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ABSTRACT 

Patient non-attendance is the major challenge that reduces practice efficiency, resource 

utilization, and clinic accessibility, and leads to increased cost and diminished quality of care, 

while the clinic scheduling system is known as a determining factor for clinic efficiency, 

resource utilization and the accessibility of patients to healthcare facilities. A suitable and 

optimized scheduling system is one of the most important components for efficient care delivery 

to address the major challenges in the healthcare industry. Hence, reducing the adverse effect of 

patient no-shows and short-notice appointment notifications through the appointment scheduling 

approach is a strategically important matter for any healthcare systems.  

In this research, three patient scheduling models are proposed to address the patient non-

attendance problem in the outpatient clinics. The first model is a two-stage mixed stochastic 

programming model, which can be used to optimize the overbooking decisions: (1) How many 

appointment slots should be overbooking; (2) Which appointment slot should be overbooking. In 

addition, this model also considers the cooperation between providers and patients’ choice. The 

second model is a Markov Decision Process (MDP) model, which can be used to optimize the 

walk-in patient admission policy in clinics with single physician by answering the four vital 

questions: (1) When the walk-in patient admission decisions should be made; (2) At each 

decision point, how many walk-in patients should be admitted; (3) Which provider should serve 

the admitted walk-in patients; (4) When the admitted walk-in patient should be served.  By using 

this MDP model, heuristic optimal walk-in patient admission rules have been found for the 

single physician systems. For systems with more physicians, a more advanced two-stage mixed 

stochastic programming model (the third model) is proposed in order to make the optimal real 

time walk-in patient admission decisions. At last, it worthwhile to mention that novel solution 
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approach has also been developed in order to solve these models in the efficient and effective 

manner.  
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1. INTRODUCTION 

1.1. Background 

In the United States, the national healthcare expenditure amounted to $2.7 trillion in 

2011, which accounted for 17.9% of its GDP. This figure is more than all healthcare 

expenditures in other countries combined (WHO, 2011). However, low clinic efficiency and 

poor patient accessibility to care still remain the major challenges for most outpatient clinics in 

the United States. It is estimated by the Institute of Medicine that the U.S. healthcare systems 

wasted $190 billion annually on inefficient delivery of care (Campbell, 2012). Among the 

inefficiencies, patient non-attendance which includes the patient no-shows and short-notice 

appointment cancellations (usually defined as cancellations prior to less than 48 hours of the 

clinic appointment date/time) is the major contributor in primary care clinics. It is also believed 

that patient non-attendance is the major challenge that reduces practice efficiency, resource 

utilization, and clinic accessibility, and leads to increased cost and diminished quality of care, as 

summarized in Fig.1.1. On the other hand, the clinic scheduling system is known as a 

determining factor for clinic efficiency, resource utilization and the accessibility of patients to 

healthcare facilities. A suitable and optimized scheduling system is one of the most important 

components for efficient care delivery to address the major challenges in the healthcare industry. 

Hence, reducing the adverse effect of patient no-shows and short-notice appointment 

notifications through the appointment scheduling approach is a strategically important matter for 

any healthcare systems.  

Under the setting of traditional appointment scheduling, patients make appointments 

weeks or months earlier by calling the clinic or right after their current visits. Usually, the 

appointments are not available in near term, since most clinics operate at their capacity. As a 
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result, the patients need to wait several weeks or months for their clinic visits. In case of an 

urgent appointment, the patients may have to use the emergency department. It leads to a 

disruption of care continuity because they are not able to see their own providers in time. It also 

dramatically increases the care cost in an unnecessary way since the cost of emergency 

department visits is much higher than that of primary clinic visits. Meanwhile, patient no-show 

rate and short-notice appointment cancellation rate are likely to increase due to the long waiting 

list for appointments. It is well-known that patient no-shows and short-notice appointment 

cancellations increase the volatility to the standard clinic process, which would eventually 

increase the healthcare expenditure and decrease clinic efficiency and patient accessibility.  

Patient no-shows 

and short-notice 

cancellations

Reduced practice 

efficiency

Reduced resource 

utilization

Reduced patient 

access to care

Increased cost 

and diminished 

quality of care  

 

Fig. 1.1: Adverse effect of patient non-attendance 

 

Due the disadvantages of the traditional appointment scheduling system, open access 

scheduling (or advanced access scheduling) was proposed in 1990s, which promotes timely 

access to care, and improve patient satisfaction. The key concept of open access scheduling is to 

“do today’s work today”. Under this concept, a portion of clinic slots are reserved for the patients 

who need same-day appointments, while the non-reserved slots are scheduled in advance for 
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patient with non-acute illness. In order to optimize the appointment schedule template under the 

open access concept, clinics need to find out the optimal number and sequence of the reserved 

appointments according to their clinic setting and patient attendance characteristic.   

Besides the open access scheduling approach, overbooking is also a well-known practice 

for mitigating the adverse effects of patient no-show and short-notice appointment cancellation. 

Generally, by using the overbooking strategy, clinics can book two or more (normally two) 

patients in the same appointment slots. In case of one patient being no-show or cancelling the 

appointment with short-notice, the provider can still see other patients in the same appointment 

slot. However, in case of more than one patients showing up for the same appointment, it can be 

expected that the patient waiting time will increase dramatically. Hence, the common problem 

with overbooking practice is to determine the number of overbooking slots and which 

appointment slots should be overbooked.  

Besides the above mentioned practice, it is also believed that clinics can also reduce the 

adverse effects of patient no-show and short-notice appointment cancellation by admitting walk-

in patients (Moore et al., 2001; Liu et al., 2010). The key concept is using walk-in patients to fill 

the empty appointment slots due to patient no-shows and short-notice appointment cancellations. 

In order to achieve the maximum profit and patient satisfaction, the clinics need to optimize their 

walk-in patient admission policy, since too many walk-in patient admissions will lead to reduced 

patient satisfaction, while too few admissions can result in the loss of profit. Hence, it is 

worthwhile to develop optimization models/methods that can find the optimal walk-in patient 

admission policy where the optimal number of walk-in patients can be admitted at the right time.  
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1.2. Problem statement 

It can be shown that open access scheduling optimization problem and overbooking 

scheduling optimization problem belong to the category of static appointment scheduling 

problem, in which all decisions are made before the clinic session starts. The static appointment 

scheduling determines the scheduling template of providers, i.e., how many patients to be 

booked in each appointment slot. On the other hand, walk-in admission optimization problem is 

in the category of dynamic appointment scheduling problem, where the walk-in admission 

decisions are made during the clinic session. To be more specific, the walk-in admission 

optimization problem uses the schedule template as the input, and determines which walk-in 

patient should be admitted. Note that for both type of problems, we want to mitigate the adverse 

effect raised by patient no-show and short-notice appointment cancellation. With this 

understanding, the work of this dissertation can be divided into two different tasks, as shown in 

Fig 1.1. In the first task, we solve the static appointment scheduling problem, which finds the 

best overbooking strategy to deal with patient no-show and short-notice appointment 

cancellation. In the second task, we solve the dynamic appointment scheduling problem, which 

optimizes the walk-in patient admission decisions.  

In the existing literature, the patient overbooking problem has drawn a lot of attention.  

The basic questions in the patient overbooking problems are: 

1) How many appointment slots should be overbooked?  

2) Which appointment slot should be overbooked? 

The number of appointment slots to be overbooked is of vital importance for the patient 

overbooking problem, since inappropriate decisions may lead to long patient waiting time (if too 

many overbooking) or long provider idle time (if too few overbooking). Intuitively, the number 
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of overbooked slots can be estimated by the total number of appointment slots times the non-

attendance rate. However, many studies have shown that this kind of estimation may not provide 

the optimal solution. Hence, advanced techniques are needed to find the optimal solution to this 

problem.  

Besides, the number of appointment slots to be overbooked (i.e., the second question) is 

also of vital importance for patient overbooking problem. Note that the optimal number of 

overbooked appointment slots alone does not guarantee the optimal solution to the overbooking 

problem. For example, assume we know that only 1 appointment slot should be overbooked, we 

need further decide which appointment slot should be overbooked. To answer this question, we 

need to consider the patient non-attendance rate, patient service time distribution, patient arrival 

patterns, and etc. Hence, this is a complex problem that requires advanced modeling tools and 

solution approach.  

As for the first task of this study, we will formulate this complex patient overbooking 

problem, which considers patients’ choice, into a two-stage stochastic programming model, 

where the objective is the weighted sum of patient waiting time, provider idle time and provider 

overtime. Note that, to some extent, the patient waiting time, provider idle time and provider 

overtime can indicate the operation efficiency, resource utilization and access to care, 

respectively. By comparing the existing overbooking studies, our study contributes to the 

literature in the following aspects: (1) Our study is the first one that applied the two-stage 

stochastic programming model to investigate the patient overbooking problem; (2) Our study 

does not have restriction on patient service time distribution (some studies assume constant 

service time) and patient arrival patterns (some studies assume punctual arrival).  (3) Our study 

considers a clinic system with multiple providers. 
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As for the second task of this dissertation, it will be shown in the literature review that 

limited attention has been paid to the walk-in patient admission optimization problem. In such 

clinics, admitting some walk-in patients is usually adopted to reduce the negative impact of 

patient no-shows and short-notice cancellations and improve the operations efficiency, resource 

utilization and patients’ accessibility to the clinics. To solve walk-in patient admission 

optimization problem, we need to give answers to the following four questions one by one: 

1) When should the walk-in patient admission decisions be made? 

2) At each decision point, how many walk-in patients should be admitted? 

3) Which provider should serve the admitted walk-in patients? 

4) When should the admitted walk-in patients be served?  

An intuitive answer to the first question is making the admission decision upon the arrival 

of the walk-in patients. However, this will pose great difficulty in mathematically modeling the 

problem, since the random arrival pattern of walk-in patient will bring uncertainty to the decision 

time point. Hence, clinics could choose to make the decision at fixed time points (e.g., the 

beginning of each appointment slot), in order to simply the walk-in patient admission 

optimization problem. It should be noted that both scenarios are examined in this study.  

The answer to the second question is of critical importance to the walk-in patient 

admission optimization problem, since it directly affects the objective function value. As we can 

imagine, excess walk-in admissions could increase the patient waiting time and provider 

overtime, while insufficient walk-in admissions could increase the provider idle time, given the 

high patient no-show rate and short-notice appointment cancellation rate. Much information has 

to be considered in order to make this decision, such as the number of previous admitted walk-in 

patients and number of providers in the clinics. In addition, the randomness of patient no-show 
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and short-notice appointment cancellation, as well as the random service introduce more 

difficulties in answering this question.  

The answers to the third and fourth question are also important to the walk-in patient 

admission optimization problem, since the arrangement of the admitted walk-in patients can also 

affect the objective function value. For example, assume we have the optimal answer for the 

second question, which provides the optimal number of admitted walk-in patients, a bad 

arrangement of those patient can easily increase patient waiting time, provider idle time as well 

as the provider overtime. Hence, to find best answers for question 3 and 4, we might need to 

apply the techniques, which have been tested for solving job shop scheduling problem.  

As we can see, none of four questions can be easily addressed. When they are combined 

together, there is no doubt that both advanced modeling skills and leading solution approaches 

should be adopted to find the right answer. The existing modeling approach for clinic scheduling 

optimization might not be applicable or hard to be applied to the walk-in patient admission 

optimization problem. In this sense, it is in urgent need of developing models and tools that 

could be used to make optimal walk-in patient admission decisions. As a result, this study will 

also develop models and solution approaches for solving the proposed walk-in admission 

optimization problem, which will fill the gap between the existing studies and the needs from 

clinics.  

At last, it should be indicated that the contributions of this study will be as follows:  

1) Our study will be the first quantitative research investigating the dynamic walk-in 

patient admission optimization problem in regards of mitigating the negative impacts of patient 

no-shows and short-notice appointment cancellations. Hence, this study can fill the gap between 

the existing study and needs from clinics.  
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2) Two different types of modeling approaches, i.e., Markov Decision Process (MDP) 

and Stochastic Mixed Integer Programming (SMIP) will be piloted on modeling the walk-in 

patient admission optimization problem. Although both modeling approaches have been studies 

and applied by many researches, there is no general framework which can be used to model the 

newly proposed problem. Hence, our models will be the first MDP model and SMIP model for 

the dynamic walk-in patient admission optimization problem.  

3) Advanced solution approaches will be developed to solve the newly proposed 

problem. For the MDP model, the large size of state space can hinder the efficiency of solution 

procedure. To make it worse, it might be impossible to locate the optimal solution for some large 

size problems.  In addition, there is no standard solution procedure for MDP models, i.e., the 

MDP models in the existing literature all have their own dedicate solution procedures. Hence, as 

one major contribution of this study, we propose a simulation based genetic algorithm to find the 

heuristic optimal walk-in patient admission policy. 

For the SMIP model, since the walk-in patient admission decision need to be made in real 

time or within short time (less than 1 minute), it can be expected that the solution approaches 

should be quite efficient. As it is well known, the stochastic characteristic and the integer 

decision variables can make the SMIP problems very difficult to solve. Our developed solution 

approach, which is based on the sample average approximation (SAA) method, will overcome 

these challenges and provide the optimal admission decision for clinics.  

4) It is reported that the number of walk-in clinics is expected to increase from 1400 

in 2012 to 2800 in 2015 with a saving of $800 million per year for the entire healthcare industry 

in the U.S. (Sussman, 2013). With our developed models and solution approaches, the results of 

this study can be applied to any clinics which provide services to walk-in patients. It can be 
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expected that our study can help these clinics to make the best walk-in patient admission 

decision, make sure that the admitted walk-in patients are served at the right time and thus lead 

to the substantial cost savings.  
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2. LITERATURE REVIEW 

2.1. Patient no-shows and short-notice appointment cancellations 

Many studies have identified patient no-shows as one of the most challenging problems 

associated with the healthcare industry in terms of operational planning (Cayirli and Veral, 2003; 

Gupta and Denton, 2008). It is claimed that clinic no-show rate varies among clinical 

departments, regions, and nations, with the range being between 5%-60% (Woodcock, 2003; 

Zeng et al; 2013). In addition, it can be shown that patient non-attendance disrupts the clinical 

flow operations in multiple ways. Not only it causes waste and disrupts clinical flows, but also it 

limits clinic access of other patient. This in turn leads to poor health outcomes, reduced revenues 

and lower clinical staff productivity (Zeng et al., 2013).  

With the understanding of the side effect of patient no-shows, tremendous research has 

been conducted to discover the factors that affect patient no-show behavior.  Among these 

studies, Lehmann et al. (2007) indicate that patients who have higher no-show risks are younger, 

born earlier in the year, and belonging to the ethnicity other than European. In addition, the 

authors indicate that follow-up patients are likely to be no-shows as compared to the new 

patients. The findings of the increased tendency of the patients belonging to the minority groups 

are also confirmed by Cohen et al. (2008). The authors divide the existing data in two groups 

(i.e., adults and children). The study indicates that among the group pertaining the children group, 

ethnicity and geographic considerations are significant. Additionally, the parents’ perceptions on 

the physician also play a role in the determination of the no-show risk among this group. Among 

the adult group, it is indicated that gender, geographic consideration, time of the appointment, 

and the amount of time elapsed between the date of scheduling the appointment and actual 

appointment all play significant roles. The role of ethnicity is also confirmed by the study of 
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Dreiher et al. (2008). In addition, the authors indicate that the ethnic origin and time of the year 

might play a role in determining the no-show risk. The effect of the time of the year (i.e., seasons) 

might be linked with the weather conditions. Since the higher rate of no-show risks is associated 

with spring and winter, it might be indicated that weather conditions might also play a role in 

determining the no-show risk. In addition, González-Arévalo et al. (2009) point out that the 

patients who live far away from the hospital and the patients who have poor healthcare 

conditions and deteriorated mental status are more likely to become no-shows. Meanwhile, 

forgetting appointment time/date, hospitalization or death of the patient, not being notified about 

the appointment, or the change of appointment date/time are the main factors for the patients to 

miss the appointments. Ciechanowski et al. (2006) demonstrate that among the diabetes patients, 

the fearful and secure type of attachment in a non-depressed patient less likely leads to a no-

show compared with that in a depressed patient. Similarly, Norris et al. (2014) indicate that 

among the main factors that affect the no-show rates, prior attendance history, age, and distance 

play the most significant role. Another interesting finding is that the clinical practices that aim to 

increase the utilization contribute to the increase of no-show rate. 

Among the common factors mentioned above, patient forgetfulness, patient 

dissatisfaction due to extensive delays in accessing to the healthcare services, time conflicts, 

transportation related issues, patient’s emotions, patient’s perceptions regarding the merits of the 

healthcare system can all be considered to be the factors that contribute to the no-show rates 

(Goldman et al., 1982; Bean and Talaga, 1992; Garuda et al., 1998; Lacy et al., 2004; Zeng et al., 

2013). 

With the understanding of the significant factors related to patient no-show behaviors, 

various non-scheduling (as compare to the scheduling approaches mentioned above) intervention 
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strategies such as sending out reminders, providing the transportation service, or charging the no-

show fee are offered in the literature. For example, Woods (2010) indicates that the telephone 

reminders decrease the no-show rate by 50% (from 8% to 4%). Similarly, the notification letters 

as a form of intervention also decreases the no-show risks for the patient by 29%. These types of 

interventions can reduce the no-show problem to some extent (Macharia et al. 1992, Guy et al. 

2012), but the elimination of patient no-shows through implementing these interventions is 

unlikely. Some clinics still report high non-attendance rates after implementing those measures, 

which are as much as 20% or even higher (Hashim et al. 2001, Geraghty et al. 2007; Liu et al., 

2013). In addition, Henry et al. (2012) in a study conducted in the VA hospital setting, indicate 

that intervention methods based for decreasing the no-show risk might work for some patient 

groups, while they might not be effective in some other. To cite an instance, the authors indicate 

that patients, who are not homeless, not in depression, and had five or more appointments in the 

last 6 months are associated with lower risk of no-show risk based on the automatic telephone 

reminder intervention.  However, for the patients not having those attributes, the no-show risk is 

not affected by the notification schemes based on telephone reminder. 

In addition to patient no-shows, short notice appointment cancelations also should be 

considered as impediments of clinic efficiency and patient accessibility to care. Usually short-

notice appointment cancellations disrupt the clinic operations flow. Given the short time notice, 

it would be difficult to notify another patient about opening of the time slot of the cancelled 

appointment, and in most of the cases, the short notice appointment cancellations are somehow 

equivalent to patient no-shows with regard to the associated outcomes.  
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There are some studies in the literature that consider the appointment cancellation. 

Although the number is not as high as the no-show studies, they deserve special attention. As 

previously discussed, appointment cancellations especially with the short notice might disrupt 

the operations and lead to wastes and inefficiencies. In that regard, Olson et al. (1994) indicate 

that higher body mass index might be associated with the higher appointment cancellation 

among the female population. Additionally, Buckley et al. (2009) discuss the role of approaches 

that might be followed by the radiologist to reduce the appointment cancellation rates. The 

patients when referred to radiology department might fear for embarrassing situation. Parikh et al. 

(2010) indicate that live telephone reminders initiated by the staff members or auto reminders 

might help with decreasing the appointment cancellation risk.   

To sum up, patient no-shows and short-notice appointment cancellations have significant 

adverse effect on the clinic efficiency and patient accessibility to care. They can disrupt the clinic 

flows, increase operation cost and decease the patient satisfaction and quality of care. Although 

non-scheduling intervention can reduce the no-show rate and appointment cancellation rate to 

some extent, it is unlikely that patient no-show and appointment cancellations could be 

completely eliminated. Hence, it is of great importance to apply scheduling interventions with 

the combination of non-scheduling intervention to further reduce the adverse effect of patient 

non-attendance. Note that the scheduling interventions are usually adopted through the 

appointment scheduling optimization process. In the following, we will review the existing 

literatures on the appointment scheduling optimization problems and the corresponding 

scheduling interventions.   
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2.2. Clinic appointment scheduling optimization 

Appointment scheduling was introduced in outpatient clinics in the 1950s to reduce 

patient waiting time in clinics (Bailey 1952, Welch and Bailey 1952). Currently, most outpatient 

clinics in the U.S. use this approach to control the access to care services that they provide. The 

downside is that appointment scheduling may result in long lead time and long waiting lists for 

appointments (Murray and Tantau 1999, Pinto et al. 2002). The long lead time for appointments 

leads to more patient no-shows and late cancellations (Bean and Talaga 1995, Lacy et al. 2004, 

Lee et al. 2005), which waste clinical resources and thus increase healthcare costs. Meanwhile, 

several studies show that the long waiting lists for appointments prevent patients in acute 

conditions from seeing their own physicians in a timely manner, which undermines the 

accessibility to healthcare (Pinto et al. 2002, Murray and Berwick 2003). It should be noted that 

the U.S. is not alone in this regard – similar problems on appointment scheduling exist in the 

healthcare systems of other developed countries such as England (Kerssens et al. 2004; Schoen 

et al. 2004). Hence, the appointment scheduling optimization problem has receiving consistently 

attention from researchers and practitioners.  

Queuing theory and simulation are the major quantitative methods used to evaluate and 

optimize appointment schedules. Among the two, simulation is more relevant to our work so we 

will survey the relevant studies in details.  In early studies, simulation is primarily used to 

compare alternative appointment scheduling templates (or more commonly referred to as ASRs 

in the operations research literature) in outpatient clinics with respect to key system performance 

measures such as patient waiting time and provider idle time (Bailey, 1952; Fetter and 

Thompson, 1966; Vissers, 1979). In more recent studies, simulation experiments are conducted 

to help identify the most appropriate ASR with various environmental characteristics (Klassen 
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and Rohleder, 1996; Rohleder and Klassen, 2000; Ho and Lau, 1992; Ho and Lau, 1999; Cayirli, 

Veral and Rosen, 2006). For example, Klassen and Rohleder (1996 and 2000) compare various 

ASRs under different distributions of patient service time, and illustrate that the optimal ASR 

depends on the mean and variance of the service time. Ho and Lau (1992 and 1996) compare 

various ASRs with different specifications of patient service time as well as no-show rate and the 

length of clinic sessions. Cayirli et al. (2006) further incorporate patient heterogeneity into the 

assessment of ASRs. Overall, these papers show that ASRs have significant effect on operational 

performance and that patient characteristics are important compounding factors, including walk-

in rate, no-show rate, and arrival punctuality.  

In recent years, optimization models have been developed for designing optimal ASRs in 

outpatient appointment scheduling. For example, Vanden Bosch et al. (1999) propose an 

efficient heuristic search algorithm to design an optimal ASR under the assumptions of 

independent service times following the identical Erlang distribution and punctual patient 

arrivals. Bosch and Dietz (2000 and 2001) extend the model by considering general phase-type 

distributed service times as well as patient no-shows. Kaandorp and Koole (2007) propose a 

stochastic optimization model with a multimodular objective function and presented a local 

search method based on the multimodularity of the objective function. Rohleder and Klassen 

(2000) apply simulation optimization for optimal ASR design with more flexible clinical settings. 

It is worth noting that most of the recent studies incorporate patient no-show uncertainty in their 

models.   

2.3. Open access scheduling  

In the past two decades, open access scheduling has been extensively studied. Murray 

and Tanau (1999) first propose the concept of open access scheduling to overcome the problem 
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of high no-show rates in outpatient clinics. In the study, a successful case of open access 

scheduling in a clinic in the U.S. is demonstrated. Gupta et al. (2006) conduct an empirical study 

of clinics within Minneapolis metropolitan area that applies open access scheduling. It is pointed 

out that the factors, which include different practice styles of doctors, differences in panel 

compositions, and patient preferences, could hinder the successful sustaining of supply-demand 

balance. Several performance measures are proposed to help management for monitoring and 

evaluating the implementation of open access scheduling. There are also other publications that 

report the successful implementations of open access scheduling, which all indicate that open 

access scheduling is capable of reducing healthcare cost while improving the access to care, 

clinic resource utilization and patient satisfaction (Kennedy and Hsu, 2003; Murray et al., 2003; 

O’Hare and Corlett, 2004; Mallard et al., 2004; Bundy et al., 2005; Parente et al., 2005; 

O’Connor et al., 2006; Cameron S et al., 2010). In addition, Rose et al. (2011) conduct a 

systematic review on the performance of open access scheduling, which shows the benefits of 

reducing patient waiting time and no-show rate as well. Generally, the critical parameters for 

open access scheduling systems are determined based on experts’ experiences rather than 

analytical methods. For instance, the percentage of open access appointments may range from 

30% to 80% depending on the scheduler’s experience (Herriott, 1999; Kennedy and Hsu, 2003; 

Murray and Tantau, 2000).  

Besides the empirical studies, mathematical modeling approaches have also been widely 

applied to analyze the open access scheduling systems. Green et al. (2007) study the relationship 

between the panel size and the probability of “working overtime” or “extra work” for a provider 

in an open access clinic. The “extra work” is measured by the expected number of extra patients 

that a provider has to see in the open access clinic. Kopach et al. (2007) conduct a simulation 
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study to evaluate the effects of open access scheduling on the continuity of care. It is concluded 

that the increasing fraction of open access patients have an adverse effect on the continuity of 

care, but the adverse effect could be mitigated by providers working as a team. Qu et al. (2007) 

develop a closed-form approach to quantitatively determine the optimal percentage of open 

access appointments to match daily provider capacity to demand. It shows that the optimal 

percentage of open access appointments mainly depends on the ratio of average demand for open 

access appointments to provider capacity and the ratio of the show-up rates for traditional and 

open access appointments. Liu et al. (2010) propose a dynamic programming model to study the 

heuristic policies of patient appointment scheduling by taking patient no-shows and cancellations 

into account. The results suggest that open access scheduling works best when the patient load is 

relatively low. Robinson et al. (2010) conduct a comparison study between traditional patient 

scheduling methods and open access scheduling. It is claimed that open access scheduling is 

significantly better than traditional methods in terms of patient waiting, provider idle and 

provider overtime. Lee and Yih (2010) conduct a simulation study to investigate the impact of 

open access configuration considering clinic setting conditions including demand variability, no-

show rate, and the percentage of same-day appointments. The performance of different open 

access configurations is analyzed in terms of patient waiting time, patient rejection rate, and 

clinic utilization. Furthermore, Dobson et al. (2011) develop a stochastic model to evaluate the 

performance of open access scheduling in a primary care practice. It is found that encouraging 

routing patients to call for same-day appointment is a key element for the success of open access 

scheduling. Qu et al. (2011) propose a hybrid policy for open access scheduling, which consider 

two time horizons instead of one for the short-notice appointments. It is shown that the hybrid 

policy is no worse than the single time horizon policy in terms of the expectation and variance of 
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the number of patients seen. Balasubramanian et al. (2012) propose a two stage stochastic integer 

programming model to maximize timely access and patient-physician continuity simultaneously 

for open access clinics. Qu et al. (2012) propose a mean-variance model to optimize the ratio of 

traditional versus open access appointments for open access scheduling systems. In addition, 

Patrick (2012) proposes a Markov decision model for determining optimal outpatient scheduling. 

In his study, open access scheduling is compared to the short booking window concept, and the 

latter appears to be more effective in term of cost minimization. 

2.4. Overbooking  

The overbooking strategy has long been studied in appointment scheduling optimization 

problems with the consideration of patient no-show and/or appointment cancellation. One 

outstanding study conducted by LaGanga and Lawrence (2007) examines the patient no-show 

problem and proposes overbooking strategy as the way to reduce the adverse effect of patient no-

shows. In this study, a new utility function is developed, which can characterize the trade-offs 

between benefits and cost. The authors show that overbooking can increase patient access and 

productivity of providers, while increasing the patient waiting time and provider overtime 

significantly. The authors also show that the relative values that a clinic assigns to serving 

additional patients, minimizing patient waiting time, and minimizing provider overtime will 

determine whether overbooking is warranted. At last, it is concluded in the study that the 

overbooking strategy produce more utility for clinics with a larger patient population size, higher 

patient no-show rate, and lower service time variability. LaGanga and Lawrence (2012) extend 

their previous work and propose the flexible appointment scheduling model, which can mitigate 

the negative effect of patient no-show by overbooking policy. Their results show that the near-

optimal overbooking appointment scheduling, which balances the extra benefits obtained from 
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serving additional patient and the resulted cost associated with the possible patient waiting time 

and provider overtime, can be searched with a fast and effective solution procedure.  

In addition, Daggy et al. (2010), based on a VA hospital setting, compare the 

performance of two scheduling approaches. The first approach does not consider the no-shows, 

while the second approach employs overbooking in the presence of no-shows. The results 

indicate that incorporating no-show probabilities in the clinic booking improves the patient flows 

and clinic efficiency. More recently, Samorani and LaGanga (2013) suggest a data mining 

approach to capture the no-show probability of individual patients and develop the optimal 

overbooking policy based on appointment characteristics on the appointment day. Furthermore, 

Giachetti (2008) conducts a simulation study, which suggests double book the habitual no-show 

patients whenever they make appointments, while Kros et al. (2009) conduct empirical study, 

which claims a saving of 95,000$ per semester after implementing the overbooking process 

instructed by a novel overbooking model.  

To add more, Kim and Giachetti (2006) develop a stochastic mathematical appointment 

overbooking model (SMOM) to optimize the number of  appointment that should be accept in 

regard to maximize the expected total profit. The SMOM approach is then compared with two 

other approaches, namely “no overbooking” and “naive statistical overbooking approach” 

(NSOA). The NSOA simply adds the mean number of no-shows minus the mean number of 

walk-ins to the number of appointment to accept. Their result shows that by comparing to the 

“no overbooking” approach, the SMOM can increase the expected total profit by 43.72%, while 

the NSOA can increase the corresponding profit by 29.66%. Similarly, Muthuraman and Lawley 

(2008) develop a stochastic overbooking model for an outpatient clinic with patient no-shows 

with the consideration of patient waiting time, provider overtime and the revenue collected from 
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patients. In addition, Zeng et al. (2010) also propose a clinic scheduling model, which applies 

overbooking to compensate the negative impact of patient no-shows, in order to maximize the 

expected profit including revenue from patients and cost related with the patient waiting times 

and provider idle time. It is proved that the objective function, which is the expected profit, has 

different characteristics for patients with heterogeneous no-show probabilities and patients with 

homogeneous no-show probabilities. To be more specific, the objective function is multimodular 

for patients with homogeneous no-show probabilities. However, this property does not apply 

when patients hold different no-show probabilities. To extend the existing work, Huang and 

Zuniga (2012) develop a dynamic overbooking scheduling policy with the consideration of 

predicted no-show probability for individual patients. This policy is targeting at improving the 

patient access to care as well as reducing the patient waiting, while minimizing the clinic’s cost. 

Their results show that the proposed dynamic overbooking scheduling policy outperforms the 

naive overbooking strategy, which overbook patients evenly throughout a clinic session.  

2.5. Walk-in patient admission  

Generally, the walk-in patients are referred to the patients who come to clinics and 

request for medical service without an appointment. It is shown that people persist in presenting 

to clinic and requesting immediate healthcare service, although there is no indication that a walk-

in service is available in the clinic (Crismani and Galletly, 2011). However, the walk-in patients 

do not receive much attention from the researchers and healthcare practioners for the following 

reasons: 1) clinics do not want to admit walk-ins if they are running at their full capacity (i.e., 

sufficient patients with appointment); 2) providers do not feel the obligations to serve walk-in 

patients, since they do not have an appointment; 3) in the primary care clinic setting, it is 

speculated that the quality of care might be reduced, if the providers are not familiar with the 
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walk-in patients (i.e., a provider is not the primary care physician whom the walk-in patients 

usually see). Among the limited literature related to walk-in patients, a few empirical studies 

show that the walk-in patients make an important piece of the entire patient population and walk-

in patient friendly clinics are preferred by many consumers (Crismani and Galletly, 2011; 

Chmiel et al., 2011; Gail, 2007; Su and Shih, 2003;).  With this prevision of walk-in patients, it 

can be concluded that quantitative methods will in urgent need for the scheduling optimization 

problem with the consideration of the walk-in patient admissions.  

Although quantitative methods have been applied to analyzing and optimizing 

appointment scheduling systems (Cayirli and Veral, 2003; Gupta and Denton, 2008), most 

studies focus on outpatient clinics that do not accept walk-in patients. Only a few recent studies 

consider the appointment scheduling systems of the clinics accepting walk-in patients (Kim and 

Giachetti, 2006; LaGanga and Lawrence, 2008; Cayirli et al., 2012). For example, Kim and 

Giachetti (2006) develop a stochastic mathematical overbooking model with the consideration of 

probability distributions of patient no-shows and walk-ins. Their model determines the optimal 

number of appointments to be scheduled in order to maximize the total expected profits. 

LaGanga and Lawrence (2008) extend their heuristic algorithm in (LaGanga and Lawrence, 2012) 

to optimize appointment schedules in clinics accepting walk-in patients. Their results show that a 

modest number of scheduled appointments can significantly improve service quality and clinic 

performance compared to an all-walk-in clinic. Cayirli et al. (2012) propose a “Dome” 

appointment rule in which the disruptive effects of no-shows and walk-ins are considered. In the 

“Dome” appointment rule, appointment times are determined based on the mean and standard 

deviation of service times that are adjusted by the no-show rate and the walk-in rate. In these 

studies considering walk-in patients, it is assumed that a clinic admits all walk-in patients, and 
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the same cost structure is assumed for scheduled patients and walk-in patients. However, in 

reality, many clinics actually have the flexibility of admitting walk-in patients selectively. For 

instance, a few primary care clinics that we worked with have the policy of seeing walk-in 

patients if possible, and their 5-month statistics show that 20% – 50% of walk-in patients were 

seen.  

In addition, studies have shown that there are sufficient service requests (demands) from 

walk-in patients. For example, Howard et al. (2008) show that about one quarter of patients with 

their own primary care physician use the walk-in patient service in a six month period.  For 

another example, a study in VA hospital reports that the investigated primary care clinic in a 

medical center encounters 45-72 walk-in patients per day on average (Phatak et al. 2011). 

Similarly, Huarng (2003) conducts a study, which shows that the ratio of walk-in patients could 

be as high as 55% in some outpatient clinic. Hence, admitting all arrived walk-in patients can 

make clinics running over capacity, which can dramatically increase the operation cost and lower 

the quality of care. In such clinics, a policy is needed to determine whether to admit a walk-in 

patient or not and in which slot a walk-in patient should be seen. This need motivates us to 

investigate walk-in patient admission policies in outpatient clinics.  
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3. TWO-STAGE STOCHASTIC PATIENT OVERBOOKING OPTIMIZATION 

MODEL 

3.1. Introduction 

Faced with the challenges of increased cost, limited capacity, and expanding demands for 

healthcare services, the outpatient clinics are running at dual objectives including stabilizing 

revenue and improving the healthcare access. It is the clear that the access is mostly determined 

by the appointment scheduling system. Traditionally, a patient, who needs an appointment, 

would call the clinic and be immediately booked with an appointment in a few days, weeks or 

months later, which is often referred as the lead time for an appointment. When there is sufficient 

patient demand, the clinics are most likely to operation at or close to their full capacity, which 

often means that no appointment is available in the near feature, i.e. the appointment lead time is 

long. However, ill patients usually cannot wait such a long time for an appointment. They will 

either enter the clinic as without an appointment or use the expensive Emergency Department. In 

addition, long lead time can cause the serious patient no-show problem, since the patient may 

have recovered, moved, forgot, or even died during this period. It is well-known that 

overbooking is an effective strategy for improving clinic accessibility and stabilizing revenue 

when a significant portion of patients choose not to show up for their appointments. In order to 

find the optimal overbooking strategy, a clinic needs to determine, given the stochastic 

characteristic of patient arrival pattern, patient non-attendance rate, and service time, (1) the 

optimal number of appointment slot to be overbooked; (2) where the overbooked appointment 

slots should be located.  

In this study, we develop a two-stage mix-integer stochastic programming model to solve 

the clinic scheduling and overbooking optimization problem, which determines the optimal 
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strategy for assigning appointment seeking patients to a fixed number of appointment slots with 

fixed length (typically 15, or 30 minutes). The model will also optimize the service start time of 

each patient show-up for their appointment, given different scenarios, which are subject to the 

stochastic patient arrival pattern, patient non-attendance rate, and patient service time. The 

objective is to minimize the operational cost, which is measured in terms of patient waiting time, 

provider idle time and provider overtime. Note that without overbooking, the resource of clinic 

will be under-utilized due to patient no-show, i.e., high provider idle time. However, too much 

overbooking can easily lead to the overloading problem, which causes high patient waiting time 

and provider overtime. Hence it is important to only overbook a moderate number of the 

appointment slot. More importantly, clinics need to overbook the right appointment slot, given 

the optimal number appointments to be overbooked. A wrong decision may reduce patient no-

show but worsen the overloading problem, i.e., further decrease provider idle time and increase 

patient waiting time. For example, a clinic overbooks the first appointment, while only the 

patient in the last appointment is expected to be no-show. Clearly, by doing this, it will delay the 

process of all patients starting from the second appointment, if both patients in the first slot show 

up for their appointment.  

3.2. Terminology and problem formulation 

3.2.1. Terminology 

Index: 

i : Index of patients with appointment. 

j : Index of providers. 

 : Scenario index.  
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Patients with appointment:  
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ij
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ij

W
ij

L
ij
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ij

S
ij

A
ijij IItttttp  : Denote the first patient scheduled in the i

th
 appointment 

slot of provider j.  

} , , , , ,{ 22222222 N
ij

C
ij

W
ij

L
ij

E
ij

S
ij

A
ijij IItttttp  : Denote the second patient scheduled in the i

th
 

appointment slot of provider j.  

Parameters: 

1C

ijI , 2C
ijI : The cancellation indicator of the corresponding patient, with “1” indicating 

cancellation. 

1N
ijI , 2N

ijI : The no-show indicator of the corresponding patient, with “1” indicating no-

show. 

S

ij
T : The expected starting time of the i

th
 appointment of provider j. 

E

jT : The expected service ending time of provider j. 

1_ A

ijtdummy , 
2_ A

ijtdummy : Dummy arrival time of the corresponding patient, which is 

generated from given arrival time distribution. 

1_ L

ijtdummy , 
2_ L

ijtdummy : Dummy service length of the corresponding patient, which is 

generated from a given service length distribution. 

Waitc : The cost coefficient related to patient waiting time. 

Idlec :  The cost coefficient related to provider idle time. 

Overtimec : The cost coefficient related to provide over time. 

Variables: 

1A
ijt , 2A

ijt : The arrival time of the corresponding patient. 
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1S
ijt , 2S

ijt : The service starting time of the corresponding patient. 

1E
ijt , 2E

ijt : The service ending time of the corresponding patient. 

1L
ijt , 2L

ijt : The service length of the corresponding patient. 

1W
ijt , 2W

ijt : The waiting time of the corresponding patient. 

A
ijI : Appointment indicator; 1A

ijI , if at least 1 patient is scheduled in the i
th

 appointment 

slot of provider j . 

D
ijI : Double-booking indicator; 1D

ijI , if the i
th

 appointment slot of provider j is double-

booked. 

I
jt : The idle time of provider j. 

O
jt : The overtime of provider j. 

3.2.2. Problem formulation 

For the purpose of solving the clinical overbooking optimization problem, we develop a 

two-stage stochastic mixed-integer programming (SMIP) model. For an introduction to 

stochastic integer programming, we refer to Birge and Louveaux (2001). In order to develop this 

SMIP model, we make the following assumptions. 

1) Each clinical session is evenly divided into appointment slots. One or two patient 

appointment can be scheduled in one appointment slot. If two patients are booked in the same 

appointment slot, it will be referred as double-booking or overbooking. 

2) Once an appointment is made, it cannot be modified unless it is cancelled by the 

patient. 

3) Providers only see their own patients, i.e. patients scheduled for “provider A” will 

not be served by other providers in the clinic.  
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4) All patients with an appointment, who are not no-show or do not cancel their 

appointments, must be served by their corresponding provider within the clinic session, even if 

the provider has to work overtime. 

5) Patients with earlier appointments, who are not no-show or do not cancel their 

appointments, will not  be served later than patients with later appointments.  

6) Providers do not serve any patients before the expected start time of the first 

appointment, i.e., the starting point of the clinic session. 

Note that all the above assumptions are very basic and commonly made in the outpatient 

appointment scheduling literature (Cayirli and Veral, 2003, Gupta and Denton, 2008). More 

assumptions other assumes made in the existing literature on clinic overbooking optimization. 

For example, Kim and Giachetti (2006) propose a stochastic mathematical overbooking model 

(SMOM), which can determine the optimal number of appointment to be scheduled in advance 

to maximize the total expected profit. However, the model does not address the appointment 

allocation problem, i.e., which appointment slots should be used for the overbooking. In 

addition, the model requires a small variance for the service time distribution, in order to 

approximate the total service time as the mean service time of each appointment multiplied by 

the total number of appointment. For another example, Zacharia and Pinedo (2014) develop an 

appointment scheduling model with consideration of no-shows and overbooking. Their study 

investigates the single provider system and assumes punctual arrivals of patients at the start point 

of the appointment.  In addition, Muthuraman and Lawley (2008) develop a stochastic 

overbooking model for outpatient clinical scheduling with no-shows. Their model only considers 

the single provider system. In addition, they assume that the service times follow the exponential 

distribution and patient arrives at the beginning of each appointment, i.e., the possibility of 
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patient arrivals in the middle of appointment slot is ignored. To add more, LaGanga and 

Lawrence (2012) construct a flexible appointment scheduling model to mitigate the adverse 

effect of patient no-shows through overbooking strategy. Their study assumes the constant 

service time and punctual patient arrivals, if not no-show, at the starting point of the 

corresponding appointment.  

By comparing with the existing clinic overbooking literature, our model has no 

constraints for patient arrival patterns. Hence, the patient arrival time can be assumed to follow 

any distributions that generate meaningful (non-negative) arrival time and service length, while 

some of the existing clinic overbooking studies assume the patients have to arrive punctually if 

they are not no-show or do not cancel their appointment (Zacharia and Pinedo, 2014; 

Muthuraman and Lawley, 2008; LaGanga and Lawrence, 2012 ).  In addition, there are also no 

limitations about the service time distribution in our model. Hence, the model can be used for 

clinics with various service time distributions. Note that, some of the existing clinic overbooking 

studies rely on a specific service time distribution, or assume constant service time, which is 

often not realistic (Kim and Giachetti, 2006; Muthuraman and Lawley, 2008; LaGanga and 

Lawrence, 2012). Furthermore, our model does not have restrictions on the service start times of 

patients, except for the first one (see assumption No. 6), while some of the existing studies 

assume that provides don’t see patient before the expected appointment start time (LaGanga and 

Lawrence, 2009). Therefore, our model have much less restrictions on the patient arrival 

patterns, service length distribution, as well as the service start time, as compared to the existing 

outpatient appointment overbooking studies. Meanwhile, our model contributes to the literature 

in the following ways. First, our model simultaneously can determine the optimal number of 

patients to be scheduled in the each appointment slot, and the patient sequence including the 
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service starting time and ending time, in presence of patient arrivals on the day of service. 

Instead of finding a heuristic solution using simulation models, our model can derive the optimal 

solution or near optimal solution with tight optimality gaps. Secondly, unlike the queueing and 

dynamic programming models, our model requires no specific assumptions regarding the 

distributions of service time, no-show probability, appointment cancellation probability, the 

patient arrival time, or other model parameters. Third, our model addresses the problem with 

consideration with multiple providers, while most of the existing studies only consider 

overbooking problem with single provider.   

The objective of the problem is to minimize the expectation of the weighted sum of 

patient waiting time, provider idle time and provider overtime in a clinic session, as shown in Eq. 

3.1 (Cayirli and Veral, 2003). The patient waiting time is measured as the time difference 

between the actual appointment start time and expected appointments start time. In case that the 

actual appointment starts before the scheduled expected appointment start time, the waiting time 

will be defined as zero. The provider overtime is the time that provider worked after scheduled 

working hour. As for the provider idle time, it is defined as the amount of time that a provider is 

not seeing any patient during the scheduled working hour.  

Min  
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Beside the objective function, there are also 25 constraints, as defined by Eqs. 3.2 – 3.26. 

To be more specific, Eqs. 3.2 – 3.3 are the service length constraint, which make sure the service 

length equal to zero if the corresponding patient is no-show or cancels the appointment, or there 

is no such patient, i.e., 0A

ijI  or 0D

ijI ; otherwise, the service length will be random drawn 

from a given distribution. Similarly, Eqs. 3.4 – 3.5 define the patient arrival time. If the 

corresponding patient is no-show or cancels the appointment, or there is no such patient, then the 

patient arrival time will be equal to zero; otherwise the patient arrival time will be drawn from a 

given distribution. Eq. 3.6 is the double-booking constraint. It defines that if an appointment slot 

is not single booked, then it cannot be double-booked. Meanwhile, Eqs. 3.7 – 3.8 define the 

relationship among the service start time, service ending time and service length. Eqs. 3.9 – 3.13 

are the service commitment constraints. These constraints prevent a provider serving two or 

more patients at the same time based on the assumption that patients scheduled in early 

appointment slot should receive the service early, if they are not no-show or cancel the 

appointment. Eqs. 3.14 – 3.17 are the patient waiting time constraints. The patient waiting time is 

defined as the real service start time minus the expected service start time or zero, whichever is 

greater. Furthermore, Eqs. 3.18 – 3.20 define the provider overtime, which should equal to the 

ending time of the last patient less the expected ending time of the clinic session, or zero, 

whichever is greater. In addition, Eqs. 3.21 – 3.22 define the provider idle time, which equals the 
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length of clinic length plus the provider overtime and minus the sum of service time for each 

patient seen in the clinic session. At last, Eqs. 3.23 – 3.26 are the service start time constraint, 

which define the service start time of a patient should be earlier than the arrival time of the 

corresponding patient, as well as the expected service start time of the first appointment. 

The decision variables in this model can be divided into two stages. In the first stage, the 

decision variables are the appointment indicator and the double-booking indicator, i.e., 
A

ijI  and 

D

ijI , which decide the number of patients who have been scheduled in each appointment slot for 

each provider. These patients with appointment are subject to a random arrival process and 

service process. The random arrival process is controlled by the no-show rate, cancellation rate, 

and arrival time distribution. Similarly, the service times of the patients are controlled by the 

service time distribution. Hence, the decision variables in the second stage are the service start 

times and ending times for the patients to minimize the weight sum of patient waiting time, 

provider idle time and provider overtime, for each scenario . Note that for a different scenario, 

there will be a different optimal second stage decision which includes the service starting times 

and ending times of patients, and thus a different second-stage objective value, which is defined 

by           
j

I

j

IdleO

j

Overtime

j i

W

ij

W

ij

Wait tctcttc  21 . As we can see in Eq. 3.1, the 

first-stage objective value is just the expectation of the second-stage objective value.  

3.3. Solution approach 

In this two-stage decision making problem, it is relatively easy to evaluate the objective 

function for a given first-stage decision under certain scenario. However, it could be extremely 

difficult to evaluate the expectation of the recourse function for a given first-stage decision. 

More specifically, the recourse problem is of different sizes under different scenarios, and the 
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service times are defined with as continuous random variables, which may follow a variety of 

distributions (e.g., lognormal, exponential, uniform, triangle and etc.) depending on the patient 

group and service type (Cayirli and Veral, 2003; Bailey, 1952; Klassen and Rohleder, 1996; 

Cayirli et al., 2006). In addition, with the consideration of random patient arrival pattern, patient 

no-show and appointment cancellation, it is unlikely to develop an analytical formulation to 

estimate the expectation of the recourse function. As a matter of fact, for any two-stage 

stochastic mixed integer programing models, with continuous random variables, the expected 

recourse functions, in general, cannot be analytically derived as a function of the first-stage 

decision. Hence, we apply sample average approximation (SAA) approach to estimate the 

expected value of recourse function. To be more specific, the objective value function, shown in 

Eq. 3.1 will be estimated as 
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 211
, where n is the sample size, 

and 
s

  is a set of sample scenarios randomly drawn from the entire scenario space. In this way, 

the model can be solved with the commercial mixed integer programming (MIP) optimization 

solvers, such as CPLEX and GAMS. For the state-of-the-art research on applying sample 

average approximation to SMIPs, we refer to Kleywegt et al. (2002), and Shapiro and Homem-

de-Mello (2000). It is obvious that a large scenario sample size will lead to a better 

approximation of the expected value of recourse function and improve the solution quality. 

However, the computational time for find the optimal solution by using sample average 

approximation will be increase exponentially with the increase of scenario sample size drawn 

from the entire scenario space. A large sample size may lead to extremely large computation 

time (unacceptable) or even make it impossible to locate the optimal solution. Hence, it is 
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important to select a reasonable sample size, which balances the computational time and solution 

quality.  

3.4. Model verification 

For model verification, we consider a single case, which has 2 providers and 3 30-minute 

appointment slots for each provider. It is assumed that the first stage decisions are given, which 

schedules only 1 patient for each appointment slot, i.e., 2,1  3,2,1 ,0 ,1  jandiforII D

ij

A

ij . 

We assume that the clinic opens at time 0, while the providers start to work 30 minutes after the 

opening of the clinic. Hence, the expected service starting times for the 1
st
, 2

nd
 and 3

rd
 

appointments of each provider are at 30, 60, and 90 minutes, respectively. In addition, the 

expected ending time for this clinic session is 120 minutes, since each appointment is 30 

minutes. In total, 10 different scenarios are considered. For the scenarios 1 – 5, we assume that 

the patient no-show rate and cancellation rate are 0, and patient arrives randomly within 30 

minutes (uniform distribution) before the expected appointment start time. It is also assumed that 

the service length is uniformly distributed from 20 to 35 minutes. For the scenarios 6 – 10, we 

assume that the patient no-show rate and cancellation rate are both 0.2, and patient can arrives 

with a lead time, which is exponentially distributed with mean equal to 30 minutes. Hence the 

arrival time will be equal to expected service starting time of the patient less the lead time. Note 

that if the arrival time is less than 0, it will be adjusted to 0. In addition, we also assume the 

service length to follow the exponential distribution with the mean equal to 25 minutes. Note that 

for all 10 scenarios, the cost coefficients related to patient waiting time, provider idle time and 

provider overtime are all equal to 1. For each scenario, the optimal service starting time and 

ending time obtained through the model are compared with the corresponding values obtained 

from manual calculation. In addition, the achieved optimal objective value from the model is 
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compared with the corresponding optimal objective value achieved from manual calculation. The 

comparison results are shown in Tables 3.1 and 3.2. As we can see, for all scenarios, the results 

obtained from the model, including the service starting time and ending time for each patient, as 

well as the objective values, are the same as the result obtained through manual calculation. Note 

that for some scenarios in Table 3.1, the service length and the corresponding patient arrival time 

are equal zero. The reason for this is that these patients either are no-show or cancel their 

appointments, as indicated by the no-show/cancellation indicator. In addition, the service start 

time for patients who are no-shows or cancel their appointments, is also defined as the expected 

start time for the first appointment, which is 30 minutes in our case. Note that it will not 

influence the service starting time and ending time of other patients, by defining the arrival time, 

service length and service start time for patients who do not actually receive service from 

providers in this way.  

Table 3.1: Comparison result for scenarios 1 – 5 

 
Scenario1 Scenario2 Scenario3 Scenario4 Scenario5 

Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 

Arrival time 

(min) 

Appt1 0 27 13 10 3 11 24 28 3 24 

Appt2 49 49 47 44 56 46 60 49 44 60 

Appt3 86 61 63 64 81 88 60 60 67 75 

No-show/ Cancellation 

Indicator 

Appt1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Appt2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Appt3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Service starting time 

(min) 

Appt1 30
*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 

Appt2 61
*
 62

*
 63

*
 59

*
 59

*
 51

*
 60

*
 51

*
 51

*
 60

*
 

Appt3 88
*
 92

*
 97

*
 91

*
 93

*
 88

*
 90

*
 71

*
 78

*
 92

*
 

Service length 

(min) 

Appt1 31 32 33 29 29 21 24 21 21 27 

Appt2 27 30 34 32 34 20 30 20 27 32 

Appt3 26 29 34 21 25 25 32 29 24 22 

Service ending time 

(min) 

Appt1 61
*
 62

*
 63

*
 59

*
 59

*
 51

*
 54

*
 51

*
 51

*
 57

*
 

Appt2 88
*
 92

*
 97

*
 91

*
 93

*
 71

*
 90

*
 71

*
 78

*
 92

*
 

Appt3 114
*
 121

*
 131

*
 112

*
 118

*
 113

*
 122

*
 100

*
 102

*
 114

*
 

Objective value 

(min) 

Wait 5
*
 11

*
 3

*
 0

*
 2

*
 

Idle 6
*
 8

*
 26

*
 26

*
 27

*
 

Overtime 1
*
 11

*
 0

*
 2

*
 0

*
 

total 12
*
 30

*
 29

*
 28

*
 29

*
 

 * indicates that the results from model and manual calculation are equal 
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Table 3.2: Comparison result for scenarios 6 – 10 

 
Scenario6 Scenario7 Scenario8 Scenario9 Scenario10 

Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 

Arrival time 

(min) 

Appt1 24 0 0 0 7 0 0 0 0 7 

Appt2 21 0 59 45 43 51 45 0 0 23 

Appt3 61 47 84 74 0 88 0 0 0 85 

No-show/ 

Cancellation 

Indicator 

Appt1 0/0 1/0 1/0 0/0 0/0 0/1 1/0 0/1 1/0 0/0 

Appt2 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/1 0/1 0/0 

Appt3 0/0 0/0 0/0 0/0 0/1 0/0 1/0 1/0 0/1 0/0 

Service starting 

time 

(min) 

Appt1 30
*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 30

*
 

Appt2 68
*
 30

*
 59

*
 45

*
 46

*
 51

*
 45

*
 30

*
 30

*
 60

*
 

Appt3 93
*
 47

*
 84

*
 82

*
 30

*
 88

*
 30

*
 30

*
 30

*
 98

*
 

Service length 

(min) 

Appt1 38 0 0 5 16 0 0 0 0 30 

Appt2 25 0 25 37 37 22 20 0 0 38 

Appt3 22 39 71 35 0 43 0 0 0 33 

Service ending 

time 

(min) 

Appt1 68
*
 30

*
 30

*
 35

*
 46

*
 30

*
 30

*
 30

*
 30

*
 60

*
 

Appt2 93
*
 30

*
 84

*
 82

*
 83

*
 73

*
 65

*
 30

*
 30

*
 98

*
 

Appt3 115
*
 86

*
 155

*
 117

*
 30

*
 131

*
 30

*
 30

*
 30

*
 131

*
 

Objective value 

(min) 

Wait 11
*
 0

*
 0

*
 0

*
 8

*
 

Idle 56
*
 42

*
 73

*
 160

*
 90

*
 

Overtime 0
*
 35

*
 11

*
 0

*
 11

*
 

total 67
*
 77

*
 84

*
 160

*
 109

*
 

 * indicate that the results from model and manual calculation are equal 

 

In order to further verify our model with consideration of double-booking, we develop 

another 10 different scenarios, namely, scenario 11 – 20. As compared to the first 10 scenarios, 

scenarios 11 – 15 have exactly the setting as scenarios 1 – 5, except for the first-stage decision 

values have been changed to 2,1  3,2,1 ,1 ,1  jandiforII D

ij

A

ij . Similarly, scenarios 16 – 20 

have exactly the setting as scenarios 6 – 10, except for the same change of first-stage decision 

values. Note that the change of first-stage decision indicate the all appointment slots have been 

booked with two patients, i.e. double-booking. For the purpose of model verification, we also 

compare the optimal solution obtained from the model to the optimal solution obtained by 

manual calculation. The comparison results are shown in Tables 3.3 and 3.4. As we can see, for 

all the scenarios the optimal solution obtained from our model are exactly the same as the model 

obtained from manual calculation. To sum up, our model can derive the optimal start and ending 

times, and optimal objective value accurately for any given first-stage decision, service length 
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distribution, patient arrive pattern, patient no-show rate and appointment cancellation rate. 

Hence, the validation of this model is verified. Note that although we fix the first decision 

variables and apply them as constant for model verification, the model will be able to find 

optimal first-stage decision variables as long as the first-stage decision variables are longer fixed. 

This is because for each given first-stage decision variables, the accurate value of objective 

function can be estimated, as shown in the model verification. The optimal first-stage decision 

will be the one that leads to the minimal value of the objective function. However, the solution 

space will be increased and more computing time will be needed for finding the optimal first-

stage decision variable. In the following, a numerical analysis will be conducted, which uses a 

more realistic clinic settings, including the number of appointment slot, number of provider, 

patient arrival pattern, service length, patient no-show and appointment cancellation rate.   
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Table 3.3: Comparison result for scenarios 11 – 15 

 
Scenario11 Scenario12 Scenario13 Scenario14 Scenario15 

Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 

Arrival time 

(min) 

Appt1 3 24 3 17 28 30 14 16 5 27 0 22 17 24 8 25 2 9 5 19 

Appt2 34 39 37 42 34 54 36 53 47 53 31 57 45 49 34 51 35 45 40 52 

Appt3 70 86 81 83 72 74 70 80 65 82 63 72 72 84 61 88 66 88 70 87 

No-show/ 

Cancellation 

Indicator 

Appt1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Appt2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Appt3 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Service 

starting time 

(min) 

Appt1 30* 61* 30* 59* 30* 59* 30* 60* 30* 55* 30* 57* 30* 50* 30* 55* 30* 64* 30* 57* 

Appt2 86* 115* 89* 112* 85* 108* 94* 125* 86* 116* 87* 118* 77* 102* 87* 115* 87* 110* 89* 124* 

Appt3 139* 160* 143* 168* 143* 167* 152* 174* 147* 174* 149* 179* 129* 159* 148* 175* 139* 162* 156* 182* 

Service 

length 

(min) 

Appt1 31 25 29 30 29 26 30 34 25 31 27 30 20 27 25 32 34 23 27 32 

Appt2 29 24 23 31 23 35 31 27 30 31 31 31 25 27 28 33 23 29 35 32 

Appt3 21 23 25 33 24 34 22 25 27 25 30 25 30 34 27 26 23 28 26 28 

Service 

ending time 

(min) 

Appt1 61* 86* 59* 89* 59* 85* 60* 94* 55* 86* 57* 87* 50* 77* 55* 87* 64* 87* 57* 89* 

Appt2 115* 139* 112* 143* 108* 143* 125* 152* 116* 147* 118* 149* 102* 129* 115* 148* 110* 139* 124* 156* 

Appt3 160* 183* 168* 201* 167* 201* 174* 199* 174* 199* 179* 204* 159* 193* 175* 201* 162* 190* 182* 210* 

Objective 

value 

(min) 

Wait 472* 507* 508* 437* 510* 

Idle 0* 0* 0* 0* 0* 

OT 144* 160* 163* 154* 160* 

total 616* 667* 671* 591* 670* 

* indicate that results from model and manual calculation are equal 
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Table 3.4: Comparison result for scenarios 16 – 20 

 
Scenario16 Scenario17 Scenario18 Scenario19 Scenario20 

Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 Pvd1 Pvd2 

Arrival time 

(min) 

Appt1 0 0 27 19 0 0 0 9 0 16 26 23 0 11 6 0 27 0 21 0 

Appt2 30 0 0 0 47 35 0 0 14 48 40 33 0 0 50 0 10 6 0 34 

Appt3 87 82 0 62 81 0 6 88 0 69 76 0 0 0 83 0 0 51 61 58 

No-show/ 

Cancellation 

Indicator 

Appt1 1/0 0/0 0/0 0/0 0/1 0/0 0/1 0/0 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0 

Appt2 0/0 1/0 1/0 1/0 0/0 0/0 0/1 1/0 0/0 0/0 0/0 0/0 0/0 0/1 0/0 1/0 0/0 0/0 0/0 0/1 

Appt3 0/0 0/0 1/0 0/0 0/0 1/0 0/0 0/0 0/1 0/0 0/0 1/0 1/0 0/1 0/0 0/1 1/0 0/0 0/0 0/0 

Service 

starting time 

(min) 

Appt1 30* 30* 30* 56* 30* 30* 30* 30* 30* 30* 30* 46* 30* 80* 30* 35* 30* 93* 30* 30* 

Appt2 42* 30* 30* 30* 55* 94* 30* 30* 90* 148* 66* 81* 130* 30* 50* 30* 104* 139* 51* 114* 

Appt3 87* 96* 30* 62* 131* 30* 41* 88* 30* 158* 106* 30* 30* 30* 97* 30* 30* 161* 122* 135* 

Service 

length 

(min) 

Appt1 0 12 26 2 0 25 0 11 0 60 16 20 50 50 5 8 63 11 21 0 

Appt2 18 0 0 0 39 37 0 0 58 10 15 25 14 0 47 0 35 22 63 8 

Appt3 9 5 0 27 48 0 39 54 0 24 85 0 0 0 3 0 0 6 13 55 

Service 

ending time 

(min) 

Appt1 30* 42* 56* 58* 30* 55* 30* 41* 30* 90* 46* 66* 80* 130* 35* 43* 93* 104* 51* 30* 

Appt2 60* 30* 30* 30* 94* 131* 30* 30* 148* 158* 81* 106* 144* 0* 97* 30* 139* 161* 114* 122* 

Appt3 96* 101* 30* 89* 179* 30* 80* 142* 30* 182* 191* 30* 30* 0* 100* 30* 30* 167* 135* 190* 

Objective 

value 

(min) 

Wait 32* 75* 245* 132* 388* 

Idle 81* 8* 0* 27* 0* 

OT 0* 81* 133* 24* 117* 

total 113* 164* 378* 183* 505* 

* indicate that results from model and manual calculation are equal 
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3.5. Numerical analysis 

In this section, we conduct a numerical analysis based on the proposed model to illustrate 

how the overbooking strategy should be applied to overcome the adverse effect of patient no-

show and short notice cancellation. In order to show that how different patient characteristics 

could affect the optimal overbooking strategy, we consider different patient arrival patterns, 

server length distributions, patient no-show rates, appointment cancellation rates, and cost 

coefficients.  

3.5.1. Data collection and study design 

For the numerical analysis, we first construct a base case (case 0) to illustrate the 

effectiveness of the proposed SMIP model to optimize the overbooking strategy. For the base 

case, we consider a clinic session of 4 hours, which are evenly divided into 8 30-minute 

appointment slots. It is assumed that two providers work at the same time in the clinic session. 

The parameters, such as patient arrival time, service time distribution, no-show rate and 

cancellation rate, used in the base model are chosen based on the data in the literature, as well as 

the data collected in an outpatient clinic in a local hospital. In the following, we summarize the 

related literature, as well as the parameter choices in our base case.  

First of all, regarding the non-attendance rate (which include no-shows and 

cancellations), the literature reports the following, 

1) Johnson et al. (2007) indicate that the no-show rate vary from 3% to 42%, with an 

average of 17%. 

2) George and Rubin (2003) report that the non-attendance rate (no-shows and 

cancellations) in U.S. primary care clinics range from 5% to 55%. 

3) Al-Shammari (1992) and Hermoni et al. (1990) report non-attendance rates of 

29.5% and 36%, respectively. 
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4) Moore et al. (2001) suggest that no-shows and cancelled appointments combined 

amount 31.1% of appointments. 

In the numerical analysis, we consider three levels of patient non-attendance rate for 

patients, namely, low non-attendance rate (no-show: 3%, cancellation: 2%), medium non-

attendance rate (no-show: 17%, cancellation: 13%), and high non-attendance rate (no-show: 

42%, cancellation: 13%). Note that in the case of medium non-attendance rate, we consider the 

mean non-attendance rate of 30%, which is the average of the lower bound (5%) and upper 

bound (55%) of the non-attendance rate in U.S. primary care clinics. In the base case, the 

medium attendance rate will be used.  

Secondly, regarding the service time distribution, the literature reports the following: 

1) LaGanga and Lawrence (2012) assume a constant patient service time, which 

equals to the length of an appointment slot in their clinic overbooking study.  

2) Qu et al. (2013) assume the patient service time follows the lognormal 

distribution in their outpatient appointment optimization study based on a Women’s clinic. 

3) Jing et al. (2014) assume the patient service time follows the Gamma distribution 

in their patient flow simulation study based on a local VA medical center. 

As we can see, there are various assumptions for the patient service time distribution, 

which are related to the studied clinics and patient groups. In the numerical study, we can 

consider three different service time distributions, which are Gamma (2.9898, 9.10383) minutes, 

Lognormal(3.0479, 0.71566) minutes, and constant 27.22 minutes. Parameters for the Gamma 

distribution are estimated based on the service time data collected from a local VA medical 

center, while the parameters for the lognormal distribution are calculated by using the same 

mean and double variance as the Gamma distribution. The constant 27.22 minutes are chosen 
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based on the mean service time drawn from the Gamma distribution. In the base case, we use the 

above Gamma distribution as the service time for all arrived patients. 

Thirdly, regarding the patient arrival patterns, the literature reports the following: 

1) There are many studies that use the exponential distribution to model the interval 

time of patients, although the parameter chosen for the exponential distribution may vary based 

on the clinics characteristic and patient population (Alexopoulos et al., 2008).  

2) Fontantesi et al. (2002) point out that the assumption of exponentially distributed 

patient interval time is not realistic for many clinics. They further indicate that patient arrivals 

tend to be “clumped” due to the common busy schedule, traffic light time, and availability of 

parking space. According to their study, most patients arrive 15 minutes earlier or 10 minutes 

late for their appointment. On average, the patients arrive 3 – 4 minutes before their scheduled 

appointment time.  

3) Parmessar (2010) apply the appointment driven arrival in his simulation study for 

appointment optimization. The appointment driven arrivals assume that the patients should be 

arriving within a certain time interval, which is based on the schedule appointment time. For 

example, if a patient has an appointment at time t0, then the patient will arrive at a random time 

drawn from the interval [t0 – a, t0 + b], where a and b are positive constant that determine the 

width of the interval.  

As we can see, there are various assumptions about the patient arrival patterns. In our 

numerical analysis, we tentatively consider three different types of patient arrival pattern, which 

are driven by the scheduled appointment time. For the first patient arrival pattern, we assume 

patients (except for no-show and appointment cancellation) arrive within 2 hours before the 

scheduled appointment and we assume the arrival lead time allow the Uniform distribution, i.e. 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12235940&dopt=AbstractPlus
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Uniform (0,120) minutes. Note that the actual patient arrival time of will equal to scheduled 

appointment time less the lead time, or zero, whichever is larger. For the second patient arrival 

pattern, we assume the arrival lead time follows the exponential distribution, with the mean equal 

to 4 minutes, as reported in the above mentioned study conducted by Fontantesi et al. (2002). For 

the third arrival pattern, we assume that patients (except for no-show and appointment 

cancellation) arrive punctually for their appointments, i.e., the lead time will hold as constant 0. 

For the base case, we use the second patient arrival pattern, i.e., arrival lead time equal to 

exponential(4) minutes.  

The cost coefficients are chosen based on the hourly wages of all occupation and primary 

providers in United States. According to the Bureaus of Labor Statistics (BLS, 2013), the 10th, 

50th and 90th percentiles of national hourly wage in 2012 are $8.7, $16.71, and $41.74, 

respectively, over all U.S. industry sectors. The average hourly wage of Family and General 

Practitioners is $86.95 in 2012. In addition, by considering the compensation for providers to 

work overtime, the hourly wage for providers working overtime is assumed to be 1.5 times of the 

regular hourly wage. Thus, in the case study, three sets of the cost coefficients for patient waiting 

time, provider idle time, and provider overtime are considered. The three ratios are 1:10:15, 

1:5.2:7.8 and 1:2.1:3.1 corresponding to the 10th, 50th and 90th percentiles of national hourly 

wage, respectively. In the base case, we consider the ratio that corresponds to the 50% of the 

percentile of national hourly wage, i.e., 1:5.2:7.8.  

As shown in Table 3.5, the parameters used for the base case are summarized. Beside the 

base case, another 8 cases are also developed in order to investigate how parameter selection 

would influence the resulted optimal overbooking strategy. As compare to the base case, each of 

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12235940&dopt=AbstractPlus
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the other eight cases represents a certain extreme condition by changing only one or a few 

parameters from the base case.  

1) Cases 1 & 2 represent the situations of high attendance rate and low attendance 

rate, respectively, by altering the no-show rate and cancellation rate, simultaneously.  

2) Cases 3 & 4 represent the situations high variance and low variance of patient 

service time by altering the patient service time distribution.  

3) Cases 5 & 6 represent the situations of high variance and low variance of patient 

arrival time, respectively, by altering the patient arrival lead time distribution.  

4) Cases 7 & 8 illustrate the situation of provider seeing low-income patients and 

high-income patients, respectively, by altering the cost coefficients, i.e. Waitc , Idlec  and  Overtimec .   

The altered parameters for Cases 1-8 are shown in Table 3.6. Note that, in each case, 

except for the altered parameters, all the remaining parameters are the same as those in the base 

case. For example, in Case 8, the cost coefficients are changed to 1:2.1:3.1, which correspond to 

the 90
th

 percentile of national hourly wage. However, all other parameters remain the same as 

Base case.  

Table 3.5: Parameters used for the base case 

Parameters Rate/Distribution Parameters Rate/Distribution 

Session length 4 hours 
Service time 

distributions 

Gamma(2.9898, 9.10383) 

minutes 

Number of appointment 

for each provider 
8 

Patient arrival lead 

time distribution 
Exponential(4) minutes 

Length of each 

appointment 
30 minutes 

Waitc  1 

No-show rate 17% 
Idlec  5.2 

Cancellation rate 13% 
Overtimec  7.8 
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Table 3.6: Parameter adjustments for Cases 1-8 compared with Base case 

Case number  parameters  Rate Distribution 

Case 1 
No-show rate 3% 

Cancellation rate 2% 

Case 2 
No-show rate 42% 

Cancellation rate 13% 

Case 3 Service time distributions Lognormal(3.0479, 0.71566) min 

Case 4 Service time distributions 27.22 min 

Case 5 Patient arrival lead time distribution Uniform (0,120) min 

Case 6 Patient arrival lead time distribution 0 min 

Case 7 

Waitc  1 

Idlec  10 

Overtimec  15 

Case 8 

Waitc  1 

Idlec  2.1 

Overtimec  3.1 

 
3.5.2. Numerical analysis result 

The proposed two-stage mixed integer stochastic linear programming model is solved 

through the use of CPLEX solver for each case as presented in above. The solver is run on a 

personal computer with an Intel 2.67GHz i5 dual-core processor and 2.9GB RAM. It takes less 

than 1 minute to find the optimal solution for each of the 9 cases (base case plus the other eight 

cases). The optimal overbooking strategy found for the nine cases are shown in Table 3.7, and 

the descriptive performance statistics of each overbooking strategy are also presented.  

Table 3.7: Optimal overbooking strategy for Cases 0 – 8 

Slot Index Case 0 Case 1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

1 S D S S D D D D D S S S D D D D S S 

2 D S S S D D S S S D S S S S S D S S 

3 S S S S D D S D S S D D D S D S S S 

4 D S S S D D D S D S S S S S S S S S 

5 S S S S D D S S S D S S S S S S S S 

6 S S S S D D S S S S D D S S S S S S 

7 S S S S S S S S S S S S S S S S S S 

8 S S S S S S S S S S S S S S S S S S 

# of 

overbooking 
3 0 12 4 4 4 3 4 0 

 “S” means single booking, “D” means double-booking. 
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Clearly, the optimal overbooking strategies are different among the 9 cases. For instance, 

Cases 0, 1 and 2, have medium, high, and low patient attendance rate, respectively. The 

corresponding optimal overbooking strategies show that for high patient attendance rate (95%), 

no overbooking is needed; for medium patient attendance rate (70%), three out of sixteen 

appointment slots (18.75%) should be double-booked; for low patient attendance rate, twelve out 

of sixteen appointment slots (75%) should be double-booked. It can be seen that with the 

decreasing patient attendance rate, the optimal number of double-booked appointment should 

increase. Similarly, Cases 0, 3 and 4, present medium, high, and low patient service time 

variance. By compare the number of double-booked appointment slots among the three cases, no 

significant impact of service time variance on the optimal number of double-booked appointment 

slots is found. In other word, the service time variance doesn’t influence the optimal number of 

double-booked appointment slots. In addition, Cases 0, 5 and 6 represent medium, high and low 

patient arrival time variability. Similarly, no significant impact of patient arrival pattern can be 

found on the optimal number of double-booked appointment slots. At last, Cases 0, 7 and 8 

represent the situation of medium, low, and high income patients. As we can see, the optimal 

number of double-booking has been reduced significantly for high income patients (Case 8). This 

is because the double-booking may significantly increase patient waiting time and the waiting 

cost for high income patients (low cost coefficient ratio) is more valuable as compare to the 

waiting cost of low income patients (high cost coefficient ratio). Therefore, high income patients 

are less willing to accept longer waiting time caused by double-booking. On the other hand, a 

high cost coefficient ratio indicates the gap of time values between the patients and the provider 

is large. This will lead to more double-booking, because the patients’ time is less valuable and it 

is better to make more double-booking to avoid provider idle rather than patient waiting. 
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Table 3.8: Summary of descriptive performance statistics for Cases 0 – 8 

  
Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

Objective 
mean 981.8 781.4 1168.9 1156.7 681.9 806.3 1093.9 1797.8 480.5 

std of mean 9.96 6.80 7.87 11.12 6.45 9.34 9.61 12.93 5.45 

Patient 

waiting/min 

mean 169.1 117.3 205.2 221.5 122.2 103.8 198.4 254.2 53.0 

std of mean 6.26 2.73 2.52 5.38 2.28 3.70 4.28 5.21 2.01 

Provider idle 

/min  

mean 132.9 96.7 160.1 132.8 100.4 110.0 134.6 114.9 181.0 

std of mean 3.08 2.32 3.11 3.40 2.60 3.27 3.30 3.13 3.24 

Provider 

overtime/min 

mean 15.6 20.7 16.8 31.4 4.8 16.7 25.0 26.3 15.3 

std of mean 1.17 1.185 0.835 2.11 0.42 1.515 1.5 1.68 1.067 

 

In Table 3.8 the mean, as well as the standard deviation of performance metrics including 

patient waiting time, provider idle time, provider overtime, and objective function value, are 

shown for each case. The results reveal a few interesting phenomena which are commonly seen 

in practice. For instance, Case 1 and Case 0 have the same clinic settings except for the 

attendance rate, where it is higher for Case 1. The statistics indicate that Case 1 has a lower 

objective value compared with Case 0, which supports the general concept that high attendance 

rates are preferred in clinics. This concept can also be revealed by comparing Case 2 with Case 

0, where the attendance rate is higher for Case 0. For another instance, Case 3 and Case 4 have 

the same clinic setting except for the service time distribution, where the variance is higher for 

Case 3. The statistics indicate that Case 3 has a higher objective value, as well as the patient 

waiting time, provider idle time, and provider overtime. This supports the general concept that 

clinics want to standardize their procedure and reduce the service time variability. In addition, 

Case 5 and Case 6 have the same clinic setting except for the patient arrival pattern, where the 

patients tend to arrive earlier for Case 5. The statistics indicate that Case 5 has a lower objective 

value, which supports the general concept that clinics want patient to arrive early for their 

appointments. To add more, Case 7 and Case 8 also have the same clinic settings except for the 

cost coefficient ratio, where Case 7 represents the scenario of low-income patients by using a 
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high ratio. The statistics indicate that Case 7 have a higher objective value compared with Case 

8. The implication is that high-income patients are preferred by the clinics. 

In Figure 3.1, we compare the average waiting time of patients in single booked slots 

against the waiting time of patients in double-booked slots. As we can see, for all cases except 

for Case 1 and Case 8, the waiting time of patients in double-booked appointment slots are 

significantly higher. In addition, for some cases, such as Cases 0, 2, 4, and 5, the waiting time of 

patients in the doubled booked slots is more than twice as much as the waiting time of patients in 

the single booked slots. The implication here is that although double-booking can resolve the 

patient no-show problem it can dramatically increase the waiting time of patients who are 

scheduled in the double-booked appointment slots. Note that there are no double-booked slots for 

Case 1 and Case 8. Hence, the waiting time of patients in the doubled booked slots is set to zero 

for both case.  

 

 Fig. 3.1: Average patient waiting time – double-booked slots vs. single booked slots 
 

In Figure 3.2, the average patient waiting time with respect to appointment slots is 

shown. Clearly, the average waiting times of patients are not equal for different slots. As we can 
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see, these waiting times appear to form a “hump”, whereas the waiting times for slots 2, 3, 4, 5 

and 6 are high and the waiting times for slots 1, 7 and 8 are low. It can be concluded that, for 

patient with appointment in the middle of a clinic session, such as appointments 3 and 4, their 

average waiting times are higher than the waiting times of those patients who have their 

appointment at the beginning and ending of a clinic session, such as appointments 1 and 8.  

 

Fig. 3.2: Average waiting time over appointment slots 
 

Through the numerical study, we show that our model can be used to effectively find out 

the optimal double-booking strategy for cases of different patient arrival pattern, no-show rate, 

appointment cancellation rate and service time distribution. In addition, we show that with the 

increase of patient no-show and appointment cancellation rate, the number of double-booked 

appointment slot should also increase. However, for patients with high income, the double-

booking is not a good strategy, since it can dramatically increase the patient waiting time, which 

is of high value for high income patients. In the following, a sensitivity analysis is conducted on 

patient no-show rate and appointment cancellation rate to quantitatively investigate their effect 
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on the objective function value as well as the optimal number of appointment slot to be double-

booked.  

3.5.3. Adverse effect of patient no-show and appointment cancellation 

To further investigate how the no-show rate and appointment cancellation rate could 

affect the optimal number of double-booked appointment slots and the objective function value, 

which is the weighted sum of patient waiting time, provider idle time and provider overtime, we 

consider a case with punctual patient arrival (if not no-show or appointment cancellation), and 

constant service time 30 minutes.  Note that all other parameters, except for no-show and 

appointment cancellation rate, are set the same as the base case. In studying the effect of no-

show rate, the appointment cancellation rate is fixed as zero, vice versa. This way, the coupling 

effect of patient arrival time variability and service time variability can be eliminated. Since 

patient no-show and appointment cancellation make no difference in our model, we only discuss 

the effect of patient no-show in the following. The effect of appointment cancellation is expected 

to be the same as the effect of patient no-show.  

In Figure 3.3, it shows the effect of no-show rate on the objective function value. As we 

can see, the blue line shows that the objective function value increase approximately linearly 

with the increase of no-show rate, when no double-booking is considered. The slop is 

approximately 2500, i.e., the objective value increases 250 with 0.1 increment of no-show rate. 

In addition, the red line shows that objective function value also increases with the increasing of 

no-show rate, when double-booking is considered. For no-show rate equal or less than 0.2, the 

red line and blue line coincide with each other. After that the red line increases with a much 

lower rate as compare to the blue line. Note that the gap between the blue line and the red line is 

the reduced cost brought by double-booking. Clearly, double-booking cannot reduce the 

objective value when no-show rate is low (less than 0.2 in our case).  
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In Figure 3.4, it shows the effect of no-show rate on the optimal double-booking rate. 

Note that the double-booking rate is measured as the number of doubled appointment slots 

divided by the total number of appointment slots. As we can see, the optimal double-booking 

rate does not change (constant zero) when the no-show rate is less or equal to 0.2. However, with 

the further increase of patient no-show rate, the optimal double-booking rate is expected to 

increase approximately linearly until the maximum double-booking rate (100%) is reached.  

 

Fig. 3.3: Effect of no-show rate on the objective function value 
 

 

Fig. 3.4: Effect of no-show rate on the double-booking rate 
 
3.5.4. Effect of non-homogenous rate of patient no-show rate and appointment cancellation rate 

Note that all the above discussions are based on the homogenous patient no-show rate 

and appointment cancellation rate. In this section, we investigate the optimal overbooking 
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strategy under the non-homogenous rate of patient no-show and appointment cancellation. To be 

more specific, we intend to study whether an appointment slot should be double-booked if the 

first patient booked in this slot has particularly high no-show rate or appointment cancellation 

rate. For this purpose, we consider 8 different cases, namely, Cases A1 – A8, all with punctual 

patient arrival (if not no-show or appointment cancellation), and constant service time 30 

minutes. For Case A1, we assume all patients, but the patients booked in slot 1 (low attendance 

rate: no-show rate is 42%, and cancellation rate is 13%), have medium attendance rate (same as 

base case), i.e. no-show rate is 17%, and cancellation is 13%. Similarly, for Case A2, we assume 

all patients, but the patients booked in slot 2 (low attendance rate: no-show rate is 42%, and 

cancellation rate is 13%), have high attendance rate, i.e. no-show rate is 3%, and cancellation is 

2%. Note that similar assumption will be made for Cases A3 – A8.  

Table 3.9: Optimal double-booking strategies 

Slot Index Case A1 Case A2 Case A3 Case A4 Case A5 Case A6 Case A7 Case A8 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

1 D D S S S S S S S S S S S S S S 

2 S S D D S S S S S S S S S S S S 

3 S S S S D D S S S S S S S S S S 

4 S S S S S S D D S S S S S S S S 

5 S S S S S S S S D D S S S S S S 

6 S S S S S S S S S S D D S S S S 

7 S S S S S S S S S S S S D D S S 

8 S S S S S S S S S S S S S S D D 

“S” means single booking, “D” means double-booking. 

 

In Table 3.9, the optimal double-booking strategies for Cases A1 – A8 are shown. 

Clearly, the results show that clinic should double-book the slots if the patients scheduled in the 

slots are expected to have high non-attendance rates. For example, in Case A2, the patients 

scheduled in slots 2 are expected with high non-attendance rate. As a result, the optimal double-

booking strategy suggest slot 2 (neither slot 1 nor slot 3) to be double-booked. This finding 
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supports the common double-booking practice adopted by the clinics, i.e., book another patient 

in the same slot if the current patient in the slot has high non-attendance rate.  

 

3.6. Model extension 

3.6.1. Problem description 

As we can see, the above mentioned patient overbooking model cannot handle the 

situation, which providers cooperate with each other in their work. In many clinics, they assign 

patient with two providers, one primary provider and one secondary provider. In case that the 

primary provider is too busy to see a patient, the secondary provider can take this patient over if 

the patient is willing to accept it. In order to enable our overbooking model with this kind of 

provider cooperation, we relax the constraint “providers can only see their own patients” in the 

above discussed model by assuming that one provider can take the patient who is overbooked in 

a slot from other providers.  Note that for any single slot of a provider, at most one overbooked 

patient in the slot can be taken by other providers, the provider still holds full responsibility the 

other remaining patient in this slot. In addition, we also consider patient’s preference by 

introducing the “preference” indicator, in order to prevent patient being seen by some providers 

that this patient doesn’t like. In the following, we present the formulation of this modified patient 

overbooking model. 

3.6.2. Terminology 

Index: 

i : Index of patients with appointment. 

j : Index of providers. 

 : Scenario index.  

Patients with appointment: 
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} ,, , , , ,{ 11111111 N
ij

C
ij

W
ij

L
ij

E
ij

S
ij

A
ijij IItttttp  : Denote the first patient scheduled in the i

th
 appointment 

slot of provider j.  

} , , , , ,{ 22222222 N
ij

C
ij

W
ij

L
ij

E
ij

S
ij

A
ijij IItttttp  : Denote the second patient scheduled in the i

th
 

appointment slot of provider j.  

Parameters: 

1C

ijI , 2C
ijI : The cancellation indicator of the corresponding patient, with “1” indicating 

cancellation. 

1N
ijI , 2N

ijI : The no-show indicator of the corresponding patient, with “1” indicating no-

show. 

S

ij
T : The expected starting time of the i

th
 appointment of provider j. 

E

jT : The expected service ending time of provider j. 

1_ A

ijtdummy , 
2_ A

ijtdummy : Dummy arrival time of the corresponding patient, which is 

generated from given arrival time distribution. 

1_ L

ijtdummy , 
2_ L

ijtdummy : dummy service length of the corresponding patient, which is 

generated from given service length distribution. 

Waitc : The cost coefficient related to patient waiting time. 

Idlec :  The cost coefficient related to provider idle time. 

Overtimec : The cost coefficient related to provide over time. 

Variables:  

1A
ijt , 2A

ijt : The arrival time of the corresponding patient. 

1S
ijt , 2S

ijt : The service starting time of the corresponding patient. 
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1E
ijt , 2E

ijt : The service ending time of the corresponding patient. 

1L
ijt , 2L

ijt : The service length of the corresponding patient. 

1W
ijt , 2W

ijt : The waiting time of the corresponding patient. 

A
ijI : Appointment indicator; 1A

ijI , if at least 1 patient is scheduled in the i
th

 appointment 

slot of provider j . 

D
ijI : Double-booking indicator; 1D

ijI , if the i
th

 appointment slot of provider j is double-

booked. 

I
jt : The idle time of provider j. 

O
jt : The overtime of provider j. 

assign

ijjI ' : Assignment index for the second patient scheduled in the i
th

 appointment slot of 

provider j. 1' assign

ijjI , if this patient is seen by the provider j’. 

prefernce

ijjI ' : Preference index for the second patient scheduled in the i
th

 appointment slot of 

provider j. 0' prefernce

ijjI , if this patient prefer not to be seen by provider j’. 

3.6.3. Formulation 

Min 

         










 

j

I

j
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j
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Wait tctcttc 
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Beside the objective function, there are also 31 constraints, as defined by Eqs. 3.28 – 3.68. 

To be more specific, Eqs. 3.28 – 3.29 are the service length constraint, which make sure the 

service length equal to zero if the corresponding patient is no-show or cancels the appointment, 

or there is no such patient i.e. 0A

ijI  or 0D

ijI ; otherwise, the service length will be random 

drawn from a given distribution. Similarly, Eqs. 3.30 – 3.31 define the patient arrival time. If the 

corresponding patient is no-show or cancels the appointment, or there is no such patient, then the 

patient arrival time will be equal to zero; otherwise the patient arrival time will be drawn from a 

given distribution. Eq. 3.32 describes the double-booking constraint. It defines that if an 

appointment slot is not single booked, then it cannot be double-booked. Eqs. 3.33 – 3.34 define 
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the relationship among the service start time, service ending time and service length. Also, Eqs. 

3.35 – 3.37 are the service commitment constraints. These constraints prevent a provider serving 

two or more patients at the same time based on the assumption that patients scheduled in early 

appointment slot should receive the service early, if they are not no-show or cancel the 

appointment. Eqs. 3.38 – 3.41 are the patient waiting time constraints. The patient waiting time is 

defined as the real service start time minus the expected service start time or zero, whichever is 

greater. Furthermore, Eqs. 3.42 – 3.44 define the provider overtime, which should equal to the 

ending time of the last patient less the expected ending time of the clinic session, or zero, 

whichever is greater. Eqs. 3.45 – 3.46 define the provider idle time, which equals the length of 

clinic length plus the provider overtime and minus the sum of service time for each patient seen 

in the clinic session. Eqs. 3.47 – 3.50 are the service start time constraint, which define the 

service start time of a patient should be earlier than the arrival time of the corresponding patient, 

as well as the expected service start time of the first appointment. Eqs. 3.51 – 3.54 are the 

assignment constraints for the overbooked patients. At last, Eqs. 3.55 – 3.58 define a few 

heuristic overbooking rules.  

Similar to our first patient overbooking model, the decision variables in this model can be 

divided two stages. In the first stage, the decision variables will be the appointment indicator and 

the double-booking indicator, i.e. 
A

ijI  and 
D

ijI , which decide the number of patients that have 

been scheduled in each appointment slot for each provider. These patients with appointment are 

subject to random arrival process and service process. The random arrival process is controlled 

by the no-show rate, cancellation rate, and arrival time distribution. Similarly, the service times 

of the patients are controlled by the service time distribution. Hence, the decision variables in the 

second stage are the service start times and ending times for the patients to minimize the weight 
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sum of patient waiting time, provider idle time and provider overtime, for each scenario . Note 

that for different scenarios, there will be different optimal second stage decisions, i.e. the service 

starting times and ending times of patients, and thus a different second-stage objective value, 

which is defined by           
j

I

j

IdleO

j

Overtime

j i

W

ij

W

ij

Wait tctcttc  21 . As we can see 

in Eq. 3.27, the first-stage objective value is just the expectation of the second-stage objective 

value.  

3.6.4. Numerical analysis 

In the similar manner, the model is code in GAMS and can be solved with CPLEX. In 

order to demonstrate performance of the model, we applied the model to the same cases (case0 – 

case 8) which were used to study the overbooking booking model discussed earlier. The solver is 

run on a personal computer with an Intel 2.67GHz i5 dual-core processor and 2.9GB RAM. It 

takes around 30 minutes to find the optimal solution for each of the 9 cases (base case plus the 

other eight cases). The optimal overbooking strategy found for the nine cases are shown in Table 

3.10, and the descriptive performance statistics of each overbooking strategy are also presented.  

Table 3.10: Optimal overbooking strategy for Case 0 – 8 

Slot Index Case 0 Case 1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 P1 P2 

1 S S S S S S S S S S S S S S S S S S 

2 D S D S S D S D S D D S S D D S D S 

3 S D S S D S D S D S S D D S S D S D 

4 D S S S S D S D S D D S S D D S S S 

5 S S S S D S D S D S S D D S S D D S 

6 S D S S S D S D S D D S S S D S S D 

7 S S S S D S S S S S S D S D S S S S 

8 S S S S S S S S S S S S S S S S S S 

# of overbooking 4 1 6 5 5 5 5 5 4 

 

Clearly, the optimal overbooking strategies are different among the 9 cases. For instance, 

Cases 0, 1 and 2, have medium, high, and low patient attendance rate, respectively. The 
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corresponding optimal overbooking strategies show that for high patient attendance rate (95%), 

one overbooking is needed; for medium patient attendance rate (70%), one out of four 

appointment slots (25%) should be double-booked; for low patient attendance rate, three out of 

eight appointment slots (37.5%) should be double-booked. It can be seen that with the decreasing 

patient attendance rate, the optimal number of double-booked appointment should increase. Note 

that our heuristic rules define that: (1) the first and last appointment slot cannot be overbooked; 

(2) providers don’t overbook appointment slots at the same time (e.g. if provider A overbooked 

his/her appointment slot #3, then provider B cannot overbook his/her appointment slot #3); (3) 

There should be no consecutive overbookings (e.g. if provider A overbooked his/her 

appointment slot #2, then he/her cannot over booked appointment slot #2). With the 

consideration of heuristic rules, Case 2 has actually achieved the maximum possible overbooking 

level. Hence, the optimal overbooking number could increase further if the heuristic rules are 

removed. Similarly, Case 0, 3 and 4, present medium, high, and low patient service time variance. 

By compare the number of double-booked appointment slots among the three cases, no 

significant impact of service time variance on the optimal number of double-booked appointment 

slots is found. In other word, the service time variance doesn’t influence the optimal number of 

double-booked appointment slots. In addition, Cases 0, 5 and 6 represent medium, high and low 

patient arrival time variability. Similarly, no significant impact of patient arrival pattern can be 

found on the optimal number of double-booked appointment slots. At last, Cases 0, 7 and 8 

represent the situation of medium, low, and high income patients. Similarly, no significant 

impact of patient arrival pattern can be found on the optimal number of double-booked 

appointment slots. As compare to the previous overbooking model (no cooperation), in which the 

optimal overbooking number have been significantly dropped (in case 8) due to the cost of 
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waiting, the optimal overbooking number for case 8 haven’t decreased, since the cooperation 

mechanism can help to reduce patient waiting time.  

In Table 3.11 the mean, the standard deviations, and “the percent change” of performance 

metrics including patient waiting time, provider idle time, provider overtime, and objective 

function value, are shown for each case. The results reveal a few interesting phenomena which 

are commonly seen in practice. For instance, Case 1 and Case 0 have the same clinic settings 

except for the attendance rate, where it is higher for Case 1. The statistics indicate that Case 1 

has a lower objective value compared with Case 0, which supports the general concept that high 

attendance rates are preferred in clinics. This concept can also be revealed by comparing Case 2 

with Case 0, where the attendance rate is higher for Case 0. For another instance, Case 3 and 

Case 4 have the same clinic setting except for the service time distribution, where the variance is 

higher for Case 3. The statistics indicate that Case 3 has a higher objective value, as well as the 

patient waiting time, provider idle time, and provider overtime. This supports the general concept 

that clinics want to standardize their procedure and reduce the service time variability. In 

addition, Case 5 and Case 6 have the same clinic setting except for the patient arrival pattern, 

where the patients tend to arrive earlier for Case 5. The statistics indicate that Case 5 has a lower 

objective value, which supports the general concept that clinics want patient to arrive early for 

their appointments. To add more, Case 7 and Case 8 also have the same clinic settings except for 

the cost coefficient ratio, where Case 7 represents the scenario of low-income patients by using a 

high ratio. The statistics indicate that Case 7 have a higher objective value compared with Case 8. 

The implication is that high-income patients are preferred by the clinics. The “percentage change” 

measures the change of these performance measures by comparing with the previous model (no 

cooperation). As we can see, for all cases except for case 2, a lower (better) objective value is 
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achieved. This indicates that enable the cooperation among providers can decrease the overall 

cost of the clinic session in terms of patient waiting time, provider idle time and provider over 

time. For Case 2, the new model end up with a higher objective value, since the heuristic rule 

prevented clinic overbooking more patient in a clinic session. In Case 2 (low attendance rate) the 

most significant decrease in patient waiting time are achieved. This indicates that the cooperation 

mechanism can most effectively reduce patient waiting time when patient non-attendance rate is 

high. On the contrary, in Case 1(high attendance rate) and Case 2 (high patient income) the 

patient waiting time has significantly increased. This means that the cooperation mechanism 

doesn’t help to reduce patient waiting time when the non-attendance rate is low or patient have 

high income. In addition, for all cases (except for case 2) the new model lead to a reduced 

provider idle time. This further proved that the cooperation mechanism can reduce provider idle 

time and balance the workload among providers. Similarly, the special situation of Case 2 is 

caused by the heuristic rule. As for the overtime, the cooperation mechanism has various effect 

among cases. In Case 2, 6 and 7, the new model leads to a reduced overtime, while in other cases, 

the new model leads to an increased overtime.  
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Table 3.11: Summary of descriptive performance statistics for Cases 0 - 8 

  
Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

Objective 

mean 898.2 773.6 1225.0 1147.7 621.6 632.3 950.7 1514.3 467.9 

std of mean 9.95 7.65 7.90 11.94 5.40 7.05 8.47 11.51 5.54 

percent change -8.5% -1.0% 4.8% -0.8% -8.8% -21.6% -13.1% -15.8% -2.6% 

Patient waiting/min 

mean 150.7 196.4 56.1 242.3 108.4 126.4 184.3 196.1 165.0 

std of mean 4.83 4.96 0.79 6.60 1.31 4.67 4.83 3.79 5.95 

percent change -10.9% 67.4% -72.7% 9.4% -11.3% 21.8% -7.1% -22.9% 211.3% 

Provider idle/min 

mean 114.1 64.4 212.0 109.8 89.9 71.5 112.0 96.5 108.0 

std of mean 2.86 1.43 3.45 3.50 1.63 1.47 2.30 3.46 1.14 

percent change -14.1% -33.4% 32.4% -17.3% -10.5% -35.0% -16.8% -16.0% -40.3% 

Provider overtime/min 

mean 19.8 31.0 8.5 42.8 5.8 17.2 23.6 23.6 24.6 

std of mean 0.6 1.7 0.4 3.0 0.3 0.6 1.9 0.6 0.8 

percent change 26.9% 50.1% -49.4% 36.5% 20.8% 3.0% -5.6% -10.3% 60.8% 
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4. SINGLE-PROVIDER WALK-IN PATIENT ADMISSION OPTIMIZATION 

MODEL 

4.1. Problem definition  

This study addresses the admission problem of walk-in patients in clinics with high no-

show rates, high late-cancellation rates and many walk-in patients. In such clinics, overbooking 

and admitting walk-in patients are usually adopted to reduce the negative impact of patient no-

shows and late cancellations and improve the operations efficiency and the accessibility of the 

clinics. Thus, the objectives of the walk-in patient admission are to optimize the efficiency and 

the accessibility by admitting a certain number of walk-in patients and assigning them to proper 

appointment slots. In this study, the operations efficiency of a clinic is measured by provider idle 

time and overtime, and the accessibility to the clinics is indicated by patient waiting time. 

Patients are classified into two categories in this study: elective patients versus walk-in 

patients. The elective patients are defined as the group of patients who arrive before/by their 

appointment times in the current clinic session. At the end of a clinic session, all elective patients 

still waiting must be seen during overtime, which is a common practice. The walk-in patients are 

patients who show up without appointments in the current clinic session. In addition, in this 

study, a patient who arrives late for his/her appointment (i.e., arrives later than the beginning of 

the slot scheduled for his/her appointment) is treated as a walk-in patient. The walk-in patients 

could be admitted or rejected to wait for services available in the current session. The rejected 

walk-in patients could be scheduled with appointments in later clinic sessions or referred to other 

outpatient facilities such as an emergency department. Similarly, the admitted walk-in patients 

who could not be served by the end current clinic session will be rescheduled in later clinic 
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sessions or referred to other outpatient facilities. Fig. 4.1 illustrates the flow of two categories of 

patients and how patient flow is affected by the walk-in patient admission decisions.  

 

Fig. 4.1: Patient flow and walk-in patient admission decisions in a clinic  

 

 

Fig. 4.2: Patient arrival process and walk-in patient admission process in a clinic session  

 
As a complement to patient flow, shown in Fig. 4.1, Fig. 4.2 illustrates the walk-in 

patient admission process and the patient arrival process in a clinic session. As we can see, it is 

assumed  that the walk-in patient admission decisions are made at discrete time points, which are 

the beginnings of M equal-length appointment slots in a clinic session. Here M denotes the total 

number of appointment slots in a clinic session, which is typically 4 hours. The walk-in patient 

admission decisions include whether or not to admit the walk-in patients who arrive during the 

previous slot to wait for service, and whether a walk-in patient should be seen in the next slot. In 
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addition, at the beginning of the M
th

 slot, rescheduling and referrals need to be done for the 

currently admitted walk-in patients, who cannot be serviced by the end of current clinic session. 

It should be noted that patient arrivals and short-notice appointment cancellations can happens at 

any time between clinic opening and the beginning of the M
th

 slot. In addition, it is assumed that 

the short-notice appointment cancellations can also happen shortly before the clinic opening.   

Due to high no-show rates and high late-cancellation rates, overbooking is also 

considered in this study. For the overbooking policy, the most popular practice is to schedule at 

most two appointments in one slot. Therefore, a double-booking policy is assumed in this study. 

In addition, it is assumed that the schedule of patient appointments in the current clinic session is 

known at the beginning of the session. 

We assume that patients independently arrive for or cancel their appointments, that the 

arrivals of patients with appointments follow a given probability distribution, and that the 

probability of canceling an appointment is known. A Poisson process with a constant rate λw is 

used to approximate the arrival process of patients without appointments (Fetter and Thompson 

1966, Ashton et al. 2005, Kopach et al. 2007). Meanwhile, we assume that the service time per 

patient is constant because most physicians, especially primary care physicians, have fairly 

consistent control of the service time for each patient, the variation of service times among 

patients is limited (LaGanga and Lawrence 2007, Gupta and Denton 2008). Thus, the length of 

an appointment slot is set to equal the average of service time per patient. 

In this study, it is assumed that a provider (e.g., a physician or a nurse practitioner) only 

sees his/her own patients and new patients. This is common for most outpatient clinics, 

especially in primary care clinics, to ensure continuity of care, which is an important indicator of 

the quality of care (Cayirli and Veral 2003). Medical research suggests that continuity of care 
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can improve both the clinical and process quality of patient care, especially early in the patient-

provider relationship and for patients with worse health. This is because scheduling patients with 

the same healthcare provider improves patients’ responses to recommended treatments and 

follow-up care (Saultz and Lochner 2005, Pandhi and Saultz 2006, Rodriguez et al. 2007). Under 

this assumption, the walk-in patient admission to one provider is independent of the walk-in 

patient admission to other providers. Therefore, this study determines the walk-in patient 

admission policy in the context of a single-provider system. Some clinics group several (two to 

four) providers as a provider team in an effort to balance continuity of care with scheduling 

flexibility, and this will be considered in our future study.  

4.2. MDP model 

Under the assumption that the walk-in patient admission decisions are made at the 

beginning of each of M appointment slots, a finite-horizon MDP model is developed in this study 

to capture the decision process of admitting walk-in patients in a clinic session with equal-length 

appointment slots. The decision horizon of the MDP model consists of M decision stages. Let i 

denote the index of appointment slots, and m and m' the index of decision stages. In the MDP 

model, decision stage m is the beginning of slot i, where i = m. For readers’ convenience, Table 

4.1 summarizes the definitions of the indices and parameters used in the MDP model.  

4.2.1. States and actions  

The state of the MDP model at decision stage m is denoted by  

),;,,,;,,,;,,,(    

),,,,(

212121

mmm

M

mmm

M

mmm

M

mm

mmmmmm

wnzzzyyyxxx

wn



 zyxs
, for m = 1, 2, …, M,          (4.1) 

where xi
m
  denotes the number of elective patients with appointments in slot i who wait to be 

seen at decision stage m, n
m
 denotes the number of walk-in patients who wait to be seen at 

decision stage m, w
m
 denotes the number of walk-in patients who arrive between decision stages 
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(m–1) and m, yi
m
 indicates whether a patient with an appointment in slot i could arrive between 

decision stages m and (m+1), and zi
m
  indicates whether more than one patient with an 

appointment in slot i may arrive between decision stages m and (m+1). Define the initial state of 

the MDP model as  

),,,,( 000000 wnzyxs   )0,0;,,,;,,,;0,,0,0( 00
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1 MM zzzyyy  ,       (4.2) 
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otherwise   ,0

2 if   ,1
0 i

i

b
z ,                                                           (4.4) 

where bi is the number of appointments scheduled in slot i of the clinic session. Since the double-

booking policy specifies that at most two appointments could be scheduled in one slot, the state 

space, denoted by S, is  

S = { ),,,,( wnzyx | xi = 0, 1 or 2, yi = 0 or 1, zi = 0 or 1, zi ≤ yi, for i=1,…,M; nZ
+
; wZ

+
},   (4.5) 

where Z
+
 denotes the set of nonnegative integer numbers. 

At each decision stage, two decisions are made based on the current state s
m
. One 

decision is whether to admit the walk-in patients who arrive between decision stages (m–1) and 

m to wait in the clinic for services, and the other decision is whether a elective or walk-in patient 

should be seen between decision stages m and (m+1). Thus, an action at decision stage m could 

be represented by  

a
m 

= (da
m
, ds

m
, dw

m
), for m = 1, 2, …, M,                                                       (4.6) 

where da
m
, ds

m
, and dw

m
 are the binary decision variables of action a

m
, which are defined 

respectively as  
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Since the length of an appointment slot equals the constant service time per patient, a 

provider could see at most one patient during one slot. Thus any valid action must satisfy ds
m 

+ 

dw
m
  1. Therefore, the action set of the MDP model, denoted by A, consists of only six actions 

{(0,0,0), (0,1,0), (0,0,1), (1,0,0), (1,1,0), (1,0,1)}. Denote A(s
m
) the set of all valid actions in state 

s
m
S. The notation for the states, actions, random variables and rewards in the MDP model is 

summarized in Table 4.2. 

Table 4.1: Indices and parameters in the MDP model 

 Indices 

i Index of appointment slots 

m and m' Index of decision stages 

 Parameters 

bi Number of appointments scheduled in slot i of the clinic session 

ci Provider idle cost per slot 

co Provider overtime cost per slot 

cs  Waiting cost per elective patient per slot after their appointment times 

cw  Waiting cost per walk-in patient per slot 

M Total number of appointment slots and total number of decision stages 
'

| 

m

mip
 Conditional probability that a patient with an appointment in slot i arrives between decision stages m' 

and (m'+1) given that (s)he has not arrived or cancelled his/her appointment at decision stage m  

pc
 

Probability that an appointment is cancelled between two adjacent decision stages 

rs
 

Gain from seeing one elective patient 

rw  Gain from seeing one walk-in patient 

T Length of an appointment slot 

λw Arrival rate of patients without appointments 
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Table 4.2: States, actions, random variables and rewards in the MDP model 

 States 

s
m
 State of the MDP model at decision stage m, for m = 1, …, M, where s

m
 = (x

m
, y

m
, z

m
, n

m
, w

m
) 

s
0 

Initial state of the MDP model, where s
0
 = (x

0
, y

0
, z

0
, n

0
, w

0
)  

S
 

Set of all possible s
m
  

x
m
 Vector representing the numbers of elective patients waiting for service in state s

m
,  

where x
m
 = (x1

m
, x2

m
, …, xM

m
)  

xi
m
 Number of elective patients with appointments in slot i who wait to be served in state s

m
  

y
m
 Vector indicating whether a patient with an appointment in each slot could arrive between decision 

stages m and (m+1), where y
m
 = (y1

m
, y2

m
, …, yM

m
)  

yi
m
 Indicator whether a patient with an appointment in slot i could arrive between decision stages m  

and (m+1) 

z
m
 Vector indicating whether more than one patient with an appointment in each slot could arrive 

between decision stages m and m+1, where z
m
 = (z1

m
, z2

m
, …, zM

m
)  

zi
m
 Indicator whether more than one patient with an appointment in slot i may arrive between decision 

stages m and (m+1)  

n
m 

Number of walk-in patients who wait to be seen at decision stage m  

w
m
 Number of walk-in patients arriving between decision stages (m–1) and m  

 Actions 

a
m 

  Action taken at decision stage m, for m = 1, 2, …, M, where a
m 

= (da
m
, ds

m
, dw

m
) and da

m
, ds

m
 and dw

m
 

are the binary decision variables of action a
m
 

A(s
m
) Set of all valid actions in state s

m
 

da
m 

= 1, if walk-in patients who arrive between decision stages (m–1) and m are admitted; = 0, otherwise  

m

ad  Optimal values for the decision variable da
m
 in π

*
(s

m
) 

ds
m
 
 

= 1, if a elective patient will be seen between decision stages m and (m+1); = 0, otherwise    
m

sd  Optimal value for the decision variable ds
m
 in π

*
(s

m
) 

dw
m 

= 1, if a walk-in patient will be seen between decision stages m and (m+1); = 0, otherwise    
m

wd  Optimal value for the decision variable dw
m
 in π

*
(s

m
) 

π
*
(s

m
) Optimal action for a state s

m
 at decision stage m 

 Random variables 

m

iA
~

 Number of patients with appointments in slot i who arrive between decision stages m and (m+1),  

for i = 1, …, M; m = 0, 1, …, (M–1) 
mB

~
 Number of patients without appointments who arrive between decision stages m and (m+1),  

for m = 0, 1, …, (M–1)  
m

iC
~

 Number of appointments in slot i which are cancelled between decision stages m and (m+1),  

for i = 1, …, M; m = 0, 1, …, (M–1)  
m

iU
~

 = 1, if ijxx m

j

m

i   0 and 0 ; = 0, otherwise         

 Rewards 

R
m
(s

m
,a

m
)

 
Immediate net reward of a valid action a

m
 in state s

m
  

V(s
m
,a

m
) Expected total net reward obtained in the (M–m+1) remaining decision stages of an action a

m
  

in state s
m
  

V
*
(s

m
) Maximum of V(s

m
,a

m
). 
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4.2.2. State transitions 

The stochastic events considered in the proposed MDP model are random patient arrivals 

and random appointment cancellations during a clinic session. Let m

iA
~

 denote the number of 

patients with appointments in slot i who arrive between decision stages m and (m+1), mB
~

 the 

number of patients without appointments who arrive between decision stages m and (m+1), and 

m

iC
~

 the number of appointments in slot i which are cancelled between decision stages m and 

(m+1), where i = 1, 2,…, M and m = 0, 1, 2,…, (M–1). Due to the assumption of the double-

booking policy, m

iA
~

 and m

iC
~

 could equal 0, 1 or 2. In the MDP model, decision stage 0, which 

corresponds to the initial state, represents the beginning of the clinic session (see Fig. 4.2). Since 

patients independently arrive for their appointments with given probabilities, the random variable 

m

iA
~

 follows the binomial distribution with (yi
m
+zi

m
) trials and probability m

mip | 
, where m

mip | 
 is the 

conditional probability that a patient with an appointment in slot i arrives between decision 

stages m and (m+1) given that he/she has not arrived or cancelled his/her appointment at decision 

stage m. Similarly, since patients independently cancel their appointments with a known constant 

probability, the random variable m

iC
~

 follows the binomial distribution with (yi
m
+zi

m
) trials and 

probability pc, where pc is the probability that an appointment in slot i is cancelled between two 

adjacent decision stages. Due to the approximate Poisson arrival process of patients without 

appointments, the random variable mB
~

 is Poisson distributed with rate λwT, where λw is the 

constant arrival rate, and T is the length of an appointment slot.  

Given a state s
m
S at decision stage m, the transition from the state s

m
 to a next state s

m+1
 

depends on the action taken at decision stage m and the stochastic events occurring between 

decision stages m and (m+1). Once an action a
m 

= (da
m
, ds

m
, dw

m
) is taken in the state s

m
, the state 

s
m+1

 to which the process transitions satisfies 
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4.2.3. Rewards and costs 

The reward of each action is the gain from seeing an elective or walk-in patient, and the 

cost associated with an action in a given state includes patient waiting costs and provider idle and 

overtime costs. Similar to other appointment scheduling studies in the literature, we assume 

linear relationships between the reward and the number of patients seen (LaGanga and Lawrence 

2007), and between patient waiting cost and patient waiting time, between provider idle cost and 

provider idle time, between provider overtime cost and provider overtime (Cayirli and Veral 

2003, Muthuraman and Lawley 2008).  

At each decision stage, the cost associated with an action consists of patient waiting cost 

and provider idle cost. Thus, the immediate net reward of a valid action a
m
 in state s

m
S, denoted 

by R
m
(s

m
,a

m
), is  
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where rs is the gain from seeing one elective patient, rw the gain from seeing one walk-in patient, 

cs the waiting cost per elective patient per slot after their appointment times, cw the waiting cost 

per walk-in patient per slot, and ci the provider idle cost per slot. Since the extra preparation 

work may be needed in order to see each walk-in patient, it is assumed that rs ≥ rw in this study. 

Meanwhile, since walk-in patients usually tolerate longer waiting time than elective patients 

(Cayirli and Veral 2003), it is assumed that cs > cw. The cost of waiting prior to appointment time 

is ignored in the immediate net reward because waiting due to early arrival is voluntary. At 

decision stage M, since all walk-in patients who could not be served in the current clinic session 

are dismissed, the waiting cost of walk-in patients is not associated with any action. Thus, the 

immediate net reward of a valid action a
M

 in state s
M
S is  

 M

w

M

si

M

s

M

i

M

is

M

ww

M
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Since all elective patients waiting for service at the end of a clinic session must be seen 

during overtime, the provider overtime cost and the waiting cost of elective patients should be 

considered at the end of the session. Then the net reward at the end of the session of a valid 

action a
M

 in state s
M
S, denoted by R

M+1
(s

M
,a

M
), is 
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where co is the provider overtime cost per slot. The cost coefficient of provider overtime depends 

on provider overtime payment and provider willingness to work overtime. Usually, providers are 
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not willing to do so unless the overtime payment is significantly higher than the regular figure. 

Therefore, in this study, we assume co > rw to prevent the average overtime from being too long 

because high frequency of long overtime decreases job satisfaction of providers and other staff 

members. 

When the process is in state s
m
 at decision stage m, the action maximizing the expected 

total net reward obtained in the (M–m+1) remaining stages should be taken. Let V(s
m
,a

m
) denote 

the expected total net reward obtained in the (M–m+1) remaining stages of an action a
m
 in state 

s
m
, and V

*
(s

m
) the maximum of V(s

m
,a

m
). Then, V

*
(s

m
) and V(s

m
,a

m
) could be determined by 

),(max)(
)(

* mm

A

m VV
mm

ass
sa 

 , for m = 1,…, M,                                        (4.20) 

)],|([),(),( 1* mmmmmmmm VERV assasas
 , for m = 1,…, M–1,                          (4.21) 

and ),(),(),( 1 MMMMMMMM RRV asasas
 ,                                          (4.22) 

where E[] denotes the expectation of a random variable. Thus, the optimal action for a state s
m
 

at decision stage m, denoted by π
*
(s

m
), is ),(maxarg)(

)(

* mm

A

m V
mm

ass
sa 

 . Denote m

ad , m

sd  and m

wd  the 

optimal values for the decision variables da
m
, ds

m
 and dw

m
 in π

*
(s

m
).  

4.3. Properties of the MDP model 

In Section 3, we propose the MDP model to capture the walk-in patient admission 

process in a clinic session. In this section, we analyze the properties of the proposed MDP 

model. For any possible state s
m
 of the MDP model, the set of valid actions A(s

m
) must satisfy 

Equations 4.23 – 4.25 in Proposition 1.  

Proposition 1. Any valid action a
m
 in a state s

m
S must satisfy  

ds
m 

= 0 if 0
1

 

M

i

m

ix ,                                                            (4.23) 

dw
m 

= 0 if n
m 

+ w
m
da

m
 = 0,                                                         (4.24) 
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and ds
m 

+ dw
m 

≤ 1.                                                                 (4.25) 

Proof. If no elective patients are waiting to be seen at decision stage m, the provider 

could not see a elective patient between decision stages m and (m+1). This means that if 

0
1

 

M

i

m

ix , ds
m
 must equal 0. Similarly, if neither walk-in patients are waiting to be seen at 

decision stage m nor walk-in patients arrive between decision stages (m–1) and m, the provider 

could not see a walk-in patient between decision stages m and (m+1). This means that if n
m 

+ 

w
m
da

m
 = 0, dw

m
 must equal 0. Finally, since the length of an appointment slot equals the constant 

service time per patient, a provider could see at most one patient between two adjacent decision 

stages, i.e., ds
m 

+ dw
m 

≤ 1. Therefore, any valid action a
m
 in state s

m
 must satisfy conditions (4.23) 

– (4.25).  

From Equations 4.23 – 4.25, we can infer the corollary that determines the optimal 

actions for states s
m
S satisfying 0

1
 

M

i

m

ix  and n
m 

+ w
m
 = 0.  

Corollary 1. For a state s
t
S satisfying 0

1
 

M

i

m

ix  and n
m 

+ w
m
 = 0, the valid action set 

A(s
m
) is {(0,0,0), (1,0,0)} and both actions are optimal.  

Proof. According to Equations 4.23 – 4.25 in Proposition 1, ds
m
 = 0 and dw

m
 = 0 for a 

state s
m
S satisfying 0

1
 

M

i

m

ix  and n
m 

+ w
m
 = 0. That means that (0,0,0) and (1,0,0) are the only 

valid actions.  

Since n
m
≥0 and w

m
≥0 for any state s

m
S, n

m 
+ w

m
 = 0 implies n

m 
= 0 and w

m
 = 0. When 

w
m
 = 0, the decision for da

m
 does not affect the immediate net reward according to Equation 4.17, 

and the next state to which the process transitions only depends on state s
m
 according to 

Equations 4.10 – 4.16. Therefore, taking either (0,0,0) or (1,0,0) results in the identical expected 

total net reward in the (M–m+1) remaining stages. Thus, both (0,0,0) and (1,0,0) are optimal. 
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Next, Propositions 2 and 3 reveal the other two properties of the proposed MDP model. 

Proposition 2 establishes the condition for an optimal action at the states satisfying 0
1

 

M

i

m

ix  or 

n
m
>0, while Proposition 3 provides the condition for an optimal action at the states satisfying 

0
1

 

m

i

m

ix  (see Appendix for the proofs of Propositions 2 and 3. According to Propositions 1 and 

2, we obtain the conditions for the optimal actions in three state subsets specified in Corollaries 

2, 3, and 4, respectively. Corollaries 2 and 3 could be directly derived from Proposition 2, and 

the proof of Corollary 4 could be found in Appendix. 

Proposition 2. If 0
1

 

M

i

m

ix  or n
m
>0 in a state s

m
S, the optimal action π

*
(s

m
) satisfies m

sd

+ m

wd = 1. 

Corollary 2. If 0
1

 

M

i

m

ix  and n
m 

+ w
m
 = 0 in a state s

m
S, the optimal action π

*
(s

m
) 

satisfies m

sd = 1 and m

wd = 0.  

Corollary 3. If 0
1

 

M

i

m

ix  and n
m
>0 in a state s

m
S, the optimal action π

*
(s

m
) satisfies m

sd

= 0 and m

wd = 1.  

Corollary 4. If 0
1

 

M

i

m

ix , n
m
 = 0 and w

m
 = 1 in a state s

m
S, the optimal action π

*
(s

m
) is 

(1,0,1). 

Proposition 3. If 0
1

 

m

i

m

ix  in a state s
m
S, the optimal action π

*
(s

m
) satisfies m

sd = 1 and 

m

wd = 0. 

4.4. Optimal and heuristic rules for walk-in patient admission 

In the previous section, we derive the conditions for the optimal actions in several state 

subsets of the MDP model representing the walk-in patient admission process in a clinic session. 

According to these conditions, in this section, we propose optimal and heuristic walk-in-patient 
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admission rules, which could be used to form better walk-in patient admission policies in 

targeted outpatient clinics.  

First, we derive the optimal rules for the states s
m
S satisfying w

m
 = 0. For such states, 

the decision for da
m
 does not affect either the immediate net reward or the next state that the 

process transitions to. According to Corollaries 1 – 3 and Proposition 3, we divide the states 

s
m
S satisfying w

m
 = 0 into five subsets, and then analyze the optimal actions and admission 

rules for four of them, which are summarized in Table 4.3. For the remaining state subset S05, the 

valid state set, A(s
m
), consists of actions (0,0,1), (1,0,1), (0,1,0) and (1,1,0). Since w

m
 = 0, we 

know that V(s
m

,(0,0,1))=V(s
m

,(1,0,1)) and V(s
m

,(0,1,0))= V(s
m

,(1,1,0)) for any state s
m
S05. Thus, 

either {(0,0,1), (1,0,1)} or {(0,1,0), (1,1,0)} should be optimal in a state s
m
S05. The optimal 

actions in a state s
m
S05 depends not only on the numbers of elective and walk-in patients 

waiting to be seen ( 

M

i

m

ix
1

 and n
m
), but also on the number of new patient arrivals in time for 

their appointments, which is a function of the no-show rate, the late-cancellation rate and the 

number of appointments in the remaining slots, i.e.,   


M

mi

m

i

m

i zy
1

.  

Table 4.3: Optimal and heuristic admission rules for the states s
m
S satisfying w

m
 = 0 

State subset Conditions for the state subset Optimal actions Admission rules 

S01 0
1

 

M

i

m
ix  and n

m
 + w

m 
= 0 (0,0,0) and (1,0,0) Rule 1: ds

m
 = 0, dw

m
 = 0 

S02 0
1

 

M

i

m
ix  and n

m
 + w

m
 = 0 (0,1,0) and (1,1,0) Rule 2: ds

m
 = 1, dw

m
 = 0 

S03 0
1

 

M

i

m
ix , n

m
 > 0 and w

m
 = 0 (0,0,1) and (1,0,1) Rule 3: ds

m
 = 0, dw

m
 = 1 

S04 0
1

 

m

i

m
ix , n

m
 > 0 and w

m
 = 0 (0,1,0) and (1,1,0) Rule 2: ds

m
 = 1, dw

m
 = 0 

S05 
0

1
 

M

i

m
ix , 0

1
 

m

i

m
ix , n

m 
> 0 and w

m
 

= 0 

 Rule 5a, Rule 5b or 

Rule 5c 

 

We propose a heuristic rule for states in S05 depending on the number of remaining time 

slots and the expected total elective patients needed to be seen by the end of the clinic session. 
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Let ESP(s
m
) denote the expected total number of elective patients needed to be seen by the end of 

the clinic session given a state s
m
S.  ESP(s

m
) could be estimated by  

ESP(s
m
) =   








M

mi

i

mm
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i

m

i

m

mi

M

i

m

i zypx
1

1

'

'

| 

1

,                                          (4.26) 

where '

| 

m

mip  is the conditional probability that a patient with an appointment in slot i arrives 

between decision stages m' and (m'+1) given that he/she has not arrived or cancelled his/her 

appointment until decision stage m. The proposed heuristic rule for a state s
m
S05 is 

Rule 5a: For a state s
m
S satisfying 0

1
 

M

i

m

ix  and 0
1

 

m

i

m

ix , if ESP(s
m
) ≤ M–m+1, then 

ds
m 

= 0, dw
m 

= 1; otherwise, ds
m 

= 1, dw
m 

= 0. 

In this study, we compare Rule 5a to two simple rules for a state s
m
S05:   

Rule 5b: If 0
1

 

M

i

m

ix  and n
m 

> 0, then ds
m
 = 1, dw

m
 = 0. 

Rule 5c: If 0
1

 

m

i

m

ix  and n
m 

> 0, then ds
m
 = 0, dw

m
 = 1. 

Rule 5b implies that elective patients are always seen before walk-in patients. On the 

contrary, Rule 5c states that when all elective patients waiting to be seen have appointments in 

the later slots, a walk-in patient should be seen in the current slot.  

Next, we discuss the rules for the states s
m
S satisfying w

m
 > 0. According to Equations 

4.5 and 4.7, when w
m
 > 0, the decision for da

m
 affects the waiting time of walk-in patients in the 

immediate net reward and the number of walk-in patients waiting to be seen in later states. 

Admitting walk-in patients to wait for service may reduce provider idle time, increase the 

number of patients seen and increase patient waiting time depending on the numbers of elective 

and walk-in patients waiting to be seen and the number of new patient arrivals in time for their 

appointments. We propose two heuristic rules for decision da
m
, which consider the number of 

walk-in patients arriving between decision stages (m–1) and m, the expected total elective 
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patients needed to be seen, the number of walk-in patients waiting to be seen, and the number of 

remaining slots. The two heuristic rules, called Tight Rule and Relaxed Rule respectively, are  

Rule A: (Tight Rule) For a state s
m
S, if w

m 
+ n

m 
+ ESP(s

m
) > M–m+1, then da

m
 = 0; 

otherwise, da
m
 = 1. 

Rule B: (Relaxed Rule) For a state s
m
S, if n

m
 + ESP(s

m
) ≥ M–m+1, then da

m
 = 0; 

otherwise, da
m
 = 1. 

The Tight Rule rejects the new walk-in patients when the number of new walk-in patient 

arrivals is greater than the expected number of idle slots, i.e., (M–m+1) – ESP(s
m
) – n

m
, while the 

Relaxed Rule rejects the new walk-in patients only when the expected number of idle slots is less 

than or equal to 0. The performance of these two heuristic rules is compared in Section 6.  

At a state s
m
S satisfying w

m
 > 0, after making decision for da

m
, the decision rules for ds

m
 

and dw
m
 are similar to those for the states s

m
S satisfying w

m
 = 0. According to Corollaries 2 – 4 

and Proposition 3, we divide the states s
m
S satisfying w

m
 > 0 into six subsets, and then analyze 

the potential optimal actions and the admission rules for each subset, which are summarized in 

Table 4.4. The optimal action and admission rule for subset S11 are obtained according to 

Corollary 4. For the states in the other subsets, S12, S13, S13, S15, and S16, the two heuristic rules 

(Rule A and Rule B) are proposed for making decision for da
m
, and the rules for ds

m
 and dw

m
 

depends on the state properties of each subset and the decision for da
m
. At a state s

m
S12, if da

m
 = 

0, the only feasible decision for ds
m
 and dw

m
 is ds

m
 = 0 and dw

m
 = 0. If da

m
 = 1, the optimal 

decision for ds
m
 and dw

m
 is ds

m
 = 0 and dw

m
 = 1 according to Propositions 1 and 2. ds

m
 = 0 and dw

m
 

= 1 are optimal at a state s
m
S13 according to Corollary 3, while ds

m
 = 1 and dw

m
 = 0 are optimal 

at a state s
m
S14 according to Proposition 3. For the states in subsets S15 and S16, the three 

heuristic rules (Rules 5a, 5b and 5c) are considered for making decision for ds
m
 and dw

m
. This is 
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because after making decision for da
m
, the states in subsets S15 and S16 have similar properties to 

those in subset S05.  

Table 4.4: Optimal and heuristic admission rules for the states s
m
S satisfying w

m
 > 0 

State 

subset  
Conditions for the state subset 

Optimal 

actions 
Admission rules 

S11 
0

1
 

M

i

m
ix , n

m
 = 0 and w

m
 = 1 

(1,0,1) Rule 4: da
m
 = 1, ds

m
 = 0, dw

m
 = 1 

S12 
0

1
 

M

i

m
ix , n

m
 = 0 and w

m
 > 1 

(0,0,0) or 

(1,0,1) 

Rule A and Rule B for da
m
 

If da
m
 = 0, follow Rule 1 for ds

m
 and dw

m
. 

If da
m
 = 1, follow Rule 3 for ds

m
 and dw

m
. 

S13 
0

1
 

M

i

m
ix  and n

m
 > 0 

(0,0,1) or 

(1,0,1) 

Rule A and Rule B for da
m
 

Rule 3 for ds
m
 and dw

m
 

S14 
0

1
 

m

i

m
ix  and nm  0 

(0,1,0) or 

(1,1,0) 

Rule A and Rule B for da
m
 

Rule 2 for ds
m
 and dw

m
 

S15 
0

1
 

M

i

m
ix , 0

1
 

m

i

m
ix  and n

m
 

= 0 

 Rule A and Rule B for da
m
 

If da
t
 = 0, follow Rule 2 for ds

m
 and dw

m
. 

If da
t
 = 1, follow Rule 5a, 5b or 5c for ds

m
 and dw

m
 

S16 
0

1
 

M

i

m
ix , 0

1
 

m

i

m
ix  and n

m
 

> 0 

 Rule A and Rule B for da
m
 

Rule 5a, 5b or 5c for ds
m
 and dw

m
 

 

Table 4.5 summarizes the optimal and heuristic rules for walk-in patient admission. 

Among these rules, Rule 1 is the optimal admission rule for state subset S01, and Rule 4 is the 

optimal admission rule for state subset S11. Rule 2 is the optimal rule for ds
m
 and dw

m
 in state 

subsets S02, S04, and S14, while Rule 3 is the optimal rule for ds
m
 and dw

m
 in state subsets S03, and 

S13. The other rules in Table 4.5 are heuristic rules, including Rules 5a, 5b and 5c that are 

heuristic rules for ds
m
 and dw

m
 in state subsets S05, S15, and S16, and Rules A and B that are 

heuristic rules for da
m
 in state subsets S12, S13, S14, S15, and S16  

4.5. Comparison of heuristic walk-in patient admission rules 

We derive the optimal rules and propose heuristic rules for walk-in patient admission in 

the previous section. In this section, the performances of the heuristic admission rules are 

compared over 36 scenarios representative of the possibilities, which consider different arrival 

patterns of patients with appointments, different arrival rates of patients without appointments, 

and different overbooking policies. After that, the walk-in admission policy adopting the best 
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heuristic rules is compared to the policy admitting all walk-in patients and the policy rejecting all 

walk-in patients.   

Table 4.5: Summary of the optimal and heuristic rules for walk-in patient admission 

Walk-in patient admission rules Definition of admission rule 

Rule 1 ds
m
 = 0, dw

m
 = 0 

Rule 2 ds
m
 = 1, dw

m
 = 0 

Rule 3 ds
m
 = 0, dw

m
 = 1 

Rule 4 da
m
 = 1, ds

m
 = 0, dw

m
 = 1 

Rule 5a 
For a state s

m
 S satisfying 0

1
 

M

i

m
ix  and 0

1
 

m

i

m
ix , if ESP(s

m
) 

≤ M–m+1, then ds
m
 = 0, dw

m
 = 1; otherwise, ds

m
 = 1, dw

m
 = 0. 

Rule 5b 
If 0

1
 

M

i

m
ix  and n

m
 > 0, then ds

m
 = 1, dw

m
 = 0. 

Rule 5c 
If 0

1
 

m

i

m
ix  and n

m
 > 0, then ds

m
 = 0, dw

m
 = 1. 

Rule A (Tight Rule) For a state s
m
S, if w

m
 + n

m
 + ESP(s

m
) > M–m+1, then da

m
 = 0; 

otherwise, da
m
  = 1. 

Rule B (Relaxed Rule) For a state s
m
 S, if n

m
 + ESP(s

m
) ≥ M–m+1, then da

m
 = 0; otherwise, 

da
m
 = 1. 

 
4.5.1. Data collection and numerical scenarios 

In most outpatient clinics, a common 4-hour clinic session is divided into 15-minute or 

30-minute appointment slots (Giachetti et al. 2005, Green et al. 2007, Qu and Shi 2009). In the 

local clinic motivating this study, the length of a clinic session is 4 hours, which is divided into 

eight 30-minute slots. There are 3 FTE physicians in this clinic. It takes 25 – 30 minutes for a 

physician to see one patient, and physicians use a few remaining minutes to do the paperwork if 

the service time for a patient is less than 30 minutes. Therefore, 4-hour clinic sessions with eight 

30-minute appointment slots and the service time of 30 minutes are assumed in all scenarios to 

compare the performance of heuristic rules. 

Patients with appointments may arrive before or after their appointment time, cancel their 

appointments, or not show up for their appointments. According to the literature, the no-show 

and late-cancellation rate in an outpatient clinic could reach as high as 50 – 55% (George and 

Rubin 2003, Lee et al. 2005), and patients who arrive earlier than their appointment times are 
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more than those who arrive late (Blanco White and Pike 1964, Fetter and Thompson 1966, 

Cayirli and Veral 2003). In the study of Blanco White and Pike (1964), the distribution of 

patients’ unpunctuality (i.e., the difference between the appointment time and the arrival time of 

a patient) in an outpatient department is much more peaked than a normal distribution, and 

patients’ unpunctuality ranges from 60 minutes early to 40 minutes late, with an average of 5 

minutes early and standard deviation of 17 minutes. In the outpatient clinics or departments 

studied by Fetter and Thompson (1966), 59.9 – 86.5% patients with appointments arrive early or 

on time. The average early arrival time is 17.1 minutes and the average late arrival time is 16.6 

minutes.  

For the local clinic, the no-show rate, the late cancellation rate, and the walk-in patient 

arrival rate are obtained based on 6-month historical data of appointments scheduled and patient 

visits. As shown in Table 4.6, the average no-show rate is 5.87%, the average late-cancellation 

rate is 10.59%, and the walk-in patient arrival rate is 1.57 patients per clinic session for one 

physician. Meanwhile, the arrival pattern of patients with appointments is approximated based on 

one-month patient arrival data collected by time studies in the clinic. The arrivals of patients with 

appointments are classified into three groups: early arrivals, on-time arrivals, and late arrivals. 

The three groups of arrivals are defined as the arrivals more than one time slot earlier than the 

corresponding appointment time, the arrivals within one time slot before the corresponding 

appointment time, and the arrivals later than the corresponding appointment time, respectively. 

Among all patients who showed up for their appointments, the percentage ranges of early 

arrivals, on-time arrivals and late arrivals are 4.84 – 5.76%, 70.49 – 72.58%, and 20.96 – 

24.59%, respectively. The percentages of three arrival groups vary among five physicians 

working in the clinic. 
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Table 4.6: Patient arrival pattern in the clinic motivating this study 

Parameter Average/Range 

No-show rate 5.87% (299 appointments missed among 5089 elective appointments) 

Late cancellation rate 10.59% (539 appointments cancelled late among 5089 elective appointments) 

Arrival rate of patients without 

appointments 

1.57 patients per provider per clinic session (984 walk-in patients over 628 

provider-sessions) 

Percentage of early arrivals * 4.84 – 5.76% of all arrivals of patients with appointments 

Percentage of on-time arrivals * 70.49 – 72.58% of all arrivals of patients with appointments 

Percentage of late arrivals * 20.96 – 24.59% of all arrivals of patients with appointments 

* The percentages of early arrivals, on-time arrivals and late arrivals vary among providers. Therefore, the ranges of 

these percentages are listed. 

 

For the comparison of heuristic walk-in patient admission rules, four arrival patterns of 

patients with appointments are considered, which are summarized in Table 4.7. Among the four 

arrival patterns, Pattern R1 approximates the arrival pattern of patients with appointments in the 

clinic studied. In addition, considering that only one patient could be seen during each 

appointment slot, three arrival rates of patients without appointments considered are less than 1 

patient per slot. The three arrival rates are 0.2, 0.5, and 0.8 patients per slot, among which the 

lowest arrival rate captures the arrival rate of patients without appointments in the local clinic.  

4.5.2. Overbooking policies and walk-in patient admission policies 

To reduce the negative impact of high patient no-shows and late cancellations, clinics 

could adopt overbooking and/or admit some walk-in patients. In this study, we examine the 

combinations of three overbooking policies and eight walk-in patient admission policies. One 

walk-in patient admission policy consists of a set of optimal and heuristic walk-in patient 

admission rules for decisions da
m
, ds

m
, and dw

m
.  

Table 4.8 summarizes the three overbooking policies and the eight walk-in patient 

admission policies. In the three overbooking policies, the first one does not adopt overbooking 

due to a low demand for appointments. The second one allows the clinic to overbook one 

appointment slot, which is the overbooking policy used in the local clinic. The last overbooking 
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policy allows overbooking half of the appointment slots (i.e., four appointment slots in our 

numerical scenarios).  

Table 4.7: Patient arrival patterns for the comparison of the heuristic rules 

Patient Type Arrival Pattern Description 

Patients with appointments Pattern R1 20% patients arriving 1 time slot early  

60% patients arriving on time 

5% patients arriving late 

Late-cancellation rate of 10% 

No-show rate of 5% 

 Pattern R2 12.5% patients arriving 1 time slot early  

37.5% patients arriving on time 

5% patients arriving late 

Late-cancellation rate of 30% 

No-show rate of 15% 

 Pattern R3 40% patients arriving 1 time slot early  

40% patients arriving on time 

5% patients arriving late 

Late-cancellation rate of 10% 

No-show rate of 5% 

 Pattern R4 25% patients arriving 1 time slot early  

25% patients arriving on time 

5% patients arriving late 

Late-cancellation rate of 30% 

No-show rate of 15% 

Patients without appointments Low arrival rate (LA) 0.2 patient per appointment slot 

 Medium arrival rate (MA) 0.5 patient per appointment slot 

 High arrival rate (HA) 0.8 patient per appointment slot 

 

In the eight walk-in patient admission policies, the first one does not admit any walk-in 

patients. The second one allows all walk-in patients waiting for services, and dismisses all 

unseen walk-in patients at the end of a clinic session. The second admission policy adopts Rules 

1 – 3 and 5a to determine whether an elective patient or a walk-in patient should be seen in each 

slot. In the remaining six walk-in patient admission policies, Policies A3, A4, and A5 adopt Rule 

A for the admission decision (da
m
), while Policies A6, A7, and A8 adopt Rule B. For decisions 

ds
m
 and dw

m
 in state subsets S05, S15 and S16, Policies A3 and A6 adopt Rule 5a, Policies A4 and 

A7 adopt Rule 5b, and Policies A5 and A8 adopt Rule 5c. For each of the other state subsets, the 

corresponding rule (Rule 1, Rule 2, Rule 3 or Rule 4) given in Tables 3 and 4 is adopted for 

decisions ds
m
 and dw

m
 in the six walk-in patient admission policies (Policies A3 –A8). For a more 
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detailed description of overbooking policies and walk-in patient admission, please see the 

Appendix.  

Table 4.8: Overbooking policies and walk-in patient admission policies 

Policy Group Index Policy Name Description 

Overbooking  Policy O1 No overbooking On average 20% slots unfilled due to low demand 

Policy Policy O2 1-slot overbooking 1 slot is overbooked for excess patient requests for 

appointment 

 Policy O3 4-slot overbooking 4 slots are overbooked for excess patient requests for 

appointments 

Walk-in patient  Policy A1 No walk-in admission No walk-in patients are admitted.  

admission policy Policy A2 All walk-in admission All walk-in patients are admitted. 

 Policy A3 Tight rule with  

Rule 5a 

Rule A for the admission decision (dam), and Rule 5a 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 Policy A4 Tight rule with  

Rule 5b 

Rule A for the admission decision (dam), and Rule 5b 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 Policy A5 Tight rule with  

Rule 5c 

Rule A for the admission decision (dam), and Rule 5c 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 Policy A6 Relaxed rule with  

Rule 5a 

Rule B for the admission decision (dam), and Rule 5a 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 Policy A7 Relaxed rule with  

Rule 5b 

Rule B for the admission decision (dam), and Rule 5b 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 Policy A8 Relaxed rule with  

Rule 5c 

Rule B for the admission decision (dam), and Rule 5c 

for the state subsets S05, S15, and S16, and the rules 

in Tables 4.3 and 4.4 for the other state subsets 

 
4.5.3. Reward and cost coefficients 

For the MDP model proposed in Section 3, a walk-in patient admission policy directly 

determines the expected total net reward, while an overbooking policy indirectly affects the 

expected total net reward by changing the initial state of the MDP model. For a given walk-in 

patient admission policy, the expected total net reward also depends on the reward from seeing a 

elective patient or a walk-in patient (rs and rw), provider idle cost and overtime cost per 

appointment slot (ci and co), and patient waiting costs per appointment slot (cs and cw). 

In this study, provider idle cost and overtime cost per slot are estimated based on the 

median annual compensation per primary care physician reported by the Bureau of Labor 
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Statistics (BLS). According to the BLS reports, the median annual compensation of primary care 

physicians was $186,044 in 2008 (Bureau of Labor Statistics 2011). Since on average a provider 

would work 50 weeks per year and 40 hours per week, the hourly cost of hiring a primary care 

physician is about $90. Thus, in this study, the provider idle cost per slot (half an hour) is $45 

(i.e., ci = 45). Meanwhile, considering the compensation for providers’ unwillingness to work 

overtime in this study, the provider overtime cost per slot is assumed to be about 50% higher 

(i.e., co = 70). The reward earned by seeing a patient is estimated based on the average payment 

to the provider per primary care visit from the Agency for Healthcare Research and Quality 

(AHRQ) and the median annual compensation of primary care physicians. The AHRQ news 

reports that the average payment per primary care visit is about $100 during 2004 (Agency for 

Healthcare Research and Quality 2007). The reward per elective patient equals the average 

payment per visit minus the cost per half an hour of hiring a primary care physician (i.e., rs = 

55). Since nurses and providers usually need extra effort to take care of walk-in patients, a 

slightly lower reward (i.e., rw = 50) is considered for seeing a walk-in patient in this study. The 

patient waiting cost per slot is estimated based on the average hourly wage of about $17.43 per 

hour (Krueger 2009). Thus, the waiting cost per slot per elective patient of $8.7 is used in this 

study (i.e., cs = 8.7). Since walk-in patients arrive without appointments or late for their 

appointments are considered lower priority to the clinic, the waiting cost per slot per walk-in 

patient can be treated as a much lighter penalty to service performance than that per elective 

patient. In this study, it is assumed that the waiting cost (or penalty) per slot per elective patient 

is four times of that per walk-in patient (i.e., cw = 2.2). These six cost coefficients are 

summarized in Table 4.9.  
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Table 4.9: Cost coefficients in the immediate net reward 

Cost Coefficient Notation Value 

Reward per elective patient rs 55 

Reward per walk-in patient rw 50 

Provider idle cost per appointment slot ci 45 

Provider overtime cost per appointment slot co 70 

Waiting cost per appointment slot per elective patient cs 8.7 

Waiting cost per appointment slot per walk-in patient cw 2.2 

 
4.5.4. Comparison of walk-in patient admission policies 

For each patient arrival pattern, 5000 samples are randomly generated to estimate the 

expected total net reward of each of 24 combinations of the overbooking policies and the walk-in 

patient admission polices. To reduce the effect of patient arrival patterns, the policy 

combinations are compared in terms of the average of the differences between the expected total 

net reward of each combination and the maximum total net reward in each sample. The 

maximum total net reward for a sample is the total net reward of the best admission decisions, 

which is calculated after knowing all patient arrivals in the sample. Figures 3 – 5 demonstrate the 

performances of 21 combinations of walk-in patient admission policies A2 – A8 with 

overbooking policies O1 – O3. Since the performances of admission policy A1 are much worse 

than those of the other walk-in patient admission policies, its performances are not illustrated in 

Figures 4.3 – 4.5.  
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Fig. 4.3: Performance of the admission policies A2 – A8 under overbooking policy O1 

 

 

Fig. 4.4: Performance of the admission policies A2 – A8 under overbooking policy O2 

 

Figures 4.3 – 4.5 show that the performances of admission policies A6, A7, and A8 are 

significantly better than those of admission policies A3, A4, and A5, which means that the 
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Relaxed Rule is better than the Tight Rule for the walk-in patient admission. Those figures also 

demonstrate that the performances of admission policies A3, A4, and A5 are similar, and that the 

performances of admission policies A6, A7, and A8 are similar, too. The further statistical 

analysis concludes that there are no significant difference in performance between admission 

policies A3 and A5, and no significant difference between admission policies A6 and A8. This 

result indicates that Rule 5c performs as well as Rule 5a. Meanwhile, the statistical analysis 

reveals that for some patient arrival patterns, admission policies A3 and A5 perform significantly 

better than admission policy A4, and admission policies A6 and A8 perform significantly better 

than admission policy A7. However, for the other patient arrival patterns, there are no significant 

performance differences among admission policies A3, A4 and A5, and no significant difference 

among admission policies A6, A7 and A8. These results imply that for the three heuristic rules, 

Rules 5a and 5c perform better than or as well as Rule 5b.  

 

Fig. 4.5: Performance of the admission policies A2 – A8 under overbooking policy O3 
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Fig. 4.6 compares the performance of admission policies A1 and A2 with admission 

policy A6, which is the policy adopting the best heuristic admission rules. This figure 

demonstrates that the performance of admission policy A1 is much worse than that of admission 

policy A2, and deteriorates with the increase in the arrival rate of patients without appointments. 

This implies that admitting walk-in patients improves the expected total net reward more when 

the arrival rate of patients without appointments increases. In addition, Figures 4.3 – 4.6 reveal 

that the performance of admission policy A2 is close to that of the admission policy adopting the 

best heuristic admission rules in the patient arrival patterns with a low arrival rate of patients 

without appointments (20% of service rate). However, the performance of admission policy A2 

decreases with the increase in the arrival rate of patients without appointments. Finally, the 

results in Table 4.10 show that the percentage of walk-in patients seen ranges from 16.18% – 

84.21% when adopting admission policy A6 and overbooking policies O1 – O3.  

 

Fig. 4.6: Performance of the admission policies A1, A2, and A6 under overbooking policies O1 – 

O3 
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Table 4.10: Average number of walk-in patients seen per clinic session under admission policy 

A6 

Arrival 

pattern of 

patients with 

appointments 

Arrival pattern of 

patients without 

appointments 

Average number of walk-in patients 

seen per clinic session 

Average walk-in patient arrivals per 

clinic session 

Policy 

PA6-PO1 

Policy 

PA6-PO2 

Policy 

PA6-PO3 

Policy 

PA6-PO1 

Policy 

PA6-PO2 

Policy 

PA6-PO3 

Pattern R1 Low arrival rate  1.2 0.6 0.6 1.9 2.0 2.0 

 Medium arrival rate 2.1 0.9 1.0 4.3 4.4 4.4 

 High arrival rate  2.5 1.1 1.1 6.7 6.8 6.8 

Pattern R2 Low arrival rate  1.6 1.5 1.5 1.9 2.0 2.0 

 Medium arrival rate  3.1 2.6 2.6 4.3 4.4 4.4 

 High arrival rate  3.9 3.1 3.1 6.7 6.8 6.8 

Pattern R3 Low arrival rate  1.3 0.7 0.7 1.9 2.0 2.0 

 Medium arrival rate  2.2 1.0 1.0 4.3 4.4 4.4 

 High arrival rate  2.6 1.1 1.1 6.7 6.8 6.8 

Pattern R4 Low arrival rate  1.6 1.5 1.5 1.9 2.0 2.0 

 Medium arrival rate  3.1 2.6 2.6 4.3 4.4 4.4 

 High arrival rate  4.0 3.2 3.1 6.7 6.8 6.8 

 

4.5.5. Discussion  

The analytical results and the experimental results in this study provide insights for clinic 

managers to determine whether to admit a walk-in patient and in which slot a walk-in patient 

should be seen. This enables clinics to serve more patients and become more responsive and 

respectful toward their patients’ needs. Patients can benefit from increased flexibility to 

accommodate their changing needs for long-term and short-term scheduling, and clinics can also 

benefit from it because the providers can be better utilized within reasonable working hours.  The 

guidelines for the walk-in patient admission are summarized as follows:  

1) A clinic should admit some or all walk-in patients because walk-in patient 

admission policies A2 – A8, in which all or some walk-in patients are admitted, perform much 

better than admission policy A1, in which all walk-in patients are rejected. 

2) In a clinic with a walk-in patient arrival rate not greater than 20% of service rate, 

admitting all walk-in patients is a simple and good rule because in such cases admission policy 

A2, in which all walk-in patients are admitted, performs as well as the admission policy adopting 

the best heuristic rules. 



 

92 

 

3) In a clinic with a walk-in patient arrival rate greater than 20% of service rate, the 

Relaxed Rule should be adopted to determine whether to admit a walk-in patient. The Relaxed 

Rule allows admitting walk-in patients when the number of patients waiting for service plus the 

expected number of elective patients who will arrive on time or early is less than the total 

remaining slots; otherwise, walk-in patients should be rejected. 

4) A walk-in patient should be seen only when there are no elective patients waiting 

for service, with appointments before or in the current slot. 
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5. MULTI-PROVIDER WALK-IN PATIENT ADMISSION OPTIMIZATION 

MODEL 

5.1. Introduction 

Under the setting of traditional appointment scheduling, patients make appointments 

weeks or months earlier by calling the clinic or right after their current visits. Usually, the 

appointments are not available in near term, since most clinics operate at their capacity. As a 

result, the patients need to wait several weeks or months for their clinic visits. In case of an 

urgent appointment, the patients may have to use the emergency department. It leads to a 

disruption of care continuity because they are not able to see their own providers in time. It also 

dramatically increases the care cost in an unnecessarily way since the cost of emergency 

department visits is much higher than that of primary clinic visits. Meanwhile, patient no-show 

rate and short-notice appointment cancellation rate are likely to increase due to the long waiting 

list for appointments. It is well-known that patient no-shows and short-notice appointment 

cancellations increase the volatility to the standard clinic process, which would eventually 

increase the healthcare expenditure and decrease clinic efficiency and patient accessibility.  

It is also believed that clinics can reduce the adverse effects of patient no-show and short-

notice appointment cancellation by admitting walk-in patients (Moore et al., 2001; Liu et al., 

2010). The key concept is using walk-in patients to fill the empty appointments due to patient 

no-shows and short-notice appointment cancellations. In order to achieve the maximum profit 

and patient satisfaction, the clinics need to optimize their walk-in patient admission policy, since 

too many walk-in patient admissions lead to reduced patient satisfaction, while too fewer 

admissions can result in the loss of profit. Hence, it is worthwhile to develop optimization 

models/methods that can find the optimal walk-in patient admission policy where the optimal 
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number of walk-in patients can be admitted at the right time. To solve walk-in patient admission 

optimization problem, we need to give answers to the following four questions: 1) When should 

the walk-in patient admission decisions be made? 2) At each decision point, how many walk-in 

patients should be admitted? 3) Which provider should serve the admitted walk-in patients? 4) 

When the admitted walk-in patient should be served?  

In the existing outpatient clinic scheduling literature, the walk-in patient admission 

problem has not been sufficiently studied. Most of these studies ignore the walk-in patient by 

directly assuming that no walk-in patient be admitted. On the other hand, there are a few studies, 

which consider the walk-in patients by assuming the clinic admitting all walk-in patients. It is 

clearly that both assumptions have their disadvantages. If rejecting all walk-in patients, the clinic 

may miss the opportunity for seeing more patients, when there are available appointment slots 

due to patient no-show or appointment cancellation. If admitting all walk-in patients, there is a 

risk of overload due to the large number of the arrived walk-in patients. Hence, the best walk-in 

patient admission strategy should be neither rejecting all walk-in patients, nor admitting all walk-

in patients. The optimal walk-in patient admitting decisions should be made based on the 

capacity of the clinic which is closely related to many factors, including, the current appointment 

schedule, patient no-show rate, appointment cancellation rate, and etc. As a result, we propose a 

two-stage stochastic mixed-integer programming (SMIP) model to investigate the walk-in patient 

admission optimization problem. The contributions of this study are listed as follows:  

1) Our study is the first quantitative research investigating the dynamic walk-in 

patient admission optimization problem in regards of mitigating the negative impacts of patient 

no-shows and short-notice appointment cancellations. Hence, this study can fill the gap between 

the existing study and needs from clinics.  
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2) A novel solution approach, based on the Sample Average Approximation method, 

is developed to solve the SMIP, since the walk-in patient admission decision need to be made in 

real time or within short time. 

3) The SMIP model can be applied for a broader range of clinics, since it does not 

have assumptions that often restrict the patient arrival pattern, service time distribution, and etc. 

Note that these assumptions are commonly used in other outpatient appointment scheduling 

studies. In addition, our model considers clinics with multiple providers.  

5.2. Terminology and problem formulation 

5.2.1. Terminology 

Index: 

i : Index of patients with appointment. 

j : Index of providers. 

k : Index of walk-in patients. 

 : Scenario index.  

Patients with appointment:  

} ,, , , , ,{ 11111111 N

ij

C

ij

W

ij

L

ij

E

ij

S

ij

A

ijij IItttttp  : Denote the first patient scheduled in the i
th

 

appointment slot of provider j.  

} , , , , ,{ 22222222 N

ij

C

ij

W

ij

L

ij

E

ij

S

ij

A

ijij IItttttp  : Denote the second patient scheduled in the i
th

 

appointment slot of provider j.  

Walk-in patients: 

},, , , , ,{ admit

kj

Pw

kj

Ww

kj

Lw

kj

Ew

kj

Sw

kj

Aw

kj

w

k IItttttp  : Denote the k
th

 walk-in patient arrived at the clinic. 

Parameters: 
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1C

ijI , 
2C

ijI : The cancellation indicator of the corresponding patient, with “1” indicating 

cancellation. 

1N

ijI , 
2N

ijI : The no-show indicator of the corresponding patient, with “1” indicating no-

show. 

S

ij
T : The expected starting time of the i

th
 appointment of provider j. 

E

jT : The expected service ending time of provider j. 

1_ A

ijtdummy , 
2_ A

ijtdummy , Aw

ktdummy_ : Dummy arrival time of the corresponding 

patient, which is generated from given arrival time distribution. 

1_ L

ijtdummy , 
2_ L

ijtdummy , Lw

ktdummy_ : dummy service length of the corresponding 

patient, which is generated from given service length distribution. 

aWaitc .
: The cost coefficient related to waiting time of patients with appointment. 

wWaitc .
: The cost coefficient related to waiting time of walk-in patients. 

Idlec :  The cost coefficient related to provider idle time. 

Overtimec : The cost coefficient related to provide over time. 

Variables:  

1A

ijt , 2A

ijt , 
Aw

kjt : The arrival time of the corresponding patient. 

1S

ijt , 2S

ijt , 
Sw

kjt : The service starting time of the corresponding patient. 

1E

ijt , 2E

ijt ,
Ew

kjt : The service ending time of the corresponding patient. 

1L

ijt , 2L

ijt , 
Lw

kjt : The service length of the corresponding patient. 

1W

ijt , 2W

ijt , 
Ww

kjt : The waiting time of the corresponding patient. 
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A

ijI : Appointment indicator; 1A

ijI , if at least 1 patient is scheduled in the i
th

 appointment 

slot of provider j . 

D

ijI : Double booking indicator; 1D

ijI , if the i
th

 appointment slot of provider j is double 

booked. 

Pw

kjI : Patient preference indicator; 1Pw

kjI , if the k
th

 walk-in patient is willing to be seen 

by provider j, otherwise 0Pw

kjI . 

admit

kjI : Admission indicator; 1admit

kjI , if the k
th

 walk-in patient is admitted by provider j. 

I

jt : The idle time of provider j. 

O

jt : The overtime of provider j. 

1

kijd , 
2

kijd : Dummy binary variables.  

5.2.2. Problem formulation 

To solve the walk-in patient admission optimization problem, we develop a two-stage 

stochastic mixed-integer programming (SMIP) model, which is based on the SMIP model for 

optimizing the patient double booking strategy. For an introduction to stochastic integer 

programming, we refer to Birge and Louveaux (2001). In order to develop this stochastic mixed-

integer programming (SMIP) model, we make the following assumptions. 

1) Each clinical session is evenly divided into appointment slots; one or two patient 

appointment(s) can be scheduled in one appointment slot. If two patients are booked in the same 

appointment slot, it will be referred as double-booking or overbooking. 

2) Once an appointment is made, it cannot be modified unless it is cancelled by the 

patient. 
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3) Providers only see their own patients, i.e., patients scheduled for “provider A” 

will not be served by other providers in the clinic.  

4) All patients with an appointment, if they are not no-show or cancel their 

appointments, must be served by the corresponding providers within the clinic session, even if 

the providers have to work overtime. 

5) Patients with earlier appointment, if they are not no-show or cancel their 

appointment, are not served later than the patients with later appointments.  

6) Providers do not serve any patients before the expected start time of the first 

appointment, i.e., the starting point of the clinic session. 

7) The admission decisions for walk-in patients are made upon arrivals of walk-in 

patients. At the end of the clinic session, admitted walk-in patients, who do not receive service in 

the session cannot be referred to other clinics nor scheduled for appointment in later clinic 

session. Instead, providers have to work overtime to serve all these admitted walk-in patients. 

8) Walk-in patients’ preferences on providers are considered, e.g., if a walk-in 

patient only wants to see provider “A”, then only provider “A” can serve this patient if admitted. 

It is assumed that the arrived walk-in patients should have the least preference on one of the 

providers working in the clinic. Otherwise, no provider can serve the walk-in patients, if 

admitted.  

Note that all these assumptions are made according to the common practice of outpatient 

clinics. In addition, by comparing with the existing outpatient clinic appointment scheduling 

literature, our model doesn’t have other assumptions, which put restrictions on the patient arrival 

patterns (e.g. punctual arrival and Poisson distribution), service time distributions (e.g. 

exponential and constant),   service start time (e.g. provider doesn’t see patient before scheduled 
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appointment start time). It is clear that, without these restrictions, our model can be applied to a 

broader range of clinics, which have various patient arrival patterns, and service time 

distributions. 

The objective of the problem is to minimize the expectation of the weighted sum of 

patient waiting time, provider idle time and provider overtime in a clinic session, as shown in Eq. 

(1)  (Cayirli and Veral, 2003). For patients with appointments, the waiting time is measured as 

the delayed time by comparing actual appointment start time with the expected appointments 

start time. In case that the actual appointment starts before the scheduled expected appointment 

start time, the waiting time will be defined as zero. As for the admitted walk-in patients, the 

waiting time is measured as the time difference between the actual appointment start time and 

the arrival time of the walk-in patients. The provider overtime is the time that provider worked 

after the scheduled working hour. As for the provider idle time, it is defined as the amount of 

time that a provider is not seeing any patient during the scheduled working hour.  

Min  
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Beside the objective function, there are 39 constraints, as defined by Eqs. 5.2 – 5.40. To 

be more specific, Eqs. 5.2 – 5.3 are the service length constraint for patients with appointments, 

which make sure the service length equal to zero if the corresponding patient is no-show or 
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cancels the appointment, or there is no such patient i.e. 0A

ijI  or 0D

ijI ; otherwise, the service 

length is random drawn from a given distribution. Similarly, Eqs. 5.4 – 5.5 define the arrival 

time for patients with appointments. If the corresponding patient is no-show or cancels the 

appointment, or there is no such patient, then the patient arrival time will be equal to zero; 

otherwise the patient arrival time is drawn from a given distribution. Eq. 5.6 is the double 

booking constraint. It defines that if an appointment slot isn’t single booked, then it cannot be 

double booked. In addition, Eqs. 5.7 – 5.8 define the relationship among the service start time, 

service ending time and service length for patients with appointments. Furthermore, Eqs. 5.9 – 

5.13 are the service commitment constraints for patients with appointments. These constraints 

prevent a provider serving two or more patients at the same time based on the assumption that 

patients scheduled in early appointment slot should receive the service early, if they are not no-

show or cancel the appointments. Eqs. 5.14 – 5.17 are the waiting time constraints for patients 

with appointments. The patient waiting time is defined as the real service start time minus the 

expected service start time or zero, whichever is greater. Furthermore, Eqs. 5.18 – 5.20 and Eq. 

5.40 define the provider overtime, which should equal to the ending time of the last patient less 

the expected ending time of the clinic session, or zero, whichever is greater. In addition, Eqs. 

5.21 – 5.22 define the provider idle time, which equals the length of clinic length plus the 

provider overtime and minus the sum of service time for each patient seen in the clinic session. 

Eqs. 5.23 – 5.26 are the service start time constraint for patients with appointments, which define 

the service start time of a patient should be earlier than the arrival time of the corresponding 

patient, as well as the expected service start time of the first appointment. Eqs. 5.27 – 5.28 are 

the walk-in patient admission constraints, which define that a walk-in patient can only be 

admitted by at most one of their preferred providers. Eq. 5.29 defines the service length of walk-
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in patients. If a walk-in patient hasn’t been admitted by a provider, then the corresponding 

service length will be set to zero, otherwise the arrival time will be a random number drawn from 

a given distribution. Eq. 5.30 defines the arrival time of walk-in patients. If a walk-in patient 

hasn’t been admitted by a provider, then the corresponding arrival time will be set to zeros, 

otherwise the arrival time will be a random number drawn from a given distribution. In addition, 

Eq. 5.31 defines the relationship among the service start time, service ending time and service 

length for walk-in patients. Eqs. 5.32 and 5.33 define the service starting time the walk-in 

patients. In general, Eq. 5.32 specifies that providers cannot see walk-in patient before their 

arrival; Eq. 5.33 specifies that, for admitted walk-in patients, they cannot be served before the 

expected starting time of the first appointment. Eqs. 5.34 – 5.39 are the service time commitment 

constraints for walk-in patients, which prevent a provider from serving two patients (one walk-in 

patient and one patient with appointment, or two walk-in patients) at the same time.  

5.3. Solution approach 

As we can see, the walk-in patient admission problem is formulated as a two-stage 

stochastic mix-integer programming model. For this type of model, it is relatively easy to 

evaluate the objective function for a given first-stage decision under certain scenario. However, 

it could be extremely difficult to evaluate the expectation of the recourse function for a given 

first-stage decision. A popular approach to solve the two-stage stochastic programming model is 

the Sample Average Approximation method, which uses the Monte Carlo sampling approach to 

approximate the expectation of the recourse function with sample mean of a fixed number of 

recourse function. In the following, we illustrate the SAA concept by using the generalized two-

stage stochastic linear programming model, shown in Eqs. 5.41 and 5.42.   
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where ),( xQ  is the optimal objective value of the second-stage problem: 
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Note that   represents random scenarios for the second stage. Here 

))(),(),( )((  hWTq ， is random vector with respect to realization , which contains the data 

for the second stage.  

In case there is only finite number of scenarios for the second stage, namely n ,, 21 , 

with respective probability nppp ,, 21 , the expectation term in Eq. 5.43 can be rewritten as:  





n
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kk xQpxQ
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However, in most case, there is infinite number of scenarios for the second stage. It will 

be hard to calculate )],([ xQE  in this situation. Hence, as proposed by the SAA method, the 

expectation will be approximated by the sample mean of the optimal objective values obtained 

from sample scenarios in second stage, i.e.  
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where n ,, 21  is a sample of n scenarios drawn from population of infinite realizations.  

For the walk-in admission optimization problem, there is infinite number of scenarios in 

the second stage, due to the possible continuous distribution of service time and patient arrival 

time. On other hand, even if there is finite number of second stage scenarios, the number will be 

extremely large and it will be hard to accurately estimate the probability of each scenario, given 
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the random service time, patient no-show, appointment cancellation and patient arrival. Hence, 

we apply the SAA method to approximate the expected value of recourse function. To be more 

specific, the objective value function in Eq. 5.1 is approximated as 
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 211
, where n is the sample size, 

and 
s

  is set of sample scenarios randomly drawn from the entire scenario space.  

As mentioned early, the admission decisions are made upon the arrival of walk-in 

patients. In practice, each walk-in patient has a unique arrival time. Hence, the admission 

decisions, which are the first-stage decision variables, are made for only one walk-in patient at a 

time. For example, upon the arrival of the k
th

 walk-in patient, only the variables JjI admit

kj ,..2,1,   

are the first stage decision variables, i.e.   admit

kj

admit

kj II  for all  . Note that variables

1,...2,1','  kkI admit

jk , which are the admission decisions for previous walk-in patients, are used as 

parameters, which is already known at current time, to make admission decisions for the k
th

 

walk-in patient. In addition, variables   KkkkI admit

jk ,.....2,1','  , which are admission 

decisions for future walk-in patients will be the second-stage decision variables, which are 

determined under different scenarios. In this way, the model can be solved with the commercial 

mixed integer programming (MIP) optimization solvers, such as CPLEX and GAMS. For the 

state-of-the-art research on applying sample average approximation to SMIPs, we refer to 

Kleywegt et al. (2002), and Shapiro and Homem-de-Mello (2000). It is obvious that large 

scenario sample size can lead to better approximation of the expected value of recourse function 

and improve the solution quality. However, the computational time for find the optimal solution 

by using sample average approximation can be increase exponentially with the increase of 
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scenario sample size drawn from the entire scenario space. Large sample size may lead to 

extremely large computation time (unacceptable) or even make it impossible to locate the 

optimal solution. 

Unfortunately, even for a small sample size, this model cannot be efficiently solved to 

make the real time walk-in patient admission decisions. The reason is that SAA approach solves 

the first-stage and second-stage decision simultaneously, which leads to a large solution space 

and high computational time consumption. Based on this understanding, we propose an 

alternative solution approach, which is based on the above mentioned SAA method. In the 

following we summarize the alternative solution approach in the following: 

Step 1: Find out the set of feasible solution candidates S={s1,s2,s3,……sm}for the first-

stage decision variables. 

Step 2: For each solution candidate “si” identified in Step 1, generate sample scenarios of 

size n, namely, n ,, 21 .   

Step 3: For each solution candidate “si” identified in Step 1, solve the second-stage 

problem for each individual scenario j , and calculate sample mean “fi” of the optimal second-

stage objective values, which is obtained under different the sample scenarios. 

Step 4: The solution candidate si with the minimal “fi” is the best first-stage solution.  

By using this approach, the first-stage decision variables and second-stage decision 

variables are not determined simultaneously. In addition, the second-stage problems are solved 

individually for each scenario. In this way, the computational time is expected to increase 

linearly with increasing number of scenarios. This is because the number of scenarios only 

determines the number of second-stage problems, while the complexity of each second-stage 

problem remains unchanged. By comparing with the original SAA approach, in which the 
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computational time increase exponentially with the increasing number of scenarios, the modified 

SAA approach is more efficient for problems need large number of scenarios. Note that this 

modified SAA approach is only suitable for problems with finite first-stage solution candidates, 

since we need to enumerate all first-stage solution candidates during the process. For our 

problem, the first stage decision variables are JjI admit

kj ,..2,1,  , which only takes values of 0 or 

1. Clearly, our problem has finite first-stage solution candidates. Hence, the modified SAA 

approached can be applied to solve this walk-in patient admission problem.  

5.4. Numerical analysis 

In this section, we conduct numerical analysis to examine the performance of the 

optimized the walk-in patient admission decisions, in term of clinic cost (objective value), which 

is the weighted sum of waiting time for patients with appointments, waiting time for walk-in 

patients, provider idle time and provider overtime. For this purpose, nine different cases are 

constructed, which considers the variability of patient non-attendance rate, patient service time, 

patient arrival pattern and cost coefficients related to patient waiting, provider idle and provider 

overtime. The nine cases are examined under two different walk-in patient demand rates.  

5.4.1. Data collection and experiment design 

In a most outpatient clinics, a typical 4-hour clinic session is evenly divided into multiple 

15-minute or 30-minute slots (Giachetti  et  al.  2005,  Green  et  al.  2007,  Qu  and  Shi  2009).  

In the local clinic that motivates this study, the length a clinic session is 4 hours, which is divided 

into 8 30-minutes slots. Hence, in this study, we consider a 4-hour clinic session with 8 30-

minutes slots and two providers (2 FTE)  working at the same time in a clinic session. In 

addition, it is assumed that all appointment slots have been booked with one patient, i.e. double 
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booking strategy is not considered at the planning stage. By doing this, we eliminate the impact 

of double booking on the patient waiting time, provider idle time and provider overtime.  

For a patient with appointment, there is a possibility that he/she cancels the appointment 

or does not show up for the appointment, which is often referred as non-attendance in practice. 

The patient non-attendance rate could vary from clinic to clinic. According to the literature, the 

patient non-attendance rate in U.S. primary care clinics can be as low as 5% and as high as 55%. 

In the following, we summarize the no-show and appointment cancellation statistics found in the 

existing literature. 

1) Johnson et al. (2007) indicate that the no-show rate vary from 3% to 42%, with an 

average of 17%. 

2) George and Rubin (2003) report that the non-attendance rate (no-shows and 

cancellations) in U.S. primary care clinics range from 5% to 55%. 

3) Al-Shammari (1992) and Hermoni et al. (1990) report non-attendance rates of 

29.5% and 36%, respectively. 

4) Moore et al. (2001) suggest that no-shows and cancelled appointments combined 

amount 31.1% of appointments. 

For this study, we consider three different levels of non-attendance rate for patient with 

appointment, namely, low non-attendance rate (no-show: 3%, cancellation: 2%), medium non-

attendance rate (no-show: 17%, cancellation: 13%), and high non-attendance rate (no-show: 

42%, cancellation: 13%). Note that the low non-attendance rate is corresponding to the lower 

bound of non-attendance rate found in the literature, while the high non-attendance rate is 

corresponding to upper bound of non-attendance rate found in the literature. As for the medium 
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non-attendance rate, it is calculated by averaging the lower and upper bound of the non-

attendance rates found in the existing studies.  

For the patients who show up for their appointment, they may arrive on time or early. In 

literature, many studies assume all patients arrive punctually for their appointment if not no-

show or cancel their appointment (Zacharia and Pinedo, 2014; Muthuraman and Lawley, 2008; 

LaGanga and Lawrence, 2012 ). On the other hand, there are also tremendous studies assuming 

non-punctual arrivals of patients. In the following, we summarize the representative studies. 

1) Alexopoulos et al. (2008) use the exponential distribution to model the interval 

time of patients. It is indicated that the parameters chosen for the exponential distribution may 

varies based on the clinics characteristic and patient population.  

2) Fontantesi et al. (2002) indicate that patient arrivals tend to be “clumped” due to 

the common bus schedule, traffic light time, and availability of parking space. According to their 

study, most patients arrive 15 minutes earlier or 10 minutes late for their appointment. On 

average, the patients arrive 3 – 4 minutes before their scheduled appointment time.  

3) Parmessar (2010) apply the appointment driven arrival in his simulation study for 

appointment optimization. The appointment driven arrivals assume that the patient should be 

arriving within a certain time interval, which is based on the schedule appointment time. For 

example, if a patient has an appointment at time t0, then the patient will arrive at a random time 

drawn from the interval [t0 – a, t0 + b], where a and b are positive constant that determine the 

width of the interval. 

It can be seen that, the patient arrivals can be modeled in two different ways. One is to 

use the inter-arrival time between two patients. In this way, the inter-arrival time usually subjects 

to a given distribution, e.g., an exponential distribution. As a result, the arrival time of a patient  

http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=Retrieve&db=PubMed&list_uids=12235940&dopt=AbstractPlus
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depends on the arrival time of the previous patient. The other way to model the patient arrival is 

by using arrival lead time, which measures how long in advance a patient arrives for the 

appointment. In this way, the patient arrival lead time is assumed to follow a given distribution. 

In our study, we use the lead time to model to arrival patterns of patient with appointment. To be 

more specific, we consider three different patient arrival patterns. For the first patient arrival 

pattern, we consider punctual arrivals, i.e. arrival lead time equal to constant zero. For the second 

patient arrival pattern, we assume the arrival lead time to follow exponential distribution with the 

mean equal to 4 minutes, i.e. exponential (4) min. For the last patient arrival pattern, we assume 

patient arrives randomly within 2 hours before the scheduled appointment time, i.e. lead time 

follows uniform distribution with lower bound 0 min and upper bound 120 min. Note that for all 

arrival patterns, the actual patient arrival time equals to the scheduled appointment time less the 

arrival lead time, or zero, whichever is larger. Clearly, the first arrival pattern has the least 

variability (i.e., variance of the arrival lead time); the second arrival pattern has the medium 

variability, while the third arrival pattern has the highest variability.  

As for arrival the patterns of walk-in patients, it cannot be modeled by using the arrival 

lead time, since the walk-in patients does not have an appointment. Instead, we use the arrival 

rate to capture the walk-in patient arrival pattern. According to the literature, the mean arrival 

rate of walk-in patients can be modeled as some fraction of the clinic capacity, e.g., 50%. In our 

study, the capacity of the clinic is 4 patients per hour. Based on this, we consider two different 

walk-in patient arrival rate, namely, current rate (1 per hour, 25% capacity), future rate (2 per 

hour, 50%). The current arrival rate corresponds to the current walk-in patient demand level of a 

local clinic. The future rate, which doubles the current arrival rate, is used to represent the 

possible future walk-in patient demand level. Note that for both walk-in patient arrival rates, it is 
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assumed the number of arrived walk-in patient in one hour follows the Poisson distribution, i.e. 

the inter-arrival time of walk-in patients follows the exponential distribution.  As for the walk-in 

patient’s preference on providers, we assume that a walk-inpatient has preference only on 

“Provider 1” with probability 1/3, has preference only on “Provider 2” with probability 1/3, and 

has preferences on both providers with probability 1/3.  

Although each appointment slot has a length of 30 minutes, the service time of patient 

does not necessarily have to be 30 minutes. According to the literature, the service time 

distribution varies among different clinics, patient populations, service types, providers, and etc. 

Many studies have used different distributions to describe the service time of patients. In the 

following, we summarize some of the representative studies.  

1) LaGanga and Lawrence (2012) assume a constant patient service time, which 

equals to the length of an appointment slot in their clinic overbooking study.  

2) Qu et al. (2013) assume the patient service time follows the lognormal 

distribution in their outpatient appointment optimization study based on a Women’s clinic. 

3) Shi et al. (2014) assume the patient service time follows the Gamma distribution 

in their patient flow simulation study based on a local VA medical center. 

Clearly, there are various assumptions for the patient service time distribution, which are 

related to the studied clinics and patient groups. In the numerical study, we can consider three 

different service time distributions, which are Gamma (2.9898, 9.10383) minutes, 

Lognormal(3.0479, 0.71566) minutes, and constant 27.22 minutes. Parameters for the Gamma 

distribution are estimated based on the service time data collected from a local clinic, while the 

parameters for the lognormal distribution are calculated by using the same mean while doubling 
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the variance of the Gamma distribution. The constant 27.22 minutes are chosen based on the 

mean service time drawn from the Gamma distribution.  

The cost coefficients in the objective function should somehow represent the value of 

time for patients and providers. With this understanding, the cost coefficients are chosen based 

on the hourly wages of all occupation and primary providers in the United States. According to 

the Bureaus of Labor Statistics (BLS, 2013), the 10th, 50th and 90th percentiles of national 

hourly wage in 2012 are $8.7, $16.71, and $41.74, respectively, over all U.S. industry sectors. 

The average hourly wage of Family and General Practitioners is $86.95 in 2012. In addition, by 

considering the compensation for providers to work overtime, the hourly wage for providers 

working overtime is assumed to be 1.5 times of the regular hourly wage. In addition, since the 

walk-in patients don’t have any appointment in advance, they should have lower priority as 

compare to the patient with appointments. In this consideration, we assume that the waiting cost 

per unit time for walk-in patient should be less as compared to that for patients with 

appointments. In particular, we set the cost coefficient related to walk-in patient waiting time to a 

quarter of the cost coefficient related to the waiting time of patients with appointments. As a 

result, in the numerical study, three sets of the cost coefficients for waiting time of walk-in 

patients, waiting time of patients with appointment, provider idle time, and provider overtime are 

considered. The three ratios are 0.25:1:10:15, 0.25:1:5.2:7.8 and 0.25:1:2.1:3.1 corresponding to 

the 10th, 50th and 90th percentiles of national hourly wage, respectively. It can be interpreted 

that the three ratios are corresponding to low income patients, medium income patients and high 

income patients.  

Based on the above discuss, we have considered different types of patient non-attendance 

rate, patient arrival patterns, patient service time distribution and cost coefficients as summarized 
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in Table 5.1 – 5.4. As mentioned above, we design nine different cases for the numerical 

analysis, namely, Case 0 – Case 8. Case 0 will be the base case, which uses the patient non-

attendance rate, arrival pattern 2 for patient with appointment, medium arrival rate for walk-in 

patient, service time distribution 2 and cost coefficients that corresponding to medium income 

patients. The parameters used for Case 0 are shown in Table 5.5. As for Case 1 – Case 8, each of 

them represents a certain extreme condition by changing only one or a few parameters from the 

base case.  

1) Cases 1 & 2 represent the situations of high attendance rate and low attendance 

rate, respectively, by altering the no-show rate and cancellation rate, simultaneously.  

2) Cases 3 & 4 represent the situations high variance and low variance of patient 

service time by altering the patient service time distribution.  

3) Cases 5 & 6 represent the situations of high variance and low variance of patient 

arrival time, respectively, by altering the patient arrival lead time distribution.  

4) Cases 7 & 8 illustrate the situation of provider seeing low-income patients and 

high-income patients, respectively, by altering the cost coefficients, i.e. Waitc , Idlec  and  Overtimec . 

 

Table 5.1: Patient non-attendance rates for numerical analysis 

Name Parameters Value 

Low non-attendance rate 
No-show rate 3% 

Cancellation rate 2% 

Medium non-attendance rate 
No-show rate 17% 

Cancellation rate 13% 

High non-attendance rate 
No-show rate 42% 

Cancellation rate 13% 
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Table 5.2: Patient arrival patterns for numerical analysis 

Patient types Arrival pattern Description 

Patient with 

appointment  

Pattern 1 Punctual arrival: arrival lead time = 0 

Pattern 2 
Medium variability arrival: arrival lead time follows 

exponential distribution with mean equal to 4 minutes.  

Pattern 3 

High variability arrival: arrival lead time follows uniform 

distribution, with lower bound equal to 0 minute and upper 

bound equal to 120 minutes 

Walk-in patient 

Current rate 
Inter-arrival time follows exponential distribution with 

mean equal to 60 minutes 

Future rate 
Inter-arrival time follows exponential distribution with 

mean equal to 30 minutes 

 

Table 5.3: Patient service time distributions for numerical analysis 

Name Description 

Service time distribution 1 
Service time distribution with low variance: constant 

27.22 minutes 

Service time distribution 2 
Service time distribution with medium variance: 

Gamma (2.9898, 9.10383) minutes 

Service time distribution 3 
Service time distribution with high variance: 

Lognormal(3.0479, 0.71566) minutes 

 

Table 5.4: Cost coefficients for numerical analysis 

Name Parameters Value 

Cost coefficient for 

low income patients 

wWaitc .

 
0.25 

aWaitc .

 
1 

Idlec
 

10 

Overtimec
 

15 

Cost coefficient for 

medium income 

patients 

wWaitc .

 
0.25 

aWaitc .

 
1 

Idlec
 

5.2 

Overtimec
 

7.8 

Cost coefficient for 

high income patients 

wWaitc .

 
0.25 

aWaitc .

 
1 

Idlec
 

2.1 

Overtimec
 

3.1 

 

The altered parameters for Cases 1-8 are shown in Table 5.6. Note that, in each case, 

except for the altered parameters, all the remaining parameters are the same as those in the base 
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case. For example, in Case 8, the cost coefficients are changed to 0.25:1:2.1:3.1, which 

correspond to the 90
th

 percentile of national hourly wage. However, all other parameters remain 

the same as the base case. 

Table 5.5: Parameters used for the base case 

Parameters Rate/Distribution Parameters Rate/Distribution 

Session length 4 hours 
Patient arrival lead time 

distribution 

Exponential(4) 

minutes 

Number of appointment for 

each provider 
8 

wWaitc .

 
0.25 

Length of each appointment 30 minutes 
aWaitc .

 
1 

No-show rate 17% 
Idlec

 
5.2 

Cancellation rate 13% 
Overtimec

 
7.8 

Service time distributions 
Gamma(2.9898, 

9.10383) minutes 
  

 

Table 5.6: Parameter adjustments for Cases 1-8 compared with base case 

Case number  parameters Rate /Distribution 

Case 1 
No-show rate 3% 

Cancellation rate 2% 

Case 2 
No-show rate 42% 

Cancellation rate 13% 

Case 3 Service time distributions Lognormal(3.0479, 0.71566) min 

Case 4 Service time distributions Constant 27.22 min 

Case 5 Patient arrival lead time distribution Uniform (0,120) min 

Case 6 Patient arrival lead time distribution 0 

Case 7 

Idlec
 

10 

Overtimec
 

15 

Case 8 

Idlec
 

2.1 

Overtimec
 

3.1 

 
5.4.2. Numerical analysis results 

The proposed two-stage stochastic mixed-integer programming model is solved by using 

CPLEX solve for each case shown in section 4.1. The solver is run on a personal computer with 

an Intel 2.67GHz i5 dual-core processor and 2.9GB RAM. It takes 30 – 80 seconds to find the 

optimal solution for each of the 9 cases based on the scenario sample size of 100. 
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In Fig. 5.1, we compare the optimal objective values obtained through walk-in patient 

admission to the optimal objective values through overbooking. Clearly, for all cases, the walk-in 

patient admission achieves a lower objective value (cost) under both current and future walk-in 

demand levels. The reason is that walk-in patient admission decisions are made based on the real 

time situations at the appointment day, while the double booking decisions are made at the 

planning stage before the appointment day, based on the estimated no-show and appointment 

cancellation rate.  In addition, by comparing the optimal objective values between current walk-

in demand level with future walk-in demand level, it can be seen that the higher walk-in arrival 

rate (future level) leads to a lower objective value. Hence, a high walk-in patient arrival rate 

should be preferred by the clinic, since it creates more opportunities for providers to see more 

patients when they have time.    

In Fig. 5.2, we compare the average waiting time of walk-in patients to the average 

waiting time of patient with appointments.  In general, for all cases, the walk-in patient waiting 

time is much higher as compared to the waiting time of patient with appointment. The 

phenomenon is commonly seen in clinics, where walk-in patients have to wait until providers 

finish their work with patients who have appointments, since priorities are given to patients with 

appointments. In our model, we also assume priorities to patients with appointment by setting the 

cost coefficient of walk-in patient waiting time as a quarter of that of patient with appointment.  

In addition, when the patient waiting times between the current walk-in patient demand level and 

future demand level are compared, it can be seen that the patient waiting time for both walk-in 

patients and patients with appointments are higher for the future demand level (except for Case 

4). Note that, for Case 4, the waiting time for patients with appointments is slightly higher under 
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the current demand as compared to that under the future demand. This may be caused the by 

statistical error.  

 

Fig. 5.1: Comparison of optimal objective values between walk-in admission strategy and double 

booking strategy  

 

 

Fig. 5.2: Comparison of patient waiting times between walk-in patients and patients with 

appointments 

 
In Fig. 5.3, we compare the provider idle time under the current walk-in patient demand 

level to that under the future walk-in demand level. Clearly, for all cases, the provider idle time 
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is much less under the future walk-in demand (high) level than under the current walk-in demand 

(low) level. Hence, with more walk-in arrivals, the provider idle time, which is caused by patient 

no-show and appointment cancellation, can be significantly reduced.  Similarly, in Fig. 5.4, we 

compare the provider overtime under current walk-in demand level to that under future walk-in 

demand level. As we can see, for all cases, the provider overtime is only slightly higher under the 

future walk-in demand (high) level. Hence, it can be concluded that high walk-in demand can 

help to reduce the provider idle time significantly without much increase in provider overtime. 

Note that “Case 4” has significantly less provider overtime as compare to other cases. This is 

because constant service time is assumed in “Case 4” and service time variability is one of the 

major issue that cause provider overtime.  

 

Fig. 5.3: Comparison of provider idle times under different walk-in patient arrival rates 

 

 

Fig. 5.4: Comparison of provider overtimes under different walk-in patient arrival rates 



 

119 

 

In Table 5.7, we summarize the descriptive statistics of performance metrics, including 

objective value, waiting time for patient with appointment, waiting time for walk-in patients, 

provider idle time, provider overtime, and number of walk-in patient admission, under the 

current walk-in demand level (low). Similarly, the descriptive statistics of performance metrics 

for future walk-in demand level (high) is summarized in Table 5.8. The results reveal a few 

interesting phenomena which are commonly seen in practice.  For instance, Case 1 and Case 0 

have the same clinic settings except for the attendance rate, where it is higher for Case 1. The 

statistics indicate that Case 1 has a lower objective value as compared with Case 0. This supports 

the general concept that high attendance rates are preferred in clinics, although walk-in 

admission is adopted to mitigate the adverse effect of patient no-show and appointment 

cancellation. This concept can also be observed by comparing Case 2 with Case 0, where the 

attendance rate is higher for Case 0. For another instance, Case 3 and Case 4 have the same clinic 

settings except for the patient service time distribution, where Case 4 has constant service time 

for all patients. As a result, Case 4 has a lower objective value than Case 3. This supports the 

general concept that service time variability is not preferred for clinics. In addition, Case 5 and 

Case 6 also have the same clinic settings except for the patient arrival lead time distribution, 

where Case 6 assumes punctual arrival of patients, i.e., arrival lead time equals to zero. As a 

result, Case 6 has a higher objective value. This supports the general concept that clinics prefer 

patients to arrive earlier for their appointments. To add more, Case 7 and Case 8 also have the 

same clinic settings except for the cost coefficient ratio, where Case 7 represents the scenario of 

low-income patients by using a high ratio. The statistics indicate that Case 7 have a higher 

objective value compared with Case 8. The implication is that high-income patients are preferred 

by the clinics.  
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Table 5.7: Summary of descriptive performance statistics for Cases 0- 8 (current rate) 

  
Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

Objective 
mean 869.0 765.1 1106 1031 594.0 622.1 864.3 1478 379.5 

std of mean 8.42 7.44 8.42 10.61 6.18 7.78 7.99 15.50 3.25 

Waiting (patient 

with appointment) 

mean 48.2 130.0 33.3 96.3 13.6 35.5 84.5 74.8 66.7 

std of mean 1.08 2.48 1.02 3.62 0.67 1.47 1.85 1.70 1.65 

Waiting (walk-in 

patients) 

mean 87.4 61.7 67.6 78.1 78.9 72.4 84.5 83.2 61.2 

std of mean 2.32 1.46 1.95 1.80 1.59 2.05 2.27 2.23 1.55 

Provider idle  
mean 133.4 75.7 191.5 135.4 106.6 98.6 120.3 116.3 120.6 

std of mean 1.67 1.06 1.74 1.56 1.29 1.56 1.51 1.55 1.50 

Provider overtime 
mean 13.5 29.0 7.8 27.02 0.83 7.2 17.0 14.6 14.3 

std of mean 0.50 0.71 0.35 0.97 0.05 0.37 0.55 0.49 0.49 

walk-in patient 

admissions 

mean 3.5 2.2 3.8 3.5 3.4 3.5 3 3.4 3 

std of mean 0.05 0.04 0.04 0.17 0.14 0.18 0.17 0.17 0.16 

 

Table 5.8: Summary of descriptive performance statistics for Cases 0- 8 (future rate) 

  
Case0 Case1 Case2 Case3 Case4 Case5 Case6 Case7 Case8 

Objective 
mean 660.2 641.5 767.1 796.8 396.3 385.1 635.6 1009 305.3 

std of mean 7.58 7.51 7.91 10.35 4.65 6.32 7.00 13.43 3.01 

Waiting (patient 

with appointment) 

mean 78.5 147.4 43.6 109.5 26.3 37.5 105.2 96.5 75.2 

std of mean 1.79 2.52 1.11 3.54 0.73 1.50 1.96 1.82 1.66 

Waiting (walk-in 

patients) 

mean 154.7 108.5 144.0 137.2 123.4 154.1 151.9 165.1 122.0 

std of mean 2.46 2.06 2.97 2.48 2.30 3.48 3.19 3.45 2.36 

Provider idle  
mean 80.4 46.1 119.5 83.7 61.8 48.3 68.3 63.4 73.3 

std of mean 1.41 0.86 1.67 1.44 1.01 1.24 1.22 1.26 1.19 

Provider overtime 
mean 16.0 29.1 8.5 27.9 2.3 7.4 17.6 15.8 14.7 

std of mean 0.56 0.72 0.35 0.95 0.08 0.37 0.54 0.49 0.49 

walk-in patient 

admissions 

mean 5.4 3.6 6.5 5.4 5.2 5.4 5.1 5.4 5.3 

std of mean 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 

 

In Fig. 5.5, the impact of patient attendance rate on the optimal number of walk-in patient 

admissions is shown. As we can see, for both low walk-in demand and high walk-in demand, the 

high number of walk-in admissions is associated with the low patient attendance rate, and the 

low number of walk-in admissions is associated with the high patient attendance rate. In 

addition, a linear relation between patient attendance rate and the number of walk-in admissions 

is observed under the high walk-in demand. As for the low walk-in demand, we are also 

expecting the linear relation between the patient attendance rate and the number of walk-in 

admissions. However, the low walk-in demand level could hinder the number of walk-in 

admission from further increasing for the low patient attendance rate. In the same manner, the 

impact of patient arrival lead time, patient service time distribution, and cost coefficient ratio on 
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the optimal number of walk-in patient admissions are shown in Figs. 5.5 – 5.8. In general, the 

impacts of these factors are not significant, i.e., the number of optimal number does not vary 

significantly with the change of patient arrival lead time, patient service time distribution, and 

cost coefficient ratio. Note that although the low arrival lead time seems to reduce the walk-in 

patient admissions, as shown in Fig. 5.6, the effect is not as significant as that of patient 

attendance rate. Hence, it can be concluded that the patient attendance rate is the major factor 

that determines the optimal number of walk-in patient admissions, while other factors including 

arrival lead time, service time distribution and cost coefficient ratio, do not affect the number of 

walk-in patient admission significantly.  

 

Fig. 5.5: Impact of patient attendance rate on the number of walk-in admissions 
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Fig. 5.6: Impact of patient arrival lead time on the number of walk-in patient admissions 

 

 

Fig. 5.7: Impact of patient service time on the number of walk-in admissions  
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Fig. 5.8: Impact of cost coefficient ratio on the number of walk-in admissions 

 
To further investigate whether there is a linear relation between the number of walk-in 

patient admissions and patient attendance rate, we consider a case with punctual patient arrival 

and constant service time of 30 minutes.  Note that all other parameters, except for no-show and 

appointment cancellation rate, are set the same as the base case. In order to study the effect of 

no-show rate, the appointment cancellation rate is fixed as zero, vice versa. By doing so, the 

coupling effect of patient arrival time variability and service time variability is eliminated. Since 

patient no-show and appointment cancellation make no difference in our model, we only discuss 

the effect of patient no-show in the following. The effect of appointment cancellation is expected 

to be the same as the effect of patient no-show.  

In Fig. 5.9, the impact of no-show rate on the optimal number of walk-in admissions is 

shown. As we can see, for both current and future walk-in demand level, the optimal number of 

walk-in admissions increases with the increase of patient no-show rate. In simple words, more 

walk-in admissions are expected for clinics with higher patient no-show rate. In addition, the 
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number of walk-in admissions seems to increase linearly with the increasing no-show rate, when 

the no-show rate is low (less than or equal to 0.4). After that the increasing rate will become 

slower with the further increase of the no-show rate. One possible reason for this phenomenon is 

that the walk-in patient demand level is not high enough to supply the clinics’ need when the no-

show rate is high. Although clinics have the capacity to admit more walk-in patients, there are no 

more walk-in patient arrivals. Hence, when the no-show rate approaches to 1, the number of 

walk-in admissions approaches to the actually number of walk-in arrivals.  

 

Fig. 5.9: Effect of no-show rate on the number of walk-in admissions 

 

In Fig. 5.10, we compare the optimal objective values achieved under walk-in admission 

with that achieved under no walk-in admission. Clearly, for both current walk-in demand level 

and future walk-in demand level, a better (smaller) objective function value is obtained, i.e., 

walk-in admission helps to reduce the clinic cost in terms of patient waiting, provider idle and 

provider overtime. Note that the gap between blue line and green line is the reduced cost through 

walk-in admission under the current walk-in demand level, while the gap between red line and 

green line is the reduced cost through walk-in admission under the future walk-in demand level. 

Clearly, the further walk-in demand level, which is higher, leads to more significant cost 
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reduction. In addition, the cost reduction through walk-in patient admission is also more 

significant for higher patient no-show rate.  

 

Fig. 5.10: Effect of no-show rate on the objective function value 

 
5.4.3. Heuristic rule 

Although the above discussed model can efficiently solve the small size walk-in patient 

admission problem (2-provider system), it cannot solve the large size problem (6-provider 

system) in the timely manner. With this consideration, two heuristic rules, which are shown in 

the following, are added to the model to improve the efficiency for solving the large size 

problem.  

Heuristic rule 1: if a walk-in patient is admitted to the ith slot of provider j, then the 

provider should first see the first patient booked in the ith slot, after that the provider should see 

the second patient booked in the ith slot, at last the provider should see the walk-in patient. 

Heuristic rule 2: all patients scheduled in or admitted to the ith slot of provider j should 

been seen earlier than any patients scheduled in or admitted to the ith slot of the same provider.  

In order to enable these two heuristic rules in the model, a new second stage variable 

“
assign

kijI ” need to be introduced. 1assign

kijI , if and only if the kth walk-in patient is admitted to the 
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ith slot of provider j. With this variable, the relationship of service start time and end time among 

patient can be simplified and presented in the following: 
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With the incorporation with these two heuristic rules, we apply the model again to a case, 

in which all parameters are the same as the base case, except for the number of provider have 

been changed to six. It takes around 1minutes to solve model for 100 scenarios. The achieved 

minimum objective function value equal to 2823 minutes (the cost are measured in weighted sum 

of patient waiting time, provider idle time and provider over time), with the average patient time 

per session, average provider idle time and average provider over time equal to 225 minutes, 447 

minutes, and  4 minutes, respectively. The average walk-in arrival is 8, while the average number 

of admitted walk-in patients is 4.  
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6. CONCLUSIONS AND FUTURE RESEARCH 

6.1. Conclusions 

In this research, we discuss two scheduling strategies (i.e., overbooking and admitting 

walk-in patients), which can reduce the adverse effect caused by the well-known patient non-

attendance problem, if they are correctly implemented. Three novel mathematical models are 

developed for finding the best overbooking strategy and the optimized walk-in patient admission 

policy. To be more specific, a two-stage stochastic programming model is developed to solve the 

overbooking optimization problem with consideration of patients’ choice; an MDP model is 

developed to find the (heuristic) optimal walk-in patient admission policy for single provider 

system; another two-stage stochastic programming model is developed to optimize the real time 

walk-in admission decisions. Besides the development of these models, the novel solution 

approaches are also proposed to fulfill the requirement (solution efficiency and accuracy) raised 

by the problems.  

Some highlights of this study include: 1) Patients’ choice on providers are properly 

captured by my models; 2) There are no constrains on patient service time distribution and 

patient arrival pattern for the overbooking optimization model and the two-stage walk-in patient 

admission optimization model (this allows the models to be applied to a wide range of clinics 

with different service time distribution and patient arrival pattern); 3) The cooperation schema, 

which allows providers to see each other’s patients,  is considered in overbooking optimization 

model. 4) The adjusted SAA algorithm is developed for solving two-stage walk-in patient 

admission optimization model, which is proved to be quite efficiency and effective. 5) Some 

interesting managerial insights are found through our carefully designed numerical cases. In the 

following, we summarize the findings from each of the three models.   
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The overbooking optimization model provides the optimized overbooking strategy given 

the characteristic of a clinic. By applying the overbooking optimization model to our carefully 

designed numerical cases, which consider different patient non-attendance rates, different patient 

arrival patterns, different service time distributions and different patient income levels, it is 

found that: 

1) The optimal number of overbooked slot has a positive linear relationship with the 

patient non-attendance rate.  

2) The patients who are booked in the overbooked slots have significantly higher waiting 

time than patients who are booked in the single-booked slots. 

3) The overbooking strategy are only effective for clinics with high patient non-

attendance rates (>20% in our case). Applying overbooking strategy to clinics with low patient 

non-attendance rates only increases patient waiting time. 

4) The cooperation schema among providers can further reduce the clinic cost (weighted 

sum of patient waiting time, provider idle time and provider overtime) as compare to the non-

cooperation schema, i.e. there is benefit for clinics to allow providers seeing each other’s patients.  

The MDP model solves the walk-in patient admission optimization problem in the single-

provider clinic. The properties of the MDP model are derived to discover the optimal walk-in 

patient admission policies under most states. Meanwhile, heuristic admission policies are 

proposed for other possible states, and then are compared over 36 scenarios representative of the 

possibilities, which considered four arrival patterns of patients with appointments, three arrival 

rates of patients without appointments, and three overbooking policies. The experimental results 

demonstrate that: 
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1) Admitting all walk-in patients is a simple and good rule in clinics with walk-in patient 

arrival rates not greater than 20% of service rate.  

2) In clinics with walk-in patient arrival rates greater than 20% of service rate, walk-in 

patients should be admitted when the total remaining slots are more than the expected number of 

patients needed to be seen.  

The two-stage stochastic mixed-integer programming model provides the optimal walk-in 

admission decision upon the arrival of walk-in patients. In the study, we integrate heuristic rules 

and the adjusted SAA method to overcome the major challenge of this model, which is identified 

as the solution efficiency (the admission decision needs to be made in real time). After applying 

the model to our carefully designed numerical cases, it is found that:  

1) In general, our model can be solved within 1 minute, although the computational time 

could vary from case to case. 

2) The computational time of the proposed solution approach only increase linearly with 

the increase of problem size (number of providers in the clinic and number of appointment slots 

in a clinic session. 

3) The walk-in patients in general spend more time waiting in the clinics as compare to 

the patients with appointments. 

4) As compare to the overbooking strategy, the walk-in patient admission strategy is 

effective even for clinic with low patient non-attendance rate. 

5) Given the same clinic characteristic (i.e. patient non-attendance rate, service time 

distribution, patient arrive pattern, and cost coefficient), the optimal walk-in admission strategy 

always lead to a lower cost as compare to the optimal overbooking strategy. As a result, we 
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consider the walk-in patient admission as a more superior strategy for mitigating the negative 

effect of patient non-attendance as compare to the overbooking strategy. 

6.2. Future research 

Although we modeled the patients’ choice in the overbooking and walk-in patient 

admission optimization problems, the impact of patients’ choice have not been revealed from this 

study. Given various patients’ preference, the optimal overbooking and walk-in patient 

admission strategy could change substantially. There is no double that the clinic cost and patient 

satisfaction can be improved by incorporating patients’ preference into the scheduling practice. 

Hence, one future direction is to investigate how the patients’ choice could affect the 

overbooking and walk-in admission decisions by running large number of numerical cases with 

varying patient’s preference and applying data mining tools.  

In the MDP model, it is assumed that a provider only sees his/her own patients and new 

patients. Thus the walk-in patient admission to one provider is independent of the walk-in patient 

admission to other providers. As a result, the walk-in patient admission policy could be 

determined for each provider. However, some clinics group several providers as a provider team 

to increase scheduling flexibility. The next step of research could be extending the proposed 

MDP model to optimize the admission policy of pooled walk-in patients for a provider team. 

Also, the proposed MDP model is based on the assumption of constant consultation time per 

patient. In our future study, the impact of the variation in patient consultation time on the 

performance of walk-in patient admission policies will be investigated. In addition, heuristic 

walk-in patient admission rules were compared under the assumption that the waiting cost per 

time unit for walk-in patients is much lower than that for patients with appointments. In the 

future, we will investigate the heuristic admission rules in clinics in which walk-in patients are 
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considered as part of major customers and their satisfaction is as important as that of patients 

with appointments. 

Besides this, another interesting future direction is to further improve the solution 

approach for the proposed models in this study, as current solutions are only satisfactory but not 

perfect. For example, the current solution for the MDP model can only provide heuristic optimal 

rules for some the states. For another example, the current solution approach for the two-stage 

stochastic optimization models needs the incorporation of heuristic rules, which hinder the 

research of global optimal solution, to solve large size problem efficiently. Hence, with the 

increase of problem size there is an urgent demand for a more power solution approach. One 

potential way is to apply the decomposition methodologies such as the benders’ decomposition 

and Wols Dantzig–Wolfe decomposition. 

At last, it will be interesting to extend the current problem, which is based on the single 

clinic setting, to the clinic network setting. The complexity of the new problem grows in terms of 

not only the problem size, but also the new features, such as patient transportation between 

clinics and information exchange between clinics. For example, the clinics in the network could 

cooperate by referring walk-in patients among them to achieve the maximal welfare of the entire 

network. On the other hand, the clinics could also compete with each other to achieve the 

maximal profit of each single clinic. To make the problem more complex, a clinic could 

cooperate with part of the clinics in the network while compete with the rest of clinics in the 

same network. For this new walk-in patient admission problem, the model developed in this 

study is not sufficient to capture the new considerations. Given the development of the clinic 

networks, it is in urgent needs that other methodologies such as patient transportation model and 

https://en.wikipedia.org/wiki/Dantzig%E2%80%93Wolfe_decomposition
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game theory to be incorporated for solving the walk-in admission problem under the networks 

environments.  
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APPENDIX. PROOFS OF PROPOSITIONS 

Proof of proposition 2. 0
1

 

M

i

m

ix  means that  at least one elective patient is waiting in the clinic 

for services, while n
m
>0 means at least one walk-in patient is waiting in the clinic for services. According 

to condition 4.15 in Proposition 1, any valid action must satisfy ds
m 

+ dw
m
 = 0 or ds

m 
+ dw

m
 = 1. If some 

patients are waiting in the clinic, the actions satisfying ds
m 

+ dw
m
 = 0 lead to longer patient waiting time 

and may result in less walk-in patients seen and longer provider idle time and overtime compared with the 

actions satisfying ds
m 

+ dw
m
 = 1. Therefore, for any state s

m
 satisfying 0

1
 

M

i

m

ix  or n
m
>0, the optimal 

action π
*
(s

t
) must satisfy m

sd + m

wd = 1.   

Proof of corollary 4. For a state s
m
S satisfying 0

1
 

M

i

m

ix , n
m
 = 0 and w

m
 = 1, the valid action 

set A(s
m
) is {(0,0,0), (1,0,0), (1,0,1)}. If the walk-in patient arriving between decision stages (m – 1) and 

m is admitted (i.e. da
m 

= 1), seeing this patient between decision stages m and (m – 1) could reduce patient 

waiting time and provider idle time without any loss because 0
1

 

M

i

m

ix  and n
m
 = 0. As a result,  

V(s
m
, (1,0,1))>V(s

m
, (1,0,0)), which means that action (1,0,1) is better than action (1,0,0) for a state s

m
S 

satisfying 0
1

 

M

i

m

ix , n
m
 = 0 and w

m
 = 1. 

Next, we compare actions (0,0,0) and (1,0,1). From a state s
m
S satisfying 0

1
 

M

i

m

ix , n
m
 = 0 and  

w
m
 = 1, the process transitions to the same state s

m+1
 when either (0,0,0) or (1,0,1) is taken. That means 

s
m+1

(s
m
, (0,0,0)) = s

m+1
(s

m
, (1,0,1)), where s

m+1
(s

m
, a

m
) denotes the state at decision stage m+1 when an 

action a
m
 is taken in state s

m
. Thus )]0,0,0(,|([ 1* mmVE ss

 = )]1,0,1(,|([ 1* mmVE ss
 . According to Equation (7), 

we obtain i

mm cR ))0,0,0(,(s  and w

mm rR ))1,0,1(,(s . Then according to Equation (11), V(s
m
, (1,0,1))> 

V(s
m
,(0,0,0)) because )]0,0,0(,|([ 1* mmVE ss

 = )]1,0,1(,|([ 1* mmVE ss
  and ))0,0,0(,())1,0,1(,( mmmm RR ss  =rw+ci >0. 

Therefore, (1,0,1) is optimal for a state s
m
S satisfying 0

1
 

M

i

m

ix , n
m
 = 0 and w

m
 = 1.  
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Proof of proposition 3. For convenience, in this proof, denote m

JKLa  the action (J,K,L) at decision 

stage m. According to Proposition 2, for a state s
m
S satisfying 0

1
 

m

i

m

ix , the optimal action π
*
(s

t
) 

satisfies  

ds
m 

+ dw
m
 = 1. Therefore, one of actions m

010a , m

001a , m

110a  and m

101a  is optimal for such a state. Since not all 

four actions m

010a , m

001a , m

110a  and m

101a  are valid in any state s
m
S satisfying 0

1
 

m

i

m

ix , we divide all states 

s
m
S satisfying 0

1
 

m

i

m

ix  into three subsets depending on whether actions m

010a , m

001a , m

110a  and m

101a  are 

valid in state s
m
. The three subsets are defined as  

SI = {s
m 

| s
m
S satisfying 0

1
 

m

i

m

ix  and n
m
 + w

m
 = 0},  

SII = {s
m 

| s
m
S satisfying 0

1
 

m

i

m

ix , n
m 

>0 and w
m 
0},  

and SIII = {s
m 

| s
m
S satisfying 0

1
 

m

i

m

ix , n
m 

=0 and w
m 

>0}. 

In a state s
m
SI, since n

m 
+ w

m
 = 0, actions m

001a  and m

101a  are invalid, and taking either m

010a  or m

110a  

results in the identical expected total net reward in the (M–m+1) remaining stages. Thus, both m

010a  and 

m

110a  are optimal in a state s
m
SI.  

Actions m

010a , m

110a  and m

101a  are valid in state s
m
SIII, while all four actions m

010a , m

001a , m

110a  and 

m

101a  are valid in state s
m
SII. First, we prove that actions M

010a  and M

110a  are optimal in any state s
M
SIISIII 

at decision stage M. According to Equations 4.8, 4.9 and 4.12, the expected total net rewards of actions 

M

010a , M

001a , M

110a  and M

101a  in a state s
M
SII are 
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Since co > rw and cs ≥ 0, we obtain ),(),( 110010

MMMM VV asas  > ),(),( 101001

MMMM VV asas  . Thus, actions 

M

010a  and M

110a  are optimal in a state s
M
SII. In a state s

M
SIII, action M

001a  is invalid. Similarly, according to 
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Equations 4.8, 4.9 and 4.12, we could obtain ),(),( 110010

MMMM VV asas  > ),( 101

MMV as . Thus, actions M

010a  and 

M

110a  are optimal in a state s
M
SIII, too. Therefore, we conclude that actions M

010a  and M

110a  are optimal in 

any state s
M
S satisfying 

1
0

m m

aii
s


 . Since all walk-in patients who could not be served in the current 

clinic session are dismissed, action M

010a  is more practical. 

Next, we prove that one of actions m

010a  and m

110a  is an optimal action in any state s
m
SII at 

decision stage m < M. We compare m

010a  to m

001a , and m

110a  to m

101a  in a state s
m
SII for m < M. Let m

C10a  and 

m

C01a  denote a couple of actions in which da
m
 takes the same value C. According to Equation 4.7, the 

difference of the immediate net reward between actions m

C10a  and m
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m
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Assume π
*
(s
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| s

m
, m

C01a ) be the first optimal action satisfying 'm

sd = 1 and 'm

wd = 0 after taking a 

series of optimal actions π
*
(s
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| s

m
, m

C01a ) for m < m" < m' from the state ),( 01

1 m

C

mm
ass

 .  In other word, all 

optimal actions π
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wd = 1. Let "mC  be the value of "m

ad  

in  

π
*
(s

m" 
| s

m
, m

C01a ) for m < m" ≤ m'. Since ),( 01

1 m

C

mm
ass

  satisfies 0
1

1

1 




m

i

m

ix  and "m

sd = 0 in π
*
(s

m" 
| s

m
, m

C01a ) 
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m < m" < m' satisfies 0
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ix , which implies m' ≤ M because actions M
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110a  are optimal in any 
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If m' = M, the number of remaining elective patients at the end of the session will be same when 

either series of actions is taken starting from the state s
m
SII. That means  
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according to Equation (11). Meanwhile, the expected total net reward in the (M–m) remaining 

stages when taking the action series { '
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According to Equations (A2)–(A5), we derive 
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According to Equations (1)–(7), the difference of the expected net reward obtained at decision 

stage m" for m < m" < m' is 
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and the difference of the expected net reward obtained at decision stage m' is 
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Substituting Equations (A7) and (A8) into Equation (A6), we obtain 
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According to Equations (11) and (A1) and Inequality (A9), we obtain  
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Since 
s wc c  and mm ' , we know ),( 10
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is an optimal action in any state s
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In summary, for a state s
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sd = 1 and 
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