

i

ENTERPRISE RESOURCE PLANNING METAMODEL TEST PATTERN

A Paper
 Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Naveed Ahmed Syed

In Partial Fulfillment of the Requirements
 for the Degree of

MASTER OF SCIENCE

Major Department:
Software Engineering

May 2014

Fargo, North Dakota

ii

North Dakota State University

Graduate School

Title

Enterprise Resource Planning Metamodel Test Pattern

 By

Naveed Ahmed Syed

 The Supervisory Committee certifies that this disquisition complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Kendall Nygard

 Chair

Dr. Saeed Salem

Dr. Bakr Mourad Aly Ahmed

 Approved:

 16 April 2015 Dr. Brian Slator
 Date Department Chair

iii

ABSTRACT

Enterprise Resource Planning (ERP) system is a complex distributed software solution

that costs millions of dollars to implement. Upgrading an ERP metamodel subsystem introduces

critical risks in the functionality of all the ERP applications that are part of an ERP system. It is

therefore imperative to verify such critical updates to an ERP system thoroughly before they are

released to manufacture. The situation is further exacerbated when the ERP system in context

happens to be a legacy one without sufficient automated tests.

In order to facilitate effective and efficient implementation of ERP metamodel tests, a

verification pattern is presented here. Application of this pattern has shown significant savings in

project costs and testing effort, increase in coverage, reliability and reusability of test automation

to verify different ERP sub-products (for example UI portal, web services), as well as significant

increase in productivity of test engineers.

iv

ACKNOWLEDGMENTS

I would like to first thank and express deep appreciation and gratitude to Dr. Kendall

Nygard for his continued support, help, and direction. My sincere thanks go to Dr. Saeed Salem,

and Dr. Bakr Mourad Aly Ahmed for their advice as well as serving on the committee. I am also

very grateful to my family and friends who supported and motivated me to accomplish this task.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF FIGURES ... viii

LIST OF APPENDIX FIGURES.. x

INTRODUCTION .. 1

Background .. 1

ERP Metamodel Test Problem .. 2

Objectives .. 3

Requirements ... 4

Sections .. 5

HIGH LEVEL DESIGN ... 6

ERP Metamodel Conceptual Model .. 6

Primary Use Cases ... 9

ERP Metamodel Test Assembly Conceptual Model ... 12

Test Driver High Level Activity .. 14

Test Phase Sequence .. 16

ERP Metamodel Test Suite Conceptual Model ... 18

ERP Metamodel Test Case Conceptual Model ... 21

DETAIL DESIGN .. 23

Methodology .. 23

Test Framework Decomposition ... 24

vi

System Package ... 26

ERP System Class Diagram ... 26

ERP System Initialization Sequence Diagram ... 28

Domain Package .. 30

ERP Model Construction Class Diagram ... 30

ERP Model Construction Sequence Diagram .. 33

Foundation Package ... 35

ERP Foundation Class Proxy Class Diagram .. 35

ERP Foundation Class Proxy Creation Sequence Diagram ... 38

Design Mode Package ... 41

ERP DesignTime Mode Façade Class Diagram .. 41

ERP DesignTime Mode Façade Construction Sequence Diagram .. 43

TestServices Package .. 46

ERP Metadata TestSuite Class Diagram .. 47

ERP Metadata TestSuite Setup Phase Sequence Diagram ... 51

ERP Metadata Testsuite Cleanup Phase Sequence Diagram ... 53

ERP Metadata TestSuite Execution Phase Sequence Diagram .. 53

Test Framework Inter-Process Communication Support ... 55

ERP METAMODEL TEST SUITE PATTERN ... 64

UNIT TEST DESIGN ... 67

CONCLUSION ... 69

CONSTRAINTS AND FUTURE WORK .. 70

REFERENCES ... 71

vii

APPENDIX ... 74

Gang-of-Four Design Patterns used in this paper .. 74

Creational: Builder ... 74

Creational: Factory Method ... 75

Creational: Prototype.. 76

Creational: Singleton .. 78

Structural: Adapter ... 79

Structural: Composite ... 80

Structural: Façade ... 81

Structural: Proxy .. 82

Behavioral: Chain of Responsibility .. 83

Behavioral: Iterator .. 84

Behavioral: Strategy ... 85

Behavioral: Template Method .. 86

Miscellaneous Patterns Used ... 88

Behavioral: Null Object ... 88

viii

LIST OF FIGURES

Figure Page

1: Entity Relationship Diagram Depicting the Context of an ERP Metamodel 7

2: ERP Metamodel Test Framework System Boundary ... 10

3: ERD Depicting Test Assembly Context ... 12

4: Test Driver High Level Activity ... 15

5: Test Phase Sequence Depicting Change of Phases ... 17

6: Test Suite Perspective of an ERP Model Element .. 19

7: Test Case Related Concepts .. 21

8: Test Framework Core Functionality Decomposition.. 25

9: Class Diagram of ERP System Abstractions .. 28

10: Sequence Diagram of an ERPClient Instantiation .. 29

11: Class Diagram of Abstractions Used for Model Construction ... 32

12: Sequence Diagram Depicting Building of an ERP Test Model .. 34

13: ERP Foundation Class Proxy Class Diagram ... 37

14: ERP Foundation Class Proxy Creation Sequence Diagram.. 38

15: ERP Foundation Class Proxy Adapter Creation Sequence Diagram 39

16: ERP Foundation Class Proxy Adapter .. 40

17: ERP DesignTime Mode Facade Class Diagram ... 43

18: ERP DesignTime Mode Façade Construction Sequence Diagram ... 45

19: Null Design Mode Facade Adapter .. 46

20: ERP Metadata TestSuite Class Diagram .. 50

ix

21: ERP Metadata Testsuite Setup Phase Sequence Diagram .. 52

22: ERP Metadata TestSuite Cleanup Phase Sequence Diagram ... 53

23: ERP Metadata Testsuite Execution Phase Sequence Diagram ... 54

24: Conceptual Sequence of Interop Interactions ... 57

25: Interop Concrete Sequence DesignTime Aspects ... 59

26: TestDriver to ERPClient Call across Process Boundary to Execute Tests in ERPClient
Process Space – Part 1 .. 61

27: TestDriver to ERPClient Call across Process Boundary to Execute Tests in ERPClient

Process Space – Part 2 .. 62

28: TestDriver to ERPClient Call across Process Boundary to Execute Tests in ERPClient

Process Space – Part 3 .. 63

29: ERP Metamodel TestSuite Pattern ... 66

30: UnitTest Abstractions to Verify Core TestSuite Pattern .. 68

x

LIST OF APPENDIX FIGURES

Figure Page

A.1: GoF Creational-Builder Pattern-Class Diagram ... 74

A.2: GoF Creational-Builder Pattern-Sequence Diagram .. 75

A.3: GoF Creational-Factory Pattern-Class Diagram ... 75

A.4: GoF Creational-Factory Pattern-Sequence Diagram .. 76

A.5: GoF Creational-Prototype Pattern-Class Diagram .. 77

A.6: GoF Creational-Prototype Pattern-Sequence Diagram ... 77

A.7: GoF Creational-Singleton Pattern-Class Diagram .. 78

A.8: GoF Creational-Singleton Pattern-Sequence Diagram ... 78

A.9: GoF Structural-Adapter Pattern-Class Diagram ... 79

A.10: GoF Structural-Adapter Pattern-Sequence Diagram .. 80

A.11: GoF Structural-Composite Pattern-Class Diagram ... 80

A.12: GoF Structural-Composite Pattern-Sequence Diagram .. 81

A.13: GoF Structural-Façade Pattern-Class Diagram ... 81

A.14: GoF Structural-Façade Pattern-Sequence Diagram .. 82

A.15: GoF Structural-Proxy Pattern-Class Diagram .. 82

A.16: GoF Structural-Proxy Pattern-Sequence Diagram .. 83

A.17: GoF Behavioral-Chain of Responsibility Pattern-Class Diagram 83

A.18: GoF Behavioral-Chain of Responsibility Pattern-Sequence Diagram 84

A.19: GoF Behavioral-Iterator Pattern-Class Diagram .. 84

A.20: GoF Behavioral-Iterator Pattern-Sequence Diagram .. 85

xi

A.21: GoF Behavioral-Strategy Pattern-Class Diagram ... 85

A.22: GoF Behavioral-Strategy Pattern-Sequence Diagram .. 86

A.23: GoF Behavioral-Template Method Pattern-Class Diagram .. 86

A.24: GoF Behavioral-Template Method Pattern-Sequence Diagram ... 87

A.25: Behavioral - Null Object ... 88

1

INTRODUCTION

Background

“Testing proves the presence, not the absence of bugs” – E.W.Dijkstra

According to a study commissioned by the National Institute of Standards and

Technology software defects cost the U.S. economy an estimated $59.5 billion annually. Given

virtually every business today depends on software, this cost is bound to grow unless it is

checked. The study also states that more than half of this cost is borne by software users and the

remaining by software developers and vendors. The major reason attributed to this cost is an

inadequate software testing infrastructure. Companies worldwide are taking steps to address this

issue resulting in a $13 billion software testing market, according to the Gartner Group.

Automated testing, among several techniques, is one of the popular techniques primarily

due to its ability to execute test cases faster and without human intervention. It can be incredibly

effective, giving more coverage and new visibility into the software under test. It also provides

us with opportunities for testing in ways impractical or impossible for manual testing. The

biggest advantage automation testing has over manual testing is less expensive test runs. There

are many factors to be considered when planning for software test automation. Some of which

are testing complexity, skills needed to design and implement automated tests, automation tools.

While it might be costly to be late to the market, it can be catastrophic to deliver a

defective product especially in case of Enterprise Resource Planning (ERP) systems. Every

subsequent version of ERP system is larger and more complex in terms of feature set; software

failures in such a system can cost an enterprise millions of dollars. Choosing appropriate testing

2

technique is therefore essential in order to not only increase quality bar of ERP releases but also

prevent buildup of technical debt which may prove expensive in the long run.

ERP Metamodel Test Problem

ERP system architecture poses many challenges for testing:

1. It is a complex distributed system that integrates several application domains. Very few

software engineers generally have expertise in all the application domains; additionally, entry

level engineers may not even have deep expertise in one application domain.

2. It may cross-cut multiple technologies (for e.g. C, C++, Java (JEE), C# (.Net)). In a team, a

software engineer is generally specialized to work in one technology stack.

3. It may comprise of multiple sub-products (for e.g. Client UI portal, webservices) that are

dependent upon same ERP foundational subsystem. This increases the integration test effort.

4. Advancement of an ERP system may require upgrading or reengineering the foundational

layer with newer technologies based on market demand of performance and features. This

may have a significant impact on both its metamodel and metadata subsystems.

5. Current trend in ERP module development is that of using an appropriate domain-specific

language which is then translated into platform specific model. Metamodel defines the

abstract syntax of domain-specific modeling languages; and it plays a central role in ERP

application development. Consequently, correcting errors in a metamodel can be expensive

as dependent artifacts have to be adapted to the corrected metamodel.

In addition to the architectural challenges ERP software vendor companies in a race to

market the product have aggressive time lines not only for development but also for verification

of quality. As a result ERP foundational/core system’s testing may only be limited to critical

3

features and in some cases even those features are indirectly verified via higher level ERP

applications.

When the schedule is tight and lack of automated tests, software engineers often focus on

testing new features and not include regression testing. Another anti-pattern that is commonly

observed in the industry is to verify foundational layers via user interface using record and

playback tool; however it doesn’t result in tests that are robust, maintainable or transferable as

changes occur.

In the light of this challenging problem this paper provides a solution that addresses most

of the concerns.

Objectives

The goal of this paper is to provide an ERP metamodel test pattern aimed in improving

and simplifying testing effort to test changes in metamodel functionality without having to worry

about (a) various underlying technologies and (b) multiple ERP system sub-products such as

Client portal (user interface mode), non-UI mode (Application Programming Interface based)

client components. In order to accomplish the goal, following are the objectives of the ERP

Metamodel Test Pattern presented in this paper:

1. Increase cumulative test coverage to detect errors within ERP metamodel and metadata

subsystems compared to a more common procedural approach of implementing test case or

test script. The procedural approach focuses on a test case and then implements it in a linear

fashion. This simplification makes it harder to extend a test step part of a large test case. By

improving how a test case is structured, given the complexities of a complex hierarchical test

sequence, I believe it is not only possible to extend intermediate test steps but also enable

4

construction of complex test scenarios by aggregation of related test steps there by increasing

cumulative test coverage of a test automation.

2. Provide repeatability and reusability to save time. Many times during test case

implementation testers have a need to test a unique scenario or quickly implement one-off

scenario, unless there is a well-defined test framework to guide such needs, quite often testers

resort to path of least resistance and that is to make copy of a test script to make necessary

changes to support one-off test scenario.

3. Improve test engineering team’s productivity. When test cases get complicated due to not

only complexity in system functionality but also due to the system’s network topology where

in system components may be distributed on multiple nodes; there is a greater need to

manage test data across process boundaries. A test framework that manages the complexities

of interaction with distributed system components in a transparent way will boost a tester’s

productivity. Additionally, by following a consistent test pattern that streamlines how a test

case can be implemented, so that it can be reused without any rewrite, will also greatly

enhance not only productivity but also makes it easier for new team members to start

implementing complex tests quickly.

These high level objectives can be distilled into high level requirements for design of an

ERP Metamodel Test Framework.

Requirements

The ERP Metamodel Test Framework (EMTF) shall support the following high level

requirements:

1. EMTF shall support implementation of tests for verification of ERP Metadata accessible via

interfaces exposed by ERP Client in following modes:

5

1.1 UI mode (client portal)

1.2 Non-UI mode (direct API calls)

2. EMTF shall facilitate reuse of implemented tests to construct more complex test scenarios

3. EMTF shall provide a mechanism to implement test transparently such that a set of tests can

be reused under different deployment topologies, specifically following topology must be

supported:

3.1 1-tier: Test harness and ERP System under test (SUT) is installed on one computer.

Both the test harness and ERP System share process space; there isn’t any inter-

process communication.

3.1.1 This situation applies when Non-UI mode ERP Client is loaded into

Test Harness process in order to verify exposed ERP Metadata

interfaces part of the ERP Client

3.2 2-tier: Test harness and SUT do not share process space and may or may not be

installed on same computer. This requires inter-process communication support by

the test framework, for e.g. test harness verifying UI mode ERP Client.

Sections

 The next section of the paper focuses on the high level design of the ERP Metamodel

Test Framework comprising of various architectural views determining the scope of the

framework. The following section details the design derived from the architecture covering core

aspects of the framework. This section is followed by the analysis of the core ERP Metamodel

test pattern. The subsequent section provides details regarding unit testing of this pattern. The

last section of paper covers future work, list assumptions and constraints that were kept in mind

while designing and finishing with the conclusion and references.

6

HIGH LEVEL DESIGN

“By relieving the brain of all unnecessary work, a good notation sets it free to

concentrate on more advanced problems, and in effect increases the mental power of the race.”

– Alfred Whitehead, 1911

 All aspects that are necessary to be part of a test framework for implementing a ERP

Metamodel test automation with the objectives stated earlier, requires one to formalize the

concepts so as to infer the commonalities and their variances in ERP domain. Essentially,

commonalities determine a system’s architecture or high level design and variances influence

detail design. Unified Modeling Language is used in this paper as a way to visualize, specify,

construct and document ERP Metamodel Test Framework’s architectural blueprints as well as

detail design.

Based on the requirements, following section covers conceptual architectural aspects that

clarify the test framework’s domain as well as scope.

ERP Metamodel Conceptual Model

 The model in Figure 1, presents various concepts (represented by rectangular boxes) that

are part of ERP domain, which influence the test framework design, as well as their relationships

among them. For the purposes of clarity, a directional dotted line is used to indicate ‘Is a subtype

of’ entity relationship’; for example UIMode Client entity is a subtype of ERPClient entity.

7

 erd HighLev el-ERD

ERPClient

ERPServer

Metamodel

Metamodel Element

Metadata Properties

UI Mode Client

Non UI Mode Client

DesignTime Properties

Model

Model Element

ERP Model Repository

Composes

0..*

Applications Are Represented By

1..*

1..*

UI specific
properties
accessible
within

Is Described By

1

Accesses

1..*

Has

1..*

Comprises

1..*

Manages

1..*

ConnectsTo

1

Is Described By

1

1

Is Part Of
1

Figure 1: Entity Relationship Diagram Depicting the Context of an ERP Metamodel

ERPClient: It represents ERP Client that aggregates various ERP applications such as

General Ledger, Account Receivables, Account Payables and so on. In addition to providing

enterprise business functionality, it generally also exposes a modeling mechanism to model new

ERP applications or customize existing ERP applications. ERPClient also exposes interfaces to

access ERP Metadata.

UI Mode Client: In this mode the ERP Client provides a user interface for end users to

interact with various ERP applications. Additionally, it also generally provides a modeling

8

development environment to model various elements of an ERP application such as Table, Form,

Form controls and so on. Latter aspect is utilized by the EMTF for verification of ERP metadata

in this mode.

Non UI Mode Client: This mode lacks user interface and exposes a sub-set of UI Mode

functionality via API – application programming interface – especially user interface model

elements are not available. ERP systems support API access to ERP metadata via popular

technologies such as Microsoft .Net, Microsoft COM (Component Object Model), Java. This

increases the complexity of having to verify ERP metadata access via multiple mechanisms.

ERPServer: It plays the server role in Client-Server architecture. ERPClient

communicates with it for all categories of ERP data and services. In this context it exposes

interfaces for ERPClient to access ERP metadata of ERP models.

ERP Model Repository: It’s part of the ERP Server and manages ERP Models. It also

provides an interface for management of ERP Models, Model Elements.

Model: An ERP application is designed using Models and they comprise model elements

such as Forms, Tables, Queries, Views, and so on. Basically it’s a language for describing

information domain.

Model Element: It is part of a model and has one to one correspondence with an ERP

application concepts such Form, Tables, Form controls and so on.

Metamodel: It is a model that defines what can be expressed in valid models. Essentially

it describes the structure of a model. It composes one or more Metamodel Elements. Also, it is an

abstraction of Metadata. In other words, it is a specification of the content of a Model.

Metamodel Element: It is part of a Metamodel and it helps describes a Model Element;

such as structure, relationships, behavior and constraints.

9

Metadata Properties: It is data which describes other data. ERP application domain

model is modeled by metadata (for e.g. database schema, classes) which are parts of Metamodel.

This data is provided by ERP Foundational Metamodel API.

DesignTime Properties: Metadata that is applicable when an application is being

designed. Data describing Forms, Form controls and other user interface elements is only

accessible from within ERPClient in UI Mode. Although, runtime metadata – event subscriptions

metadata – verification and validation is outside the scope presented, the test pattern presented

here can be extended to cover runtime metadata test scenarios.

Having covered the ERP domain as shown in Figure 1, following section on primary use

cases presents the scope of the ERP Metamodel Test Pattern.

Primary Use Cases

 Use Cases help describe a system from external viewpoint, representing objectives tester

wants to achieve with a system. Given the context as mentioned earlier, the essential

functionality (represented by ovals) that metadata test framework needs to support is shown in

Figure 2. The stick figures represent external actors of the framework who either provide input or

receive output or both.

10

 uc ERPMetamodel Test Framework

ERP Metamodel Test Framework

ERP
MetamodelTest

Driv er

Construct ERP Test
Model

Create ERP Test
Model Element

Cache ERP Test
Model Element

Retriev e ERP Test
Model Element

Execute Metadata
Test Suite

Access ERP
DesignTime Metadata

Invoke ERP
Metamodel

Foundation Class

ERPClient

ERP Model
Repository

«use»

«use»
«use»

«use»

«use»

«use»

Figure 2: ERP Metamodel Test Framework System Boundary

Construct ERP Test Model: In order to verify and/or validate ERP metadata, a

controlled test model is first constructed prior to running any test case. A model may either be

created from scratch or an existing test model may be reused or extended. On successful

construction the model is then persisted directly to ERP Model Repository.

Create ERP Test Model Element: A model composes model elements and hence

construction of a test model results in calling use case to construct model elements. The state of a

11

modeled element is used as expected test state (test oracle) in order to verify metadata returned

by an ERP Client.

Cache ERP Test Model Element: Anytime a model element is either created or

hydrated (deserialized from existing model), it is cached by the test framework to facilitate out-

of-process communication in case of UI Mode ERPClient; where in a test driver is run in a

different process to that of test cases, which is run in the context of ERP Client.

Retrieve ERP Test Model Element: A model element is retrieved to either populate the

cache in case of out-of-process test scenario or to transparently access a model element’s state

during verification step.

Execute Metadata Test Suite: The pattern supports verification of two metadata aspects:

(1) metadata exposed by ERP foundational Metamodel classes, (2) metadata that is applicable

only during a model’s design. Applying single responsibility principle, a Test Suite will focus on

verifying one metamodel element and its associated metadata.

Access ERP Design Time Metadata: Metadata that is applicable only during a model’s

design phase is accessed by tests which is then compared with expected state for verification.

Invoke ERP Metamodel Foundation Class: Metadata exposed by ERP Foundational

Metamodel classes is obtained by tests, calling respective interface and the response is then

compared with expected state for verification.

Having covered ERP domain concepts and the scope of ERP Metamodel Test Framework

(EMTF), next section focuses on the essential test aspects that directly shape the detail design

later.

12

ERP Metamodel Test Assembly Conceptual Model

 In the following figure, concepts with red rectangular border are external interfaces that

test needs to integrate. This figure gives the static context of ERP Metamodel test framework as

well as highlight concepts that must be supported to meet requirements stated earlier.

 erd HighLev el-ERD-TestAssembly

Test Harness

Test Driver

Test Suite

Test Assembly

Test Case

Test Phase

AssemblyContext

ERPClient

Stores Component
Information Of

1

Supports

0..*

Integrates With

1

Connects
To

1

Has

1

Goes
Through

3

Goes
Through

3

Goes
Through

3

Contains

0..*

Contains

0..*

Loads

0..*

Figure 3: ERD Depicting Test Assembly Context

Test Harness: It is outside the scope of EMTF and is essentially a tool that executes tests

packaged in a test library (Test Assembly in this context), gathers test results and generates test

report at the end of an execution.

13

Test Driver: Part of a Test Harness that facilitates execution of library of tests across

multiple Test Assemblies. EMTF integrates with such a test system via a set of design patterns to

guide implementation of metadata tests.

Test Assembly: EMTF defines a contract for composition of Test Suites and is a unit of

deployment. It has three distinct phases: setup, execution and cleanup.

Assembly Context: It maintains information regarding the System/Subsystem Under

Test (SUT), i.e., ERP Client’s Metamodel interfaces. This information comprises the kind of

component (for e.g. UI Mode Client, Non UI Mode Client, and so on), component version and

interface details for invocation to pass metadata requests into.

Test Suite: This abstraction is part of EMTF that defines the contract for implementation

of metadata verification tests. Each Test Suite, contain a set of tests, that verify an aspect of an

ERP Metamodel definition by accessing corresponding ERP Metadata. It is responsible for

constructing an ERP Model Element. All related Test Suites are packaged into one Test

Assembly that Test Driver loads in appropriate context for execution of tests. Test Suite concept

is furthered analyzed in the section ERP Metamodel Test Suite Conceptual Model.

Test Case: It is a procedure that details steps to be executed in order to verify an aspect

of Metamodel Element. It has dependency on a test oracle or expected state of system under test

in order to verify the results observed during its execution. Test Case concept is furthered

analyzed in the section ERP Metamodel Test Case Conceptual Model.

Test Phase: Every Test Assembly, Test Suite, Test Case has three distinct phases: setup

(pre-execution), execution and cleanup (post-execution). Each of these phase defines what needs

to be done so as to correctly observe output of a system under test (SUT) – ERP Metamodel

Subsytem – given a controlled set of inputs.

14

While Figure 3 provided necessary concepts that test framework needs to support, next

section covers essential dynamic behavior that must be supported by the test framework’s detail

design later.

Test Driver High Level Activity

 Activity diagrams provide a simple and intuitive illustration of what a system execution

flow looks like. These diagrams are sometimes enhanced using swim lanes to distinguish

responsibilities as well as who is responsible for them. Following figure illustrates a very

important and essential workflow that the EMTF design needs to support. The swim lane with

red border represents an external interface, Test Driver that EMTF integrates with. Test

Assembly and Test Suite responsibilities refine the requirements of EMTF.

15

 act ERP Metamodel Test Driv er HighLev el Activ ity

Hierarchial construction of model elements«iterativ e»

Test SuiteTest AssemblyTest Driv er

ActivityInitial
Construct Test Model

Deploy Test Model

Run Tests

Verify Metadata prov ided
by ERP Client interfaces

ActivityFinal

Including DesignTime
properties that are
applicable only in UI
Mode client (portal)

Construct Test
ModelElement

[Next Test Suite Exists]

[Remaining TestSuites None]

Figure 4: Test Driver High Level Activity

Test Assembly: It is responsible for providing a default valid model as well as integrates

with ERP Model Repository for model management. Additionally, it contains one or more Test

Suites.

Construct Test Model: EMTF defines a contract that a Test Suite needs to implement in

order to construct an ERP Model Element during Test Assembly setup phase. Collection of all

Test Suites together construct a whole Test Model. Construction of Test Model means either

building a new ERP Model from scratch or reusing existing models.

Deploy Test Model: EMTF comprises functionality to deploy models built during Test

Assembly setup phase to ERP Model Repository.

16

Run Tests: Tests that are contained within a Test Suite are run during Test Driver

execution phase. This activity will continue as long as there exist a Test Suite to be run.

Verify Metadata: EMTF defines a contract that a Test Suite at a minimum needs to

implement for verification of metadata obtained from an ERP Client.

Having covered both high level concepts and behavior of the test framework. Following

section highlights key phases that test is taken through – directed by the test framework - during

a test automation execution.

Test Phase Sequence

 UML sequence diagram is a kind of interaction diagram that focuses on the message

interchange between a number of lifelines. Each of the lifelines correspond to either an external

actor, for e.g. Test Driver or concepts from ERD. The following figures clearly shows not only

the messages exchanged between collaborators but also what messages trigger those

communications. Additionally, it also shows how a test automation, during its lifetime, goes

through three distinct phases of Setup, Execution and Cleanup.

17

 sd Test Phase Sequence

Test Driver Test Assembly Test Suite Test Case

loop Test Assembly Collection

[For All Test Assemblies]

loop Test Suite Collection

[For All Test Suites]

loop Test Case Collection

[For All Test Cases]

Test Assembly Execution Phase

Test Suite Execution Phase

Load()

Setup()

Setup()

Setup()

Execute()

Cleanup()

Cleanup()

Cleanup()

Figure 5: Test Phase Sequence Depicting Change of Phases

 Test Assembly is essentially a container of Test Suites that allows an external test harness

to execute ERP Metamodel test automation. TestSuite is the core abstraction that imposes

18

constraints that guide to how an ERP Metamodel test is authored. Hence in next section

TestSuite is further analyzed to identify necessary abstractions that are needed to be part of the

test framework.

ERP Metamodel Test Suite Conceptual Model

 The following ERD depicts concepts that are related to a Test Suite. Concepts with red

rectangular border are part of ERP System specifically its foundational layer, outside the scope

of the test framework. For the purposes of clarity, a directional dotted line is used to indicate ‘Is

a subtype of’ entity relationship; for example RootLevel TestSuite entity is a subtype of

TestSuite entity. Concepts introduced in this ERD will form the basis of detail design of ERP

Metamodel TestSuite abstraction. Additionally, given the hierarchical nature of ERP Model

Elements, ERP Metamodel TestSuites also have same hierarchical structure as each Test Suite is

intended to verify only one Metamodel Element and composes other Test Suites to verify child

Metamodel Elements.

19

 erd HighLev el-ERD-TestSuite-DeepCopy

Test Suite

RootLevel TestSuite

Extension TestSuite

Model Element Factory

Model Element

RootLevel Model Element

Child Model Element

Examples:
Form, Table, Report,
Query, View, Class
and so on

Examples:
Form control, Table
column, Report field,
Class attribute, Class
method, and so on

Model Element Adapter

RootLevel Model Element
Adapter Extension Element Adapter

Wraps

1

Constructs

1

Composes

0..*

Util izes

1

Has

1

Composes

0..*

Figure 6: Test Suite Perspective of an ERP Model Element

Root Level Model Element: This concept represents those Model Elements that do not

need any parent for their existence; for example: Form, Table, Report, Query, View, Class and so

on.

Child Model Element: This concept represents those Model Elements that do need a

parent for their existence; for example: Form control, Table column, Report field, Class attribute,

Class method and so on.

20

Model Element Factory: Provides an interface to construct an ERP Model Element.

This abstraction is outside the scope of EMTF.

Model Element Adapter: This abstraction wraps an ERP Model Element and adds

additional functionality such as caching for out-of-process communication. The cached Model

Element as then used by Test Suite to retrieve expected test state during verification. EMTF

provides two kinds of these adapters: Root Level Model Element Adapter and Extension Model

Element Adapter.

Root Level Model Element Adapter: This abstraction is designed to wrap primarily

RootLevel Model Element. It has a dependency on Root Level Model Element.

Extension Model Element Adapter: This abstraction is designed to wrap either a

ChildLevel Model Element or RootLevel Model Element. When a Root Level Model Element is

associated with another Root Level Model Element then the latter is referred to as an Extension

of the former. For example a Form bound to Table, in this case both are Root Level Model

Elements and latter is considered an Extension of the former.

Root Level Test Suite: This Test Suite has a Root Level Model Element Adapter that

provides necessary expected test state to verify metadata retrieved corresponding to the Model

Element.

Extension Test Suite: This Test Suite has an Extension Level Model Element Adapter

that provides necessary expected test state to verify metadata retrieved corresponding to its

Model Element.

The ERP Metamodel Test Suite concepts presented so far highlight hierarchical structure

of Test Suites, as well as provide a mechanism to obtain expected Model Element state via an

appropriate Adapter exposed via this test framework. In order to implement specific ERP

21

Metadata tests there is also a need to access actual or observable state of an ERP Model Element

which is then compared with expected state. The following figure covers essential concepts that

support metadata information retrieval.

ERP Metamodel Test Case Conceptual Model

 erd HighLev el-ERD-ERP Metadata

ERP Foundation Metadata
Class

ERP DesignTime Metadata
Class

Test Case

Model Element Adapter
Model Element

Metamodel Element

ERP Foundation Class
Proxy

ERP DesignTime Mode
Facade

Invokes
and
Verifies
Metadata
properties

1

Invokes
and
Verifies
Metadata
properties

1

Extends

1

Exposes
Metadata Of

1

Wraps

1

Is Referenced For
Expected State

1

Exposes
Metadata Of

1

Is Described By

1

Wraps

Wraps

Figure 7: Test Case Related Concepts

ERP Foundation Metadata Class: Its part of an ERP System’s foundation layer and

provides an interface to access metadata for a given ERP Metamodel Element.

ERP Foundation Class Proxy: An ERP foundational class is exposed via an API. In

order to abstract the complexities of invoking such API, ERP Test Framework that is being

designed provides an abstraction in the form of a proxy for each ERP Metamodel Element. Tests

22

implemented using these proxies are resilient to not only underlying changes to API technology

but to also can be used to verify API version upgrades. Any impact due to changes in API

interface is centralized within these proxies.

ERP DesignTime Metadata Class: Its part of an ERP System’s foundation layer and

provides an interface to access design time metadata for a given ERP Metamodel Element that is

applicable in UI mode.

ERP DesignTime Mode Facade: Similar to the proxy concept mentioned earlier, façade

enables a simple gateway to a complicated set of functionality of an ERP Metamodel Element.

Accessing design time metadata in UI mode may require tests to leverage additional technologies

to simulate UI interaction with ERP Client and observe metadata state. Usage of facades

abstracts dependencies on various UI interaction technologies, thereby providing a consistent

interface for test automations to use.

This section covered key concepts that are necessary to be supported by ERP Metamodel

Test Framework in order to implement test automation for all ERP Metamodel Elements in a

consistent way. The next chapter refines these concepts into a detail design.

23

DETAIL DESIGN

Methodology

“Everything is vague to a degree you do not realize until you have tried to make it

precise” - Bertrand Russell

As a result of high level design analysis we have identified all the concepts or

commonalities within ERP Metamodel domain. The next step now is to identify variances in

those concepts so as to evolve detail design from the high level design.

The objective of detail design is to design a software test framework that will facilitate a

consistent standard for implementing metamodel test automation and thereby making it easy to

divide automated testing effort among engineers of varying skill levels. This is also intended to

help a test engineer to focus primarily on test case implementation rather than ensuring the test

automation is maintainable, reliable, flexible, efficient, portable, robust and usable.

This level of design was based on object oriented analysis and design principles

leveraging well known Gang-of-Four Design Patterns [1]. These patterns are essentially

recurring solutions to common problems of software design; and are an effective means of

reusing existing expertise. Application of such patterns, where applicable, in concert results in

desired software design structure. In addition to the well-known patterns the following guidelines

were used:

1. Separate code that varies from the code that stays the same

2. Program to an interface and not to an implementation

3. Favor aggregation or composition over inheritance

4. Strive for loose coupling

24

5. Classes shall be open for extension but closed for modification

6. A class shall be assigned single responsibility

7. Design shall be flexible, robust and reusable

Test Framework Decomposition

 Based on high level design, concepts are clustered into cohesive groups called as

‘packages’ as shown in Figure 8. All the packages are designed with the intent to cover

necessary high level functionality and scope discussed in previous chapter. Utilities package is

placeholder for functionality to handle a specific ERP environment and hence it will not be dealt

any further in this paper.

25

 class EMTF:Core

«framework»
Core

DesignMode

(from ERP)

System

(from ERP)

TestServ ice

(from Core)

Domain

(from ERP)

Foundation

(from ERP)

Support for strongly
typed classes to access
DesignTime metadata.

Support for strongly
type classes to access
metadata accessible
via ERP Foundation
classes

Support for
management of ERP
Models, ERP Model
Elements, ERP
Metamodel. Including
deployment and cache
management of
constructed Model
Elements that serve the
purpose of test oracle
for verification of
observed system state.

Support for interacting
with any ERP Client: UI
Mode, Non-UI Mode;
as well as multiple
versions of each, such
as legacy and latest.

Support for consistent
implementation of
Metadata Tests.
Includes TestSuite
management as well
as necessary interfaces
to integrate with
external Test Harness.

ERP Metamodel Test
Framework

Utilities

Support for specific
ERP environment
management including
setup and cleanup.

Figure 8: Test Framework Core Functionality Decomposition

Core: This software ‘package’ represents the core functionality part of the ERP

Metamodel Test Framework (EMTF) and it composes six other packages as shown in the figure.

26

In this chapter each package is explored in the order of a test automation’s need based on

Figure 4: System Package, Domain Package, Foundation Package, Design Mode Package and

Test Services Package. System Package is first to be explored as follows.

System Package

 This test framework package comprises of abstractions that enable instantiation and

interaction with ERP Client components in a transparent way. Any interface changes in those

external components affects only the abstractions in this package. Tests that depend on this

package do not have to make any changes even when ERP Client version is changed, thereby

making the tests dependable and resilient to SUT updates.

ERP System Class Diagram

 In order to represent a static view of an object-oriented system UML Class Diagrams are

used here for visualizing, describing and documenting different aspects of EMTF. It shows a

collection of classes, interfaces, associations as well as relationships; besides describing a given

class its attributes, operations and constraints imposed on the system. It is also known as a

structural diagram.

In Figure 9 all tan color classes are part of core EMTF and the red and the green color

classes represent variances of ERPClient supported by the test framework. ERPFactory provides

method to create appropriate ERPClient instance based on the ComponentInfo parameter which

specifies a type of the client to create. All the underlying objects from an ERPClient –

ERPObject - are wrapped in an abstraction that is strongly typed and easier to work with.

27

 There needs to be only instance of ERPClient during a test run, hence Singleton Pattern

is used. Creation of ERPClient is done using Factory Method Pattern during TestAssembly

Setup phase.

 In this paper standard UML notation is used in all Class Diagrams. For example:

 Realization Relationship: IERPClient UML Interface is realized by ERPClient UML

Class

 Generalization Relationship: ERPObject UML Class is generalization of ERPClient

UML Class

 Dependency Relationship: ERPClient UML Class is dependent on ERPFactory UML

Class; ERPClient uses ERPFactory but ERPClient does not contain an instance of

ERPFactory as part of its own state. This relationship may be qualified by a ‘stereotype’

for clarity purpose.

 Association Relationship: ComponentInfo UML Class uses and contains one instance

each of UML Classes ComponentVersion and ComponentKind

Additionally, all UML structural diagrams are followed by corresponding one or more

UML Sequence diagrams that clarify interaction of abstractions presented in the structural

diagrams.

28

 class ERP-System-Client-Instantiation

ERPClient

+ Create(ComponentInfo, bool) :IERPClient

«property»
^ CompInfo() :ComponentInfo
+ Current() :IERPClient

ERPFactory

+ CreateSystem(ComponentInfo) :Object

ComponentInfo

+ Create(ComponentKind, ComponentVersion) :ComponentInfo
+ ToString() :string

«property»
+ Assembly() :Assembly
+ InterfaceName() :String
+ Kind() :ComponentKind
+ Name() :String
+ Version() :ComponentVersion

ERPObject

Construct(Object) :TOutput

«property»
+ RealObject() :Object

«enumeratio...
ComponentKind

 UnKnown
 DotNet
 COM
 UI

«enumeration»
ComponentVersion

 UnKnown
 vLegacy
 vCurrent

Current::CurrentNonUiFacade

«property»
- ErpSession() :Object

Legacy::LegacyNonUiFacade

Current::CurrentUiFacade

IDisposable

«interface»
IERPClient

+ CallStaticClassMethod(string, string, object[]) :TOutput
+ CallStaticRecordMethod(string, string, object[]) :TOutput
+ CreateClassObject(string, object[]) :IERPClass
+ CreateRecordObject(string) :IERPRecord
+ Logoff() :bool
+ Logon(Object) :bool

«property»
+ Component() :ComponentInfo
+ IsLoggedOn() :bool
+ RealObject() :Object

-_version -_kind

-_compInfo

Figure 9: Class Diagram of ERP System Abstractions

ERP System Initialization Sequence Diagram

While UML Class Diagram presented in previous section provided a static view of an

object-oriented system, interaction among those abstractions that depict dynamic behaviour are

29

shown below using UML Sequence Diagram. Such diagrams clarify collaboration among

abstractions with the interaction starting near the top of the diagram and ending at the bottom.

Figure 10 shows instantiation of an ERPClient which starts with a TestAssembly

requesting current singleton ERPClient, if it hasn’t been initialized then ComponentInfo obtained

from AssemblyContext is passed on to ERPFactory in order to construct IERPClient which is a

Façade that facilitates easier access to an ERPClient’s functionality.

 sd ERP-System-Client-Instantiation

Test Assembly

ERPClient ERPFactory

AssemblyContext

alt

[Client Is Not Initialized]

Current() :IERPClient

GetComponentInfo() :ComponentInfo

ConstructFacade(ComponentInfo) :IERPClient

_realObject= CreateSystem(ComponentInfo) :Object

Logon(Object) :bool

Figure 10: Sequence Diagram of an ERPClient Instantiation

System Package dealt with functionality supported by the test framework to interact with

an ERP System. Next section on Domain Package focuses on management of ERP Models for

test input.

30

Domain Package

 This package comprises abstractions that support test ERP Model construction and

deployment. An ERP Model’s metadata is accessed, after deployment, via Proxies and Façades

which are covered later. Concepts defined in Figure 6, are realized by this package.

ERP Model Construction Class Diagram

 Given the hierarchical nature of Model concept and the complexity involved in building

the model, Builder Creational Pattern is utilized to streamline construction of a Test Model. In

this pattern a Director collaborates with Builders to build parts of a Model. IModelAdapter, part

of Test Assembly, plays the role of a Director; and a TestSuite, that has one-to-one correlation

with a given Metamodel Element, plays the role of Builder of an element. Due to composition of

ExtensionTestSuites by either RootTestSuites or a container ExtensionTestSuite, such container

TestSuites also play the role of a Director besides being a Builder themselves.

As shown in Figure 11, in order to support the construction of a Test Model, TestSuites

implement IModelElementProvider interface, which delegates the responsibility of Model

Element construction to IElementAdapter. Similar to a TestSuite, ElementAdapter has one-to-

one correlation with a Metamodel Element. An ElementAdapter, using Adapter Structural

Pattern, encapsulates necessary functionality to interact with ERP Model Repository for Model

Element construction. Additionally, it implicitly caches a constructed Test Model Element so as

to make it available during test verification step as expected test state.

A Test Model may also be constructed from an existing model in which case the same

Builder pattern used during construction is also used here expect for one difference, and that is

instead of requesting Builders to create new ModelElement, they are asked to ‘Hydrate’ –

31

populate in memory data structure which is done using Prototype Creational Pattern via

Prototypes in the form of deserialized model elements.

 By default, EMTF provides couple of baked Test Models: EmptyModel and ValidModel.

EmptyModel doesn’t have any elements in it. ValidModel is constructed based on a default set of

TestSuites available for a test automation for specialization.

 In Figure 11, turquoise colored classes – ClassTestSuite and MethodTestSuite - are

examples of IRootModelElementProvider and IExtensionModelElementProvider respectively,

which in turn delegate the responsibility of Model Element construction to IRootElementAdapter

and IExtensionElementAdapter respectively.

 In addition to standard representation of abstractions via UML Classes, ‘generic’ aspects

of a class are also shown to clarify all other types a class might use. Such generic or unspecified

types as parameterized types (for example ‘T’ as depicted in Figure 11) are supplied at point of

use; when a parameterized type (T) is bound to a specific type it is denoted as ‘T

SpecificType’ in the UML class diagrams in this paper. For example, in Figure 11 shown below

both RootTestSuite and ExtensionTestSuite have three generic parameters TestElementType,

ERPClassType, DesignObjType where each of them must be comply with a design type contract

as shown. TestElementType must be a Metamodel class, ERPClassType must be an ERP

Foundation Class Proxy and DesignObjType must be a Façade that represents DesignMode

Class. In case of a derived UML Class, for example ClassTestSuite, the binding of these generic

types is also shown. TestSuite pattern is dealt in more detail in the section ERP Metamodel Test

Suite Pattern.

32

 class ERP-Model-Abstraction

T > ModelProvider<T>

BaseModelAdapter

EmptyModelAdapter

«interface»
IModelAdapter

+ AddModel(FileInfo) :void
+ CacheModelElement(IModelElementProvider) :void
+ CreateModel() :void
+ Hydrate() :void
+ Initial ize(ProjectAdapter) :void

«property»
+ Evaluate() :ITestEvaluator
+ Identifier() :String
+ Log() :ITestLog
+ Model() :EFT.ERPModel
+ NumberOfRootElements() :int

«interface»
Element::IModelElementProv ider

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool

«interface»
Element::IRootModelElementProv ider

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

TestService::
RootTestSuite

«interface»
Element::

IExtensionElementAdapter

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

TestService::
ExtensionTestSuite

DefaultModelAdapter
{leaf}

TestSuites::MethodTestSuite
TestSuites::ClassTestSuite

«interface»
Element::IRootElementAdapter

«property»
+ ModelAdapter() :IModelAdapter

«interface»
Element::IElementAdapter

+ AddModelElement(EFT.EnterpriseModelItem) :void
+ ConstructModelElement() :MetaModel.ElementDefinition
+ Hydrate() :void

«property»
+ AssignedSeqNumber() :int
+ Evaluate() :ITestEvaluator
+ ExpectedObj() :MetaModel.ElementDefinition
+ Identifier() :Guid
+ Log() :ITestLog
+ ModelAdapter() :IModelAdapter

«call»
< T->EmptyModel >

«call»

< TestElementType->MetaModel.ClassDefinition, ERPClassType->Foundation.Class,
DesignObjType->DesignTime.Class >

< ERPClassType->Foundation.Method, TestElementType->MetaModel.ClassMethodDefinition,
DesignObjType->DesignTime.Method >

< T->ValidModel >

«call»

Extension

«child»

Figure 11: Class Diagram of Abstractions Used for Model Construction

33

ERP Model Construction Sequence Diagram

 The following UML Sequence Diagram presents the collaboration among model

construction abstractions from previous section. While the diagram shows how a model element

is constructed, hydration of model elements also follows exact same sequence but instead of

create message, hydrate message is sent to collaborating class. Hierarchical tree structure is

constructed in a recursive manner following a Composite Structural Pattern. As the child

composites are created they are cached with their parent composite. Cached ModelElements are

used as expected state during test verification phase. At the end of model construction it is

deployed to ERP Model Repository.

34

Figure 12: Sequence Diagram Depicting Building of an ERP Test Model

35

 Once an ERP Model is deployed, its metadata is observed by a test automation by

accessing it in one of two ways: via API exposed by an ERP System’s foundational layer or

exposed by an ERP Client. Next section focuses on metadata access via the foundation layer.

Foundation Package

 This package comprises necessary core abstractions that facilitate definition of strongly

typed wrappers for ERP Foundation Metadata Classes as well as provide a consistent way to

invoke those wrappers, as described in Figure 7.

ERP Foundation Class Proxy Class Diagram

 ERP Foundation Metadata Classes may not be easily instantiated due to the fact that these

reside on the different network node and may not be available on the network node that a

TestAssembly resides on. In addition to that complexity, especially in case of legacy ERP

systems one may need to invoke such classes in a late bound manner, meaning there are not

strongly typed classes to easily access them. Anytime an ERP system were to be upgraded then

one may have to rework all the invocations to appropriately handle new or upgraded loosely

typed objects returned from the upgraded ERP system. To handle such complexities ERP

Foundation Proxy Class pattern is provided below so as to encapsulate necessary plumbing

necessary for such invocation for all ERP versions.

 As shown in Figure 13 FoundationClass is the base proxy abstraction for all the strongly

typed proxies of ERP Foundation Metadata Classes. The Proxy Structural Pattern followed here

provides not only a consistent way to define all the strongly typed proxies but also hides the

complexities present in invocation of underlying real ERP Foundation Metadata Class. The

generic base proxy – FoundationClass – has a parameterized type that specifies all proxy

36

subclasses must be derived from this base proxy as well as expose a public parameterless

constructor.

 Addition of a strongly typed proxy involves inheriting from generic base class

FoundationClass and exposing properties that pertains to that specific FoundationClass. The base

class makes it easy for a tester to create new instances of any proxy by exposing ‘Create’ factory

methods. These ‘Create’ methods accept the singleton ERPClient instance and any applicable

constructor parameters may also be passed into one of the overloads.

Depending on the ERPClient’s version the proxy base FoundationClass takes care of

invoking appropriate version of underlying ERP Metadata Class. UML Classes in turquoise

shown here are such proxy examples.

37

 class Core-ERP-Foundation-Proxy

Class > FoundationClass<Class>, new()

FoundationClass

+ Create(IERPClient) :Class
+ Create(IERPClient, object[]) :Class

«property»
+ name() :String

«interface»
IFoundationClassProxy

+ Initialize(IERPClient, object[]) :void

«property»
+ ConstructorParams() :object[]
+ EnterpriseSystem() :IERPClient
+ ERPClass() :IERPClass
+ IsInitialized() :bool

«interface»
System::IERPProxy

«property»
+ ERPObject() :IERPObject

IDisposable

«interface»
System::IERPClient

+ CreateClassObject(string, object[]) :IERPClass

ERPObject

System::ERPClass

^ Create() :ERPClass

Current::
CurrentObject

Legacy::LegacyObject
{leaf}

«interface»
System::IERPObject

«property»
+ RealObject() :Object

Foundation::Form Foundation::Report

Foundation::Label

Foundation::TreeNode

Foundation::Query

«interface»
System::IERPClass

+ Call(string, object[]) :TOutput

< Class->Form >

«use»

< Class->Report >

< Class->Label >

< Class->T >

< T->Query >

-_erpClass -_enterpriseSystem-_cEnterpriseSystem

Figure 13: ERP Foundation Class Proxy Class Diagram

38

ERP Foundation Class Proxy Creation Sequence Diagram

 Construction of an ERP Foundation Class Proxy is shown in Figure 14. From testing

perspective a Foundation Class Proxy is generally constructed by a corresponding TestSuite that

validates a specific Metamodel Element. A TestSuite implements necessary parameters to

construct corresponding FoundationClassProxy, FoundationClassFactory utilizes those

parameters in contruction of a strongly typed FoundationClassProxy that wraps an ERP

Foundation Class instance. The generic parameterized proxy factory method determines the type

to instantiate based on the proxy type bound to the ‘Create’ method as shown in the figure below.

 sd Core-ERP-Foundation-Proxy-Creation

FoundationClassFactory FoundationClass ERPClient«interface»

IMetadataTestSuite

static public T Create<T>(IMetadataTestSuite testSuite)
where T: IFoundationClassProxy, new()
{...}

Create(testSuite :IMetadataTestSuite) :
FoundationClassProxyType

{T is a subclass of FoundationClass<T>}

new() :
FoundationClassProxyType

Initialize(enterpriseSystem :IERPClient, constructorParams :object[])

[Valid representation is present in ERP Foundation]:
CreateClassObject(className :string, parameters :object[]) :
erpClassObject: IERPClass

Figure 14: ERP Foundation Class Proxy Creation Sequence Diagram

 Creation of a Proxy is only possible when there is a corresponding real object for it to

wrap. However, in cases where underlying FoundationClass is same for two different ERP

Metamodel Elements, with just a difference in constructor parameters – for example Menu and

MenuItem as shown in Figure 16, then an Adapter Proxy Pattern is used here. Basically, a

FoundationClassAdapter wraps a FoundationClass Proxy to provide a meaningful as well as

39

strongly-type definition for a TestSuite to work with. Figure 15 presents the sequence as to how

such Adapter Proxies are created and initialized utilizing constructor parameters defined in a

corresponding TestSuite; related structural diagram is provided in Figure 16.

 sd Core-ERP-Foundation-Proxy-Adapter-Creation

FoundationClassFactory FoundationClass ERPClient«interface»

IMetadataTestSuite

FoundationClassAdapter

static public T Create<T>(IMetadataTestSuite testSuite)
where T: IFoundationClassProxy, new()
{...}

Create(testSuite :IMetadataTestSuite) :
FoundationClassProxyAdapterType

{T is a subclass of
FoundationClassAdapter<T, Proxy>}

new() :
FoundationClassProxyAdapterType

Initialize(enterpriseSystem :IERPClient, constructorParams :object[])

new() :Proxy

Initial ize(enterpriseSystem :IERPClient, constructorParams :object[])

[Valid representation is present in ERP Foundation]:
CreateClassObject(className :string, parameters :object[]) :
erpClassObject: IERPClass

Figure 15: ERP Foundation Class Proxy Adapter Creation Sequence Diagram

A tester’s experience of adding new Foundation Class Adapter Proxies is similar to that

of FoundationClass Proxies. The only difference in usage of Adapter Proxy factory method is

that it expects a proxy class along with any applicable proxy construction parameters.

In cases where there simply isn’t a way to access metadata via any ERP FoundationClass

then a NullFoundationClass, a Null Object part of Null Object Pattern , provides a default

behavior that seamlessly works with existing TestSuite collaboration.

40

 class Core-ERP-Foundation-Proxy-Adapter

Proxy > FoundationClass<Proxy>, new()
Adapter > FoundationClass<Adapter>, new()

FoundationClassAdapter

+ Create(Proxy, object[]) :Adapter
+ Initialize(Proxy, object[]) :void

«property»
+ FoundationProxy() :Proxy
+ name() :string
+ ProxyContext() :object[]

Class > FoundationClass<Class>, new()

FoundationClass

+ Create(IERPClient) :Class
~ Initialize(IERPClient, IERPClass) :void

«property»
- ERPObject() :IERPObject
+ IsInitialized() :bool
+ name() :String

«interface»
IFoundationClassAdapter

+ Initialize(IFoundationClassProxy, Object[]) :void

«property»
+ Proxy() :IFoundationClassProxy

IERPProxy

«interface»
IFoundationClassProxy

+ Initialize(IERPClient, object[]) :void

«property»
+ ConstructorParams() :object[]
+ EnterpriseSystem() :IERPClient
+ ERPClass() :IERPClass
+ IsInitialized() :bool

Foundation::MenuItem
Foundation::MenuSeparator

NullFoundationClass

NullFoundationClassAdapter

Mock Class:
Primarily intended for testing FoundationClassAdapter
without any coupling with ERPClient

IERPClass = null
name = <based on constructor input>
IsInitialized == false
Proxy = NullFoundationClass

Mock Class:
Intended for usage in
circumstances where there isn't
FoundationClass for a given
Metamodel Element and there
isn't a way to get metadata from
any other FoundationClass as well.
For e.g.
MethodParameterDefinition

IERPClass = null
IsInitialized = true
name = constructor input value

< Adapter-> MenuSeparator,
Proxy->Menu >

< Adapter-> MenuItem,
Proxy->Menu >

<
Proxy->NullFoundationClass,
Adapter-> T >

< Class->NullFoundationClass >

< Class->Adapter >

Figure 16: ERP Foundation Class Proxy Adapter

41

 Having covered test framework mechanism to access ERP Metadata access via ERP

Foundation Classes, next section covers mechanism for metadata access via another way that is

exposed in user interface mode via an ERP Client.

Design Mode Package

 This package comprises core abstractions necessary to access metadata that is accessible

within a UI Mode ERP Client as explained in Figure 1. Certain metadata is only available in UI

Mode, for example a form layout, size and so on. These properties are generally set via an ERP

specific design environment which is also accessed in an UI Mode, in some cases an UI Mode

ERP Client also exposes this environment based on its process launch parameters.

 An ERP design environment provides a way for developer to build ERP application by

modeling forms, its associated form controls; tables and/or views that defines data the forms are

bound to. Given the hierarchical nature of such an ERP Metamodel, EMTF models design time

metadata corresponding to an ERP Metamodel Element as a TreeNode part of a hierarchical tree.

Therefore, to obtain metadata accessible within such a design environment, a test need to

traverse this conceptual tree. In order to make such traversal easier this package provides core

abstractions that facilitate a consistent definition of strongly type classes to access ERP design

time metadata. Additionally, these abstractions hide the complexity of invoking underlying ERP

design mode classes much like that of ERP Foundation Classes.

ERP DesignTime Mode Façade Class Diagram

 In Figure 17 abstract generic base class DesignModeFacade plays the role of a parent

composite and abstract generic base class DesignModeFacadeEx plays the role of a child

composite which requires the generic type parameter - ‘ParentType’ – be additionally bound;

42

and forms a part of Composite Structural Pattern. Similar to the core ERP Foundation Class

Proxy pattern, the DesignModeFaçade pattern allows a tester to easily add new façades by

inheriting from appropriate base classes, exposing façade specific strongly type properties and

binding the generic type parameter ‘T’. Factory methods, defined in these base classes, are

exposed for a consistent way to instantiate any design mode façade. Example DesignMode

Façades are shown in yellow, turquoise, green and red colors.

43

 class Core-ERP-DesignMode-Facade

T > DesignModeFacade<T>, new()

DesignModeFacade

+ Create(IERPClient, String) :T

«property»
+ DesignName() :String
^ EnterpriseSystem() :IERPClient
Properties() :IEnumerable<String>

«indexer»
+ this(String) :String

Type > DesignModeFacadeEx<Type,ParentType>, new()
ParentType > IDesignModeFacade

DesignModeFacadeEx

+ Create(IERPClient, String, ParentType) :Type

«property»
+ Parent() :ParentType

«interface»
IDesignModeFacadeEx

«property»
+ Parent() :IDesignModeFacade

«interface»
IDesignModeFacade

«property»
+ Node() :TreeNode
+ NodeName() :String
+ Root() :TreeNode

FoundationClass

Foundation::TreeNode

DesignMode::
Form

T > FormControl<T>, new()

DesignMode::
FormControl

DesignMode::
FormButtonControl

DesignMode::
FormGridControl

DesignMode::
Query

DesignMode::
Report

DesignMode::
Class

DesignMode::
ReportDesign

DesignMode::Method

«property»
+ Name() :String
+ Source() :String

< T->Report >

< T->Class >

< T->Form >

< Type->T, ParentType-> IDesignModeFacade >

< T->FormGridControl >

-_designTimeObjectNode

< T->Query >

< Type->ReportDesign, ParentType-> Report >

< Type->Method, ParentType-> Class >

«parent»

< T->Type >

< T->FormButtonControl >

Figure 17: ERP DesignTime Mode Facade Class Diagram

ERP DesignTime Mode Façade Construction Sequence Diagram

 Every TestSuite has a corresponding DesignModeFacade that it validates. Construction

sequence is shown in Figure 18, where in DesignModeFactory determines the type of façade to

44

instantiate based on the façade type that is bound to generic type parameter part of the factory

method – ‘Create’. Main difference between a creation of proxy from previous section and

façade as explained in this section is that a façade can be created as long as the name of the

design time TreeNode is known. In case of a child TreeNode, its parent is inferred from the

‘container’ TestSuite that is provided to Façade factory. The design time TreeNode name is

inferred based on the corresponding ERP Metamodel element that was created and cached during

model construction phase.

45

 sd Core-ERP-DesignMode-Facade-Creation-Sequence

DesignModeFactory DesignModeFacade DesignModeFacadeEx«interface»

IMetadataTestSuite

alt

[DesignObjType is a RootLevel Metamodel Element]

alt

[DesignObjType is a ChildLevel Metamodel Element]

TreeNode

static public DesignObjType Create<DesignObjType>(IMetadataTestSuite testSuite)
 where DesignObjType : IDesignModeFacade, new()
{...}

Parent's DesignObjType instance (IDesignModeFacade) is passed into for
initialization of the child. That parent's instance is obtained from
"IMetadataTestSuite.ContainerTestSuite.DesignModeObj"

Factory can infer whether it needs to construct a root level design
metamodel object or child level based on the the DesignObjType
bound to IMetadataTestSuite

Create(testSuite :IMetadataTestSuite) :DesignObjType

new() :IDesignModeFacade

Initialize(IERPClient, designTimeObjName)

Create(enterpriseSystem :IERPClient) :Root TreeNode

findNode(designTimeObjectUniqueName) :designTimeObjectNode

new() :IDesignModeFacadeEx

Initial ize(enterpriseSystem :IERPClient, nodeName :String, parent :IDesignModeFacade)

Node() :Parent TreeNode

findNode(path :string) :designTimeObjectNode

Figure 18: ERP DesignTime Mode Façade Construction Sequence Diagram

It is not necessary that every ERP Metamodel Element has a corresponding design time

node. For example, Label element in one of the ERP products does not have a corresponding

design time node. To support such scenario as well as to ensure that DesignModeFacade’s

46

collaboration with a TestSuite, Null Object Pattern is utilized to design NullDesignModeAdapter

which plays the role of a Null Object as shown in Figure 19 below.

 class Core-ERP-DesignMode-Facade-Adapter

T > DesignModeFacade<T>, new()

DesignModeFacade

+ Create(IERPClient, String) :T

«property»
+ DesignName() :String
^ EnterpriseSystem() :IERPClient
Properties() :IEnumerable<String>

«indexer»
+ this(String) :String

«interface»
IDesignModeFacade

«property»
+ Node() :TreeNode
+ NodeName() :String
+ Root() :TreeNode

FoundationClass

Foundation::TreeNode

T > DesignModeFacade<T>, new()

NullDesignModeAdapter

Root() == {Valid DesignTime Root}
NodeName() == null
Node() == {Uninitialized TreeNode}
Properties() = {} [empty]

DesignMode::
Label

DesignMode::
MenusSeparator

-_designTimeObjectNode

< T->T >

< T->Label >< T->MenusSeparator >

Figure 19: Null Design Mode Facade Adapter

TestServices Package

 In earlier sections under Detail Design, various aspects describe how to retrieve

information from ERP Client, that is, information accessible via ERP Foundation Classes and

47

ERP Design Mode Façades. This section focuses on the core functionality supported by EMTF

to implement an ERP Metadata Test Suite.

 Generally, in a traditional approach such a test is implemented in a procedural manner

where in all the steps needed are coded in sequence. However, in order to validate a complex

ERP Metamodel, following such an approach, a tester would need to flatten out complex

hierarchies; such flattened tests would be laborious to implement and error prone, let alone the

poor maintainability. In order to solve that challenge abstractions in this package enable a tester

to implement tests in an object oriented manner that are closer to real world model of problem.

This real world model is to focus on implementing tests for only one ERP Metamodel Element

and move on to next one; and the plumbing that is needed to ensure that the hierarchical

dependencies are traversed correctly is now the responsibility of EMTF and not the testers as

long as one follows the test pattern described in this paper. Next subsections cover aspects that

help implement object oriented tests that are easier to implement and maintain.

ERP Metadata TestSuite Class Diagram

 In Figure 20 BaseMetadataTestSuite defines the core responsibilities of an ERP Metadata

TestSuite. A TestSuite focuses on testing one ERP Metamodel Element by retrieving its

corresponding state, via ERP Foundation Proxy as well as ERP Design Mode Façade, and then

validating that information using the cached details that were used to construct the corresponding

ERP Metamodel part of a larger ERP Model during the Test Assembly setup phase. Therefore a

BaseMetadataTestSuite has three generic type parameters: ElementType, ERPClassType and

DesignObjType.

In order to support construction of an ERP Model Element methods part of

IModelElementProvider interface must be implemented by a Test Suite. ‘CreateModelElement’

48

and ‘CreateModelElementExtensions’ API is used to create an ERP Model Element and its

children respectively, like wise ‘AddModelElement’ and ‘AddModelElementExtensions’ is used

to hydrate an existing ERP Model Element. In order to construct ERP Model Element extensions

a Test Suites creates a composite Test Suite that knows how handle an ERP Model Element of

interest. IMetadataTestSuite interface defines CreateExtension and AddExtension that is used by

a parent composite TestSuite to build its children or ‘Extensions’ during ERP Model

construction. Test Suites hierarchy maps one to one with the hierarchy of the ERP Model

Elements, instead of having to flatten out a complex hierarchy into a single monolith test script.

An ExtensionTestSuite is cached with its parent TestSuite as and when an extension is created or

added. If a TestSuite has a dependency on an ERP Model Element that was already constructed

by another TestSuite then the latter is simply added as an Extension. BaseMetadataTestSuite

encapsulates necessary logic to create, add and cache TestSuite without derived TestSuites

having to worry about the complexities. A TestSuite that corresponds to a root level ERP Model

Element that does not have any container is called as RootTestSuite. ExtensionTestSuite is one

that has a container TestSuite that either has created or added it as an extension. A RootTestSuite

can be an extension of another TestSuite. A parent Test Suite manages the lifetime of its

ExtensionTestSuite if it had created it, the relationship here being a ‘composition’ one versus an

‘aggregate’ one in case an existing TestSuite is added as an extension. Figure 12 covered earlier

depicts how an ERP Model is constructed that results in creation or addition of a TestSuite as an

extension.

The main objective of an ERP Metadata TestSuite at the very least is to ‘Verify

MetadataRead’ and ‘VerifyDesignProperties’ (as defined in IERPSystemDesignModeTest

contract); this requires a TestSuite to verify both ERP Foundation Class API and ERP Design

49

Mode Classes. In order to support the verification of state, BaseMetadataTestSuite provides

strongly typed access to its corresponding Proxy, Façade as well as cached Model Element state

– that is used as expected state – by exposing these APIs respectively: ERPClassObj(),

DesignModeObj() and ExpectedObj().

BaseMetadataTestSuite in addition to supporting core ERP Metadata verification

requirements also supports integration with any external Test Harness framework for e.g. NUnit.

Test Harness is the one that actually drives the tests and reports the test results. In order to ensure

tests are resilient to changes in external Test Harness interfaces, BaseMetadataTestSuite

introduces a layer of indirection for commonly used test API as exposed by the interfaces

ITestEvaluator and ITestLog, available for all derived classes to assert the state of target

properties, log exceptions and so on.

50

 class Core-ERP-TestServ ice-MetaTestSuite-ClassDiagram

ElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

BaseMetadataTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
ConstructModelElement() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ Initialize(ERPClassType) :bool
+ InitializeExtensions() :bool
InsertModelElement(EnterpriseModelItem) :bool

«property»
+ DesignObj() :DesignObjType
~ ElementContext() :ElementContext
+ ERPClassObj() :ERPClassType
+ ExpectedObj() :ElementType

«interface»
IMetadataTestSuite

+ AddExtension(MetaModel.ElementDefinition) :ExtensionType
+ AddExtension(MetaModel.ElementDefinition, bool) :ExtensionType
+ CreateExtension() :ExtensionType
+ CreateExtension(bool) :ExtensionType
+ GetExtensions() :List<ExtensionType>

«property»
+ ContainerTestSuite() :IMetadataTestSuite
+ DesignModeObj() :IDesignModeFacade
+ ERPClassObj() :IFoundationClassProxy
+ ExpectedObj() :MetaModel.ElementDefinition
+ Hierarchy() :String
+ IsExtension() :bool
+ IsRoot() :bool

«interface»
IERPSystemDesignModeTest

+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void

BaseTestSuite

- CallViaInterop(String) :void
CaseCleanup() :void
CaseSetup() :void
ContextualTestMethod() :void
SuiteCleanup() :void
SuiteSetup() :void

«property»
+ AssemblyContext() :AssemblyContext

«interface»
ITestSuite

«property»
+ EnterpriseSystem() :IERPClient
+ Evaluate() :ITestEvaluator
+ Log() :ITestLog

«interface»
ITestLog

+ LogComment(string) :void
+ LogException(Exception) :void
+ LogException(Exception, string) :void
+ LogFailure(string) :void

«interface»
ITestEv aluator

+ Compare(object, object) :bool
+ Compare(object, object, string) :bool
+ CompareFiles(string, string) :bool
+ CompareFiles(string, string, string) :bool
+ CompareReferenceEquals(object, object) :bool
+ CompareReferenceEquals(object, object, string) :bool
+ CompareReferenceNotEquals(object, object) :bool
+ CompareReferenceNotEquals(object, object, string) :bool
+ IsFalse(bool) :bool
+ IsFalse(bool, string) :bool
+ IsNotNull(object) :bool
+ IsNotNull(object, string) :bool
+ IsNull(object) :bool
+ IsNull(object, string) :bool
+ IsTrue(bool) :bool
+ IsTrue(bool, string) :bool

«interface»
Element::IModelElementProv ider

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool

«property»
+ ElementAdapter() :IElementAdapter
+ ModelAdapter() :IModelAdapter

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

RootTestSuite

InitializeRootExtension(IRootTestSuite) :bool

«property»
+ ERPClassObjContructorParams() :object[]
^ RootTestType() :RootTestType

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

ExtensionTestSuite

-_testLog

-_evaluator

< ElementType->TestElementType, ERPClassType-> ERPClassType, DesignObjType-> DesignObjType >

«manage»

< ElementType->TestElementType, ERPClassType-> ERPClassType, DesignObjType-> DesignObjType >

Figure 20: ERP Metadata TestSuite Class Diagram

 Following sub-sections details key collaborations among abstractions of Figure 20 that

happen in each of TestSuite’s phases as mentioned in Figure 5: Setup, Execution, Cleanup.

51

 While Test Harness is responsible starting test automation run, Test Driver is responsible

for directing various TestSuite phases for all RootTestSuites as shown in Figure 5. Each

RootTestSuite manages the state of its ExtenstionTestSuite in an hierarchical manner. Next

subsection covers both TestSuite Setup and CleanUp phase.

ERP Metadata TestSuite Setup Phase Sequence Diagram

 Having established the hierarchy of Test Suites during the ERP Model construction,

during Test Suite setup phase (Figure 21) the hierarchy of those Test Suites are initialized via

depth first traversal as shown in the figure below. Every derived Test Suite must implement

‘InitializeExtensions’ abstract method declared in BaseMetadata Test Suite. Within that method

a TestSuite must initialize an ExtensionTestSuite’s ERP Foundation Class Proxy and ERP

DesignMode Façade. In case of a RootTestSuite it must also implement

‘ERPClassObjContructorParams()’ that is used by BaseMetadataTestSuite in initializing ERP

Foundation Class Proxy and ERP Design Mode Façade for corresponding RootTestSuite. An

initialized ExtensionTestSuite is the cached in a deterministic order so that when it comes to Test

Suite clean up, each of those Extensions are called in reverse order to execute any overridden

SuiteCleanup methods as shown in Figure 22.

52

 sd Core-ERP-TestServ ice-MetaTestSuite-TestPhase-Setup

Test Driver

RootTestSuite ExtensionTestSuiteBaseMetadataTestSuite FoundationClass

loop {Extension is of type IExtensionTestSuite}

[For all IMetaTestSuite extensions]

loop {Extension is of type IRootTestSuite}

[For all IMetaTestSuite extensions]

SuiteSetup()

InitializeExtensions() :bool

GetAllExtensions() :List<IMetadataTestSuite>

Create(enterpriseSystem, constructorParams) :extensionFoundationClassProxyObject

Initialize(foundationClassObjectProxy)

SuiteSetup()

ContainerTestSuite.CacheInitalizedExtensions(this)

CacheInitializedExtension(extensionTestSuite: IRootTestSuite)

Figure 21: ERP Metadata Testsuite Setup Phase Sequence Diagram

53

ERP Metadata Testsuite Cleanup Phase Sequence Diagram

 sd Core-ERP-TestServ ice-MetaTestSuite-TestPhase-Cleanup

Test Driver

BaseMetadataTestSuite «interface»

IMetadataTestSuite

loop

[For all initial ized extension testsuites]

SuiteCleanup()

InitializedExtensions() :Reversed
List<IMetadataTestSuite>

SuiteCleanup()

Figure 22: ERP Metadata TestSuite Cleanup Phase Sequence Diagram

 At the end of TestSuites Setup phase, ERP Models are deployed by the test framework to

ERP Model Repository. Test Driver then starts Execution phase for RootTestSuites in the same

order Setup phase was traversed. Next section covers the TestSuite Execution phase in more

detail.

ERP Metadata TestSuite Execution Phase Sequence Diagram

 Based on the hierarchy of a RootTestSuite that was established during ERP Model

construction, CaseSetup is called for all TestSuites in the hierarchy in a top down manner using

54

depth first traversal and only then a verification method on all TestSuites is called the same

hierarchical order.

 Discovery of test methods within a RootTestSuite is possible only if it implements an

interface that declares all the test methods and that interface must be “marked” (using

programming language specific ‘annotations’); all ExtensionTestSuites are also required to

implement that test interface. Due to the fact BaseMetadataTestSuite implements

IERPSystemDesignModeTest (Figure 20) interface all the TestSuites must implement those tests

at the very least.

 sd Core-ERP-TestServ ice-MetaTestSuite-TestPhase-Execution

Test Driver

RootTestSuiteBaseTestSuiteERPSystemTestGenerator ExtensionTestSuite «interface»

IMetadataTestSuite

loop For all IRootTestSuite tests

loop Depth first recursion of all initialized extensions

loop Depth first recursion of all initialized extensions

IList = {VerifyMetadataRead(), VerifyDesignProperties()}

GetERPSystemTestMethods(IRootTestSuite) :IList<MethodInfo>

TestSetup()

CaseSetup()

GetAllExtensions() :List<IMetadataTestSuite>

CaseSetup()

GetAllExtensions() :List<IMetadataTestSuite>

CaseSetup()

ContextualTestMethod(testMethodName)

VerifyMetadataRead()

GetAllExtensions() :List<IMetadataTestSuite>

VerifyMetadataRead()

GetAllExtensions() :List<IMetadataTestSuite>

VerifyMetadataRead()

Figure 23: ERP Metadata Testsuite Execution Phase Sequence Diagram

55

 Thus far the design covers TestSuite aspects that must be implemented by a test

automation so that tests can verify metadata accessible via both Foundation Class and UIMode

ERP Client.

In a ‘1-tier’ deployment topology where in both Test Harness and test automation share

process space with an ERP System under test, for e.g. when interacting with Non-UIMode ERP

Client, there isn’t any need for inter-process communication to happen and therefore caching of

expected Model state is not done by the test framework. However, in a ‘2-tier’ deployment

topology Test Harness does not share process space with an ERP System under test. For

example, in the case of UIMode ERP Client to be tested, ERP Models (test input) are constructed

and deployed within a TestHarness process space; this process space is not shared with UIMode

ERPClient within whose context the tests are run. Hence in such a case expected metadata state

needs to be ‘marshalled’ or transported to the ERPClient process space and made available when

test executes. Next sub-section covers the design necessary for such a transport.

Test Framework Inter-Process Communication Support

 When working with System Under Test (SUT) by loading it’s components in the same

process as that of a Test Driver, the test state management, for e.g. cached expected state, is quite

straightforward. However, when a test needs to validate state within another process, the

complexity is far greater. Expected state created within a Test Driver process needs to be made

available within the context of another remote process, this involves the overhead of inter-

process communication as well as serialization and de-serialization of expected test state from

Test Driver process into the remote process. A Test Assembly that comprises a collection of Test

Suites which in turn comprises a collection of Test Cases must continue to work in case of

interprocess communication so that a tester who implements tests does not have to worry about

56

the underlying complexities. In other words all the collaboration sequences covered earlier on

setup, execution and cleanup must simply work even when a Test Driver process is different

from a process in which Test Suite resides. In order to support such complexities EMTF provides

following design that enable Test Suites implementation decoupled from such complexities.

 Test Assembly abstraction provided by EMTF assumes the role of an

‘InteropTestAssembly’ when ERP Client happens to be a UI Portal. The sequence diagram

Figure 24 provides collaboration among other abstractions that play a vital role in setup and

cleanup of inter-process environment, referred to as ‘Interop’ in this document. During Test

Assembly step up phase, it instantiates InteropHelper which enables InteropDesignTimeConfig

and InteropRunTimeConfig that facilitate necessary setup as well as cleanup of Interop

environment. The Interop Environment comprises of Test Driver and UI Mode ERP Client

processes; the configuration information required to launch them and perform Interop

communication is supported by ‘InteropRunTimeConfig’. The actual communication includes

transfer of expected test state (constructed and deployed test ERP Models state) across Interop

boundary; ‘InteropDesignTimeConfig’ establishes Interop cache of the ERP Models that is

accessible from any process.

57

Figure 24: Conceptual Sequence of Interop Interactions

 The functionality exposed by InteropDesignTimeConfig that is used by Test Assembly, is

designed using Chain of Responsibility Behavioral Design Pattern. The ‘Handlers’ part of that

pattern comprise DriverDesignTimeConfig, ERPModelingDesignTimeConfig and

UiProcessBridgeDesignTimeConfig, in that succession sequence. These handlers collaborate for

DesignTimeConfig setup and cleanup tasks.

58

 DriverDesignTimeConfig helps in management of communication end points between

Test Driver and ERP Model Repository. Based on the type of ERP Client it appropriately sets up

appropriate channel for communication.

ERPModelingDesignTimeConfig helps in the management of the cache of test ERP

Models by setting up a cache that is Interop compatible.

UiProcessBridgeDesignTimeConfig helps in the management of any test state that is

needed within the context of a UI Model ERP Client, such as an UI Client Portal. Additionally, it

ensures that test ERP Models state is hydrated into expected test state in order to make it ready

for tests to access it during verification phase.

Similar to InteropDesignTimeConfig, InteropRunTimeConfig is also designed using

Chain of Responsibility Behavioral Design Pattern.

DriverRunTimeConfig helps in management of communication end points between Test

Driver and ERP Client. Based on the type of ERP Client it appropriately sets up appropriate

channel for communication.

ERPModelingRunTimeConfig manages the lifetime of appropriate ERP Client. It include

necessary prerequisites needed for ERP Client to be ready to accept communications.

UiProcessBridgeRunTimeConfig helps in the management of various components of ERP

System: ERP Client, ERP Server, based on a configuration test network topology.

Testers may extend the functionality of DesignTime and RunTime configuration by

implementing InteropTestAssembly; its setup methods are called after all EMTF chain of

collaboration (Figure 25) is done. In case of clean up it’s in reverse order, meaning cleanup

methods of custom extensions are called before EMTF chain of collaboration.

59

 sd Core-TestServ ice-Interop-Concrete-Sequence-DesignTime-Aspects

DriverHelper DriverDesignTimeConfig ERPModelingDesignTimeConfig UiProcessBridgeDesignTimeConfig «interface»

ITestAssemblyCustomInterop

{Current running process: Test Harness} {Components: Non-Ui ERP Client and ERP Server}

This may be
implemented in an
idempotent manner
relegating the ERP
Client's mode check.

Setup() Successor() :
ERPModelingDesignTimeConfig

Setup()

Successor() :
UiProcessBridgeDesignTimeConfig

[{UiMode Client Is Active}]:Setup()

InteropDesignTimeSetup()

Cleanup()

InteropDesignTimeCleanup()

Successor() :
ERPModelingDesignTimeConfig

Cleanup()

Successor() :
UiProcessBridgeDesignTimeConfig

Cleanup()

Figure 25: Interop Concrete Sequence DesignTime Aspects

The DesignTime and RunTime Chain of Collaboration among DriverConfig,

ERPModeling, UiProcessBridge is established via corresponding InteropHelper chain

(DriverHelper, ERPModelingHelper, UiProcessBridgeHelper). Each InteropHelper aggregates

both InteropDesignTime and InteropRunTimeConfig, whose successors are defined statically.

For example, DriverHelper knows whose its successor helper is and that in turn knows its

successor.

 Having established necessary prerequisites for Interop communication based on the

design described in earlier sections, the next step is passing of test messages across process

boundaries (Interop communication). In the figure below ‘local’ region refers to Test Driver

60

process and ‘remote’ refers to UI Mode ERP Client. Due to the length of UML collaboration

sequence, it is split into three parts as shown in Figure 26, Figure 27 and Figure 28 respectively.

In order to support Interop communications Test Assembly, playing the role of

InteropTestAssembly, is loaded not only in Test Driver process memory but also available within

UI Mode ERP Client’s process memory.

 In Figure 26 (part-1) below, after the launch of UI ERP Client portal by a Test Driver, for

each Test Suite, SuiteSetup() method is called. This method needs to execute within the context

of the portal, hence BaseMetadataTestSuite recognizes the need to communicate across process

collaborates with DriverHelper to transfer the call to the portal process. Before handing off the

responsibility to ERPModeling Helper, DriverHelper ensures InteropContext information is

current. The InteropContext, carries the details of the method to be called within the remote

process. ERPModelingHelper then serializes the test ERP Model state and store it in the

InteropContext, constructed within Test Driver process, to be made available in the remote portal

process. The call, carrying InteropContext, then crosses process boundary to the portal ERP

Client side.

61

 sd Core-TestServ ice-Interop-TestSuite-Interation-TestDriv er2ERPClient-Part-1

remotelocal

Test Driver

BaseTestSuite

ERPClient

DriverHelper ERPModelingHelper

Test Assembly

InteropContext is serialized for transport

Components: Test Harness, UiMode ERP Client, ERP Serv er
Precondition: Successfully deployed an InteropTestAssembly containing ERP Metadata TestSuites
The interop interaction sequence is similar in case of al l other TestSuite test methods as well: CaseSetup, CaseCleanup, SuiteCleanup.

prep for remote call

LaunchClientPortal()

LoadTestAssemblyInProcess()

SuiteSetup()

[UI Mode Client is Active]:
CallViaInterop(instanceMethodName :String)

Execute()

Execute()

ClientBridgeTestDriverCallInInterface(CallBackInteropHelperMethodInfo)

Figure 26: TestDriver to ERPClient Call across Process Boundary to Execute Tests in
ERPClient Process Space – Part 1

 Portal client on receiving the call (Figure 27, part-2), passes the received message

(InteropContext) to InteropTestAssembly. It then collaborates with its corresponding

UiProcessBridgeHelper to handle the incoming request. UiProcessBridgeHelper ensures

expected test state (ERP Models) is hydrated and then passes the test method specific invocation

responsibility to its TestSuiteManager.

62

 sd Core-TestServ ice-Interop-TestSuite-Interaction-ERPClient2TestAssembly-Part-2

remotelocal

ERPClient

«remote»

InteropTestAssembly

«local»

InteropTestAssembly

UiProcessBridgeHelper UiProcessBridgeDesignTimeConfig TestSuiteManager

Restoration of TestModel
ExpectedObjects' state if it's not already
available in remote process.

ClientBridgeTestDriverCallInInterface(CallBackInteropHelperMethodInfo)

CallBackInteropHelperMethod()

Execute()

[{hasHydratedTestOracle == false}]:Setup()

ExecuteInstanceMethod()

Figure 27: TestDriver to ERPClient Call across Process Boundary to Execute Tests in
ERPClient Process Space – Part 2

In Figure 28 (part-3) below, Test Suite Manager on recognizing that it is a remote call

retrieves the method to be invoked from InteropContext and then calls that method on specified

RootTestSuite. As a result of composite pattern, the method with the same name present in the

hierarchy are recursively called starting from RootTestSuite until leaf Test Suite is touched. This

Interop collaboration sequence is followed for all messages that Test Driver sends to a Metadata

TestSuite; including SuiteSetup, CaseSetup, CaseCleanup, SuiteCleanup, as well as all declared

test methods such as VerifyMetadataRead, VerifyDesignProperties.

63

 sd Core-TestServ ice-Interop-TestSuite-Interaction-RemoteTestSuiteInv ocation-Part-3

remote
TestSuiteManager RootTestSuiteUiProcessBridgeHelper

InteropContext available after
de-serializaton

ExecuteInstanceMethod()

SuiteSetup()

Figure 28: TestDriver to ERPClient Call across Process Boundary to Execute Tests in
ERPClient Process Space – Part 3

64

ERP METAMODEL TEST SUITE PATTERN

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a way that you

can use this solution a million times over, without ever doing it in the same way twice.”

- Christopher Alexander

 This chapter distills the information provided in Detail Design and presents the core ERP

Metamodel Test Suite Pattern as shown in Figure 29.

BaseMetadataTestSuite’s main objective is to test ERP Metadata corresponding to an

ERP Metamodel Element. It streamlines access to ERP Metadata via ERPClient by requiring

testers to specify ERP Foundation Class Proxy and ERP Design Mode Façade part of a derived

Test Suite definition. It also manages the expected test state seamlessly so that testers can focus

on essential aspects of an ERP Metadata Test Suite implementation. Additionally, besides

transparently providing core functionality for Inter-process execution of test methods, using

Template Method Behavioral Design Pattern it also defines a scaffolding which covers invariant

steps of the algorithms (caching and hydration of ERP Model Elements as well as TestSuite

Extensions) and then delegates the variant steps to derived classes, in some cases providing

default implementation such as SuiteSetup, CaseSetup, CaseCleanup, SuiteCleanup.

Abstract classes RootTestSuite and ExtensionTestSuite are specializations of Abstract

BaseMetadataTestSuite that facilitate building complex hierarchy of TestSuites by either creation

of new ones or reuse of existing ones, in a very straightforward by following the principle of

divide and conquer. In Figure 29 below all the classes in turquoise are part of EMTF and ones in

blue, as an example, is all what a tester needs to implement.

65

In addition to the core Test Suite pattern, Proxy and Façade patterns (red colored class in

Figure 29) were also described as to how information can be retrieved from API based ERP

Foundation Classes as well as ERP Design Mode Classes. Class representing expected metadata

state (cached test oracle) is colored in green.

Although this document doesn’t cover verification of ERP Metadata write functionality,

it can be extended for write along the same lines as that of ERP Metadata read.

This design pattern enforces single responsibility, consistency, loose coupling, flexible,

and reusable; key characteristics of maintainable software that is resilient to underlying changes

in either an ERP Client or a Test Harness framework used to drive the tests.

66

 class ERP Metamodel Test Pattern

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

RootTestSuite

«property»
+ ERPClassObjContructorParams() :object[]
^ RootTestType() :RootTestType

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

ExtensionTestSuite

BaseTestSuite

ElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

BaseMetadataTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
CaseCleanup() :void
CaseSetup() :void
ConstructModelElement() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ GetAllExtensions() :List<IMetadataTestSuite>
+ GetExtension() :ExtensionType
+ GetExtensions() :List<TOutput>
+ GetExtensions() :List<ExtensionType>
+ GetExtensions(Predicate<BaseType>) :List<IMetadataTestSuite>
+ InitializeExtensions() :bool
InsertModelElement(EnterpriseModelItem) :bool
SuiteCleanup() :void
SuiteSetup() :void
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void

«property»
+ DesignObj() :DesignObjType
+ ERPClassObj() :ERPClassType
+ ExpectedObj() :ElementType

T > DesignModeFacade<T>, new()

DesignMode::
DesignModeFacade

Class > FoundationClass<Class>, new()

Foundation::
FoundationClass

«abstract»
MetaModel::

ElementDefinition

TestSuites::ClassTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ InitializeExtensions() :bool
- isAbstract() :bool
- isFinal() :bool
- isInterface() :bool
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void

«property»
+ ERPClassObjContructorParams() :object[]
^ RootTestType() :RootTestType

TestSuites::MethodTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ Initial izeExtensions() :bool
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void

TestSuites::MethodParameterTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ Initial izeExtensions() :bool

< ElementType->TestElementType,
ERPClassType-> ERPClassType,
DesignObjType-> DesignObjType >

<
TestElementType->MetaModel.ClassMethodDefinition,
ERPClassType->FoundationProxy.Method,
DesignObjType->DesignFacade.Method >

<
TestElementType->MetaModel.MethodParameterDefinition,
ERPClassType-> NullFoundationClass, DesignObjType->
NullDesignMode >

<
TestElementType->MetaModel.ClassDefinition,
ERPClassType->FoundationProxy.Class,
DesignObjType->DesignFacade.Class >

< ElementType->TestElementType,
ERPClassType-> ERPClassType,
DesignObjType-> DesignObjType >

0..*

0..*

+_designObj

1

+_erpClassObj 1

+_elementOracle 1

+_containerTestSuite
0..1

+_initializedExtensions
0..*

1

Figure 29: ERP Metamodel TestSuite Pattern

67

UNIT TEST DESIGN

“Quality is never an accident; it is always the result of high intention, sincere effort,

intelligent direction and skillful execution; it represents the wise choice of many alternatives.”

– William A. Foster

In order to test the collaboration among core abstractions part of ERP Metadata TestSuite

Pattern (Figure 29) the unit test design pattern shown in Figure 30 was followed. Following core

unit test scenarios were validated:

1. Standalone RootTestSuite without any ExtensionTestSuite

2. A RootTestSuite which composes an ExtensionTestSuite

3. A RootTestSuite that composes an ExtensionTestSuite which in turn composes an

ExtenstionTestSuite

4. A RootTestSuite which aggregates another RootTestSuite

5. A RootTestSuite that aggregates another RootTestSuite which in turn composes another

ExtenstionTestSuite

6. A RootTestSuite aggregrates top level RootTestSuites from previous tests {1, 2, 3, 4, 5}.

All the Test Suites implemented part of unit tests are decoupled from ERP Metadata API

via usage of Null Object Pattern.

68

 class Unit Test Pattern For Metamodel TestSuite Abstractions

NullMetadataTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ InitializeExtensions() :bool
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void
+ VerifyModelElement() :void
+ VerifyTestFrameworkCore() :void

«property»
+ ERPClassObjContructorParams() :object[]
^ RootTestType() :RootTestType

FoundationClass

Foundation::NullFoundationClass
DesignMode::NullDesignMode

FoundationClassAdapter

T > NullFoundationClassAdapter<T>, new()

Foundation::
NullFoundationClassAdapter

NullMetadataTestSuiteEx

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ InitializeExtensions() :bool
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void
+ VerifyModelElement() :void
+ VerifyTestFrameworkCore() :void

«property»
+ ERPClassAdapterObjContextParams() :object[]
+ ERPClassObjContructorParams() :object[]
^ RootTestType() :RootTestType

BaseMetadataTestSuite

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

RootTestSuite

DesignModeFacade

T > DesignModeFacade<T>, new()

DesignMode::
NullDesignModeAdapter

Foundation::
NullFoundationClassAdapter

BaseMetadataTestSuite

TestElementType > MetaModel.ElementDefinition
ERPClassType > FoundationClass<ERPClassType>, new()
DesignObjType > DesignModeFacade<DesignObjType>, new()

ExtensionTestSuite

NullMetadataExtensionTestSuite

+ AddModelElement(EnterpriseModelItem) :bool
+ AddModelElementExtensions() :bool
+ CreateModelElement() :bool
+ CreateModelElementExtensions() :bool
+ InitializeExtensions() :bool
+ VerifyDesignProperties() :void
+ VerifyMetadataRead() :void
+ VerifyModelElement() :void
+ VerifyTestFrameworkCore() :void

IERPSystemTest

«interface»
IUnitTestSuite

+ VerifyModelElement() :void
+ VerifyTestFrameworkCore() :void

<
TestElementType->MetaModel.TextValueDefinition,
ERPClassType-> NullFoundationClass,
DesignObjType-> NullDesignMode >

< TestElementType->MetaModel.TextDefinition,
ERPClassType-> NullFoundationClassAdapter,
DesignObjType-> NullDesignMode >

1 1

1

1

< T->NullDesignMode >

< T->NullFoundationClassAdapter >

1

1

1

1

«bind»

< TestElementType->TextValueDefinition,
ERPClassType->NullFoundationClassAdapter,
DesignObjType->NullDesignMode >

Figure 30: UnitTest Abstractions to Verify Core TestSuite Pattern

69

CONCLUSION

Traditional approach to testing core metamodel functionality that is part of a large and

complex ERP system has several challenges. An impact of that is poor test coverage due to

lengthy and complex test scripts as a result of flattening ERP Model hierarchy; these steps are

neither extendible to build related complex test scenarios nor are reusable across different

deployment topologies. As traditional test scripts also directly handle complex interactions with

distributed ERP system components they tend to be less reliable, affecting adversely regression

testing outcome.

In order to alleviate ERP System's metamodel testing challenges, this paper presented an

ERP Metamodel Test Framework Pattern. The pattern introduces three core sub-patterns: ERP

Model Adapters to manage test inputs as well test oracle, ERP Metamodel API Proxies and

Façades to transparently access ERP Metadata. This pattern enables verification of ERP

Metamodel functionality in both UI and non-UI modes, across different deployment topologies,

using single set of tests. Additionally, it allows test engineers to easily extend intermediate test

steps by either specializing existing tests or aggregating existing ones in a strongly typed manner

and platform independent way; thereby increasing productivity over traditional approach. And

lastly, but most importantly the test automations built using this pattern are resilient to changes in

the interface of an ERP System as long as the functionality being tested is still supported. Due to

the advantages of this pattern over traditional approach, ERP Metamodel Test Pattern also has

positive impact on triple constraints of an ERP Metamodel test project: scope, time and cost, as

well.

70

CONSTRAINTS AND FUTURE WORK

The pattern presented here assumes that like ERP Foundation Classes there will be an

API available to access ERP Metadata for UI Client, i.e., there will be ERP Design Mode Class

for every ERP Model Element in UI Mode. However, this is not always the case requiring UI

Mode metadata to be accessed by simulating human interaction with the ERP Client. While this

increases the complexity of EMTF, the tests implemented using this pattern are not impacted if

one decided to extend EMTF to support such simulation.

Future enhancement of the pattern presented here would be to extend the design to

support simulation of human interaction with UI ERP Client and be able to access UI Mode

metadata for elements that do not have API. Conceptually, ERP Design Mode Façade would still

be provided to testers but instead of accessing metadata via API, corresponding metadata will be

accessed using external human interaction simulation frameworks such as Selenium or any GUI

testing framework [28]; and retrieve metadata properties from designer surface. Strategy

Behavioral Design Pattern can be utilized to either use API or simulate human interaction in

order to retrieve ERP Metadata for a metamodel element. Another enhancement would be to

enable an option to automatically generate test inputs based on combinatorial testing techniques

[29]; and automatically build test ERP Models based on those generated test inputs. Even when

EMTF is enhanced in future, existing test automations built using the pattern discussed here

would continue to work without needing any change.

71

REFERENCES

1. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. “Design Patterns. Elements of

Reusable Object-Oriented Software”. Addison Wesley, 1994.

2. M. Fowler et al., “Refactoring: Improving the Design of Existing Code”, Addison-

Wesley, 1999.

3. R.V. Binder, “Testing Object-Oriented Systems”, Addison-Wesley, 2000.

4. A. Abran, P. Bourque, R. Dupuis, J. W. Moore, L. Tripp. “Guide to the Software

Engineering Body of Knowledge”, IEEE Computer Society, 2004.

5. R.S. Pressman, “Software Engineering: A Practitioner’s Approach”, sixth edition,

McGraw-Hill, 2004.

6. S. McConnell, “Code Complete: A Practical Handbook of Software Construction”,

second edition, Microsoft Press, 2004.

7. J.P. Cavano, J.A. McCall, “A framework for the measurement of software quality”, ACM

SIGSOFT Software Engineering Notes, Volume 3 Issue 5, November 1978.

8. G. J. Myers, C. Sandler, and T. Badgett, “The art of software testing”, John Wiley &

Sons, 2012.

9. K. Naik, P. Tripathy, “Software Testing and Quality Assurance: Theory and Practice”.

John Wiley & Sons, 2008.

10. W.E. Perry, “Effective Methods for Software Testing”, 3rd Edition. Wiley Publishing,

2006.

72

11. H. Lackner, J. Svacina, S. Weißleder, M. Aigner, and M. Kresse, “Introducing Model-

Based Testing in Industrial Context - An Experience Report”, Workshop on Model-Based

Testing in Practice, 2010.

12. P. E. Ammann and J. Offutt, “Introduction to Software Testing”, Cambridge University

Press, 2008.

13. G. Booch, J. Rumbaugh, I. Jacobson, “The Unified Modeling Language User Guide”,

Addison-Wesley, 2001.

14. J. Hartmann, C. Imoberdorf, M. Meisinger, “UML-Based integration testing”,

Proceedings of the 2000 ACM SIGSOFT International Symposium on Software testing

and Analysis, 2000.

15. J. Arlow, I. Neustadt, “Enterprise Patterns and MDA: Building Better Software with

Archetype Patterns and UML”, Addison-Wesley, 2004.

16. B. Y., Alkazemi, et al. "On Evaluating the Architecture of ERP Systems", The

ResearchBulletin of Jordan ACM, Volume II.

17. T. Barker, M. N. Frolick, “ERP implementation failure: A case study”, Information

Systems Management, 20(4), 43-49, 2003.

18. J.I. Chen, “Planning for ERP systems: analysis and future trend”, Business Process

Management Journal, Vol. 7, No. 5, 374-386, 2001.

19. M. A. T. Alsudairi. “Analysis and Exploration of Critical Success Factors of ERP

Implementation: A Brief Review”. International Journal of Computer Applications, 44-52,

May 2013.

73

20. J. Rivera, "Gartner Says By 2016, the Impact of Cloud and Emergence of Postmodern

ERP Will Relegate Highly Customized ERP Systems to Legacy Status”. Gartner, 29 Jan.

2014. Web. 28 Apr. 2014. <http://www.gartner.com/newsroom/id/2658415>.

21. J. Mylopoulos, "What Is Metamodeling?”, Department of Computer Science, University

of Toronto., 2004. Web. 27 Dec. 2012.

<http://www.cs.toronto.edu/~jm/2507S/Notes04/Meta.pdf>.

22. "JPA Metamodel API (Type, ManagedType, EntityType, Attribute)”, ObjectDB Software,

Web. 12 Jan. 2013. <http://www.objectdb.com/java/jpa/persistence/metamodel>.

23. "Using the Metamodel API to Model Entity Classes - The Java EE 6 Tutorial" Oracle,

Web. 12 Jan. 2013. <http://docs.oracle.com/javaee/6/tutorial/doc/gjiup.html>.

24. "Meta Model of Data Types - SAP Global Data Types [read-only] - SCN Wiki", SAP,

Web. 10 Jan. 2013.

<http://wiki.scn.sap.com/wiki/display/GDT/Meta+Model+of+Data+Types>.

25. T. Kühne, “Matters of (Meta-) Modeling”, Springer-Verlag, Journal on Software and

Systems Modeling, Volume 5, 369-385, 2006.

26. W. Hesse, “More matters on (meta-)modelling: remarks on Thomas Kühne’s ‘matters’”,

Springer-Verlag, Journal on Software and Systems Modeling, Volume 5, 387-394, 2006.

27. "Model-Based Testing", MSDN, Web. Dec. 2012. <https://msdn.microsoft.com/en-

us/library/ee620469.aspx>.

28. "List of GUI Testing Tools" Wikipedia, Wikimedia Foundation, Web. 10 Jan. 2013.

<http://en.wikipedia.org/wiki/List_of_GUI_testing_tools>.

29. R. Bryce et al. "Combinatorial testing", In Handbook of Software Engineering Research

and Productivity Technologies, Chapter 14, 2010.

74

APPENDIX

Gang-of-Four Design Patterns used in this paper

Creational: Builder

The Builder pattern focuses on constructing a complex object step by step. It separates

the construction of a complex object from its representation so that the same construction process

can create different representations.

Client

+ Client ()
+ ConcreteBuilder () : void

Director

- theBuilder : System.Collections.ArrayList

+ Director ([in] builder : Builder)
+ Director ()
+ Construct () : void

Product

+ Product ()

«interface»
Builder

+ BuildPart () : void

ConcreteBuilder

- product : Product

+ ConcreteBuilder ()
+ BuildPart () : void
+ GetProduct () : Product

«use»

«use»

«use»

Figure A.1: GoF Creational-Builder Pattern-Class Diagram

75

aDirector : DirectoraClient : Client aConcreteBuilder : ConcreteBuilder

1 : ConcreteBuilder ()

2 : Director (builder : Builder)

3 : Construct ()
4 : BuildPart ()

5 : GetProduct ()

Figure A.2: GoF Creational-Builder Pattern-Sequence Diagram

Creational: Factory Method

The Factory Method defines an interface for creating objects, but lets subclasses decide

which classes to instantiate. Although the “new” operator always creates an object, but it fails to

encapsulate an object creation. A Factory Method enforces that encapsulation, and allows an

object to be requested without inextricable coupling to the act of creation.

«interface»
Product

ConcreteProduct

+ ConcreteProduct ()

Creator

+ AnOperation () : void
+ FactoryMethod () : Product

ConcreteCreator

+ ConcreteCreator ()
+ FactoryMethod () : Product

- theProduct

0..1

Figure A.3: GoF Creational-Factory Pattern-Class Diagram

76

theProduct : ConcreteProductaClient aConcreteCreator : Concrete
Creator

1 : ConcreteCreator ()

2 : FactoryMethod ()

3 : ConcreteProduct ()

Figure A.4: GoF Creational-Factory Pattern-Sequence Diagram

Creational: Prototype

 The Prototype pattern specifies the kinds of objects to create using a prototypical

instance. Creation of new objects is done by copying this prototype. It helps avoid expensive

new creation by supporting cheap cloning of a pre-initialized prototype.

77

Client

+ Client ()
+ Client ([in] prototype : Prototype)
+ CloneTest () : void

«interface»
Prototype

+ ToClone () : Prototype

ConcretePrototype

+ ConcretePrototype ()
+ ToClone () : Prototype

- thePrototype

0..1

Figure A.5: GoF Creational-Prototype Pattern-Class Diagram

aClient : Client thePrototype : ConcretePrototype

1 : ToClone ()

Figure A.6: GoF Creational-Prototype Pattern-Sequence Diagram

78

Creational: Singleton

The Singleton Pattern ensure that a class has only one instance, and provides a global

point of access to it.

Client

+ Client ()
GetSingleton () : void

Singleton

- uniqueInstance : Singleton

- Singleton ()
+ GetUniqueInstance () : Singleton

«use»

Figure A.7: GoF Creational-Singleton Pattern-Class Diagram

aClient : Client
aSingleton : Singleton

1 : GetUniqueInstance ()

Figure A.8: GoF Creational-Singleton Pattern-Sequence Diagram

79

Structural: Adapter

The Adapter pattern helps convert an interface of a class into another interface clients

expect. Adapter lets classes work together that couldn't otherwise because of incompatible

interfaces.

Client

+ Client ()
+ Client ([in] target : Target)
+ RequestAdapter () : void

Adaptee

+ Adaptee ()
+ UsefulOperation ()

Adapter

+ Adapter ()
+ Adapter ([in] adaptee : Adaptee)
+ Request () : void

- theAdaptee 0..1

«interface»
Target

+ Request () : void

- theTarget

0..1

Figure A.9: GoF Structural-Adapter Pattern-Class Diagram

80

theAdaptee : Adaptee
theTarget : AdapteraClient : Client

1 : Request ()

2 : UsefulOperation ()

Figure A.10: GoF Structural-Adapter Pattern-Sequence Diagram

Structural: Composite

 The Composite pattern helps Compose objects into tree structures to represent whole-part

hierarchies. Both individual objects and compositions of objects are treated uniformly.

Client

+ Client ()
+ Client ([in] component : Component)
BuildComposite () : void
RequestComposite ([in] component : Component) : void

Component

+ Add ([in] component : Component) : void
+ GetChild ([in] childIndex : int) : Component
+ GetComposite () : Component
+ Remove ([in] component : Component) : void
+ CompositeOperation ()
+ LeafOperation ()

Leaf

+ Leaf ()
+ Add ([in] component : Component) : void
+ GetChild ([in] childIndex : int) : Component
+ GetComposite () : Component
+ Remove ([in] component : Component) : void
+ LeafOperation ()

Composite

+ children : System.Collections.ArrayList

+ Composite ()
+ Add ([in] component : Component) : void
+ GetChild ([in] childIndex : int) : Component
+ GetComposite () : Component
+ Remove ([in] component : Component) : void
+ CompositeOperation ()

- theComponent

0..1

Figure A.11: GoF Structural-Composite Pattern-Class Diagram

81

aLeaf2 : LeafaLeaf1 : Leaf
aComposite : CompositetheComposite : CompositeaClient : Client

1 : Composite ()

2 : Composite ()

3 : Leaf ()

4 : Leaf ()

5 : Add (component : Component)

6 : Add (component : Component)

7 : Add (component : Component)

Figure A.12: GoF Structural-Composite Pattern-Sequence Diagram

Structural: Façade

 The Façade pattern provides a simplified interface to a single class with a very complex

interface. It captures the complexity and collaborations of a component, and delegates to the

appropriate methods.

Facade

+ Facade ()
+ RegisterSubsystem ([in] subsystem : System.Object) : void
+ SimpleOperation ()

ComplexClass

+ ComplexOperation ()
+ ComplexClass ()

- theComplexClass

1

Figure A.13: GoF Structural-Façade Pattern-Class Diagram

82

aFacade : FacadeaClient aSubsystem : ComplexClass

1 : Facade ()
2 : ComplexClass ()

3 : RegisterSubsystem (subsystem :
System.Object)

4 : SimpleOperation ()
5 : ComplexOperation ()

Figure A.14: GoF Structural-Façade Pattern-Sequence Diagram

Structural: Proxy

The Proxy pattern adds a wrapper and delegation to protect the real component from

undue complexity. It uses an extra level of indirection but provides the same interface.

«interface»
Subject

+ UsefulOperation ()

RealSubject

+ RealSubject ()
+ UsefulOperation ()

Proxy

+ Proxy ()
+ Proxy ([in] subject : RealSubject)
+ SetRealSubject ([in] realSubject : RealSubject) : void
+ UsefulOperation ()

- theRealSubject

0..1

Figure A.15: GoF Structural-Proxy Pattern-Class Diagram

83

aProxy : Proxy
theRealSubject : RealSubjectaClient

1 : Proxy ()

2 : RealSubject ()

3 : UsefulOperation ()
4 : UsefulOperation ()

Figure A.16: GoF Structural-Proxy Pattern-Sequence Diagram

Behavioral: Chain of Responsibility

The Chain of Responsibility pattern passes a sender request along a chain of potential

receivers. It simplifies coupling, instead of senders and receivers maintaining references to all

candidate receivers, each sender keeps a single reference to the head of the chain, and each

receiver keeps a single reference to its immediate successor in the chain.

Request

- kind : string = "test"

+ Request ([in] kind : string)

Client

+ Client ([in] handler : Handler)
+ Client ()

ConcreteHandler

+ ConcreteHandler ()
+ ConcreteHandler ([in] successor : Handler)
+ HandleRequest ([in] request : Request) : void

«use»

Handler

+ HandleRequest ([in] request : Request) : void
+ GetSuccessor () : Handler
+ SetSuccessor ([in] successor : Handler) : void

successor0..1

«use»

- theHandler

0..1

Figure A.17: GoF Behavioral-Chain of Responsibility Pattern-Class Diagram

84

aClient : Client aThirdHandler : ConcreteHandleraSecondHandler : ConcreteHandleraFirstHandler : ConcreteHandler

1 : HandleRequest (request : Request
)

2 : HandleRequest (request : Request
) 3 : HandleRequest (request : Request

)

Each HandleRequest operation determines whether or not to handle the Request or to
send the Request to succeeding Handler

Figure A.18: GoF Behavioral-Chain of Responsibility Pattern-Sequence Diagram

Behavioral: Iterator

The Iterator pattern provides ways to access elements in a collection sequentially without

exposing the underlying structure of the object.

«interface»
Iterator

+ CurrItem () : IteratorObject
+ First () : IteratorObject
+ IsDone () : bool
+ Next () : IteratorObject

«interface»
Aggregate

+ AddItem ([in] item : IteratorObject) : void
+ CreateIterator () : Iterator
+ RemoveItem ([in] item : IteratorObject) : void

ConcreteAggregate

- items : System.Collections.ArrayList

+ ConcreteAggregate ()
+ AddItem ([in] item : IteratorObject) : void
+ CreateIterator () : Iterator
+ GetNextElement ([in] index : int) : IteratorObject
+ GetSize () : int
+ RemoveItem ([in] item : IteratorObject) : void

ConcreteIterator

- currIndex : int

+ ConcreteIterator ([in] argument : Aggregate)
+ ConcreteIterator ()
+ CurrItem () : IteratorObject
+ First () : IteratorObject
+ IsDone () : bool
+ Next () : IteratorObject

IteratorObject

+ IteratorObject ()

«use»

«use»

«use»
«use»

- theConcreteAggregate

1

Figure A.19: GoF Behavioral-Iterator Pattern-Class Diagram

85

aConcreteIterator : Concrete
Iterator

aConcreteAggregate : Concrete
Aggregate

aClient

1 : ConcreteAggregate ()

2 : CreateIterator () 3 : ConcreteIterator (argument :
Aggregate)

4 : CurrItem ()

5 : First ()

6 : IsDone ()

7 : Next ()

Figure A.20: GoF Behavioral-Iterator Pattern-Sequence Diagram

Behavioral: Strategy

 The Strategy Pattern helps defines a set of algorithms that can be used interchangeably.

Context

+ Context ([in] strategy : Strategy)
+ Context ()
+ ContextInterface () : void

«interface»
Strategy

+ UsefulOperation ()

ConcreteStrategy

+ ConcreteStrategy ()
+ UsefulOperation ()

- strategy

1

Figure A.21: GoF Behavioral-Strategy Pattern-Class Diagram

86

theConcreteStrategy : Concrete
Strategy

aClient aContext : Context

1 : ConcreteStrategy ()

2 : Context (strategy : Strategy)

3 : ContextInterface ()
4 : UsefulOperation ()

Figure A.22: GoF Behavioral-Strategy Pattern-Sequence Diagram

Behavioral: Template Method

 The Template Method pattern helps defines a skeleton of an algorithm in an operation,

and defers some steps to derived classes. The invariant steps of the algorithm are implemented in

an abstract base class, while the variant steps are either given a default implementation, or no

implementation at all.

AbstractClass

+ PrimitiveOperation ()
+ TemplateMethod ()

ConcreteClass

+ ConcreteClass ()
+ PrimitiveOperation ()

Figure A.23: GoF Behavioral-Template Method Pattern-Class Diagram

87

aConcreteClass : ConcreteClassaClient

1 : ConcreteClass ()

2 : TemplateMethod ()

3 : PrimitiveOperation ()

Figure A.24: GoF Behavioral-Template Method Pattern-Sequence Diagram

88

Miscellaneous Patterns Used

Behavioral: Null Object

 The Null Object pattern encapsulates the absence of an object by providing a

substitutable alternative that offers suitable default behavior that seamlessly works with existing

collaboration.

 class NullObject-Pattern

AbstractObject

+ Request() :void

NullObject

+ Request() :void

RealObject

+ Request() :void

do nothing

Client

«uses»

Figure A.25: Behavioral - Null Object

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

