databases, is one of than realutions for this problem.
Soft computing [25] techniques such as fuzzy theory, saftes@lutionary algorithms and neural
networks have been successfully applied to data miningt @ohputing uses hybridization of
several computing paradigms such as fuzzy logic, neuravar&s and genetic algorithm. Soft
computing is more suitable for real world problems due taatserance of imprecision and the
ability of solving real world problems in reasonably lesséi Fuzzy logic, which is one of
the principal constituents of soft computing, provides afulsmechanism for data mining or
knowledge discovery.

The main motivation of this research can be summarized el

1. Fuzzy rule-based classification is one of the most pomgdproaches used for classification
problems. The key motivation for capturing data behaviothiea form of fuzzy rules is
that fuzzy rules are easy to understand, verify, and ext@8re fuzzy rule-based system
is comprehensible because each fuzzy rule is linguisyicaterpretable. However, it is a
challenge to automatically generate fuzzy rules from ttia.da order to keep the resulting
rule base small and comprehensible, both classificatidiogpeance and interpretability are
important. For this purpose, a PSO algorithm is used to devalfuzzy classifier in an

iterative approach.

2. Fuzzy Decision Trees enable the user to take into accouportecise description or het-
erogeneous values in data mining. The key feature of FDT asiriterpretability. The
rules obtained by FDT make it easier for the user to interattt the system. FDT have

been extensively used in recent years. However, featueetssi in FDT is very compu-



tationally expensive since joint entropy has to be caledaequiring the estimation of the
joint probability distributions. In order to reduce the gqmumational complexity, a variable
selection based on genetic algorithm is proposed to adtiiessombinatorial checking of

the variables.

3. Contrary to fuzzy-ruled based classification and fuzzysilee tree methods, fuzzy cluster-
ing is an unsupervised learning technique. Unlike traddélalustering, a point is assigned
to a single cluster. The use of fuzzy set theory allows a pwmirtte assigned to two or
more clusters. The Fuzzy C-means algorithm is one of the popukthods applied in
fuzzy clustering. However, the number of clusters in fuzap&ans needs to be specified
in advance. A clustering approach based on Particle Swatim@2ption that automatically

determines the optimal number of clusters is proposed.

4. Due to the variety and complexity of images, image segatemtis still a very challenging
research topic. Various technigues have been introduceabject segmentation and feature
extraction. Although fuzzy c-means can partition the fugpace efficiently, it does not
take linearity of the divided data into consideration. Imirast, the fuzzy c-regression
model clustering algorithm with hyperplane-shaped cluptetotypes returns results that
have much more explanatory power, especially due to itsivaulite nature. An unsuper-
vised approach using the fuzzy c-regression model is applel proposed for color image

segmentation.

1.6. Contributions
This dissertation makes several contributions towardgyfuagic and hybrid algorithms
combined with Particle Swarm Optimization, and Fuzzy Decislree in solving data classifi-

cation or clustering analysis problems. The contributiares

1. A Particle Swarm Optimization based discrete classitinaimplementation with a local

search strategy (DPSO-LS) was devised and applied to thsde¢a. In addition, a fuzzy

8



DPSO-LS (FDPSO-LS) classifier is proposed for both disaatecontinuous data in order
to manage imprecision and uncertainty. Experimental tegelveal that DPSO-LS and
FDPSO-LS outperform other classification methods in moseégdased on rule size, True
Positive Rate (TPR), False Positive Rate (FPR), and precidhanyisg slightly improved
results for FDPSO-LS.

. A Fuzzy Decision Tree (FDT) classifier that is based on disitretization was proposed
and applied on feature selection. However, the data cantaamy redundant or irrelevant
features. These features provide no useful informatiomynantext. In order to improve

the model interpretability and enhance the generalizad@enetic Algorithm (GA) based

feature selector is applied. The performance evaluationwcted has shown that our FDT
classifier obtains in some cases higher values than othmialetree and fuzzy decision tree
approaches based on measures such as true positive ragepdaitive rate, precision and

area under the curve.

. A clustering approach based on Particle Swarm Optinorasi proposed. This approach au-
tomatically determines the optimal number of clustersgisithreshold vector that is added
to the particle. The algorithm starts by partitioning théadset randomly within a preset
maximum number of clusters in order to overcome the fuzzyeeums shortcoming of the

predefined cluster count. A reconstruction criterion isliggito evaluate the performance of
the clustering results of the proposed algorithm. The erparts conducted show that the

proposed algorithm can automatically find the optimal nunabelusters.

. A Fuzzy C-Regression Model (FCRM) has been proposed whosatypetis hyper-planed
and can either be linear or nonlinear allowing for betterstu partitioning. Thus, this
chapter implements FCRM and applies the algorithm to colansegation using Berkeley’s
segmentation database. The results show that FCRM obtaiesaocurate results compared

to other fuzzy clustering algorithms.



1.7. Dissertation Overview
This dissertation is a paper-based version, where eachestzgs been derived from papers
published during the Ph.D. work. This is an overview of threaeing chapters of this dissertation:
In Chapter 2, a fuzzy discrete particle swarm optimizati@ssifier for rule classification is

discussed. This chapter is derived from the publications:

e Min Chenand Simone A. Ludwig, “A Fuzzy Discrete Particle Swarm Optiation Clas-
sifier for Rule Classification.International Journal of Hybrid Intelligent SystemSpecial

Issue on NaBIC 2012.

e Min Chenand Simone A. Ludwig, “Discrete Particle Swarm Optimizatith Local Search
Strategy for Rule ClassificationProceedings of the Fourth World Congress on Nature and

Biologically Inspired Computing (IEEE NaBIC'12)Movember 2012, Mexico City, Mexico.

In Chapter 3, a fuzzy decision tree using soft discretizasgroposed and a Gentic Algo-

rithm based feature selection method is discussed. Thgehis derived from the publication:

e Min Chen and Simone A. Ludwig, “Fuzzy Decision Tree using Soft Disizegion and
a Genetic Algorithm based Feature Selection MethoBroceedings of the Fifth World
Congress on Nature and Biologically Inspired Computing (IEEBN&A13), August 2013,
Fargo, ND, USA.

In Chapter 4, a novel fuzzy clustering using automatic plartsgvarm optimization is pro-

posed and discussed. This chapter is derived from the patiolic

e Min Chenand Simone Ludwig, “Particle Swarm Optimization based u2lustering Ap-
proach to Identify Optimal Number of Clusterslburnal of Artificial Intelligence and Soft

Computing Research2014.

In Chapter 5, fuzzy c-regression model clustering whoseopype is hyper-planed is applied

in color image segmentation using Berkeley’s segmentatalase.
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e Min Chenand Simone A. Ludwig, “Color Image Segmentation Using Fuzzgegression

Model.” Submitted to International Journal of Fuzzy System

11



2. AFUZZY DISCRETE PARTICLE SWARM OPTIMIZATION
CLASSIFIER FOR RULE CLASSIFICATION

The need to deduce interesting and valuable informatiam tewge, complex, information-
rich data sets is common to many research fields. Rule disc@rerule mining uses a set of
IF-THEN rules to classify a class or category in a compreidmsvay. Besides the classical ap-
proaches, many rule mining approaches use biologicadlgtiad algorithms such as evolutionary
algorithms and swarm intelligence approaches. In this telmap Particle Swarm Optimization
based discrete classification implementation with a loeatch strategy (DPSO-LS) was devised
and applied to discrete data sets. In addition, a fuzzy DES@-DPSO-LS) classifier is proposed
for both discrete and continuous data sets in order to mamageecision and uncertainty. A
Pittsburgh approach based particle swarm optimizatiodapted and applied in classification rule
mining.

The remainder of the chapter is arranged as follows. Se2tibdescribes related work. The
proposed two approaches DPSO-LS and FDPSO-LS are intrdduntedescribed in Section 2.2.
The experimental setup and results of the two approachetearenstrated in Section 2.3. Finally,
conclusions and future work are discussed in Section 2.6.

2.1. Related Work

Related work in classification rule mining using biologypired algorithms mainly include
evolutionary algorithms and swarm intelligence approach&enetic algorithm based concept
learning uses either the Pittsburgh approach or the Michagproach [26]. For the Pittsburgh
approach, every individual in the GA is a set of rules thateepnts a complete solution to the
learning problem. For the Michigan approach, each ind&idepresents a single rule that provides
only a partial solution to the overall learning task.

Genetic algorithm based concept learning has been widelg s rule mining. In [26], a
genetic algorithm based algorithm is proposed to discowamnehensive IF-THEN rules. It uses

a flexible chromosome encoding where each chromosome porrés to a classification rule. In

12



addition, a hybrid decision tree/genetic algorithm is usediscover small disjunct rules in [27].
A decision-tree algorithm is used to classify examples gilag to large disjuncts, while a new
genetic algorithm is designed for classifying examplesibging to small disjuncts.

Evolutionary approaches for automated discovery of cexasproduction rules, augmented
production rules and comprehensible decision rules aredated in [28, 29, 30], respectively.
The proposed GA-based approaches, similarly, use a flesifstinosome encoding, where each
chromosome corresponds to an augmented production ru@nprehensible decision rule or a
censored production rule. An Evolutionary Multiobject®gtimization (EMO) algorithm is used
to search for a large number of non-dominated fuzzy ruledatassifiers in [31].

With regards to swarm intelligence approaches, a classdicalgorithm called Ant-Miner,
first introduced in [32], has been successfully applied fe alassification problems. PSO is
another approach inspired by nature. However, most of tleersvntelligence algorithms for rule
classification are based on the Michigan approach ([33, 34])

Related work in fuzzy classification rule mining using thelbgy-inspired algorithms mainly
include evolutionary algorithms and swarm intelligencprapches. GA is a popular evolutionary
algorithm, which has been employed for the learning of fuzdgs. GAs have been applied to
learn both antecedent and consequent of fixed or varying auoflfuzzy rules [35, 36, 37]. Also,
GAs have been combined with other techniques like neuralorés [38], Kalman filters [39], hill
climbing [40], and fuzzy clustering [38]. EMO algorithmshigh generate a family of equally
valid solutions, have been introduced in [41].

Ant Colony Optimization (ACO), one of the swarm intelligeneehniques, has been suc-
cessfully used to extract rule based classification systémpgt2], ACO is used to extract fuzzy
IF-THEN rules for the diagnosis of diabetes. A combinatiéAGO and fuzzy set theory, named
FACO-Miner, is applied to learn a set of fuzzy rules from laokdiata in a parallel manner in [43].
An improved ACO technique using fuzzy inference rules is iggpto image classification and

analysis in [44].
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With respect to PSO, a Pittsburgh-based PSO fuzzy systerknfawledge acquisition is
introduced in [45]. A modified PSO, called Mutation PSO (MBS® built and used to obtain an
optimal fuzzy rule-base. The algorithm generated a conipaey rule base that works efficiently
for medical diagnosis problems [46]. In [47], a case studyn@ifusion detection using a PSO
approach for evolutionary fuzzy rule learning is proposdtl.is capable of detecting known
intrusive behavior in a computer network with an acceptabldormance.

PSO has been proven to be able to achieve a faster converpancie GA algorithm [45].

It has been experimentally shown that the PSO algorithnesaaéll and is not highly sensitive to
the population size [45]. As far as the authors’ knowledg®iscerned, due to the lack of flexibility
of the Pittsburgh approach [48], the Pittsburgh-based R§®ithm on rule classification is rarely
used in literature. On the other hand, in order to avoid ptareaconvergence of particles, the
Michigan approach usually requires some changes in theitil@filof the PSO algorithm to repel
a particle from its neighbor [48]. In addition, the Michigapproach aims to optimize each rule’s
quality individually, and does not take the interactioniesn other rules into account [33]. In [45],
the knowledge acquisition with a Pittsburgh-based swantelligence approach is introduced.
A learning strategy of a fuzzy-rule-based meta-schedslemialyzed and compared with other
scheduling strategies. In our study, similarly, we propasgttsburgh-based swarm-intelligence
method, however, we improve the classification by applyirigcal strategy to address PSO’s
convergences problem. Furthermore, in order for the metinbdndle imprecision and vagueness
in data sets fuzzy logic is employed.

2.2. Proposed Approaches

Two classifiers are proposed and investigated: a DPSO-IsSifiexr and a fuzzy DPSO-LS
classifier (abbreviated as FDPSO-LS). The DPSO-LS classfikesigned to classify discrete data
sets. As we have mentioned above, the use of linguistichlasand fuzzy IF-THEN rules exploits
the tolerance for imprecision and uncertainty. In this eespwe extend the DPSO-LS classifier

to a fuzzy DPSO-LS (FDPSO-LS) classifier, which can clagsdfth discrete and continuous data
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sets. In this section, we first describe the DPSO-LS algoritbllowed by a detailed description
of the FDPSO-LS classifier.
2.2.1. Discrete Particle Swarm Optimization with Local Straegy

PSO was introduced by Eberhart and Kennedy [6] and is bast#et@malogy of the behavior
of flocks of birds or schools of fish. Although the PSO algantlwas proposed for continu-
ous space problems, however, many real-world data setsatisgotical data, and therefore, we
considered this within our classification task formulatibmclassical PSO, swarm individuals are
called particles, and the population is called the swarnchfparticle has its own position, velocity
and historical information. The particles fly through tharef space by using their own as well as
their neighbors’ historical information to steer toware thcal or global optima.

In particular, a discrete PSO approach (DPSO-LS) for thesdiaation rule mining problem
is proposed. A Rule Base (RB) as a whole represents a ‘particlath RB is denoted as a
matrix, where each row describes a classification rule. Tlesrare IF-THEN rules consisting of

conjunctive antecedents and one consequent. Hencé” iharticle is presented as follows:

a1y Q19 a1, €
i i i i

Pi — ) ) ) (2.1)
R (S

wherea!,,, represents the’" antecedent in thex'” rule of thei™ particle.c!, is them consequent
of thei'" particle. m is the number of rules, andis the number of antecedents. Thus, a patrticle
consists ofn rules, where each rule hasantecedents and 1 consequent.
The values of every antecedent are enumerated conseyugiagiing from 1. In this work,
an antecedent has 3 discrete values, it will be enumeratéd, as3}. In this way, 0 means the

antecedent is ignored. Thus, a rule with all its antecedesnsg a value of O is not allowed. In
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addition, the constraints of the swarm position updatiracess need to be considered since the

particle might fly outside the solution space:

a €0, NFy],j €{1,2,...,m} (2.2)
ke{l,2 ..n} (2.3)
Cj’ € [17 NFout] (24)

whereN F;, andN F,,,; represent the number of discrete values for an antecedeéat@nsequent,

respectively. The'" particle’s velocity matrix is denoted as follows:

i i i i
U1p UVio - U1y VUipnl
i i i i
Ug1 Ugo oo Ugp Ugpyg
Vi = (2.5)
i i i i
Um,l Um,2 Um,n Um,nJrl

wherev;i’k € [Vinins Vinaz)» J € {1,2,...,m}, and the velocity matrix has the same dimension as the
position matrix.V,,;, andV,,., are the minimum and maximum values allowed for the velocity,
respectively. More specifically, we use a change vettpwhich is the change vector for thé

particle with the same dimension as the velocity matrix.

- - - -
U1 UVio - Ui VUipnl
g i i i
- Ugp1 Voo o Ugp Uypip
; = (2.6)
i - - -
Um,l Um,2 Um,n Um,nJrl

The values ol; are randomly assigned to 1, 2 and 3, where 1, 2 and 3 are deamtacee

directions. 1 is denoted as the direction of the particleiw@ment from the current position to
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the local best positionKbest). 2 is denoted as the direction of the particle’s movemeorhfthe
current position to the global best positiaibest). 3 is denoted as the direction of the particle’s
movement from the current position to another position atocen within a specified range. The
three directions are randomly assigned by following thiosat;, wy, andws (w; < wy < w3). As
shown in Equation 2.7, the sum of the ratios should be equahéo By adopting the concept of
change vector, the velocity of the particle can be updateddmgidering the local best position,
global best position and random changes. Precisely, asrsimoiaquation 2.8, for thé/ particle,
V1 (t) is the difference between the local best position and theentiposition, whilel; consist of
1s, and the rest of the values in the matrix are set to 0. Simil&(¢) is the difference between the
global best position and the current position, whileonsist of 2s. Values of;(t) are randomly
assigned within a specified range (see Equation 2.9), whlleeg ofV; consist of 3s at the same

positions.® denotes a matrix addition.

w1 + () + W3 = 1 (27)
V(t+1)=Vi(t) & Va(t) & Va(t) (2.8)
Vﬂ(t) € [Vmin7 Vma:c] (29)

After the velocity has been calculated, the particle’s fyasican be computed as follows:

Pt+1) =Pty V(t+1) (2.10)

2.2.2. Definition of Overall Fitness
We propose a rule selection method where the number of fitaggin rules included in each

rule set is fixed to a predefined number. That is, each rule gletarspecific number of rules (a
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rule base) is a particle. Thus, the overall fithess functicth@rule set can be defined as follows:

NCP(S)

F(S) = Accuracy(Coverage) = T

(2.11)

whereNC P(S) is the number of instances that have been correctly clagifitne data sef, and
|S| is the number of instances in the dataSet
2.2.3. Local Mutation Strategy

Since PSO, in general, can easily get stuck in local optinaga strategy need to be devised
that is run after a certain number of iterations has elapsggiarticular, the local strategy that was
devised for DPSO-LS makes use of mutation. The proposetidtredegy refines the worst rule of
the best rule base, i.e., the global best position, in oenprove the overall performance every
20 iterations. Thus, for each selected worst rule, we mutiagevalue of the antecedent randomly
within the constraints to see whether it improves the oVg@eiformance or not. If it improves
the performance, we stop and replace the worst rule with ¢eemle. Otherwise, we continue
mutating randomly until we have found a new rule or until weehanutated a maximum of 10
times.

The equation to measure the quality of every rule uses thiatejorrected precision [33]

equation, which is given as:
1+TP

f:1+TP+FP

(2.12)

whereT P is the number of True Positives, aht is the number of False Positives. The equation
is also used to prune the rules for which thealue is less than 0.1.
2.2.4. DPSO-LS Classifier

The proposed algorithm includes four main phases: data@eepsing phase, training phase,
DPSO phase and testing phase. As shown in Figure 1, the DEESsIa&sifier includes all the solid
rectangles and excludes the red dashed rectangles (tleesalamused for FDPSO-LS). The four

phases are described respectively as follows.
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Figure 1. Processes of DPSO-LS based classifiers.

1. Data Preprocessing Phase

In this phase, firstly, we need to remove instances that hakeawn values since the
proposed system cannot handle these values. It is also kimatthe proposed system can
only handle numerical data, if the class labels are non-mgaledata, we convert it into
numeric values. Then, the data set is randomly partitionex10 folds. 9 folds of the data
is training data, which is used in the training phase, andld &b the data is testing data,

which is used in the testing phase.

2. DPSO-LS Phase

In this phase, the swarm is initialized. The velocity andifias of each patrticle in the

swarm are calculated; Best and Pbest as described above are calculated, and their values
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are updated after the velocity and position have been ugdeateordingly. A local strategy
is applied every 20 iterations. If the stopping criteriors Imat been met7best and Pbest
are forwarded to the training phase to calculate the ovétadiss (see Equation 2.11), and
individual fitness (see Equation 2.12). The DPSO-LS is stdpphen the maximum number

of iterations is met. The fin&kbest is forwarded to the testing phase.

3. Training Phase

A rule base which is forwarded by the DPSO-LS phase is usedbssify the train-
ing data set. The overall fithess and individual fithess aleutaied accordingly and are

forwarded to the DPSO-LS.

4. Testing Phase

The finalGbest forwarded by the DPSO-LS phase is used to classify the tedtita set,

and the experimental measures are calculated.

2.2.5. FDPSO-LS Classifier

A modified classifier, called fuzzy DPSO-LS classifier (FDPIS®), is implemented for both
discrete and continuous data sets. A fuzzy partition withmgpke fuzzy grid is adopted. Fuzzy
set theory and the concept of linguistic variables, whichengoposed by Zadeh [7, 8], have been
widely used in pattern recognition and fuzzy reasoning. Ube of the simple fuzzy partition
method on classification rule discovery has been introducf&¥]. Applications on the fuzzy rule
generation for control problems were proposed in [49]. Mueg, several fuzzy approaches for
partitioning a pattern space were discussed in [50, 51].

Specially, an example of using the simple fuzzy partitiorthod is showing in Figure 2,
each attribute can be partitioned into three linguistim&e(denoted as L = low, M = medium, H =
high). Triangular membership functions are used for thgdistic terms. In the proposed method,

each linguistic term is viewed as a candidate 1-dimensiaayfgrid. Considering a two-class
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classification problem as in Figure 2, two antecedents viiteet membership functions can be
partitioned into 9 grids on a 2-dimension plane. The clogedes and open circles denote the

pattern in class 1 and class 2, respectively.

A ® Class1
A O (lass2
H [ P A
...... S
. e b |
M | od o d d
@ P
—————— ey e
L | Sd% i
> ® | ) |

Figure 2. An example of fuzzy partition.

However, in the case of anrdimensional classification problem, where each dimenisam
m linguistic terms, the possible number of rules:i8. As the number of rules rises, an efficient
algorithm that can automatically find the fuzzy rules is impot and necessary.

Normally, several rules of the rule base are fired in the fumky classification system. The

predicted class for a given instance is determined by thelmeeship degree of the input variables.
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Specifically, for each clags

Belassk= arg max I;n lgljlm Hij (2.13)
wherey;; is the input membership degree of tierule of thej antecedent. The class that has
the largespi value is selected as the predicted class. Moreover, utik®PSO-LS classifier, the
rule that has the smallestvalue is chosen as the worst rule.

As shown in Figure 1, FDPSO-LS has similar processes as DEgMwowever, all the
rectangles are used. The four main phases of data prepirggesaining, DPSO-LS and testing
are similar to DPSO-LS. In the data preprocessing phaseldsethe removal of unknown values
and data partitioning processes, a data normalizatiorepsois used to normalize continuous data.
Each column of the data set is normalized between 0 and 1 Esjngtion 2.14:

Xi — Xmin

Xi=—-—7—_—— 2.14
Xmar - Xmm ( )

whereX; is thei* value of the column.X,,;, is the minimum value of the column, aod,,,.. is
the maximum value of the column. The data set is partitioneml 10 folds. 9 folds of the data are
used as the training data set, and the remainder is used &stluata set for the implementation.

The DPSO-LS phase is the same as for the DPSO-LS classifiave\o, in the training
and testing phases, a fuzzy inference process is addedeféuzhy reasoning process. The Fuzzy
Inference System (FIS) is a popular computing system basedeoconcepts of fuzzy set theory,
fuzzy if-then rules, and fuzzy reasoning. It has been ssfaly applied to a wide variety of
fields, such as automatic control, data classification, gxgystems, decision analysis, etc. Due to
its multidisciplinary nature, FIS is known by numerous oth@mes. However, we only concentrate
on the concept of the fuzzy IF-THEN rules.

The basic structure of a fuzzy inference process consistsreé modules: fuzzification,

fuzzy rule base and inference, and defuzzification. As shiowiigure 3, a crisp input is taken,
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the fuzzification module coverts the crisp input into a fugyut using the fuzzy set theory. In the
second module, fuzzy rules are contained in a rule base ambaming mechanism that performs
the inference procedure is included. Finally, a method &fizigfication to extract a crisp output
that represents a fuzzy set is needed by the third module t®ile way outputs are determined,
there are two types of inference systems: Mamdani and Sug®tamdani’s fuzzy inference
system was among the first control systems built using fuetytteory, which was proposed
in 1975 by Ebrahim Mamdani [52]. Sugeno, or Takagi-Sugeaodl was introduced in 1985
[53]. Itis similar to the Mamdani method in many respectsyéeer, the main difference between
Mamdani and Sugeno is that the Sugeno output membershipdaosare either linear or constant.

In this approach, only the Mamdani style of defuzzificatisconsidered.

“Crisp” Input —>| Fuzzification ¥

“Fuzzy” Input
Fuzzy Rule Base
and Inference
|
v
“Fuzzy” Output

L I’-Crisp! ¥

Defuzzification [—— Output

Figure 3. Fuzzy inference process.

2.3. Experiments and Results
As mentioned above, the experiments are conducted for #ppeoaches: DPSO (with-
out local strategy), DPSO-LS and FDPSO-LS. The experinheetap for both approaches are

described in the following subsection followed by the dggmn of the experimental results of
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both approaches. The results of DPSO-LS and FDPSO-LS &ed liespectively, followed by a
comparison.
2.3.1. Experimental Setup

The experiments of the two approaches are conducted on aanwhtata sets taken from
the UCl repository [54]. The experiments of the two approadare evaluated on an ASUS desktop
(Intel(R) Dual Core 13 CPU @3.07 GHz, 3.07 GHz) Matlab Versiot37.All measurements of
the two approaches are tested 10 times using 10-fold crdidatian [60]. Each data set is divided
into 10 random patrtitions. Nine partitions of the data setwsed as the training data, and one
partition is selected as the test data.
2.3.2. Results of the DPSO-LS Approach

As far as the performance evaluation is concerned for thpgz@d DPSO-LS algorithm, a
comparison with other rule classification algorithms JRARP and decision tree algorithm J48 is
performed. These three algorithms have been implement&tEKA (Waikato Environment for

Knowledge Analysis) [60]. The algorithms are summarizetbdews:

¢ JRip is a RIPPER rule learning algorithm [55]. JRip is based on asson rules with re-
duced error pruning (REP), and integrates reduced erromgywvith a separate-and-conquer

strategy. It is a very common and effective technique foundkeicision tree algorithms.

e PART is created by Frank and Witten [56] for a partial decisioeirEART combines the
separate-and-conquer strategy of RIPPER with the decisen It works by building a rule

and removing its cover until all the instances are covered.

e J48is a decision tree implementation induced by the C4.5 algmritvhich is developed by
Quinlan [13]. It learns decision trees for the given data twystructing them in a top-down

way.
Table 1 shows the parameters and their values used for ouDPPBSO-LS and FDPSO-LS
algorithms. Usually, a large swarm size requires lesstitara to reach convergence in PSO. In
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Table 1. Parameters and their values of the DPSO and DPSdgbfthms.

Parameters Values

Swarm Size 25
Maximum Iteration 100

(w1, wa, w3) (0.2,0.3, 0.5)

[Vmina Vmaz] ['1, 1]

our proposed algorithm, the swarm size is chosen as 25, amddkimum number of iterations for
each run is set to 100. The description of the selected d&taised are summarized in terms of
number of attributes, number of instances and number o$etaas shown in Table 2. The 6 data
sets are listed alphabetically, where dataBsetist-LandBreast-Ware abbreviations fdrjubljana

Breast CanceandWisconsin Breast Cancgrespectively.

Table 2. Data sets used for the experiments.

Data Set Attributes Instances Classes

Balance-scale 4 625 3
Breast-L 9 286 2
Breast-W 9 699 2

Car 6 1728 4
Lymphography 18 146 4
Tic-Tac-Toe 9 958 2

Measured are the rule size, the weighted average True \Ro&lates (TPRs) and False
Positive Rates (FPRs), as well as the precision.

As we mentioned before, the DPSO can easily get stuck in mai#ha. In order to see the
performance improvements of the local strategy, we comp&®80 (without local strategy) with
DPSO-LS (with local strategy) by running them 10 times fof it@rations each. The average
accuracy of the 10 runs is listed in Table 3. A correspondimgrtiled Student’s t-test with a
significance level o6% is applied. The results show that the proposed DPSO-LS daie\ac
better accuracy in all cases. However, DPSO-LS only shogrgfgiant improvements in 3 of 6

cases.
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Table 3. Average accuracy of DPSO and DPSO-LS for 100 iterati

Data Set DPSO (%) DPSO-LS (%) Significance
Balance-scale 77.2# 3.72 83.39+ 3.20 Yes
Breast-L 82.5H 2.63 86.71+ 1.07 Yes
Breast-W 91.43t 4.25 94.20+ 4.30 No
Car 94.92+-5.06 97.30+4.40 No
Lymphography 76.23 3.51 80.10+ 3.60 Yes
Tic-Tac-Toe 100.0G6: 0.00 100.06+ 0.00 No

In Figure 4, we see the accuracy of DPSO-LS compared to DPSIP, PART and J48.
Error bars are shown on the histograms of the DPSO-LS and DR8@he other algorithms,
no variants were reported since they are not captured by WEKANost cases, the DPSO-LS
algorithm has a higher accuracy. Although the Breast-W deattd@es not show better results, the

values of the other four algorithms are very close.

100 T

H DPSO-LS

Coverage (%)

HDPSO
JRip
N PART

)48

Figure 4. Accuracy of all algorithms.

For all rule mining algorithms it is necessary to test therage rule set size to indicate the
complexity of the rule set produced by each algorithm. Tdbists the size of the rule set required
for DPSO, DPSO-LS, JRip, PART, and J48. As shown in the tahke JRip algorithm always
requires the least number of rules, while the PART algoritbauires the most number of rules.

J48 uses by far the most number of rules with the exceptioheoBreast-L data set. The number
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of rules for the proposed DPSO-LS algorithm is less than &igTPalgorithm. Both DPSO-LS

and DPSO show comparable results in terms of rule size.

Table 4. Average rule size of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 12 47 52 26.0%3.10 24.7&2.66
Breast-L 3 20 4 15.25-450 17.06-3.50
Breast-W 6 10 14 6.05+3.01 7.13:2.08
Car 49 68 131 43.20:5.20 44.184.17
Lymphography 6 13 21 11.15250 9.4@:3.06
Tic-Tac-Toe 9 49 95 35.33.76 38.8&1.70

Table 5 lists the average weighted TPR, which is also refaoe sensitivity. As shown

in the table, the proposed algorithm, DPSO-LS, scorestbide DPSO, JRip, PART and J48 in

terms of sensitivity.

Table 5. Average weighted TPRs (%) of all algorithms.

DataSet  JRip PART J48 DPSO DPSO-LS
Balance-scale 80.8 87.5 76.6 80.26:3.12 87.4@-2.30
BreastL  71.0 71.3 755 81.8®.22 89.50:3.70
BreastW 954 93.8 94.6 92.3@.30 97.27:2.10
Car 86.5 05.8 024 93.5.10 98.84:1.33
Lymphography 77.7 76.4 77.0 73:38.26 80.50:4.40
Tic-Tac-Toe  97.8 94.3 84.6100.00:0.00 100.0Q:0.00

The weighted average FRPs, which repredeB8pecificity are listed in Table 6. The FPRs
of DPSO-LS are less than the other algorithms except for yinephography data set.
The weighted average precision values are compared in Tablee precision of the DPSO-

LS is always better than DPSO, JRip, PART and J48, showingaitge$t improvement on the

Breast-L data set.
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Table 6. Average weighted FPRs (%) of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 16.4 9.7 17.3 15403.25 8.70+£2.20
Breast-L 489 542 524 25.8%.30 16.00:7.20
Breast-W 4.4 8.0 6.4 1.200.18 0.50+0.01
Car 6.4 1.6 5.6 5.2¢2.30 1.04+0.05
Lymphography 21.6 21 18.7 30.115.60 22.0@-3.40
Tic-Tac-Toe 3.10 7.6 19.1 0.00+£0.00 0.00+0.00

Table 7. Average weighted precision (%) of all algorithms.

Data Set JRip PART J48 DPSO DPSO-LS
Balance-scale 745 83.3 73.2 7%H9%80 85.40+3.20
Breast-L 68.8 68.2 75.2 83.13.30 89.50+3.60
Breast-W 955 938 946 92.33.10 96.59-2.15
Car 88.1 959 924 093.283.30 99.10+1.20
Lymphography 76.5 76.6 77.6 71385.12 7857#5.80
Tic-Tac-Toe  97.8 94.2 84.6100.00:0.00 100.0G:0.00

2.4. Comparison and Results of DPSO-LS and FDPSO-LS for Discte Data Sets
In order to compare the performance of DPSP-LS and FDPSOnLMiszrete data sets, a
corresponding two-tailed Student’s t-test with a signifialevel of5% is applied. As shown in

Table 8, only 2 of the 5 data sets show significant improvement

Table 8. Average accuracy of DPSO-LS and FDPSO-LS for 10atitns.

Data Set DPSO-LS (%) FDPSO-LS (%) Significance
Balance-scale  77.2% 3.72 77.13+ 2.50 No
Breast-L 82.5H 2.63 86.71+ 1.07 Yes
Breast-W 91.43t 4.25 93.20+ 2.30 No
Car 94.92+ 5.06 97.30+ 4.40 No
Lymphography 76.23% 3.51  80.10+ 3.60 Yes

In Figure 5, we see the average accuracy of the DPSO-LS cechpa-DPSO-LS. Error

bars are shown on the histograms of both the proposed dlgwit In most cases, the proposed



FDPSO-LS algorithm has a higher accuracy. Besides the Bakuale data set, FDPSO-LS

achieves better results for the other four data sets.
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Figure 5. Accuracy comparison of DPSO-LS and FDPSO-LS.

In Table 9, the average rule size of DPSO-LS and FDPSO-LSngpaced. FDPSO-LS
requires less number of rules than DPSO-LS due to the usabe bhguistic variables.

Table 9. Average rule size of DPSO-LS and FDPSO-LS for 10.runs

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 24.78 2.66 7.124+2.10
Breast-L 17.00t 3.50 10.24+ 3.07
Breast-W 7.13t 2.08 7.084+ 2.30
Car 4418+ 4.17 14.12+ 4.40
Lymphography  9.46- 3.06 5.60+ 3.60

Table 10 shows the average weighted TPR of DPSO and FDPSGRSSO-LS does not
show improvements compared to DPSO-LS for discrete dadaBBPPSO-LS scores slightly better
on 2 out of 5 data sets.

As shown in Table 11, FDPSO-LS has a smaller FPRs in most caseptdor the Car data
set.

In terms of average weighted precision, FDPSO-LS does ot gihprovements compared

to DPSO-LS on the discrete data sets except for Lymphograplsyrown in Table 12.
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Table 10. Average weighted TPRs of DPSO-LS and FDPSO-LS fouri$.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 87.462.30 88.13+3.12
Breast-L 89.50+ 3.70 86.71+ 2.70
Breast-W 97.27+ 2.10 95.7+ 2.30
Car 98.84+ 1.33 93.80+ 3.45
Lymphography 80.5@ 4.40  83.80+ 2.60

Table 11. Average weighted FPRs of DPSO-LS and FDPSO-LS fouri€)

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 8.74 2.20 1.65+ 2.80
Breast-L 16.00+ 7.20 7.42+1.07
Breast-W 5.00k 1.20 4,104+ 2.23
Car 1.04+ 0.05 5.80+ 2.18
Lymphography 22.0& 3.4 16.50+ 2.34

Overall, with respect to discrete data sets, FDPSO-LS dogsignificant good improve-
ments in most cases. One reason is that it does not efficieatipalize discrete data sets using
liguistic terms. Usually, it causes overfitting and decesathe accuracy. For example, for the
Balance-scale data set each attribute has either 3 or 4 @isakies, and FDPSO-LS uses 3
membership functions. When we normalize the attribute it 3 membership function, the
data does not partition well for the attributes having srde€rete values.

2.5. Results of FDPSO-LS Approach for Continuous Data Set

As far as the performance evaluation for the proposed FDPS3-concerned, a comparison
with other rule classification algorithm FURIA is performéeJRIA is short for Fuzzy Unordered
Rule Induction Algorithm which extends the well-known RIPP&RBorithm [57]. FURIA learns
unordered fuzzy rule sets instead of rule lists. It inclu@esmber of modifications and extensions

to deal with uncovered examples.
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Table 12. Average weighted precision of DPSO-LS and FDPS®ek 10 runs.

Data Set DPSO-LS (%) FDPSO-LS (%)
Balance-scale 85.40+ 3.20 82.10+ 2.50
Breast-L 89.50+ 3.60 85.71+ 3.32
Breast-W 96.59- 2.15 96.70+ 4.30
Car 99.10+ 1.20 97.30+ 2.40
Lymphography 7854 5.80 82.80+ 3.41

The description of the selected data sets used are sumuohamizerms of number of at-
tributes, number of instances, and number of classes assimofable 13. The 5 data sets are

listed alphabetically.

Table 13. Datasets used for the proposed fuzzy rule-basteinsyising DPSO-LS.

Data Set Attributes Instances Classes
Breast-W 9 699 2
Glass 10 214 7
Haberman’s Survival 3 306 2
Iris 4 150 3
Pima Indians Diabetes 8 768 2

Measured are also the rule size evolved, the weighted avd@f@Bs and FPRs, as well as the
precision.

In order to observe the performance, we compared FURIA witRED-LS by running both
algorithms 10 times for 100 iterations each. The averageracyg of the 10 runs is listed in Table
14. The corresponding two-tailed Student’s t-test withgaigicance level o6% was applied. The
results show that the proposed FDPSO-LS can achieve betigraey in most cases except for the
glass data set. However, FDPSO-LS only shows significantdugments for 2 of the 5 data sets.

In Figure 6, we see the average accuracy of the proposed FILBSfOmpared to FURIA.
Error bars are shown on the histograms of the proposed FOES®-or most data sets, the
proposed FDPSO-LS algorithm has a higher accuracy. Bediolethe glass data set FDPSO-

LS obtains higher accuracy for the other data sets.
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Table 14. Average accuracy of FURIA and FDPSO-LS for 100 tik@na.

Data Set FURIA (%) FDPSO-LS (%) Significance
Breast-W 94.71 95.20+1.30 No
Glass 70.56 69.702.20 No
Haberman’s Survival 72.55 75.02:2.40 Yes
Iris 94.67 95.56+1.70 No
Pima Indians Diabetes 74.48 80.60+2.30 Yes
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Figure 6. Accuracy comparison of the proposed FDPSO-LS &Rl k.

Table 15 lists the size of the rule set required for FDPSO-h& FRURIA. As shown in the

table, the number of rules for the proposed FDPSO-LS is leas fior the FURIA algorithm for

most data sets. The reason is that the proposed FDPSO-L&ethe rule size since it uses the

local strategy. The values aftérare standard deviations of the corresponding results.

Table 16 lists the average weighted True Positive Rates (TRR&h are also referred to as

sensitivity. As shown in the table, the proposed algoritRDPSO-LS, scores better than FURIA

for most data sets in terms of sensitivity except for the &Gtia set.

The weighted average FPRs, which reprede8pecificityare listed in Table 17. The FPRs

of the proposed FDPSO-LS are less than FURIA, which indidit@isFURIA has a higher false

positive rate.
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Table 15. Average rule size of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 15 7.12+2.10
Glass 16 9.40+3.20
Haberman’s Survival 4 7.202.40
Iris 5 4.00+1.70
Pima Indians Diabetes 5 7.70+2.30

Table 16. Average weighted TPRs of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 94.7 95.20+2.13
Glass 70.6 69.50+3.21
Haberman’s Survival 72.5 78.10+2.72
Iris 94.7 94.74+2.33

Pima Indians Diabetes 74.5 81.20+3.11

The weighted average precision values are compared in T8bl€he precision of FDPSO-
LS is always better than FURIA, showing the largest improveino® the Haberman’s Survival
and Pima Indians Diabetes data sets.
2.6. Summary

In this study, we have proposed two classifiers: DPSO-LS @iéJO-LS. Both classifiers
are based on the proposed DPSO-LS algorithm, which use® dagk to represent a ‘particle’
that evolves the rule base over time. DPSO-LS is implemeates matrix of rules, representing
IF-THEN classification rules, that have conjunctive antkstgs and one consequent. In addition, a
local mutation search strategy was incorporated in ordek® care of the premature convergence
of PSO. The DPSO-LS classifier was applied on discrete dégdased on the IF-THEN classifi-
cation rules, while the FDPSO-LS is based on the conceptzalflF-THEN rules and is applied
to both discrete and continuous data sets.

Experiments were conducted using 6 discrete data sets aodtihiuwous data sets that are

taken from the UCI repository. Our DPSO-LS algorithm was cared against DPSO, JRip,
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Table 17. Average weighted FPRs of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 6.7 4.70+3.23
Glass 13.1 7.80+3.81
Haberman’s Survival 57.3 33.80+5.20
Iris 2.7 2.58+1.20

Pima Indians Diabetes 36.7 23.30+:3.70

Table 18. Average weighted precision of FDPSO-LS and FURIA.

Data Set FURIA (%) FDPSO-LS (%)
Breast-W 94.7 96.70+2.70
Glass 70.5 70.10+3.20
Haberman’s Survival 69 .0 77.80+3.13
Iris 94.7 95.10+2.40

Pima Indians Diabetes 73.7 80.23+-3.61

PART and J48. In addition, FDPSO-LS was compared against AlURéasures used were rule

size, TPRs, FPRs, and precision. The experimental resuétalexithat DPSO-LS achieves better
performance for most data sets than FPSO-LS applied toetiesdata sets. On the other hand,

FDPSO-LS obtains better performance when applied to contis data sets compared to FURIA.
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3. FUZZY DECISION TREE USING SOFT DISCRETIZATION AND A
GENETIC ALGORITHM BASED FEATURE SELECTION METHOD

In data mining, decision tree learning is an approach thes asdecision tree as a predic-
tive model mapping observations to conclusions. The fuzggrsion of decision tree learning
adopts the definition of soft discretization. Many studiasehshown that decision tree learning
can benefit from the soft discretization method leading tprowed predictive accuracy. This
chapter implements a Fuzzy Decision Tree (FDT) classifiarigbased on soft discretization by
identifying the best “cut-point”. The selection of impantdeatures of a data set is a very important
preprocessing task in order to obtain higher accuracy otlkhssifier as well as to speed up the
learning task. Therefore, we are applying a feature selectiethod that is based on the ideas of
mutual information and genetic algorithms. The perforngaenaluation conducted has shown that
our FDT classifier obtains in some cases higher values ttrar decision tree and fuzzy decision
tree approaches based on measures such as true positj)\falsa@ositive rate, precision and area
under the curve.

The contribution of this chapter is arranged as follows.ti8ac3.1 describes related work.
The proposed approach is introduced and described in 8egi® The experimental setup and
results are demonstrated in Section 3.3. Finally, conohssiand future work are discussed in
Section 3.4.

3.1. Related Work

Related work regarding the classification task in the areaatd dnhining include neural
networks, naive Bayes classification, decision tree, gemgorithm, etc. [58]. Neural networks
have become equally popular to decision trees due to itsuekase of application and abilities to
provide gradual improvements [59]. Neural networks aren seedata driven self-adaptive meth-
ods, which can adjust themselves to the data without anyagixgpecification of the underlying
model [60]. However, neural networks lack similar levelscomprehensibility as decision trees,

which is a problem when users want to understand or justéydércisions [59].
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Naive Bayes learning is one particular strategy belongintyéocategory of learning meth-
ods. Itis a statistical method for classification, whichaséd on applying the Bayes’ theorem with
the naive independence assumption [61]. Naive Bayes lgatras been deployed in numerous
classification tasks due to its simplicity, effectivenessl ancremental training ability. Naive
Bayes classifiers have widespread deployment in medicahdgg)[62], email filtering [63], and
recommender systems [64, 65]. Due to the independence pseunof Naive Bayes, a large
amount of research has been conducted on relaxing the NayesBadependence assumption in
machine learning. However, learning the tree structuretgnivial especially in the area of text
classification [66].

With respect to fuzzy decision trees applied to classificatasks, fuzzy decision trees have
been applied in the medical and financial fields [59], and haes used for ranking tasks [11], etc.
Fuzzy decision tree induction follows the same steps asothahen building a classical decision
tree. [67] proposed a novel criterion on measurement ofitiegruncertainty, and [68] proposed
an alternative criterion based on fuzzy mutual entropy engbssibility domain.

Related work related to feature selection has shown that search approaches have been
proposed. [69] aggressively reduce the document vocahulamaive Bayes model and a decision
tree approach using an information measure. A normalize@ahinformation feature selection
(NMIFS) [70] is proposed as a measure of redundancy amorigré=a Two feature evaluation
metrics for the naive Bayes classifier have been applied oni-olass text data sets in [71].
Three new approaches to fuzzy-rough feature selectiondbasduzzy similarity relation have
been proposed in [72] to provide robust solutions and adeétmols for data analysis.

In general, feature selection can improve the scalabéifyciency and accuracy of classi-
fiers. Therefore, our FDT approach makes use of a featuretmei¢echnique.

3.2. Fuzzy Decision Tree Classifier
The main difference between classical DT and FDT is usingpcar soft discretization

respectively. The classical DT uses crisp discretizatibrienfuzzy decision tree is based on soft
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discretization. The decision space is partitioned intotasron-overlapping subspaces using the
crisp discretization method. For soft discretiztion, tleeidion space is partitioned into a set of
overlapping subspaces. For both classical and fuzzy dedistes, each path from the root node to
aleaf node represents a classification rule. In a more éixfaien, thei’* branch has the following
form:

IF 2, € A" AND .. AND 1;; € A” THEN ¢; € C¥ (3.1)
1 J 7 1

wherez;; denotes thg'" attribute of thei"* branch. A" denotes then'" antecedent value of the
4" attribute.c; is the consequent of thé rule.

The fuzzy decision tree has been extended in the possitidityain based on fuzzy set theory
[70]. A fuzzy setF is characterized by a membership functib(u) : U — [0,1]. F(a) is the
membership degree &f taking a value: € U. LetV = {F}, F3, ..., F,,,} be a family of fuzzy sets
of U. Then

Y Fi(a)=1VYaeU (3.2)

=1
The cut-point is determined by the fuzzy set pajrand A, such thatd;(a) + As(a) = 1.

The fuzzy class entropy in a data $eis:

k

E(S) = plc;, S)logp(c;, S) (3.3)

j=1

wherep(c;, 5) = -, e, (Ai(a;) + As(as)) is the fuzzy proportion of examples . The class

information entropy is calculated by the probability of Zyzartition as follows:

S1 Sa
E(S) = %E(Sl) + %E(Sg) (3.4)
k
E(S;) =— Zp(cj,Si) log p(c;, Si),i=1,2 (3.5

J=1
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NSZ'C]'

p(cj, Si) = i=1,2 (3.6)

whereNS = 391 S22 A(a,), NS = S5 Ay(a,),i = 1,2.

A fuzzy discretization process mainly includes four phgsegn in Figure 7): sorting, eval-
uation, splitting and stopping. Since we are also considefieature selection as a preprocessing

step, it is the step to be performed before the other fourgshae started.

’

GA Feature Selection
v

Sorting

v
( Evaluation \

Find a cut-point

v
Fuzzify the cut-point
[ ]

\ Evaluate )

All best cut-points
found ?

h 4

Figure 7. A fuzzy discretization process.

3.2.1. Preprocessing Phase
Feature selection is a common technique in data mining ierdodreduce the overall feature
set that is provided to the algorithm choosing the most ingmaifeatures to be used for the training

of the classifier. However, not only does the reduction ofuiess contribute to a faster learning
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process, but it usually also improves the classificationuamy. For the feature selection task,
methods from information theory are frequently used. Featalection involves the maximization
of the mutual information between features and the clasal.lddowever, this procedure is very
computationally expensive since the joint entropy has t@dleulated requiring the estimation
of the joint probability distributions. In order to redudeetcomputational complexity, a variable
selection based on the principle of minimum-redundancyimam-relevance, which maximizes
the mutual information indirectly was proposed in [73]. Hmwar, since all possible combinations
of variables need to be checked, there is still a large coatiputal portion involved, thus, a simple
method of incremental search, that obtains sub-optimaitisols has been proposed by previous
work [74]. The use of a genetic algorithm was proposed toeskithe combinatorial checking of

the variables, which our FTD classifier has adopted.

Algorithm 1 GA-based Feature Selection Method

Input: number of features
Input: feature vector
Input: class vector
Output: selected feature vector
geNma- Maximum number of generations
Npop: population size
calculate entropy of each feature
calculate output entropy
calculate mutual information between feature and output
calculate mutual information between features
random initialization of population
for gen =1 : gen,,q, dO
for index =1 : Ny, do
calculate maximum relevance
calculate minimum redundancy
calculate fitness by subtracting max. relevance from migumdancy
end for
rank population according to their fithess
perform crossover
remove repeated features and features withropy = 0
end for
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Algorithm 1 shows the steps involved in the feature selecpimocess. The inputs are the
number of features of the data set, feature vector, and gkssr. The output is a vector of
selected features. The first steps of the algorithm are ticalation of the entropy of each feature
vector and the class vector, as well as the calculation ahilteial information between the feature
and class vectors and between the features. Once theses eauealculated the GA process can
start by setting up a population of randomly initialized @tnosomes. The first generation can
begin. While iterating over the population, the maximum vatee, minimum redundancy and
fitness value are calculated for each chromosome. Aftesnidie population is ranked, crossover
is performed, and repeated features and features with aopgndf O are removed and another
generation is started. This process proceeds until thermawinumber of generations is reached.

The feature vector found is the one used for the next stepsgriproposed FDT approach.

1. Sorting Phase

The continuous values of a feature are sorted in either dstgior descending order.
This task can be computationally expensive if care is narnakhen considering the sorting
algorithm. Quick-sort is one efficient sorting algorithmhiah has a time complexity of

O(NlogN) [75].

2. Evaluation Phase

The next step after sorting is to find the best “cut-point”,isthcan split a range of
continuous values into two parts. In the proposed algoritime evaluation function used is

as given by Equation 3.4.

3. Splitting Phase

The intervals are split in a top-down strategy, which reggito evaluate “cut-points”. In
order to choose the best one and split the range of contintaduss into two partitions, the

algorithm runs recursively for each part until a stoppini¢ecion is satisfied.
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4. Stopping Phase

A stopping criterion specifies when the discretization pexcis stopped. Specifically, a
threshold valué < [0.1,0.2] is predefined. If the truth level of a bran%ﬁsi is greater than

6, then the truth level of the branch belonging to jfeclass is calculated as follows:

ZakECj Al (ak)

0ij = NS

i=1,2 (3.7)
Another predefined maximum value dtalled, € [0.8,0.9] is used as the stopping crite-
rion. If the maximumé value is greater thap, the corresponding branch search is termi-

nated.

Generally, a FDT classifier starts by sorting the continueaisies of a feature. It
then generates a possible candidate “cut-point”, and fiegzihe “cut-point”. It uses an
entropy evaluation function to check whether the candisldteit-point” is satisfied or not.

It recursively keeps checking until the best “cut-pointfasind, and repeats to generate the
soft discretization for the other attributes. When all htites have been soft discretized, the
attribute of minimum value will be selected to generate thitddcbranches and nodes. This

process repeats until the stopping criterion is met.

3.3. Experiments and Results

In order to investigate the performance of our FDT approasiperiments are conducted
comparing the effect of using all features of five chosen dats, or using the preprocessing step
that reduces the feature set with the GA-based featureteelenethod as described earlier. The
experimental setup is described in the following subsedititiowed by the experimental results.
3.3.1. Experimental Setup

The experiments of all algorithms are conducted on a numbdata sets taken from the

UCI repository [54]. The experiments of FDT are run on an ASl@Sktop (Intel(R) Dual Core I3
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CPU @3.07 GHz, 3.07 GHz) of Java Version 1.6.0.25. A few datangialgorithms are used for
comparison provided by the Weka software (version 3.7.8)eXperiments use the 10-fold cross
validation [60] technique. Each data set is divided into &flipons. Nine partitions of the data set
are used as training data and one patrtition is selectedtadat@as
3.3.2. Experimental Results

In order to compare our FDT classifier, two DT classifiers MBREPTree, and a fuzzy rule

classification algorithm FURIA were chosen. The algorithmessummarized as follows:

e J48is a decision tree implementation induced by the C4.5 algmritvhich is developed by
Quinlan [13]. It learns decision trees for the given data twystructing them in a top-down

way.

e REPTree stands for Reduced Error Pruning Tree [60], which is a fastsd®t tree im-
plementation that builds a decision tree using informagam as the splitting criterion. It
adopts a reduced-error pruning using top-down strategsgel$ the C4.5 method to deal with

missing values and only sorts values of numeric attributeg 0

e FURIA is short for Fuzzy Unordered Rule Induction Algorithm, whiektends the well-
known RIPPER algorithm [57]. FURIA learns unordered fuzzersets instead of rule lists.

It includes a number of modifications and extensions to déalwncovered examples.

Table 19. GA parameters of GA-based feature selection rdetho

Parameter Values
Population size | 200 x # of selected features
Maximum iteration 80
Selection Elitism
Crossover rate 1

Table 19 shows the parameters and their values used for FDiTthe GA-based feature

selection. For the proposed algorithm, the population szghosen as the product of 200 and
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number of selected features, and the maximum number ofidasas set to 80. An elitist selection
strategy is selected and the crossover rate is set to 1.

The description of the selected data sets used are sumuohamizerms of number of at-
tributes, number of instances and number of classes as simoWable 20. The 5 data sets are
listed alphabetically. The values in brackets under tharoalFeaturesis the reduced number of

features after the selection process is applied.

Table 20. Datasets used for experiments.

Data Set Features Instances Classes

Diabetes 8 (4) 768 2

Glass 10 (8) 214 7
lonosphere 34 (18) 351 2
Pendigits 16 (9) 10992 10

Vehicle 18 (7) 946 4

Measured are the weighted average true positive rate (FRRharfalse positive rate (TPR),
as well as the precision. Experiments were run using thesgdseas listed above on all algorithms,
first without the feature selection stage meaning that aliuiees were used, and the second time
using the reduced feature set as determined by the GA-basadé selection method. All results
reported in the tables are reported by a number indicatifgatures were used from the data sets,
and the second value in brackets are results when the &ligariare run with the reduced feature
set. The values in bold are the best values comparing thésdsuwith/without the GA-based
feature selection method.

In Table 21, the average weighted true positive rates (TPR)I afigorithms are measured.
As shown in the table, FURIA and FDT using soft discretizaatwmays score better than the clas-
sical DT techniques, J48 and REPTree that use hard disdretizén addition, FDT with/without

the GA-based feature selection method scores slightlgbithn FURIA on most data sets.
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Table 21. Average weighted TPR (%) of all algorithms.

Data Set J48 REPTree FURIA FDT
Diabetes 73.8714.9 75.3(2.89 745(5.) 76.2(76.8)
Glass 66.871.5 66.469.2 70.6(74.89 70.6(75.1)
lonosphere 91.59(1.7) 89.500.6 91.289.5 91.6(91.9)
Pendigits 96.693.9 95.602.9 98.0(94.5) 96.8 03.9
Vehicle  72.568.3 72.366.7) 70.6 (0.2 72.6(72.1)

The average weighted false positive rate (FPR) is tabulatd@ble 22. FURIA and FDT
achieve better results (smaller values) than J48 and REPTw@éhermore, FDT scores slightly
better than FURIA in most of the cases.

Table 22. Average weighted FPR (%) of all algorithms.

Data Set J48 REPTree FURIA FDT
Diabetes 32.732.3 32.834.9 35.7@36.2 31.9(31.3)
Glass 13.010.49 13.8@2.3 13.1(11.1) 12.4(10.2
lonosphere 12.511.6 13.2@1.9 12.3@4.3 11.9(11.2)
Pendigits 0.4Q.7) 0.50.9 0.2(0.6) 0.4 0.9
Vehicle 9.3@0.7 9.3(10.2 9.8(@11.1) 9.2(10.1)

With respect to the average weighted precision (see TabJé-RBRIA and FDT obtain better
results than J48 and REPTree. In most cases, FDT scored\shgiiter than FURIA.

Table 23. Average weighted precision (%) of all algorithms.

Data Set J48 REPTree  FURIA FDT
Diabetes 73.514.4 74.7(72.3 73.7(74.4 75.7(76.5)
Glass  67.071.5 65.869.0 70.5(72.1) 68.5(0.3
lonosphere  91.5X1.8) 89.4 00.6 91.289.4 91.60L8)
Pendigits 96.693.9 95.6 ©2.3 98.0(94.8) 96.8 04.])
Vehicle 72.267.9 71.168.9 68.863.9 73.8(71.2)

AUC is the area under the ROC curve. ROC stands for “Receiverdpn Characteristic”
which is part of a field called “Signal Detection Theory” deyeed during World War Il for the

analysis of radar images [76]. Two different methods arel tsealculate the AUC. J48, REPTree
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and FURIA use a parametric method using a maximum likelih@bdidnation to fit a smooth curve
to the data points since these algorithms are part of the WEdtAware. Our FDT classifier
uses a non-parametric method based on the constructionrapezbid under the curve as an
approximation of the area. In order to compare the perfoomari using the GA-based feature
selection method, the AUC of all the algorithms with/withdle feature selection are measured.
J48-P, REPTree-P, FURIA-P and FDT-P are abbreviations foaltperithms using the feature
selection preprocessing method.

In Figure 8, J48 when the GA-based feature selection metlaschpplied achieved the same

or even better AUC values for 4 out of 5 data sets.
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M 45 W145-P

Figure 8. AUC of J48 and J48-P.

The AUC values when using REPTree with the reduced featurarsetither the same or
even better than using REPTree when all features are usestdheis 3 out of 5.

Evaluating AUC on the FURIA classifier shows that 4 out of 5 dsdts have less AUC
values when the GA-based feature selection method is usestteins that FURIA suffers from
over-fitting when using the GA-based preprocessing methbuks results are shown in Figure 10.

As shown in Figure 11, the AUC values of 4 out of 5 data sets sél@yit improvement

when using FDT with the GA-based feature selection method.
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Figure 9. AUC of REPTree and REPTree-P.
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Figure 10. AUC of FURIA and FURIA-P.

Generally, most algorithms, except FURIA, achieve slighilyher AUC values when the
GA-based feature selection is used as the data preprogessihod.
3.4. Summary

In this chapter, we presented a fuzzy decision tree (FDThaguh using a GA-based feature
selection method. The FDT approach uses soft-discragizagarching for the best cut-point in
order to improve the predictive accuracy. The soft-diszation works by partitioning the decision
space into a set of overlapping subspaces instead of usgmdiscretization partitioning. Futher-
more, since the reduction of the feature space has showrpt@ua the accuracy of classifiers in
general, we investigated a GA-based feature selectionadethmbined with our FDT approach.

Our FDT classifier was compared to J48, REPTree, and FURIA bittharnd without using

the GA-based feature selection method. Five continuolisedadata sets taken from the UCI
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Figure 11. AUC of FDT and FDT-P.

repository were used. Overall, the results revealed treafiproaches using soft discretization
rather than hard discretization, such as FURIA and our FD3sdiar, obtained better predictive
classification accuracy in terms of TPR, FPR, precision and AEl@thermore, our proposed

classifier achieved slightly better results than FURIA in troases.
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4. PARTICLE SWARM OPTIMIZATION BASED FUZZY CLUSTERING
APPROACH TO IDENTIFY OPTIMAL NUMBER OF CLUSTERS

Fuzzy clustering is a popular unsupervised learning mettsadl in cluster analysis which
allows a data point to belong to two or more clusters. Fuznyeans is one of the most well-
known and used methods, however, the number of clusterstodes defined in advance. This
chapter proposes a clustering approach based on PartiderS@ptimization. This approach
automatically determines the optimal number of clustensgua threshold vector that is added to
the particle. The algorithm starts by partitioning the degrandomly within a preset maximum
number of clusters in order to overcome the fuzzy c-meangaming of the predefined cluster
count. A reconstruction criterion is applied to evaluate performance of the clustering results
of the proposed algorithm. The experiments conducted sheivthe proposed algorithm can
automatically find the optimal number of clusters.

The rest of this chapter is organized as follows. In Sectidn #izzy c-means and PSO are
introduced. The proposed algorithm is described in Seai@nA list of validity indices is given
as well. The experimental results and analysis is desciib8dction 4.4. We finally conclude this
chapter in Section 4.6.

4.1. Related Work

FCM was first developed by [77] in 1973, and was extended by if24P81. Since then,
FCM is one of the best fuzzy clustering methods. Many differariants of FCM have been
introduced. For example, the Gustafson-Kessel (GK) allgar{21] is a fuzzy clustering technique
which can estimate local covariance to partition data indossets, which can be well fitted with
linear sub-models. However, since considering a genemadtste of the covariance matrix can
have a substantial effect on the modeling approach, the-Gatla algorithm [79] was proposed
to overcome this shortcoming. Another algorithm, called#uC-Varieties (FCV) [78] clustering
algorithm, is a fuzzy clustering method for which the prgpe of each cluster is represented as

a multi-dimensional linear vector. The approach is simitacluster analysis, however, it uses
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the statistical method of principal component analysigherclustering task. Another algorithm,
referred to as generalized FCM algorithm, is presented ih [BAvhich setting of the algorithm
parameters is being done automatically.

Related work lists many evolutionary computation methods flave been applied for clus-
tering. For example, a hybrid technique based on combiriagtmeans algorithm and Nelder-
Mead simplex search was applied for cluster analysis in. [jother algorithm based on the
combination of Genetic Algorithm (GA), k-means and lodamiic regression expectation maxi-
mization was introduced in [82]. In [83], a k-means algartkthat performs correct clustering
without preassigning the exact number of clusters was [@@ghoA genetic k-means algorithm for
cluster analysis was introduced in [84]. In [85], a GA basatid to solve the clustering problem
and experiment on synthetic and real life data sets to eteatha performance was proposed. A
GA algorithm that exchanges neighboring centers for k-raedustering has been introduced in
[86]. A combination of evolutionary algorithm with an antleoy algorithm for the clustering
problem was presented in [86, 87]. A clonal selection baseithad has been combined with FCM
in [88].

PSO has also been applied to data clustering. In particiiar,methods called PSO-V
and PSOU are introduced in [89], whereby a reformulatedablge function of fuzzy c-means is
minimized by the PSO algorithm for the cluster analysis t@stother PSO-based fuzzy clustering
algorithm is introduced to overcome the shortcomings of FE80]. An ant colony clustering al-
gorithm is applied for solving the clustering task in [91helalgorithm uses the global pheromone
update and heuristic information to find clustering solusio In [92], a genetic fuzzy K-modes
algorithm for clustering categorical data is proposed,clvhises a genetic algorithm to obtain
the global optimal clustering solution. A hybrid data ckrgtg algorithm that uses the merits
of PSO and K-harmonic means is proposed in [93]. The hybgdrghm helps to escape from
local optima, and thus overcomes the problem of slow comrerg of the PSO algorithm. A

hybrid evolutionary algorithm, called FAPSO-ACO-K, is inttuced in [94]. The hybrid algorithm
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combines PSO, ACO and k-means applied to cluster analysisoth&n method for dynamic
parameter adaptation in PSO is proposed in [95]. The prabakgrithm uses fuzzy logic to
improve the convergence and diversity of the swarm in PSO.

The high computational cost and the slow convergence raeredg limit the use of PSO
on clustering analysis. For these reasons, a chaotic mapvRBCan accelerated convergence
rate strategy was introduced in [96]. The algorithm worksabgpting chaotic maps and adaptive
action to avoid local minima. In [97], a hybrid fuzzy clustey method based on FCM and FPSO
is proposed to overcome the shortcomings of PSO. Anotheifrddersion of PSO, known as
Multi-Elitist PSO (MEPSO), is proposed in [98]. This apptbaolves the hard clustering problem
by automatically determining the optimal number of clustefhis approach shows that PSO is
guaranteed to solve clustering problems automatically.

This chapter addresses the shortcoming of the FCM algorithinich is the predefined clus-
ter count. A clustering approach based on PSO [99] is prapa$®se aim it is to automatically
determine the optimal number of clusters using a threshedtbv. The algorithm partitions the data
set randomly (within a preset maximum number of clusterd)wses a reconstruction criterion to
evaluate the performance of the clustering results.

4.2. Fuzzy C-Means and Particle Swarm Optimization
4.2.1. Fuzzy C-means Clustering

Fuzzy clustering is a method of clustering which allows orez@ of data to belong to two
or more clusters. The FCM algorithm is an iterative partitttustering technique which was first
introduced by Dunn [77] and was extended by Bezdek [24]. FCMig#y standard least squared
error model that generalizes an earlier and very populaffapry c-means model that produces
hard clusters of the data. An optimgpartition is produced iteratively by minimizing the weight

within group sum of squared error objective function:

T =33 ()" d(yi, c;) (4.1)

i=1 j=1
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whereY = [y1, 2, ..., yn] IS the data set in a d-dimensional vector spaces the number of data
items. c is the number of clusters which is defined by the user whetec < n. u;; is the degree
of membership ofj; in the j** cluster.m is a weighted exponent on each fuzzy membershijs
the center of clustef. d*(z;, ¢;) is a square distance measure between objend cluster;. An

optimal solution withe partitions can be obtained via an iterative process whiels i®llows:

[

. Input(c, mg, data)

N

. Initialize the fuzzy partition matrik/ = [u;]
3. Iteration starts and set t=1

4. Calculate the cluster centers witl/¢:

¢, = M (4.2)
Zi:l(uij)m
5. Calculate the membership*! using:
1
uij = p i 5 (43)
S ()T

6. If the stopping criteria is not met= ¢ + 1 and go to Step 4.

4.2.2. Particle Swarm Optimization

PSO was originally designed and introduced by Eberhart agih&dy [6]. The PSO is
a population search algorithm which intends to simulatecth@reography of a bird folk. Each
individual, called particle, within the swarm is represshtby a vector in a multidimensional
search space. A velocity vector is assigned to each pattaietermine the next movement of
the particle. Each particle updates its velocity based ercthrent velocity, best personal position

it has explored so far and the global best position exployeithé® swarm:
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The velocity and position of the particle at next iteratisrupdated as:
Vilt+1) =w-Vi(t) +cr-r1 - (XHE) — Xi(1)) + o - o - (X9 — X;(1)) (4.4)

Xi(t+1)=X;(t) + Vi(t + 1) (4.5)

for thes!" particle, whereaw is the inertia weight}/;(¢) is the previous velocity in iteratiohof "
particle. ¢; andc, are coefficients. Generally; andr, are random numbers between 0 and 1.
(XH(t) — X;(t)) is the difference between local best of the i*" particle and previous position
X;(t). Similarly, (X9 — X,(t)) is the difference between global besf and previous position
X;(t).
4.3. Proposed Approach

The proposed algorithm is based on PSO and FCM. The particledery, velocity encod-
ing, decoding and clustering validation is described s#phr. The procedures of the proposed
algorithm are presented at the end of the section.
4.3.1. Particle Encoding

A particle is a2 x k£ matrix, wherek is the maximum number of clusters that is predefined.
The first row represents the centers. Each value in the seoandontrols the activation of each

center in the first row.
x _ 373,1 :CZLQ x’lk (4.6)
thy thy .. thy
wherexik represents th&" particle’s position in clustet. xi,k should be inthe range ¢f .., 4z )-
tgjk is thei'" particle’s threshold value in the range[6f1]. If the threshold value is greater than
0.5, the center is activated. Otherwise, it is deactivated.
4.3.2. Velocity Encoding

The velocity matrix should have the same dimension as theigosnatrix with a range.

Suppose we set the range[as;,, vma), all values of the velocity matrix should be betwegp,
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andv,,... Thus, thei velocity is denoted as:

Vg1l Yz12 - Ugik

Vi, = a - B 4.7)
U§2,1 U§2,2 "‘42,1{

Similarly, & is the maximum number of clusters. The first row is the vejoeftthe centers, and
the second row is the velocity of the threshold values.
4.3.3. Decoding

Y = (y1,99, .., yn) IS the data set witll dimensions. The cluster centers can be decoded as
C = (¢, ¢, ...cx) USINg Equation 4.2.
4.3.4. Clustering Validation Techniques

The aim of clustering validation is to evaluate the clusigriesults by finding the best
partition that fits the underlying data. Thus, cluster valids used to quantitatively evaluate
the results of clustering algorithms. Compactness and agpartwo widely considered criteria
for measuring the quality of the partitioning of a data seb idifferent numbers of clusters.
Conventional approaches use an iterative approach by clgpddferent input values, and they
select the best validity measure to determine the “optimoorhber of clusters. A list of validity

indices for fuzzy clustering is listed below.

1. Dunn’s Index (DI): the Dunn’s Index is proposed to idgnttie compactness and separation

of the clusters. The function that uses to calculate thdtretthe clustering is as follow:

min,cc. d(zx
DI = min{ min veCyyec,; AT, y)
jEciAj MaXpeAMax, yeo d(z, y)

}}} (4.8)

whered(z, y) is the distance of the two cluster centers. DI takes its mimnvalue when

the cluster structure is optimal.
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2. Weighted Inter-Intra (Wint) Index: the weighted intatra (Wint) measure is introduced by
Strehl [106] in 2002. It compares the compactness of thetdata separation.
2 Zz n_;m Zj;ﬁi inter(c;, c;)

Wint = (1 — -5). (1 -
int = ( n) ( > ICi|L71imEra(ci)

(4.9)

whereintra(c;) is the average intra-distance within clusterinter(c;, ¢;) is the average
inter-distance between clusteand cluster;. Wint obtains its maximum value when the

cluster structure is optimal.

3. Least Squared Error (SE) Index: the weighted within elustm of squared error function

is used [100]:
T = D il — ol (4.10)

i=1 j=1
wherey; is thei’" data point withd dimensionsc; is the value of thg'" cluster, and|y; —¢;||
is the Euclidean distance betwegnandc;. J,, takes its minimum value when the cluster

structure is best.

4. Partition Coefficient (PC) Index: the partition coeffici¢RC) is defined as [24]:

1 n (&
PC = SN (4.11)

i=1 j=1
PC obtains its maximum value when the cluster structuretisnah

5. Partition Entropy (PE) Index: the partition entropy wasinked as [78]:

1 n C
i3 j=1
whereb is the logarithmic base. PE gets its minimum value when thetet structure is

optimal.
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6. Modified Partition Coefficient (MPC) Index: modification bEtPC index, which can reduce

the monotonic tendency, is proposed by Dave in 1996 [101].

MPC =1— —&

-(1-PC) (4.13)

C —

wherec is the number of cluster. An optimal cluster number is fougdriaximizing MPC

to produce a best clustering performance for a data set.

7. Fukuyama and Sugeno (FS) Index: Fukuyama and Sugenosaagovalidity function in
1989 [102]. It is defined as:

FS =% > willei— el =33 wijlles = el (4.14)

i=1 j=1 i=1 j=1

wherec = ijl ¢;/c. It measures the separation. The first term equals,.tvhich is the
least squared error. It measures the compactness. Thdumssting performance for a data

set is found by maximizing the value of FS.

8. Xie-Beni (XB) Index: Xie and Beni proposed a validity funetiom 1991 [103], and later it
was modified by Bezdek in 1995 [104].
XB= I (4.15)

noX ming; ||z — 2]

XB reaches its minimum value when the cluster structure isra.

9. Partition Coefficient and Exponential Separation (PCAESEX: the partition coefficient

and exponential separation (PCAES) index [105] is defined as:

c

n C B 2
peaps =33 Yl S cop minllz - 2/ (4.16)

i=1 j=1 k=1
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whereuy, = mini<j<.{d 7, uf;} andBr = (325, (|2 —2[1?) fe. 2 = 321, (vi/n). PCAES

takes its maximum value when the cluster structure is optima

The procedure of the proposed algorithm is as follows:
Input: data set” = [y, v, ..., yn], NUMber of clustee, fuzzification coefficientn.

Output: an x ¢ partition matrixCU and corresponding centers.

1. Randomly initialize a swarm

2. lteration starts and set t=1

3. Update the velocity of each particle using Equation 4.4

4. Update the position of each particle using Equation 4.5

5. Update the personal best and global best

6. Calculate the partition matrixX

7. If the stopping criterion is not met,= ¢ + 1 and go back to Step 3)

8. The partition matriXJ of the global best is used to reconstruct the original data

9. Calculate the reconstruction error. In order to use a stargi method to evaluate the eight
different indices, the reconstruction criterion (RC) [LG¥lised. The reconstruction criterion
uses the cluster prototypes and partition matrix to “retro$’ the original data vectors. The

reconstructed version of the original data vectdts: [U1, U2, ---, Unl, IS calculated as:

C m,
. E]’:l U5 Cj

Ui = e (4.17)
Zj:l Uy
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once the reconstruction has been finished, the squaredétha reconstruction vectors and

original vectors are evaluated using Equation 4.18.
E=Y g —ull® (4.18)
=1

10. Select the partition matrix and centers correspondirige minimum reconstruction error.

4.4. Experiments and Results

In this section, the experimental setup, datasets andiexpetal study are described respec-
tively.
4.4.1. Experimental Setup

The experiments are implemented and evaluated on an ASU®gddntel(R) Dual Core 13
CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. All measuresiehthe proposed algorithm
are executed 30 times and the average is taken. The paramexjaired for the proposed algorithm
are listed in Table 24.

Table 24. Parameters and their values of the proposed gigori

Parameter Value
Maximum number of cluster 10
Maximum iteration 50
Swarm size 25
Maximum run 30

Fuzzification coefficient (m) 2

4.4.2. Datasets
The experiments are conducted on a number of datasets takenie UCI repository [54],

and synthetic data sets were generated using Matlab. Thsedatare described in Table 25.
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Table 25. Datasets used for the experiments.

Data Set Dimensions Instances Classes

Pinwheel 2 1000 2
Transfusion 4 748 2
Haberman 3 306 2
Breast-W 9 699 2
Jain 2 373 2
Thyroid 5 215 2
Iris 4 150 3
DIM032 32 320 5
DIM064 64 320 5
DIM128 128 320 5
DIM256 256 320 5

4.5. Experimental Study
4.5.1. Use of Synthetic Data

In order to investigate the clustering performance witfedént numbers of clusters, we use
a synthetic data set, named pinwheel, to test the clustpenigrmance using K-means [109], K-
medoid [110], FCM, Gustafson-Kessel (GK) and our proposgdrahm (FPSO). K-means is one
of the unsupervised learning methods that uses an itenafireement technique. The number of
desired clustef;, is defined in advance. K-medoid is another unsuperviseditgamethod related
to the K-means algorithm. Similarly, the K-medoid classitiee data set intb clusters. However,
K-medoid is more robust to noise and outliers as compared-toelins. Unlike K-means, the
medoid is defined as the data point whose average dissityeithin the cluster is minimal.

K-means and K-medoid are traditional hard clustering tephes, while FCM, GK and
FPSO are soft clustering techniques. The nine validitydeslilisted in Equations 4.8-4.16 are
used.

The cluster performance of the pinwheel data set is disglay&igure 12. The first figure

is the original data set. As can be seen, the cluster cemediflerent using Kmeans, K-medoid,

FCM, GK and FPSO, respectively.
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Pinwheel K-means
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Figure 12. Synthetic data set

Figure 13 shows the performance of the pinwheel data seg ik K-means algorithm.
Figure 14 shows the performance of the pinwheel data seg tisenK-medoid algorithm. Since
K-means and K-medoid are algorithms using hard partitignihe DI index, Wint index and SE

index are used for validation.

Dunn index Weighted Inter-Intra index Square Error index

8 9 10 2 3 8 9 10 2 3 8 9 10

5 6 7 5 6 7 5 6 7
Number of clusters (k) Number of clusters (k) Number of clusters (k)

Figure 13. Kmeans using 3 different validity indices

In Figure 15, the performance of the pinwheel data set usidlyl ks given. Figure 16
shows the performance of the pinwheel data set using the Gatitim. The performance of the
proposed algorithm (FPSO) is displayed in Figure 17. Theecomumber of clusters found for
the nine indices are listed in Table 26. The correct clustentver for the pinwheel data set is 2.

The correct number of clusters found measuring DI using treedifferent algorithms are 5, 5, 7,
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Dunn index Weighted Inter-Intra index Square Error index

4 ]
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0.994 1
0.992 1
0.9 1
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Figure 14. K-medoid using 3 different validity indices
Table 26. Index values with varyingusing pinwheel data set.

Indices Kmeans K-medoid FCM GK FPSO

DI 5 5 7 10 7
Wint 2 2 2 2 2
SE 10 10 10 10 10
PC - - 2 2 2
PE - - 2 2 2
MPC - - 2 2 2
FS - - 10 10 10
XB - - 10 7 10
PCAES - - 4 10 8

10, and 7, respectively. The correct number of clustersda@pplying Wint are consistent with the
correct cluster number. The correct number of clustersddynSE is consistent with 10. As the
number of clusters increases, the SE values decrease. P@QARERLC using the FCM, GK and
FPSO algorithms find the correct cluster number. MeasurlBgi$ing the FCM, GK and FPSO
algorithm are similar to SE. As the number of clusters insesathe FS values decrease. The
correct number of clusters found applying XB using the FCM, &1 FPSO algorithms are 10, 7,
and 10, respectively. The correct number of clusters fouedsuring PCAES using the FCM, GK
and FPSO algorithms are 4, 10, and 8, respectively. Ovéhallwint, PC, PE and MPC indices,

which outperform the other indices, find the correct numbetusters.
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Figure 15. FCM using 9 different validity indices

4.5.2. Use of Real-World Data

In this section, we investigate the behavior of the clusteniesults using nine different
validity measures listed before.

In Table 27, the reconstruction errors of the transfusiota d&t, where: ranges from 2
to 9, have been calculated using the proposed algorithm plyiag Equations 4.8-4.16. The
reconstruction errors can simply the results for comparmarpose. As shown by the results, the
values in bold identifying the minimum reconstruction esravith different cluster numbers for
each measure. 6 out of 8 cases show that 2 is the correct number of clusters. This indicates
that the proposed FPSO can find the best number of clustemnatically.

Due to the stochastic nature of our proposed algorithm, stedethe proposed algorithm on

30 runs and calculated the average number of clusters ed iisTable 33. The standard deviation
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Figure 16. GK using 9 different validity indices

values are given as well. The correct numbers of clustergyusdifferent validity measures are
tabulated, respectively. In all the cases, the number cteta predicted by FPSO is close to the
correct number of clusters. DI, SE, XB and PCAES do not find treect number of clusters.
Wint can identify the correct number of clusters but only kaw-dimensional datasets. MPC
returns the correct number of clusters, but with largerddiath deviation values. PC and PE find
the correct number of clusters consistently, however, anttimber of dimension increases, the
accuracy decreases.
4.5.3. Visualization of Clustering Results

Since the validity measures reduce the overall evaluati@certain number, therefore there
is some loss of information. In order to better analyze ttsailts, a low-dimensional graphical

representation of the clusters is adopted. A toolbox implated by [108] is used to visualize the
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Figure 17. FPSO using 9 different validity indices

cluster results using the proposed algorithm. Principal @ament Analysis (PCA) projection,

Conventional Sammon Mapping (CSM), and Fuzzy Sammon Mappgu&M| are used. The

dimensions of DIM032, DIM064, DIM128 and DIM256 are 32, 6£8land 256, respectively.
The correct number of clusters is 5. Figure 18 lists the perémce of PCA, CSM and FSM using
the four data sets. The black cross represents the identlfister centers. Obviously, the correct

number of clusters can be seen by looking at the figure. Asuher of dimension increases, the

performance of the PCA, CSM and FSM decrease.
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Table 27. Reconstruction error with varyingising transfusion data set.

3 4 5 6 7 8 9

c=2

DI 31.2
Wint 23.6
SE 23.6
PC 16.3
PE 26.3
MPC 17.0
FS 23.6
XB 23.6
PCAES 38.9

304 245 613 313 245 59.8 250
29.3 254 474 515 688 425 36.5
256 265 236 28.7 33.7 243 259
296 342 818 227/ 751 311 214
85.0 26.0 57.0 249 39.316.9 30.3
448 24.6 604 093.312.2 166.7 12.5
23.6 23.6 25.6 29.5 249 33.6 237
43.0 25.1 361 27.1 61.3 688 631
81.7 825 481 538 575 97.2 934

" DIM256

Figure 18. Data sets using PCA projection, CSM and FSM, relspéct

nnnnnnnnnnnnnn 0 j.ng@ — (@)
k| B &

Fuzzy Sammon Mapping

Y o>

Nl

TN P
TN AR
3 -2 -1 0 1 2 = -3 -2 -1 0
DIM064 DIMO64

Conventional Sammon Mapping Fuzzy Sammon Mapping

N

2 1 0 1 2 3 4 E %+ 3 2 -1 0
DIM128 DIM128

onventional Sammon Mapping Fuzzy Sammon Mapping

-

FITT Ty
iy 1 By
d

20 B 20 -0 0 10 _ 2

0 50 60

20 0 0
DIM256 DIM256

64




Table 28. Nine different indices using the proposed alborit

DI wint SE PC PE MPC FS XB PCAESFPSO
Transfusion| 5.70 2.63 9.43 217 213 3.67 273 9.63 6.87242
std. 1.84 049 086 0.38 035 215 1.05 0.56 2.290.58
Haberman| 590 293 9.97 2.00 2.00 6.50 207 9.83 880224
std. 055 025 0.18 0.00 0.00 150 0.25 0.75 2.510.15
Breast | 6.13 3.00 8.43 3.27 217 530 213 9.77 6.832.64
std. 196 0.00 143 1.72 038 245 0.35 0.63 2.090.62
Jain 7.30 297 9.57 287 210 360 337 790 6.47225
std. 164 056 068 082 031 152 275 220 2.220.15
Thyroid | 4.27 2.83 9.90 210 2.03 4.27 200 953 810224
std. 187 038 031 040 0.18 221 0.00 0.68 1.990.24
Iris 3.83 293 9.00 253 230 4.13 240 957 6.302.55
std. 158 052 162 094 047 206 0.89 057 258 0.7
DIM032 |6.33 2.73 7.90 460 4.00 490 3.73 740 6.405.34
std. 1.07 064 183 143 191 144 110 130 2.042.08
DIMO64 | 7.17 3.20 7.77 5.47 550 5.53 2.00 943 7.405.94
std. 263 192 183 133 141 146 0.00 1.01 1.921.50
DIM128 | 6.90 257 8.27 5.63 5.57 5.77 200 837 8.035.90
std. 202 057 155 125 138 1.04 0.00 197 135124
DIM256 | 857 257 857 6.43 6.13 6.70 2.00 9.13 8.576.52
std. 119 050 143 165 172 156 0.00 1.07 1.331.16

The performance of the mapping are listed in Table 29. Thenrsgaare error of the re-
calculated membership values (P), two different originad ae-calculated validity measures (F
and F*), and the Sammon stress coefficient (S) are listedarptrenthesis. As the number of
dimension increases, the FSM is better than PCA and CSM in tefrsraaller P, F* and S values.

The performance of PCA, CSM and FSM are the same in terms of Esalu

4.6. Summary

In this study, we proposed an algorithm to overcome the daaw of traditional partition
clustering, which is that the number of clusters needs torbdgfined. The proposed algorithm
uses using PSO and FCM with a threshold vector to control asctiig the optimal number of

clusters. The algorithm solves the clustering problem wigerative fuzzy partition process.
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Table 29. Mapping using the proposed algorithm.

Datasets PCA CSM FSM

DIMO032 | (0.0030 0.983 0.9975 0.082)(0.0104 0.983 0.950 0.295)(0.0023 0.983 0.974 0.074
DIMO064 | (0.0011 0.994 0.9995 0.133)(0.0005 0.994 0.993 0.055)(0.0005 0.994 0.992 0.056
DIM128 | (0.0008 0.996 0.9998 0.125)(0.0050 0.996 0.977 1.560)(0.0004 0.996 0.994 0.05(
DIM256 | (0.0046 0.200 0.2010 0.114)(0.0262 0.200 0.208 34.28)(0.0044 0.200 0.200 0.044

~— N —

For the evaluation of our algorithm, we generated a syrtheditaset as well as used 6
datasets from the UCI repository. We compared our algorithth hard clustering approaches
such as Kmeans and K-medoid as well as with fuzzy clustetgayighms such as FCM and GK.
Nine different validity indices were used to evaluate thefgpenance. Furthermore, measures
such principal component analysis projection, convemtisammon mapping, and fuzzy sammon
mapping were used to visualize the clustering results.

Overall, the results show that the proposed algorithm cantity the correct number of
clusters on all the data set tested. However, due to the slawecgence and the stochastic nature
of the PSO algorithm, the prediction results of a single ranyvand thus make it difficult to
predict the correct number of clusters. Unlike K-means a@Mthe proposed algorithm needs
to be executed repeatedly in order to find the correct saiutio addition, the maximum number
of clusters has to be predefined, and the iterative procadsntify the optimal number of clusters

is computationally expensive by comparing to K-means and FCM
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5. COLOR IMAGE SEGMENTATION USING FUZZY C-REGRESSION
MODEL

Image segmentation is one important process in image asags computer vision, and
is a valuable tool that can be applied in fields of image prsiogs health care, remote sensing,
and traffic image detection. Given the lack of prior knowledd the ground truth, unsupervised
learning techniques like clustering have been largely setbpFuzzy clustering has been widely
studied and successfully applied in image segmentatiosituations such as limited spatial reso-
lution, poor contrast, overlapping intensities, noise iabehsity inhomogeneities, fuzzy clustering
can retain much more information than the hard clusterimyprimjue. Most fuzzy clustering
algorithms have originated from Fuzzy C-Means (FCM) and haenlsuccessfully applied in
image segmentation. However, the cluster prototype of 8™ Fnethod is hyper-spherical or
hyper-ellipsoidal. FCM may not provide the accurate pantitin situations where data consists
of arbitrary shapes. Therefore, in this chapter, a Fuzzy Q¢3sgpn Model (FCRM) has been
proposed whose prototype is hyper-planed and can eitheinbarlor nonlinear allowing for
better cluster partitioning. Thus, this chapter implemseinizzy c-regression model clustering
algorithm and applies the algorithm to color segmentatsingiBerkeley’s segmentation database.
The results show that FCRM obtains more accurate results gexhpa other fuzzy clustering
algorithms.

The remainder of this chapter is organized as follows. 8edhi.1 lists the related work
regarding fuzzy image partitioning. Section 5.2 descrithesfuzzy c-regression model and the
proposed approach applied to color image segmentationeriiwental results are presented in
Section 5.4, and conclusions are drawn in Section 5.7.

5.1. Related Work

Related work with regards to the use of fuzzy theory in imaggrsntation include rule-

based methods, fuzzy-geometrical methods, informatieartttical methods, Type Il thresholding

methods, and fuzzy clustering methods [111].
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Past research related to rule-based methods use fuzzytoutketermine a threshold value
in image segmentation. Images are considered as typicaltatmnary signals. Fuzzy rule-
based image processing techniques are applied to noisevakmred edge extraction. A novel
approach for enhancing the results of fuzzy clustering dbrisg image segmentation problems is
introduced in [112]. A Sugeno-type rule-based system igld@ed to interact with the clustering
result obtained by the FCM algorithm. In [113], an approachctvitombines an associative
restoration algorithm with a fuzzy image enhancement teglnis presented and is applied in
electronic portal images in radiotherapy. However, fuazg based segmentation is sensitive to
both the structure of the membership functions and paramatee selections. Thus, a generic
fuzzy rule-based segmentation technique that tries teegbkr problem of manual selection of the
parameters of the fuzzy membership is introduced in [11His proposed technique is application-
independent and incorporates spatial relationships legtyéxels. Fuzzy Rules for Image Seg-
mentation incorporating Texture features (FRIST) is pregos [115]. The fractal dimension
and contrast features of texture are incorporated in FRISGogidering image domain specific
information.

Fuzzy-geometrical methods [116], which focus on local imagormation, minimize or
maximize fuzzy geometrical measures, such as compacthé3$ [In [118], a new approach
to multidimensional data clustering is described. The apgin developed a “Radar” diagram
shape matching methodology to accomplish the fuzzy gedmigatures technique for man-
machine expert systems. A new quantitative index for imaggnentation using the concept of
homogeneity within regions is defined in [120]. The propaseéx shows that the fuzzy geometry
based thresholding algorithms produced a single stabdshiotd for a wide range of membership
variations. A semi-supervised FCM technique called GG-FCMsisd to add geometrical infor-
mation during clustering [119]. The approach is not onlydobsn spectral information obtained

by FCM, but also takes into consideration the geometricatigship between neighboring pixels.
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Related work on information theoretical methods uses measemts such as fuzzy entropy,
index of fuzziness, and fuzzy divergence to minimize or mmaze fuzzy information. In [121],
a new measure called divergence between two fuzzy setséagluted and a tailored version of
the probability measure of a fuzzy event is also used for arsggmentation. A complete method
can be viewed as a weighted moving average technique, geyambiguity being the weights
is introduced in [122]. An image thresholding approach Hase the index of nonfuzziness
maximization of the 2-D grayscale histogram is introduced123], and has shown that the
approach is more robust when applied to noisy images.

Type 1l thresholding methods interpret image informatianTgpe Il fuzzy sets. These
methods use information-theoretical measures to locatel@athreshold [111]. In [124], an
evolving fuzzy classifier approach that is able to adapt armdve at an on-line machine vision
system is introduced. In [125], a new modified thresholdirgasures for MRI brain images using
type-1 and type-2 fuzzy sets is presented. An Interval Ty(&2) fuzzy entropy based approach
is used to compute optimum thresholds for multistage gralesmage segmentation in [126]. An
automatic leukocyte segmentation using intuitionistzzfppand interval Type Il fuzzy set theory in
pathological blood cell images is presented in [127]. Theeafsntuitionistic fuzzy set and interval
Type Il fuzzy set can consider more uncertainties and diffetypes of uncertainty as compared
to basic fuzzy set theory.

Fuzzy clustering methods classify all image pixels intdedlgnt segments. Up to now, FCM
is one of the most commonly used methods in image segmemtatial there have been many
variants of fuzzy clustering algorithms that originatednfr FCM. A modified fuzzy c-means
clustering algorithm for MR brain image segmentation isadticed in [128]. The proposed algo-
rithm extracts a scalar feature value from the neighbortad@ich pixel. It converges faster than
standard FCM in the case of mixed noise. An improved FCM algoritor image segmentation,
which introduces a tradeoff weighted fuzzy factor and a &emmetric is introduced in [129]. The

proposed algorithm using a tradeoff weighted fuzzy factor accurately estimate the damping
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extent of neighboring pixels. FCM is sensitive to noise inithage since it ignores the spatial
information contained in the pixels. A novel fuzzy clustegyialgorithm with non-local adaptive
spatial constraints is presented in [130]. The approack aseadaptive spatial parameter for
each pixel to guide the noisy image segmentation processré&tefe [131] proposes the weighted
image patch-based FCM algorithm for image segmentationalgogithm improves its robustness
to noise by incorporating local spatial information embedigvithin the segmentation process. In
color image segmentation, it is difficult to analyze the imag all of its colors. Soft computing
techniques namely FCM, possibilistic fuzzy c-means, andpaiitive neural networks have been
used to group likely colors [132]. A novel initializationlseme to determine the cluster number
and obtain the initial cluster centers for the FCM algoritioeeégment color images is introduced in
[135]. The initialization scheme called hierarchical aggwh is proposed to integrate the splitting
and merging techniques to obtain the initialization caoditfor FCM. The proposed algorithm
can obtain the reasonable cluster number for any kind of amlages. An Adaptive Neuro-Fuzzy
Color Image Segmentation (ANFCIS) approach is presented36][1The proposed algorithm
performs color image segmentation using multilevel thoédihg, which consists of a multilayer
perceptron-like network.

Most fuzzy clustering algorithms have originated from FCMddave been successfully
applied in image segmentation. However, the cluster pyptobf the FCM method is either hyper-
spherical or hyper-ellipsoidal. FCM may not provide the aata partition in situations where
data consists of arbitrary shapes. On the other hand, thetype of the FCRM method is hyper-
planed and can either be linear or nonlinear. Thus, thistehamplements FCRM and applies it
to color segmentation of images. This is the first work apgythe FCRM method to the color
segmentation. The results show that FCRM obtains more aea@stlts compared to other fuzzy

clustering algorithms. Furthermore, besides presentBN’'s competitiveness with respect to
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the other fuzzy clustering algorithms, FCRM'’s practical easidemonstrated when applied to the
task of color image segmentation.
5.2. Proposed Approach

This section first describes the color space that is usedhépitoposed color segmentation
approach, followed by the proposed fuzzy c-regression hwdstering approach, and the cluster
validation techniques used for the evaluation of the apgroa
5.2.1. CIE-L*A*B* Color Space

Color space is a way of representing color information basedestain criteria. Color
perceived by human-beings combines primary colors whiefRared), G (green), and B (blue).
By using either linear or nonlinear transformations, othadlof color representations or spaces
can be derived from the R, G, and B representation [137]. Cglaces like RGB, HSV (Hue-
Saturation-Value) [138], and CIE-L*A*B* [139] have been sessfully applied in color image
segmentation. In this chapter, the CIE-L*A*B* color spaceatested and explored in color image
segmentation. CIE-L*A*B* is a color-opponent space with dm®ns L, A, and B. L denotes as
lightness, and A and B are the color-opponent dimensions.ClR-L*A*B* color space includes
all perceivable colors and it is device independent, whielans that the colors are independent of
the device they are displayed on. Specifically, L with a rabgeveen 0 and 100 represents the
lightness; 0 represents the darkest black, while 100 repteshe brightest white. The red-green
opponent colors are represented by the A axis. The yellaw-tpponent colors are represented by
the B axis. Both A and B have negative and positive values. tlegealues of A represent green
colors while positive values of A represent red colors. &y, negative values of B represent
yellow colors, and positive values of B represent blue &ldihe range of A and B can be either
4100 or £128 depending on the specific implementation.
5.2.2. Fuzzy C-Regression Model Clustering

The fuzzy c-regression model clustering algorithm has tmecpopular the past few years

since the resulting model can explain and describe compistesis in a human intuitive way.
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Takagi and Sugeno [140] introduced the well-known T-S fuzmdel to describe a complicated
nonlinear system. A T-S fuzzy model consists of a set of fuzdgs, each describing a local
input-output relation as follows.

Rulei: IF z; is AY and ... and:,, is A}, THEN

yi = 00 + 0l + . 4+ 0May (5.1)

whereX = [z1, ..., z)/] IS the system input)/ is the dimension of input vectoi,= 1, ..., cis the
number of fuzzy rulesy; is thei'" output,6 is the consequent parameter of tHeoutput.

Fuzzy clustering as one of the soft computing techniquestiaw the data points to belong
to more than one cluster. Fuzzy clustering has been sucdgsgbplied in data analysis, pattern
recognition, and image segmentation [132]. The shell ehirgg algorithms such as FCM have
been largely applied in image segmentation. The shell elungt algorithms detect the special
geometrical shapes like circles, rectangles, hyperbalad ellipses using the Euclidean distance
measure [132]. Unlike the shell clustering algorithms, Fuzzy C-Regression Model (FCRM)
[133, 134], which was introduced by Hathaway and Bezdek in312%sumes that the data is
drawn fromc different models instead of one single model. Theifferent models represent
hyper-plane-shape clusters. The FCRM clustering algorithami affine T-S model with linear
prototypes.

Let S = (xz(k),yr),k = 1,..., N be a set of input-output sample data pairs, wheres the
number of patternsy, = [y, 7y, ..., 23] C R"is thek! input data vector) is the number of
input variablesy is output vectory, is the k'* desired output for,, andd; = [B9, 0}, ..., bM] is
the parameter vector of the corresponding local linear dsesume that the data pairs hare
drawn fromc different fuzzy models. Thé”" hyper-plane-shaped cluster of thé input can be

denoted as:
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(5.2)
= [mp,1]-08,i=1,...,c
The cost function of the FCRM clustering algorithm is defined as
N c
J(S;U.0) =) > (i) Ei(6:) (53)
k=1 i=1
where the distancg&;;(¢;) is defined as

m is fuzzy weighted exponent ang, is the membership degree:of to thei'* hyper-plane-

shaped cluster. The membership valugshave to satisfy the following constraints:

e €[01],i=1,2,...,c; k=1,2,...,.N (5.5)
d pk=1k=12..,N (5.6)
=1

The fuzzy c-regression model clustering algorithm is sunmed as follows [133, 134].
Given dataS, setm > 1 and specify the regression models, choose an error measdra a

termination threshold > 0, and initializeU ¥ randomly.
1. Repeatfol =1,2,...,00

2. Calculate the model paramete@(l), which globally minimizes the cost function
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3. UpdateU/® with E;,(6\") to satisfy

> (Ex)azi]=1, if By > 0forl <i<c.
(5.7)

0, otherwise

4. Until |[[UY — U] < ¢, then stop; otherwisé,= [ + 1 and return to Step 1

In this chapter, the FCRM clustering algorithm is applied tmconage segmentation. The
procedures of the proposed approach using FCRM in color ineggaentation can be summarized
into four phases: image pre-processing, FCRM clusteringg@maconstruction, and evaluation.

Image pre-processing: the images are converted from the RGB color space to the CIE-
L*A*B* color space during this phase. The *A and *B values, whiare extracted from the RGB
color space, serve as the color markers in the A*B* space.

FCRM clustering: the A*B* space image data is given, and the number of clusssiiged
during this phase. A FCRM clustering algorithm is used to partithe given data into a fixed
number of clusters.

Image reconstruction: the cluster results from the FCRM clustering step is used tonrec
struct the image in grayscale-level during this phase.

Evaluation: the performance of the cluster results is evaluated usiegebults from the
FCRM clustering process. The performance of the proposedithigois evaluated with three
validity indices (explained in the following section). lddition, two other measures commonly
used to access FCRM are calculated during this phase.

5.3. Clustering Validation Techniques

The aim of clustering validation is to evaluate the clusigriesults by finding the best
partition that fits the underlying data best. Thus, clusédidity is used to quantitatively evaluate
the results of clustering algorithms. Compactness and agpaiare two widely considered criteria

for measuring the quality of the partitioning of a data seb idifferent numbers of clusters.
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Conventional approaches use an iterative approach by cigpdgferent input values, and they
select the best validity measure to determine the “optimaorfiber of clusters. A list of validity
indices which have been introduced in Section 4.3.4 of Chdpfer fuzzy clustering are adopted.
There are the Partition Coefficient (PC) (see Eq. 4.11), RartiEntropy (PE) (see Eq. 4.12), and
Modified Partition Coefficient (MPC) (see Eq. 4.13), respatyivPC obtains its maximum value
when the cluster structure is optimal. PE achieves its mininralue when the cluster structure is
optimal. An optimal cluster number is found by maximizing @I produce the best clustering
performance for a data set.
5.4. Experiments and Results

This section describes the experimental setup used, anesés obtained by the exper-
iments conducted. In particular, a comparison of the ciys¢eformance in the *A*B space is
conducted applying FCM, GK (Gustafson-Kessel), and thegseg FCRM approach. Then, the
different validity indices are compared with, followed bya@amparison of the mean square error
and the peak-signal-to-noise ratio. The last subsectiowslthe segmentation results.
5.5. Experimental Setup

The experiments are implemented and evaluated on an ASUSgdgntel(R) Dual Core
I3 CPU @3.07 GHz, 3.07 GHz) Matlab Version 7.13. In order towat@ the performance of
the proposed method, the algorithm has been tested usingades from Berkeley Segmentation
Database [141] for color image segmentation. In additibe,ttvo other fuzzy clustering algo-
rithms, FCM and Gustafson-Kessel (GK), have been used to amfCRM with. Table 30 lists
the required parameters used when running FCM, GK and FCRM.
5.6. Experimental Study
5.6.1. Comparison of cluster performance in *A*B space

The cluster performance of IMGL1 (all fifteen images are dedbly their number) with = 3
is displayed in Figure 19. The figure on the left is the origineage. The remaining three figures

show the cluster centers in CIE-L*A*B* color space using FCM, GiKd FCRM, respectively.
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Table 30. Parameters and their values of the FCM, GK, and FCRtitlgs

Parameter Value
U - U < e 1073
Fuzzification coefficient (m) 2
Maximum number of clusters 10
Image data IMG1-15

The three hyper-spherical centers obtained by FCM and GK tladhree hyper-plane-shaped
clusters obtained by FCRM are listed in Table 31.

Figure 19. Original image, FCM, GK, and FCRM with ¢ = 3 in *a*b cofpace

Table 31. FCM, GK, and FCRM using three different indices (PC, REMPC)

FCM GK FCRM
Cluster 1 (151.73,168.49) (122.26, 146.33) = 0.3297 x (z — 80) + 171.243

Cluster 2 (103.24,175.97) (114.69, 132.16), = 1.1788 x (x — 101.34) + 110
Cluster 3 (118.33,144.69) (135.42, 158.93); = 0.4578 x (z — 80) + 142.315

As shown in Figure 19, the proposed FCRM partitions the imaige3imyper-planed clusters,
while FCM and GK group the image into hyper-spherical clisteespectively. The FCRM
method provides better results of the constructed fuzzyataslcompared to FCM and GK.
5.6.2. Comparison using different validity indices

Table 32 lists the cluster performance of FCM, GK, and FCRM usalglity index PC,

PE, and MPC, respectively. As shown in the table, the valudsold denote the best values
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obtained from the three different validity indices. In moases, FCRM has the better performance

compared to FCM and GK.

Table 32. FCM, GK, and FCRM using three different indices (PC, RENMPC)

PC PE MPC
FCM GK FCRM FCM GK FCRM FCM GK FCRM

IMG1 0.77 0.77 081 0.44 044 0.35 065 065 0.71
IMG2 0.79 0.82 0.78 0.38 0.34 0.39 0.68 0.73 0.68
IMG3 0.72 0.69 0.78 050 055 040 058 053 0.67
IMG4 0.68 0.70 080 057 053 0.35 051 054 0.70
IMG5 0.67 0.68 080 058 056 0.36 051 0.52 0.70
IMG6 0.66 0.83 0.81 0.56 0.32 0.35 050 0.75 0.71
IMG7 0.88 0.83 0.88 023 030 0.22 081 0.75 0.83
IMG8 0.77 0.77 0.82 042 041 0.33 066 065 0.73
IMG9 0.74 0.75 0.79 046 045 0.38 061 0.63 0.68
IMG10 069 0.72 0.78 055 0.48 0.39 0.54 0.58 0.67
IMG11 0.75 0.77 0.77 046 040 041 0.62 0.66 0.66
IMG12 0.75 0.74 0.80 0.46 0.46 0.37 062 061 0.69
IMG13 0.75 0.74 083 045 047 031 063 062 0.74
IMG14 085 0.84 087 028 0.30 0.25 0.77 0.76 0.80
IMG15 065 066 0.78 062 060 040 048 048 0.67

In addition, the best cluster number of FCM, GK, and FCRM obthineusing PC, PE, and
MPC are listed in Table 33. In most cases we can see that thelbster number is 2 when using

PC, PE, and MPC as the validity index.
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Table 33. Best cluster number of FCM, GK and FCRM using PC, PE and MPC

PC PE MPC

FCM GK FCRM FCM GK FCRM FCM GK FCRM
IMG1 3 2 3 2 2 2 2 2 2
IMG2 2 2 2 2 2 3 2 2 7
IMG3 2 2 2 2 2 2 2 2 2
IMG4 2 2 2 10 10 10 2 2 10
IMG5 2 2 2 2 2 2 2 2 2
IMG6 2 2 2 3 3 3 2 2 2
IMG7 2 2 2 2 2 2 2 2 2
IMG8 2 2 2 3 2 3 2 2 3
IMG9 2 2 2 2 2 2 2 2 2
IMG10 2 2 5 2 2 2 2 2 2
IMG11 2 2 4 2 2 3 2 2 4
IMG12 2 2 2 2 2 2 2 2 2
IMG13 2 2 5 2 2 3 2 2 3
IMG14 2 2 2 2 2 10 2 2 2
IMG15 2 2 2 2 2 2 2 2 2

5.6.3. Comparison with MSE and PSNR
Mean Square Error (MSE) [142] and Peak Signal-to-Noise R®&NR) [143] are used as

the performance indices in fuzzy modeling, which are defasd

n

1 .
MSE == (yx — i) (5.8)
n k=1
PSNR =10 x log19(255 x 255/MSE) (5.9)
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Table 34. MSE & 10*) using FCM with different cluster number

c=2

3

4

5

6

v

8

9

10

IMG1

0.59

0.41

0.32

0.26

0.21

0.19

0.16

0.14

0.13

IMG2

0.37

0.26

0.19

0.16

0.13

0.12

0.10

0.09

0.08

IMG3

0.79

0.54

0.40

0.32

0.27

0.23

0.20

0.18

0.16

IMG4

1.05

0.70

0.50

0.42

0.34

0.29

0.26

0.23

0.21

IMG5

0.39

0.27

0.21

0.16

0.14

0.12

0.10

0.09

0.08

IMG6

0.48

0.41

0.33

0.28

0.23

0.20

0.17

0.15

0.14

IMG7

0.41

0.27

0.26

0.25

0.21

0.17

0.16

0.14

0.13

IMG8

0.50

0.34

0.25

0.20

0.17

0.14

0.13

0.11

0.10

IMG9

0.97

0.66

0.50

0.40

0.33

0.29

0.25

0.22

0.20

IMG10

0.99

0.69

0.56

0.46

0.39

0.33

0.29

0.26

0.23

IMG11

0.93

0.62

0.47

0.38

0.31

0.27

0.24

0.21

0.19

IMG12

0.79

0.55

0.43

0.41

0.34

0.30

0.26

0.23

0.21

IMG13

0.64

0.45

0.34

0.27

0.23

0.20

0.17

0.15

0.13

IMG14

0.73

0.49

0.37

0.24

0.19

0.17

0.15

0.13

0.13

IMG15

0.58

0.40

0.30

0.24

0.20

0.18

0.16

0.14

0.13
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Table 35. MSE &10*) using GK with different cluster number

c=2

3

4

5

6

v

8

9

10

IMG1

0.62

0.42

0.31

0.26

0.21

0.18

0.16

0.14

0.13

IMG2

0.37

0.26

0.19

0.16

0.13

0.12

0.10

0.09

0.08

IMG3

0.79

0.54

0.40

0.32

0.27

0.23

0.20

0.18

0.16

IMG4

0.82

0.62

0.51

0.42

0.35

0.30

0.26

0.23

0.21

IMG5

0.39

0.26

0.20

0.16

0.14

0.12

0.10

0.09

0.08

IMG6

0.52

0.52

0.40

0.32

0.26

0.20

0.18

0.15

0.14

IMG7

0.41

0.27

0.29

0.24

0.20

0.17

0.14

0.13

0.12

IMG8

0.49

0.34

0.25

0.20

0.17

0.15

0.13

0.11

0.10

IMG9

0.97

0.66

0.50

0.40

0.34

0.29

0.25

0.22

0.20

IMG10

0.98

0.78

0.58

0.47

0.39

0.33

0.29

0.26

0.23

IMG11

0.92

0.62

0.47

0.38

0.31

0.27

0.24

0.21

0.19

IMG12

0.78

0.62

0.47

0.38

0.35

0.30

0.26

0.23

0.21

IMG13

0.68

0.42

0.34

0.27

0.23

0.20

0.16

0.14

0.14

IMG14

0.73

0.49

0.37

0.29

0.24

0.21

0.18

0.16

0.15

IMG15

0.59

0.40

0.30

0.25

0.21

0.18

0.15

0.14

0.13
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Table 36. MSE &10*) using FCRM with different cluster number

c=2

3

4

5

6

v

8

9

10

IMG1

0.58

0.40

0.31

0.25

0.21

0.18

0.16

0.14

0.13

IMG2

0.37

0.25

0.19

0.16

0.13

0.12

0.10

0.09

0.08

IMG3

0.80

0.54

0.40

0.32

0.27

0.23

0.20

0.18

0.16

IMG4

1.05

0.70

0.52

0.42

0.35

0.30

0.26

0.23

0.21

IMG5

0.39

0.26

0.20

0.16

0.14

0.12

0.10

0.09

0.08

IMG6

0.48

0.44

0.36

0.28

0.24

0.21

0.18

0.16

0.15

IMG7

0.69

0.27

0.30

0.25

0.21

0.19

0.16

0.14

0.13

IMG8

0.50

0.35

0.26

0.20

0.17

0.15

0.13

0.12

0.10

IMG9

0.98

0.66

0.50

0.40

0.33

0.29

0.25

0.22

0.20

IMG10

0.98

0.80

0.60

0.48

0.40

0.34

0.30

0.27

0.24

IMG11

0.93

0.63

0.47

0.38

0.31

0.27

0.24

0.21

0.19

IMG12

0.80

0.61

0.52

0.42

0.35

0.30

0.26

0.23

0.21

IMG13

0.67

0.45

0.33

0.27

0.23

0.19

0.17

0.15

0.14

IMG14

0.73

0.49

0.37

0.29

0.24

0.21

0.18

0.16

0.15

IMG15

0.57

0.40

0.31

0.25

0.21

0.18

0.16

0.14

0.13
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Table 37. PSNR using FCM with different cluster number

c=2

3

4

5

6

7

8

9

10

IMG1

19.41

12.79

9.49

7.59

6.31

5.40

4.73

4.20

3.78

IMG2

21.48

14.18

10.60

8.37

7.03

5.96

5.21

4.65

4.14

IMG3

16.74

11.11

8.38

6.70

5.58

4.79

4.19

3.72

3.35

IMG4

14.65

9.76

7.45

5.86

4.95

4.25

3.69

3.29

2.93

IMG5

21.58

14.27

10.63

8.49

7.07

6.06

5.30

4.71

4.24

IMG6

19.77

12.12

8.83

6.98

5.82

4.99

4.36

3.88

3.49

IMG7

20.77

13.83

9.57

7.25

6.05

5.32

4.54

4.03

3.99

IMG8

19.35

12.87

9.65

7.71

6.42

5.51

4.82

4.28

3.83

IMG9

15.52

10.27

7.69

6.14

5.12

4.38

3.83

3.41

3.07

IMG10

14.23

9.76

7.05

5.57

4.64

3.97

3.47

3.08

2.77

IMG11

15.29

10.17

7.62

6.10

5.08

4.35

3.81

3.39

3.05

IMG12

16.38

10.75

7.92

5.87

4.89

4.18

3.64

3.23

291

IMG13

17.82

11.61

8.70

6.95

5.79

4.94

4.32

3.84

3.52

IMG14

16.89

11.26

8.45

7.25

6.15

5.18

451

4.02

3.57

IMG15

18.60

12.26

9.17

7.29

6.07

5.19

4.53

4.03

3.62
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Table 38. PSNR using GK with different cluster number

c=2

3

4

5

6

7

8

9

10

IMG1

19.15

12.74

9.55

7.59

6.32

5.40

4.73

4.20

3.77

IMG2

21.56

14.16

10.60

8.47

7.05

5.98

5.22

4.65

4.17

IMG3

16.76

11.10

8.32

6.65

5.56

4.78

4.18

3.71

3.33

IMG4

16.22

10.29

7.39

5.86

4.88

4.18

3.71

3.25

2.93

IMG5

21.65

14.35

10.67

8.50

7.07

6.06

5.30

4.71

4.23

IMG6

19.23

11.09

8.30

6.63

5.53

4.93

4.31

3.88

3.49

IMG7

20.79

13.84

9.31

7.34

6.13

5.26

4.73

4.10

3.69

IMG8

19.53

12.85

9.64

7.70

6.42

5.50

4.81

4.28

3.83

IMG9

15.55

10.31

7.69

6.14

5.11

4.38

3.83

3.40

3.06

IMG10

13.91

9.20

6.96

5.55

4.63

3.96

3.48

3.09

2.78

IMG11

15.36

10.18

7.62

6.10

5.08

4.35

3.81

3.39

3.05

IMG12

16.46

10.19

7.63

6.07

4.84

4.15

3.63

3.23

2.90

IMG13

17.46

11.93

8.71

6.94

5.76

4.94

4.44

3.95

3.47

IMG14

16.90

11.27

8.45

6.76

5.63

4.82

4.22

3.75

3.37

IMG15

18.49

12.22

9.13

7.29

6.06

5.20

4.54

4.03

3.62
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Table 39.

c=2

PSNR using FCRM with different cluster number

3

4

5

6

7

8

9

10

IMG1

19.52

12.86

9.60

7.64

6.37

5.43

4.76

4.22

3.80

IMG2

21.48

14.19

10.57

8.44

6.98

5.97

5.22

4.63

4.15

IMG3

16.69

11.10

8.32

6.67

5.55

4.76

4.16

3.70

3.33

IMG4

14.66

9.78

7.33

5.86

4.88

4.19

3.66

3.25

2.93

IMG5

21.66

14.33

10.70

8.53

7.08

6.06

5.29

4.70

4.23

IMG6

19.85

11.89

8.64

6.91

5.74

491

4.28

3.80

3.42

IMG7

17.51

13.84

9.23

7.26

6.05

5.11

4.47

3.98

3.58

IMG8

19.31

12.73

9.54

7.71

6.36

5.45

4.77

4.24

3.81

IMG9

15.49

10.27

7.70

6.14

5.12

4.38

3.84

3.41

3.07

IMG10

15.02

9.15

6.85

5.48

4.56

3.91

3.42

3.04

2.74

IMG11

15.29

10.16

7.62

6.09

5.08

4.35

3.81

3.38

3.05

IMG12

16.32

10.25

7.28

5.81

4.84

4.15

3.63

3.22

2.90

IMG13

17.50

11.63

8.83

7.03

5.79

5.00

4.37

3.88

3.49

IMG14

16.91

11.26

8.44

6.75

5.62

4.82

4.22

3.75

3.37

IMG15

18.62

12.22

9.10

7.25

6.06

5.18

4.53

4.02

3.60
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Figure 20. Original image, grayscale image using FCM, GK,B@&M are listed, respectively
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Figure 20. Original image, grayscale image using FCM, GK,B@&M are listed,
respectively (continued)
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Figure 20. Original image, grayscale image using FCM, GK,lBG&M are listed,
respectively (continued)
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Table 34, 35, 36 list the MSE of the 15 images using FCM, GK, a@&M, respectively.
Table 37, 38, 39 list the PSNR of the 15 images obtained from FGKJ and FCRM, respectively.
The MSE and PSNR are measured with a cluster number varyong2rto 10.

The results show that FCM, GK and FCRM show the same trend regalMiSE and PSNR.
As the number of clusters increase, the values of MSE dezraas the values of PSNR increase
for the 15 tested images. In addition, FCRM has a better pedocam than FCM and GK both
in terms of MSE and PSNR. Therefore, FCRM has less patrtitiorrs@od a more compact
representation than FCM and GK.

5.6.4. Comparison on segmentation results

The cluster results are used to reconstruct the image irsga#g/ level as shown in Figures
20 with ¢ = 3. As show in the figures, the FCM, GK, and FCRM can segment the isncgarly.
5.7. Summary

Most fuzzy clustering algorithms have been successfullyliag in image segmentation.
However, the disadvantage they have is that the clusteotype of FCM (Fuzzy C-Means) is
either hyper-spherical or hyper-ellipsoidal. Therefét€ M may not provide accurate partitioning
in circumstances where data is better modeled by arbitfaapes. Thus, a fuzzy c-regression
model clustering algorithm has been introduced whose ty¢ois hyper-planed and can either
be linear or nonlinear. In this chapter, the fuzzy c-regassodel clustering algorithm has been
successfully applied to color image segmentation. Fuaegecession model is an affine T-S model,
which has been successfully used in non-linear system. diitiad, due to the complexity of
implementation, FCRM has never been used in color image sagtimnand was thus explored
in this investigation.

The experiments conducted used 15 images that were takartlisoBerkeley Segmentation
Database. The FCRM was compared against two comparisontalger{FCM and GK) for color
image segmentation. Three validity indices have been usededl as MSE and PSNR were

measured. The images were reconstructed using the grayiseal. The experimental results
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revealed that FCRM achieves better results in most casesltbaoitier approaches based on the
aforementioned measures.

As for future work, FCRM is similar to other fuzzy partition tedques, thus, cluster cen-
troids and the number of clusters should be decided in advaktowever, for most unknown
environments, the appropriate and exact number of clustenrsknown in practice. A new cluster
validity criterion needs to be developed to determine ther@griate number of clusters. In
addition, FCRM is very sensitive to the initialization. A goimidtialization results in good quality
image segmentation, while an unsuitable initializatiotumes poor results. Thus, in future, a
new technique for automatically finding the exact numberlo$ters as well as obtaining good

initialization need to be investigated.
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6. CONCLUSION AND FUTURE WORK

In this current information age, a tremendous expansioheénvblume of data is seen that
is being generated and stored. The need to understand tamgglex, information-rich data sets
iIs common to all fields of studies. Given this tremendous arhotidata, efficient and effective
tools need to be available to analyze and reveal valuable/liedge that is hidden. The objective
of the field of knowledge discovery and data mining is thealscy of knowledge that is not only
correct, but also comprehensible. In this dissertatiorg\flapproaches based on fuzzy set theory,
fuzzy inference system have combined with particle swartimmopation, decision tree and genetic
algorithm and have been applied to solve classification dmstering problems. This chapter
concludes the dissertation and is organized as follows. chmelusions of the dissertation are
described in Section 6.1 and the future work is illustrate8ection 6.2.

6.1. Conclusions

The two primary goals of data mining can be classifiegsliction and description[3].
Prediction involves using some features or fields of the data set to gresiknown or future
values of interest, whereakescriptionfocuses on finding patterns describing the data that can
be interpreted by humans. Several data mining techniqueg psediction and description have
emerged that include classification, clustering, regoessiependence modeling, etc. The classi-
fication technique is used to discover a predictive learfumgtion that classifies a data item into
several predefined classes. It is also known as superviassifatation, whereby given class labels
are ordered to objects in the data collection. Clusterindyaisais one of the popular approaches
and has been widely used in data mining, and is a processritfidgroups or clusters based on
some similarity measures. The study of this dissertatidodased on two main paradigms. The
first paradigm focuses on applying fuzzy inductive learronglassification problems. The second
paradigm is fuzzy cluster analysis.

Firstly, a discrete particle swarm optimization with a lbseiategy (DPSO-LS) for solving

the classification problem is proposed. The local seareltegty helps to overcome local optima in
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order to improve the solution quality. The DPSO-LS uses fkislirgh approach whereby a rule
base is used to represent a ‘particle’. Furthermore, siit8@LS can only be applied to discrete
data, an additional classifier called Fuzzy DPSO-LS (FDRSDe¢lassifier is implemented for
both discrete and continuous data to tolerate imprecigidruacertainty.

Secondly, a decision tree induction method using fuzzy lsstry, in other words, Fuzzy
Decision Tree (FDT), is becoming an increasingly populathroe to solve classification problems.
FDT, like classical decision tree, uses the top-down gxate order to find the best so called “cut-
point”, FDT is based on soft discetization and follows theDifi recursively on each partition until
the best cut point is found. The data contains many redurtdamelevant features. These features
provide no useful information in any context. In order to noye the model interpretability and
enhance the generalization, a Genetic Algorithm (GA) bdsatlire selector was applied in this
chapter. Mutual information is one suitable criterion feature selection [73]. Mutual information
can reduce the uncertainty about the class labels and nzmimilower bound on the Bayes
classification error as investigated in [144]. Neverthgldbe estimation of mutual information
is not an easy task. Mutual information is a nonlinear memagged to quantify not only linear and
but also nonlinear correlations. The challenge of usinguaubformation for feature selection is
the estimation of this measure from the available data.

Thirdly, One of the widely used methods in fuzzy clusteriag-uzzy C-Means clustering
(FCM) [24]. FCM attempts to partition a data set into a collec®fc fuzzy groups. The algorithm
finds a cluster center in each group such that the intrardistavithin the group is minimized, and
the inter-distance between each group is maximized. Mogtefuzzy clustering methods that
have been applied recently use an extension of the FCM diguoriAs we have mentioned before,

partitional clustering suffers from the following drawlxac

1. The number of clusters needs to be pre-specified, and prawledge or ground truth is

required of the data.
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2. Most data points in overlapping areas cannot be categgbdarrectly.

In order to address these two shortcomings, we proposedzg fismeans clustering approach
using a Particle Swarm Optimization (PSO) approach thgipéied to clustering analysis.

Lastly, the Fuzzy C-Regression Model (FCRM) was introduced bth&isay and Bezdek
[133, 134]. Due to their excellent capability of describimmplex systems in a human intuitive
way, FCRM is capable of handling perceptual uncertainties @etribing nonlinear system.
FCRM, which can be viewed as an extension of FCM, divides thesgdtiaito a group of different
regression models. Unlike FCM, the clustering prototype®©RM is a hyper-plane while FCM is
hyper-spherical.

However, because of the complexity of image segmentatidrgasen that only partial prior
knowledge is provided, the segmentation result would be ppacsupervised method was adopted.
Thus, the unsupervised method is a better choice to soleaspcoblem. Although fuzzy theory
has been employed in image segmentation, the applicati&iC&M to color images has been
limited. In this study, we have explored the applicabilitdasoundness of FCRM in color image
segmentation. Although FCM can patrtition the fuzzy spaceiefitly, it does not take linearity of
the divided data into consideration. In contrast, the FCRMtelung algorithm with hyperplane-
shaped cluster prototypes has much more explanatory p@specially due to its multivariate
nature.

6.2. Future Work

Although the proposed approaches worked well in solvingsifecation and clustering prob-
lems, this is just a beginning. There is still much work to beelin the field of data mining using
fuzzy approaches.

First, work described in Chapter 2 suffers from a large nundfeuns to obtain a better
average result due to the stochastic nature of particlersvegatimization. Thus, it would be
interesting to improve the proposed algorithm to achieveenstable predictions in less runs. In

addition, the Pittsburgh approach suffers from bad qualitgs within the rule set when only the
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overall performance is considered, the quality of eachisut®t taken into account. Thus, it would
be interesting to compare the Pittsburgh approach with tichilgan approach. Moreover, FDPSO-
LS has shown improved results compared to FURIA, which cdillds improved by minimizing
the number of rules and deleting replicated rules. Furtbeenthe proposed FDPSO-LS can be
further improved by applying discrete data sets with largages of attribute values.

Second, work illustrated in Chapter 3 only used a geneticritgn approach on feature
selection. The results revealed that the approaches usfhdiscretization rather than hard dis-
cretization, such as FURIA and our FDT classifier, obtaindteb@redictive classification accu-
racy. The proposed classifier achieved slightly betterteguan FURIA in most cases. However,
FDT suffers lot execution time by comparing to FURIA. In fuguwe will investigate and compare
other feature selection techniques available in terms pfavements in accuracy but also in terms
of execution time.

Third, due to the slow convergence and the stochastic natutee PSO algorithm, the
prediction results of a single run vary and thus make it diffito prediction the correct number of
clusters using the work discussed in Chapter 4. Unlike K-raea FCM, the proposed algorithm
needs to be executed repeatedly in order to find the corrédisu In addition, the maximum
number of clusters has to be predefined, and the iterativeepsoto identify the optimal number
of clusters is computationally expensive. As for future kyat would be interesting to improve
the proposed algorithm to achieve more stable predictiatisfewer runs. Thus, a kernel based
technique and a new validity index would be interested testigate to over come such problem.
Moreover, we are planning to explore the proposed algorityith big data sets, and therefore
parallelization techniques are necessary.

Fourth, FCRM described in Chapter 5 is similar to other fuzzytipan techniques, thus,
cluster centroids and the number of clusters should be dédid advance. However, for most
unknown environments, the appropriate and exact numbefusters is unknown in practice.

A new cluster validity criterion needs to be developed tcedeine the appropriate number of
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clusters. In addition, FCRM is very sensitive to the initiation. A good initialization results in
good quality image segmentation, while an unsuitablealation returns poor results. Thus, in
future, a new technique for automatically finding the exaghher of clusters as well as obtaining
good initialization need to be investigated.

Generally, the standard definition of knowledge discoverg data mining concentrate on
highly structured and precise data. The conventional nusthike decision tree and neural network
are hardly adequate for mining image, sound, and textual[dd56]. In the light of the capability of
handling uncertainty at various stages, fuzzy approacheglay an important role in data mining
especially in information mining [146].

Hence, the future work of this dissertation includes twaclions. First, fuzzy logic can
improve the classification system by using fuzzy sets to dedirerlapping class definitions. The
interpretability of the results can be improved and morégimsinto the classifier structure and
decision making process would be provided by the applinadiduzzy IF-THEN rules. In effect,
the tolerance for imprecision and uncertainty is exploitedugh granulation in soft data compres-
sion by using linguistic variables and fuzzy IF-THEN rulds.future, classification tasks based
on fuzzy set theory is a direction to investigate which cangfate computer representations into
human understandable knowledge or concepts. Seconderchgstechniques have been widely
applied in science, engineering, business and econonifiessdiences, biological and medical
disciplines [145]. Fuzzy clustering becomes quite promine the framework of clustering. In
future, theories and scalable techniques that can extrextlkedge from large and dynamic data
sources need to be exploited and developed.

In conclusion, fuzzy set theory and fuzzy systems have beecessfully applied to model
human expert knowledge which are comprehensive and easglaystand. Thus, we believe fuzzy

approaches will play a more prominent role in the area of daténg.
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