MINING SIGNIFICANT PATTERNS BY INTEGRATING BIOLOGICAL
INTERACTION NETWORKS WITH GENE PROFILES

A Dissertation
Submitted to the Graduate Faculty
of the
North Dakota State University
of Agriculture and Applied Science

By

Rami Mohammed Alroobi

In Partial Fulfillment of the Requirements
for the Degree of
DOCTOR OF PHILOSOPHY

Major Program:
Computer Science

July 2015

Fargo, North Dakota



North Dakota State University
Graduate School

Title

MINING SIGNIFICANT PATTERNS BY INTEGRATING BIOLOGICAL
INTERACTION NETWORKS WITH GENE PROFILES

By

Rami Mohammed Alroobi

The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Prof. Saeed Salem

Chair

Prof. William Perrizo

Prof. Simone Ludwig

Prof. Mukhlesur Rahman

Approved:

07/09/2015 Prof. Brian Slator

Date Department Chair



ABSTRACT

Nowadays, large amounts of high-throughput data are available. Automatic with classical
cell biology techniques which are employed in the analysis of cell functions, interactions, and how
pathogens can exploit them in disease, are becoming available because of the huge advancements
in both Genomics and Proteomics technologies. Analyzing and studying these vast amounts of data
will enable researchers to uncover, clarify, and explain some aspects of gene products behavior and
characteristics under a very diverse set of conditions. The biological data belong to different types.
The integration of several types of data can help reduce the effect of problems each data source has.
The focus or our work and among the very important tasks in the bioinformatics field are functional
module discovery and discriminative pattern. In functional module discovery, the goal is to find
groups of genes that interact to perform different processes in the living organism. Discriminative
patterns mining aims at discovering groups of proteins that can be classified as related to a specific
phenotype. Understanding what genes, or proteins, are involved in biological phenomena can lead
to advancements in related medical and pharmaceutical research. Many research has be done in
this area. The two main sources of data used in my work are the gene expression and the protein-
protein interaction network. The expression data shows how genes react in several conditions. The
interaction network represents real protein cooperations occurring in the living cell. Our research
efforts proved to show competitive performance with well established methods as illustrated in this

document.

il



ACKNOWLEDGMENTS

It is a pleasure to express my gratitude to the many people who were abundantly helpful
and offered invaluable assistance and made this dissertation possible. It is difficult to exaggerate
my gratitude to my Ph.D. advisor, Dr. Saeed Salem; for his encouragement, guidance and his
efforts to explain concepts clearly and simply. Special thanks to my supervisory committee, Dr.
William Perrizo, Dr. Simone Ludwig and Dr. Mukhlesur Rahman for their support, guidance
and helpful suggestions. Without their comments and assistance this dissertation would not have
reached this level of accomplishment. The deepest gratitude are due to my beloved parents,
Mohammed and Thsan, for their praying, endless love , care, and support throughout my entire
life. This achievement is simply impossible without them. I owe them , and I will continue to owe
them for the rest of my life, for every beautiful thing in my life and I wish I could show them how
much I love and appreciate them. I would like to thank my wife, Shaymaa, for her encouragement,
tolerance, and patience that helped me to continue, overcome obstacles, and finish the doctoral trip.
She is my beloved wife and I will just give her a heartfelt thanks. In Addition, my deepest loving
feelings go to my three sons, Mohammed, Hasan, and Osama for the lots of happiness and joyful
times they brought to my life. Especially during the hardships I faced during this trip. With their
smiles and playful nature, I felt always that I am in a different more joyful and less stressful place.
I thank my friends, for their faith in me and supporting me in several ways to be as ambitious as
I wanted, for helping me defeat hard times, and for all the emotional support, entertainment, and
caring they provided. Lastly, I wish to thank my entire family, especially my sisters, for being a

constant source of encouragement during my graduate study.

v



TABLE OF CONTENTS

AB ST RACT . iii
ACKNOWLEDGMENTS . .. e e e e e v
LIST OF TABLES . .. e e e viii
LIST OF FIGURES .. .. e e e ix
I.  INTRODUCTION . . .. e e e e e e 1
1.1, Background . ......... ... 1

I.1.L1.  Gene EXpression. .. .........uuuuiiininininennnennnn. 2

1.1.2.  Protein Interaction Network ............. ... . ... ... ...... 2

1.1.3.  Integrating Gene Expression and Protein Networks ............. 3

1.2.  Discovering Functional Modules ............. ... ... .. .. .. . ... 3

1.2.1.  Non-Integrative Approaches .............. ... ..., 4

1.2.2.  Integrative Approaches ...............ciiuiiniininnenn .. 4

1.3.  Mining Discriminative Gene Patterns. .. ........... ... ... . ... ...... 6

1.4, Dissertation OVEIVIEW . . ...ttt ettt 8

2.  MAXIMAL COHESIVE PATTERNS DISCOVERY ........ ... ... ... ... 9
2.1, ContribUtiOn ... ..o 9

2.2, Problem Description. . ... ... ...ttt 10

2.2.1. Graphsand Gene Profiles ............. .. .. .. .. ... ... 10

2.2.2.  Cohesive CONStraints . ... ........uoeeuneeinneenneennnennnnn. 11

2.2.3.  Maximal Cohesive Induced Subgraphs ....................... 12

2.2.4. Maximal Cohesive Patterns IMCPs). . ........................ 17



2.3.

2.4.

EXperiments. . .. ... e 19
231, YeastData ..........oo i 19
2.3.2.  Yeast Complex Prediction ............. ... ... oL, 19
233, HumanData .......... .. 21
2.3.4.  Human Complex Prediction ................................ 22
2.3.5. Gene Ontology Enrichmentof MCPs......................... 26
23.6. Running Time ............iiniinini e, 29
CONCIUSION . . ..ottt e 30

3. DISCOVERING DYSREGULATED PHENOTYPE-RELATED GENE PATTERNS 32

3.1.

3.2

3.3.

3.4.

3.5.

Contribution ... .. ... 32
Problem Description. . ........ouuiun e 33
Algorithm Description . ... i i 33
EXPeriments. . ..ottt e e e 36
3.4.1. Data Preprocessing .. .........ueeuiiiiniiineinneinenn.. 36
3.4.2. Dataset Phenotypic Annotation. ................c.vouuiunenn.. 38
343. Reported DPRs . ... .. ... 42
3.4.4. Functional Enrichment Analysis............... ... ... ..... 42
3.4.5. Interesting GO Terms and KEGG Pathways ................... 44
3.4.6. Complex Prediction Analysis ........... ... ... oo, 45
3.4.7. Statistical Significance AnalysiS............ ... ... ... ... 46
3.4.8. Examples of Interesting DPRs .............................. 47
3.4.9. Classification Performance of DPRs ......................... 48
ConClUSION . . . . oot 49

Vi



4. CONCLUSIONS ..

BIBLIOGRAPHY

vii



Table

10:

11:

12:

13:

14:

LIST OF TABLES

Page
A listing of the organisms for which the orthologs are used to create the evolutionary
conserved profile for the Yeast. ..........o o i 18
Analysis of the Maximal Cohesive Subgraphs discovered from Yeast interaction
data with Phenotype Profiles. . ....... ... . i 21
Analysis of the Maximal Cohesive Subgraphs discovered from the Yeast dataset of
Environmental Changes. Both 0p and ot weresetto 0. ............ ... ... ...... 21
Analysis of the Maximal Cohesive Subgraphs discovered from the Human
Evolutionary Conserved dataset (HE1)............... ... ... . ... ... 22
Analysis of the Maximal Cohesive Subgraphs discovered from the Human Tissues
dataset (H) .. ..o e e 23
Analysis of the Maximal Cohesive Subgraphs discovered from the Human Disease
dataset (HD). .. ..o e 24
GO enrichment analysis of the maximal cohesive patterns discovered from the
Yeast dataset of Evolution Conserved Profiles. ........ ... .. .. .. .. .. ... ... 26
GO enrichment analysis of the maximal cohesive patterns discovered from the
Human dataset of Evolution Conserved Profiles.............. ... ... ... ..... 28
The 88 datasets used inthe study. ......... .. .. i 37
The UMLS terms used in this study. Third column shows the number of datasets
annotated with the corresponding term. ........... ... .. . .. i 41
An illustration of the distribution of the gene patterns along with average pattern
size, column V, and average pattern density, the Gcolumn. ...................... 42
Examples of GO terms that are enriched in the reported DPRs. .................. 43
Examples of KEGG pathways that are enriched in the reported DPRs. ............ 44
The classification power of the DPRs illustrated by different classifiers algorithms
against single gene markers. ........ ... 48

viii



Figure

10:

11:

12:

13:

LIST OF FIGURES
Page

An interaction network, the gene profiles data, and the maximal cohesive subgraphs. 10
Mining Maximal Cohesive Subgraphs. ........ ... . ... ... ... ... 13

An example showing the proposed enumeration approach to discover maximal
cohesive induced subgraphs. The example, also, illustrates the different pruning
strategies employed. Here the cohesive thresholds are setto g =0and oty =2.. ... 15

An example of the one of the produced cohesive subgraphs that matched one of the

human protein complexes. The heatmap shows the diseases that this subgraph is
up-regulated in. ... ... 25

A maximal cohesive pattern from the Yeast Conserved dataset and its connected
components. Only subgraphs with at least 3 genes are shown. ................... 27

A maximal cohesive pattern from the Human HE2 Conserved Profile dataset and
its connected COMPONENLS. . ...t v vttt et et ettt e ie e 28

The effect of parallel execution on the human tissue data. Here the value of o is
equal to 17, . . 29

The effect of parallel execution on the yeast phenotype data. The value of o is set

The Algorithm for mining Dysregulated Phenotype-Related patterns. ............. 34

General overview of the approach presented in this work. After generating the
seeds, a filtering step is done. Then, seeds are grown by adding neighboring genes.
The same steps are performed by exchanging positive with negative contexts. ..... 35

The approach used to map the MeSH terms into their corresponding UMLS concepts.
The dataset used in this example has the ID GSE3167 and it is about carcinoma in
situ lesions in human bladder cancer. .......... ... ... ... ... i 38

An illustration of how the datasets are annotated with UMLS concepts. The dots
in the matrix mean that the dataset, D;, has the concept, C;. Each column in the
matrix can be used as the class label for the datasets. ................ ... ... ..... 40

The enrichment analysis for the reported patterns. ............................. 43

iX



14:

15:

Two examples of patterns from the phenotypes Mental or Behavioral Dysfunction,

left, and Carcinoma, right, that overlapped with two protein complexes. Hexagonal

nodes are the common proteins. Dark circles are for pattern nodes and light ones
are for the complex’s. .. ... o e 45

Examples of some of the interesting patterns related to the phenotypes studied in
this work. The pattern in (a) is enriched with the ‘Acute Gastroentirits’ GO term.
The pattern in (b) is enriched with ‘Mental or Behavioral Dysfunction’.



CHAPTER 1. INTRODUCTION

We start this work by the explanation of the data used and the integration efforts of multiple
data types, especially gene expression data and interaction networks. After that, a description of
research done on discovering functional modules. Then, an introduction of mining discriminative
patterns. Lastly, the organization of this dissertation based on the published work.

1.1. Background

Currently, the experiments the biologists are designing and performing every day are pro-
ducing and accumulating very large amounts of data. This data has to be analyzed and inspected to
discover the hidden knowledge concealed within. While traditional analysis and manual interpre-
tation methods can no longer cope with this task and will fall short, the need to employ computing
technology to unravel biology’s secrets is inevitable. This led to the rise of the bioinformatics field.

As a result of the huge advancements in both Genomics and Proteomics technologies,
automatic with classical cell biology techniques are becoming available to be employed in the
analysis of cell functions and interactions. Genomics technologies in the fields of DNA sequencing,
sequence assembly, and annotation; where biological information is attached to the sequences. In
Proteomics technologies, the main focus is about identifying and characterizing proteins, discov-
ering protein structure, discovering proteins functions, and protein-protein interactions.

Analyzing and studying these vast amounts of data will enable researchers to uncover,
clarify, and explain some aspects of gene products behavior and characteristics under a very
diverse set of conditions. Furthermore, this huge amount of data needs well designed tools and
techniques to analyze and understand. Many of these are in the field of computer science. In fact
computer science helps in tackling many biological tasks. Tasks such as, comparing sequences,
constructing evolutionary trees, detecting patterns in sequences, determining 3D structures from
sequences, inferring cell regulation, determining protein function and metabolic pathways, just
to name some. Here, scientists create algorithms for biological applications and check their
complexity and performance. Currently, many biological databases are available to be accessed

via Internet. Databases containing DNA sequences, 3D protein structures, interaction networks,



gene expression datasets, and software tools, that can be used to perform several tasks, are available
for researchers. A good listing can be found in [1]. In this work we depend mainly on two sources
of data; gene expression data and protein-protein interaction, PPI, networks data.
1.1.1. Gene Expression

The interesting aspect of gene expression data is that it helps researchers, simultaneously,
monitor the expression levels of thousands of genes during important biological processes and
across collections of related samples [2]. Therefore studying gene expression levels can give deep
insights about how the gene reacts in response to different conditions. Gene expression represents
the RiboNucleic Acid, RNA, that is produced by the gene. The different amounts of RNA that are
produced by multiple genes can give an estimation about protein levels. Gene expression levels,
which are often represented numerically, can vary depending on the state the living cell is in.
In high-throughput cell biology, one of the important techniques to study the cell mechanics is
through gene expression data. A key method for obtaining gene expression data is via microarray.
Microarray technologies made it possible to observe the expression levels of tens of thousands of
genes in parallel.
1.1.2. Protein Interaction Network

According to [3], a PPI is the physical contact between proteins that occur in a cell or in a
living organism in vivo. From all of these protein interactions a PPI network is built. The goal here
is to create a network of the interacting proteins, or genes. The nodes of the network are the genes
and the edges are the bindings. The protein interactions considered to build the PPI network are the
stable interactions which constitute macromolecular protein complexes and cellular machines. PPI
networks represent bindings and cooperations occurring in the cell to perform biological functions.
As a result, PPI networks have attracted many research efforts. The motivation is that studying
these networks will illuminate some information about the systems they represent [4]. A group of
genes that are well connected in the PPI network are likely to share similar functions [5]. A gene
who is interacting with many other genes in the network in a hub-like behavior could be regarded

as very important in biological perspectives on the contrary to a weakly connected gene [6].



1.1.3. Integrating Gene Expression and Protein Networks

In bioinformatics research a lot of work has focused on studying gene expression data and
interaction data separately [7, 8]. However, there are some issues that arose from this separation.
Gene expression data can contain errors and biases depending on the technologies used. Moreover,
expression levels can be affected by experimental conditions. In addition, if two genes are found
to be coexpressed that does not mean that they share similar functionality. Also, if they are not
coexpressed, that does not mean that they are not functionally similar. Therefore, extracting
significant patterns from gene expression alone is still problematic. On the other side, studying
PPI networks is illuminating and can lead to interesting biological conclusions but also this should
be done with caution. The reason is that PPI networks are still not complete. Some estimates say
that available PPI networks of the yeast, which is a well studied organism, and for the human are
around 50% and 10% respectively of the complete networks [9]. Consequently, much effort has
been invested to integrate different types of available data. The aim is to overcome the problems
each type of data has so that deeper insights into the biology of an organism can be captured and
researchers gain a closer look of what activities are taking place in multiple biological processes.

In the following we explore two of the main research areas in the field of systems biology
which are relevant to our work:

1.2. Discovering Functional Modules

Our work in this field appears in Chapter 2. However, the explanation to follow is necessary
to set the stage for what we introduce in another part of this dissertation. Functional Module
Discovery is an important research area that has a leading role in incorporating multiple sources
of information. Functional modules are typically defined as a group of cellular components and
their interactions that can be attributed a specific biological function [10]. Discovering proteins
functional modules from a PPI network can help in many venues of research such as under-
standing the mechanisms regulating cell life, in describing the evolutionary orthology signal [11],

in predicting the biological functions of uncharacterized proteins, and, more importantly, for



therapeutic purposes. Many works have shown the interconnection between expression profile
similarity and protein interactions [12, 13, 14, 15, 16]. This has motivated researchers towards
employing different types of data, such as gene expression data and interaction data, to obtain
better conclusions.

In systems biology, an important objective is to mine modules with well intra-connected
genes from an interaction network. To improve the quality of discovered modules, other sources
of data can be integrated. For instance, when gene profiles are integrated in the module discovery
process, the goal becomes discovering connected modules whose participating genes have highly
similar gene profiles, i.e. profiles homogeneity. Similarity between gene profiles is data-relevant
and can have several meanings. When the profiles are gene expression, similar genes are coex-
pressed, or more accurately, highly correlated through multiple experimental and environmental
conditions. When gene profiles are annotation-based, two genes have high profile similarity if they
share a significant number of annotations.

1.2.1. Non-Integrative Approaches

Many of the existing algorithms for modules discovery are based only on one type of data.
Some algorithms use only the topological structure of the network. Well known examples appear
in the work of [17, 18, 19, 20]. An example is the Molecular COmplex DEtection, MCODE
[21]. MCODE detects dense connected modules where every node in the module has to have a
degree that exceeds a predefined limit. Another group of methods consider only clustering the
gene expression data. K-Means and Statistical-Algorithmic Method for Bicluster Analysis, or
SAMBA, [22] are among these. When solely using PPI structure, results will bear the problems
and limitations the PPI has. Gene expression data also has the problems aforementioned.

1.2.2. Integrative Approaches

For the problems above, integrating interaction networks with gene expression/profiles data
holds much promise [23]. Gene expression can help reduce the effect of the missing links that
should be available in the network [24]. Moreover, based on the expression data that was used

in the experiments, these modules can be related to specific kinds of biological conditions such



as diseases. The integration process has been greatly successful in discovering phenotype-specific
modules [25]. Integrative modules discovery methods can be categorized into different categories.
Here, we consider one categorization which is based on dense versus non-dense functional modules

discovery.

e Density Based

Many of the algorithmic approaches aim at mining all subnetworks of proteins with densities
exceeding a predefined threshold and are homogeneous over the gene profiles space. Dense
Module Enumeration, or DME, by [26] aims at enumerating dense modules from a weighted
interaction network by integrating gene expression data with the interaction network. The
discovered modules have to satisfy density and homogeneity constraints defined over a
number of data sets. The method only reports locally maximal solutions of which direct
supermodules violate the condition. The DME approach is criticized for being sensitive to
noise in the gene expression data. In addition, the discovered modules must satisfy a density
constraint. Another approach is the Densely Connected Biclustering, DECOB, algorithm
[27]. The authors try to reduce the search space of modules by employing the loose anti-
monotone property of the densely connected biclusters. The authors applied the algorithm on
yeast and human gene expression data. The study showed that Gene Ontology, GO, specific
clusters of modules have more accurate prediction abilities of functional relations that exist

between genes in the detected modules.

e Non-Density Based

Another category of clustering biological networks methods integrates the interaction net-
work and the gene profiles via constructing a distance matrix between genes by combining
their network-based distance and gene profiles distance. The Co-clustering algorithm is
a pioneer method in this area [28]. The Co-clustering algorithm assigns a distance value
between two genes based on their network-based distance and their gene-expression profiles
distance. Once the distance matrix is computed, a hierarchical clustering is employed to

extract the functional modules. In order to reduce the number of produced clusters, an
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associated statistical measure is computed. This method, and other similar methods like [29],
have the advantage of discovering modules with high node homogeneity in the profile space.
However, these methods tend to produce modules with low density. Moreover, this approach
requires the definition of a proper network-based similarity function and a careful way to
combine the distances which can be complicated. Another example is the algorithm of
Module Analysis via Topology of Interactions and Similarity SEts, MATISSE, [30]. Other
works can be found in [31, 32, 33, 34]. In all the mentioned studies the genes in the

interaction graph and the profile matrix have unique labels.

When the aim is to mine dense functional modules, a major challenge is that it is not clear
how to choose a good density threshold. Choosing a low density value would result in a drastic
increase in the computational complexity of the method and a significant increase in the number
of modules that satisfy the density threshold. On the other hand, choosing a high density threshold
may result in missing many of the important subnetworks. This is true because large percentage
of the curated biological complexes for both Yeast and Human have low density. This can be
referred to the fact that the current biological interaction networks are far from being complete
and suffer from a high false-positive rate [9]. The work done in [35] aims to mine all the dense
maximal cohesive subnetworks. A density threshold is enforced so the reported patterns are dense
leading to the problems mentioned above when only dense modules are targeted. In our work [36],
we extended mining functional modules to mine maximal cohesive subnetworks that show similar
expression profiles in multiple datasets. We have introduced an algorithm to achieve this objective
in [36] that overcomes the density problems in addition to introducing the the idea of inter-module
cohesiveness. More details are to come.

1.3. Mining Discriminative Gene Patterns

The details of our contribution in this area is fully explained in Chapter 3. However, the
following background highlights some aspects of this research area. Integrating protein-protein in-
teraction data with gene expression for the task of discriminative biomarker discovery has recently

gained more attention. Interestingly, subnetwork biomarkers have shown to be more classificatory



powerful than single-gene markers and have been found to be biologically meaningful. When
subnetworks are mentioned we simply mean sets of connected genes. Moreover, these subnet-
works have to show differential expression over the gene expression profiles. These subnetworks
biomarkers can be considered as phenotype-specific and they can be employed for microarray
gene expression classification. This clustering of genes may result in discovering new functions
for some of the genes within the discovered pattern, or even discovering functions for genes that
are not known to have specific roles inside the biological activities occurring in the organism. This
occurs when a subnetwork can be proved to be in relation to a certain phenotype.

In [23], Chuang et al. proposed an approach for mining subnetwork biomarkers. This
approach follows a greedy search that starts by growing a gene into a pattern, set of genes, by
adding neighboring genes that maximizes an objective function. This work was the first to utilize
idea of differentially expressed subnetworks. The authors found that subnetwroks have more
predictive abilities for cancer metastasis than single genes.

Several other approaches have been proposed for finding better network markers [37, 38,
39]. In these studies, the aim was to find semi-densely connected components of genes that are
differentially expressed in a way that can be employed to distinguish between the disease and no
disease conditions. In [37], the authors goal was to mine subnetwork biomarkers by utilizing the
idea of covering subnetworks. While the work in [38] aimed at enumerating all dense subnetworks
that are dysregulated in subsets of samples. In [39] the authors average the genes expression values
of a subnetwork to determine the activity of the subnetwork. This activity level is employed as a
score for the biomarker subnetwork.

In the work done by Suthram et al.[40] the authors proposed an algorithm for integrating
multiple disease gene expression datasets with modules extracted from the PPI network. The
similarity between two diseases was based on modules dysregulation score in the disease data.
Diseases were clustered based on these similarities. Their results show that diseases with high
correlation share common drugs for treatment. In this direction, we introduce an algorithm for

mining Dysregulated Phenotype-Related subnewtworks of genes, the DPRs. Here, the annotation



of the gene expression datasets is accomplished using the Unified Medical Language System,
UMLS, approach. Our contribution in this venture is explained in Chapter 3.
1.4. Dissertation Overview

This document is formatted as paper based where main chapters are based on published
work.

Chapter 2 revolves about introducing the problem of discovering maximal cohesive sub-

networks and patterns. This work is based on the publication:

e Rami Alroobi, Syed Ahmed, and Saeed Salem. Mining maximal cohesive induced subnet-
works and patterns by integrating biological networks with gene profile data. Journal of

Interdisciplinary Sciences: Computational Life Sciences, 5(3):211-224, 2013.

e This work is an extension of the research in the publication:

Saeed Salem, Rami Alroobi, Syed Ahmed, and Mohammad Hossain. Discovering maximal

cohesive subgraphs and patterns from attributed biological networks. In Proceedings of
the 2012 IEEE International Conference on Bioinformatics and Biomedicine Workshops

(BIBMW), BIBM’12, pages 203-210, 2012.

In chapter 3, the main interest is to discover patterns of proteins that can discriminate

between different phenotypic conditions. This work is based on the publication:

e Rami Alroobi and Saeed Salem. Discovering dysregulated phenotype-related gene patterns.
In Proceedings of the Sth ACM Conference on Bioinformatics, Computational Biology, and

Health Informatics, BCB 2014, pages 524-532, 2014.

In chapter 4, we summarize the contributions presented in this dissertation.



CHAPTER 2. MAXIMAL COHESIVE PATTERNS DISCOVERY'

The systematic integration of gene profile data with interaction data yields significant
patterns. Here, we add our contribution that employs the integrative model by introducing the
problem of mining maximal cohesive subnetworks that satisfy user-defined c onstraints defined
over the gene profiles o f the reported s ubnetworks. I'n a ddition, w e i ntroduce t he p roblem of
finding maximal cohesive patterns which are sets of cohesive g enes. The quality of the discovred
subnetworks was assessed by performing experiments on Yeast and Human datasets.

2.1. Contribution

The proposed algorithm in this work follows a pattern-growth approach to enumerate the
set of maximal cohesive induced subgraphs that satisfy the user-defined constraints that are defined
over the profiles of the genes in the subgraphs. Since there is no minimum density threshold, the
proposed algorithm is able to discover cohesive subgraphs that have low density. Moreover, the
algorithm can find maximal cohesive patterns that might not be connected. Afterwards, connected
sub-components can be extracted, where these sub-components have kind of intra-cohesiveness.

To summarize, we have made the following contributions in this work:

e We introduce and propose algorithms for the problem of mining maximal cohesive induced

subgraphs and maximal cohesive patterns.

e We show that by effectively integrating constraints from additional data sources such as
phenotypic and evolutionary profiles with protein interaction networks, the search can be

guided to discover interesting patterns.

e We performed experimental analysis on Yeast and Human interaction networks with different
profile datasets. The experimental results proved the effectiveness of the proposed approach

by assessing the overlap of the discovered subnetworks with known biological complexes

The material in this chapter was co-authored by Rami Alroobi, Syed Ahmed, and Saeed Salem. Rami Alroobi
and Saeed Salem were responsible of developing the idea. Rami Alroobi prepared the data used, did the analysis, and
drafted and revised the chapter. Syed Ahmed helped in preparing the chapter writing. In addition to contributing to
the idea, Saeed Salem served as proofreader and checked the correctness of the mathematical formulation.



and pathways. Moreover, GO enrichment analysis show that the discovered subnetworks are

biologically significant.

2.2. Problem Description

A protein interaction network is modeled as an undirected graph. In this section, we
introduce some preliminary graph definitions that are used throughout this chapter. We then
describe the problem of mining maximal cohesive induced subgraphs and the problem of mining

maximal cohesive patterns.
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Figure 1: An interaction network, the gene profiles data, and the maximal cohesive subgraphs.

2.2.1. Graphs and Gene Profiles
A graph G = (V,E), consists of a set of vertices V/ = {g1,82, - ,8n}, and a set of edges
E C V¥ x V. The size of a graph G, denoted |G

, is the cardinality of the edge set (i.e., |G| = |E]).
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The vertex set and edge set of a graph G are denoted by 7 (G) and ‘E(G), respectively.
Here we give the definition of Subgraphs and Induced S ubgraphs. A graph G'= (V' E') isa
subgraph of G = (V,E), denoted as G’ C G, if V' C ¥ and E’' C E. A subgraph G' = (V' E’)
of G is said to be induced if for x,y € V’, there is an edge between x and y in G’ if and only if
(x,y) € E(G). In other words, the set of edges in the induced subgraph, E’, include all the edges in
G whose endpoints are in V'. The subgraph G’ induced by the vertex set V' is written as G[V'].

For Gene Profiles, given a set of genes vV = {g1,£2,.....,gn} and a set of conditions C =
{c1,¢2,.....,cm}, a Gene Profile Matrix X € ®"*™, where X = (x;;)icg,jec. is the gene attributes
matrix such that x;; is the attribute value of the i gene in j'" condition. Also the i row of the
matrix X is the profile of the i’ gene.
2.2.2. Cohesive Constraints

We are interested in interacting genes that show high profile similarity. The profile sim-
ilarity can be based on the co-expression of the profiles, or the number of common profiles that
the genes have. In this work, we incorporate only anti-monotone constraints because they can be

effectively integrated in the mining algorithm.

Definition 1 (Anti-monotone constraint). A constraint C is anti-monotone if for a set of genes,

V C YV, the following condition is satisfied:
CV)=1 = Cc(V)=1, VvV CV

This constraint is often referred to as the down-closure property in the pattern mining literature.

In the following we show how to employ the anti-monotone cohesive constraints with
discrete profiles.
Here we explain Constraints for Discrete Profiles. Gene attribute data can take discrete values.
For example the ' entry in the gene profile can represents the dysregulation of the gene in the
i"" condition. For example a value of 1 represents up-regulation, 2 for down-regulation, and 0

for no regulation. For discrete data we employ the following constraint [26]: Let N;(V) be the
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number of attributes in which all the genes in V have the value i. Let o; be the minimum number
of attributes in which all the genes in V have a value of i. A cohesive constraint is defined by a
set of user-defined thresholds, {0, 0, ....,04_1 }, where k is the number of distinct values in the
profile data.

Given a set of thresholds, a set of genes V is cohesive if for every distinct value, the number
of common attributes that have a given value is higher than the threshold for the corresponding
value. More formally, for a set of genes V: C(V) =1 < N;(V) > o;,Vi, 0 <i<k—1,

Figure 1 shows a simplified interaction network and gene profile data. For a constraint
thresholds, {ot, o1 } = {2,4} which would enforce that a cohesive pattern has at least 2 attributed in
which all the values are 0, and at least 4 attributes of values 1. The set of genes V = {g1,£2,83,84}
is cohesive because No(V) = 2 (c1,¢s5) and Ni(V) = 4 (ca,c3,¢6,¢7). Therefore, the subgraph
induced by V, G[V], is a cohesive subgraph.

2.2.3. Maximal Cohesive Induced Subgraphs

We will define and propose an algorithm for the problem of mining maximal cohesive
induced subgraphs. In this work, we consider induced subgraph since the attribute are attached to
nodes and we add the entire set of edges between a set of nodes. All the subgraphs that we mine

are connected.

Definition 2 (Cohesive Induced Subgraph). An induced subgraph G' = (V' E') is cohesive, if the

set of genes of the subgraph, V', satisfy the user-defined cohesive constraint (C(V') = 1).

Definition 3 (Maximal Cohesive Induced Subgraph). An induced subgraph is maximal cohesive if
it is cohesive, connected, and none of its super-subgraphs is cohesive, i.e., G' is a maximal cohesive
induced subgraph if C(V(G')) = 1 and C(V(G)) = 0 for all G 2 G'. In other words, if a cohesive

connected induced subgraph cannot be grown by adding any neighboring vertex without violating

the cohesive constraint, then the subgraph is maximal cohesive.
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Algorithm: Mining Maximal Cohesive Induced Subgraphs

Input:

G:Interaction Network

X:Profile Matrix

A:Thresholds
Output:

M, List of Maximal Cohesive Induced Subgraphs (MCSs)

. V! CV >Set of cohesive single genes.

. § = 0 >Set of visited subgraphs

. My = 0 >Set of MCSs

.for each g; € V':

. G; « Subgraph(g;) >Subgraph that has a single gene
. 2enMCS(G;, A, My, S)

: end for

. return My,

0 ON LN kW~

Seed Extension

genMCS(G, 4, My, 5)
1:ifGe S

2: return

3: else

4:5=85UG

5: end if

6:if IM € My, [GC M and X(G) Subsumed by X (M)]
7: return

8: maxFlag = TRUE

9: for each g; € in N(G):

10: G’ = newSubgraph(G, g;)

11: if isCohesive(G', 4)

12: maxFlag = false

13: genMCS(G', 4, My, S)

14: end if

15: end for

16: if maxFlag is TRUE

17: My_[ = Mg_[ JuG

Figure 2: Mining Maximal Cohesive Subgraphs.
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Now we introduce the Problem Definition of this work. Given a graph G, a gene profile
matrix X, and an anti-monotone constraint C, the problem of mining the set of Maximal Cohesive

Induced Subgraphs is to find the set:

My ={G1,G2,G3,- -+, Gjag, | }

such that every G; € M, is a maximal cohesive induced subgraph.

Figure 1 is an illustrating example of finding all maximal cohesive induced subgraphs from
a simple interaction network consisting of 24 genes, and a profile matrix with nine conditions.
Figure 1(a) is an interaction network, Figure 1(c) is the gene profile data, In this example, for a
subgraph to be cohesive, Ni(V(G')) > 4, and No(V(G')) > 2.
The Algorithm of the this work is explained as following. We propose an algorithm for discovering
the maximal cohesive induced subgraphs by integrating two types of data sources; the Protein-
Protein Interaction (PPI) Network and a Gene Profiles Matrix. The proposed algorithm is shown
in Figure 2. The algorithm takes as input the interaction network (G), profile matrix (X), and a set
of thresholds, 4. The algorithm adopts a depth first search approach of the search space defined
by all the cohesive induced subgraphs. We employ different pruning strategies to avoid visiting
branches that will not result in cohesive patterns or that would result in redundant patterns. First
the algorithm prunes the genes which are not cohesive (line 1) since they can not be in any cohesive
pattern; this is important for discrete profile data when an individual gene does meet the constraint.
Due to the anti-monotonicity of the cohesive constraint, pruning these genes will not result in any
missing patterns because these genes cannot be in any cohesive patterns. There are two sets §, and
M, to maintain the sets of visited subgraphs and maximal cohesive subgraphs, respectively (lines
2 and 3). Then starting with every gene node as a seed, the algorithm recursively tries to extend
the seed (line 6) by calling the genMCS procedure.

In this work we employ 3 pruning strategies. In Pruning Strategy I, the genMCS pro-

cedure (Seed Extension) starts by checking if the subgraph, G, has been seen before (line 1). if
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Figure 3: An example showing the proposed enumeration approach to discover maximal cohesive
induced subgraphs. The example, also, illustrates the different pruning strategies employed. Here
the cohesive thresholds are set to oig = 0 and o, = 2

yes, the procedure returns (line 2) because a similar subgraph has been visited before and thus the
exploration of the the entire branch can be eliminated. If the pattern has not been seen before,
the algorithm adds it to the visited set, S (line 4), and continues checking other conditions. Since
the graph has unique nodes, the set S stores the canonical codes (representations) of the visited
subgraphs. The canonical code of a subgraph is simply the string representation of the ordered
labels (ids) of the nodes in the graph.

After that, Pruning Strategy II is executed. If the subgraph, G, is a subset of any of the
already discovered maximal cohesive subgraphs, and the common profiles of the genes in this
subgraph is subsumed by the profiles of the already discovered maximal cohesive subgraph, then
we can safely prune the current node. If the current subgraph G passed these two conditions we
extend the subgraph with neighboring nodes, line 10. In Pruning Strategy III, after extending the
subgraph G with one of its neighbors, the algorithm checks if the newly generated subgraph (G’)

is cohesive (line 11). If the subgraph G’ is cohesive, then the subgraph G is not maximal and the
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algorithm recursively extends G'. If the subgraph G cannot be extended by any of its neighboring
nodes while maintaining the constraint (cannot generate a cohesive supergraph), then the subgraph
G is maximally cohesive and it is added to the set M, (line 17). At this point we do not have
to check whether the subgraph G is already in the maximal set. The reason for this is that before
the algorithm started extending the subgraph G, it checked if the same subgraph has been visited
before and if it is subsumed by another maximal subgraph and none of the conditions was satisfied.

Figure 3 illustrates how the algorithm traverses the search space of the cohesive subgraphs.
The discovered maximal cohesive patterns are inside the boxes with bold-line boundaries. We will
try to highlight where the pruning strategies are employed to prune entire branches of the search
space. The algorithm starts by extending the induced subgraph that has one node G[{1}]. This
subgraph has not been seen before and also is not subsumed by any already discovered maximal
subgraph. Therefore, we try extending it. The first neighbor to add is node 2 and we get a subgraph
induced by the nodes (1,2). The profiles of nodes 1 and 2 are not cohesive and thus we prune this
subgraph, i.e.,C(V) =0 for V = {1,2}. Therefore the branch is not explored further. We next
extend the subgraph to get a subgraph with node set 1 and 3. The subgraph (G[V], V = {1,3}) is
cohesive and we recursively call the genMCS procedure. From this subgraph we get the supergraph
with V = {1,3,4} from which we get the supergraph with V = {1,3,4,5}. The subgraph with
V = {1,3,4,5} cannot be extended with any of its neighbors and thus we add it to the set of
maximal subgraphs. So far, we have seen the effect of the cohesive pruning strategy. Next we
will explain when pruning strategy I is employed. When the algorithm extend the subgraph
(V = {1,4} to get the supergraph (V = {1,4,3}, it checks in the set of visited subgraph and finds
that the subgraph has been visited before, it then prunes the entire search branch. The subsume
pruning strategy is data-dependent but we will discuss it in context of binary profile data. If the
pattern being explored is a subset of an already discovered maximal cohesive pattern and the profile
of this pattern is subsumed by the profile of a discovered maximal pattern, so this branch is pruned.
For example, when the recursive procedure explores the subgraph (V = {3,4,5}), it finds that is

a subset of an already discovered maximal subgraph (V = {1,3,4,5}). In addition, the common
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profile of the subgraph V = {3,4,5} which is [1,1,0,0] is subsumed by the common profile of
V ={1,3,4,5} which is [1,1,0,0]. The reason we can safely prune a subsumed subgraph (say
G is subsumed by G,,) is that maximal supergraph that could be generated from G cannot be a
supergraph of G,,, otherwise, G, cannot be maximal.

To summarize, we are employing three pruning strategies to reduce the search space for

maximal cohesive induced subgraph:

1. If the subgraph G is not cohesive, i.e., C(G) = 0, the search branch is pruned. Nodes that are

pruned by this strategy are denoted by X..

2. If the subgraph G has been seen before, i.e., G € S, then the search branch is pruned. Nodes

that are pruned by this strategy are denoted by X,,.

3. If the subgraph G is a subsumed by any of the already discovered maximal cohesive induced
subgraphs M./, the search branch is pruned. Nodes that are pruned by this strategy are

denoted by X;.

2.2.4. Maximal Cohesive Patterns (MCPs)

The second problem we address in this paper is mining Maximal Cohesive Patterns (MCPs).

Definition 4 (Cohesive Pattern). Let V C V be a pattern consisting of a set of genes,
V ={gi1,8i2, " ,&ir}- We say that the pattern'V is cohesive if all the genes satisfy a user-defined

constraint C, i.e., C(V) = 1.

Definition 5 (Maximal Cohesive Pattern). A pattern is a maximal cohesive pattern if it is cohesive
and none of its super-patterns is cohesive, i.e., V is maximal cohesive pattern if C(V) = 1 and

C(V'Y=0forallV' D V.

Note that there is no connectivity constraints in the definition of a maximal cohesive pattern.
Thus, the subgraph G’ induced by the vertices of a pattern V can be disconnected; this subgraph is

denoted as G[V]. The connected components of the induced subgraph can be written as:

chz{GlaG27"' 7Gl}
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Where [ is the number of connected components in the induced subgraph,G[V]. Due to the anti-
monotonicity property of the constraint, each connected subgraph G; is cohesive.

Now we introduce the Problem Definition. Given a graph G, a gene profile matrix X, and
a cohesiveness constraint C, the problem of discovering Maximal Cohesive Patterns is to find the
set:

pr - {V17V27V37"' 7‘/"M£p|}

such that every V; € Mp is a maximal cohesive pattern.

Here we illustrate the Algorithm to mine the set of maximal cohesive patterns, the al-
gorithm adopts a similar approach to the enumeration algorithm introduced in the genMax algo-
rithm [41] for mining maximal frequent itemsets. In the original genMax algorithm, new items
are added to the pattern as long as the new pattern maintains a frequency threshold. The proposed
approach differs from the original genMax algorithm in that any pattern will be grown by adding
new genes only if the new pattern satisfies the user constraints. Therefore, we allow for the
integration of general anti-monotone constraints. For every reported maximal cohesive pattern
(P), the algorithm extracts the connected components (G,CJC) of the induced subgraph. We use a

depth-first search to extract the connected components from the induced subgraph [42].

Table 1: A listing of the organisms for which the orthologs are used to create the evolutionary
conserved profile for the Yeast.

| Organism |

Schizosaccharomyces pombe (Fission yeast)
Strongylocentrotus purpuratus (The purple sea urchin)
Xenopus tropicalis (Frog)

Arabidopsis thaliana

Drosophila melanogaster (Fruit fly)

Danio rerio (Zebrafish)

Homo sapiens (Human)

Musca domestica (House fly)

Mus musculus (House mouse)

Rattus norvegicus (Brown rat)
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2.3. Experiments

To assess the effectiveness of the proposed method in discovering interesting patterns, we
performed an experimental evaluation of our method using two datasets for both Yeast and Human.
2.3.1. Yeast Data

We used the high confidence Yeast protein-protein interactions, referred to YeastHC. The
network was obtained from both literature-curated and high-throughput sources [43]. The YeastHC
network contains 9857 interactions between 4008 genes. Considering literature-curated data is
important because reporting the interactions has gone through several stages that are governed by
many factors such as domain expertise, additional independent controls, prior contextual support-
ing information, and peer review. All of these factors reduce the probability of false positives. The
YeastHC network includes data from a number of major interaction databases such as: BIND [44],
BioGRID [45], DIP [46], MINT [47], and MIPS [48].

For the phenotype data, we took the growth phenotype profiles for Yeast mutants under
21 experimental conditions [49]. Here two different phenotype states are considered: 1 indicating
growth and O indicating growth defect. Another profile dataset for the Yeast is the evolutionary
conserved profile. Using the Inparanoid eukaryotic ortholog database [50], we built the gene profile
using 10 different organisms illustrated in Table 1. A gene has a 1 in i*" profile, if the yeast gene has
an orthologous gene in the i’ organism with 100% inparanoid score. Moreover, we used the gene
expression profiles from [51]. This dataset contains 173 conditions. These conditions represent
the response of yeast cells to different environmental changes. Some examples of the conditions
are, heat shock, amino acid starvation, nitrogen depletion, and H,O; exposure.
2.3.2. Yeast Complex Prediction

To investigate how well the extracted maximal cohesive subgraphs match known protein
complexes in Yeast, we used the CYC2008 catalog that is comprised of 408 manually curated
annotated protein complexes [52]. We used the overlap score proposed by [21] to measure to what

extent a given maximal cohesive subgraph matches a known complex.
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The overlap score is defined as follows: w = a%b, where a is the size of the maximal
cohesive subgraph, b is the size of the complex, and c is the size of common proteins in both, i.e.,
size of the intersection.

A maximal cohesive subgraph has an overlap of 1 if it completely matches a known com-
plex. If the overlap score of a given subgraph is higher than an overlap-threshold, we say that the
subgraph matches the complex. We define precision (P) as the ratio of the number of matching
maximal cohesive subgraphs to the number of all discovered maximal cohesive subgraphs. Since
proteins participate in more than one biological complex, a maximal cohesive subgraph can match
more than one complex and a complex can be matched by several subgraphs. An overlap threshold
of 0.2, as suggested in [21], was used in our experiments.

We used the following cohesive constraints, 4 = {alp, &t }, which ensures that No(V (G)) >
oo and N;(V(G)) > o;. Table 2 shows the results of the proposed algorithm on the Yeast data,
o indicates the number of common growth conditions while 0,y indicates the number of common
growth defect conditions, (M) is the number of the discovered maximal cohesive subgraphs, (MC)
represents the number of matched complexes, (AMS) is the average maximal cohesive subgraph
size, (DY) is the average density of the discovered subgraphs, and (AOS) is the average overlap
score. The AOS score is computed as the sum of the maximum overlap scores for the matched
subgraphs divided by the number of matched subgraphs.

For example, in the first row of Table 2, our proposed algorithm identified 20 candidate
Yeast complexes that show growth in at least four experimental conditions and growth defect in at
least four experimental conditions . Those 20 subnetworks have an average size of 4.9 genes and
an average density of 0.66. Out of the 20 reported subnetworks, 13 matched known complexes.

In the case of the yeast response to multiple environmental changes, we investigated three
regulation situations. Up-regulation which is represented by 1 in the profile data, Down-regulation
(value of 2) and No regulation (value of 0). Through our analysis, we found that gene expression
values were mostly down regulated. This result can be explained by the fact that most of these

environmental conditions are stress related that reduce yeast survival chances. Table 3 shows
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Table 2: Analysis of the Maximal Cohesive Subgraphs discovered from Yeast interaction data with
Phenotype Profiles.

8
Q

o| M| AMS | DY |[MC | AOS | P |
20 49 [0.66[ 13 | 035 [ 0.65
19| 49 066 | 12 | 036 | 0.63
15| 52 [066| 10 | 0.36 | 0.67
14| 45 (069 7 |036]0.50
14| 46 |070| 7 | 036 |0.50
10| 50 |071| 5 | 0.33]0.50

5

5

3

11| 41 [0.72 0.42 | 045
11 41 |0.72 042 | 0.45
6 5 0.66 0.42 | 0.50

(o)W e ) Ne | RV, BRU, RV, | BN N SN N
(@)W, N o) NV, IR N o) SN0, [N

Table 3: Analysis of the Maximal Cohesive Subgraphs discovered from the Yeast dataset of
Environmental Changes. Both 0y and o; were set to 0.

oo | M | AMS | DY |
50 [ 2524 | 9.41 | 031
51| 1671 | 8.75 | 0.33
52 | 1111 | 8.10 | 0.35
53| 728 | 749 |0.37
54| 500 | 6.88 | 0.40
55| 329 | 6.36 | 0.41

that there are a large number of cohesive subgraphs that are down-regulated in many conditions
(ranging from 50 to 55). However, the overlap with known complexes is not significant.
2.3.3. Human Data

We used the human HPRD network [53]. It contains 36888 interactions among 9453 human
proteins. For the gene expression profiles, we used the expression patterns of 79 human tissues
[54]. The gene is considered expressed if it is classified as present in both of the duplicated mea-
surements. We also compiled a dataset of the Human genes orthologous evolutionary-conserved
profiles. For all Human genes in the HPRD network, we extracted the orthologous genes in 63
different organisms from the Inparanoid eukaryotic ortholog database [50], such as the house

mouse, the horse, and the common chimpanzee. This profile dataset is referred to as HEI.
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Table 4: Analysis of the Maximal Cohesive Subgraphs discovered from the Human Evolutionary
Conserved dataset (HEI).

o | M | AMS | DY | MC | AOS | P

38 | 140 | 3.55 | 0.66 | 61 | 0.32 | 0.54
39 | 117 | 342 | 0.69 | 67 | 032 | 0.55
40| 94 | 336 | 070 | 62 | 0.33 | 0.56
37 | 101 | 346 | 0.65| 46 | 0.32 | 0.43
38| 79 | 338 | 0.67 | 44 | 0.33 | 0.43
39| 64 | 328 | 0.70 | 44 | 0.34 | 0.50
40 | 50 | 330 [ 0.71 | 43 | 035 | 0.54
38| 54 | 338 | 0.68 | 33 | 0.34 | 043
39 | 40 | 327 | 071 | 35 | 0.35 | 0.47
40 | 33 | 327 | 0.72 | 34 | 0.35 | 0.45

DNV VAN N N N TS ON

Moreover, we extracted the expression profiles for 17 disease from the NCBI database [55].
We only considered the Affymetrix platforms, HGU-133A, HGU-Plus2, and HGU-95V2. This
disease data was integrated with the HPRD interaction network. The objective we were looking
for is to report disease related maximal cohesive subnetworks.

Some examples of the diseases are Bipolar Disorder, Renal Cell Carcinoma, Diabetic
Nephropathy, and Colorectal Cancer.

2.3.4. Human Complex Prediction

For the Human complexes, we used the HPRD catalog that is comprised of 1521 manually
curated annotated protein complexes [53]. It is important to mention that more than 30% of Human
complexes have a density below 0.4. Table 4 show the results of the proposed algorithm on the
HEI1 dataset. For the Human interaction network with the evolutionary conservation profiles (HEI,
which has 63 profiles), in Table 4, the algorithm, for example, searched for maximal cohesive
subgraphs such that all genes have orthologous genes in at least 40 other organisms and at the
same time do not have orthologous genes in at least 4 organisms (0t = 40,00 = 4). Check the
row in the bottom of the middle section of Table 4. In addition, it is clear from Table 4 that
our conserved maximal subgraphs matched many known complexes. For example, the proposed

algorithm identified 140 subgraphs with (0to = 3, ot = 38). These 140 predicted subnetworks have
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an average size of 3.55 genes and an average density of 0.66. In addition, out of the 140 reported

subnetworks, 61 complexes were matched by the reported subnetworks.

Table 5: Analysis of the Maximal Cohesive Subgraphs discovered from the Human Tissues dataset
(HT) .

o |0 | M |AMS | DY  MC  AOS | P

5130|2719 | 861 | 027 | 83 | 0.26 | 0.07
5 35| 627 | 633 | 037 | 60 | 0.26 | 0.14
5 40| 243 | 501 | 046 | 48 | 0.26 | 0.22
10 | 30 | 251 | 407 [ 055 73 | 0.28 | 0.31
10[35] 96 | 346 | 061 | 54 | 0.29 | 0.33
10 | 40 | 39 3.18 1 0.66 | 25 | 0.29 | 0.31
10 45| 12 | 3.08 | 0.65| 11 | 0.30 | 0.33
15130 | 53 339 1 0.63 | 41 | 0.28 | 0.42
15135 12 | 3.08 | 0.65| 12 | 0.28 | 0.50
15 | 40 3 3 067 | 3 | 0.33 ]0.66

For the Human interaction network with the Human tissues profiles, in Table 5, we used
different threshold values for o; and o to assess their effect on the quality of the reported sub-
networks. In one of the experimental settings, the proposed algorithm searched for subgraphs
(subnetworks) that are consistently expressed in at least 30 tissues and consistently not expressed
in at least 10 tissues i.e., 0l = 30,0 = 10. Table 5 shows that the density (DY), the average overlap
score (AOS), and the complex prediction precision (P) are enhancing as the condition becomes
more strict. In fact, even in the case of large average module sizes like 8.61 which have relatively
low average densities, see the first row of Table 5, the algorithm is still capable of matching 83
known complexes. Knowing that the matching criteria employed in this work highly penalizes
large size subnetworks.

For the Human interaction network with the Human disease data. The expression data
was discretized to represent three regulation conditions; Up-regulated, Down-regulated, and Un-
regulated. A cut-off value of 1.5 fold change was used for discretizing the expression values.
In this case we are only interested in Up and Down regulated maximal cohesive subnetworks.

The thresholds for the number of diseases that a subnetwork is Up and Down regulated in are
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Table 6: Analysis of the Maximal Cohesive Subgraphs discovered from the Human Disease dataset
(HD).

o | M|AMS | DY MC | AOS| P

30 420 (055 9 | 0.18 | 0.37
10| 4.00 | 059 | 16 | 0.12 | 0.60
3 1366 |076| 10 | 0.11 | 0.33
68 | 5.22 |1 052 | 48 | 0.14 | 0.60
17 | 435 | 057 | 23 | 0.11 | 0.60
5360 |070| 11 | 0.11 | 0.60

o N o TN )

OO O ==

denoted by o, and ap, respectively. Results for varying thresholds are shown in Table 6. For
example, the proposed method reported 17 subgraphs (5 row) that are Up regulated in at least
5 of the 17 diseases. When we make the condition more strict and require the subnetwork to be
Down regulated in at least 1 disease (2™ row), the number of cohesive subnetworks drops to 10.
When we used different thresholds such as o =4 and o, = 0, the algorithm reported 68 cohesive
subnetworks. Here, we lowered the overlap threshold to 0.1 to see how disease patterns can overlap

with protein complexes. Nearly 60% of them have matched known human protein complexes.
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(a) Discovered Cohesive Subgraph (b) Heatmap for the Discovered Subgraph

Figure 4: An example of the one of the produced cohesive subgraphs that matched one of the
human protein complexes. The heatmap shows the diseases that this subgraph is up-regulated in.

Figure 4(a) shows one of the maximal cohesive subgraphs. This subgraph has a number of
biologically interesting properties. One of the them is that this subgraph has matched one of the
manually curated human protein complexes. Namely, the the phospholipase C-gamma2 complex
[56]. Moreover, the produced subgraph is up-regulated in four diseases, check the last four column
in the profile data in Figure 4(b). Three of the diseases are related to different types of tumors,
the GSE781 : Kidney Carcinoma , GSE3524 : Tumor invasion in Oral Squamous Cell Carcinoma,
GSE1004 :Dystrophin-deficient of human muscle which found to cause organisms be prone to
develop muscle tumors. The fourth disease the GSE 1629 is related to abnormalities in the pulpal
tissue. Furthermore, the subgraph in Figure 4 is involved in several Biological Processes such
as, mast cell activation and leukocyte activation, and Molecular functions such as protein tyrosine
kinase activity. The subgraph is also related to two biological pathways, namely, the Fc epsilon RI

signaling pathway and the Fc gamma R-mediated phagocytosis pathway.
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Table 7: GO enrichment analysis of the maximal cohesive patterns discovered from the Yeast
dataset of Evolution Conserved Profiles.

| oy | #MCPs | ACS | ASSIC | ER | COV |
51 252 9560 56.1 [1.0] 037
6 | 210 |8804 | 499 | 1.0 0.37
7 120 | 8155| 455 | 10| 0.34
8 45 7588 | 422 | 1.0 030
9 10 | 708.7 | 39.67 | 1.0 | 0.24
10 1 664.0 | 370 | 1.0 | 0.14

2.3.5. Gene Ontology Enrichment of MCPs
In order to assess the biological significance of the extracted MCPs, we performed Gene
Ontology enrichment analysis (GO) on the reported MCPs. For enrichment analysis, we adopted

the performance measures used in [30].

1. Enrichment (ER) is computed as the ratio of MCPs that are enriched for at least one GO

term to the total number of MCPs.

2. Coverage (COV) is the number of GO terms that are enriched in any of the MCPs divided

by the number of all GO terms in the interaction network.

We have used the high-throughput GoMiner tool [57] for Go term enrichment analysis
with an FDR-corrected p-values of 0.05. We have also collected some topological properties for
the reported MCPs. ACS denotes the average number of genes in the reported MCPs and ASSIC
is the average size of the subgraphs in the MCPs. An MCP may contain one or more subgraphs.

For Yeast MCPs, Table 7 shows the analysis of GO enrichment on the Yeast evolutionary
conserved dataset. We varied the constraints from 5 to 10 with increments of 1. A constraints of 5
indicates that each reported MCP has at least 50% attributes (species) in which all the genes have
a value 1. The total number of GO terms for the genes in the yeast interaction network is 1495.

It is clear that as we relax the constraint the average number of the genes in the reported

MCPs (ACS) increases and so does the average size of the subgraphs in the MCPs (ASSIC).
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Figure 5: A maximal cohesive pattern from the Yeast Conserved dataset and its connected
components. Only subgraphs with at least 3 genes are shown.

Moreover, the GO coverage of the reported MCPs increases since we get larger MCPs with
more genes which are enriched. The Enrichment ratio is always 1.0, indicating that all the reported
MCPs are enriched. This may be helped by the fact that all the MCPs are relatively large.

Figure 5 shows an MCP that was discovered with o.; = 7. The MCP has 716 genes and
246 GO terms were enriched in this pattern. Among the GO terms that are significantly enriched
in this patterns are: RNA_modification, DNA _strand_elongation, and DNA _conformation_change.

With oy = 10, there is only one MCP with 664 genes. The genes in this MCP have
orthologous genes in all the 10 species. The largest component in this MCP has 368 genes. There
are 212 GO terms that were significantly enriched in this patterns; among them were: mRNA
metabolic process, response to DNA damage stimulus, and DNA strand elongation.

For Human MCPs, Table 8 shows the analysis of GO enrichment analysis and topological
properties of the reported MCP on a subset of the Human evolutionary conserved dataset. This
subset contains only the 17 closest species to the human. This dataset is referred to as HE2.

We varied the constraints from 15 to 17 with increments of 1. A constraints of 16 indicates that
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Table 8: GO enrichment analysis of the maximal cohesive patterns discovered from the Human
dataset of Evolution Conserved Profiles.

| oy | #MCPs | ACS | ASSIC | ER | COV |
15] 136 [17979] 80.0 | 1.0 0.15
16| 17 |16758| 719 | 1.0 | 0.09
17 1 1564.0 | 654 [ 1.0 ] 0.04

each gene in the reported MCP has orthologous genes in at least 16 species. The total number
of GO terms for the genes in the Human HPRD interaction network is 7962. Similar to the case
in the Yeast evolutionary conserved dataset, we observe similar trends in terms of the topological

properties and GO enrichment analysis in the Human dataset.
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Figure 6: A maximal cohesive pattern from the Human HE2 Conserved Profile dataset and its
connected components.

Figure 6 shows an MCP that was discovered with oi; = 14. The MCP has 1009 genes with
the largest component of 966 genes and and there were 860 GO terms enriched in this pattern.
The GO term annotation analysis of this MCP shows that 625 biological processes were

enriched including: cell cycle, regulation of cell death and proliferation, regulation of apoptosis,

and mRNA metabolic process and processing.
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Figure 7: The effect of parallel execution on the human tissue data. Here the value of o is equal
to 17.
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2.3.6. Running Time

Although the search space is exponential in terms of the number of genes in the network,
the running time of the algorithm largely depends on the number of discovered patterns and the
number of search branches explored. On the Human dataset( 9465 genes and 37039 interactions)
with the Human Tissue profiles (79 profiles), it took only 1.4 seconds to run the maximal cohesive
subgraph algorithm with (ot = 10, ot = 35) to generate 251 subgraphs and it took only 0.77 second
with (0p = 10,011 = 45) to generate 12 subgraphs. For the human evolutionary conserved profile
(63 profiles), the algorithm took 1.4 seconds (generated 50 patterns) with (otg = 4,01 = 40), and
1.9 seconds (generated 140 patterns) with (0ig = 3,011 = 38).

On the Yeast dataset( 4008 genes and 9857 interactions) with the Phenotype profiles (21
profiles), it takes only 60 seconds to run the maximal cohesive subgraph algorithm with (0 =
0,04 = 2) to generate 75 subgraphs. For the evolutionary conserved profile (10 profiles), the
algorithm takes 499 seconds with (0p = 1,0 = 4) to generate 128 subgraphs.

In this part we explore the effect of the Parallel Execution of the algorithm. The machine

used in this experiment has an Intel Xeon processor with four cores of 2.4GHz and 8GB of memory.
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Figure 8: The effect of parallel execution on the yeast phenotype data. The value of o is set to 1.

Time

The algorithm starts with the main thread which is responsible for reading the data. Then
a group of threads are spawn to perform the remaining parts of the process. In this experiment we
considered using 2, 4, 8 , and 16 threads as can be seen from figures 7 and 8. Any race conditions
are guarded against with locking so that the check and modification of the shared resources are done
safely and accurately. From the figures, it is clear the performance advantage that we gain with
employing the parallel paradigm. Moreover, the effect of changing the values of as can be seen.
In general, the running time increases as we relax the constraints. Furthermore, it is interesting to
see that the performance gain starts to fade even with the increase of the number of threads over
4 threads. This note can be referred to the fact that the machine used in the experiments has only
4 cores. As a result, the burden imposed for scheduling these threads starts to harm the overall
performance of the algorithm when the number of threads exceeds the number of available cores.
2.4. Conclusion

In this work, we have proposed an enumeration-based method to discover maximal cohe-
sive induced subnetworks by integrating constraints defined over the gene profiles with the subnet-

works enumeration process. We have employed three pruning strategies that significantly reduce
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the search space explored. We also have proposed an algorithm for discovering maximal cohesive
patterns (MCPs). We assessed the biological significance of the reported patterns by investigating
the overlap with known complexes and also by GO enrichment analysis. Experimental results
on Human and Yeast datasets show that the proposed methods discover biologically significant

patterns. Many of these subnetworks match known complexes.
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CHAPTER 3. DISCOVERING DYSREGULATED
PHENOTYPE-RELATED GENE PATTERNS'

Recent research showed that differentially expressed, or dysregulated, patterns of inter-
acting proteins exhibit more interesting properties with respect to many complex phenotypes. In
this work we follow an integrative approach by combining the physical protein-protein interaction,
PPI, network with gene expression data for a number of diseases and phenotypes. In this study,
we propose an algorithm for mining Dysregulated Phenotype-Related interacting genes, DPRs.
Experimental results on 88 Human gene expression datasets that were annotated by employing
UMLS mapping demonstrate the effectiveness of the algorithm in discovering biologically and
statistically significant DPRs.

3.1. Contribution

In this work we propose an approach for mining dysregulated patterns by integrating ex-
pression datasets and PPI network. The problem is similar to the problem of discovering sub-
network biomarkers for gene expression classification [23, 37]. However, instead of classifying
samples, we mine patterns, sets of genes, that distinguish between the datasets that are labeled

with a UMLS concept.

e Propose the discovery of Dysregulated Phenotype-Related Patterns, DPRs. For the discovery
process, we follow the greedy pattern growth approach that was introduced in [23]. Instead

of starting the algorithm with single genes, we start with seeds of multiple genes.

e We have created dysregulation profiles for genes in the protein-protein interaction network.
A gene dysregulation profile captures the dysregulation of the gene in the 88 datasets. The

use of physical network adds credibility to the mined gene patterns.

>The material in this chapter was co-authored by Rami Alroobi and Saeed Salem. Rami Alroobi was responsible
of developing the idea. Rami Alroobi prepared the data used, did the analysis, and drafted and revised the chapter.
Saeed Salem served as proofreader and checked the correctness of the mathematical formulation.
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e We demonstrate the biological relevance of the DPRs to the studied phenotypes by illumi-
nating the biological relevance through Gene Ontology, KEGG pathway enrichment, and the

DPRs overlap with known protein complexes.

e Additionally, we show that the DPR patterns have high classification power by using these

patterns as classification features.

3.2. Problem Description

We introduce some of the definitions that will be used throughout this chapter.

The Graphs is defined as the following: A graph G = (V,E), consists of a set of vertices
V ={g1,82,...,8n}, and a set of edges E C V x V. The vertex set and edge set of a graph G are
denoted by V(G) and E(G), respectively.

For Dysregulation Profile, given a set of genes, V = {g1,82,...,¢,} and a set of data sets
C={C,C,...,Cp}, Let X € R™" represents the Gene Dysregulation Matrix, such that x;; is the
dysregulation value of the i’ gene in j** experiment. For a gene, g;, assume that X; € R” is the
gene dysregulation profile. Moreover, we have a class label, L = {I;,lp,--- ,1,,}, where [; € {1,0}
indicates whether the " experiment has the phenotype.

The Pattern Activity is defined similar to, but different than [23], the pattern dysregulation
activity of a set of genes in S, is the average of dysregulation profiles of these genes and is defined

as:

Xs=mwx ¥ X
N gics

For The Objective Function, given that L = {l,l,,...,l,}, where [; € {L,,L_}, and the

objective function, f(Xs), we are considering in this work is the Mutual Information, /(Xs; L), then:

FXs)= % X plds.1) log (21D )

dseXgleL

3.3. Algorithm Description
The proposed algorithm follows a similar search strategy as the work done by [23], how-

ever, in this work we are not looking to find biomarkers for classifying gene expression samples.
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Algorithm: Mining DPRs:
Input:
G: PP Interaction Network
X: Dysregulation Attribute Matrix
L: Labels vector
S: List of seeds

Output:
P,: Context related patterns

1.for each p € §:

. T, < Nbr(p)

. While True:

. gi < findMaxMI(p, L,T,, X)
P pUgi
Af(MI(p', L) > MI(p,L)):
p<p

. T, < Nbr(p)

9. else:

10. break

11. End if

12. End While

13.if (p € By):

14. next
15.if(FPeP,:pCP):
16. next

17. else:

18. B, <+ P, Up:

19. End if

20.End for

21. return 7,

0 J N KW

Figure 9: The Algorithm for mining Dysregulated Phenotype-Related patterns.

The first phase is Seeding and Filtering Phase. In the algorithm in Figure 9, we start from
seed patterns. These seeds can be 1-gene seeds, as in [23], or h-genes connected and cohesive
seeds. In this work we tried both scenarios, however, we illustrate only the results using 3-genes
connected seeds because they gave better results. The seed connectivity condition supports the

logic of being biologically important based on the PPI network. In addition to being connected,
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Figure 10: General overview of the approach presented in this work. After generating the seeds,
a filtering step is done. Then, seeds are grown by adding neighboring genes. The same steps are
performed by exchanging positive with negative contexts.

the seed has to be cohesive in terms of the dysregulation profiles of its member genes. The nodes of
the seed have to share at least k dysregulation profiles either in the positive or negative context. The
filtering step is required to filter out all unpromising seeds. A seed has to show high dysregulation
concentration in one context and not in the other. Any positive seed that shows strong dysregulation
on the negative side will be discarded. The same is performed for the negative seeds having strong
dysregulation in the positive side. By strong dysregulation we mean that seed genes have high
concentration of dysregulation indicators, i.e. density of ones, in the datasets. After the seeding
and filtering steps are completed, an extension step will be carried out to produce the final patterns.
The second phase is the Extension and Pattern Generation Phase. In the extension process,
every seed in § is expanded with one of its neighboring genes that maximizes a mutual information-
based objective function. The extension process is repeated until no enhancements is possible.
More specifically, we extend each seed by adding new neighboring genes that satisfy two condi-

tions:

e The path distance between the seed and the new gene must not exceed a predefined length
which we set to 2. This is to limit the number of candidate genes that the seed can be

extended with and thus enhance the performance of our algorithm in terms of running time.
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e Intuitively, from the previous condition many candidate genes could be found for every seed
to choose from. The new gene, among all candidate genes, to be selected for seed extension
should maximize our objective function, which is the Mutual Information score. This is the
role of the function findMaxMI(p, L,T,,X), where L is the labels vector in the algorithm

shown in Figure 9.

Figure 9 shows the pseudo code of the algorithm. The extension process is repeated for
each seed (line 1). The extension process continues as long as adding new genes enhances the
pattern’s score (line 6). Every time the pattern is extended (line 7) the pattern score is identified
and the set of neighbors is updated (line 8). When no more enhancement is possible (line 10), we
check to see if the pattern has not been reported before (line 13) since multiple seeds can generate
the same pattern. Moreover, we check if the pattern is not subsumed by a previously reported
pattern (line 15).

3.4. Experiments
3.4.1. Data Preprocessing

The algorithm is based on an integrative approach through combining two sources of
biological data. One source is the protein-protein interaction network. The PPI network we
considered in this research is the HPRD network[58], release 9, April 2010. After preprocessing,
this PPI has 9,453 genes and 36, 888 interactions. The other source of data is a group of 88 Human
gene expression datasets. The datasets are acquired from the NCBI Gene Expression omnibus
[55]. The 88 datasets had to meet two criteria: 1) each dataset has at least eight samples and 2) the
samples should have a clear categorization into two classes (e.g., control vs. patient or tumor vs.
non-tumor) so that the expression dysregulation can be calculated. The platforms we used were the
GPL96 (Affymetrix HG-U133A) where we have 46 of the datasets belong to this platform and the
GPL570 (Affymetrix HG-U133-Plus-2) to which the remaining 42 belong. The datasets we chose
are related to different phenotypes. For every dataset, the top dysregulated genes whose p-value of

the expression dysregulation is below 0.05 and appear in the PPI network are only considered.
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Table 9: The 88 datasets used in the study.

Dataset ID | Dataset Description No. of S 1
GSE2280 | Prediction of lymphatic metastasis from primary squamous cell carcinoma of the oral cavity 27
GSE362 Normal human muscle 30
GSE1650 | chronic obstructive pulmonary disease Study 30
GSE1786 | Vastus lateralis biopsies from healthy trained and sedentary males 24
GSEI1551 dermatomyositis 23
GSE474 Obesity and fatty acid oxidation 24
GSE2779 | Gene expression profile of normal v early MDS v non-MDS anemia bone marrow CD34 cells 28
GSES5388 Adult postmortem brain tissue (dorsolateral prefrontal cortex) from subjects with bipolar disorder and healthy controls 61
GSE5389 Adult postmortem brain tissue (orbitofrontal cortex) from subjects with bipolar disorder and healthy controls 21
GSE674 Normal Muscle-Female , Effect of Age 30
GSE3868 | Gene profiling of primary cultures from human prostate tumors 30
GSE2006 | Comparative microarray between normal and essential thrombocythemia platelets 14
GSE1751 Human blood expression for Huntington’s disease versus control 31
GSE41804 | Hepatic gene expression of HCV related Hepatocellular carcinoma and non-cancerous tissue with I128B rs8099917 TT genotype and TG/GG genotype 40
GSE23117 | Gene expression in minor salivary gland of patients with Sjogren’s syndrome (SS) and control 15
GSE21935 | Comparison of post-mortem tissue from Brodman Brain BA22 region between schizophrenic and control patients 42
GSE21138 | Gene Expression Profiles in BA46 of Subjects with Schizophrenia and Matched Controls 59
GSE9576 | Gene expression profiling of classical midgut carcinoid primary tumors and liver metastasis 12
GSE5547 | Host Susceptibility to H. ducreyi Infection is Associated with Unique Transcript Profiles in Tissue and Dendritic Cells 24
GSE5281 Alzheimer’s disease and the normal aged brain (steph-affy-human-433773) 161
GSE7014 | Expression data from DM1, DM2 and Normal Adult Skeletal Muscle Biopsies 36
GSE4757 Alzheimers disease: neurofibrillary tangles (Rogers-3U24NS043571-01S1) 20
GSEI13911 | Expression data from primary gastric tumors (MSI and MSS) and adjacent normal samples 69
GSE5563 | Gene expression profile of VIN lesions in comparison to controls 19
GSE27562 | Expression data from human PBMCs from breast cancer patients and controls 162
GSE36668 | Expression data from serous ovarian carcinomas, serous ovarian borderline tumors and surface epithelium scrapings from normal ovaries 12
GSE9348 | Expression data from healthy controls and early stage CRC patient’s tumor 82
GSE4107 Expression profiling in early onset colorectal cancer 22
GSE7803 Human pre-invasive and invasive cervical squamous cell carcinomas and normal cervical epithelia 41
GSE3726 | Prognostic gene signatures can be measured with samples stored in RNAlater 104
GSE590 USF1 haplotype comparison 10
GSE593 Uterine Fibroid and Normal Myometrial Expression Profiles- U133 Arrays 10
GSE1577 | T-ALL and T-lymphoblastic lymphoma 29
GSE2117 | CALM-AF10 T-ALL 23
GSEA473 PGA Human CD4+ Lymphocytes 175
GSE3167 Classification of carcinoma in situ lesions in human bladder cancer 60
GSE1615 | Theca cell gene expression 26
GSE2712 Clear cell sarcoma of the kidney (CCSK) 35
GSE1518 | Human endothelium exposed to shear stress and pressure 8
GSE1045 | Estradiol Treated Breast Cancer Cells Expressing Mutant Estrogen Receptors 12
GSE2189 Human lung cancer (A549) teatement with MGd 18
GSE923 Pseudomonas aeruginosa infection of Calu-3 human lung epithelial cells 19
GSE2719 | Gene expression of human soft tissue sarcoma 54
GSE3268 | Squamous Lung Cancer, Paired Samples 10
GSE1869 | Ischemic and Nonischemic CM and NF Hearts 37
GSE1595 | Human bladder smooth muscle cells - effect of stretch in vitro 8
GSE6008 | Human ovarian tumors and normal ovaries 103
GSE1849 Differential Gene Expression in Pulmonary Artery Endothelial Cells Exposed to Sickle Cell Plasma 65
GSE3320 Gene expression profile of small airway epithelium of normal non-smokers and normal smokers 11
GSE2510 | Expression profiling in preadipocytes in obese Pima Indians/humans 56
GSE5788 | Expression data from T-cell prolymphocytic leukemia (TPLL) and normal T cells 14
GSE3860 | Comparison of Hutchinson Gilford Progeria Syndrome fibroblast cell lines to control fibroblast cell lines 36
GSE1420 | Barrett’s esophagus, Barrett’s-associated adenocarcinomas and normal esophageal epithelium 24
GSE3297 Laparoscopic Donor Nephrectomy Gene Expression Profiling Compared to Healthy Control Kidneys 12
GSE1059 Myometrial cells expressing CREB, CREM alpha, CREM tau2alpha, ATF2 or the ATF2-small gene 18
GSE3365 | Comparison of PBMCs in Inflammatory Bowel Disease 127
GSE2549 | Malignant pleural mesothelioma 54
GSE1297 | Incipient Alzheimer’s Disease: Microarray Correlation Analyses 31
GSE4570 | Expression profiling reveals novel pathways in the transformation of melanocytes to melanomas 8
GSE2429 | Atypical Ductal Hyperplasia 8
GSE1474 | Caco-2 and T84 cells stimulated with with flagellin, lymphotox beta or TNF alpha 24
GSE44971 | Gene expression data from pilocytic astrocytoma tumour samples and normal cerebellum controls 58
GSE20086 | Heterogeneity of gene expression in stromal fibroblasts of human breast carcinomas and normal breast 12
GSE35493 | Pediatric rhabdoid tumors of kidney and brain show many differences in gene expression but share dysregulation of cell cycle and epigenetic effector genes | 71
GSE37258 | Expression data of the iPSCs derived from foreskin fibroblast cells of normal person and KS patient 18
GSE5230 | Epigenetics of gene expression in human hepatoma cells 16
GSE16515 | Expression data from Mayo Clinic Pancreatic Tumor and Normal samples 52
GSE29796 | Transcriptional Differences between Normal and Glioma-Derived Glial Progenitor Cells Identify a Core Set of Dysregulated Genes 72
GSE3744 Human breast tumor expression 47
GSE8514 | Expression data from normal adrenal gland and aldosterone-producing adenoma 15
GSE41328 | Colorectal adenocarcinomas and matched normal colonic tissues 20
GSE19429 | Expression data from bone marrow CD34+ cells of MDS patients and healthy controls 200
GSE4619 | Gene expression profiling of CD34+ cells from MDS patients and normal controls 66
GSE15960 | Expression data from human colonic epithelial cells normal (N), adenoma (AD) or colorectal cancer (CRC) tissues 18
GSE10927 | Human adrenocortical carcinomas (33), adenomas (22), and normal adrenal cortex (10), on Affymetrix HG-U133-plus-2 arrays 65
GSE9171 Expression profiles of human glioblastoma frozen tumors and cell lines 30
GSE4567 | Endothelial cell culture with Chapel Hill Ultrafine particle 8
GSE5040 | Polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreichs ataxia 24
GSE8762 | Lymphocyte gene expression data from moderate stage HD patients and controls 22
GSE46449 | Expression data from Patients with Bipolar (BP) Disorder and Matched Control Subjects 88
GSE4883 | Simvastatin has an anti-inflammatory effect on macrophages via upregulation of Kruppel-like factor-2 9
GSE18842 | Gene expression analysis of human lung cancer and control samples 91
GSEI13471 | Expression data from human normal pre-frontal cortex, liver, and colon tissues and colon tumors 18
GSE4183 | Inflammation, adenoma and cancer: objective classification of colon biopsy specimens with gene expression signature 53
GSE5081 Expression data from Helicobacter positive and negative human gastritis samples 32
GSE50161 | Expression data from human brain tumors and human normal brain 130
GSE5764 | Analysis of microdissected invasive lobular and ductal breast carcinomas in relation to normal ductal and lobular cells 30
GSE11151 | Gene expression data from different types of renal tumors and normal kidneys 67
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The value of the (i) entry of the dysregulation matrix indicates whether gene i is dysreg-
ulated, 1, in dataset j or not, zero. The next step is to create an attribute dysregulation matrix out
of the aforementioned vectors. The size of the attribute matrix is n x 88, where n is the number of
genes in the PPI network.

3.4.2. Dataset Phenotypic Annotation

A Unified Medical Language System, UMLS, Metathesaurus [59] approach was used to
determine the biological context for every dataset according to what Medical Subject Headings,
MeSH, terms the dataset contains. For the datasets we considered in this work, we made sure that
they are included in the PubMed database and they have PubMed identifier, PMIDs. The datasets
are transformed into their corresponding PMIDs. The BioPython package is used to check that the
datasets with these PMIDs have MeSH terms and retrieve the MeSH terms. Hence, the result is
a map from datasets to MeSH terms. Then a mapping process is done from MeSH into UMLS

concepts. The illustration in Figure 11 shows the process for one of the datasets used in this work.

UMLS Concepts

( N

C0042076:Urinary Tract Neoplasms [Neoplastic Process]

C0346271:Neoplasm o of urinary bladder [Neoplastic Process]
ct urinary bladd 1
MeSH Terms €3266085:Neoplasm of dome of urinary bladder [Neoplastic Process]
C1263769:Neoplasm of lateral wall of urinary bladder [Neoplastic Process]

Biopsy
Carcinoma in Situ/genetics*
Carcinoma in
Situ/metabolism,Carcinoma in
Carcinoma

Transitional Cell/genetics

C0005684:Urinary Bladder Malignant Neoplasm [Neoplastic Process]
C0042584:VES [Disease or Syndrome]

« Tract Neoplasms [Neopl! ]
Carcinoma €0346271:Neoplasm of trigone of urinary bladder [Neoplastic Process]
PMID Transitional C1263768:Neoplasm of apex of urinary bladder [Neoplastic Process]
— BioPython Transitional Cellfpathology,Cluster MetaMap 3266085:Neoplasm of dome of urinary bladder [Neoplastic Process]
€1263769:Neoplas of lateral wall of rinary bladder [Neoplastic Process]
15173019 Aralysts

Gene Expression Profiling
Humans

GSE3167

Neoplasm Staging

Oligonucleatide Array Sequence 0858970:Carcinogenicity [Neoplastic Process]

€0279563:in situ lobular breast carcinoma [Neoplastic Process]

Urinary Bladder

C0851140:carcinoma cervix situ [Neoplastic Process]
€0007099:Carcinoma in Situ [Neoplastic Process]
€0007097:Carcinoma [Neoplastic Process]
€0007124:carcinoma ductal in situ [Neoplastic Process]
€0750927:CAS [Mental or Behavioral Dysfunction]

Urinary Bladder
Urinary Bladder

\ 7

Figure 11: The approach used to map the MeSH terms into their corresponding UMLS concepts.
The dataset used in this example has the ID GSE3167 and it is about carcinoma in situ lesions in
human bladder cancer.
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The dataset is for human bladder cancer. The dataset has an ID of GSE3167. This ID
is mapped into its PMID, i.e. 15173019. In the algorithm implementation, this PMID is given
to methods of the BioPython package. These methods obtain the MeSH terms attached to the
dataset under processing. This dataset has 15 MeSH terms. After acquiring the MeSH terms,
these terms are submitted to the code that runs the MetaMap tool. This tool maps the MeSH
terms into the UMLS concepts. The result was 162 concepts. The usage of UMLS approach
we considered in this study has many advantages, for example: Vocabularies integrated in the
UMLS Metathesaurus include many resources such as Gene Ontology, OMIM, and the Digital
Anatomist Symbolic Knowledge Base. Also, UMLS concepts are not only inter-related, but may
also be linked to external resources such as GenBank. The UMLS knowledge sources are updated
quarterly. The UMLS system has major components which are the Metathesaurus, the Semantic
Network, and lexical resources including the SPECIALIST lexicon and programs [60, 61]. The
Semantic Network provides high-level categories used to categorize every concept. The SPE-
CIALIST part is used for generating the lexical variants of biomedical terms. In the UMLS, the
knowledge is arranged into concepts. Similar terms are grouped into concepts. These concepts
are linked by different types of relations. These relations can be symbolic such as “is kind of”
or “part of”’, e.g. the NF2 concept is part of Tumor Suppressor genes, and statistical which were
concluded from co-occurrence of MeSH terms in the Medical Literature Analysis and Retrieval
System Online, MEDLINE, database. The UMLS database has millions of biological related
concepts that span diseases, treatments, and other phenotypes in different levels of details that start
from molecules to entire organisms. During the mapping process, several settings can be used,
especially, to specify the semantic types we are interested in. These types provide a consistent
categorization of all concepts represented in the UMLS Metathesaurus. Moreover, the UMLS

approach helps to overcome two significant problems of retrieving machine-readable information:

1. The variety of names used to express the same concept, and

2. The absence of a standard format for distributing terminologies.
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Figure 12: An illustration of how the datasets are annotated with UMLS concepts. The dots in the
matrix mean that the dataset, D;, has the concept, C;. Each column in the matrix can be used as
the class label for the datasets.

MeSH vocabularies are maintained by the National Library of Medicine, NLM, and used
as means for indexing PubMed articles. To accomplish the task of mapping the MeSH terms to
UMLS concepts, we employed the MetaMap tool [62]. The biomedical resources are vast such as
databases for sequences, model organisms, biomedical literature ... etc. These different resources
have a common aspect which is the terminology. This terminology is employed for integration
among these resources but does not imply any sort of vocabularies standrization. Therefore, the
mapping to UMLS is an effort towards establishing the standard for integrating information in
different resources.

Figure 12 shows the steps of annotating datasets with a phenotype. In this study, we limited
ourselves to only UMLS semantic types that are explicitly related to biological functions, stress
conditions, and tissues while in the mapping process. The reason behind this limitation is that we
are mainly interested in discovering gene patterns that are associated with phenotypic contexts.
After processing all the 88 datasets to extract the UMLS concepts using the MetaMap tool; for
every UMLS concept, we create a profile of which datasets are related to this concept. Moreover,
every dataset has a profile of which UMLS concepts it contains. In addition, every semantic type

has its own profile which shows what datasets the semantic type appears in. The datasets comprise
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the dimension of the attribute dysregulation matrix. For each concept/phenotype, we can divide the
datasets into two contexts: A positive context, where the datasets in this context have a particular
UMLS concept that we are studying, and a negative context where the remaining datasets lack the
same concept. Figure 10 shows the entire approach we developed in this work. We applied our
approach to 88 Human gene expression datasets. These datasets are related to different phenotypes.
According to the mapping process, we found that only a limited number of UMLS terms have

large-enough number of datasets annotated with every one of these terms. Table 10 displays the

Table 10: The UMLS terms used in this study. Third column shows the number of datasets
annotated with the corresponding term.

UMLS Term Semantic Type | # datasets
Acute Gastroenteritis dsyn 28
Carcinoma neop 14

Cell or Molecular comd 16
Dysfunction

Congenital Abnormality cgab 25
Disease or Syndrome

Mental or Behavioral mobd 30
Dysfunction

Neoplastic Process neop 63

six UMLS concepts/phenotypes that annotate a large number of datasets and were used in the study.
The semantic types abbreviations are explained as dsyn: Disease or Syndrome. neop: Neoplastic
Process. cgab: Congenital Abnormality. cmod: Cell or Molecular Dysfunction. mbod: Mental or
Behavioral Dysfunction.

By choosing UMLS terms with relatively large number of annotated datasets, we tried to
reduce the gap between the number of datasets having the phenotype and the remaining datasets
lacking the same phenotype. Hence, we have a balance between the datasets in the different

categories.
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Table 11: An illustration of the distribution of the gene patterns along with average pattern size,
column V, and average pattern density, the & column.

Phenotype Class #S+ patterns | #S- patterns | V o
Acute Gastroenteritis 1092 1861 7.9 0.29
Carcinoma 135 1764 7.5 0.30
Cell or Molecular Dysfunction | 351 1891 8.0 0.28
Congenital Abnormality 404 1493 8.1 0.27
Disease or Syndrome

Mental or Behavioral 1103 2227 7.7 0.29
Dysfunction

Neoplastic Process 1351 278 845 10.27

3.4.3. Reported DPRs

For every phenotype class we generated two groups of seeds, i.e. the positive and negative
seeds, depending on which part of the dysregulation matrix, see Figure 1, was used to produce the
seeds. The seeds are 3-gene patterns that are cohesive in their profiles according to the condition
we set. Interestingly, the seed can be one gene, which we tried in the analysis, however, we found
that the 3-gene seeds gave better results. In our work, a total of 13,950 patterns were discovered
from all phenotype classes. Throughout our work, every 3-gene seed has to show homogeneous
dysregulation in at least 6 datasets and these seeds are used to produce the patterns we report in
Table 11. Not all seeds will produce DPRs, because some patterns are subsumed in other already
found DPRs. The third and fourth columns of Table 11 show the average size of the reported DPRs
and the average density respectively.
3.4.4. Functional Enrichment Analysis

To show how significant the patterns that our algorithm produces, we performed an enrich-
ment analysis focusing on two aspects. The first aspect is to what extent the reported patterns were
functionally homogeneous when tested against the Gene Ontology biological process terms. If the
pattern was enriched in a GO term with p-value less than 0.01, then this pattern will be added

to the group of enriched patterns. The analysis was performed using the DAVID tool [63] using
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Figure 13: The enrichment analysis for the reported patterns.
Table 12: Examples of GO terms that are enriched in the reported DPRs.
Phenotype Class GO -Term | GO Explanation \ P-Value
Acute Gastroenteritis GO:0019059 Initiation of viral infection 8.1e-03
GO:0019058 Viral infectious cycle 4.3e-04
GO:0002541 Activation of plasma proteins involved in acute 5.3e-12
Inflammatory response
Carcinoma GO:0002858 Regulation of natural killer cell mediated 2.5e-06
Cytotoxicity directedagainst tumor cell target
GO:0012502 Induction of programmed cell death 3.1e-07
GO:0000718 Nucleotideexcision repair, DNA damage removal 1.8e-10
GO:0002253  Acivation of immune response 4.3e-11
Cell or Molecular GO:0044092 Negative regulation of molecular function 3.6e-06
Dysfunction GO0:0006974 Response to DNA damage stimulus 2.7¢-06
GO:0016481 Negative regulation of transcription 7.1e-08
Congenital Abnormality GO:0001701 In utero embryonic development 9.9¢-04
Disease or Syndrome GO:0035113 Embryonic appendage morphogenesis 8.7e-06
GO:0055008 Cardiac muscle tissue morphogenesis 5.9¢-07
Mental or Behavioral GO:0016079 Synaptic vesicle exocytosis 1.1e-05
Dysfunction GO:0051969 Regulation of transmission of nerve impulse 1.9e-07
GO:0031644 Regulation of neurological system process 2.3e-07
GO:0006836 Neurotransmitter transport 6.5e-09
Neoplastic Process GO:0070647 Protein modification by small protein conjugation 8.7e-05
or removal
GO:0045596 Negative regulation of cell differentiation 2.1e-06
GO:0031399 Regulation of protein modification process 8.1e-09
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Table 13: Examples of KEGG pathways that are enriched in the reported DPRs.

Phenotype Class KEGG-Term | KEGG Explanation \ P-Value
Acute Gastroenteritis hsa05130 Pathogenic Escherichia coli infection 2.5e-03
hsa05110 Vibrio cholerae infection 1.2e-05
Carcinoma hsa05210 Colorectal cancer 1.7e-05
hsa05340 Primary immunodeficiency 1.1e-06
Cell or Molecular Dysfunction | hsa04110 Cell cycle 4.7-e04
hsa04210 Apoptosis 2.6e-06
Congenital Abnormality hsa04810 Regulation of actin cytoskeleton 5.3e-09
Disease or Syndrome hsa04010 MAPK signaling pathway 2.2e-06
Mental or Behavioral hsa04722 Neurotrophin signaling pathway 1.3e-04
Dysfunction hsa04080 Neuroactive ligand-receptor interaction 8.6¢-05
Neoplastic Process hsa05221 Acute myeloid leukemia 7.5e-04
hsa04062 Chemokine signaling pathway 1.5e-08

the default settings. DAVID provides information about biological terms enriched in a gene list
relative to all annotated genes of the organism. Figure 13 shows the summary of the enrichment
analysis we performed in this work. Out of the 13950 reported patterns for all classes in the study,
the average enrichment was around 70%. The other aspect we considered is the enrichment in
terms of the KEGG pathways. The average KEGG pathway enrichment was 29%.
3.4.5. Interesting GO Terms and KEGG Pathways

During the enrichment analysis part, we found evidences about how the patterns discovered
by our algorithm are related to the context at hand. This is accomplished by studying the biological
significance in more depth and try to highlight if there are biological processes, or KEGG pathways
that are enriched in the discovered patterns. Interestingly, we were able to shed some light on such
cases. For example, in the reported patterns that are related to the Acute Gastroenteritis class. We
found many GO terms that are in strong relation to this class either in terms of cause or symptoms.
GO terms such as, “initiation of viral infection”, “viral infectious cycle”, and “activation of plasma
proteins involved in acute inflammatory response”. Moreover, some interesting KEGG pathways
are also enriched in the discovered patterns such as “Pathogenic Escherichia coli infection”. The
Escherichia coli bacteria is one of the main reasons for that type of disease [64]. Another phenotype

example is the Mental or Behavioral Dysfunction. Some of the illustrative GO terms showing the

importance of our discovered patterns are, “regulation of neurological system process”, “forebrain
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development”, “transmission of nerve impulse”, and “regulation of synaptic transmission”. Fur-
thermore we found some KEGG pathways enriched in this phenotype as well. Some examples
of that are the “Neuroactive ligand-receptor interaction” and ‘“Neurotrophin signaling” pathways.
Additional examples of the interesting GO terms that are enriched in the patterns discovered by
the algorithm are shown in Table 12. On the other hand, Table 13 presents some of the important

KEGG pathways that are associated with the reported DPRs.

POLR2K

POLR2G
DDB2 SMAD3

POLR2I

VAMP3

POLR2L

WDTC1

POLR2J

MEN1

Figure 14: Two examples of patterns from the phenotypes Mental or Behavioral Dysfunction,
left, and Carcinoma, right, that overlapped with two protein complexes. Hexagonal nodes are the
common proteins. Dark circles are for pattern nodes and light ones are for the complex’s.

3.4.6. Complex Prediction Analysis

To further investigate the biological significance of the reported patterns, we studied the
strength of these patterns as biological protein complexes candidates. The curated protein com-
plexes are groups of connected proteins that are biologically proven to be interacting to perform a
function inside the living organism. To achieve this goal, we obtained two sets of Human protein
complexes. The first one is the CORUM [65] catalog that includes 1703 protein complexes after
cleaning. The average number of proteins in a complex of this catalog is 4.7 proteins. In addition,
we used the HPRD [58] catalog that is comprised of 1521 manually curated annotated protein

complexes. The average size of a complex is similar to the case of the CORUM complexes.
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The importance of the discovered DPRs is illustrated by the ability of these DPRs to match
known protein complexes. Complex match does not necessarily mean that a DPR and a complex
have 100% of proteins in common. However, they have a relatively high percentage of common
genes. For the complex matching we employed the overlap score proposed in [21]. Two examples,
that overlap with known complexes, are shown in Figure 14. The left part of Figure 14 shows a
DPR that is related to the Mental or Behavioral Dysfunction phenotype. Interestingly, this pattern
was enriched in pathways of neurological importance such as hsa05016: Huntington’s disease. The
matched complex is the RNA polymerase Il core complex. The other example, right part of Figure
14, is a bout a pattern discovered during the analysis of the Carcinoma phenotype. Some GO terms
that are enriched in the pattern can be linked to DNA damage and repair. Examples of such terms
are GO:0006281 DNA repair and GO:0006974 response to DNA damage stimulus. This pattern
has matched the complex the Ubiquitin E3 ligase (DDB1, DDB2, CUL4A, CUL4B, RBX1).

3.4.7. Statistical Significance Analysis

To highlight that the discovered patterns are statistically significant and that generating
random patterns would not achieve the biological importance of the patterns reported by the
algorithm, we generated 5000 random patterns for every size of the sizes found in the identified
DPRs. Hence, in any of the phenotype classes if the reported patterns have 20 different sizes, we
generate 100000 random patterns for that class. Then, we tried to find the percentage of random
patterns that have scores greater than or equal to the scores of the identified DPRs of the same
size, i.e. the p-value. The average p-value, which signifies our work, was zero. Moreover, we
used the t-test [66] to measure the deviation between the scores of the random patterns and the
identified patterns. The average p-value in this measure was 8e-91. This proves the importance
of the reported patterns statistically. On the other hand and to show that random patterns cannot
sustain the biological quality of the patterns discovered by this work, we created a random protein-
protein interaction network by permuting the edges between the genes of the HPRD network. We
applied our algorithm using this random network and analyzed the enrichment of the reported

patterns. The average enrichment, for the biological processes for example, was below 7% while
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CEP192

() (b)

Figure 15: Examples of some of the interesting patterns related to the phenotypes studied in this
work. The pattern in (a) is enriched with the ‘Acute Gastroentirits’ GO term. The pattern in (b) is
enriched with ‘Mental or Behavioral Dysfunction’.

the enrichment for our patterns was around 70% as shown in Figure 13. This result confirmed the
biological importance of our approach and that the reported patterns are by no means random.
3.4.8. Examples of Interesting DPRs

To emphasize the importance of this work, we illustrate that by some examples of the
discovered patterns. These patterns are in strong relation with the phenotype class used to generate
them. Figure 15 shows two examples of such patterns.For instance, in the Acute Gastroenteritis
class, the pattern shown in Figure 15(a), is composed of the genes: ITGB3, BCAN, FBLN2,
P2RY2, COL4A3, MFAP2, COL4AS, and MMPS8. Employing the GO enrichment analysis for
this pattern showed that several biological processes are associated with the genes of this pattern
are related to the inflammatory activities. Examples of the enriched GO terms are: “activation of

29 ¢ 29 ¢

plasma proteins involved in acute inflammatory response”, “acute inflammatory response”, “regu-
lation of inflammatory response”, “inflammatory response”, and “regulation of acute inflammatory
response”. Another example pattern for the same class, not shown in Figure 15, showed links to

tumor biological processes such as “positive regulation of response to tumor cell”, and “regulation
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of natural killer cell mediated cytotoxicity directed against tumor cell target”. In another phenotype
class, Mental or behavioral Dysfunction, one of the identified patterns, has the genes FLOT1,
SHBG, APEH, FYN, AK2, CEP192, and SHCI1 that is shown in Figure 15(b) was strongly linked

2 (13

to several neurological processes such “central nervous system neuron differentiation”, “neuron

projection morphogenesis”, and “central nervous system neuron axonogenesis”.

Table 14: The classification power of the DPRs illustrated by different classifiers algorithms against
single gene markers.

Phenotype Class DPR patterns vs. Single Genes Classification Results

Random Naive Bayes Random Naive Bayes

#DPRs | Forest #SingleGene | Forest

F-Measure | F-Measure F-Measure F-Measure
Acute Gastroenteritis 2953 1 0.95 0.84 2953 0.62 0.70
Carcinoma 1899 | 0.98 0.87 1899 0.78 0.90
Cell or Molecular 22421093 0.80 2242 0.73 0.72
Dysfunction
Congenital Abnormality | 1897 | 0.93 0.92 1897 0.72 0.86
Disease or Syndrome
Mental or Behavioral 3330 | 091 0.83 3330 0.65 0.73
Dysfunction
Neoplastic Process 1629 10.92 0.93 1629 0.71 0.89

3.4.9. Classification Performance of DPRs

In this part of our work we assessed the classification power of the reported patterns and
to what extent they can be considered as good markers for a phenotype class. To accomplish that,
we considered that every pattern is a feature. For every pattern, the activity vector was calculated
based on the attribute dysregulation matrix. For instance, in the Acute Gastroenteritis phenotype,
our algorithm has reported 2953 patterns/features. Using the UMLS annotation approach we
categorized 28 datasets out of the 88 datasets to be marked with that phenotype. We denote these
28 sets as the positive group. The remaining 60 datasets were denoted as the negative group. To

perform the classification experiments, we used two classifiers provided by the WEKA tool [67];

namely, Random Forest, and Naive Bayes. In Table 14 we show the F-measure results of these

2 X PrecisionxRecall

classifiers. The F-measure is Precisiont Recall

and it is a measure for evaluating accuracy. Precision
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is the ratio of true positives to the total number of all datasets classified as positive/phenotype.
Recall is the ratio of true positives to the total number of positive/phenotype datasets. We used
the default settings of the WEKA tool for each of the classification algorithms, i.e. 10-fold cross
validation. For comparison, we ranked the genes based on the information gain score. We selected
the top ranked genes as single markers for classification. For each dataset, the number of single
gene markers selected is equal to the number of DPRs reported by the proposed algorithm. From
Table 14, the average F-measure across all phenotypes of the Random Forest classifier, built using
the DPRs as attributed, is above 90%. Furthermore, Table 14 shows the clear advantage of using
the DPRs as markers over single gene markers.
3.5. Conclusion

In this work we developed an approach for discovering Dysregulated Phenotype-Related
patterns of connected genes, DPRs. The approach proved to be effective in many facets. Bio-
logically, the functional enrichment analysis showed that the DPRs discovered by our algorithm
are significant and they are strongly linked to the phenotypes considered in the study. This is
achieved by examining which GO terms and KEGG pathways are enriched in the discovered
DPRs. Moreover, the reported DPRs have overlap with manually curated protein complexes which
are biological-proven to be protein modules involved in common functions in the living organism.
Additionally, we studied the classification performance of the reported DPRs. The results indicate
that the DPRs are good markers for the studied phenotypes. Furthermore, we assessed the statistical
significance of the discovered patterns and the results confirmed that the reported DPRs are far from
being discovered by chance. Discovering phenotype-related gene sets can help the researchers in
the medical field by assisting them focus on small number of genes that are related to the phenotype

or disease they are studying.
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CHAPTER 4. CONCLUSIONS

In this last part of the dissertation we conclude the work presented so far and summarize
our contributions.

In Chapter 2, we accomplished number of contributions when introducing the problem
of mining maximal cohesive patterns. We have proposed an algorithm to tackle the problem of
mining maximal cohesive induced subgraphs and maximal cohesive patterns. On that, we have
illustrated the effectiveness of integrating constraints from several data sources, such as phenotypes
and evolutionary profiles, with protein interaction networks. With this integration the search can be
guided to discover interesting patterns. The performed experimental analysis on Yeast and Human
datasets has proved the quality of the proposed approach by assessing the overlap of the discovered
subnetworks with known biological complexes and pathways. Moreover, GO enrichment analysis
showed that the discovered subnetworks are biologically significant.

In Chapter 3, we propose an approach for mining dysregulated patterns by integrating gene
expression datasets and PPI network. The problem we address here is similar to the problem
of discovering subnetwork biomarkers for gene expression classification. However, instead of
classifying samples, we mine sets of genes that distinguish between the datasets that are labeled
with Unified Medical Language Systems, UMLS, concepts. The approach we developed aimed
at the discovery of Dysregulated Phenotype-Related Patterns, DPRs. The process follows the
greedy pattern growth approach. For that goal, we have created dysregulation profiles for genes
in the protein-protein interaction network. A gene dysregulation profile captures the dysregulation
of the gene in the 88 datasets. We employed the physical interaction network in our work to
add significance to the mined gene patterns. We have demonstrated the biological relevance of
the reported DPRs to the studied phenotypes by illuminating the biological context through Gene
Ontology enrichment, KEGG pathway enrichment, and the overlap with known protein complexes.
Moreover, The reported DPR patterns have proved to have high classification power when these

patterns are used as classification features.
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