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ABSTRACT 

Methicillin-resistant (MRSA) and multidrug-resistant (MDR) Staphylococcus aureus, and 

the serotype (ST) 398 have been associated with human and livestock infections, being also 

detected in retail meat. The aim of this study was to determine the prevalence and molecular 

types of S. aureus strains from animals, retail raw meat, deli meat, and humans, determining the 

genetic similarity between the strains. 

A two-step selective enrichment followed by selective plating were used to isolate S. aureus 

from animals (n=167), retail raw meat (n=145), and deli meat (n=46). In addition, S. aureus from 

healthy people (n=550) was isolated by culture method. Positive isolates and MRSA isolates 

from clinical cases (n=108) were subjected to multiplex PCR (16S rRNA, mecA, and PVL 

genes), molecular typing and antimicrobial susceptibility testing. In addition, a real-time PCR 

assay was developed in order to decrease the time of detection of target genes of S. aureus in 

animal and meat samples, comparing the results with the standard culture/PCR method. 

The prevalence of S. aureus was 34.7% in animals, 47.6% in meat, and 13.0% in deli meat. 

The mecA gene was detected in S. aureus isolated from five pork meat samples and exhibited 

penicillin resistance. The ST398 was found in sheep, pigs, and pork meat. The S. aureus nasal 

carriage in healthy people was 7.6%. A total of 105 MRSA strains (97.2%) from clinical cases 

harbored the mecA gene and 11 (10.2%) the PVL gene. The rate of MDR was 70% in humans. A 

genetic similarity between strains from animals and meat, and from humans and meat was 

observed. Total agreement between the culture/PCR method and real-time PCR for detection of S. 

aureus was 68.9 to 97.8% (k=0.68-0.88), and the mecA gene, 86.7 to 98.7% (k=0-0.49). 

Therefore, the real-time PCR assay may be recommended as a rapid method for the 

detection of S. aureus, with confirmation of MRSA using the standard culture method. The 
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presence of emerging S. aureus strains in the meat production chain and the genetic similarity 

between strains of different origin, suggests the contamination of meat, and a potential risk of 

transmission to humans.  
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1. GENERAL INTRODUCTION 

The emergence and spread of multidrug-resistant (MDR) pathogens have increased public 

health concerns worldwide. The emergence of antimicrobial-resistant (AR) bacterial strains in 

animals has been related to the use of antibiotics in animal husbandry (de Neeling et al., 2007). 

A large number of antimicrobials have been incorporated in the animal diets for prevention and 

growth promotion, which has frequently exposed animals to subtherapeutic concentrations of 

antibiotics (Dupont and Steele, 1987; Franco et al., 1990). Therefore, genes related to 

antimicrobial resistance may be transferred to bacteria in humans, which represent a potential 

risk for decreasing the efficacy of antibiotics used in human health (Smith et al., 2002). 

Contaminated meat with AR enteric pathogens has been reported, including: Salmonella, 

Campylobacter, Enterococcus, and Escherichia coli (FDA, 2010). In addition, methicillin-

resistant (MRSA) and MDR Staphylococcus aureus have been found in animals and meat (de 

Neeling et al., 2007; Waters et al., 2011; Buyukcangaz et al., 2013). However, there is no 

sufficient information about the prevalence of MRSA and MDR S. aureus strains in food of 

animal origin, and the route of transmission to animals and humans. 

In humans, S. aureus can cause a wide variety of diseases, such as: food poisoning, 

pneumonia, wound, and nosocomial infections (Tiemersma et al., 2004; Kennedy et al., 2008). 

This opportunistic pathogen can be transmitted by the direct contact among animals and humans 

with an infectious disease. Moreover, the transmission may occur among people or animals that 

are colonized by S. aureus and are asymptomatic carriers (CFSPH, 2011). 

Animals may be colonized by MRSA in their nares and skin (de Neeling et al., 2007; Moon 

et al., 2007; van Belkum et al., 2008; Persoons et al., 2009), increasing the risk of contamination 

of carcasses and meat during slaughtering (de Boer et al., 2009). 
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In the United States, the prevalence of S. aureus and MRSA nasal carriage in human is 

estimated at 29% and 1.5%, respectively (Gorwitz et al., 2008). Therefore, humans are also a 

potential source of contamination during processing and handling food. For this reason, 

undercooked food and food that do not need a further heat treatment to be consumed represent a 

higher risk to become vehicles in the spread of this pathogen (CFSPH, 2011). 

In previous studies, the prevalence and genotyping of methicillin-susceptible S. aureus 

(MSSA) and MRSA strains isolated from animals and meat have been determined (Waters et al., 

2011; de Neeling et al., 2007). Other past reports have characterized only MSSA and MRSA 

strains from humans (Tiemersma et al., 2004; Kennedy et al., 2008). Therefore, the source of 

emerging S. aureus strains that could cause infections and the genetic similarities between S. 

aureus strains isolated from different type of sources are not totally clear.       

1.1. Characteristics of Staphylococcus aureus 

Previously, the genus Staphylococcus had been classified within the Micrococaceae Family. 

However, further studies of genetic homology demonstrated that the genera Staphylococcus and 

Micrococcus have an insufficient relationship. For that reason, Staphylococcus was included in 

the Staphylococcaceae Family, within the Order Bacillales (Euzéby, 1997). The name 

Staphylococcus comes from the Greek staphyle, meaning a bunch of grapes, due to the spherical 

shape (cocci with diameter between 0.5 and 1.5 µm) arranged in a grapelike clusters. 

Staphylococci are Gram-positive, non-motile, non-spore forming, and facultative anaerobes. 

The main criterion to differentiate Staphylococcus from Streptococcus and Enterococcus is the 

synthesis of the enzyme catalase, which hydrolyzes hydrogen peroxide (H2O2) into oxygen (O2) 

and water (H2O). In addition, staphylococci exhibit a fermentative and oxidative metabolism of 

glucose, which can also be used to differentiate from micrococci (de Cueto and Pascual, 2009). 
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On non-selective media, S. aureus forms smooth and raised colonies, pigmented creamy 

yellow, due to the synthesis of a carotenoid pigment. This species has resistance to heat and 

drying, and exhibits halotolerance (7.5% of NaCl). On blood agar, most strains cause lysis of red 

blood cells mediated by β-hemolysin (β-hemolysis), resulting in a clear halo surrounding the 

colonies. Staphylococcus aureus can be differentiated from other species (with some exceptions) 

by the synthesis of coagulase, which enables the conversion of fibrinogen to fibrin, causing the 

clotting of plasma (Lowy, 1998; de Cueto and Pascual, 2009). In addition, S. aureus synthesizes 

a thermostable DNase which hydrolyses the phosphodiester bonds. This characteristic also 

allows for the identification of S. aureus (de Cueto and Pascual, 2009). 

Staphylococcus aureus expresses many potential virulence factors. The microbial surface 

components recognizing adhesive matrix molecules (MSCRAMM) mediate the initial 

attachment to and invasion of host cells and tissues, evasion of immune responses and biofilm 

formation. The main MSCRAMM are: clumping factor, fibronectin-binding proteins, and bone 

sialoprotein-binding protein (Lowy, 1998; de Cueto and Pascual, 2009; Foster et al., 2014). In 

addition, S. aureus synthesizes a polysaccharide intercellular adhesin, which is involved in the 

biofilm formation that provides protection and resistance to cells within the biofilm (de Cueto 

and Pascual, 2009; Foster et al., 2014). The immune evasion is promoted by protein A, an 

extracellular adherence protein and cytotoxins (Panton-Valentine leukocidin [PVL], α-toxin). 

Moreover, the bacterium expresses enzymes that destroy tissues and facilitate the spread of the 

infection (lipases, hyaluronidases, and proteases).  Other virulence factors are related to food 

poisoning and toxic shock syndrome: enterotoxins, toxic shock syndrome toxin 1, exfoliative 

toxins A and B, and α-toxin (Lowy, 1998; de Cueto and Pascual, 2009). All of these virulence 

factors in S. aureus promote the colonization and invasion, resulting in severe damage to the host.   
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1.2. Mechanisms of methicillin resistance 

There are several antistaphylococcal agents, however, S. aureus has developed mechanisms 

to neutralize them. Therefore, MDR S. aureus strains have been found in a variety of sources and 

hosts (McDougal et al., 2003; Aydin et al., 2011; Waters et al., 2011).  

In the early 1960s, MRSA associated with nosocomial infections emerged rapidly in Europe 

after the introduction of methicillin (the first semisynthetic penicillinase-resistant penicillins). At 

the end of the 1990s decade, community-associated MRSA (CA-MRSA) emerged worldwide 

(Lowy, 1998, 2003; Deurenberg and Stobberingh, 2008). Thus, the global spread of MRSA has 

increased the public health concern (Voss and Doebbling, 1995), due to the growing emergence 

of health care-associated (HA-MRSA) (Tiemersma et al., 2004), CA-MRSA (Kennedy et al., 

2008) and livestock-associated (LA-MRSA) infections (Golding et al., 2010).  

Methicillin is a β-lactam antibiotic, as well as penicillin G, oxacillin, ampicillin, amoxicillin 

and cephalosporins. In methicillin-susceptible S. aureus (MSSA), these antibiotics cause the 

inhibition of the last reaction of the cell wall synthesis called transpeptidation, where N-

acetylmuramic acid is attached to the peptidoglycan. The transpeptidation is mediated by 

transpeptidases and carboxypeptidases called penicillin-binding proteins (PBPs) due to their 

affinity for penicillin. The β-lactam ring is covalently attached to a serine located in the active 

site of PBPs, causing the inactivation of transpeptidation and cell wall disruption. In addition, 

there are PBPs that inhibit autolytic cell-wall hydrolases, therefore, the attachment of penicillin 

to PBPs results in cell lysis (Marín and Gudiol, 2003; Romero, 2007).       

One of the mechanisms of resistance to β-lactam antibiotics is the activity of the enzyme β-

lactamase, which hydrolyzes the β-lactam ring. Penicillinase is a β-lactamase, which confers 
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resistance to penicillin and is encoded by the blaZ gene, located on a transposon within a plasmid 

with other genes associated with antimicrobial resistance (Lowy, 2003). 

Methicillin-resistance in MRSA strains confers resistance to cephalosporins and 

penicillinase-resistant penicillins (Lowy, 1998). This is attributed to the low-affinity penicillin-

binding protein 2a (PBP2a) (Hartman and Tomasz, 1981; Lim and Strynadka, 2002). Unlike the 

other PBPs, the PBP2a has an active site in which β-lactam antibiotics cannot bind. Therefore, 

the transpeptidation reaction can occur normally. Thus, the synthesis of the cell wall causes the 

survival of staphylocci that are exposed to high concentrations of these antimicrobials (Lim and 

Strynadka, 2002). The PBP2a is encoded by the mecA gene, located in a mobile genetic element 

called the staphylococcal cassette chromosome mec (SCCmec) (Hartman and Tomasz, 1981). 

Transcriptional regulation of the mecA gene is accomplished by two proteins: MecI, repressor 

encoded by the mecI gene; and MecRI, signal transducer encoded by the mecRI gene. In the 

absence of β-lactam antibiotics, MecI binds the operator region, repressing the RNA 

transcription of both mecA and mecI-mecRI genes. Binding of β-lactam antibiotics to MecRI 

stimulates its autocatalytic activation. Active MecRI cleaves MecI into inactive fragments, 

allowing the transcription of both mecA and mecI-mecRI genes (Lowy, 2003). 

In recent years, a novel mecA homolog gene (mecALGA251 renamed as mecC) has been 

detected in S. aureus strains isolated from humans and animals, which exhibit methicillin 

resistance but test negative for the mecA gene. The mecC gene has 70% sequence homology to 

the mecA gene and is located on the staphylococcal cassette chromosome mec type XI (García-

Álvarez et al., 2011; Ito et al., 2012; Laurent et al., 2012; Petersen et al., 2012). 
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1.3. Genotyping of MSSA and MRSA 

Genotyping of S. aureus strains is not completely standarized, and different molecular 

methods have been used for many years (Tenover et al., 1994). Among the molecular methods to 

type MRSA strains are: pulsed-field gel electrophoresis (PFGE), that considers the macro-

rectriction of genomic DNA; multilocus sequence typing (MLST), based on the allelic profile of 

seven housekeeping genes; and the spa typing, based on sequencing of the polymorphic X region 

of the spa gene that encodes the protein A in S. aureus (McDougal et al., 2003). For this reason, 

one strain can have multiple names (CFSPH, 2011). The Centers for Disease Control and 

Prevention (CDC) established a nomenclature system for S. aureus based on the PFGE patterns 

that were common in the US, listing eight original isolates, USA100 to USA800 (McDougal et 

al., 2003). The MLST types are named according to the sequence types (ST) with a number (e.g. 

ST398), while spa types are named with a 't' followed by a number (e.g. t011) (Cuny et al., 2010). 

Usually, PFGE and MLST classify isolates in similar clusters (Catry et al., 2010), which could 

contain different spa types. Therefore, one of the disadvantages of the spa typing is that the 

unrelated clonal lineages could have similar spa types (Van den Broek IV et al., 2009; Golding 

et al., 2008). This discrepancy with the results obtained by PFGE and MLST is due to the small 

fraction of the genome comprised by the spa typing (Golding et al., 2008). The PFGE method 

has proven to have a greater discriminatory power than MLST and spa typing methods. These 

techniques could be used to assess major changes in clonal lineages over time (McDougal et al., 

2003). Therefore, a combination of two methods may be recommended in order to achieve a high 

accuracy in typing isolates (Tenover et al., 1994).       

The PFGE technique has been used for differentiation between CA-MRSA (USA300 and 

USA400), and HA-MRSA strains (USA100 and USA200) (McDougal et al., 2003). Vandenesch 
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et al. (2003) determined that the CA-MRSA strains from three different continents harbored two 

genes: a type IV SCCmec cassette and the PVL locus, that carries the PVL-encoding gene. The 

PVL locus is carried on a bacteriophage that infects S. aureus, whereas the distribution of other 

toxin-encoding genes seems to be specific to the strains from each continent. Most CA-MRSA 

strains harbored the PVL locus (Baba et al., 2002; Dufour et al., 2002), which is a virulence 

factor related to severe skin infections, pneumonia, and tissue necrosis (Ebert et al., 2009).     

Some sequence types related to HA-MRSA have been determined by MLST, such as: ST5, 

ST8, ST22, ST36, ST45, among others (Deurenberg et al., 2007), whereas ST30 and ST80 have 

been associated with CA-MRSA (Stenhem et al., 2010); and ST398 to LA-MRSA, particularly 

in pigs (Lewis et al., 2008; van Belkum et al., 2008; Krziwanek et al., 2009). Initially, the 

serotype ST398 was associated with pigs, however it has also been detected in humans, primarily 

pig farmers (van Belkum et al., 2008; Krziwanek et al., 2009; Pan et al., 2009; Golding et al., 

2010). Moreover, MRSA ST398 has been recently associated with infections in humans that had 

contact with dairy cattle affected by sub-clinical mastitis (Soavi et al., 2010). Nevertheless, in 

Sweden two cases of ST398 t038 were reported in patients with no previous contact with animals 

(Welinder-Olsson et al., 2008). This suggests the spread and colonization of these strains, to 

people that are not involved in animal husbandry (Gibbs et al., 2006).  

Methicillin-resistant S. aureus ST398 is non-typeable by PFGE since its DNA cannot be 

digested by the enzyme SmaI, due to the methylation of the SmaI recognition site caused by a 

methylation enzyme (Bens et al., 2006). Comparative assessment of PFGE fingerprints and spa 

types of MRSA ST398 strains obtained from patients in different countries have reported 

variations that suggest a molecular and geographic diversity (Golding et al., 2010). In addition, 

novel MRSA strains, such as ST9 t899 associated with pig farming, have also emerged 
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(Guardabassi et al., 2009). Therefore, the emergence of novel MRSA strains in swine, highlights 

the importance of creating strategies for permanent surveillance, and assessing the risk of 

transmission to humans related to pig farming.           

1.4. Prevalence of MSSA and MRSA in animals, meat, and humans 

The method used for isolation of MSSA and MRSA is not completely standarized. 

Therefore, the use of different methods may affect the results with regards to prevalence. Some 

analyzes have included solely plating using mannitol-salt agar (MSA) with 2 µg/mL oxacillin 

(Weese et al., 2006) or Baird Parker media (BP) (Aydin et al., 2011). Other studies, have used 

enrichment steps preceeding plating. Wertheim et al. (2001) developed a selective broth 

containing phenol red, mannitol, aztreonam, and ceftizoxime (PHMB+), increasing the sensitivity 

of the detection of MRSA twofold. Broens et al. (2011) used a two-step enrichment protocol, 

Mueller-Hinton broth with 6.5% NaCl (MHB+6.5NaCl) and PHMB+, followed by a 

chromogenic MRSA screening agar. Other authors have used: enrichment broth containing 7.5% 

NaCl, 1% mannitol and 2.5% yeast extract followed by a chromogenic medium (Zhang et al., 

2011); trypticase soy broth supplemented with 10% NaCl and 1% sodium pyruvate followed by 

BP medium (Pu et al., 2009; Pu et al., 2011); PHMB+ followed by plating on sheep blood agar 

and two selective agar media (Tenhagen et al., 2009). These methods suggest that adding an 

enrichment step followed by selective plating increases the sensitivity of detection. 

Most animals can be colonized by S. aureus in the nares and skin (de Neeling et al., 2007; 

Moon et al., 2007; Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al., 2009; 

Persoons et al., 2009), therefore, there is a risk of contamination of carcasses and meat with 

MSSA and/or MRSA during slaughtering (de Boer et al., 2009). Recently, MRSA strains have 

been isolated from pigs, cows and chicken (de Neeling et al., 2007; Moon et al., 2007; Lewis et 
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al., 2008; van Belkum et al., 2008; Guardabassi et al., 2009; Persoons et al., 2009). In the 

Netherlands, de Neeling et al. (2007) have detected a high prevalence of MRSA ST398 (39%) in 

pigs and a high rate of resistance to different antibiotics (tetracycline, erythromycin, clindamycin, 

kanamycin, gentamicin, and tobramycin). In addition, they suggested the transmission of MRSA 

among animals within the pens in slaughterhouses. Guardabassi et al. (2009) found a prevalence 

of 16% in pigs in Hong Kong, which is lower than the prevalence reported in the former study. 

This could be due to a smaller sample size and the method of detection used. Since pigs have 

been found as a likely source of MRSA infections, it is necessary to study the epidemiology of 

this emerging zoonosis, determining the rate of transmission of MRSA from animals to humans, 

and person to person (Lewis et al., 2008).         

In recent years, MRSA strains have been isolated from retail meat (pork, chicken, beef, 

turkey and lamb). Hanson et al. (2011) assessed different types of meat from supermarkets 

located in Iowa, USA. They detected two samples of pork meat contaminated with MRSA, with 

a prevalence around 1%. In Louisiana (USA), Pu et al. (2009) reported a prevalence of 45.6% of  

S. aureus in pork meat and 20% in beef, of which 5.6% and 3.3% were MRSA in pork meat and 

beef, respectively. A higher rate of MRSA, mainly ST398, has been found in retail meat in the 

Netherlands: 35% in turkey, 16% in chicken, 11% in pork, 10% in beef, and 6% in lamb (de 

Boer et al., 2009). Therefore, the latter results suggest that the method used could improve the 

level of detection of MRSA, which included two steps of selective enrichment followed by 

selective plating. Finally, the detection of MRSA in meat has increased the food safety concern 

regarding the meat production chain, resulting in the necessity of a surveillance system in 

coordination with different entities, such as: departments of health, laboratories of analysis, 

institutes of research, and food companies, among others.   
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In the United States, one in six people becomes sick as a result of foodborne illness each 

year, with a total of 48 million people. Among the main casual agents of foodborne diseases is S. 

aureus, with a total of 240,000 cases, corresponding to a gastrointestinal disease caused by 

enterotoxins (CDC, 2012). In contrast, MRSA are also associated with skin infections in the 

community, and severe cases are related to hospitalized patients affected by blood, surgical, or 

pneumonia infections (CDC, 2011). Nasal carriage of S. aureus and MRSA is approximately 

29%, and 1.5% of the population in the United States, respectively (Gorwitz et al., 2008). A total 

of 478,000 cases of infections caused by S. aureus resulted in hospitalization in 2005, of which 

50% were related to MRSA strains. Of 11,406 deaths associated with S. aureus, 6,639 cases were 

MRSA infections (Klein et al., 2007).           

In North Dakota, statistics about the epidemiology of MRSA infections in humans are 

available. However, there is no information regarding to the prevalence of MRSA in animals and 

the contamination of meat. During 2011, a rate of 13 cases of MRSA infections per 100,000 

people were reported. The rate of infections increased from 2000 to 2006, from 15 to 1,880 cases, 

respectively, decreasing markedly in 2007 (412 cases), with minor reductions in subsequent 

years (North Dakota Department of Health, Disease Control, 2011).        

The infections caused by AR microorganisms have high direct and indirect costs. The 

average cost of hospitalization for MRSA infections is US$ 14,000 approximately, which is 

considerably high compared with US$ 7,600 for non-MRSA infections. Therefore, the total cost 

of hospitalization for MRSA infections in the United States is greater than 3 billion dollars 

annually (Elixhauser and Steiner, 2007). The total cost increases when indirect expenses are 

included, such as: sick leave, loss of earnings, disability, and mortality.  
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The control and prevention of MRSA infections in the United States is led by the CDC, 

which provides specific information and strategies for the treatment of MRSA infections. 

Decreasing MRSA infections in health care settings and in the community is a high priority to 

CDC. Thus, projects about the surveillance of MRSA infections have been developed with the 

collaboration of departments of health, hospitals, and medical centers, among others (CDC, 

2011). However, more information about the genetic characteristics and similarities of MRSA 

strains and the route of transmission to animals and humans is needed. This could facilitate the 

development of the corrective actions to decrease the spread of MRSA infections.  

1.5. Hypothesis and objectives 

1.5.1. Hypothesis 

Methicillin-susceptible (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) 

strains are present in meat-producing animals, retail raw meat, and humans, with a genetic 

relationship between them. 

1.5.2. General objective 

To determine the prevalence, molecular typing and the antimicrobial susceptibility of 

MSSA and MRSA in meat-producing animals, retail raw meat, deli meat, and humans, assessing 

the genetic relationship between isolates. 

1.5.3. Specific objectives 

- To determine the prevalence of S. aureus strains in animals, meat, deli meat, and humans. 

- To determine the molecular characteristics and genotyping of MSSA and MRSA strains. 

- To determine the antimicrobial resistance profiles of MSSA and MRSA strains. 

- To compare a real time PCR assay with the culture method and conventional PCR technique, 

for detecting MSSA and MRSA in animals, meat, and deli meat. 
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2. MOLECULAR TYPING OF STAPHYLOCOCCUS AUREUS AND METHICILLIN-

RESISTANT S. AUREUS (MRSA) ISOLATED FROM ANIMALS AND RETAIL MEAT 

IN NORTH DAKOTA, UNITED STATES 

2.1. Abstract 

Several studies have reported the presence of S. aureus and MRSA in food animals and 

meat, suggesting the potential risk for humans. The objective of this study was to determine the 

prevalence and molecular typing of methicillin-susceptible Staphylococcus aureus (MSSA) and 

methicillin-resistant S. aureus (MRSA) in food-producing animals and retail meat in Fargo, 

North Dakota. A two-step enrichment followed by culture methods were used to isolate S. aureus 

from 167 nasal swabs from animals, 145 samples of retail raw meat, and 46 samples of deli meat. 

Positive isolates were subjected to multiplex polymerase chain reaction in order to identify the 

genes 16S rRNA, mecA, and Panton-Valentine Leukocidin. Pulsed-field gel electrophoresis and 

multilocus sequence typing were used for molecular typing of S. aureus strains. Antimicrobial 

susceptibility testing was carried out using the broth microdilution method. The overall 

prevalence of S. aureus was 37.2% (n=133), with 34.7% (n=58) of the animals positive for the 

organism. The highest prevalence was observed in pigs (50.0%) and sheep (40.6%) (p<0.05). 

Also, 47.6% (n=69) of raw meat samples were positive, with the highest prevalence in chicken 

(67.6%) and pork (49.3%) (p<0.05); and 13.0% (n=6) of deli meat was positive. Five pork 

samples (7.0%) were positive for MRSA, of which three were ST398 and two were ST5. All 

exhibited penicillin resistance and four were multidrug-resistant (MDR). The Panton-Valentine 

Leukocidin gene was not detected in any sample by multiplex polymerase chain reaction. The 

most common clones in sheep were ST398 and ST133, in pigs and pork both ST398 and ST9, 

and in chicken ST5. Most antimicrobial-susceptible S. aureus strains were ST5 isolated from 
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chicken. The MDR isolates were found in pigs, pork meat, and sheep. The presence of MRSA, 

MDR, and the subtype ST398 in the meat production chain and the genetic similarity between 

strains from pork meat and pigs suggest the possible contamination of meat during slaughtering 

and its potential transmission to humans. 

2.2. Introduction 

Outbreaks caused by antimicrobial-resistant (AR) bacteria is an established problem 

worldwide (DeWaal et al., 2011). One of these AR pathogens is methicillin-resistant 

Staphylococcus aureus (MRSA), which causes health care-associated MRSA (HA-MRSA) 

(Tiemersma et al., 2004), community-associated (CA-MRSA) (Kennedy et al., 2008), and 

livestock-associated (LA-MRSA) MRSA infections (Golding et al., 2010). 

Most animals can become colonized with S. aureus (de Neeling et al., 2007; Moon et al., 

2007; Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al., 2009; Persoons et al., 

2009), and contamination of carcasses may occur during slaughtering (de Boer et al., 2009). 

Recently, MRSA strains have been isolated from several food-producing animals (de Neeling et 

al., 2007; Moon et al., 2007; Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al., 

2009; Persoons et al., 2009); and from retail meat worldwide (de Boer et al., 2009; Pu et al., 

2009; Lim et al., 2010; Weese et al., 2010; Bhargava et al., 2011; Hanson et al., 2011), 

representing a potential risk for its transmission to humans. 

Methicillin resistance is attributed to the altered penicillin binding protein (PBP2a), encoded 

in the mecA gene, which has a reduced affinity for β-lactam antibiotics (Hartman and Tomasz, 

1981; Van De Griend et al., 2009). The CA-MRSA strains are more likely to encode a virulence 

factor called Panton-Valentine leukocidin (PVL) toxin (Baba et al., 2002; Dufour et al., 2002), 
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associated with skin infections and tissue necrosis (Ebert et al., 2009). Therefore, the PVL toxin 

has been identified as a genetic marker for CA-MRSA strains (Vandenesch et al., 2003).  

Different molecular techniques have been used for typing MRSA strains, such as pulsed-

field gel electrophoresis (PFGE) based on macrorestriction patterns of genomic DNA; multilocus 

sequence typing (MLST) that determines the allelic profile of seven housekeeping genes; and 

spa typing based on the sequencing of the polymorphic X region of the protein A gene. It has 

been demonstrated that the discriminatory power of PFGE is greater than MLST and spa typing 

(McDougal et al., 2003; Malachowa et al., 2005). Tenover et al. (1994) suggest that a 

combination of two methods may provide more precision in epidemiological studies. 

It has been demonstrated that MRSA strains causing CA-MRSA infections (USA300 and 

USA400) are different from those causing HA-MRSA infections (USA100 and USA200) 

(McDougal et al., 2003). The sequence type ST398 has been associated with livestock-associated 

MRSA (LA-MRSA) (Lewis et al., 2008; van Belkum et al., 2008; Welinder-Olsson et al., 2008; 

Krziwanek et al., 2009), however, the presence of ST398 and the emergence of infections in 

humans with livestock exposure, mostly pig farmers, has increased the public health concern 

(van Belkum et al., 2008; Krziwanek et al., 2009; Pan et al., 2009; Golding et al., 2010). 

The aim of this study was to determine the prevalence, molecular typing, and genetic 

similarity of S. aureus and MRSA isolated from animals and retail meat in Fargo, ND. 

2.3. Materials and methods 

2.3.1. Samples 

A total of 167 nasal swabs (sheep, n=64; pigs, n=60; cows, n=43) were collected from food-

producing animals immediately after stunning at the Meat Lab (Department of Animal Sciences). 

Of these samples a total of 57 (sheep, n=14; pigs, n=18; cows, n=25) were obtained from sick 
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animals at the Veterinary Diagnostic Lab (North Dakota State University). Moreover, 145 raw 

meat (pork, n=71; chicken, n=37; beef, n=37) and 46 deli meat (ham, n=21; turkey, n=16; 

chicken, n=9) samples were randomly purchased from four supermarket chains in Fargo, ND. 

Samples were collected between May 2010 and April 2011, immediately stored at 4°C, and 

processed within 6 h of collection. 

2.3.2. Isolation of S. aureus and MRSA 

The isolation was carried out by enrichment (de Boer et al., 2009) followed by plating steps 

on selective agar. Briefly, for the primary enrichment, 25 g of meat and 225 mL of Mueller-

Hinton broth (Becton, Dickinson and Company [BD], Sparks, MD) with 6.5% sodium chloride 

(VWR International, West Chester, PA) (MHB+6.5% NaCl) were placed in a sterile stomacher 

bag and homogenized using a stomacher400 circulator (Seaward, England) at 230 rpm for 90 s. 

The suspension was incubated for 18 to 20 h at 37°C. One milliliter of primary enrichment was 

inoculated into 9 mL of phenol red mannitol broth (BD) containing ceftizoxime (5 µg/mL, US 

Pharmacopeia, Rockville, MD) and aztreonam (75 µg/mL, Sigma Chemical Co., St. Louis, MO) 

(PHMB+) (Wertheim et al., 2001), followed by incubation for 18 to 20 h at 37°C. 

Nasal swabs were placed directly in 9 mL MHB+6.5% NaCl and incubated for 18 to 20 h at 

37°C. Then, the procedure described above was carried out. 

A loopful of secondary enrichment was struck directly to Baird-Parker medium with egg 

yolk tellurite supplement (BP) (according to manufacturer’s recommendations) (BD) and 

incubated for 48 h at 37°C. Two presumptive S. aureus colonies on BP (black colonies 

surrounded by 2- to 5-mm clear zones) were transferred to Trypticase soy agar with 5% sheep 

blood (TSAII 5% SB) (BD) and incubated for 18 to 20 h at 37°C. Presumptive S. aureus on 

TSAII 5% SB (presence of β-hemolysis) was confirmed using Sensititre Gram Positive ID 
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(GPID) plates (Sensititre, TREK Diagnostic Systems Ltd., Cleveland, OH). Confirmed colonies 

were stored frozen at -80°C in brain-heart infusion broth (BD) containing 20% glycerol until use. 

2.3.3. Multiplex polymerase chain reaction (PCR) 

All S. aureus strains were recovered from frozen stock to TSA plates and incubated at 37°C 

for 18 to 24 h. DNA extraction was carried out by suspending one colony in 50 µL of 

DNase/RNase-free distilled water, heating the suspension (99°C, 10 min) and then centrifugation 

(30,000 × g, 1 min) to remove cellular debris. The remaining DNA was transferred to a new tube 

and stored frozen at - 20°C until use. 

Multiplex PCR assay for detection of 16S rRNA, mecA and PVL genes included 2 µL of the 

DNA template (described above) added to a 50 µL final reaction mixture: 1X Go Taq Reaction 

Buffer (Promega, Madison, WI), 0.025 U/µL of Go Taq DNA polymerase (Promega), 200 µM 

dNTP (Promega), and 1 µM of primers (16S rRNA, mecA, LukS/F-PV, Table 2.1) (Integrated 

DNA Technologies, Inc., Coralville, IA) (McClure et al., 2006). 

Multiplex PCR settings were carried out according to Makgotlho et al. (2009), using a 

thermocycler (Eppendorf, Hamburg, Germany). 

Ten microliters of the PCR amplicons were loaded into a 1.5% (wt/vol) agarose gel 

(Agarose ITM, Amresco, Solon, OH) in 1X TAE buffer using EzVision One loading dye 

(Amresco), and run at 100V in 1X TAE buffer for 1 h. A molecular weight marker 100-bp ladder 

(Promega) and a positive control (ATCC 33591) were included on each gel. Bands were 

visualized using an Alpha Innotech UV imager (FluorChemTM). 
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Table 2.1. Nucleotide sequence of the primers used in multiplex polymerase chain reaction for 
detection of 16S rRNA, mecA, and Panton-Valentine leukocidin genes; and multilocus sequence 
typing analysis for detection of arcC, aroE, glpF, gmk, pta, tpi, and yqiL genes.  

 

Primer 

 

Oligonucleotide sequence 

Amplicon 

Size (bp) 

Staph 756 F 5’-AAC TCT GTT ATT AGG GAA GAA CA-3’ 

Staph 750 R 5’-CCA CCT TCC TCC GGT TTG TCA CC-3’ 
756 

mecA 1 F 5’-GTA GAA ATG ACT GAA CGT CCG ATA A-3’ 

mecA-2 R 5’-CCA ATT CCA CAT TGT TTC GGT CTA A-3’ 
310 

luk-PV-1 F 5’-ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A-3’ 

luk-PV-2 R 5’-GCA TCA AGT GTA TTG GAT AGC AAA AGC-3’ 
433 

arcC F 5'-TTG ATT CAC CAG CGC GTA TTG TC-3'  

arcC R 5'-AGG TAT CTG CTT CAA TCA GCG-3'  
456 

aroE F 5'-ATC GGA AAT CCT ATT TCA CAT TC-3' 

aroE R 5'-GGT GTT GTA TTA ATA ACG ATA TC-3' 
456 

glpF F 5'-CTA GGA ACT GCA ATC TTA ATC C-3' 

glpF R 5'-TGG TAA AAT CGC ATG TCC AAT TC-3' 
465 

gmK F 5'-ATC GTT TTA TCG GGA CCA TC-3' 

gmK R 5'-TCA TTA ACT ACA ACG TAA TCG TA-3' 
429 

pta F 5'-GTT AAA ATC GTA TTA CCT GAA GG-3' 

pta R 5'-GAC CCT TTT GTT GAA AAG CTT AA-3' 
474 

tpi F 5'-TCG TTC ATT CTG AAC GTC GTG AA-3' 

tpi R 5'-TTT GCA CCT TCT AAC AAT TGT AC-3' 
402 

yqiL F 5'-CAG CAT ACA GGA CAC CTA TTG GC-3' 

yqiL R 5'-CGT TGA GGA ATC GAT ACT GGA AC-3' 
516 

16S rRNA, mecA, and Panton-Valentine leukocidin genes (McClure et al., 2006). 
arcC, aroE, glpF, gmk, pta, tpi, and yqiL genes (Enright et al., 2000). 
 
2.3.4. PFGE 

The PulseNet protocol with slight modifications was used (McDougal et al., 2003). Briefly, 

frozen isolates were struck in TSA plates and incubated at 37°C for 18 to 24 h. A single colony 

was inoculated into a second TSA plate and incubated at 37°C for 18 to 24 h. Colonies were 
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transferred to 5-mL polystyrene round-bottom tubes containing 2 mL of cell suspension buffer 

(100 mM Tris HCl [pH 8.0], Invitrogen; and 100mM EDTA [pH 8.0],Gibco), adjusting the 

concentrations to an absorbance of 0.9 to 1.1 in a spectrophotometer (Smart SpecTM plus, Bio-

Rad Laboratories, USA) at 610 nm. After that, the preparation, lysis, and washes of plugs, and 

then the SmaI enzyme restriction digestion were performed according to the PulseNet protocol. 

Salmonella Branderup H9812 was used as a DNA marker (Ribot et al., 2006). 

The electrophoresis was carried out in a Chef Mapper (Bio-Rad Laboratories) PFGE rig, 

with initial switch time of 5 s, final switch time of 40 s, and total running time of 17 h 45 min. 

After staining the gels with ethidium bromide (1.5 µg/mL), they were visualized using a 

UVP imager (UVP, Upland, CA). Macrorestriction patterns were compared using the 

BioNumerics Fingerprinting software (Ver 6.5 Applied Math, Austin, TX). The similarity index 

was calculated using the Dice coefficient, a band position tolerance of 1%, and an optimization 

of 0.5%. The unweighted-pair group method with arithmetic averages was used to construct a 

dendrogram, and clusters were selected using a cutoff at 80% (McDougal et al., 2003). 

2.3.5. Multilocus sequence typing (MLST) 

Briefly, S. aureus isolates were struck to TSA plates and incubated at 37°C for 18 to 24 h. 

Colonies were picked to 40 µL of single cell lysing buffer (50 µg/mL of Proteinase K, Amresco; 

in TE buffer [pH= 8]), and then lysed by heating to 80°C for 10 min followed by 55°C for 10 

min in a thermocycler. The final suspension was diluted 1:2 in sterile water, centrifuged to 

remove cellular debris, and transferred to a sterile tube (Marmur, 1961). 

The housekeeping genes: arcC, aroE, glpF, gmk, pta, tpi, and yqiL, were amplified (Table 

2.1) (Enright et al., 2000). All PCR reactions were carried out in 50-µL volumes: 1 µL of DNA 

template, Taq DNA polymerase (Promega) (1.25 U), 1X PCR buffer (Promega), primers (0.1 
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µM) (Integrated DNA Technologies, Inc.), and dNTPs (200 µM) (Promega). The PCR settings 

were adjusted according to Enright et al. (2000) using a thermocycler (Eppendorf). Ten 

microliters of the PCR products were loaded into 1% agarose gels in 1X TAE with EzVision One 

loading dye, and run at 100V in 1X TAE for 1 h. Images were captured using an Alpha Innotech 

imager. 

After PCR, each amplicon was purified of amplification primer using the QIAquick PCR 

Purification Kit (Qiagen, Valencia, CA) as per manufacturer’s instructions. Purified DNA was 

sequenced at Iowa State University’s DNA Facility (Ames, IA) using an Applied Biosystems 

3730xl DNA Analyzer (Applied Biosystems, Foster City, CA). Sequence data were imported 

into DNAStar (Lasergene, Madison, WI), trimmed, and aligned to the control sequences (from 

the MLST site) and interrogated against the MLST database (http://saureus.mlst.net/). Sequence 

types were added to the strain information for analysis in BioNumerics software. 

2.3.6. Antimicrobial susceptibility testing 

Minimum inhibitory concentrations (MICs) and the AR profiles of S. aureus isolates were 

determined using the broth microdilution method (CMV3AGPF, Sensititre, Trek Diagnostics), 

according to the manufacturer’s and the Clinical Laboratory Standards Institute guidelines 

(CLSI, 2009). 

A total of 16 antimicrobials belonging to 13 classes were tested. Resistance to at least three 

classes of antibiotics was considered as multidrug-resistance (MDR) (Aydin et al., 2011). 

2.3.7. Statistical analysis 

Fisher’s exact test was used to assess significance in prevalence of S. aureus and MRSA 

between animal and meat types (Moore et al., 2007). A significance level of p<0.05 and two-

sided p-values were assessed using SAS software 9.2 (SAS Institute Inc., Cary, NC). 
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2.4. Results 

Table 2.2 shows the prevalence of S. aureus in animals (34.7%, n=58), with a higher rate in 

swine and sheep (p<0.05); in raw meat (47.6%, n=69), with a higher rate in chicken and pork 

(p<0.05); and in deli meat (13.0%, n=6). The MRSA was detected in meat (five pork samples), 

representing a low prevalence (p<0.05). The PVL gene was not detected in any sample. 

Table 2.2. Identification of 16S rRNA, mecA and Panton-Valentine leukocidin (PVL) genes in 
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolates from animals 
and retail meat. 

Isolates with the specific gene   

Source 

No. of 

samples 

Samples positive for S. 

aureus 16S rRNA mecA PVL 

Animal  ----------No. (%)---------- --------------------No. (%)-------------------- 

  Sheep 

  Pig 

  Cow 

  Total 

Raw meat 

  Pork 

  Chicken 

  Beef 

Total 

Deli meat 

  Ham 

  Turkey 

  Chicken 

Total 

   71 

   37 

   37 

145 

 

21 

16 

  9 

46 

26 (40.6) 

30 (50.0) 

2 (4.7) 

  58 (34.7) 

 

35 (49.3) 

25 (67.6) 

  9 (24.3) 

69 (47.6) 

 

 4 (19.0) 

              0 (0.0) 

 2 (22.2) 

 6 (13.0) 

26 (40.6) 

30 (50.0) 

2 (4.7) 

58 (34.7) 

 

35 (49.3) 

25 (67.6) 

  9 (24.3) 

69 (47.6) 

 

 4 (19.0) 

    0 (0.0) 

 2 (22.2) 

 6 (13.0) 

 

 

 

0 (0.0) 

 

5 (7.0) 

 

 

5 (3.4) 

 

 

 

 

0 (0.0) 

 

 

 

0 (0.0) 

 

 

 

 

0 (0.0) 

 

 

 

 

0 (0.0) 

 
Most of the Staphylococcus aureus isolates from animals were resistant to penicillin, 

tetracycline, and lincomycin; and from raw meat to those antibiotics and erythromycin. All 

MRSA strains were resistant to penicillin, and most of them showed resistance to erythromycin, 

tetracycline, and lincomycin (Table 2.3). 
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A total of 47.7% (n=41) of the penicillin-resistant Staphylococcus aureus strains exhibited 

MICs between 0.5 and 1 µg/mL. However, MRSA strains had higher MICs for penicillin (1 - 

>16 µg/mL) (Table 2.4). 

The rate of MDR strains was 41.4% (n=55); in animals was 51.7% (n=30), and in meat was 

36.2% (n=25). Among MRSA strains, only one was not MDR, and the rest showed MDR to four 

classes of antimicrobials (Table 2.5). 

Figure 2.1 shows a dendrogram displaying the macrorestriction patterns of S. aureus strains 

and the sequence types (STs). The largest cluster (cluster 4) contained S. aureus of porcine origin 

(animals and meat), all of which were ST9. Staphylococcus aureus isolates included in the 

second largest cluster (cluster 3) were obtained from poultry meat, and all but one was ST5. Two 

MRSA isolates were clustered in cluster 5, all from pork and ST5. The rest of the MRSA isolates 

were ST398 (not included in the dendrogram). A total of 34 S. aureus isolates (25.6%) were not 

included in the dendrogram because they could not be restricted with SmaI or XmaI during PFGE 

analysis and were ST398, isolated from sheep, pigs, and pork meat (data not shown). 

2.5. Discussion 

Both methods used for the confirmation of S. aureus, Sensititre identification plates and 

detection of the 16S rRNA gene by multiplex PCR, agreed with the results (Table 2.2). These 

results confirmed that the isolation method of two enrichment steps preceding plating is an 

appropriate method for recovering both S. aureus and MRSA from meat and animals. de Boer et 

al. (2009) used the same two-step enrichment, reporting a higher detection rate of MRSA. 



 

   
    

Table 2.3. Antimicrobial resistance of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolates from animals and 
retail meat. 
Antimicrobial Animal (n=58) Raw meat (n=69) Deli meat (n=6) Pork meat (n=5) 
Subclass Agent Resistant S. aureus isolates MRSA isolates 
  ------------------------------------No. (%)------------------------------------ --------No. (%)-------- 
Macrolides 
 
Tetracyclines 
 
Fluoroquinolones 
 
Phenicols 
 
Penicillins 
 
Aminoglycosides 
 
 
 
 
 
Streptogramin 
 
Lincosamides 

Erythromycin 
 
Tetracycline  
 
Ciprofloxacin  
 
Chloramphenicol 
 
Penicillin 
 
Gentamicin 
 
Kanamycin 
 
Streptomycin 
 
Quinupristin/dalfopristin 
 
Lincomycin 

3 (5.2) 
         

47 (81.0) 
             
   
 

3 (5.2) 
         

49 (84.5) 
             

1 (1.7) 
         
   
 

6 (10.3) 
       
   
 

38 (65.5) 
             

28 (40.6) 
 

29 (42.0) 
           

2 (2.9) 
 

2 (2.9) 
         

35 (50.7) 
           

1 (1.4) 
         

2 (2.9) 
         
  
  

2 (2.9) 
         

29 (42.0) 
           

1 (16.7) 
       
 
 
 
 
 
 

2 (33.3) 
       
 
 
 
 
 
 
 
 

1 (16.7) 
       

4 (80.0) 
 

4 (80.0) 
 
 
 
 
 

5 (100.0) 
 
 
 

1 (20.0) 
 
 
 
 
 

4 (80.0) 

The following antimicrobials were tested using the National Antimicrobial Resistance Monitoring System (NARMS) panel: tigecycline (range 
0.015-0.5 µg/mL); tetracycline (1-32); chloramphenicol (2-32); daptomycin (0.25-16); streptomycin (512-2048); tylosin tartrate (0.25-32); 
quinupristin/dalfopristin (0.5-32); linezoid (0.5-8); nitrofurantoin (2-64); penicillin (0.25-16); kanamycın (128-1024); erythromycin (0.25-8); 
ciprofloxacin (0.12-4); vancomycin (0.25-32); lincomycin (1-8); and gentamicin (128-1024). All isolates were susceptible to vancomycin, 
daptomycin, nitrofurantoin and linezolid. 
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Table 2.4. Minimum inhibitory concentrations (MICs) of resistant Staphylococcus aureus and methicillin-resistant S. aureus isolates 
from animals and retail meat. 

MIC (µg/mL) Antimicrobial Agent 

(breakpoints) 

Resistant S. 

aureus isolates 0.5 - 1 2 4 >4 8 >8 16 >16 32 >32 256 >256 

 ----No.---- ----------------------------------------------------------No. (%)---------------------------------------------------------- 

Erythromycin (≥8 µg/mL)a 32      32 

(100.0) 

      

Tetracycline (≥16 µg/mL)a 76       11 

(14.5) 

 15 

(19.7) 

50 

(65.8) 

  

Ciprofloxacin (≥4 µg/mL)a  2    2 

(100.0) 

        

Chloramphenicol (≥32 

µg/mL)a 

 5         3 

(60.0) 

2 

(40.0) 

  

Penicillin (≥0.25 µg/mL)a 86 41 

(47.7) 

9 

(10.5) 

14 

(16.3) 

 10 

(11.6) 

  7 

(8.1) 

5 

(5.8) 

    

Gentamicin (≥16 µg/mL)a  2           2 

(100.0) 

 

Kanamycin (≥64 µg/mL)a  2            2 

(100.0) 

Streptomycin (≥8 µg/mL)b  6            6 

(100.0) 

Quinupristin/dalfopristin 

(≥8 µg/mL)a 

 2   1 

(50.0) 

 1 

(50.0) 

       

Lincomycin (≥4 µg/mL)c 68   4 

(5.6) 

 3 

(4.4) 

61 

(89.7) 

      

aLevels of MIC values against tested antibiotics (CLSI, 2009). bLevels of MIC values against tested antibiotics (Jarløv et al., 1997). cLevels of MIC values 
against tested antibiotics (Nemati et al., 2008). 
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Table 2.5. Antimicrobial resistance profiles of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolates from 
animals and retail meat. 

Animal 

(n=58) 

Raw meat 

(n=69) 

Deli meat 

(n=6) 

Raw meat 

(n=5) 
 

 

 

Antimicrobial resistance profile 

 

 

No. of antimicrobial 

subclasses resistant to 

 

S. aureus isolates with the specific 

profile 

MRSA isolates 

with the specific 

profile 

  -----------------No. (%)----------------- ------No. (%)------ 

ERY-PEN-TET-LINC-CHL-GEN-CIP-QUI 8    1 (  1.4)   

ERY-PEN-TET-LINC-CHL-CIP-QUI 7    1 (  1.4)    

ERY-PEN-TET-LINC-CHL-STR 6   2 (  3.4)     

ERY-PEN-TET-LINC-KAN 5    1 (  1.4)    

PEN-TET-LINC-CHL-STR 5   1 (  1.7)     

PEN-TET-LINC-GEN 4   1 (  1.7)     

PEN-TET-LINC-KAN 4    1 (  1.4)   1 (20.0) 

PEN-TET-LINC-STR 4   2 (  3.4)     

ERY-PEN-TET-LINC 4   1 (  1.7) 13 (18.8)   3 (60.0) 

PEN-TET-LINC 3 22 (37.9)   1 (  1.4)    

PEN-LINC-STR 3   1 (  1.7)     

ERY-PEN-LINC 3    2 (  2.9)    

ERY-TET-LINC 3    5 (  7.2)    

Ciprofloxacin (CIP); chloramphenicol (CHL); erythromycin (ERY); gentamicin (GEN); kanamycin (KAN); lincomycin (LINC); 
quinupristin/dalfopristin (QUI); penicillin (PEN); streptomycin (STR); and tetracycline (TET). 
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Table 2.5. Antimicrobial resistance profiles of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolates from 
animals and retail meat (continued). 

Animal 

(n=58) 

Raw meat 

(n=69) 

Deli meat 

(n=6) 

Raw meat 

(n=5) 
 

 

 

Antimicrobial resistance profile 

 

 

No. of antimicrobial 

subclasses resistant to 

 

S. aureus isolates with the specific 

profile 

MRSA isolates 

with the specific 

profile 

  -----------------No. (%)----------------- ------No. (%)------ 

PEN-LINC 2   4 (  6.9)   1 (  1.4)  1 (16.7)   

PEN-TET 2 12 (20.7)   2 (  2.9)    

TET-LINC 2   3 (  5.2)     

ERY-LINC 2    3 (  4.3)    

ERY-PEN 2    2 (  2.9)   1 (20.0) 

LINC  1   1 (   1.7)     

PEN 1   3 (  5.2) 10 (14.5) 1 (16.7)   

TET 1   3 (  5.2)   4 (  5.8)    

ERY 1   1 (16.7)   

Susceptible to all tested 0   2  (  3.4) 22 (31.9) 3 (50.0)   

Ciprofloxacin (CIP); chloramphenicol (CHL); erythromycin (ERY); gentamicin (GEN); kanamycin (KAN); lincomycin (LINC); 
quinupristin/dalfopristin (QUI); penicillin (PEN); streptomycin (STR); and tetracycline (TET). 
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It is well known that animals are natural reservoirs of S. aureus; in this study, positive nasal 

swabs were obtained from sheep, pigs, and cows. Other studies have detected a higher 

prevalence of S. aureus in sheep (57%) and cow (14%) (Mørk et al., 2012); however, the 

prevalence in pigs has been reported to vary widely (6-57%) (Khalid et al., 2009; Lowe et al., 

2011). The recovery of S. aureus in meat in our study was higher than previous studies (39.2% 

and 14.4%) (Pu et al., 2009; Aydin et al., 2011). The prevalence of S. aureus in ham was 19%, 

which was considerably lower than the prevalence reported by Atanassova et al. (2001). There is 

limited information about the prevalence of S. aureus and MRSA in processed retail meat 

products, and this study provides some information as to the potential exposure of consumers 

through consumption of deli meat that typically do not need heating prior to consumption. 

In this study, MRSA was not detected in animals; however, a prevalence of MRSA in swine 

ranging from 10% to 71% has been detected previously (Köck et al., 2009; Smith et al., 2009; 

Tenhagen et al., 2009). The low rate of MRSA in pork raw meat (3.4%) determined in this study 

agreed with the low prevalence reported by other authors (de Boer et al., 2009; Pu et al., 2009). 

Most of the S. aureus strains isolated from animals exhibited resistance to the same 

antimicrobials reported by other authors (Nemati et al., 2008; Huber et al., 2010) (Table 2.3). 

The AR bacteria in animals have increased over time due to the frequent use of antimicrobial 

agents at the farm level (de Neeling et al., 2007; Nemati et al., 2008). Therefore, controlling the 

use of antibiotics in farming could limit the risk of transmission of AR pathogens among animals 

and potentially to humans (Huber et al., 2010). 
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Figure 2.1. Dendrogram showing the genetic similarity of 100 S. aureus isolates. The scale 
indicates levels of similarity, numbers represent the samples codes, followed on the right by the 
sequence type (ST) and the type of the sample. *mecA-positive S. aureus strains in pork meat. 
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Other authors have also determined a higher occurrence of resistance to penicillin, 

tetracycline, and erythromycin in S. aureus strains isolated from retail meat and different food 

samples (Aydin et al., 2011; Pu et al., 2011). Penicillin resistance has been reported to spread 

rapidly among S. aureus strains being facilitated by plasmids and is the most frequently reported 

resistance detected in foodborne S. aureus (Aydin et al., 2011). 

Antimicrobial-resistant S. aureus exhibited a MIC for erythromycin and lincomycin (>8 

µg/mL) lower than the MIC determined by Nemati et al. (2008). The MIC of tetracycline (>32 

µg/mL) and penicillin (0.5-1 µg/mL) concurred with the results reported by Nemati et al. (2008). 

All S. aureus isolates examined in this study were susceptible to daptomycin, linezolid, 

nitrofurantoin and vancomycin, concurring with the results reported by Pu et al. (2011). 

The clustering of isolates obtained by PFGE agreed well with the MLST types (i.e., the identical 

restriction patterns or patterns that differed at two to six bands had an identical ST) (Fig. 1). 

Restriction patterns with the same numbers of bands represent the same strain; patterns that 

differ up to three fragments represent strains that are closely related; and isolates that differs at 

four to six bands may have the same genetic lineage (Tenover et al., 1995). 

The major clones identified corresponded to ST9 and ST5. The emergence of ST9 in pigs 

was first reported in 2008 by Guardabassi et al. (2009) in Hong Kong, disseminating later as 

demonstrated in this study. The genetic relatedness between S. aureus strains ST9 from pigs and 

pork meat may suggest the possible contamination of meat during slaughtering. Previously, ST5 

was associated with poultry (Hasman et al., 2010) and poultry meat (Waters et al., 2011). In this 

study, the majority of strains isolated from chicken were ST5, which can also suggest the 

contamination of meat during slaughtering. A high prevalence of MSSA ST398 strains was 
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found, which may indicate the potential risk for humans to acquire this emerging sequence type 

that has potential for causing infection. 

The MRSA isolates had the same MLST allelic profile and indistinguishable PFGE patterns 

than two methicillin-susceptible S. aureus (MSSA) strains, all obtained from pork. The close 

genetic similarity of the MRSA and MSSA isolates may be due to the acquisition of the mecA 

gene by horizontal transfer of SCCmec from MRSA strains to MSSA lineages (Enright et al., 

2000; Wielders et al., 2001; de Neeling et al., 2007; Guardabassi et al., 2009). 

Most of the S. aureus isolates susceptible to all antimicrobial agents were obtained from 

chicken, of which 76% were ST5. Previously, other authors have reported MDR in S. aureus 

from food samples at a lower rate compared with this study (Aydin et al., 2011; Nam et al., 

2011) (Table 2.4). Multidrug-resistant isolates from pork were mainly ST398 (60%) (not 

included in the dendrogram) and ST9 (30%). All MDR strains from sheep were ST398 (not 

included in the dendrogram). The multidrug resistance can be due to the presence of other 

antibiotic resistance genes, such as dfrK (resistance to trimethoprim) (Kadlec and Schwarz, 

2009) and cfr (MDR gene) (Kehrenberg et al., 2009). 

2.6. Conclusion 

The genetic relationship between strains isolated from animals and meat, suggests the likely 

contamination of meat during slaughtering. Although the MRSA prevalence in raw meat is low, 

the prevalence of MDR S. aureus and ST398 is higher; therefore, the risk of transmission 

through the meat production chain cannot be ignored. 
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3. MULTIPLEX REAL-TIME PCR FOR DETECTION OF STAPHYLOCOCCUS 

AUREUS, MECA, AND PANTON-VALENTINE LEUKOCIDIN (PVL) GENES FROM 

SELECTIVE ENRICHMENTS FROM ANIMALS AND RETAIL MEAT 

3.1. Abstract 

The need for rapid detection of MRSA has become an important goal in the microbiological 

analysis. The aim of this study was to compare a real-time PCR assay, with a conventional 

culture/PCR method, to detect S. aureus, mecA and Panton-Valentine Leukocidin (PVL) genes in 

animals and retail meat, using a two-step selective enrichment protocol. A total of 234 samples 

were examined (77 animal nasal swabs, 112 retail raw meat, and 45 deli meat). The multiplex 

real-time PCR targeted the genes: nuc (identification of S. aureus), mecA (associated with 

methicillin resistance), PVL (virulence factor), and the primary and secondary enrichment 

samples were assessed. The conventional culture/PCR method included the two-step selective 

enrichment, selective plating, biochemical testing, and multiplex PCR for confirmation. Of a 

total of 234 samples, the conventional culture/PCR method recovered 95 positive S. aureus 

samples. Application of real-time PCR on samples following primary and secondary enrichment 

detected S. aureus in 111 and 120 samples, respectively.  For detection of S. aureus, the k 

statistic was 0.68 to 0.88 (from substantial to almost perfect agreement) and 0.29 to 0.77 (from 

fair to substantial agreement) for primary and secondary enrichments, respectively, using real-

time PCR. For detection of mecA gene, the kappa statistic was 0 to 0.49 (from no agreement 

beyond that expected by chance to moderate agreement) for primary and secondary enrichment 

samples. Two pork samples were mecA gene positive by all methods. The real-time PCR assay 

detected the mecA gene in some samples that were negative for S. aureus, but positive for 

Staphylococcus spp. The PVL gene was not detected in any sample by the conventional 
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culture/PCR method or the real-time PCR assay. Among S. aureus isolated by conventional 

culture/PCR method, the sequence type ST398, and multidrug-resistant strains were found in 

animals and raw meat samples. The real-time PCR assay may be recommended as a rapid 

method for the detection of S. aureus and the mecA gene, with further confirmation of MRSA 

using the standard culture method. 

3.2. Introduction 

Staphylococcus aureus is an important cause of a wide variety of diseases in humans such 

as: food poisoning, pneumonia, wound, and nosocomial infections (Tiemersma et al., 2004; 

Kennedy et al., 2008). There are many anti-staphylococcal agents; however, the bacterium has 

developed mechanisms to neutralize them such as the methicillin resistance mechanism (Lowy, 

2003). Methicillin-resistant S. aureus (MRSA) is an increasing cause of health care-associated 

(HA-MRSA) (Tiemersma et al., 2004), community-associated (CA-MRSA) (Kennedy et al., 

2008), and livestock-associated (LA-MRSA) infections worldwide (Goldwing et al., 2010). 

The altered penicillin-binding protein (PBP2a or PBP2') is associated with methicillin 

resistance. This protein has a reduced affinity for β-lactam antibiotics (Hartman and Tomasz, 

1981; Van De Griend et al., 2009), and is encoded by the mecA gene, which is carried on the 

staphylococcal cassette chromosome mec (SCCmec) (Hartman and Tomasz, 1981). The CA-

MRSA strains are more likely to encode the Panton–Valentine leukocidin (PVL) toxin, which is 

a pore-forming toxin considered as a virulence factor (Baba et al., 2002; Dufour et al., 2002). 

The PVL toxin has been related to life-threatening CA-MRSA infections and deaths, primarily 

severe skin infections and tissue necrosis (Ebert et al., 2009). 

In the United States, approximately 29% (78.9 million people) and 1.5% (4.1 million) of the 

population were estimated to be nasal carriers of S. aureus and MRSA, respectively (Gorwitz et 
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al., 2008). An estimated 478,000 hospitalizations corresponded to S. aureus infections, of which 

278,000 hospitalizations were attributed to MRSA infections in 2005 (Klein et al., 2007). In 

addition, the carriage of MRSA in meat-producing animals (van Belkum et al., 2008; 

Guardabassi et al., 2009; Persoons et al., 2009) and the contamination of meat with MRSA (de 

Boer et al., 2009; Buyukcangaz et al., 2013; O'Brien et al., 2012) have increased the concern that 

food may serve as a vehicle to transmit MRSA to the human population (O'Brien et al., 2012). 

Different culture methods have been used to detect MRSA. Generally, conventional 

microbiological procedures are laborious, since they require the isolation of S. aureus before 

assessing methicillin resistance. However, culture methods are still considered as standard 

methods for traditional confirmation of S. aureus. Wertheim et al. (2001) developed a selective 

media containing phenol red, mannitol, and antibiotics (aztreonam and ceftizoxime), increasing 

the sensitivity of the detection of MRSA after 48 h of incubation, but at the expense of longer 

time needed for confirmation. The isolation and identification of MRSA, including selective 

enrichment and plating on selective agars, followed by confirmation using biochemical testing 

and/or PCR assays, requires 3 to 7 days approximately (de Boer et al., 2009; Buyukcangaz et al., 

2013; Zhang et al., 2011). Therefore, development of a rapid method for detection of MRSA has 

become an important need in the microbiological analysis of samples especially those where 

there is a potential risk of exposure for humans. 

Real-time PCR technology has been used as an alternative to culture methods for the rapid 

detection of S. aureus and MRSA. Real-time PCR may decrease the time of analysis to 18 h after 

consecutive broth enrichment in clinical samples (Söderquist et al., 2012); or <2 h in positive 

blood cultures (Thomas et al., 2007; Kilic et al., 2010). However, most studies have used real-

time PCR to detect MRSA in clinical samples and isolates and a few studies have evaluated the 
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application of this method for the detection of MRSA in animals (Anderson and Weese, 2007; 

Morcillo et al., 2012) and meat (de Boer et al., 2009; Weese et al., 2010; Waters et al., 2010). 

Since S. aureus and MRSA have been found in food-producing animals and retail meat, 

increasing the concern about the exposure for humans through the food chain, there is a need to 

decrease the time of analysis. We analyzed samples obtained from animals and retail meat using 

primary and secondary selective enrichments in order to detect nuc (identification of S. aureus), 

mecA (associated with methicillin resistance), and PVL (virulence factor) genes using a 

multiplex real-time PCR assay. The results were compared with the results from a culture 

method, considered as the standard method, which also included the two-step selective 

enrichment, followed by selective plating, biochemical testing, and conventional multiplex PCR. 

Positive samples obtained with the culture method were characterized by multilocus sequence 

typing (MLST) and the antimicrobial resistance profiles were obtained. 

3.3. Materials and methods 

3.3.1. Samples 

A total of 77 nasal swabs (Becton, Dickinson and Company, Sparks, MD, USA) were 

collected from animals (sheep, n=35; pigs, n=28; cows, n=14) sampled immediately after 

stunning at the Meat Lab (Department of Animal Sciences); and at the Veterinary Diagnostic 

Lab at North Dakota State University, Fargo, ND. Animal samples were collected during the 

period May 2010 to April 2011. The protocol of sampling was approved by the North Dakota 

State University Institutional Biosafety Committee (B10014). 

In addition, 112 retail raw meat (pork, n=39; chicken, n=37; beef, n=36) and 45 deli meat 

(ham, n=20; turkey, n=16; chicken, n=9) samples were randomly purchased from four different 
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supermarket chains in Fargo, ND. Sampling visits were made between June 2010 and January 

2011. All samples were immediately stored at 4°C and processed within six hours of collection. 

3.3.2. Culture method 

Staphylococcus aureus were isolated by the two-step selective enrichment procedure 

according to the method described by de Boer et al. (2009) followed by plating steps on selective 

agar. Briefly, for the primary enrichment, a 25 g sample of retail meat and 225 mL of 

MHB+6.5%NaCl (Mueller-Hinton broth [Difco, Becton, Dickinson, Sparks, MD, USA] with 

added 6.5% sodium chloride [VWR International, West Chester, PA, USA]) were placed in a 

sterile stomacher bag and homogenized using a stomacher®400 circulator (Seaward, England) at 

230 rpm for 90 seconds. The suspension was incubated for 18 to 20 h at 37ºC. Following primary 

enrichment, a secondary enrichment was used by inoculating 1 mL of the primary enrichment 

broth into 9 mL of PHMB+ (D-mannitol in phenol red mannitol broth base [Difco, Becton, 

Dickinson, Sparks, MD, USA] containing ceftizoxime [5 µg mL-1, US Pharmacopeia, Rockville, 

MD, USA] and aztreonam [75 µg mL-1, Sigma Chemical CO., Louis, MO, USA] according to 

Wertheim et al. [2001]), followed by incubation for 18 to 20 h at 37ºC. Nasal swabs from 

animals were placed directly in 9 mL MHB+6.5%NaCl and incubated for 18 to 20 h at 37ºC. 

Then, the secondary enrichment was used following the procedure described above. 

Following incubation of the secondary enrichment broth, all samples were struck directly to 

BP medium (Baird-Parker medium [Difco, Becton, Dickinson, Sparks, MD, USA]) 

supplemented with egg yolk tellurite according to manufacturer’s recommendations and 

incubated for 48 h at 37°C. Presumptive S. aureus colonies (black colonies surrounded by 2 to 5 

mm clear zones) were transferred to TSA II 5%SB plates (Trypticase soy agar with 5% sheep 

blood [Difco, Becton, Dickinson, Sparks, MD, USA]) and incubated for 18 to 20 h at 37ºC. 



 

47 
    

Presumptive S. aureus colonies (presence of β-haemolysis) were confirmed using Sensititre 

Gram Positive ID (GPID) plates (Sensititre®, TREK Diagnostic Systems Ltd., Cleveland, OH, 

USA) according to the manufacturer’s instructions. 

3.3.3. Conventional multiplex PCR method 

Confirmed S. aureus strains were recovered from frozen stock to TSA plates (Trypticase 

soy agar [Difco, Becton, Dickinson, Sparks, MD, USA]) and incubated at 37°C for 18 to 24 h. 

DNA extraction was carried out by suspending one colony in 50 µL of DNase/RNase-free 

distilled water (Gibco Invitrogen, Grand Island, NY, USA), heating (99°C, 10 min) and 

centrifugation (30,000×g, 1 min) to remove cellular debris. The remaining DNA was transferred 

to a new tube and stored at -20°C until use.  

A multiplex PCR assay for the detection of 16S rRNA (identification of S. aureus), mecA 

(associated with methicillin resistance) and PVL-encoding genes (virulence factor) (Table 3.1) 

included 2 µL of the DNA template (described above) added to a 50 µL final reaction mixture 

containing: 1X Go Taq® Reaction Buffer (pH 8.5), 0.025 U µL-1 of Go Taq® DNA polymerase, 

200 µM dNTP (Promega, Madison, WI, USA) and 1 µM of primers (16S rRNA, mecA, LukS/F-

PV) (Integrated DNA Technologies, Inc., Coralville, IA, USA).  

Multiplex PCR reactions were carried out in a thermocycler (Eppendorf, Hamburg, 

Germany), and the PCR conditions were adjusted according to the protocol described by 

Makgotlho et al. (2009) as follows: initial denaturation at 94°C for 10 min, followed by 10 

cycles of denaturation at 94°C for 45 s, annealing at 55°C for 45 s and extension at 72°C for 75 s 

followed by another 25 cycles of 94°C for 45 s, 50°C for 45 s and a final extension step at 72°C 

for 10 min. An external positive (DNA from MRSA ATCC 33591, positive for mecA and PVL 

genes) and negative control (DNase/RNase-free distilled water) were included with each run. 
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Table 3.1. Nucleotide sequence of the primers and probes used in conventional multiplex PCR 
and multiplex real-time PCR. 
Primer or probe 

name 

 

Sequence (5'→3') 

5' Reporter dye 

3' Quencher 

16S rRNA†   

Staph-756F AAC TCT GTT ATT AGG GAA GAA CA  

Staph-750R CCA CCT TCC TCC GGT TTG TCA CC  

   

nuc‡   

nuc For CAA AGC ATC AAA AAG GTG TAG AGA  

nuc Rev TTC AAT TTT CTT TGC ATT TTC TAC CA Texas Red 

nuc Probe TTT TCG TAA ATG CAC TTG CTT CAG GAC CA Iowa Black 

   

mecA   

mecA-1F† GTA GAA ATG ACT GAA CGT CCG ATA A  

mecA-2F† CCA ATT CCA CAT TGT TTC GGT CTA A  

mecA For‡ GGC AAT ATT ACC GCA CCT CA  

mecA Rev‡ GTC TGC CAC TTT CTC CTT GT FAM† 

mecA Probe‡ AGA TCT TAT GCA AAC TTA ATT GGC AAA TCC TAMRA† 

   

PVL   

luk-PV-1F† ATC ATT AGG TAA AAT GTC TGG ACA TGA TCC A  

luk-PV-2R† GCA TCA AGT GTA TTG GAT AGC AAA AGC  

PVL For‡ ACA CAC TAT GGC AAT AGT TAT TT  

PVL Rev‡ AAA GCA ATG CAA TTG ATG TA Cy5† 

PVL Probe‡ ATT TGT AAA CAG AAA TTA CAC AGT TAA ATA TGA Iowa Black 

†Conventional multiplex PCR, according to McClure et al. (2006). 
‡Multiplex real-time PCR, according to McDonald et al. (2005). 
 

Ten microliters of PCR amplicons were loaded into a 1.5% (wt/vol) agarose gel (Agarose 

ITM) using EzVision One loading dye (Amresco, Solon, OH, USA) and electrophoresis was 

carried out in 1X TAE buffer at 100 v for 1 h. A molecular weight marker 100-bp ladder 

(Promega, Madison, WI, USA) were included on each gel. Bands were visualized using an Alpha 

Innotech UV imager (FluorChemTM). 
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3.3.4. Multiplex real-time PCR assay 

The DNA was extracted from the primary and secondary enrichment broths of the animal 

and meat samples using the boiling method described previously by De Medici et al. (2003). 

Five microliters of DNA template extracted was used in the real-time iQTM Multiplex Powermix 

(Bio-Rad Laboratories, Hercules, CA, USA), in a final volume of 20 µL per reaction. 

The real-time PCR assay targeted: nuc (identification of S. aureus), mecA (associated with 

methicillin resistance) and PVL-encoding genes (virulence factor) (Table 3.1).  

The final concentrations in the reaction mixture were: 300 nM of primers (forward and 

reverse), 200 nM of fluorogenic probes (Applied Biosystems, Foster City, CA, USA), and 1X 

iQTM Multiplex Powermix (Bio-Rad Laboratories, Hercules, CA, USA), according to the 

manufacturer's recommendations.  

The thermal cycling conditions were adjusted to an initial denaturation of 3 min at 95°C, 

followed by 40 PCR cycles of 95°C for 15 s and 55°C for 1 min, using an iCycler IQTM real time 

PCR system (Bio-Rad Laboratories, Hercules, CA, USA). An external positive control (DNA 

from MRSA ATCC 35591, positive for mecA and PVL genes) and an external negative control 

(DNase/RNase-free distilled water) were included with each plate. Data analysis was carried out 

using the iCycler software version 3.0 (Bio-Rad Laboratories, Hercules, CA, USA). 

3.3.5. Characterization of S. aureus strains isolated by culture method 

3.3.5.1. Multilocus sequence typing (MLST) 

Briefly, S. aureus isolates were struck to TSA plates and incubated at 37°C for 18 to 24 h. 

Colonies were picked to 40 µL of single cell lysing buffer (50 µg/mL of Proteinase K, Amresco; 

in TE buffer [pH=8]), and then lysed by heating to 80°C for 10 min followed by 55°C for 10 min 

in a thermocycler. The final suspension was diluted 1:2 in sterile water, centrifuged to remove 
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cellular debris, and transferred to a sterile tube (Marmur, 1961). The housekeeping genes: arcC, 

aroE, glpF, gmk, pta, tpi, and yqiL, were amplified (Enright et al., 2000). All PCR reactions 

were carried out in 50-µL volumes: 1 µL of DNA template, Taq DNA polymerase (Promega) 

(1.25 U), 1X PCR buffer (Promega), primers (0.1 µM) (Integrated DNA Technologies, Inc.), and 

dNTPs (200 µM) (Promega). The PCR settings were adjusted according to Enright et al. (2000) 

using a thermocycler (Eppendorf). Ten microliters of the PCR products were loaded into 1% 

agarose gels in 1X TAE with EzVision One loading dye, and run at 100V in 1X TAE for 1 h. 

Images were captured using an Alpha Innotech imager. After PCR, each amplicon was purified 

of amplification primer using the QIAquickPCR Purification Kit (Qiagen, Valencia, CA) as per 

manufacturer’s instructions. Purified DNA was sequenced at Iowa State University’s DNA 

Facility (Ames, IA) using an Applied Biosystems 3730xl DNA Analyzer (Applied Biosystems, 

Foster City, CA). Sequence data were imported into DNAStar (Lasergene, Madison, WI), 

trimmed, and aligned to the control sequences (from the MLST site) and interrogated against the 

MLST database (http://saureus.mlst.net/). Sequence types were added to the strain information 

for analysis in BioNumerics software. 

3.3.5.2. Resistance profiles 

The antimicrobial resistance (AR) profiles of S. aureus isolates (n=95) were determined 

using the broth microdilution method (CMV3AGPF, Sensititre, Trek Diagnostics), according to 

the manufacturer’s and the National Antimicrobial Resistance Monitoring System (NARMS) 

guidelines for animal isolates (NARMS, 2012). Antimicrobials in the panel and their resistance 

breakpoints were as follows: erythromycin (≥8 µg/mL), tetracycline (≥16 µg/mL), ciprofloxacin 

(≥4 µg/mL), chloramphenicol (≥32 µg/mL), penicillin (≥16 µg/mL), daptomycin (no 

interpretative criteria), vancomycin (≥32 µg/mL), nitrofurantoin (≥128 µg/mL), gentamicin 
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(>500 µg/mL), quinupristin/dalfopristin (≥4 µg/mL), linezolid (≥8 µg/mL), kanamycin (≥1024 

µg/mL), tylosin (≥32 µg/mL), tigecycline (no interpretative criteria), streptomycin (>1000 

µg/mL), and lincomycin (≥8 µg/mL). Resistance to at least three classes of antibiotics was 

considered as multidrug resistance (MDR) (Aydin et al., 2011). 

3.3.6. Statistical analysis 

The 95% confidence intervals (CI) for prevalence were obtained, using the plus four 

estimate when positive or negative samples were less than 15. The Chi-square test was used to 

assess the significance in proportion of positive samples between sample types, only if no more 

than 20% of the expected counts were less than 5 and all individual expected counts were 1 or 

greater (Moore et al., 2007). On the contrary, Fisher’s exact test was used with two-sided p-

values. SAS software version 9.2 (SAS Institute Inc., Cary, NC) was used to assess significance 

with p<0.05. 

As there is no true gold standard method for S. aureus and MRSA detection, the k statistic 

was calculated to compare agreement between real-time PCR assay (using primary and 

secondary enrichment) and conventional culture/PCR method. 

3.4. Results 

The culture method included a biochemical identification to confirm S. aureus, which 

agreed with the results of the conventional multiplex PCR that detected the gene 16S rRNA. This 

method detected 95 positive S. aureus samples from a total of 234 samples collected (Table 3.2). 

The multiplex real-time PCR assay using primary and a secondary enrichments, recovered S. 

aureus (detection of nuc gene) from 111 and 120 samples of 234 samples respectively.  

By the conventional culture/PCR method alone, the rate of positive S. aureus samples was 

found to be 41.6% (CI95%, 30.6-52.6%) in animals and 51.8% (CI95%, 42.5-61.0%) in raw meat 
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samples, and a significantly lower rate of 11.1% (CI95%, 4.5-24.1%) was observed in deli meat 

(p<0.05). Using the primary enrichment samples and real-time PCR, a significantly higher 

recovery of S. aureus (p<0.05) was found in animals 55.8% (CI95%, 44.8-66.9%) and raw meat 

57.1% (CI95%, 47.9-66.3%) than in deli meat samples 8.9% (CI95%, 3.1-21.4%). However, no 

significant difference (p≥0.05) was found between the rate of positive S. aureus samples in 

animals (53.2%) (CI95%, 42.1-64.4%), raw meat (53.6%) (CI95%, 44.3-62.8%) and deli meat 

(42.2%) (CI95%, 27.8-56.7%), when the secondary enrichment samples were assessed by real-

time PCR. A significantly higher recovery of S. aureus (p<0.05) was obtained from deli meat 

when the secondary enrichment samples were tested by real-time PCR.  

The mecA gene was detected in two pork meat samples (5.4%) (CI95%, 0.7-18.8%) by the 

conventional multiplex PCR preceded by the culture method, and by assessing the primary and 

secondary enrichment samples by real-time PCR. The real-time PCR analysis detected the mecA 

gene using both enrichments in samples that were negative by conventional multiplex PCR in 

two pork meat and three deli meat samples. Using the primary enrichment, the real-time PCR 

detected the mecA gene in one sample isolated from a sheep, and one from pork meat, which 

were negative using the secondary enrichment. Using the secondary enrichment, the real-time 

PCR detected the mecA gene from one sample isolated from a pig, one from pork meat, and two 

from deli meat, which were negative using the primary enrichment. The PVL gene was not 

detected in any sample by the conventional culture/PCR method or the real-time PCR assay.  

Table 3.3 shows the results of real-time PCR using primary and secondary enrichments on 

the detection of S. aureus compared with a conventional culture/PCR method. Total agreement 

and the k statistic for real-time PCR using the primary enrichment samples were 85.7% (k=0.72, 

CI95%, 0.62-0.82), 83.9% (k=0.68, CI95%, 0.59-0.76), and 97.8% (k=0.88, CI95%, 0.78-0.97) for 
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animals, raw meat, and deli meat respectively. For real-time PCR using the secondary 

enrichment samples, the total agreement and the k statistic were 88.3% (k=0.77, CI95%: 0.67-

0.86), 87.5% (k=0.75, CI95%: 0.67-0.83), and 68.9% (k=0.29, CI95%: 0.16-0.43) for animals, raw 

meat, and deli meat, respectively. Positive agreement (sensitivity) was 100% for animal samples 

using both enrichments. For animals and raw meat, a higher negative agreement (specificity) was 

obtained for real-time PCR using the secondary enrichment. 

Table 3.2. Detection of S. aureus, mecA and PVL genes from animals and retail meat using a 
conventional culture/PCR method and a real-time PCR assay. 

Real-time PCR  

Culture/PCR method Primary enrichment Secondary enrichment Sample 

type 

No. of 

samples S. 

aureus 
mecA PVL 

S. 

aureus 
mecA PVL 

S. 

aureus 
mecA PVL 

Animals  ------------------------------------------No. of positives------------------------------------------ 

  Cow 14   0 0 0   4 0 0   3 0 0 

  Pig 28 21 0 0 25 0 0 24 1 0 

  Sheep 35 11 0 0 14 1 0 14 0 0 

Total 77 32 0 0 43 1 0 41 1 0 

           

Meat           

  Beef 36   9 0 0 10 0 0 12 0 0 

  Pork 37 25 2 0 26 6 0 27 6 0 

  Poultry 39 24 0 0 28 0 0 21 0 0 

Total 112 58 2 0 64 6 0 60 6 0 

           

Deli meat           

  Chicken   9   2 0 0 2 0 0   4 0 0 

  Ham 20   3 0 0 2 3 0 11 5 0 

  Turkey 16   0 0 0 0 1 0   4 1 0 

Total 45 5 0 0 4 4 0 19 6 0 

           

Total    234 95 2 0    111    11 0     120    13 0 
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Table 3.3. Raw agreement indices among conventional culture/PCR method and real-time PCR 
assay, with two-step enrichment procedure for detection of S. aureus from animals and retail 
meat. 

Method/sample type 
Samples 

(n) 

Culture/

PCR 

method 

Positive 

agreement 

(Sensitivity) 

Negative 

agreement 

(Specificity) 

Total 

agreement 

kappa 

statistic 

Real-time PCR 

primary enrichment 

 No. 

positive 

 

--------------------No. (%)-------------------- 

 

    Animals   77 32   32 (100.0)   34 (  75.6) 66 (85.7) 0.72 

    Meat 112 58   52 (  89.7)   42 (  77.8) 94 (83.9) 0.68 

    Deli meat   45   5     4 (  80.0)   40 (100.0) 44 (97.8) 0.88 

Real-time PCR 

secondary enrichment 

      

    Animals   77 32   32 (100.0) 36 (80.0) 68 (88.3) 0.77 

    Meat 112 58   52 (  89.7) 46 (85.2) 98 (87.5) 0.75 

    Deli meat   45   5   5 (100.0) 26 (65.0) 31 (68.9) 0.29 

Percentages for positive agreement with culture/PCR method number positive as the 
denominator. Percentages for negative agreement with culture/PCR method number negative as 
the denominator. Percentage total agreement is obtained from the sum of the positive and 
negative agreement frequencies divided by the total sample size within each sample type. 
 

Six samples isolated from animals and six from raw meat were deemed S. aureus negative 

by the conventional culture/PCR method, but positive by real-time PCR using the primary and 

secondary enrichments. Three S. aureus samples isolated from raw meat were positive by the 

conventional culture/PCR method, but negative by the real-time PCR assay. 

The real-time PCR method using the primary enrichment failed to detect the presence of S. 

aureus in four samples: three isolated from raw meat (two from beef, one from poultry) and one 

from deli meat (ham) that were positive by the culture method and by the real-time PCR assay 

using the secondary enrichment samples. Using the secondary enrichment samples, the real-time 

PCR assay failed to detect three samples isolated from raw meat (pork) that were S. aureus 

positive by the culture method and using the primary enrichment in real-time PCR. 
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The results of real-time PCR using primary and secondary enrichment on the detection of 

the mecA gene compared with a conventional culture/PCR method are shown in Table 3.4. Total 

agreement for real-time PCR using the primary and secondary enrichments ranged from 91.1% 

to 98.7% and from 86.7 to 98.7%, respectively. The k statistic was zero when the mecA gene was 

not detected by the conventional culture/PCR method and 0.49 (CI95%, 0.39-0.58) for meat. 

Positive agreement (sensitivity) of 100% was obtained for meat samples for both methods. 

Table 3.4. Raw agreement indices among conventional culture/PCR method and real-time PCR 
assay, with two-step enrichment procedure for detection of the mecA gene from animals and 
retail meat. 

Method/sample type 
Samples 

(n) 

Culture/

PCR 

method 

Positive 

agreement 

(Sensitivity) 

Negative 

agreement 

(Specificity) 

Total 

agreement 

kappa 

statistic 

Real-time PCR 

primary enrichment 

 No. 

positive 

 

--------------------No. (%)-------------------- 

 

    Animals   77 0 -  76 (98.7)  76 (98.7) 0.00 

    Meat 112 2 2 (100.0) 106 (96.4) 108 (96.4) 0.49 

    Deli meat   45 0 -  41 (91.1)  41 (91.1) 0.00 

Real-time PCR 

secondary enrichment 

      

    Animals   77 0 -  76 (98.7)  76 (98.7) 0.00 

    Meat 112 2 2 (100.0) 106 (96.4) 108 (96.4) 0.49 

    Deli meat   45 0 -  39 (86.7)  39 (86.7) 0.00 

Percentages for positive agreement with culture/PCR method number positive as the 
denominator. Percentages for negative agreement with culture/PCR method number negative as 
the denominator. Percentage total agreement is obtained from the sum of the positive and 
negative agreement frequencies divided by the total sample size within each sample type. 
 

The real-time PCR detected the mecA gene in samples that were negative for S. aureus by 

the conventional culture/PCR method (one from a pig, one from a sheep, four from pork meat, 

four from deli ham, and one from deli turkey). All of these samples were identified as harboring 

S. epidermidis, S. saprophyticus or S. haemolyticus using biochemical analysis on isolates 
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recovered. However, three of these samples (one from a pig, and two from pork meat) tested 

positive for the nuc gene when the primary and secondary enrichments were assessed by real-

time PCR. 

Table 3.5 shows the antimicrobial resistance profiles and the sequence types of the ninety 

five S. aureus strains isolated from animals and retail meat by the conventional culture/PCR 

method. A total of thirteen antimicrobial resistance profiles were identified among S. aureus 

isolates. Most of the S. aureus isolates were resistant to tetracycline and lincomycin, and were 

ST9. A total of twenty-two S. aureus isolates exhibited multidrug resistance. Susceptibility to all 

antimicrobials tested were found in thirty-five S. aureus isolates, which were mostly recovered 

from chicken meat and identified as ST5.  

3.5. Discussion 

In this study, a high recovery of S. aureus was found in animals and meat samples by the 

culture/PCR method and the real-time PCR assay (Table 3.2). The inclusion of selective 

enrichment steps has been found to increase the rate of detection of S. aureus (de Boer et al., 

2009). Waters et al. (2011) also found a high prevalence of S. aureus in raw meat (47%) using a 

single step selective enrichment protocol, followed by plating on Baird Parker agar, and 

confirmation by real-time PCR targeting the femA gene. 
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Table 3.5. Antimicrobial resistance profiles and sequence types of S. aureus isolated by 
conventional culture/PCR method from animals and retail meat. 

Antimicrobial resistance profile 

No. of 

antimicrobial 

subclasses 

No. of S. aureus 

isolates with the 

specific profile Sequence types (n)† 

PEN-TET-ERY-TYL-LINC-STR-CHL 6 2 Pig-ST9 (2) 

PEN-TET-LINC-STR-CHL 5 1 Pig-ST9 (1) 

TET-ERY-TYL-LINC 3 7 Pork-ST398 (5) Pork-ST5 (1)** 

Pork-ST9 (1) 

PEN-LINC-STR 3 1 Pig-ST9 (1) 

TET-ERY-LINC 3 7 Pork-ST9 (4) Pork-ST15 (2) 

Pork-ST8 (1) 

TET-LINC-STR 3 1 Pig-ST9 (1) 

ERY-TYL-LINC 2 3 Chicken-ST5 (3) 

PEN-ERY 2 3 Pork-ST5 (1) Pork-ST5 (1)** 

Pork-ST9 (1) 

TET-LINC 2           15 Sheep-ST398 (4) Pig-ST9 (11) 

ERY-LINC 2 1 Pork-ST9 (1) 

TET 1           13 Sheep-ST398 (3) Sheep-ST133 (2) 

Sheep-ST2111 (1) Pig-ST9 (1) 

Pork-ST1 (2) Pork-ST5 (2) 

Pork-ST398 (1) Pork-ST15 (1) 

ERY 1 1 Deli chicken-ST39 (1) 

LINC 1 5 Pig-ST9 (3) Sheep-ST133 (1) 

Deli ham-ST15 

Susceptible to all tested 0           35 Chicken-ST5 (15) Chicken-ST6 (3) 

Chicken-ST508 (1) Chicken-NT 

(1)‡ 

Pork-ST5 (2) Beef-ST1159 (3) 

Beef-ST2187 (1) Beef-ST188 (1) 

Beef-ST15 (1) Beef-ST72 (1) 

Beef-ST5 (1) Beef-ST1 (1) 

Deli ham-ST146 (1) 

Deli ham-ST5 (1) 

Deli chicken-ST5 (1) Pig-ST9 (1) 

Total           95  

Chloramphenicol (CHL); erythromycin (ERY); lincomycin (LINC); penicillin (PEN); streptomycin (STR); 
tetracycline (TET); tylosin (TYL). †Sequence type (ST). ‡Non-typeable (NT). **mecA gene positive. 
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The k statistic for detection of S. aureus using the primary enrichment in real-time PCR was 

0.68 to 0.88 (Table 3.3), which indicates a good agreement (substantial to almost perfect 

agreement) with the conventional culture/PCR method. Using the secondary enrichment and 

real-time PCR, the k statistic for detection of S. aureus was 0.29 to 0.77, resulting in a fair 

agreement when deli meat was tested. This is due to the significantly higher recovery of S. 

aureus from the secondary enrichment samples by real-time PCR (Table 3.2), and the lower 

negative agreement (specificity) obtained with this method (Table 3.3). This observation 

suggests that small numbers (or levels) of S. aureus could be missed when the primary 

enrichment alone is used in real-time PCR, and that the recovery of potentially injured or non-

viable strains appears to be enhanced when a secondary enrichment is applied. The enhanced 

detection also suggests that the use of a standard culture method or primary enrichment alone 

could lead to higher false negative results. Therefore, including a secondary selective enrichment 

step appears to improve the odds of detection of positive S. aureus samples. 

Multiplex real-time PCR could detect more S. aureus positive samples than the 

conventional culture/PCR method alone. Possible reasons for these discrepant results include: 

amplification of DNA by the real-time PCR from very low levels of S. aureus that were not 

detectable by the bacteriological methods due to competition or non-viable S. aureus in the 

samples, or false-positive real-time PCR results as a result of cross-reaction rather than false-

negative culture results (Anderson and Weese, 2007). However, the possibility that these results 

are considered as false positives in this study is probably very low, because the gene nuc, which 

was targeted by the real-time PCR assay, has been used for specific detection and identification 

of S. aureus previously (Costa et al., 2005; McDonald et al., 2005; Thomas et al., 2007; Kilic et 

al., 2010). Unfortunately, it was not possible to confirm these results by performing the cultural 
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method as detection was carried out from DNA extracts only, and the cells had already been 

inactivated. The inability of real-time PCR to detect three S. aureus samples isolated from raw 

meat that were positive by the culture method is somewhat unsatisfactory, and could be 

considered as false-negative results. 

For detection of mecA gene, the k statistic for both enrichments in real-time PCR was 0 to 

0.49 (Table 3.4). The k=0 indicates no agreement beyond that expected by chance, because the 

real-time PCR assay detected the mecA gene probably from bacteria other than S. aureus and the 

culture/PCR method detected the mecA gene from DNA extracted from confirmed S. aureus 

strains. However, a few mecA positive samples were obtained from animals and meat in this 

study (Table 3.2). Weese et al. (2010) detected a low prevalence of MRSA in samples isolated 

from retail meat (9.6% in pork, 5.6% in beef, and 1.2% in chicken), using a single-step selective 

enrichment protocol, followed of plating and biochemical testing.  

The detection of the mecA gene by the real-time PCR assay in samples that were negative 

for S. aureus by the conventional culture/PCR method may be due to the fact that either 

coagulase-negative staphylococci and non S. aureus species can also carry the mecA gene (Ryffel 

et al., 1990; Hagen et al., 2005; Higashide et al., 2006; Thomas et al., 2007). In this study, such 

samples were identified as Staphylococcus spp. positive by biochemical testing. In addition, the 

mecA gene has been found in non-staphylococcal genera, such as: Proteus vulgaris, Morganella 

morganii, Enterococcus faecalis (Kassem et al., 2008) suggesting that its use in a rapid screening 

technique would need further validation to avoid false-positive MRSA. In this study, the DNA 

extraction was carried out from selective enrichments, which could contain DNA from 

coagulase-positive or coagulase-negative staphylococci or non-staphylococcal species that may 
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carry the mecA gene, therefore a positive result for the nuc and mecA genes does not necessarily 

indicate the presence of S. aureus carrying the mecA gene. 

None of the samples obtained from animals and retail meat were positive for the PVL gene 

using both methods the conventional multiplex PCR and the real-time PCR. A similar 

observation was reported by Weese et al. (2010), who also failed to detect PVL positive samples 

in raw meat in Canada using the real-time PCR technique. The PVL gene encodes the Panton-

Valentine leukocidin toxin, which is a virulence factor that have been found in severe cases of 

CA-MRSA (Baba et al., 2002; Dufour et al., 2002; Ebert et al., 2009). 

Decreasing the time of detection of S. aureus and MRSA has become an important goal in 

the microbiological analysis of clinical samples. However, since S. aureus ST398, multidrug-

resistant S. aureus (Table 3.5), and MRSA are present in animals and meat (van Belkum et al., 

2008; de Boer et al., 2009; Guardabassi et al., 2009; Persoons et al., 2009; O'Brien et al., 2012; 

Buyukcangaz et al., 2013), decreasing the time of analysis may allow for prompt action to take 

place thus reducing the spread of those strains to the food chain. The real-time PCR assay can 

potentially decrease the total time for detection of S. aureus and the presence of the mecA gene in 

animal and meat samples. Using the two-step selective enrichment the total time was <2 days by 

the real-time PCR method, compared with a total time of 6 to 7 days using the culture method 

that includes selective enrichments, plating steps, biochemical testing and a conventional 

multiplex PCR for confirmation. However, the presence of MRSA should be confirmed by a 

culture method if isolates are required for further analysis. Some real-time PCR assays have been 

developed for the rapid detection of MRSA from clinical samples (Huletsky et al., 2004; Hagen 

et al., 2005; Paule et al., 2005; Danial et al., 2011). Danial et al. (2011) reported that the real-

time PCR assay detected 0.7% more MRSA-positive samples than the routine standard Brilliance 
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Chromogenic MRSA agar culture method in a total time of 8 h. Huletsky et al. (2004) detected 

MRSA directly from clinical specimens containing a mixture of staphylococci in less than 1 h, 

with a false-positive detection rate of 4.6% for MRSA that was actually MSSA. Paule et al. 

(2005) developed a multiplex real-time PCR that detected the genes femA and mecA directly 

from blood culture bottles in 2-3 h, obtaining an indeterminate rate of 0.9% when coagulase-

negative staphylococci strains were included.   

In conclusion, the application of real-time PCR using selective enrichments appears to 

improve the detection of S. aureus and the mecA gene in samples extracted from animals, raw 

meat, and deli meat. The real-time PCR assay may be recommended as a rapid method to detect 

S. aureus and the mecA gene in samples obtained from the meat production chain; however, if 

further confirmation of MRSA should be required (isolate recovery) then the application of the 

standard culture method in parallel may be warranted. 
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4. CHARACTERIZATION OF STAPHYLOCOCCUS AUREUS FROM HUMANS AND A 

COMPARISON WITH ISOLATES OF ANIMAL ORIGIN 

4.1. Abstract 

Different clones of methicillin-susceptible (MSSA) and methicillin-resistant (MRSA) 

Staphylococcus aureus have been found in humans as well as in animals and retail meat. 

However, more information about the genetic characteristics and similarities between strains is 

needed. The aim of this study was to identify and characterize Staphylococcus aureus from 

humans, and to compare their characteristics with isolates of animal origin. A total of 550 nasal 

swabs were taken from healthy humans, and S. aureus was isolated and identified. Positive S. 

aureus isolates were subjected to molecular typing and susceptibility testing. In total, 108 MRSA 

isolates were recovered from clinical patients in the state of North Dakota; and 133 S. aureus 

isolates from animals and meat previously analyzed. The nasal carriage of S. aureus in healthy 

people was 7.6% and, in general, clones were genetically diverse. None of the S. aureus strains 

obtained from healthy people were mecA- or PVL-positive. A total of 105 (97.2%) MRSA 

isolates from clinical cases harbored the mecA gene and 11 (10.2%) isolated from blood stream 

infections harbored the PVL gene. The most common resistance profile among S. aureus from 

healthy people was penicillin, and from clinical cases were erythromycin-penicillin-ciprofloxacin. 

The rate of multidrug resistance (MDR) was 70% in humans. Most of S. aureus harboring mecA 

and PVL genes were identified as ST5 and ST8, and exhibited MDR. However, S. aureus 

isolates of animal origin used for comparison exhibited a lower rate of MDR. The most common 

resistance profiles in isolates of animal origin were penicillin-tetracycline and penicillin-

tetracycline-erythromycin, in animals and raw meat, respectively. The ST5 was also found in 
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animals and meat, with ST9 and ST398 being the major clones. The genetic similarity between 

clones from humans and meat suggests the risk of spread of S. aureus in the food chain. 

4.2. Introduction 

In the last few decades, many bacterial species have developed resistance to antimicrobial 

agents that have been commonly used to treat them (Swartz, 1997). Staphylococcus aureus is one 

of the pathogens known to rapidly develop resistance to antimicrobial agents as new antibiotics 

are introduced (Lowy, 2003). Within a couple years after the introduction of penicillin to clinical 

medicine, the first penicillin-resistant S. aureus was discovered. The first methicillin-resistant S. 

aureus (MRSA) strains were identified from clinical specimens in 1961; two years after 

methicillin was introduced as an antibiotic (Jevons, 1961; de Lencastre et al., 2007). 

Methicillin-resistant S. aureus has been implicated in community-associated (CA-MRSA), 

healthcare-associated (HA-MRSA), and livestock-associated (LA-MRSA) infections worldwide. 

In the United States, the nasal carriage of S. aureus in humans was 29% (78.9 million people) 

and that of MRSA approximately 1.5% (4.1 million people) in 2003-2004 (Gorwitz et al., 2008). 

In 2005, there were an estimated 478,000 hospitalizations that corresponded to S. aureus 

infections, approximately 278,000 of those were attributed to MRSA (Klein et al., 2007). In 

addition, an invasive MRSA infection was developed by about 94,000 people, leading to 19,000 

deaths. The distribution of these infections were approximately 86% HA-MRSA and 14% CA-

MRSA (Klevens et al., 2007). However, HA-MRSA clones have been progressively replaced by 

CA-MRSA strains due to the expanding community reservoir and the increasing influx into the 

hospital of individuals who harbor CA-MRSA (D'Agata et al., 2009; Nimmo et al., 2013). 

Meat-producing animals have also been identified as carriers of MRSA (van Belkum et al., 

2008; Guardabassi et al., 2009; Persoons et al., 2009). Moreover, it has been found that retail 
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meat can also be contaminated with MRSA (de Boer et al., 2009; Pu et al., 2009; Buyukcanganz 

et al., 2013). These findings have increased the concern that food may serve as a vehicle for 

transmission of MRSA to the human population (O'Brien et al., 2012). 

Resistance to methicillin in S. aureus is primarily mediated by the mecA gene, which 

encodes the low-affinity penicillin-binding protein 2a (PBP2a) (Hartman and Tomasz, 1981; Van 

De Griend et al., 2009). Recently, a novel mecA homolog gene (mecALGA251 re-named mecC) has 

been detected in S. aureus strains from humans and livestock that were phenotypically resistant 

to methicillin but tested negative for the mecA gene. The mecC gene exhibits about 70% 

sequence homology to the mecA gene and is located on the staphylococcal cassette chromosome 

mec type XI (type-XI SCCmec) (García-Álvarez et al., 2011; Ito et al., 2012; Laurent et al., 

2012; Petersen et al., 2012). Among the virulence factors, Panton–Valentine leukocidin (PVL) 

exotoxin encoding gene has been related to most CA-MRSA strains (Baba et al., 2002; Dufour et 

al., 2002) that cause severe skin infections and necrotizing pneumonia (Ebert et al., 2009).  

Different clones of methicillin-susceptible S. aureus (MSSA) and MRSA have been found 

in humans as well as in animals and retail meat. Clones that cause CA-MRSA infections 

(USA300 and USA400) are different than those causing HA-MRSA infections (USA100 and 

USA200) (McDougal et al., 2003). Some sequence types (ST) associated to HA-MRSA have 

been determined, such as: ST5, ST8, ST22, ST36, ST45, among others (Deurenberg et al., 2007). 

The sequence types ST30 and ST80 have been associated with CA-MRSA (Stenhem et al., 2010) 

and ST398 has been linked with animals (van Belkum et al., 2008; Krziwanek et al., 2009). The 

sequence types ST398 and ST9 have been detected in both animals (pigs) and meat (pork meat), 

with a genetic similarity between S. aureus strains from these different sources (Buyukcangaz et 
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al., 2013). However, the clonal type ST398 has also been detected in human patients (van 

Belkum et al., 2008; Krziwanek et al., 2009).  

The objective of this study was to identify and characterize Staphylococcus aureus isolated 

from humans, and to compare the molecular characteristics and antimicrobial susceptibility with 

S. aureus isolates from animals and meat. 

4.3. Materials and methods 

4.3.1. Samples 

A total of 550 nasal swab samples were obtained from undergraduate students enrolled in 

the Department of Veterinary and Microbiological Sciences, North Dakota State University, who 

were considered as healthy humans. Samples were obtained from plates used in class studies, 

that were discarded at the end of the study, thus none of the isolates obtained were identifiable by 

traceback. Samples were collected in the fall semester of 2010 (n=231) and in the spring 

semester of 2011 (n=319). In addition, a total of 108 MRSA isolates recovered from clinical 

cases of MRSA affected by wound and blood stream infections (sepsis, bone, cerobrospinal fluid 

[CSF], synovial fluid, subdural fluid, tissue, leg ulcer and pleural fluid) were obtained from the 

North Dakota Department of Health (Bismarck, ND) in the summer of 2010.  

A total of 133 S. aureus strains isolated from animals (pig, n=30; sheep, n=26; cattle, n=2), 

raw meat (pork, n=35; chicken, n=25; beef, n=9), and deli meat (ham, n=4; chicken, n=2) were 

used to compare the molecular characteristics and antimicrobial susceptibility with S. aureus 

isolates from humans. The S. aureus strains of animal origin were isolated and analyzed as 

previously described by Buyukcangaz et al. (2013) (Tables 4.1 and 4.2). 
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Institutional Review Board (IRB) approval was sought for the human isolates and the study 

was considered exempt by NDSU IRB. Institutional Animal Care and Use Committe (IACUC) 

approval was used for the animal work as described previously (Buyukcangaz et al., 2013). 

Table 4.1. Source and characteristics of S. aureus isolates of animal origin used in the study.  
Source S. aureus isolates 16S rRNA mecA PVL 

Animals ----------No.---------- ------------------------No.------------------------ 

   Sheep   26   26 0 0 

   Pig   30   30 0 0 

   Cattle    2    2 0 0 

Total   58   58 0 0 

Raw meat     

   Pork   35   35 5 0 

   Chicken   25   25 0 0 

   Beef     9     9 0 0 

Total   69   69 5 0 

Deli meat     

   Ham 4 4 0 0 

   Turkey 0 0 0 0 

   Chicken 2 2 0 0 

Total 6 6 0 0 

Adapted from Buyukcangaz et al. (2013). 
 
4.3.2. Culture method 

Nasal swabs were taken from healthy humans by using a sterile moistened swab inserted 

into the nostril, to a depth of approximately 1 cm, and rotated five times. For each subject, both 

nostrils were sampled using the same swab. Nasal swabs were inoculated onto mannitol salt agar 

(MSA) plates (Becton, Dickinson and Company [BD], Sparks, MD) and incubated at 37°C for 

48 h. All colonies surrounded by yellow zones on MSA after incubation were selected. Colonies 

with pink or red zones on MSA were excluded.  
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Table 4.2. Antimicrobial resistance profiles of S. aureus isolates of animal origin used in this 
study.  

Antimicrobial resistance 

profile 

Antimicrobial 

subclasses resistant to Isolates 

 

Source Isolates 

 ----------No.---------- --No.-- -----------------No.----------------- 

ERY-PEN-TET-GEN-

CHL-CIP-QUI 

7   1 Pork meat  1 

ERY-PEN-TET-CHL-

CIP-QUI 

6   1 Pork meat  1 

ERY-PEN-TET-CHL 4   2 Pig  2 

ERY-PEN-TET-KAN 4   1 Pork meat  1 

ERY-PEN-TET 3 14 Pork meat 11 

  3* 

PEN-TET-GEN 3   1 Sheep  1 

PEN-TET-KAN 3   1 Pork meat   1* 

PEN-TET-CHL 3   1 Pig  1 

ERY-PEN 2   4 Pork meat  3 

  1* 

ERY-TET 2   5 Pork meat  5  

PEN-TET 2 39 Pig 

Sheep 

Pork meat 

Chicken meat 

19 

17 

 2 

 1 

Ciprofloxacin (CIP); chloramphenicol (CHL); erythromycin (ERY); gentamicin (GEN); 
kanamycin (KAN); quinupristin/dalfopristin (QUI); penicillin (PEN); and tetracycline (TET). 
*mecA positive. Adapted from Buyukcangaz et al. (2013), considering the resistance according to 
CLSI (2012) criteria. 
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Table 4.2. Antimicrobial resistance profiles of S. aureus isolates of animal origin used in this 
study (continued).  

Antimicrobial resistance 

profile 

Antimicrobial 

subclasses resistant to Isolates 

 

Source Isolates 

ERY 1   4 Chicken meat 

Chicken deli meat 

 3 

 1 

PEN 1 21 Pig 

Sheep 

Pork meat 

Beef 

Chicken meat 

Ham 

7 

 1  

 4 

 4 

 3 

 2 

TET 1 10 Sheep 

Pork meat 

Chicken meat 

 6 

 3 

 1 

Ciprofloxacin (CIP); chloramphenicol (CHL); erythromycin (ERY); gentamicin (GEN); 
kanamycin (KAN); quinupristin/dalfopristin (QUI); penicillin (PEN); and tetracycline (TET). 
*mecA positive. Adapted from Buyukcangaz et al. (2013), considering the resistance according to 
CLSI (2012) criteria. 
 

All presumptive S. aureus colonies were confirmed by biochemical testing using Sensititre 

Gram Positive ID (GPID) plates (Sensititre, TREK Diagnostic Systems Ltd., Cleveland, OH), 

according to the manufacturer's recommendations. 

Staphylococcus aureus isolates from healthy humans, and MRSA isolates from clinical 

cases, were stored at -80°C in brain–heart infusion broth (BD) containing 20% glycerol until use. 

4.3.3. Multiplex polymerase chain reaction (mPCR) 

Staphylococcus aureus strains from healthy humans and from clinical cases stored at -80°C 

were recovered to trypticase soy agar (TSA) plates and incubated at 37°C for 18 to 24 h. The 

extraction of DNA was carried out by suspending one colony in 50 µL of DNase/RNase-free 

distilled water (Gibco Invitrogen, Grand Island, NY, USA), heating (99°C, 10 min) and 
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centrifugation (30,000 × g, 1 min) to remove cellular debris. The remaining DNA was 

transferred to a new tube and stored at -20°C until use.  

A multiplex PCR assay was used to detect: 16S rRNA (identification of S. aureus), mecA 

(associated with methicillin resistance) and PVL-encoding genes (virulence factor) (Table 4.3). 

Two microliters of the DNA template (described above) was added to a 50 µL final reaction 

mixture: 1X Go Taq® Reaction Buffer (pH 8.5), 1.25 U of Go Taq® DNA polymerase, 200 µM 

dNTP (Promega, Madison, WI, USA), and 1 µM of primers (16S rRNA, mecA, LukS/F-PV) 

(Integrated DNA Technologies, Inc., Coralville, IA, USA). The conditions of the PCR reactions 

were adjusted according to the protocol described by Makgotlho et al. (2009) using a 

thermocycler (Eppendorf, Hamburg, Germany). 

The mPCR products (10 µL) were loaded into a 1.5% (wt/vol) agarose gel (Agarose ITM) 

using EzVision One loading dye (Amresco, Solon, OH, USA) and electrophoresis was carried 

out in 1X TAE buffer at 100 v for 1 h. A molecular weight marker 100-bp ladder (Promega, 

Madison, WI, USA) and a negative (DNase/RNase-free distilled water) and a positive control (S. 

aureus ATCC 33591; MRSA) were included on each gel. Bands corresponding to each gene 

were visualized using an Alpha Innotech UV imager (FluorChemTM). 

All MRSA clinical isolates that were negative for the mecA gene by mPCR assay were 

subjected to the detection of the mecC gene (Table 4.3) by PCR according to the protocol 

described by Stegger et al. (2011). 

4.3.4. Pulsed-field gel electrophoresis (PFGE) 

The PulseNet protocol with minor modifications was used (McDougal et al., 2003). Briefly, 

S. aureus strains were recovered from frozen stock to TSA plates and incubated at 37°C for 18 to 

24 h. A single colony was inoculated onto a second TSA plate and incubated at 37°C for 18 to 24 
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h. Colonies were transferred to 5-mL polystyrene round-bottom tubes containing 2 mL of cell 

suspension buffer (100 mM Tris HCl [pH 8.0], Invitrogen; 100 mM EDTA [pH 8.0], Gibco), 

adjusting the cell concentrations to an absorbance of 0.9 to 1.1 using a spectrophotometer (Smart 

SpecTM plus, Bio-Rad Laboratories, USA) at 610 nm. The following steps (plug preparation, 

lysis, washing, and the SmaI enzyme restriction digestion) were performed according to the 

PulseNet protocol. Salmonella Branderup H9812 was used as a DNA marker (Ribot et al., 2000). 

The electrophoresis was carried out in a Chef Mapper (Bio-Rad Laboratories) PFGE rig, 

with an initial switch time of 5 s, a final switch time of 40 s, and a total running time of 17 h 45 

min. The gels were stained with ethidium bromide (1.5 µg/mL), and then the macrorestriction 

patterns were visualized using a UVP imager (UVP, Upland, CA). 

Macrorestriction patterns of Staphylococcus aureus isolates from humans, animals and meat 

were analyzed using the BioNumerics Fingerprinting software (Ver 6.6 Applied Math, Austin, 

TX). The similarity index was calculated using the Dice coefficient, a band position tolerance of 

1%, and an optimization of 0.5%. The unweighted-pair group method with arithmetic mean 

algorithm (UPGMA) was used to construct a dendrogram, and clusters were selected using a 

cutoff at 80% level of genetic similarity (McDougal et al., 2003). 

4.3.5. Multilocus sequence typing (MLST) 

After the construction of the dendrogram (PFGE) containing S. aureus, at least one human 

isolate from each cluster was selected as a representative of the group for MLST analysis. Strains 

of S. aureus from animals and meat were included for comparison and STs were obtained from 

previous work (Buyukcangaz et al., 2013). Sequencing of MLST PCR products of the selected 

human isolates was carried out at Iowa State University’s DNA Sequencing Facility (Ames, IA). 
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Briefly, S. aureus isolates were struck to TSA plates and incubated at 37°C for 18 to 24 h. DNA 

extraction from cells was carried out using the boiling method as described above. 

Internal fragments of the following seven housekeeping genes: arcC, aroE, glpF, gmk, pta, tpi, 

and yqiL, were amplified (Table 4.3) (Enright et al., 2000). All PCR reactions were carried out in 

50-µL volumes: 1 µL of DNA template, Taq DNA polymerase (Promega) (1.25 U), 1X PCR 

buffer (Promega), primers (0.1 µM) (Integrated DNA Technologies, Inc.), and dNTPs (200 µM) 

(Promega). The PCR conditions were adjusted according to the protocol described by Enright et 

al. (2000) using a thermocycler (Eppendorf). Ten microliters of the PCR products were loaded 

into 1% agarose gels in 1X TAE with EzVision One loading dye, and electrophoresis was run at 

100 V in 1X TAE for 1 h. Images were captured using an Alpha Innotech imager. 

The amplicon purification was carried out using the QIAquick PCR Purification Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions. Purified PCR products 

were sequenced at Iowa State University’s DNA Facility (Ames, IA) using an Applied 

Biosystems 3730xl DNA Analyzer (Applied Biosystems, Foster City, CA). Sequence data were 

imported into DNAStar (Lasergene, Madison, WI), trimmed, and aligned to the control 

sequences (from the MLST site) and interrogated against the MLST database 

(http://saureus.mlst.net/). Sequence types of selected S. aureus isolates were added to the strain 

information for analysis in BioNumerics software. 
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Table 4.3. Nucleotide sequence of the primers used in multiplex polymerase chain reaction for 
detection of 16S rRNA, mecA, Panton-Valentine leukocidin, and mecALGA251 genes; and 
multilocus sequence typing analysis for detection of arcC, aroE, glpF, gmk, pta, tpi, and yqiL 
genes.  

Primer Oligonucleotide sequence 

Amplicon 

Size (bp) 

Staph 756 F 5’-AACTCTGTTATTAGGGAAGAACA-3’ 

Staph 750 R 5’-CCACCTTCCTCCGGTTTGTCACC-3’ 
756 

mecA 1 F 5’-GTAGAAATGACTGAACGTCCGATAA-3’ 

mecA-2 R 5’-CCAATTCCACATTGTTTCGGTCTAA-3’ 
310 

luk-PV-1 F 5’-ATCATTAGGTAAAATGTCTGGACATGATCCA-3’ 

luk-PV-2 R 5’-GCATCAAGTGTATTGGATAGCAAAAGC-3’ 
433 

mecALGA251FP 5'-TCACCAGGTTCAAC[Y]CAAAA-3' 

mecALGA251RP 5'-CCTGAATC[W]GCTAATAATATTTC-3' 
356 

mecALGA251MultiFP 5'-GAAAAAAAGGCTTAGAACGCCTC-3' 

mecALGA251RP 5'-CCTGAATC[W]GCTAATAATATTTC-3' 
718 

mecALGA251MultiFP 5'-GAAAAAAAGGCTTAGAACGAATC-3' 

mecALGA251MultiRP 5'-GATCTTTTCCGTTTTCAGC-3' 
138 

arcC F 5'-TTGATTCACCAGCGCGTATTGTC-3'  

arcC R 5'-AGGTATCTGCTTCAATCAGCG-3'  
456 

aroE F 5'-ATCGGAAATCCTATTTCACATTC-3' 

aroE R 5'-GGTGTTGTATTAATAACGATATC-3' 
456 

glpF F 5'-CTAGGAACTGCAATCTTAATCC-3' 

glpF R 5'-TGGTAAAATCGCATGTCCAATTC-3' 
465 

gmK F 5'-ATCGTTTTATCGGGACCATC-3' 

gmK R 5'-TCATTAACTACAACGTAATCGTA-3' 
429 

pta F 5'-GTTAAAATCGTATTACCTGAAGG-3' 

pta R 5'-GACCCTTTTGTTGAAAAGCTTAA-3' 
474 

tpi F 5'-TCGTTCATTCTGAACGTCGTGAA3' 

tpi R 5'-TTTGCACCTTCTAACAATTGTAC-3' 
402 

yqiL F 5'-CAGCATACAGGACACCTATTGGC-3' 

yqiL R 5'-CGTTGAGGAATCGATACTGGAAC-3' 
516 

16S rRNA, mecA, and Panton-Valentine leukocidin genes (McClure et al., 2006). 
mecALGA251 gene (Stegger et al., 2011). 
arcC, aroE, glpF, gmk, pta, tpi, and yqiL genes (Enright et al., 2000). 
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4.3.6. Susceptibility testing 

Staphylococcus aureus isolates were subjected to antimicrobial susceptibility testing using 

the broth microdilution method and the National Antimicrobial Resistance Monitoring System 

(NARMS) panels (CMV3AGPF, Sensititre®, Trek Diagnostics), according to the manufacturer’s 

and the Clinical Laboratory Standards Institute (CLSI, 2012) guidelines. Antimicrobials in the 

panel and their resistance breakpoints were as follows: erythromycin (≥8 µg/mL), tetracycline 

(≥16 µg/mL), ciprofloxacin (≥4 µg/mL), chloramphenicol (≥32 µg/mL), penicillin (≥0.25 

µg/mL), vancomycin (≥16 µg/mL), nitrofurantoin (≥128 µg/mL), gentamicin (≥16 µg/mL), 

quinupristin/dalfopristin (≥4 µg/mL), linezolid  (≥8 µg/mL), kanamycin (≥64 µg/mL), and 

daptomycin (susceptible ≤1 µg/mL). Multidrug resistance (MDR) was considered as resistance to 

at least three classes of the antimicrobials tested (Aydin et al., 2011). 

4.4. Results 

The results for identification of S. aureus (16S rRNA), mecA and PVL genes in samples 

obtained from humans are shown in Table 4.4. The prevalence of nasal carriage of S. aureus in 

healthy people was 7.6%. None of these isolates harbored the mecA or PVL genes. Clinical 

isolates were identified as MRSA strains in the hospital using standard microbiological 

procedures. As expected, all of these isolates were confirmed as S. aureus strains by the 

detection of 16S rRNA gene using the PCR assay. 

Among the 108 MRSA clinical isolates, a total of 105 (97.2%) harbored the mecA gene and 

11 (10.2%) carried the PVL gene. Of interest, the PCR assay did not detect the PVL gene in 

MRSA strains isolated from clinical cases affected by wound infections.  
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Table 4.4. Identification of 16S rRNA, mecA and Panton-Valentine Leukocidin (PVL) genes in S. 
aureus from healthy people, and MRSA isolates from clinical cases.  

Source Samples 

Positive for 

S. aureus 

Positive 

for MRSA 

16S 

rRNA mecA PVL 

Healthy people ---No.--- -----No.----- --No. (%)-- ----------------No. (%)---------------- 

   Fall 2010 231 17 (7.4)  17 (7.4) 0 (0.0) 0 (0.0) 

   Spring 2011 319 25 (7.8)  25 (7.8) 0 (0.0) 0 (0.0) 

Total 550 42 (7.6)  42 (7.6) 0 (0.0) 0 (0.0) 

Clinical cases       

   Blood   99   99 (100)   99 (100)   99 (100)  96 (97.0) 11 (11.1) 

   Wound     9    9 (100)    9 (100)    9 (100)    9 (100) 0 (0.0) 

Total 108 108 (100) 108 (100) 108 (100) 105 (97.2) 11 (10.2) 

 
The genetic similarity between S. aureus strains isolated from humans and S. aureus strains 

of animal origin were analyzed using BioNumerics software. Figure 4.1 shows a dendrogram 

containing the macrorestriction patterns of S. aureus strains and the sequence type (ST) of some 

isolates from each cluster. Thirty-four S. aureus ST398 strains of animal origin were not 

included in the dendrogram as they failed to restrict. A total of fifteen clusters was observed, of 

which six were homogenous, containing one type of isolate exclusively from healthy humans 

(cluster 1 and 2), MRSA isolates from clinical cases (cluster 9), or isolates of animal origin 

(clusters 10, 11 and 15). In general, genetic diversity was observed among isolates from healthy 

humans, classified in different clusters with the sequence types: ST5, ST15, ST30, ST34, ST39, 

ST45. Genetic similarity was observed between S. aureus strains from humans and meat: cluster 

3 (ST39), cluster 4 (ST1), cluster 7 (ST5), and cluster 12 (ST15). In cluster 9, genetic similarity 

was observed between mecA-positive strains and one strain that did not harbor mecA nor mecC 

genes isolated from clinical cases, and were identified as ST8. In addition, two clinical isolates 
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identified as MRSA ST5 that were mecA- and mecC-negative exhibited a genetic similarity with 

mecA-positive S. aureus ST5 strains isolated from humans and from pork meat (cluster 8).            

Among the antimicrobials tested using CLSI interpretation criteria (CLSI, 2012), most 

MRSA isolates from clinical cases were resistant to erythromycin, penicillin and ciprofloxacin, 

and S. aureus isolates from healthy people exhibited resistance primarily to penicillin (Table 4.5). 

A rate of 70% of MDR strains was detected in humans, primarily among clinical isolates that 

were all identified as MRSA. In humans, one clinical isolate identified as MRSA was susceptible 

to all antimicrobial agents. The minimum inhibitory concentrations (MICs) of resistant S. aureus 

strains from humans are shown in Table 4.6. High MICs were observed in most of the penicillin-

resistant S. aureus isolates from humans (8 - >16 µg/mL). The majority of ciprofloxacin-resistant 

S. aureus isolates from humans exhibited a MIC > 4 µg/mL. 

4.5. Discussion 

Presumptive S. aureus samples on MSA plates from healthy people were confirmed by 

biochemical testing (Sensititre identification plates) with an agreement of 100% with PCR 

(detection of the 16S rRNA gene) (Table 4.4). In this study, the nasal carriage of S. aureus was 

7.6%, which is considerably lower than the prevalence found in other studies (29-32%) (Mainous 

et al., 2006; Gorwitz et al., 2008). However, those studies considered a larger sample size, 

different demographic characteristics, and different sampling years as part of a nationally 

representative assessment of carriage of S. aureus. In this study, S. aureus strains isolated from 

healthy people did not harbor the mecA or PVL genes. Other studies have reported a nasal 

carriage rate of MRSA of approximately 0.8 to 1.5% in the community (Mainous et al., 2006; 

Gorwitz et al., 2008), 0.5 to 44% in patients (Tiemersma et al., 2004), 20% in healthcare workers 

(Kumar et al., 2011) and 30% in people living and working on farms with MRSA-positive pigs 
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or dust (Van Den Broek et al., 2009). Buyukcangaz et al. (2013) failed to detect the mecA and 

PVL genes in S. aureus isolates from meat-producing animals (Table 4.1) that were used for the 

comparison with human isolates in this study. However, a low prevalence of S. aureus harboring 

the mecA gene was found in pork meat. 

The proportion of MRSA in relation to all S. aureus strains causing infections is still 

unknown, making it difficult to accurately estimate the magnitude of MRSA infections and to 

design appropriate health action policies (Klevens et al., 2007; Moxnes et al., 2013). In this 

study, three clinical isolates identified as MRSA were negative for the mecA gene using the 

protocol described by Makgotlho et al. (2009). For that reason, the presence of the novel mecA 

homolog gene (mecALGA251 or mecC), was assessed using the protocol described by Stegger et al. 

(2011). However, those strains were also negative for the mecC gene (138 and 718 bp fragments), 

but tested positive por the 356 bp fragment using degenerate primers. Therefore, further 

investigation should be carried out to determine the genetic variation of this fragment. In 

addition, it is known that borderline oxacillin-resistant S. aureus (BORSA) exhibit an 

intermediate resistance level to oxacillin, which is non-mecA mediated (Nadarajah et al., 2006; 

Stefani et al., 2012). All mecA- and mecC-negative S. aureus strains identified as MRSA were 

subjected to oxacillin susceptibility testing. One of those isolates exhibited an intermediate 

resistance level to oxacillin (2-4 µg/mL) (CLSI, 2012), which could be considered as BORSA. 

Different modifications in the PBP genes causing amino acid substitutions in the transpeptidase 

domain has been also associated with the borderline resistance (Nadarajah et al., 2006). 
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Figure 4.1. Dendrogram showing the genetic similarity between S. aureus isolates from humans,  
and of animal origin. The scale indicates levels of similarity, numbers represent the sample 
codes, followed on the right by the sequence type (ST) and the type of the sample. *mecA-
positive S. aureus in pork meat. ** mecA- and mecC-negative MRSA from clinical cases.
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Figure 4.1. Dendrogram showing the genetic similarity between S. aureus isolates from humans,  
and of animal origin (continued). The scale indicates levels of similarity, numbers represent the 
sample codes, followed on the right by the sequence type (ST) and the type of the sample. 
*mecA-positive S. aureus in pork meat. ** mecA- and mecC-negative MRSA from clinical cases.
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Figure 4.1. Dendrogram showing the genetic similarity between S. aureus isolates from humans,  
and of animal origin (continued). The scale indicates levels of similarity, numbers represent the 
sample codes, followed on the right by the sequence type (ST) and the type of the sample. 
*mecA-positive S. aureus in pork meat. ** mecA- and mecC-negative MRSA from clinical cases.
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Table 4.5. Antimicrobial resistance profiles of Staphylococcus aureus from healthy people, and 
methicillin-resistance Staphylococcus aureus (MRSA) isolates from clinical cases.  
Antimicrobial resistance 

profile 

Antimicrobial 

subclasses resistant to Samples Type Samples 

 ------------No.----------- ---No.--- --------------No.-------------- 

ERY-PEN-TET-CIP-KAN 5 5 Clinical MRSA* 

Healthy human 

  2 

  3 

ERY-PEN-CIP-KAN-QUI 5 1 Clinical MRSA*   1 

ERY-PEN-CIP-KAN-DAP 5 5 Clinical MRSA*   5 

ERY-PEN-CIP-KAN 4 29 Clinical MRSA* 

 Clinical MRSA**  

Healthy human 

 25 

  2 

  2 

ERY-PEN-CIP-DAP 4 1 Clinical MRSA*   1 

ERY-PEN-TET 3 2 Healthy human   2 

ERY-PEN-KAN 3 3 Clinical MRSA* 

Healthy human 

  2 

  1 

ERY-CIP-KAN 3 1 Clinical MRSA*   1 

PEN-TET-CIP 3 1 Clinical MRSA*   1 

PEN-CIP-KAN 3 2 Clinical MRSA* 

Healthy human 

  1 

  1 

ERY-PEN-CIP 3 55 Clinical MRSA* 

Healthy human 

 51 

   4 

ERY-PEN 2 9 Clinical MRSA* 

Healthy human 

   3 

   6 

PEN-CIP 2 8 Clinical MRSA* 

Healthy human 

   3 

   5 

ERY-CIP 2 1 Clinical MRSA*    1 

ERY 1 2 Healthy human    2 

PEN 1 22 Clinical MRSA* 

Healthy human 

  6 

16 

CIP 1 2 Clinical MRSA*   2 

Ciprofloxacin (CIP); Daptomycin (DAP); erythromycin (ERY); kanamycin (KAN); 
quinupristin/dalfopristin (QUI); penicillin (PEN); and tetracycline (TET). *mecA positive. ** mecA and 
mecC negative. Resistance according to CLSI (2012) criteria.  
 



 

   
    

 

Table 4.6. Minimum inhibitory concentrations (MICs) of resistant Staphylococcus aureus isolates from healthy humans and clinical 
cases. 

MIC (µg/mL) Antimicrobial 

Agent 

(breakpoints)† 

Resistant 

S. aureus 

isolates 0.5 – 1 2 4 >4 8 >8 16 >16 32 >32 256 512 1024 >1024 

 ----No.---- --------------------------------------------------------------------No. (%)-------------------------------------------------------------------- 

ERY 

(≥8 µg/mL) 
114       7 

(6.1) 

107 

(93.9) 

        

PEN 

(≥0.25 µg/mL) 
143 11 

(7.7) 

9 

(6.3) 

26 

(18.2) 

 36 

(25.2) 

 36 

(25.2) 

25 

(17.5) 

      

TET 

(≥16 µg/mL) 
   8        2 

(25.0) 

 2 

(25.0) 

5 

(50.0) 

    

KAN 

(≥64 µg/mL) 
  46           13 

(28.3) 

10 

(21.7) 

13 

(28.3) 

10 

(21.7) 

CIP 

(≥4 µg/mL) 
111   1 

(0.9) 

110 

(99.1) 

          

QUI 

(≥4 µg/mL) 
   1        1 (100)       

DAP‡    6  3 

(50) 

3 

(50) 

           

Ciprofloxacin (CIP); Daptomycin (DAP); erythromycin (ERY); kanamycin (KAN); quinupristin/dalfopristin (QUI); penicillin (PEN); and 
tetracycline (TET). †Levels of MIC against tested antibiotics (CLSI, 2012). ‡Criteria for Dap: susceptible ≤1 µg/mL. 
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The virulence factor PVL, was detected in this study in 11.1% of MRSA isolates from 

clinical cases identified as blood stream infections. The MRSA isolates from cases identified as 

wound infections did not harbor the PVL gene. The PVL toxin is a pore-forming protein that 

appears to be associated with increased disease severity of mecA-positive S. aureus strains, 

mainly in blood stream infections (Dufour et al., 2002). Although the PVL gene is considered as 

a stable marker for CA-MRSA, some CA-MRSA strains have been found to be PVL-negative 

(Nimmo et al., 2013). 

In this study, some S. aureus strains isolated from humans of each cluster in the dendrogram 

(Figure 4.1) were subjected to MLST to determine the sequence type. In general, different clones 

were observed in healthy humans, which indicate the presence of genotypically diverse S. aureus 

clones in the community. Although, MRSA strains were not detected in healthy people, they 

could become carriers with the risk of spreading infections to the community (Kumar et al., 

2011). Methicillin-resistant S. aureus strains isolated from clinical cases in this study presented a 

lower genetic diversity, and were primarily of ST5 and ST8. Previously, both ST5 and ST8 have 

been associated with HA-MRSA infections (Deurenberg et al., 2007; Stefani et al., 2012). The 

description of the genetic characteristics of MRSA clones that are causing invasive human 

infections could help to focus efforts to study the most common clones. The molecular 

characteristics of S. aureus strains isolated from humans were compared with isolates of animal 

origin. A genetic similarity was observed between mecA- and mecC-negative MRSA isolates 

from clinical cases and mecA-positive S. aureus strains isolated from clinical cases and pork 

meat, which could be due to modifications in the PBP genes in mecA- and mecC-negative MRSA 

strains (Nadarajah et al., 2006) that result in slight changes in the macrorestriction patterns. 

Contamination of meat with S. aureus strains from animals and humans could occur during 
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slaughtering or processing. In this study, a genetic similarity between strains from humans and 

meat may suggest the contamination of raw meat during handling. In addition, the genetic 

similarity of S. aureus strains isolated from meat-producing animals and retail meat has been 

found previously, also suggesting the contamination of meat during slaughtering (Buyukcangaz 

et al., 2013). In this study, other S. aureus strains that have been previously related to LA-MRSA 

and pig farmers, such as ST398 and ST9 (van Belkum et al., 2008; Buyukcangaz et al., 2013; 

Krziwanek et al., 2009) were not detected in S. aureus isolates from humans. However, Sung et 

al. (2008) found that animal lineages were closely related to human lineages, which could be due 

to the adaptive behavior of S. aureus (McCarthy et al., 2012).  

In this study, resistance to penicillin predominated in the S. aureus strains isolated from 

healthy people, and the resistance profiles Ery-Pen-Cip and Ery-Pen-Cip-Kan were most 

common in MRSA isolates from clinical cases (Table 4.5). Comparing the antimicrobial 

resistance patterns of human isolates with S. aureus isolates of animal origin, some differences 

were observed (Table 4.2). According to the CLSI (2012) interpretation criteria, most S. aureus 

isolates from animals exhibited resistance to penicillin and tetracycline, and from retail meat to 

the former antibiotics and erythromycin. Tetracycline-resistant S. aureus strains were isolated 

from animals and retail meat, however, ciprofloxacin-resistant S. aureus strains were found in 

clinical isolates. A higher rate of MDR S. aureus strains were obtained from humans than 

animals and meat, which could be due to the high number of MRSA strains from clinical cases 

affected by acute infections that were included in this study. Most MRSA strains isolated from 

clinical cases have been found to be MDR (Arora et al., 2014). In addition, clinical isolates 

(identified as MRSA) showed higher MICs to penicillin (Table 4.6) than S. aureus strains 

obtained from animals and meat (Buyukcangaz et al., 2013) suggesting the potential influence of 
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treatment or exposure on the selection of resistant strains. In this study, all S. aureus strains were 

susceptible to linezolid, which has been considered as a good alternative for the treatment of 

MDR S. aureus (Kishore et al., 2014). The CLSI (2012) criteria establishes the susceptibility to 

daptomycin at MICs ≤1 µg/mL, therefore in clinical isolates MICs of 2 and 4 µg/mL were 

considered non-susceptible isolates. The interpretation of results for gentamicin, kanamycin, and 

penicillin could be ambiguous due to their breakpoints. For example, all S. aureus strains 

isolated from humans exhibited MICs ≤128 µg/mL for gentamicin, which has a breakpoint ≥16 

µg/mL. For kanamycin and penicillin some S. aureus strains showed MICs ≤128 µg/mL and ≤25 

µg/mL, respectively, however the CLSI criteria recommends a breakpoint ≥64 µg/mL and ≥0.25 

µg/mL as resistance, respectively and our data is limited by the dilution ranges on the current 

NARMS panel. Therefore, it should be recomended to include a wider range of dilution of 

antimicrobials on the panel in order to improve the interpretation of susceptibility testing results 

for those antibiotics. 

4.6. Conclusion 

The nasal carriage of S. aureus in healthy humans appears to be low, with clones 

genotypically diverse, and were mecA- and PVL-negative. Staphylococcus aureus strains 

harboring the mecA and PVL genes were present in clinical isolates from patients affected by 

invasive infections, and most of these isolates were of ST5 and ST8, and exhibited MDR profiles. 

A genetic similarity between S. aureus strains isolated from humans and raw meat suggests that 

the contamination of meat during handling or processing could be a risk for transmission to 

humans. 
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5. GENERAL DISCUSSION AND OVERALL CONCLUSION 

5.1. General discussion 

In this study, a high prevalence of S. aureus was detected in animals and raw meat (34.7% 

and 47.6%, respectively), with a higher prevalence in sheep and pigs, and in raw chicken and 

pork meat. However, the prevalence of S. aureus in deli meat was lower (13%). In healthy 

people, a low S. aureus nasal carriage was detected (7.6%) compared with the results from other 

studies (Mainous et al., 2006; Gorwitz et al., 2008). In addition, the mecA gene was detected 

only in pork meat, with a low prevalence (3.4%), this data is similar to results reported in other 

studies (de Boer et al., 2009; Pu et al., 2009). Also, MDR and ST398 S. aureus strains were 

detected in animals (pig and sheep) and in pork meat. In this study, the PVL-encoding gene was 

not detected in S. aureus isolated from animals, meat or healthy people. The presence of MRSA, 

MDR and ST398 S. aureus strains in meat-producing animals, in retail raw meat and deli meat, 

suggests the potential exposure of humans to emerging S. aureus strains through the meat 

production chain, with a higher risk in ready-to-eat food. Three MRSA strains isolated from 

clinical cases did not harbor the mecA or mecC genes. However, those strains resulted positive 

for the 356 bp fragment, which could suggest a genetic variation of the gene. The presence of 

borderline resistance, called as borderline oxacillin-resistant S. aureus (BORSA), could also 

explain the phenotypical resistance to methicillin in MRSA strains that are mecA- and mecC-

negative. Some MRSA strains obtained from clinical cases affected by invasive infections were 

PVL-positive (10%), all obtained from blood stream infections. The presence of this exotoxin 

has been associated with increased virulence of S. aureus strains, primarily CA-MRSA strains 

due to the pore formation in the membranes of cells (Dufour et al., 2002).   
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The isolation and identification of S. aureus in animals and meat determined by the culture 

method and biochemical testing agreed with the detection of the 16S rRNA gene by the PCR 

assay. Therefore, using a selective enrichment step followed by a selective plating step for 

isolation of S. aureus, with biochemical testing for confirmation of presumptive strains, results in 

an accurate method for detection. In this study, the identification of MRSA was carried out by 

the detection of the mecA gene using the PCR tecnique, and by determining the resistance to β-

lactam antibiotics using the antimicrobial susceptibility testing. Other methods have been used 

for confirmation of MRSA, such as: susceptibility to oxacillin or cefoxitin (Danial et al., 2011; 

Kumar et al., 2011; Kim et al., 2013; Nimmo et al., 2013), and detection of the protein PBP2a by 

agglutination assay (Anderson and Weese, 2007; Weese et al., 2010; Danial et al., 2011). The 

method used for isolation of S. aureus and MRSA may affect overall prevalence results. Some 

authors have used a unique plating step (Weese et al., 2006; Aydin et al., 2011), others have 

included selective enrichment steps before the plating step (Wertheim et al., 2001; de Boers et al., 

2009; Pu et al., 2009; Tenhagen et al., 2009; Broens et al., 2011; Pu et al., 2011; Zhang et al., 

2011). de Boer et al. (2009) included primary and secondary enrichments similar to those used in 

this study and obtained a higher detection rate of MRSA in meat samples. Both MSSA and 

MRSA strains can be isolated using media with sodium chloride. However, some MRSA strains 

do not grow at concentrations of NaCl higher than 2.5% (Jones et al., 1997). In addition, some 

media supplemented with antibiotics may cause breakthrough growth of MSSA strains (Böcher 

et al., 2008) and also may fail to recover MRSA. Therefore, an antibiotic-free medium should be 

included even if the objective is recovering MRSA only (Pu et al., 2009).         

The rapid detection of S. aureus and MRSA in animals and meat may allow regulatory 

authorities to take prompt action in order to decrease the risk of exposure of humans. In this 
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study, a multiplex real-time PCR assay was developed in order to decrease the time of detection. 

The real-time mPCR assay targeted the genes: nuc (identification of S. aureus), mecA (associated 

with MRSA) and PVL (virulence factor), in samples from animals and meat. A high total 

agreement was found between the conventional culture method and the real-time PCR assay, 

with a higher detection rate when the secondary enrichment was analyzed. This may due to the 

recovery of injured cells when the secondary enrichment is used, and the failure of detection of 

low levels of S. aureus when the primary enrichment alone is used in real-time PCR. However, 

the conventional culture method is considered as the standard method for identification of S. 

aureus (Huletsky et al., 2004; Paule et al., 2005; Danial et al., 2011) and conventional PCR 

(detection of mecA gene) for identification of MRSA (Maes et al., 2002; Makgotlho et al., 2009). 

The enrichment broths from animal and meat samples were used to obtain DNA for the real-time 

PCR assay, in which the concentration and the source of the genetic material were variable. The 

mecA gene was detected in samples that were S. aureus negative but Staphylococcus spp. 

positive by the culture method and biochemical testing. These results could be considered as 

false-positive, because the mecA gene has been detected in both S. aureus and coagulase-

negative staphylococci (Ryffel et al., 1990; Hagen et al., 2005; Higashide et al., 2006; Thomas et 

al., 2007; Black et al., 2011). Unfortunately, in this study, the results could not be validated 

using the culture method, since DNA extracts were used and the cells were previously 

inactivated. The sensitiveness of detection of the real-time PCR assay may be determined, 

quantifying the minimum DNA concentration for amplification. The inclusion of an internal 

amplification control in addition of the external controls, allows the detection of false-negative 

results caused by inhibitors, thermocycler malfunction, low activity of the polymerase or 

incorrect PCR solution (Hoorfar et al., 2004).  
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 The genetic similarity between S. aureus from pigs and pork meat (ST9) and from humans 

and pork meat suggests the likely meat contamination during slaughtering and processing. Five S. 

aureus isolates from pork meat were positive for the mecA gene, of which two were ST5 and 

three ST398. In addition, a high prevalence of MSSA ST398 was detected in samples of animal 

origin. Therefore, the presence of the emerging ST398 clones in the meat production chain 

suggests a potential risk of transmission to humans. The genetic similarity between mecA- and 

mecC-negative MRSA isolates from clinical cases and mecA-positive S. aureus strains isolated 

from clinical cases and pork meat, could be due to modifications in the PBP genes in mecA- and 

mecC-negative MRSA strains (Nadarajah et al., 2006) that result in slight changes in the 

macrorestriction patterns. The genotyping of S. aureus strains was carried out by PFGE 

according the PulseNet protocol, which uses the restriction enzyme SmaI. However, the DNA of 

ST398 strains cannot be digested with SmaI, due to the presence of a methylation enzyme, which 

methylates the SmaI-recognition site (Bens et al., 2006). Therefore, it is not possible to obtain a 

macrorestriction pattern for ST398 strains by PFGE using SmaI; for this reason, this study used a 

second restriction enzyme, XmaI, an isoschizomer of SmaI. However, macrorestriction patterns 

of ST398 strains with weak bands were obtained using this enzyme making comparative analysis 

difficult. Other restriction enzymes with different recognition sites could be tested in order to 

establish a PFGE protocol that allows an accurate analysis of molecular typing of S. aureus 

ST398 and strains with undefined macrorestriction patterns. The molecular typing technique with 

the highest discrimination power is PFGE (McDougal et al., 2003). However, at least two 

molecular typing methods should be used in order to obtain a higher accuracy in sub-typing 

strains (Tenover et al., 1994). In this study, PFGE and MLST were used for sub-typing S. aureus 

strains. In general, both methods classify the strains in similar clusters (Catry et al., 2010). 
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Another typing method used in S. aureus is spa-typing, however, similar spa types could be 

obtained in unrelated clonal lines, which is a disadvantage of this technique (Van den Broek IV 

et al., 2009; Golding et al., 2008). For that reason, a disagreement between spa-typing and PFGE 

and MLST results could be obtained (Golding et al., 2008).  

All mecA-positive S. aureus strains detected in this study were resistant to penicillin, with a 

higher MIC than other strains. In addition, a high prevalence of MDR S. aureus strains was 

determined. The most common resistance profile in S. aureus isolated from animals was 

penicillin-tetracycline and from meat penicillin-tetracycline-erythromycin. The multidrug 

resistance was primarily detected in ST398 and ST9 strains, which have been associated with 

animals, particularly to pigs (Lewis et al., 2008; van Belkum et al., 2008; Guardabassi et al., 

2009; Krziwanek et al., 2009). In healthy humans, the most common resistance profile observed 

among S. aureus was penicillin, and in clinical cases erythromycin-penicillin-ciprofloxacin. 

Most MRSA strains isolated from clinical cases have been found to be MDR (Arora et al., 2014). 

Antibiotics are effective drugs against infectious agents, however, the misuse of these drugs 

could lead to the acquisition of antimicrobial resistance in bacteria, which could take place in 

health care settings, in the community and in livestock. The extensive use of antimicrobial agents 

exerts a selective pressure on AR strains, eliminating the susceptible strains (Swartz, 1997; 

Marinelli and Tomasz, 2010). Glycopeptides, such as vancomycin, are frequently used to treat 

MRSA infections. However, in recent years the incidence of S. aureus with full and intermediate 

resistance to vancomycin has increased (Tiwari and Sen, 2006). In this study, all S. aureus 

strains of animal origin were susceptible to vancomycin, as well as to daptomycin, linezolid, and 

nitrofurantoin, which agrees with the results obtained by Pu et al. (2011) in meat samples. 

However, there are some limitations of the use of nitrofurans in food-producing animals, due to 
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concerns regarding their carcinogenicity (FDA, 2014). In animal husbandry, antibiotics are used 

for treatment, prevention and growth promotion (DuPont and Steele, 1987; Franco et al., 1990). 

This may create AR pathogens in livestock, with the potential risk of spreading the resistance-

related genes in bacteria present in humans. In this study, the detection of MDR S. aureus strains 

in animals and meat suggests the risk of exposure of the human population through the meat 

production chain. Therefore, some antimicrobial agents could exhibit a limited efficacy for 

treatment of human diseases (Smith et al., 2002).       

An action against the spread of AR strains is the reduction of the use of antibiotics in the 

clinical setting. However, AR genes related to a drug may be transferred to plasmids harboring 

other AR genes related to antimicrobials used as alternatives to the original drug (Swartz, 1997). 

The efforts to reduce the use of antibiotics, to ensure the control of infections and surveillance, to 

select doses and drug combinations, should be increased in order to avoid the emergence of AR 

strains (Marinelli and Tomasz, 2010). Nowadays, new antimicrobial agents are being developed 

in order to increase their effectiveness against AR pathogens. Research related to antimicrobial 

resistance may consider the assessment of susceptibility of AR pathogens to the new 

antimicrobials and the combinations of them. In addition, information about different resistance 

mechanisms that pathogens exhibit should be expanded. Thus, the information to control the 

spread of AR pathogens and to decrease the exposure of humans could be available in the near 

future. In the United States, the National Antimicrobial Resistance Monitoring System 

(NARMS), created in 1996 with the collaboration of FDA, CDC, USDA, and state and local 

public health departments, is in charge of the monitoring of antimicrobial susceptibility of enteric 

bacteria isolated from humans, meat, and food-producing animals. The pathogens included in 

NARMS are: Salmonella spp., Escherichia coli, Campylobacter spp., Shigella spp., and 
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Enterococcus spp. (FDA, 2012). However, the evidence of the presence of emerging S. aureus 

strains (MRSA, ST398, and MDR) in the meat production chain may be considered in order to 

extend the monitoring to other AR pathogens beyond the enteric bacteria. Thus, including S. 

aureus in this national monitoring system may allow to know the annual prevalence of AR 

strains, their antimicrobial susceptibility, susceptibility to new drugs, and to establish control and 

mitigation strategies with the purpose of decreasing the exposure of humans. 

5.2. Overall conclusion 

The overall conclusions of this study are presented below: 

There is a high prevalence of S. aureus in meat-producing animals and raw meat, and a low 

prevalence in healthy people. Staphylococcus aureus strains isolated from animals, meat and 

healthy people did not harbor the PVL-encoding gene. The mecA and PVL-encoding genes were 

present in S. aureus strains isolated from clinical cases affected by invasive infections, with a 

high prevalence of MDR strains. Although, the prevalence of MRSA in raw meat is low, the high 

prevalence of MDR and ST398 S. aureus strains in the meat production chain suggests a 

potential risk for transmission to humans. In addition, the genetic similarity between S. aureus 

strains from animals and meat, and from humans and meat, suggests the contamination of meat 

during slaughtering and processing.      

It is recommended to include the detection and the antimicrobial susceptibility testing of  

MRSA and MDR S. aureus strains in the federal surveillance systems, such as NARMS, 

including the monitoring of the meat production chain, hospital patients and healthy people in 

the community.  

The use of selective enrichments prior to the culture method allows the isolation of S. 

aureus and MRSA, with an agreement of 100% with the conventional PCR technique. The use of 
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a secondary enrichment with real-time PCR increased the sensitivity of S. aureus detection in 

animal and meat samples. The real-time PCR technique allows rapid detection of S. aureus and 

the mecA gene in animal and meat samples, however, the confirmation of MRSA strains should 

be carried out by the standard culture method if further analysis is required.     

It is necessary to determine the molecular characteristics (mecA, mecC, PVL, other 

resistance- and virulence factors-encoding genes), the molecular typing (PFGE and MLST) and 

the antimicrobial susceptibility of AR S. aureus strains in order to establish effective control 

actions to avoid the spread of those strains. 
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